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It is widely accepted that in coastal wetlands a negative relationship exists between 

plant species richness (number of species) and salinity.  However, the distribution of 

species richness across estuarine salinity gradients has not been closely examined.  I 

hypothesized that plant species richness in coastal marshes (i.e., wetlands dominated 

by herbaceous plants) would follow a non-linear pattern with increased distance 

(salinity) downriver (Chapter 2).  To test this hypothesis I conducted detailed marsh 

vegetation surveys along ≈ 50 km estuarine river gradients of the Nanticoke and 

Patuxent Rivers, MD/DE.   I further hypothesized that the observed patterns of plant 

species richness on the Nanticoke and Patuxent Rivers could be accurately predicted 

by a mid-domain effect (MDE) model independent of measured abiotic factors using 

RangeModel 5.0 (Chapter 3).  Lastly, I theorized that Marsh mesocosms subjected to 

intermediate salinity and inundation would exhibit significantly higher biomass and 



  

plant species richness compared to mesocosms subjected to extreme salt/fresh and 

flooding regimes utilizing a controlled greenhouse experiment (Chapter 4).  I found 

that plant species richness can vary in both a linear (Patuxent River) and non-linear 

(Nanticoke River) pattern along an estuarine gradient.  The MDE model did not 

explain a high proportion of the observed richness patterns for either river system 

compared to abiotic factors like porewater salinity.  The controlled marsh mesocosm 

experiment supported the non-linear pattern of plant species richness observed along 

the Nanticoke River gradient, but did not show a significant difference in plant 

biomass or richness/diversity between purely fresh and low-salinity marsh 

mesocosms (α = 0.05).  The results of this research suggest that tidal marsh plant 

richness/diversity patterns do not always conform to a simple linear relationship with 

increasing salinity and that the MDE is not as important of a mechanism in these 

communities compared to porewater salinity or flooding frequency.  Furthermore 

tidal low salinity marshes exposed to elevated salinity and flooding frequencies are 

likely to see a shift in their plant community structure to more salt tolerant plants and 

less rich/diverse communities assuming they can accrete at a rate equal to or 

exceeding the present rates of sea-level rise in the Chesapeake Bay. 
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Chapter 1 - Introduction 

Over at least three decades, numerous observational and experimental studies 

have sought to characterize plant community richness within tidal marsh ecosystems 

in response to various biotic and abiotic factors (Ferren et al. 1981, Latham et al. 

1994, Baldwin and Mendelssohn 1998, Hacker and Bertness 1999, Zedler et al. 2001, 

Crain et al. 2004, Pennings et al. 2005, and Dunn et al.  2006).  These researchers 

have examined the roles that interspecific competition, disturbance, stress, 

facilitation, and Mid-Domain Effect constraints play in determining tidal marsh plant 

species distributions and plant species richness.   

One of the principal themes of these studies has been the role of salinity and 

inundation in driving tidal marsh plant community structure and function.  Recent 

studies examining the mechanisms affecting plant distributions within tidal marsh 

ecosystems in New England, USA have modified or expanded on these ideas.  These 

studies have looked more specifically at interspecific competition, disturbance and 

salinity stress as the principal mechanisms behind plant species distributions (Hacker 

and Bertness 1999, Crain et al.  2004). Salinity “stress” in these cases can be defined 

as continuous exposure to salinity levels, which, over time, diminishes plant biomass 

and thus competitive ability.  Disturbance in these ecosystems is defined as a 

temporary discrete event that abruptly kills or displaces individuals, or that directly 

results in a loss of biomass (Mackey and Currie 2001).  This body of research 

suggests that tidal marsh plant species distributions are determined by a number of 

factors, including disturbance, salinity stress, competition, and facilitation.   
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Another potential factor affecting plant species distributions along gradients 

such as the Nanticoke and Patuxent Rivers is the Mid-Domain Effect (MDE).  MDE 

theory seeks to explain species richness gradients through simple geometric 

constraints on species range boundaries in the absence of any environmental or 

historical gradients (Colwell et al. 2004, Dunn et al. 2006, and Grytnes 2003).  The 

basic idea behind MDE is that in either one or two dimensional space if species 

geographic ranges are placed on a bounded map a peak in species richness will occur 

near the center – this is in essence the mid-domain effect (Colwell et al. 2004, 

Colwell and Lees 2000, and Zapata et al. 2003).   

 Tidal marshes are defined as wetland areas dominated by herbaceous 

vegetation under tidal influence with salinity ranges from 0-0.5 parts per thousand 

(freshwater marshes) to 18-30 ppt or higher (polyhaline or salt marshes) (Cowardin et 

al. 1979).  Marsh habitats with a mixture of fresh and salt water are considered 

brackish and fall into two categories: the 0.5-5.0 ppt range (oligohaline) and the 5.0-

18.0 ppt range (mesohaline) (Odum et al. 1984, Odum 1988).   

Tidal freshwater and saline marshes have similar geographic distributions 

along coastlines and estuaries, although tidal freshwater marshes usually occur in 

association with large river systems (e.g., in the Mid-Atlantic: Nanticoke, Choptank, 

Patuxent, Delaware, and Potomac Rivers) (Odum 1988).  In many cases within river 

systems, such as those draining into Chesapeake Bay, a generalized vertical gradient 

of salinity versus plant species diversity can be observed as one moves upstream.  

Plant species diversity tends to increase as salinity concentrations decrease along this 

gradient (Anderson et al. 1968, Odum 1988, Mitsch and Gosselink 2000, Greenberg 
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Figure 2. Hypothesized 
richness versus salinity 
curve  

Figure 1. Generalized 
marsh plant richness 
versus salinity across 
estuaries 

et al. 2006) (Figure 1).  The overall hypothesis of this dissertation research is that the 

“null” condition of plant species richness along these salinity gradients is more 

complex than a simple linear relationship.  There are two broad hypotheses that may 

explain richness patterns along estuarine gradients: environmental variables and the 

Mid-Domain Effect (MDE).  This dissertation examines the importance of 

environmental variables and the MDE theory in explaining diversity patterns along 

salinity gradients in estuarine wetland systems 

Environmental Variables 

 

One proposed mechanism driving the hypothesized richness pattern described 

in Figure 2 involves the periodic intrusions of saline water (e.g., during droughts) that 

reduces the biomass of freshwater species, allowing salt-tolerant species to persist and 

creating a non-linear pattern in species richness along the tidal fresh to brackish 

marsh gradient similar to that shown in Figure 2. 
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In a study of oligohaline marsh communities of the Mississippi River deltaic 

plain, the effects of salinity and inundation were manipulated to determine their 

effects on recruitment from the seed bank (Baldwin et al. 1996).  This study found 

that most of the oligohaline marsh species did not show appreciable germination 

above 4 ppt salinity, and species such as Amaranthus australis, Eleocharis fallax, and 

Ranunculus sceleratus did not germinate above 2 ppt (Baldwin et al. 1996).   More 

salt-tolerant plant species such as Bacopa monnieri, Eleocharis parvula, and 

Leptochloa fascicularis exhibited some germination at salinity levels as high as 8 ppt. 

These results suggest that periodic salinity and flooding pulses within the 

freshwater/brackish boundary should suppress the competitively dominant freshwater 

species sufficiently to allow less competitive, salt/flooding tolerant plants to occupy 

habitat niches otherwise unavailable to them.  This condition would create a 

freshwater/brackish transition zone (oligohaline) community possessing the highest 

plant species richness found within the tidal marsh system.     

In a related study, Baldwin and Mendelssohn (1998) assessed the effects of 

disturbance (clipping of aboveground vegetation) under different salinity and water 

level treatments from oligohaline marsh mesocosms on collected sods from 

Madisonville, LA marshes.   They found that salinity and water levels had significant 

effects on plant species richness following disturbance.   Other studies conducted in 

New England and Georgia have found similar results regarding the importance of 

salinity and flooding on plant species richness (Hacker and Bertness 1999, Crain et al. 

2004, and Pennings et al. 2005).     
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Hacker and Bertness (1999) assessed plant species interactions across 

intertidal zones characterized by different soil conditions in Rumstick Cove, Rhode 

Island.  They found that competition played a stronger role in the high intertidal 

marsh (low stress) by decreasing leaf area and flower production and causing 100% 

mortality of one of the species tested (Limonium nashii).  In contrast, they found that 

stress (e.g. salinity and flooding) was most important in the lower intertidal zone, 

causing 100% mortality of three of the four species tested (Atriplex patula, Iva 

frutescens, and Solidago sempervirens).  The highest species diversity was observed 

within the upper middle intertidal marsh, the area with an intermediate level of soil 

salinity levels and flooding.  Hacker and Bertness (1999) also found that plots 

containing Juncus gerardi had the highest diversity compared to those without, 

suggesting J. gerardi’s role as a facilitator for other marsh plants.  These studies 

illuminate the important role that salinity and competition play in shaping plant 

community richness and the overall patterns of tidal marsh species observed along 

estuarine gradients in Chesapeake Bay. 

Crain et al. (2004) and Pennings et al. (2005) found similar results among 

tidal marsh ecosystems in Georgia and New England.  Pennings found an increase in 

Spartina alterniflora performance (i.e. number of shoots or leaves) in the presence of 

Juncus roemerianus under physical disturbance/stress conditions on Sapelo Island, 

GA.  He concluded that both the physical conditions and the presence of a facilitator 

improved Spartina alterniflora performance.  Crain’s experimental research on marsh 

plants, collected from Narragansett Bay, Rhode Island, found that competition and 
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physical disturbance were both important components affecting tidal marsh plant 

species distributions. 

A Non-Environmental Explanation of Richness Patterns: The MDE 

My hypothesized pattern of plant species diversity along the fresh-brackish 

salinity gradient of the Nanticoke and Patuxent Rivers may also be explained to some 

degree through the Mid-Domain Effect (MDE).  The implicit null model many river 

ecologists have traditionally assumed when examining species richness along the 

entire length of a river course is that species richness would remain constant along the 

entire river course in the absence of the influences such as environmental, historical, 

or biological gradients (Dunn et al. 2006 and Tabacchi et al. 1996).  Mid-Domain 

Effect theory suggests that this underlying null model is inaccurate and that a more 

appropriate null model for species richness patterns along river courses is more of a 

bell shaped curve representing a species richness peak at a mid-point along the river 

course. 

Mid-gradient peaks in species richness have been noted in non-estuarine 

wetland and riparian systems. For example, middle-course plant richness peaks have 

been reported in riparian areas in Northern Sweden (Kalix and Torne Rivers) (Dunn 

et al. 2006) and SW France (Adour River) and the NW United States (MacKenzie 

River) (Tabacchi and Tabacchi 1996). Mid-gradient richness peaks have also been 

reported for non-wetland systems, including along elevational gradients for some 

vascular plant species in Borneo (Grytnes et al. 2006), breeding birds along 

longitudinal gradients in Africa (Jetz and Rahbek, 2001), and elevational and 

latitudinal gradients for butterflies in Madagascar (Lees et al. 1999). In addition to the 
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influence of environmental stressors, geometric constraints and overlap of species 

ranges may result in species richness maxima in the middle of bounded systems 

(Colwell and Lees 2000, Colwell et al. 2004, Cardelús et al. 2006, Dunn et al. 2006, 

but see Zapata et al. 2003, 2005). 

Sea-Level Rise And Wetland Plant Diversity 

Coastal marshes are increasingly under threat from climate change impacts 

most notably a possible increase in the rate of global sea level rise, deeper salinity 

intrusions upriver of estuarine systems, and from watershed land use changes leading 

to subsidence.  In the Chesapeake Bay, rates of relative sea level rise are 2.5-3.6 

mm/year (among the highest on the U.S. Atlantic coast), resulting in the loss of tidal 

marsh habitats (Stevenson et al. 1985, Kearney et al. 1988).  Kearney et al. (1988) 

assessed marsh loss in the Nanticoke River between 1938 and 1985 and determined 

that tidal freshwater marshes were somewhat stable and were accreting sufficiently to 

keep pace with sea level rise.  The Kearney study also found that, proceeding 

downstream along the estuary, deterioration rates were increasing while sediment 

accretion rates were generally decreasing (Kearney et al. 1988).  In contrast, a 2.5-

year sediment accretion study performed within Jug Bay (Patuxent River) found 1.4 

mm/yr decreases in surface elevations within tidal marshes (Childers et al. 1993). In 

short, the Jug Bay marshes were not accreting at rates sufficient to keep pace with 

relative sea level rise (Childers et al. 1993).   

As relative sea levels within the Chesapeake Bay and its tidal rivers continue 

to rise, soil salinities will increase, presumably leading to an overall decline in tidal 

marsh plant biodiversity.  Current climate models for the Chesapeake Bay region 
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suggest an increase in salt intrusions into estuarine river systems and continual 

increases in relative sea level rise as this region of the country is expected to see more 

extreme climate patterns, specifically extreme wet conditions in winter and early 

spring, followed by extreme dry conditions in the summer and early fall months 

(Hayhoe et al. 2007, Pyke et al. 2008). 

Goals, Objectives, and Hypotheses 

This dissertation research sought to examine the existing (observed) patterns 

in tidal marsh plant species richness/diversity along two estuarine river systems in 

Chesapeake Bay (Chapter 2).  The outcome of those observations was tested against 

MDE predictions of plant species richness along those same gradients to determine 

the importance of abiotic factors versus MDE modeled outcomes (Chapter 3).  In 

essence I sought to identify the appropriate null expectation of plant species richness 

patterns and examine the possibility that my observed patterns of plant species 

richness could be explained by an underlying mid-domain effect that functions 

independently of factors such as soil salinity, flooding frequency, and competition.  

Lastly, through a controlled greenhouse experiment subjecting synthetic marsh 

mesocosm communities to varied salinity and flood frequencies I sought to quantify 

the importance of those abiotic factors on plant community composition and 

richness/diversity in the absence of the MDE (Chapter 4).    

The overall goal of this research is to identify and describe the principal 

mechanisms controlling plant species richness along river salinity gradients of 

Chesapeake Bay.  This research also sought to simulate the potential impacts of 

climate change (i.e. sea-level rise and salt intrusions) on low-salinity marsh 
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mesocosms.  The goal of this final component was to allow scientists and resource 

managers a means of predicting tidal marsh community changes over time and 

develop additional controlled experiments examining plant community responses to 

altered physical and biotic conditions, such as those caused by global climate 

changes.  To address these goals I developed separate objectives and hypotheses for 

my dissertation research: 

Objective 1 (Chapter 2):  Describe changes in plant species richness across a 

gradient from tidal freshwater to brackish marshes along the Nanticoke and Patuxent 

Rivers (Maryland and Delaware – Delmarva Peninsula, USA).  USA).  Under this 

objective I also cataloged the various freshwater and brackish plant species that co-

exist within these tidal fresh/brackish transitional areas.   

Primary Research Hypothesis 1:  The pattern of observed plant species 

richness/diversity for both river systems will follow a non-linear relationship with 

increasing salinity. 

Objective 2 (Chapter 3):  Determine if the observed patterns of plant species 

richness along the Nanticoke and Patuxent Rivers (2006) could be solely or at least 

partially explained by an underlying mid-domain effect.   

Primary Research Hypothesis 2:  The observed patterns of plant species richness on 

the Nanticoke and Patuxent Rivers will be accurately predicted by the MDE model 

independent of measured abiotic factors.  

Objective 3 (Chapter 4):  Quantify the importance of salinity and inundation on 

plant community richness and biomass using constructed marsh mesocosms.   
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Primary Research Hypothesis 3:  Marsh mesocosms subjected to intermediate salinity 

and inundation will exhibit significantly higher biomass and plant species richness 

compared to mesocosms subjected to extreme salt/fresh and flooding regimes.  
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Chapter 2 - Patterns of Wetland Plant Species Richness Across Estuarine 

Gradients of Chesapeake Bay 

Abstract 

It is widely accepted that in coastal wetlands a negative relationship exists 

between plant species richness (number of species) and salinity.  However, the 

distribution of species richness across estuarine salinity gradients has not been closely 

examined.  I hypothesized that plant species richness in coastal marshes (i.e., 

wetlands dominated by herbaceous plants) would follow a non-linear pattern with 

increased distance (salinity) downriver.  A series of 1,000-m2 plots (with nested 

subplots) were established along 50-km sections of the Nanticoke and Patuxent 

Rivers across the fresh (< 0.5 ppt) to mesohaline (5–18 ppt) salinity gradients to 

describe the distribution of plant species richness/diversity.  Repeated measures 

ANOVA analysis and curve fitting results support my research hypothesis on the 

Nanticoke River (sigmoidal pattern not linear), but not on the Patuxent River.  The 

Patuxent River gradient displayed a significant linear decrease in plant species 

richness/diversity with increasing distance downstream across the estuary.  The curve 

fitting results of the Patuxent River were verified by repeated measures ANOVA 

analysis of the Shannon-Wiener diversity data for that showed a clear differences 

between means at the 0.05 level and thus supported the null hypothesis of a linear 

relationship between plant species richness/diversity and distance downstream.  The 

non-linear patterns of both plant species richness/diversity observed along the 

Nanticoke River may be the typical pattern in relatively undisturbed estuaries.  While 

the Patuxent River richness/diversity relationships were likely confounded by past 
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and present anthropogenic disturbances within the marshes and watershed that 

produced the observed linear patterns. 

Introduction 

 

Tidal freshwater and saline marshes have similar geographic distributions 

along coastlines, where tidal freshwater marshes occur at the head of estuaries and 

saline marshes in the lower portions of estuaries (Odum 1988).  In many coastline 

river systems, such as those draining into Chesapeake Bay, an increase in plant 

species richness, i.e., the number of species within an area, can be observed as one 

moves upstream from saline to freshwater portions of the estuary.  The general 

pattern that plant species richness increases as salinity decreases along the estuarine 

gradient is widely accepted (Anderson et al. 1968, Odum 1988, Tiner and Burke 

1995, Greenberg et al. 2006). However, I have observed species-rich wetlands, 

including both marshes and tidal freshwater swamps (forested wetlands), in portions 

of the Nanticoke River in Maryland (USA) where salinity is generally < 0.5 ppt but 

occasionally increases as high as 7 ppt (unpublished data). Furthermore, in a New 

Jersey, USA estuary, the middle portion of an island that received an intermediate 

level of “disturbance” (salt stress and flooding) displayed the highest species richness 

(Ferren et al. 1981). Although data on the exact number of species and their estuarine 

distributions were not reported, the coexistence of freshwater species, such as 

Peltandra virginica, and more salt-tolerant species, such as Spartina alterniflora, was 

noted (Ferren et al. 1981). These observations suggest that the distribution of plant 

species richness across estuaries may be more complex than a linear model of 



   

 13

decreasing richness with increasing salinity; richness may be particularly high in the 

fresh-brackish transition zone. 

Mid-gradient peaks in species richness have been noted in non-estuarine 

wetland and riparian systems. For example, middle-course plant richness peaks have 

been reported in riparian areas in Northern Sweden (Dunn et al. 2006) and SW France 

and the NW United States (Tabacchi and Tabacchi 1996). Mid-gradient richness 

peaks have also been reported for non-wetland systems, including along elevational 

gradients for some vascular plant species in Borneo (Grytnes et al. 2006), breeding 

birds along longitudinal gradients in Africa (Jetz and Rahbek, 2001), and elevational 

and latitudinal gradients for butterflies in Madagascar (Lees et al. 1999). In addition 

to the influence of environmental stressors, geometric constraints and overlap of 

species ranges may result in species richness maxima in the middle of bounded 

systems, a phenomenon termed the mid-domain effect (Colwell and Lees 2000, 

Colwell et al. 2004, Cardelús et al. 2006, Dunn et al. 2006, but see Zapata et al. 2003, 

2005). 

Chesapeake Bay contains one of the greatest concentrations of tidal low-

salinity marshes (i.e., fresh and oligohaline marshes) in the United States, covering 

approximately 16,000 ha in Maryland alone (Tiner and Burke 1995, Mitsch and 

Gosselink 2000).  Low-salinity marshes as defined by Mitsch and Gosselink (2000) 

are wetlands close enough to the coasts to experience significant tides but are above 

the reach of oceanic saltwater.  Extensive low-salinity tidal marshes are associated 

with many of the rivers flowing into the Bay, including the Patuxent, Choptank, 

Wicomico, and Pocomoke Rivers in Maryland, and the James, York, and 
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Rappahannock Rivers in Virginia (Tiner and Burke 1995). These wetlands are of 

tremendous importance to the Chesapeake Bay ecosystem. Tides and river flooding 

supply abundant nutrients, generating primary productivity as high as any ecosystem 

on earth, including agroecosystems (Tiner 1993; Mitsch and Gosselink 2000).  

As relative sea levels within Chesapeake Bay and its estuaries continue to rise, 

soil salinities and the frequencies of inundation within tidal marsh ecosystems may 

increase, presumably leading to an overall decline in tidal marsh plant biodiversity or 

the conversion of these systems into open water habitats (Baumann et al. 1984). 

While hydrologic regime differs among years, eustatic rates of sea level rise (SLR) 

have been 1–2 mm/year over the last 100 years (Gornitz 1995), and the rates of rise 

relative to the land surface (relative SLR) can be higher due to land subsidence and 

decreases in sediment influx. Rising sea levels result in greater frequency and 

duration of inundation (Boesch et al. 1994) and are responsible for rates of wetland 

loss of 65.6 km2/year in coastal Louisiana, including both fresh and saline wetland 

types (Britsch and Dunbar 1993, Boesch et al. 1994). In Chesapeake Bay, rates of 

relative SLR are 2.5–3.6 mm/year, among the highest on the U.S. Atlantic coast 

(Stevenson and Kearney 1996), resulting in loss of brackish marshes (Stevenson et al. 

1985, Kearney et al. 1988).  

 The objectives of this study were to describe patterns of plant species richness 

across a gradient from tidal freshwater to brackish marshes along the Nanticoke and 

Patuxent Rivers.    My hypothesis was that the pattern of observed plant species 

richness for both river systems would follow a non-linear relationship with increasing 

salinity. Understanding patterns of plant species richness across estuaries will help to 
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Figure 3. Chesapeake Bay and its major tributaries 
showing the Patuxent and Nanticoke Rivers and 
general study gradient locations.  Source of base 
map: The Chesapeake Bay Foundation 
(http://www.cbf.org) 
 

identify biodiversity “hot spots” for conservationists and wildlife habitat managers, 

and support predictions of how plant richness may shift in response to salinity 

intrusion associated with sea level rise. Furthermore, the results of this study will add 

to our understanding of the effects of “stressors” such as salinity on maintenance of 

plant species richness and contribute to a growing body of ecological literature 

focusing on species distributions across environmental gradients.  

STUDY AREA 
 

This project was carried out in tidal 

marshes (i.e., wetlands dominated by 

herbaceous plants) along two ≈ 50 km 

gradients within the Nanticoke and 

Patuxent Rivers in Chesapeake Bay, 

Maryland, USA (Figure 3).  These two 

gradients spanned the known freshwater 

(0–0.5 ppt) to mesohaline (5–18 ppt) 

salinity zones and includes high 

richness/diversity marshes of 

intermediate (Transitional) 

fresh/oligohaline salinities (0.49 – 5.0 

ppt salinity modifier ) (Cowardin et 

al. 1979) of each river and were 

chosen for their extensive tidal 

marsh habitats and to provide a regional evaluation of tidal marsh plant biodiversity 

Study Gradients 
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within Chesapeake Bay.  Plots within each gradient were selected beginning with the 

upper most limit of tidal freshwater marsh habitat containing at least 1000 m2 (our 

plot size) in each river.  Subsequent vegetation survey plots were established in a 

systematic pattern every ≈5 km downstream, depending on the presence of at least 

1000 m2 of marsh habitat for survey and access to land.  If a steep drop off in plant 

species richness (i.e., > 10 species/1000 m2) was observed between two plots, then a 

middle plot approximately 2.5 km between the two primary plots was surveyed to 

refine the observed plant species richness pattern along the gradient.  I define plant 

species richness as the total number of species within a plot.  

 

The Patuxent River has a 2,136-km2 watershed dominated by agricultural 

(30%), forest (40%), and urban (20%) land uses (Jordan 2001).  The Patuxent 

watershed has experienced forest losses of > 2400 ha/year between 1985–1990 and 

agricultural land losses of > 800–1600 ha/year over the same time period (Costanza et 

al. 2002). The Nanticoke River, in contrast, has a 2,356-km2 watershed dominated by 

agriculture (48%), forest (41%), and urban (2%) land uses (The Nature Conservancy 

1998).   

Methods 

Vegetation and Environmental Measurements 

Vegetation was described in 16 1000-m2 plots (20 m x 50 m) along the 

Nanticoke River and 13 1000-m2 plots along the Patuxent River.  Sampling of each 

plot was conducted once in May/June and once in August 2006.  To capture within-

season variation, plots were sampled non-destructively during both surveys using the 



   

 17

Figure 4. Diagram of a typical 1000-m2 

vegetation survey plot, adapted from Peet et 
al. (1998).  Striped circles show the location 
of porewater measurements and the solid 
black circle depicts the water level recorder 
location.  The nested survey plots were 
assigned to modules 2, 3, 8, and 9 and the 
locations of the intensive survey corners are 
represented by the smaller squares within 
each of the numbered modules.  Nested plot 
sizes were 0.01 m2, 0.1 m2, 1 m2, 10 m2, and 
100 m2 (10 x 10 m module). 
 

North Carolina Vegetation Survey protocol.  This “module” method combines larger 

scale sampling (1000 m2) with smaller scale nested plots (Peet et al. 1998) (Figure 4).     

 The large (1000 m2) plot size is 

well suited for capturing dominant 

plant species richness within fresh-

brackish tidal marsh areas because of 

the patchiness often observed in these 

habitats.  The five nested sample plots 

ensured that I captured small, less  

frequent marsh plants within the plot 

(Peet et al. 1998); only data from the 

1000-m2 plots are reported in this 

paper as the 1000-m2 plot size best represented the full range of plant species 

observed at each location.  The coverage of each species within the sample plots was 

assessed visually using the cover class scheme described by Peet et al. (1998).  This 

arrangement is based on a ten point scale whereby 1 = trace, 2 = 0–1%, 3 = 1–2%, 4 = 

2–5%, 5 = 5–10%, 6 = 10–25%, 7 = 25–50%, 8 = 50–75%, 9 = 75–95%, and 10 = > 

95%.    Cover-class mid-points were then used in calculating means, (e.g., Class 5 = 

5–10% so use midpoint of 7.5%).  Nomenclature follows the USDA PLANTS 

database (http://plants.usda.gov); name authorities are listed in the text only if not 

listed in Table 1. 

Salinity, temperature, and electrical conductivity were measured in each plot 

at the time of sampling (May/June and August 2006) by measuring substrate 
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porewater at two fixed locations within the plot in holes where PVC marker poles 

were removed and at one location within the river near the plot with a hand-held 

salinity-conductivity-temperature meter.  Four 10 x 10 m modules were selected for 

“intensive” nested plot examinations (Peet et al. 1998) at each plot and soil samples 

were randomly collected from one location within each intensive module of every 

plot using a Dutch auger with a 25-cm blade.  Soil samples were collected from each 

of the four intensive modules and composited into one aggregate sample per plot in 

June 2006. The soil samples were tested for macro-nutrients and organic matter 

content at the University of Delaware Soil Testing Lab and the results were 

incorporated into the non-metric multidimensional scaling analysis (see Data 

Analysis below).  Specific soil analytes tested from the composited soil samples 

included: organic matter content (by loss on ignition); phosphorus, potassium, 

calcium, magnesium, manganese, zinc, iron, boron, sulfate, and aluminum content 

(Mehlich 3 Extraction); total nitrogen and carbon, ammonia-nitrogen, and nitrate-

nitrogen (2M KCI Extraction); total phosphorus and sulfate (microwave digestion 

(EPA3051-P and EPA3051-S); and pH. 

Plot locations were recorded using a handheld Global Positioning System 

accurate to within 4.6 m.  Datalogging water level recorders were placed within each 

plot to monitor frequency of inundation (model WL-15, Global Water, Gold River, 

CA).  The recorders were programmed to record water level every six minutes over a 

two-week period in either July or August (depending on the river).    
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Data Analysis 

The 28 vegetation plots were grouped based on similarity of plant species 

distributions using a hierarchical, polythetic, agglomerative cluster analysis with a 

Sorenson (Bray-Curtis) distance measure and a flexible beta group linkage method (β 

= 0.25) (McCune and Grace 2002).  Rare species (occurrence < 2 individuals) were 

removed from the plant species cover data prior to performing cluster analysis.  The 

cluster analysis was used as a quantitative measure of establishing groups for the 

various plots and as a precursor to running indicator species analysis and non-metric 

multidimensional scaling (NMS).  Three groups were identified using cluster analysis 

(see Results), which I named Fresh, Transitional, and Brackish based on their location 

within the estuary.  Environmental resource variables were log-transformed for use in 

NMS analysis because plant abundance generally varies linearly with log-transformed 

values of resource variables (Palmer 1993, Graves 2006).    

To characterize clusters (groups) using the combined data from both rivers I 

used indicator species analysis (McCune and Grace 2002), which identifies taxa 

useful in differentiating groups. Indicator species analysis accounts for the frequency 

and relative abundance of each taxon in predefined clusters and produces indicator 

values for each taxon ranging from 0 (non-indicator) to 100 (perfect indicator). The 

higher the indicator value, the greater the group fidelity for a given species.  A 

species was required to have a Monte Carlo significance value of P < 0.05 based on 

4,999 permutations to be considered an adequate indicator species for one of our three 

groups of plots (Fresh, Transitional, Brackish).  Cover data were summarized for the 

five most important plant species from each group within the Patuxent and Nanticoke 

Rivers by averaging data from the two sampling events.   
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NMS was also employed as a multivariate analysis tool for determining the 

relative strength of relationships between vegetation and environmental data.  The 

NMS analysis used a Sorenson (Bray-Curtis) distance measure with a 0.0000001 

stability criterion and a maximum of 500 iterations (McCune and Grace 2002).  In the 

NMS analysis plots were identified as Fresh, Transitional, or Brackish based on the 

groupings identified in the previous cluster analysis. Cluster, NMS, and Indicator 

Species Analyses were completed using PC-ORD Version 5.0 (MjM Software 

Design, Gleneden Beach, OR).   

Two approaches were used to examine patterns of richness/Shannon-Wiener 

diversity (herein called diversity) in relation to distance across each estuary. First, a 

curve-fitting regression approach was used to determine if either a curve or a straight 

line resulted in a better fit of the data, based on R2 and model significance.  Curve 

fitting was performed using SigmaPlot version 10.0 (Systat Software, Inc., San Jose, 

CA). Second, a repeated measures ANOVA analysis was conducted to compare 

richness/diversity values between plots grouped as fresh, transitional , or brackish in 

the multivariate cluster analysis using SAS version 9.1 (SAS Institute, Inc., Carry, 

NC). The significance value for this analysis was set at 0.05 and the effects of group, 

time, and the interaction of group and time were tested. Normality and variance 

heterogeneity were examined prior to analysis to ensure ANOVA assumptions were 

met. 

Results 

Plant species richness was highest in the middle reaches of the Nanticoke 

estuary (Figure 5).  Historic river salinity data from two long term monitoring stations 
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Figure 5.  The relationship 
between plant species richness 
(number of species) and distance 
across the Nanticoke and 
Patuxent River estuaries.  The x-
axis is distance downstream from 
the upper most tidal fresh marsh 
plot along each river.  Plotted 
values are the mean ± SE error 
bars (with wide end caps) except 
for historic salinity data, which 
are the mean and range (narrow 
end caps).  Included on each 
graph are the best curves fits and 
95% confidence interval bands 
(dashed lines) for each curve.  
Patuxent River historic salinity 
data are from 1985–2007, 
Nanticoke River historic salinity 
data range from 1984-2007. 

 

bracketing the plot (Figure 5) indicate that salinity increases periodically to 4 ppt or 

higher in this region of the estuary.   
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The highest richness was observed at river-kilometer 35 (river-km 35), where 

soil pore water salinities ranged between 0.5 and 0.8 ppt during sampling.  The 

Nanticoke River data showed a distinctly non-linear relationship between richness 

and distance along the estuary.  Curve fits of the Nanticoke River plant species 

richness data were better explained by a simple quadratic equation (R2 = 0.43,  F2,13 = 

4.93, P = 0.02) compared to a linear equation (R2 = 0.22, F1,14 = 4.02, P = 0.06).  



   

 22

 

However, at the Patuxent River a simple linear equation (R2 = 0.47, F1,11 = 9.73 P = 

0.01) fit the data as well as the quadratic curve (R2 = 0.47, F2,10 = 4.42, P = 0.04; not 

plotted).  Historic salinity data from the Patuxent River indicate that salinity levels 

near river-km 15 (our plot with highest richness) can experience salinities ranging 

from 0.65 to 2.65 ppt.  Soil porewater salinities at river-km 15 ranged from 0.3 to 0.4 

ppt (fresh) during the summer 2006 sampling events.  The lowest plant species 

richness/diversity occurred at a plot approximately at river-km 23 on the Patuxent 

River in a large stand of Phragmites australis.    

Shannon-Wiener diversity calculations are sometimes a more useful tool for 

assessing plant community structure as the index incorporates not only the number of 

species present, but also the frequency of occurrence. Diversity was calculated using 

the species frequency data obtained from the nested 1-m2 plots at each river location, 

the results in Figure 6 show a significant improvement (R2 = 0.76, F2,13 = 21.28, p 

<0.01) over the quadratic curve fit results.  Neither a linear or non-linear curve 

provided a significant fit for the Patuxent River diversity data until the low richness 

plot at river-km 23 was removed from the data set.  Upon removal of the outlier plot 

from the data set a significant sigmoidal curve (R2 = 0.58, F2,9 = 6.45, p = 0.02) fit the 

diversity data as well as a linear curve (R2 = 0.52, F1,10 = 11.06, p < 0.01).  
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Nanticoke River Sigmoidal Curve Fit
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Figure 6. The relationship between plant species richness (number of species) and distance 
across the Nanticoke and Patuxent River estuaries.  The x-axis is distance downstream from the 
upper most tidal fresh marsh plot along each river.  Plotted values are the mean ± SE error bars.  
The linear and sigmoidal curve fits of the Patuxent River diversity data are shown.  
 

 

The cluster analysis delineated three groups of plots (data not shown), which I 

labeled as Fresh, Transitional, and Brackish based on their position in the estuary 

(Table 1).   
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Table 1.  Plant species indicator and P-values, corresponding to group membership 
(Fresh, Transitional, Brackish) along the Nanticoke and Patuxent Rivers. 

 
Plant Species (Plant Code) Observed Indicator 

Value (IV) 
P-value 

Fresh Marsh Group   
Polygonum arifolium L.  87.6 0.0002 
Bidens laevis (L.) Britton, Sterns & Poggenb.  87.3 0.0002 
Cuscuta gronovii Willd. Ex Schult. 77 0.0212 
Impatiens capensis Meerb. 76.2 0.0010 
Nuphar lutea (L.) Sm. 69.2 0.0016 
Polygonum sagittatum L. 68.9 0.0044 
Acorus calamus L. 68.1 0.0010 
Cicuta maculata L. 67.6 0.0046 
Bidens coronata (L.) Britton  60.5 0.0044 
Sparganium americanum Nutt. 60.3 0.0054 
Symphyotrichum puniceum (L.) A. LÖve & D. LÖve 59.6 0.0258 
Peltandra virginica (Michx.) Morong  55 0.0154 
Cephalanthus occidentalis L. 46.2 0.0096 
Galium tinctorium (L.) Scop.  45.7 0.0278 
Boehmeria cylindrica (L.) Sw.  41.7 0.0450 
Apios americana Medik. 38.5 0.0368 
Transitional Marsh Group   
Leersia oryzoides (L.) Sw. 76.9 0.0212 
Rumex verticillatus L. 64 0.0102 
Spartina cynosuroides L. Roth  63.2 0.0036 
Mikania scandens (L.) Willd. 57.4 0.0430 
Polygonum punctatum Elliot 56.9 0.0290 
Asclepias incarnata L. 51.1 0.0184 
Pontederia cordata L. 50.3 0.0108 
Schoenoplectus tabernaemontani (C.C. Gmel) Palla 50.3 0.0184 
Phragmites australis (Cav.) Trin ex Steud. 49.7 0.0296 
Polygonum hydropiper L. 37.6 0.0416 
Teucrium canadense L. 37 0.0316 
Eleocharis spp.  35.8 0.0352 
Cyperus strigosus L. 34.4 0.0494 
Brackish Marsh Group   
Iva frutescens L. 100 0.0002 
Spartina patens (Aiton) Muhl. 97.7 0.0002 
Distichlis spicata (L.) Greene 96.3 0.0002 
Spartina alterniflora Loisel  87.2 0.0002 
Pluchea purpurascens (Sw.) DC.  64.8 0.0028 
Schoenoplectus robustus (Pursh) M.T. Strong 44.8 0.0342 
Atriplex prostrata Bouchér ex DC.  31.3 0.0304 

 
The majority of Transitional plant species displayed lower indicator values 

(IV), i.e., lower group fidelity (mean IV value = 50.1), compared to the Fresh (IV 

mean = 63.1) and Brackish marsh groups (IV mean = 73.2) for both river systems. 

Thus many of the Transitional species also occurred in the Fresh or Brackish marsh 
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Figure 7. Results of the repeated measures ANOVA 
analysis for the Nanticoke and Patuxent River plant 
species richness data.  Means comparisons between 
the Nanticoke and Patuxent Rivers were not made, 
so the differences between means are meant to be 
interpreted within each river separately.  Means with 
different letters are significantly different. 

groups.  Polygonum arifolium and Bidens laevis were the two plant species with the 

highest indicator values for the Fresh group (IV > 87).  Leersia oryzoides and Rumex 

verticillatus were found consistently within the Transitional group.  Transitional 

marsh areas had observed mean soil salinities ranging from 0.4–2.2 ppt on average 

for both rivers.  The Brackish marsh group contained plants with the most consistent 

group fidelity. Iva frutescens occurred entirely within the Brackish marsh group, 

along with Spartina patens, Distichlis spicata, and Spartina alterniflora, all of which 

had indicator values above 87.  The Brackish marsh group had observed average soil 

porewater salinity readings that fell within a range of 1.5 ppt and 7.9 ppt with average 

Fresh marsh group soil porewater salinities ranging from 0.0 ppt to 0.8 ppt for both 

rivers. 

The repeated measures ANOVA analysis of plant species richness between 

groups for each river showed results consistent with the curve fitting findings for 

plant species richness.  The main effect 

of group membership had a significant 

effect on average plant species 

richness in both the Nanticoke (F2,26 = 

9.63, P = 0.0007) and Patuxent Rivers 

(F2,18 = 4.95, P = 0.0194) (Figure 7). 

At the Nanticoke River the richness of 

the Fresh and Transitional groups were 

significantly higher than the Brackish 

marsh group, but did not differ 
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Figure 8. Results of the repeated measures ANOVA 
analysis for the Nanticoke and Patuxent River plant 
species Shannon-Wiener Diversity data.  Means 
comparisons between the Nanticoke and Patuxent Rivers 
were not made, so the differences between means are 
meant to be interpreted within each river separately.  
Means with different letters are significantly different. 

significantly from each other, which supports a non-linear type of plant  species 

richness/diversity pattern.  On the other hand, the Patuxent River repeated measures 

ANOVA results showed a significant decline in plant species richness between Fresh 

and Transitional groups and between Transitional and Brackish groups. The main 

effects of time and the interaction between time and group membership were not 

significant for either river (P >> 0.05).   Figure 6 shows the results of the repeated 

measures ANOVA analysis for the diversity data.  As with the richness data the main 

effect of group membership had a significant effect on average plant species richness 

in both the Nanticoke (F2,26 = 5.51, 

P = 0.010) and Patuxent Rivers 

(F2,18 = 12.29, P = 0.0004) (Figure 

8). As was the case with the 

richness data, the Shannon-Wiener 

diversity data on the Nanticoke 

River did not show a significant 

difference between the fresh and 

transitional marsh groups, but 

significantly higher diversity was 

observed on average in both areas 

compared to the brackish marshes.    

The results of the Nanticoke River the diversity data lend support to the curve 

fitting results of a general sigmoidal pattern of plant species diversity/richness.  The 

Patuxent River ANOVA analysis of the diversity data appear to strongly support a 
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Figure 9. Non-Metric Multidimensional Scaling analysis of 
the Patuxent and Nanticoke River 1000-m2 plots showing 
the separation of plots between Fresh, Transitional, and 
Brackish group plots. 
 

linear relationship of plant species richness/diversity as significant differences were 

found between all three groups at the 0.05 level in Figure 8.  

Distances between 

points within the NMS 

ordination space are related 

to dissimilarities in species 

composition between the 

plots in response to salinity 

and between rivers (Figure 

9).  NMS provides a 

quantitative means of 

examing the similarities or 

dissimilarities in the plant 

species data.  The axes of the 

ordination diagram reflect 

plant species responses to 

our measured salinity and 

environmental variable 

trends as one moves from the 

Fresh group plots (upper left 

portion of the graph) to the Transitional group plots (center) to the Brackish group 

plots (lower right portion of the graph).  Within groups the Patuxent River plots tend 

to be displaced toward the lower right direction from the Nanticoke plots, indicating 
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differences in species composition between the two rivers.  However, the difference 

between the rivers was less than the difference among groups.  

Many of the principal group indicator species were also considered the most 

important within our study gradients on the Nanticoke and Patuxent Rivers based on 

their average cover (Figure 10). Within the Nanticoke River, dominant fresh marsh 

species such as Acorus calamus and Polygonum arifolium showed general trends of 

maximum abundance in the fresh-oligohaline portions of the river (river-km 0–30). 

The dominant Transitional group marsh species, such as Spartina cynosuroides, 

Phragmites australis, and Mikania scandens, tended to peak closer to the middle to 

lower portions of the gradient (river-km 30-40), i.e., the oligohaline-mesohaline 

zones.  Brackish group marsh species like Spartina alterniflora, Spartina patens, and 

Iva frutescens tended to dominate within the saltiest portions of the Nanticoke River 

gradient (river-km 40–60).    
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Figure 10. Average percent cover versus distance downstream (May-August 2006) for 
the five most abundant plant species within each group and river based on relative 
cover.  Plant species are arranged in their respective groups (Fresh, Transitional, 
Brackish) based on the results of the Indicator Species Analysis from greatest average 
cover to lowest average cover within each group.  Plant community groups were 
established from Cluster and NMS analysis. 
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Similar dominant plant species patterns were observed on the Patuxent River over 

the course of the study.  Polygonum arifolium, Acorus calamus, Typha angustifolia L., 

Pilea pumila (L.) A. Gray, and Peltandra virginica all showed high abundances or at 

least a presence within the upper portions of the river gradient.  Dominant transitional 

marsh species such as Spartina cynosuroides and Phragmites australis displayed peak 

abundances within the middle course of the Patuxent River gradient (river-km 30–40).  

Brackish marsh plants including Iva frutescens, Spartina patens, and Spartina 

alterniflora tended to be most abundant near the lower end of the gradient with some 

representation between river-km 40–50. 

Discussion 

 

The results of this study do not conclusively support our hypothesis of a non-

linear gradient in wetland plant species richness/diversity.  However, at the Nanticoke 

River there was a distinctly non-linear (sigmoidal) relationship between plant species 

richness/diversity and distance across the estuary, with richness/diversity in the 

transitional/oligohaline marshes having no significant differences from the tidal 

freshwater zone, despite higher salinity (supported by both curve fitting and ANOVA 

analyses). In contrast, at the Patuxent River richness declined in approximately linear 

fashion proceeding downstream across the estuary, based on both curve fitting and 

ANOVA, in concordance with the general pattern reported by others. Two questions 

arise. First, what mechanisms might explain the high richness observed in oligohaline 

(transitional) marshes at the Nanticoke River? And second, why was the pattern not 

observed at the Patuxent River? Answering these questions has implications for 
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understanding richness patterns and how anthropogenic or natural change may influence 

them, not only in coastal wetlands but in any ecosystem characterized by stressor 

gradients that influence species composition. 

Salinity Disturbance and Species Coexistence 

 

Ecology has a rich history of efforts to understand factors controlling species 

richness. A groundbreaking theory that many subsequent theories essentially elaborated 

upon is the Intermediate Disturbance Hypothesis of Connell (1978), which postulates that 

richness is highest at intermediate levels of disturbance frequency, disturbance size, or 

time since disturbance. High levels of disturbance prevent occurrence of most species, 

preventing coexistence and reducing richness, while low levels of disturbance allow 

competitive elimination of species by a few strong competitors, similarly reducing 

coexistence. 

In estuarine wetlands, salinity can be viewed as a stress that reduces growth and 

thus competitive ability of freshwater plants, or alternatively as a disturbance when it 

occurs in pulses that kill freshwater plants. Thus, salinity pulses during droughts may 

promote coexistence of salt-tolerant and salt-intolerant species in fresh-brackish 

transition zone marshes. Competitive limitations on brackish plant distributions within 

tidal freshwater marshes have been well documented in the literature (Hacker and 

Bertness 1999, Crain et al. 2004, Pennings et al. 2005).  In the absence of competition 

from neighboring freshwater marsh species, many brackish plants thrive and can actually 

grow best under freshwater conditions (Crain et al.  2004). Other research I are 

conducting on emergent plants collected from habitats of the Patuxent River confirm 
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these findings. Plant species such as Pluchea purpurascens and Eleocharis parvula 

(Roem. & Schult.) Link ex Bluff, Nees & Schauer, two seemingly obligate brackish 

species based on their distribution in the estuary, grew exceptionally well in pure 

freshwater conditions in the absence of competition from other plants (unpublished data).   

 The transitional zone marsh areas I studied exhibited soil porewater salinities 

ranging from 0 ppt to more than 5 ppt during dry periods when river discharge was low, 

allowing intrusion of saline water. These periodic intrusions of saline water may be the 

principal mechanism driving observed high plant species richness observed in marshes in 

the fresh-brackish transition zone of the Nanticoke River. The periodic salinity pulses 

may suppress growth of salt-intolerant freshwater plant species such as Polygonum 

arifolium, Impatiens capensis, and Acorus calamus, thereby allowing colonization by and 

co-existence with more salt-tolerant plant species such as Spartina cynosuroides and 

Pluchea purpurascens. 

A Human Effect on Richness? 

 

While coexistence of freshwater and salt-tolerant species was observed in fresh-

brackish transition zone marshes at both rivers, richness at the Patuxent River was 

nonetheless lower in the transition zone than in the tidal freshwater zone. I hypothesize 

that this is due in part to differences in land use in the two watersheds resulting from 

human activities. The Nanticoke River watershed has less urban land development (2% 

urban lands) than the Patuxent River watershed (20% urban lands), which is much closer 

to major cities (Washington, DC and Baltimore, MD). Furthermore, the Patuxent River is 

dammed in two locations to create large reservoirs, which may have altered estuarine 
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hydrology and salinity regimes. Urbanization in the Patuxent watershed carried over into 

the coastal wetlands themselves, historically in the form of ferry and barge landings and 

railroad beds built across the river through the wetlands, and more recently as highways 

that were built through the wetlands.  For example, an abandoned road and ferry crossing 

from the late 1800’s exists at one of our middle-gradient marsh sites (river km 22.5), 

where the plant community is now dominated by a large monotypic stand of the non-

native genotype of Phragmites australis.  The negative effect of Phragmites australis on 

local plant species richness has been well documented in the literature (Chambers et al. 

1999, Chambers et al. 2002, Silliman and Bertness 2004).  

The presence of Phragmites australis-dominated marsh communities within the 

regions of the Patuxent River salinity gradient where I expected to observe high plant 

species richness may partially explain why the pattern was linear in nature, in contrast 

with that of the Nanticoke where historic human activity in the wetlands was much lower.  

Therefore the non-linear pattern of plant species richness observed across the relatively 

undisturbed Nanticoke River may represent the true normal pattern of plant species 

richness.   

Alternative Explanations 

 
The shape of coastal plain estuaries result in an exponentially increasing cross-

sectional area of the river (Savenije 2005), resulting in an exponential increase in salinity 

proceeding from freshwater into brackish zones of the estuary (with salinity then 

eventually leveling off at the ocean). This pattern of salinity increase across the estuary is 

visible for both rivers in Figure 3. Thus, it could be argued that a curvilinear decrease in 

richness that mirrors the exponential increase in salinity across the estuary would be 
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expected if the relationship between number of species and salinity was linear. However, 

log-log plots of richness versus distance (not presented) created a straight, increasing line 

for salinity across the Nanticoke River, while species richness continued to exhibit a 

curvilinear decrease. This suggests that the pattern of richness across the Nanticoke River 

is not solely a linear response to salinity stress. Furthermore, it suggests that the Patuxent 

should exhibit at least a weak curvilinear relationship due to the exponential increase in 

salinity across its estuary. 

In addition to environmental variables, the mid-domain effect may explain part of 

the observed distribution of richness across the Nanticoke estuary. The mid-domain effect 

has been portrayed as a null model of species richness across ecosystems or even 

continents in the absence of environmental factors (Colwell and Lees 2000). The idea 

essentially is that if random species ranges in a system bounded on either side overlap at 

all, which is typically in the middle of the system, higher species richness results. Mid-

domain analyses have been applied to both plants and animals along rivers (Dunn et al. 

2006), up mountainsides (Cardelius et al. 2006), and across large islands (Kerr et al. 

2006) and latitudes (Jetz and Rahbek 2001). Assuming that tidal marshes can be 

considered a system bounded by the ocean and by the non-tidal portion of the river, then 

the mid-domain effect may explain in part the presence of species-rich transition zone 

marshes. 

Implications   

 

Our research suggests that the general trend of decreasing richness with 

increasing salinity noted widely elsewhere (Anderson et al. 1968, Odum 1988, Mitsch 
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and Gosselink 2000, Greenberg et al. 2006) may be more complex than previously 

thought.  As tidal marshes face increasing threat from anthropogenic forces, sea level 

rise, and invasive plant species, understanding the principal mechanisms affecting species 

richness has become increasingly important.  Resource managers intent on maintaining 

maximum tidal marsh plant species diversity with the goal of providing ecosystem 

services such as wildlife and plant biodiversity support should focus their efforts on 

marshes that fall within these transitional zones as well as on tidal freshwater marshes.  

Tidal marshes such as these within the Chesapeake Bay are under immediate threat from 

global sea level rise and invasive plant species such as Phragmites australis.  As water 

levels and the salt front continue to move deeper into these estuarine systems, transitional 

marsh zones are likely to shift inland until topographical limitations or human structures 

prohibit any further inland migration. This research provides baseline information that 

resource managers and researchers can use to predict tidal marsh community changes 

over time and develop controlled experiments examining plant community responses to 

altered physical and biotic conditions, such as those caused by rising sea levels or 

eutrophication.  The results of this study also contribute to a growing body of ecological 

research aimed at understanding the importance of environmental stressors such as 

salinity, temperature, and elevation relative to ecological models like the mid-domain 

effect on the distribution of plant and animal species along spatial gradients. 
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Chapter 3: Mechanisms Explaining Patterns of Plant Species Richness In Tidal Marshes 

of Chesapeake Bay  

 

Abstract 

 
In many coastline river systems, such as those draining into Chesapeake Bay, an 

increase in plant species richness, i.e., the number of species within an area, can be 

observed as one moves upstream from saline to freshwater portions of the estuary.  This 

general pattern of plant species richness is a dominant paradigm in tidal marsh plant 

ecology.  However, middle-gradient peaks in plant species richness along estuarine 

gradients have been observed in Europe and the U.S. contrary to this general pattern.  

One potential explanation for why these mid-gradient peaks may occur is the Mid-

Domain Effect (MDE).  MDE theory relies on simple geometric constraints on species 

range boundaries in the absence of any environmental or historical gradients to predict 

the pattern in species richness along any gradient, be it estuarine, elevation, or latitudinal.  

In this study I collected tidal marsh plant species data along two estuarine gradients in 

Chesapeake Bay, MD (Nanticoke and Patuxent Rivers).  The data and observed patterns 

of plant species richness were input into RangeModel 5.0, an MDE testing tool, and 

analyzed the importance of MDE relative to environmental variables using a modified 

stepwise multiple regression analysis.  The results of the regression analysis found that 

the MDE effect was not as strong of an individual predictor of observed plant species 

richness as more generally recognized environmental variables, namely porewater 

salinity, inundation frequency, and soil nitrogen level.  The MDE model did accurately 

predict the general location of the plant species richness peak along the Nanticoke River, 
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but due to historical anthropogenic disturbances was not able to accurately predict the 

plant species peak along the Patuxent River.  Understanding the key mechanisms 

affecting plant species distributions along estuarine gradients is critical when attempting 

to develop policies and restoration goals for these sensitive ecosystems in the face of sea 

level rise. 

Introduction 

 
Tidal brackish, oligohaline, and freshwater marshes have similar distributions 

along estuarine river gradients, where tidal freshwater marshes occur at the head of 

estuaries with more saline systems occurring further downriver (Odum 1988).  In 

Chesapeake Bay, many of the estuarine rivers exhibit a pattern of increasing plant species 

richness, i.e., the number of species within an area in the freshest portions of the river are 

higher compared to the less species richness rich saline portions of the estuary.  The 

general pattern that plant species richness increases as salinity decreases along the 

estuarine gradient is widely accepted (Anderson et al. 1968, Odum 1988, Tiner and Burke 

1995, Greenberg et al. 2006).  However, in contrast to this general view, middle-course 

peaks in plant species richness have been reported along the Kalix and Torne Rivers in 

Northern Sweden (Dunn et al. 2006) and the Adour and MacKenzie Rivers located in SW 

France and NW United States respectively (Tabacchi and Tabacchi 1996).  Research 

conducted by Sharpe and Baldwin on the Nanticoke and Patuxent Rivers, MD and DE 

also detected a non-linear plant species richness pattern along the Nanticoke River 

(Sharpe and Baldwin 2009, Chapter 2). 

Mid-gradient richness peaks have also been reported for non-wetland systems, 

including along elevational gradients for some vascular plant species in Borneo (Grytnes 
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et al. 2006), breeding birds along longitudinal gradients in Africa (Jetz and Rahbek 

2001), and elevational and latitudinal gradients for butterflies in Madagascar (Lees et al. 

1999). In addition to the influence of environmental stressors, geometric constraints and 

overlap of species ranges may result in species richness maxima in the middle of bounded 

systems, a phenomenon termed the Mid-Domain Effect (MDE) (Colwell and Lees 2000, 

Colwell et al. 2004, Cardelús et al. 2006, Dunn et al. 2006, but see Zapata et al. 2003, 

2005). 

MDE theory seeks to explain species richness gradients through simple geometric 

constraints on species range boundaries in the absence of any environmental or historical 

gradients (Grytnes 2003, Colwell et al. 2004, Colwell et al. 2005, and Dunn et al. 2006).  

In essence, MDE states that if species geographic ranges are placed on a bounded map in 

either one or two dimensional space, a peak in species richness will occur near the center 

(Colwell and Lees 2000, Zapata et al. 2003, and Colwell et al. 2004).  This is in direct 

contrast to the implicit null model many river ecologists traditionally assume when 

examining species richness along the entire length of a river course (i.e., that species 

richness will remain constant along the entire river course in the absence of 

environmental, historical, or biological gradients) (Tabacchi et al. 1996 and Dunn et al. 

2006).  MDE theory challenges this underlying null model and asserts that a more 

appropriate null condition for species richness patterns along river courses is a bell 

shaped curve representing a species richness peak (due to range overlap) at a mid-point 

along the river course. 

My study seeks to test the explanatory power of the Mid-Domain Effect on plant 

species richness versus environmental factors believed to have the greatest impact on 



   

 39

 

Study Gradients 

 
 
Figure 11. Chesapeake Bay and its major tributaries 
showing the Patuxent and Nanticoke Rivers and 
general study gradient locations.  Source of base 
map: The Chesapeake Bay Foundation 
(http://www.cbf.org) 

estuarine plant communities (i.e., salinity and flood frequency).  These factors, along 

with other factors such as interspecific competition, disturbance, and facilitation have 

been widely examined over the last four decades as a means of characterizing plant 

community richness within tidal marsh ecosystems (Ferren et al. 1981, Latham et al. 

1994, Tabacchi et al. 1996, Baldwin and Mendelssohn 1998, Hacker and Bertness 1999, 

Zedler et al. 2001, Crain et al. 2004, Pennings et al. 2005, and Dunn et al.  2006). Using 

multiple regression analysis, I 

explore the explanatory power of 

MDE richness predictions, using the 

aforementioned environmental 

factors as predictor variables and 

observed (empirical richness) as the 

response variable.  The underlying 

hypothesis of this study is that the 

observed plant species richness 

patterns along the fresh-brackish 

salinity gradient of the Nanticoke 

and Patuxent Rivers can be largely 

explained through the mid-domain 

effect (MDE).  The Null hypothesis 

for this research is that the MDE 

model will not be a strong predictor 

of plant species richness along the 
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Nanticoke and Patuxent River salinity gradients. 

Methods 

Vegetation was described in 16 1000-m2 plots (20 m x 50 m) along a 56 km 

salinity gradient in the Nanticoke River and 13 1000-m2 plots along a similar 46 km 

gradient in the Patuxent River (Figure 11).  Sampling of each plot was conducted once in 

May/June and once in August 2006 (Chapter 2).  To capture within-season variation, 

plots were sampled non-destructively during both surveys using the North Carolina 

Vegetation Survey protocol.  This “module” method combines larger scale sampling 

(1000 m2) with smaller scale nested plots (Peet et al. 1998).  The large (1000 m2) plot 

size is well suited for capturing dominant plant species richness within fresh-brackish 

tidal marsh areas because of the patchiness often observed in these habitats.  The five 

nested sample plots ensured that I captured small, less frequent marsh plants within the 

plot (Peet et al. 1998); only data from the 1000-m2 plots are reported in this paper as the 

1000-m2 plot size best represented the full range of plant species observed at each 

location.   

Salinity, temperature, and electrical conductivity were measured in each plot at 

the time of sampling (May/June and August 2006) by measuring substrate porewater at 

two fixed locations within the plot in holes where PVC marker poles were removed and 

at one location within the river near the plot with a hand-held salinity-conductivity-

temperature meter.  Four 10 x 10 m modules were selected for “intensive” nested plot 

examinations (Peet et al. 1998) at each plot and soil samples were randomly collected 

from one location within each intensive module of every plot using a Dutch auger with a 

25-cm blade.  Soil samples were collected from each of the four intensive modules and 
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composited into one aggregate sample per plot in June 2006. The soil samples were 

tested for macro-nutrients and organic matter content at the University of Delaware Soil 

Testing Lab and the results were incorporated into the non-metric multidimensional 

scaling analysis (see Data Analysis below).  Specific soil analytes tested from the 

composited soil samples included: organic matter content (by loss on ignition); 

phosphorus, potassium, calcium, magnesium, manganese, zinc, iron, boron, sulfate, and 

aluminum content (Mehlich 3 Extraction); total nitrogen and carbon, ammonia-nitrogen, 

and nitrate-nitrogen (2M KCI Extraction); total phosphorus and sulfate (microwave 

digestion (EPA3051-P and EPA3051-S); and pH. 

RangeModel Version 5.0 was utilized to determine whether MDE is a significant 

explanatory factor for observed patterns of plant species richness along the Nanticoke and 

Patuxent Rivers.  RangeModel is an animated, graphical, freeware application designed 

to examine the MDE.  

Model Set-up 

 

A “bin” represents one unit within the model.  The empirical sampling point data 

(i.e., plant species richness / 1000 m2) from the Patuxent and Nanticoke Rivers were 

treated as ordered, evenly spaced, discrete bins.  Each species’ “occupancy” and “range” 

was then determined. As described in Dunn et al. (2006), plant species occupancy was 

determined as the total number of plots (or bins) at which a species occurred, including 

any plots with extreme distances. The range of a plant species was determined by the 

number of bins between the most upriver site at which a species occurred and the most 

downriver site at which a species occurred, regardless of how many unoccupied (gaps) or 
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occupied plots occurred within the range.  For example, if a plant species were to occur 

along the Nanticoke River in plots 1, 2, and 4, but not at plot 3, then its range was four 

plots and its occupancy was three plots.   

 The purpose of the RangeModel software was to generate the pattern of plant 

species richness over the ordered bins created previously and imported into the model.  

This pattern is what the model would expect to observe if plant species ranges were 

placed at random within a one dimensional space and maintaining each species’ observed 

range size and occupancy under the geometric constraint that no range may extend 

beyond domain limits (Dunn et. al. 2006).  In this case, our domain limits were the 

maximum extent to tidal freshwater marsh (upper end) and the mesohaline marshes near 

the mouth of each river (lower end).  For a more detailed description regarding the range 

model algorithm functions please see (Dunn et al. 2006).  

Simulations for the observational data from both the Patuxent and Nanticoke 

Rivers were conducted according to the methods outlined in Dunn et al. (2006).  The full 

dataset (all species) was run for both rivers, followed by subsequent runs where the plant 

species data were divided for each river into the 50% of plant species with the largest 

ranges and the 50% of plant species with the smallest ranges (range-size subsets).  

Repeated simulations for both range-size subsets for each river were also conducted to 

ensure accuracy and included in the statistical analysis. 

Data Analysis 

 
The full dataset and the range-size subsets were resampled and run a total of 

5,000 times to generate means and  95% confidence intervals for the predicted pattern of 

plant species richness along each river.  The model approximates the pattern of plant 
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species richness in a scenario in which the position of plants species’ ranges along the 

river is random with respect to any biological, environmental, or historic gradient that the 

river may exhibit (Dunn et al. 2006).   

 The explanatory potential of the RangeModel predictions were examined by 

comparing the observed species richness based on raw species counts to the mean species 

richness and 95% confidence intervals produced through multiple model runs for plant 

species richness as a function of distance along the river domain.  I also used stepwise 

regression in SAS to select the best model based on input from other possible influences 

on plant species richness (besides MDE), namely mean soil salinity (MSS), flooding 

frequency (%Inun), soil pH, Log nitrate-nitrogen (Log NO3-N), and the calcium-to-

magnesium ratio (CA/MG).  The dependent variable for the regression analysis was 

observed plant species richness.  The initial stage of the regression analysis involved 

running the regression on all single variable (i.e. linear) models followed by selection of 

the single variable model with the combination of the highest R2, lowest Akaike 

Information Criterion (AIC), and lowest Mallow’s C(p) ratio using SAS 9.1 (SAS 

Institute, Cary, NC).  The second stage of the regression analysis involved an 

examination of the best two-variable models that included the variable(s) selected in the 

initial stepwise regression analysis and models with the best combination of R2, AIC, and 

C(p) scores.  This process was repeated with increasing levels of model complexity until 

the initial variables selected by the algorithm were removed by SAS.  This method was 

employed as a means of keeping the models simple and to reduce the chances of 

producing complex models with overinflated R2 values caused by colinear predictors. 
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Results 

 
The results of the stepwise regression analyses for single and multi-variable 

models as predictors of plant species richness support our null hypothesis that the MDE 

model does not explain a significant portion of the variance regardless of whether all 

species, short-ranged species, or long-ranged species are used.  Interestingly, 

RangeModel did appear to predict the approximate location of the plant species richness 

peak fairly well for the Nanticoke River.  The MDE model did not appear to fit the 

observed plant species richness data well for the full model when it included both large- 

and short-range species for either the Nanticoke or Patuxent Rivers (Figure 12).  The 

MDE model did appear to fit the empirical data better when our data set was parsed into 

large-ranged species only based on placement of empirical data points within the 

confidence interval bands.   

The improved MDE model fit was verified in the single variable stepwise 

regression analysis, which showed a significant improvement in the amount of variance 

explained by MDE as a single variable model from  R2=0.23 (full model) to  R2=0.98 

(large ranged species only) for the Nanticoke River.  The poor fit of the empirical data to 

MDE predictions when parsed into the small-ranged species subset for the Nanticoke 

River was verified in the regression analysis by an R2<0.01.   
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The Patuxent River results were similar to the Nanticoke in that the MDE model 

did not appear to fit the observed pattern of plant species richness well for any scenario 

(full data set, large-range only, and small-range only). When examined as a single-
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Figure 12. Richness versus distance graphs for the Nanticoke and Patuxent Rivers 
showing average empirical richness (with standard error bars) and the RangeModel  
predicted richness at each location along the two gradients (solid line).  The graphs also 
include 95% confidence interval bands based on 5,000 runs of the model (dotted lines). 
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variable model the MDE model explained <0.01, 0.14, and 0.23 proportion of the 

variance for the full data set, large range subset, and small range subset respectively.  Site 

variables such as porewater salinity (R2=0.37), soil nitrate-nitrogen (R2=0.58), and 

percent inundation (R2=0.18) all explained a greater proportion of the total variance 

compared to the RangeModel output as single-variable models for the full plant species 

dataset. 

 Salinity explained more of the model variance along the Nanticoke River then 

MDE predictions when viewed as a single-variable model predicting plant species 

richness for the full data set (R2 = 0.49).  When plant species richness was plotted against 

mean porewater salinity (see Figure 13) the data within the lower-salinity portions of the 

gradient did not appear to show a clear pattern.  

 

Once the mean salinity increased to an average of 1-2 ppt, the plant species 

richness appeared to follow the null plant species richness distribution (linear pattern).  

At salinities lower than 1.0 ppt plant species richness peaked on both the Nanticoke and 
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Figure 13.  Mean Plant Species Richness (with standard error bars) versus Mean 
Porewater Salinity for the Nanticoke and Patuxent Rivers during the sampling year 2006.  
The hatched ellipse identifies the outlier point which was removed from the full dataset to 
examine if Log NO3-N was still the principal driver of richness on the Patuxent River.   
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Patuxent Rivers and no general pattern of plant species richness (linear or quadratic) 

could be determined. 

The results of the stepwise regression analysis (Table 2) show that soil Log 

nitrate-nitrogen levels and mean porewater salinity explained the greatest proportion of 

the variance in the data for the Patuxent and Nanticoke Rivers, respectively.  

Interestingly, the RangeModel results for plant species richness were not considered a 

good predictor of plant species richness along the Nanticoke River, which showed a non-

linear pattern in plant species richness along the gradient (Sharpe and Baldwin 2009, 

Chapter 2).  Conversely, RangeModel did improve R2, AIC, and C(p) scores for the two- 

and three-variable models on the Patuxent River, which showed no clear mid-gradient 

peak in plant species richness.  The MDE model did appear to predict a significant 

proportion of the variance when the data sets for both rivers were separated into large-

range species only, particularly on the Nanticoke River (Table 2).  When the data set was 

separated into small-range species only and modeled, RangeModel did not explain a 

significant proportion of the variance for either river. 

The relative importance of nitrate nitrogen as a driver of richness was somewhat 

unexpected and the possibility existed that the extreme low richness plot at the upper end 

of the gradient was affecting the stepwise regression algorithm. When the extreme low 

richness plot was removed (See Figure 3) from the data set, mean porewater salinity was 

the best single variable predictor (R2 = 0.70, C(p) = 4.55, AIC = 33.98) of plant species 

richness along the Patuxent River gradient  (Full-Data set).  This result was much more 

consistent with the trend of decreasing richness with increasing salinity observed in 2006 

on the Patuxent River (Figure 12).  



   

 48

RangeModel predicted a plant species richness peak in an area of the Patuxent 

River where mean plant species richness was lowest (mean richness 6.5 ± 2.12).  This 

tidal marsh area has experienced historic disturbances in the form of a river ferry and 

associated roadbed in the late 1800s and is now dominated by a monoculture of 

Phragmites australis.  However, assuming the MDE model predictions are accurate, it is 

possible that the low diversity marshes at these locations along the Patuxent River 

gradient could be good candidates for restoration with at least one goal being to 

maximize plant species richness/diversity. 

Table 2. Table of models selected using SAS stepwise regression methodology. Models 
with the best combination of R2, AIC, and C(p) scores were selected with the best one 
variable model.  Subsequent models are summarized here which included the initial 
variables from previous model runs.  RMRich is code for predicted RangeModel 
richness. 

Dataset River Model  R2 C(p) AIC P-Value 

Full 
Dataset 

Patuxent  1. Log NO3-N 
2. Log NO3-N, RMRich 
3. Log NO3-N, RMRich, pH 

0.57 
0.64 
0.73 

17.09 
14.43 
10.89 

44.37 
43.82 
41.93 

0.0028 
0.0054 
0.0054 

 Patuxent 
(No Outlier)  

1. MSS 0.70 4.55 33.98 0.0006 

 Nanticoke 1. MSS 
2. %Inun, MSS 
3. %Inun,MSS,CA/MG 
4. %Inun,MSS,CA/MG,DisDown 

0.49 
0.59 
0.64 
0.76 

12.83 
9.66 
9.65 
5.44 

61.12 
59.38 
59.65 
54.71 

0.0024 
0.0026 
0.0053 
0.0017 

Large 
Ranges 

Patuxent 1. MSS 0.29 37.05 40.91 0.0555 

 Nanticoke 1. RMRich 
2. RMRich, MSS 

0.98 
0.99 

13.84 
9.04 

1.65 
-1.22 

<0.0001 
<0.0001 

Small 
Ranges 

Patuxent 1. Log NO3-N 
2. Log NO3-N, pH 
3. Log NO3-N, pH, RMRich 

0.74 
0.82 
0.82 

-0.95 
-1.24 
0.69 

21.68 
19.33 
21.20 

0.0001 
0.0002 
0.0010 

 Nanticoke 1. MSS 0.16 11.75 37.94 0.1159 
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Discussion 

Nanticoke River 

 
Generally speaking mean porewater salinity (MSS) was deemed a better 

individual predictor of plant species richness within the Nanticoke River gradient 

compared to any other factor including the MDE.  Another variable included in the data 

analysis that is most commonly considered to be a driver of tidal marsh plant community 

structure was the flooding frequency (% Inun).  These two factors together accounted for 

almost 60% of the total variance explained by the model along the Nanticoke River.  

These results do not support the research hypothesis of the MDE as the primary driver of 

plant species richness along the Nanticoke River when considering all plant species range 

types within the data set. 

 When splitting the dataset into large-range and short-range species and re-running 

the model, I received similar results as Dunn et al. (2006).  The MDE model predicted a 

substantial proportion of the variance (R2 = 0.98) in plant species richness along the 

gradient for large-range species (single variable model), but was a poor predictor of 

richness when looking solely at the small-ranged species (R2 < 0.16).  This seems to 

make sense when considering that the MDE model relies upon range overlaps to occur 

along the gradient to generate a mid-gradient peak.  When considering the Nanticoke 

River, the combined effect of the large- and small-ranged species caused a low to 

moderate proportion of the variance to be explained by MDE.   

 While mean porewater salinity and the percentage of inundation explained the 

greatest proportions of the variance, when plant species richness was graphed versus 

salinity no clear pattern could be discerned within the freshwater – oligohaline (0 - 2 ppt) 
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salinity ranges (Figure 3) for either river system.  This suggests that while salinity did 

appear to be the most important factor governing plant species richness along the 

freshwater to brackish marsh gradient, other factors may also play a role, particularly 

near the top end of the gradient where salinities can vary in some areas from fresh to 

oligohaline (0 – 2 ppt).   

Patuxent River 

 

The Patuxent River pattern of plant species richness was generally linear in nature 

(Chapter 2).  Due to this linear pattern, MDE theory was not the optimal “single variable” 

model that explained empirical richness.  Instead, nitrate-nitrogen levels were the best 

predictor of the observed pattern of plant species richness.  Given that wetland 

ecosystems can be nitrogen limited through plant uptake and high rates of soil 

denitrification (Bedford et al. 1999, Batzer and Sharitz 2006, Tiner and Gosselink 2007), 

this result was plausible though still unexpected given the usual nutrient rich conditions 

in Chesapeake Bay waters.  The pattern of plant species richness dropped dramatically 

when graphed against mean porewater salinity from  0 – 1 ppt. This extreme dropoff in 

plant species richness affected the predictive power of mean soil salinity in the regression 

analysis.  When the extreme low richness plot was removed from the data set, mean 

porewater salinity was the best single variable predictor (R2 = 0.70, C(p) = 4.55, AIC = 

33.98) of plant species richness along the Patuxent River gradient.  Additionally, though 

not considered as significant as MSS or nitrates, the MDE effect did account for 40% of 

the variance explained by the model (as a single variable) in the large range dataset once 

the outlier was removed. 
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 When the Patuxent River data were separated into large- and small-range species 

groups and the MDE model was rerun, mean soil salinity was the principle variable 

explaining plant species richness for the large-range species and nitrate-nitrogen 

concentrations was the principal explanatory variable for the small-range species.  This 

was not unexpected, given that the data set did not display a quadratic distribution of 

plant species richness versus distance downstream.  Instead, plant species richness seems 

to follow a inverse linear pattern most commonly associated with tidal marsh plant 

community gradients along estuarine systems (Anderson et al. 1968, Odum 1988, Tiner 

and Burke 1995, Greenberg et al. 2006).  Additionally, Dunn et al. (2006) found that the 

MDE model was not a good predictor of empirical richness for small-range species on the 

Kalix and Torne Rivers in Sweden.  This result was similar to our findings for the 

Nanticoke and Patuxent River small range datasets. 

Implications 

 
Of note was that the MDE predicted a peak in plant species richness along the 

Patuxent River at the location of our lowest diversity site, dominated by a monotypic 

stand of Phragmites australis.  Phragmites australis is a common invasive plant 

throughout the tidal marsh systems of the Nanticoke and Patuxent Rivers and tends to 

occupy and thrive in areas that have or are currently undergoing some form of 

disturbance.  In this case, the Phragmites community was occupying land that was 

formerly part of a ferry and roadway system in the late 1800s.  Though the infrastructure 

from this disturbance is gone, I hypothesize that it was the original disturbance allowing 

Phragmites to establish itself and eventually dominate the marsh at this location.  Since 

the MDE model does not account for geomorphological, biological, or historic context 
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when determining the distribution of high and low diversity areas along a given gradient, 

it would not have been able to predict this particular pattern.  Conversely, the MDE 

model results did accurately predict the general location of the highest richness plant 

community along the Nanticoke River (Figure 2 – Full Model).  This suggests that 

anthropogenic disturbances to the low salinity tidal marshes along the Patuxent River 

may not only have had direct impacts on the affected marsh itself, but indirect effects on 

the plant species richness patterns along the entire salinity gradient.   

 The results of this study did not conclusively support the research hypothesis that 

the MDE model would be a primary predictor of plant species richness patterns along the 

Nanticoke and Patuxent Rivers.  The data analysis seems to indicate that on a single- 

variable basis, soil porewater salinity explains greater than 50% of the variation in 

empirical plant species richness data for both rivers.  It is likely that periodic intrusions of 

salt water into the low salinity marshes of the Nanticoke and Patuxent Rivers stress the 

competitively dominant fresh marsh plants, allowing the less competitive salt tolerators 

room to survive and grow (Chapter 2).  The fact that the MDE explained a high 

proportion of the variance on the Nanticoke River for the large range dataset (R2 = 0.93) 

and over a third of the variance on the Patuxent River with the outlier removed (R2 = 

0.40) suggests that it is a contributor to our observed patterns.   

This combination of abiotic (salt stress) and biotic (plant competition) factors 

seem to be more important in determining the observed patterns of plant species richness 

compared to MDE.  Past and present anthropogenic disturbance also seem to be a 

significant factor, as historic disturbances to the low salinity marshes along the Patuxent 

River in the predicted area of peak plant diversity likely contributed to the linear pattern 
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of plant species richness observed in that location.  The MDE model provides an 

interesting and testable null condition for plant species distributions along estuarine 

salinity gradients, however, in this case, it appears that the combination of historic 

disturbance, environmental (porewater salinity), and biotic (i.e. competition) factors are 

more important in determining observed patterns in plant species richness along the 

Patuxent and Nanticoke River gradients.  The strong explanatory power of the model for 

the large ranged species datasets should not be ignored however, and suggests that the 

MDE does contribute to our observed patterns along these two river gradients. 
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Chapter 4: Separating Environmental Variables From The Mid-Domain Effect: A Tidal 

Wetland Mesocosm Experiment 

Abstract 

 
Tidal low-salinity marshes in Chesapeake Bay are at risk from sea-level rise and 

associated salt intrusions into estuarine rivers.  To quantify the impacts of increased 

salinity and flooding frequency on tidal marsh species richness, composition, and 

biomass, a greenhouse experiment, utilizing mesocosm in a randomized complete block, 

split-plot design with 8 planted species and a mixed seedbank from wetlands spanning 

the 0 ppt to 12 ppt salinity gradient was conducted.  I hypothesized that increases in 

salinity would reduce plant species richness, diversity, and plant biomass, but maximum 

richness would occur at low-salinity rather than in fresh water (0 ppt).  Average plant 

species richness was greatest (α = 0.05) in the low-salinity mesocosms (0 ppt and 1.5 

ppt), with a distinct shift from fresh marsh species to more salt tolerant species over time.  

The mixed seedbank community also exhibited the highest average richness even 

compared to the two fresh marsh locations and was significantly higher than the brackish 

and one of the fresh marsh seed banks (p < 0.05).  These findings suggest that marshes 

that have sufficient numbers of salt-tolerant seeds/propagules are able to adjust to 

increased salinity and flooding conditions at least in the short term without a significant 

reduction in biomass production.  Flooding frequency differences did not have significant 

impacts on plant species richness or diversity and did not have a significant interactive 

effect with salinity on richness, biomass, or Shannon-Wiener diversity.  Interestingly, 

average plant species richness was in the low-salinity oligohaline mesocosms (1.5 ppt) 
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was not significantly different then the pure fresh marsh mesocosms which was similar to 

the observed pattern on the Nanticoke River (Chapter 2).  These results suggest that 

salinity is the critical factor affecting tidal marsh plant community structure and biomass 

production across estuarine gradients.  Furthermore, alterations to the salinity regimes of 

low-salinity tidal marshes (i.e. longer durations of salt exposure events and increased 

upstream movement of the salt wedge) caused by climate change will likely result in 

diminished marsh biomass and richness unless the ecosystem has an adequate supply of 

salt/flood-tolerant seeds and propagules. 

Introduction 

 

Increases in the rate of sea-level rise associated with global climate change is 

threatening coastal wetlands worldwide. Increases in sea level may cause shoreward 

movement of salt-tolerant species such as Spartina alterniflora (Donnelly and Bertness 

2001) or conversion of coastal wetlands to open water (Baumann et al. 1984). In the 

Chesapeake Bay, where the relative rate of sea-level rise since 1900 has been 2.5-3.6 

mm/year (Lyles et al. 1988; Stevenson and Kearney 1996), extensive marshes such as 

those at Blackwater National Wildlife Refuge on Maryland’s eastern shore have been lost 

(Stevenson et al. 1985; Kearney et al. 1988). Much of the research on effects of sea-level 

rise on coastal wetlands has focused on brackish and salt marshes, where increases in 

relative water level due the combined effects of land subsidence and eustatic 

(background) sea-level rise have been implicated as a dominant factor in loss of these 

wetlands (Stevenson et al. 1985, 1986; Morris et al. 2002). However, little is known 

about the effects of sea-level rise on low-salinity tidal wetlands, which include the 
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species-rich, high-productivity tidal freshwater and intermediate (oligohaline) marshes 

(Tiner and Burke 1995). In addition to increases in water level, the salt-sensitive 

vegetation of low-salinity wetlands also is likely to exhibit stress or mortality due to 

saltwater intrusion from sea-level rise (McKee and Mendelssohn 1989; Baldwin and 

Mendelssohn 1998). Therefore, sea-level rise arguably poses a greater risk to low-salinity 

wetlands than to salt and brackish marshes. 

 The Chesapeake Bay contains one of the greatest concentrations of tidal low-

salinity marshes in the United States, covering about 16,000 hectares in Maryland alone 

(Tiner and Burke 1995; Mitsch and Gosselink 2000).  Tides and river flooding supply 

abundant nutrients, generating primary productivity as high as any ecosystem on earth, 

including agroecosystems (Tiner 1993; Mitsch and Gosselink 2000). The combination of 

high plant diversity and productivity and low-salinity stress supports diverse and 

abundant fish and wildlife populations.  

Therefore, the loss of tidal low-salinity marshes, or their conversion to brackish or 

salt marshes, in the Chesapeake Bay due to sea-level rise would have dramatic 

socioeconomic and ecological consequences. While sea-level rise itself cannot be readily 

controlled, measures can be taken to stabilize or restore coastal wetlands. These include 

addition of sediment to increase elevation, a technique that has been used in coastal 

Louisiana to mitigate wetland loss due to sea-level rise (Ford et al. 1999), and which is 

being considered for restoration of wetlands at Blackwater National Wildlife Refuge on 

Maryland’s eastern shore.  

While the broad responses of vegetation to increases in salinity and tidal 

inundation are understood, the potential for vegetation dieback or changes in species 
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composition in tidal low-salinity marshes of the Chesapeake Bay and other Atlantic Coast 

estuaries in response to changes in salinity and waterlogging acting together has not been 

studied. Because of their position in the estuary, these marshes may experience increases 

in salinity, but not waterlogging if sedimentation patterns continue to provide adequate 

accretion to keep pace with increases in water level (Kearney et al. 1988). Alternatively, 

salinity and water level both may increase. Currently little quantitative information exists 

upon which to base predictions of changes in species diversity or composition in tidal 

low-salinity marshes, or even whether vegetation will die back under different projected 

sea-level rise scenarios (IPCC 2007). Because of the ecological and socioeconomic 

significance of tidal low-salinity marshes of the Bay and elsewhere, quantitative 

information is an invaluable tool for understanding how coastal wetlands will respond to 

increases in sea level and in designing mitigative measures or wetland restoration projects 

in the face of sea-level rise. 

Preliminary Research 

 
During 2006 I studied patterns of plant diversity and composition across low-

salinity tidal marshes in the upper estuaries of the Patuxent and Nanticoke Rivers in 

Maryland (Chapter 2). Vegetation cover was described in 1000-m2 plots located across an 

approximately 50-km gradient at roughly 5-km intervals, extending across tidal 

freshwater and oligohaline marshes into the brackish marsh zone in both estuaries.  
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Figure 14. Plant species richness in 1000 m2 
plots (solid lines, left axis) and porewater 
salinity (dashed lines, right axis) in tidal 
marshes in the upper Nanticoke and Patuxent 
Rivers, Maryland (May/June 2006).  

Our results (Sharpe and Baldwin 2009, Chapter 2) showed a non-linear pattern of 

plant richness/diversity along the Nanticoke River in low-salinity oligohaline/fresh marsh 

areas.  In these reaches salinity periodically 

increases to 2-5 ppt 

(mddnr.chesapeakebay.net) during periods 

of low river discharge and in late summer 

during drought years; our springtime 2006 

measurements also detected salinity 

intrusion (Figure 14). These observed 

patterns plant species richness (especially on 

the Nanticoke) was in contrast with the 

general pattern that plant species richness 

decreases proceeding downstream across 

estuaries (Anderson et al. 1968; Tiner 1995; 

Odum 1988). I theorized that the principal 

abiotic mechanisms controlling the observed 

sigmoidal pattern of plant species richness/diversity is periodic salinity stress, which 

reduces the competitive advantages afforded many freshwater plant species and allows 

less competitive brackish marsh plants to survive in this transition zone.  My previous 

research (Chapter 3) had identified salinity and flood frequency as two key drivers of 

marsh plant community structure from the observational study and this research sought to 

test these two factors in a controlled environment using a mesocosm approach. 
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My observations from the Patuxent and Nanticoke Rivers (Chapter 2) document 

the higher plant richness in low-salinity tidal marshes than in brackish marshes and even 

fresh water marshes in some cases and suggests that increases in salinity associated with 

sea-level rise will reduce the diversity of these wetlands. Furthermore, if marshes are 

unable to migrate landward, as is expected in many regions due to coastal steepening, the 

low-salinity marshes may succumb to the so-called “coastal squeeze” between saline 

marshes and uplands (Taylor et al. 2004). 

While these preliminary findings demonstrate correlation between salinity and 

plant diversity in coastal wetlands, stronger cause-and-effect relationships needed to be 

examined using a manipulative experiment in a controlled greenhouse environment. The 

research questions at the heart of this study were: 1) how do increases in salinity 

concentration alter species richness and composition in marsh mesocosms? and 2) does 

soil waterlogging (percentage of time the soil surface is inundated), also predicted to 

increase due to sea-level rise; affect species richness in marsh mesocosms?  Additionally 

I wanted to assess the potential seed bank variability in collected marsh surface soils from 

brackish, transitional, and fresh marsh sites. My primary research hypothesis was that 

increases in salinity will tend to reduce plant diversity (species richness and Shannon-

Wiener diversity index) and indices of ecosystem function (i.e. biomass), but maximum 

diversity will occur at low-salinity rather than in fresh water.  I also predict a concurrent 

shift in the plant community to more salt-tolerant species under conditions of increased 

salinity, and that salinity and waterlogging will interact in a synergistic manner to reduce 

diversity and ecosystem function (i.e. plant productivity). 



   

 60

Methods 

 
To examine the potential future responses of low-salinity marsh vegetation to sea-

level rise, I developed a greenhouse experiment subjecting marsh mesocosms (the 

experimental unit) to a range of salinity and soil flooding conditions. The experiment 

tested the effects of various salinity and flooding regimes on species richness, species 

composition, and indices of ecosystem function (i.e. above and below ground biomass). 

Specifically, I subjected synthetic plant communities to three levels of soil flooding and 

five levels of salinity (0, 1.5, 3, 6, and 12 parts per thousand or ppt) in a 3 x 5 factorial 

treatment arrangement. For reference, the salinity of ocean water is about 35 ppt, and the 

salinity classification of coastal marshes is <0.5 ppt for freshwater, 0.5-5 ppt for 

oligohaline or intermediate marshes, 5-18 for mesohaline or brackish marshes, and >18 

for polyhaline or salt marshes (Cowardin et al. 1979). 

Mesocosm Configuration 

 
Because of possible gradients in light, temperature, or humidity across greenhouse 

benches, as well as greenhouse space limitations, experimental units were arranged in a 

split-plot randomized complete block design (Figure 15).  Each block represented a 

replicate for salinity (i.e.  two replicates for salinity) this represented the whole-plot 

effect, with the sub-plot factor being flooding frequency and having three replicates per 

trough (Figure 15).    
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The mesocosms consisted of a container design that allowed control of water level 

and supply of salinity and nutrients. The mesocosm itself was a 56 x 44 x 44 cm (h x l x 

w; 151.4 L), Rubbermaid® Square Brute container Atlanta, GA with 16, 1.3-cm diameter 

perforations along the bottom to allow for exchange of water within the watering trough. 

Each mesocosm also had mesh screens installed at the bottom of each mesocosm over the 

drainage holes to prevent soil loss.  The screens were made from plastic and had a 4 mm2 

mesh size.  The watering troughs were made from pressure treated lumber and were (61 x 

196 x 56 cm, 666 L).  The troughs were designed to house three mesocosms each and 

were fed by a dedicated reservoir randomly assigned to that particular trough (Figure 2).   

 
 
Figure 15.  Plan view of experimental treatments and layout for the greenhouse mesocosm 
study (total experimental units = 30, salinity replicates = 2, and flooding frequency replicates = 
10). 

Trough 
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Figure 16. Profile drawing showing a conceptual layout of the marsh mesocosms within a trough.   

The reservoirs were also constructed from pressure treated lumber and were (56 x 117 x 

117 cm, 767 L) and were randomly located within the greenhouse.  To prevent leaking, 

the troughs and reservoirs were lined with 45-mil thick black Firestone Pond liners 

Nashville, TN (Figures 16 and 17).  Submersible pumps (Little Giant 115 Volt, Franklin 

Electric, Blufton, IN) were placed in the reservoirs and troughs to move water into and 

out of the system.  The pumps were attached to a circuit board and timing mechanism set 

to a six hour interval rate.  The circuit controller activated the pumps and allowed the 

reservoirs to fill over a period of 6 hours, at the end of the 6 hour cycle the system 

activated a second set of pumps and drained the system over a another 6 hour period.  

This 6 hour pumping cycle was established to simulate the natural tidal cycles of marshes 

within the Chesapeake Bay.  Target salinity levels were achieved through the addition of 

Instant Ocean Sea Salt to our targeted treatment level and verified through the use of a 

handheld YSI-30 SCT meter. 

 

 

 

 

 

 

 

Flooding frequencies were altered by elevating the mesocosms on concrete 

blocks; each mesocosm was randomly assigned a height of + 0 cm, +10 cm, or +20 cm 
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Figure 17. The lined trough and mesocosms in 
July 2007. 

above the trough bottom.  These heights 

corresponded to a flood frequency 

(percent of hours in a 24 tidal cycle) 

that the soil surface was inundated with 

water 23%, (+20 cm), 44% (+10 cm), 

and 62% (+0 cm).  Flooding 

frequencies were verified using an 

automatic water level (WL-15 Global 

Water, Inc Gold River, CA) recording device placed inside a representative trough and 

measured over a period of 24 hours. For reference, flooding durations measured from 29 

marsh plots along the Nanticoke and Patuxent Rivers averaged 35% in 2006. 

Experimental Plant Community – Mesocosm and Seedbank Studies 

 
The goal of this experiment was to create a diverse assemblage of plant species 

representative of conditions across one of my previously surveyed river gradients.  This 

goal was accomplished by inoculating the mesocosms with homogenized soils containing 

seeds collected along the Patuxent River marsh gradient and supplementing the seed bank 

with some dominant planted perennials identified previously (Chapter 2), and 

representative of the entire fresh-brackish salinity gradient.  The rationale for including 

some species of brackish marsh plants was to provide a source of vegetative material that 

would allow plant communities to potentially shift from salt-intolerant to salt-tolerant 

communities if environmental conditions became appropriate, as occurs in coastal 

wetlands experiencing high rates of relative sea-level rise that do not convert directly to 

open water (Boesch et al. 1994; Perry and Hershner 1999). Previous research has used 
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sections of marsh soil and vegetation collected intact from wetlands rather than synthetic 

plant communities proposed here (Baldwin and Mendelssohn 1998; Baldwin et al. 2001). 

However, I decided to use synthetic plant communities because I wished to assemble a 

diverse suite of propagules and vegetative material from a range of coastal wetland types 

to better understand how the diversity and composition of wetland vegetation would 

respond to different combinations of salinity and flooding treatments. Synthetic plant 

communities also have the added benefit of reducing variation between experimental 

units, allowing reduced numbers of replicates, and therefore greater numbers of treatment 

factor levels, than would be possible with more variable soil-vegetation sections. 

Marsh surface soils were collected from four marsh locations (two freshwater 

sites, one transitional site, and one brackish site) along the Patuxent River on March 19-

21, 2007.  Marsh soils were collected by hand using 5 x 4.75 cm (h x d) corers.  A total 

volume of 38 L (of the top five centimeters of topsoil) was collected from each of the 

four sites.   An additional freshwater marsh site was needed due to concern that a 

sufficient number of freshwater annual plants would not germinate from a single site. As 

commercially grown wetland annuals are difficult to obtain, the additional fresh marsh 

site was included to ensure adequate representation of each salinity class in our 

mesocosms.  The collected marsh topsoil was stored in 19 L buckets and placed in 

refrigerated conditions until April 17, 2007 when the soils were homogenized.   

Marsh surface soil samples from each location were homogenized in a cement 

mixer and five (284 cm3) samples from the homogenized soil from each site were 

extracted, and spread in a uniform 1-cm thick layer on top of a 2-cm thick layer of 

Sunshine LC1 potting soil mix within 4 x 14 x 20.3 cm (H x W x L) aluminum pans.  
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Next the collected topsoil across all four marsh locations was homogenized by placing 

one bucket of topsoil from each marsh type into a cleaned and rinsed cement mixer.  The 

cement mixer was run for seven minutes and the resulting mixture was placed back into 

the four empty buckets.  This process was repeated for the remaining four topsoil sample 

buckets.  Next, two buckets from each of the mixed sets were chosen haphazardly (four 

buckets total) and mixed again for five minutes and poured back into the empty buckets.  

This process was repeated for the remaining four buckets.  This process of mixing and re-

mixing of the collected topsoil samples was utilized to achieve a homogeneous soil 

mixture.   

Five 284-cm3 volumes of soil were then extracted from the homogenous mix and 

placed in the aluminum pans as part of the seed bank variability component of this study.  

This process allowed me to characterize the seed banks of the individual collection sites, 

as well as the homogenized seedbank that was used in all the mesocosms.   

The seedbank trays were randomly placed on a misting bench in the University of 

Maryland Research Greenhouse Complex and emerging seedlings counted by species.  

Soil seed banks contain seeds of several dominant annual species in low-salinity marshes, 

including Polygonum spp., Impatiens capensis, Bidens spp., and Pilea pumila (Baldwin 

and DeRico 1999; Peterson and Baldwin 2004). Application of a homogeneous soil 

sample is an effective way to introduce these species, many of which cannot be 

purchased from nurseries and for which seed collection would be necessary throughout 

the year. I anticipated that between the planted perennials and plants recruited from the 

seed bank I would approach stem densities similar to those of natural marshes (e.g., 250 

stems/m2 in July and 150 stems/m2 in August; Darke and Megonigal 2003). 
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Upon completion of topsoil homogenization and seedbank study set-up, 

mesocosm containers were filled with 30 cm of SUNGRO Professional Blend potting soil 

and inoculated with a 2-cm thick layer of collected marsh topsoil.  The resulting 

mesocosms were put on a freshwater drip-line irrigation system, placed outside 4 April 

2007 and then moved into the greenhouse (5 May 2007) and allowed to acclimate to 

greenhouse conditions until 11 July 2007 when the mesocosms were placed into my tidal 

system.  Perennial wetland plants (two inch plugs) purchased from Environmental 

Concern, Inc. (St. Michaels, MD) were randomly planted at each of 16 positions (2 of 

each) within each marsh mesocosm on May 31, 2007.  The perennial plants were selected 

based on availability and relative indicator value from a previous study (Chapter 2).  The 

plant species were:  Acorus calamus, Distichlis spicata, Leersia oryzoides, Spartina 

alterniflora, Typha angustifolia, Spartina patens, Phragmites australis, and Spartina 

cynosuroides.  P. australis and S. cynosuroides were grown in the greenhouse from 

rhizomes harvested along the Patuxent River as these two species were not commercially 

available.  All of the aforementioned perennial species were from Maryland ecotypes and 

two of each species were randomly placed into each mesocosm with the exception of S. 

cynosuroides.  The S. cynosuroides rhizomes did not successfully generate enough viable 

plants for more than one of that particular species to be planted per mesocosm. 
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Figure 18. Nanticoke River Salinities Measured at 
Maryland DNR surface water quality station ET6.1 – 
Sharpetown, Maryland (near plot N35W) showing the 
mean monthly salinities measured from 1986-2005 and 
the mean monthly salinities from the 2006 sampling 
effort. 

Mesocosm Operation 

After the May 31, 2007 perennial planting event the mesocosms were maintained 

on a freshwater drip line system, the planted perennials were censused and dead planted 

perennials were removed and replaced prior to salinity treatment initialization on July 27, 

2007.  Salinity was altered by creating solutions of reconstituted sea water using Instant 

Ocean® sea water mix.  After salinity treatments began for all reservoirs (except for the 

two fresh water troughs), final 

reservoir salinities were gradually 

ramped up over a period of twelve 

days.  The initial salinity treatment 

brought reservoir salinity 

concentrations up to 0.75 ppt 

initially; followed by increases 

every other day, to the final levels 

of 1.5, 3.0, 6.0, 9.0 and 12.0 ppt.  

For those treatments whose target 

salinities were less than 12.0 ppt, 

no further salts were added to the 

system once the target salinity level 

was reached, except where necessary to maintain the treatment salinity level.  The 

salinity levels were raised gradually to avoid shocking the plant communities with high 

salt concentrations.  Historic salinity data from the Nanticoke and Patuxent River 

(Figures 18 and 19) also show that salt concentrations tend to spike in late July and 

August, so this procedure was employed to mimic field conditions on these two river 
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Figure 19.  Patuxent River Salinities Measured at 
Maryland DNR surface water quality station TF1.5 at 
Nottingham, MD (near plot X30E) showing the mean 
monthly salinities measured from 1985-2005 and the 
mean monthly salinities from the 2006 sampling effort. 

systems (Maryland DNR “Eyes 

On The Bay Program, 2007).  

Apart from simulating natural 

salinity increases, this procedure 

also prevented inhibition of 

early season germination due to 

salinity (Odum et al. 1984 and 

Baldwin et al. 1996)  

The mesocosms were 

operated from the middle of the 

growing season (July 2007) to 

the end of July 2008.  The 

salinities in all tanks above 0 ppt 

were reduced by 50% from 9 October 2007 until 1 May 2008 to simulate the seasonal 

retreat of the salt front from the fall through early summer.  Due to evapo-transpiration 

losses the water within each mesocosm system was replaced, on average, once per week.  

Flooding regimes in the mesocosms were maintained 10 cm below the soil surface for 2 

weeks so that plants could acclimate, after which water levels were adjusted to their 

appropriate experimental treatment condition (0cm, +10 cm, and +20 cm).  This occurred 

concurrently with the salinity exposure. 
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Vegetation and Environmental Measurements 

 
Vegetation in mesocosms was censused non-destructively by using species 

presence/absence determinations and by estimating percent cover of each plant type using 

cover class from the North Carolina Vegetative Survey protocol (Peet et al. 1998).  This 

census was performed at the beginning of the salinity/flooding treatments in June 2007, 

September 2007, and July 2008.  The purpose of the initial monitoring was to describe 

variation in the initial structure of plant communities between mesocosms and track 

potential treatment effects within and between the mesocosms. Experimental treatment 

water was also periodically analyzed for salinity, pH, and temperature using YSI portable 

meters. Treatment water samples were also analyzed periodically for nitrate-nitrogen 

levels using a portable spectrophotometer (Hach 2000).  Study mesocosm soils were also 

collected dried at room temperature, ground, and analyzed for water soluble-P (USDA 

2000), Mehlich-3 extractable aluminum (Al), potassium (K), iron (Fe), calcium (Ca), and 

phosphorus (P).  The purpose of the water and soil chemistry data collection was to 

identify any potential covariates that might affect the hypothesized outcomes. 

At the conclusion of the experiment in July 2008, the aboveground biomass was 

harvested, separated by species, dried to a constant mass at 70oC, and weighed.  The 

below ground biomass was harvested by using a high pressure water hose and sieve 

system to separate the roots from the soil matrix.  Plant roots were dried to a constant 

mass at 70oC, and weighed.  
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Data Analysis 

 

Species richness was calculated using July/September 2007 and July 2008 species 

count data.  Shannon-Wiener diversity values were calculated using the July 2008 data.  

Above and below ground biomass values were analyzed separately as dependent 

variables using a two-way analysis of variance (ANOVA) using SAS version 9.1.  

Additionally, average plant species richness from 2007 and 2008 were analyzed in an 

ANOVA analysis against salinity and flood frequency independent variables.  In 

instances where no significant block effects were found in the initial ANOVA analysis, 

the blocking factor was removed and the analysis was rerun to improve statistical power.  

The environmental variables such as trough water pH, nitrate-nitrogen, and 

temperature were analyzed using repeated measures ANOVA analysis (proc mixed 

procedure) in SAS version 9.1.  All soil chemistry data was analyzed using the split-plot 

ANOVA analysis in SAS described previously.   

Non-metric multidimensional scaling (NMS) was also employed as a multivariate 

analysis tool for determining the relative strength of relationships between vegetation, 

salinity, and flooding frequency variables.  The NMS analysis used a Sorenson (Bray-

Curtis) distance measure with a 0.0000001 stability criterion and a maximum of 500 

iterations (McCune and Grace 2002).  In the NMS analysis plots were identified as Group 

1-5 based on the salinity treatment for that set of mesocosms (Group 1 = 0 ppt, Group 2 = 

1.5 ppt, Group 3 = 3.00 ppt, Group 4 = 6 ppt, and Group 5 = 12 ppt).  NMS analysis was 

completed using PC-ORD Version 5.0 (MjM Software Design, Gleneden Beach, OR). 
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Results 

Seedbank Observational Study 

 
 The results of the seedbank community study showed some significant variation 

in plant species richness and dominant plants between collection sites.  The upper most 

fresh marsh community (Fresh 2) differed significantly from the brackish marsh 

seedbank (p = 0.01, Tukey adjusted) and there were no significant differences between 

the fresh and oligohaline seedbanks (Figure 20).  As was expected the mixed seedbank, 

which was an amalgamation of seeds from all four sites, displayed the highest average 

richness, and was significantly higher than the brackish (p < 0.01) and lower fresh marsh 

site (Fresh 1) (p < 0.01).  Eleocharis parvula and Pluchea purpurascens were the most 

frequently observed plant species from the brackish seedbank (x̄ = 662 ± 83 and x̄ = 42 ± 

4 seeds/sample respectively) and the mixed community seedbank (x̄ = 43 ± 36 and x̄ = 12 

± 1.5 seeds/sample respectively).  A total of 36 species were observed across all 

seedbank communities (Table 1) average frequencies for most seedbank species ranged 

from 1 to 20 individuals.   
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Figure 20. Average plant species richness (± standard error) from seedbanks collected from four 
locations along the Patuxent River, MD (n = 5).  Means that do not share any letters are 
significantly different (Tukey’s HSD, p <0.05).  
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Table 1.  Plant species observed within collected tidal marsh seedbanks along the Patuxent River (values are means, SE is the standard 
error). 
  Fresh 2   Fresh 1   Oligohaline   Brackish   Mixed   

Species 
Mean 

Frequency  SE  
Mean 

Frequency  SE 
Mean 

Frequency  SE 
Mean 

Frequency  SE 
Mean 

Frequency  SE 

Alnus rugosa (du Roi) Spreng.   0.20 0.20       

Amaranthus cannabinus (L.) Sauer 0.60 0.24 0.20 0.20 0.20 0.20   0.60 0.24 

Aster puniceus L. 1.60 0.68 0.80 0.37     0.20 0.20 

Aster simplex Willd. 1.00 1.00         

Atriplex sp.       0.20 0.20   

Boehmeria cylindrica (L.) Sw. 0.80 0.49 0.60 0.24     0.80 0.37 

Cardamine pensylvanica Muhl. Ex 
Willd.     4.60 2.60 0.60 0.40   

Cinna sp.         0.20 0.20 

Cuscuta gronovii Willd. Ex Schult. 0.20 0.20 0.20 0.20       

Cyperus erythrorhizos Muhl. 4.20 0.58 0.20 0.20     2.00 0.32 

Cyperus odoratus L.       0.20 0.20   

Cyperus spp. 0.20 0.20 0.20 0.20       

Echinocloa sp.  0.20 0.20     0.20 0.20 0.20 0.20 

Eleocharis parvula (Roem. & 
Schult.) Link ex Bluff, Nees & 
Schauer 0.40 0.40 8.60 8.60   662.80 82.58 43.60 36.28 

Hibiscus moscheutos L.     0.40 0.24     

Iva frutescens L.       3.00 1.95 0.40 0.24 

Juncus effusus L. 0.20 0.20         

Kosteletzkya virginica (L.) Presl   0.20 0.20       

Leersia oryzoides (L.) Sw. 2.40 0.60   5.20 0.80   1.40 0.24 

Lobelia cardinalis L.         0.20 0.20 

Lythrum salicaria L.     0.80 0.49     

Mentha arvensis L.         0.20 0.20 
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  Fresh 2   Fresh 1   Oligohaline   Brackish   Mixed   

Species 
Mean 

Frequency  SE  
Mean 

Frequency  SE 
Mean 

Frequency  SE 
Mean 

Frequency  SE 
Mean 

Frequency  SE 

Pilea pumila (L.) A. Gray 7.00 1.38 6.20 1.36 0.40 0.24   3.40 1.30 

Pluchea purpurascens (Sw.) DC. 0.20 0.20   0.80 0.37 42.20 4.44 12.00 1.58 

Polygonum arifolium L. 0.20 0.20   0.20 0.20   0.40 0.24 

Polygonum punctatum Elliot     1.40 0.40     

Polygonum sagittatum L.   0.20 0.20       

Sagittaria latifolia Willd. 0.20 0.20         

Schoenplectus fluviatillis (Torr.) 
M.T. Strong         0.20 0.20 

Schoenplectus robustus (Pursh) 
M.T. Strong       1.00 1.00   

Schoenplectus tabernamontani (C.C. 
Gmel.) Palla 1.00 1.00 1.40 1.40 2.00 2.00     

Spartina cynosuroides (L.) Roth     0.60 0.40 0.20 0.20 0.80 0.80 

Spartina patens (Aiton) Muhl.       4.80 4.55   

Teucrium sp.     0.40 0.40     

Typha angustifolia L.   0.20 0.20       

Typha spp. 0.80 0.37 1.40 0.60 1.40 2.59     2.40 0.93 
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Mesocosm Study 

 
Data were originally analyzed as a block design, but the block effect was not 

significant, therefore it was removed from the model.  The results of the overall split 

plot ANOVA supported our initial hypothesis regarding the impact of salinity on 

plant species richness, specifically that salinity would create significant differences in 

low versus high salinity treatment mesocosms (Table 3).  This is also supported by 

the clear trend observed in the July 2008 mesocosm richness data that show a clear 

downward trend in richness between the low-salinity oligohaline mesocosms (1.5 ppt) 

and the most saline treatment mesocosms (12 ppt) (Figure 21).  Flooding frequency 

and the interaction between flooding frequency and salinity effects were also not 

significant, which was contrary to our original hypothesis that flooding has a strong 

influence on tidal marsh plant diversity.   

Table 3. Overall Type III Test of Fixed Effects using plant species richness (July 
2008) as the response variable and salinity, flooding frequency, and salinity*flooding 
frequency as independent variables.  Richness values are from species counts per 
mesocosm. 

Effect Num DF Den DF F Value Pr > F 
Salinity 4 15 6.01 0.0043 

Inun (Flooding 
Frequency) 

2 15 1.79 0.2016 

Salinity*Inun 8 15 0.54 0.8057 
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Figure 21. Mesocosm plant species richness during the initial portion of the experiment (2007) and 
following one entire year of salinity treatments (July 2008).  Bars depict mean plant species 
richness based on salinity treatment group with standard error bars and significant differences 
depicted.  Means with different letters are significantly different with each date (Tukey’s HSD, p 
<0.05).  Richness values are from species counts per mesocosm. 

 

These results of the July 2008 richness data differ from the preliminary 

findings of this study in 2007 which found no significant differences in plant species 

richness between salinity treatments at either the initial (June 2007) or late growing 

season (September 2007) plant surveys.  Additionally, mean plant species richness 

within all of the mesocosms showed a marked decline between 2007 and 2008 

(Figure 11).  This was likely due to little or no influx of seeds from 2007 to 2008 and 

no cold stratification within the greenhouse environment between growing seasons.  

However, exposure of seedlings to elevated salinity levels early in the growing season 

of 2008 produced trends in the low-salinity oligohaline (1.50 ppt) mesocosms similar 

to those observed along the Nanticoke River in 2006 (see Figures 5 and 6, Chapter  

2).  The observed trend in the July 2008 data in Figure 11 was also the same as the 
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Figure 22. Average Shannon-Wiener Diversity (± SE) based on the July 2008 
biomass data.  Means with different letters are significantly different (Tukey’s HSD, 
p <0.05)  
 

Nanticoke River data in that the low-salinity (1.5 ppt) mesocosm community had a 

average richness values comparable (not significantly different) to the fresh marsh 

community.  As in Chapter 2 this difference was not significant at the 0.05 level.  

Additionally, average Shannon-Wiener indices of plant species diversity across all 

salinity treatments yielded no significant differences (Figure 22).    

No significant differences with regards to plant species richness were 

observed between flooding frequency treatments (Figure 23).   
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Figure 23  Average mesocosm plant species richness values based on the 
July 2008 biomass data and separated out by flood frequency to show 
potential interactions and trends.  Means with different letters are 
significantly different (Tukey’s HSD, p <0.05)  
 

 

 

 

 

 

 

 

 

 

 

 

Several species of plants did not regerminate and grow between the 2007 and 2008 

sampling years, some of these species included Apios americana, Bidens laevis, 

Cyperus esculentus, and Zizania aquatica (Table 3).  Additionally, species such as 

Amaranthus cannabinus, which was a dominant plant throughout many of the marsh 

mesocosms in 2007 based on aerial cover (x̄ = 45 - 35% from 29 mesocosms), was 

present for final sampling in July 2008, but had a much lower presence and cover 

value (x̄ = 15% from 5 mesocosms).  Species such as Iva Frutescens, Rumex sp., and 

Samolus parviflorus were not observed in 2007 but volunteered in 2008.  Of the plant 

species observed in the mesocosms in September 2007 80% (31 species) of them 

grew from the seed bank of the mesocosms, with the remaining 20% (8 species) being 

species which I planted randomly within each mesocosm.  The July 2008 plant 
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species list shows a 75% recruitment of plant species from the seedbank (24 species), 

there was also a slight drop in the total number of species between September 2007 

(39 species) and July 2008 (32 species), as well as a minor drop in total cover 

following treatments (Table 4). 

Table 4.  Mesocosm mean plant species cover and standard errors for June and 
September 2007, and July 2008.  Mean species cover was averaged across all 30 
mesocosms. 

Species  
Mean Cover 
June 2007 

Mean Cover 
September 2007 

Mean Cover 
July 2008 

Acorus calamus L. 1.76 +/- 0.21 3.65 +/- 0.79 1.63 +/- 0.43  

Amaranthus cannabinus L. 44.82 +/- 4.32 35.36 +/- 3.63 16.88 +/- 3.71 

Apios americana Medic. 1.5 +/- 0.00   

Aster puniceus L. 0.5 +/- 0.00 3 +/- 0.46 9.9 +/- 1.30 

Atriplex sp.    

Bidens laevis L. 17.5 +/- 0.00 29.17 +/- 5.35  

Bidens sp.  0.50 +/- 0.00  

Bidens coronata (L.) Britt. 24.17 +/- 2.11   

Boehmeria cylindrica (L.) Sw. 0.50 +/- 0.00 3 +/- 0.55 8.83 +/- 1.48 

Cinna sp.  0.5 +/- 0.00 1.17 +/- 0.11 

Cuscuta gronovii Willd. 2.93 +/- 1.48 3.21 +/- 0.48  

Cyperus sp.  1.83 +/- 0.28  

Cyperus strigosus L.  1.5 +/- 0.00 13.11 +/- 2.59 

Cyperus esculentus L. 0.5 +/- 0.00 1.83 +/- 0.28  

Cyperus filicinus Vahl  1.5 +/- 0.00  

Decodon verticillatus (L.) Ell.  0.5 +/- 0.00  

Distichlis spicata (L.) Greene 7.5 +/- 0.00 2.27 +/- 0.69 4.07 +/- 1.36 

Echinochloa muricata (Pursh) Nash   9.43 +/- 2.80 

Echinochloa walteri (Pursh) Nash 17.39 +/- 2.40 28.77 +/- 3.75  

Eleocharis parvula (R.&S.) Link   1.8 +/- 0.44 

Galium tinctorium L. 0.5 +/- 0.00 0.75 +/- 0.09 2 +/- 0.39 

Galium palustre L. 0.5 +/- 0.00 0.5 +/- 0.00  

Hibiscus moscheutos L.  7.5 +/- 0.00  

Hibiscus sp. 2 +/- 0.39 5.5 +/- 0.52  

Impatiens capensis Meerb. 7.5 +/- 0.00   

Iva frutescens L.   1.5 +/- 0.00 

Juncus effusus L.   0.5 +/- 0.00 

Juncus sp.  0.5 +/- 0.00  

Kosteletzkya virginica (L.) Presl  1.5 +/- 0.00 13.5 +/- 1.15 

Leersia oryzoides (L.) Sw. 16.03 +/- 0.70 28.2 +/- 3.15 26.99 +/- 4.50 
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Lythrum salicaria L. 0.5 +/- 0.00 3.5 +/- 0.00 8.5 +/- 1.21 

Mikania scandens (L.) Willd. 0.74 +/- 0.14 19.07 +/- 2.06 40.85 +/- 4.55 
Murdannia keisak (Hasskarl) Hand.-
Mazz 0.5 +/- 0.00 2.5 +/- 0.51 2.15 +/- 0.47 

Nasturtium offiicinale R. Br. 7.3 +/- 1.03   
Peltandra virginica (L.) Schott & 
Endl. 1.86 +/- 0.82 1.33 +/- 0.21 0.23 +/- 0.04 

Phragmites australis (Gav.) Trin. 3.1 +/- 0.67 9.35 +/- 1.43 27.47 +/- 3.10 

Pilea pumila (L.) Gray 28.05 +/- 2.65 16.95 +/- 2.24 0.55 +/- 0.12 

Pluchea purpurascens (Sw.) DC. 33.5 +/- 2.72 8.73 +/- 1.16 14.69 +/- 3,14 

Poaceae sp.     7.5 +/- 0.00 

Polygonum arifolium L. 41.39 +/- 3.70 19.75 +/- 2.80 0.5 +/- 0.00 

Polygonum punctatum Ell. 16.34 +/- 2.00 18.83 +/- 2.25  

Polygonum sagittatum L. 5.23 +/- 0.73 4.5 +/- 0.37  

Polygonum sp. 7.5 +/- 0.00   

Rorippa islandica (Oeder) Borbas 0.5 +/- 0.00 0.5 +/- 0.00  

Rumex sp.   8.17 +/- 1.48 
Samolus parviflorus Raf.   8.42 +/- 1.53 

Schoenplectus sp. 0.5 +/- 0.00  3.13 +/- 0.59 

Senecio sp. 0.5 +/- 0.00   

Sonchus sp. 17.5 +/- 0.00   

Spartina alterniflora Loisel. 7.5 +/- 0.00 2.23 +/- 0.65 0.06 +/- 0.05 

Spartina cynosuroides (L.) Roth 1.3 +/- 0.26 2.5 +/- 0.38 5.05 +/- 0.90 

Spartina patens (Ait.) Muhl. 7.5 +/- 0.00 6.3 +/- 1.04 19.75 +/- 4.00 

Typha angustifolia L. 0.5 +/- 0.00 0.68 +/- 0.07 1.34 +/- 0.37 

Zizania aquatica L. 12.5 +/- 1.29 7.5 +/- 0.00  

Unidentified Dicot   0.5 +/- 0.00 0.1 +/- 0.00 

Unidentified Dicot 2   0.1 +/- 0.00 

Total Species Count 37 39 32 
Total Cover 339.91 285.77 259.84 
 

Not only were there observed changes in individual plant species occurrence 

and abundance between 2007 and 2008, but there was also a strong shift in the plant 

species communities themselves in response to the salinity treatments.  Figure 24 

shows an NMS graph of the mesocosm species biomass from July 2008 relative to 

salinity and flooding. Clear patterns in the plant communities shown by distinct 

clustering of mesocosms arranged by salinity treatment can be readily observed.  

These results suggest that over the course of the 2007-2008 year the plant 
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communities began to shift in response to the treatments, with fresh water marsh 

species dominating in low-

salinity ranges and salt tolerant species dominating in the high salinity mesocosms.  

This outcome supports the hypothesis of plant community shifts in response to the 

salinity treatments.  Differences in the above ground biomass of the ten most 

abundant plant species based on biomass and frequency of occurrence within study 

mesocosms also varied as a function of salinity.   Brackish marsh species such as 

Distichlis spicata and ranging from 6-12 ppt in 2008.  Fresh marsh plant species such 
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Figure 24. NMS two dimensional graph showing the mesocosm biomass data, 
individual points are mesocosms from the final harvest in July 2008.  The groups are 
arranged by salinity treatment with Group 1 = 0 ppt, Group 2 = 1.5 ppt, Group 3 = 3 
ppt, Group 4 = 6 ppt, and Group 5 = 12 ppt. Points are individual mesocosms. 
 



   

 82 
 

as Mikania scandens, Cyperus sp.1, and Leersia oryzoides displayed higher biomass 

in the low-salinity ranges of the experiment (0-1.5 ppt) and a general decline in 

biomass as salinity increased.  Phragmites australis and Spartina cynosuroides, two 

species common in oligohaline-brackish marshes along the Patuxent and Nanticoke 

Rivers, showed no pattern of biomass differences across the salinity range (0-12 ppt) 

(Figure 15).Spartina patens had higher average biomass in mesocosms exposed to 

salinity treatments ranging from 6-12 ppt in 2008.  Fresh marsh plant species such as 

Mikania scandens, Cyperus sp.1, and Leersia oryzoides displayed higher biomass in 

the low-salinity ranges of the experiment (0-1.5 ppt) and a general decline in biomass 

as salinity increased. 

Phragmites australis and Spartina cynosuroides, two species common in 

oligohaline-brackish marshes along the Patuxent and Nanticoke Rivers, showed no 

pattern of biomass differences across the salinity range (0-12 ppt) (Figure 25).   

Pluchea purpurascens and Kosteletzkya virginica, two species also found in 

oligohaline-mesohaline marshes showed distinct peaks at 3 and 6 ppt respectively.  

As the graphs in Figure 25 only show the average plant biomass/salinity treatment, 

it’s possible that at extreme fresh water and salt water conditions the combination of 

salinity and flooding frequency at one end, versus competition and flooding at the 

other imparted restrictions on these species distributions and caused their peak 

biomass to occur near the middle of the salinity range.  
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Mesocosm Chemistry 

No significant differences in the water soluble-P or in water nitrate-nitrogen 

levels were observed between treatment groups.  Significant differences in average 

Mehlich-3 extractable magnesium, potassium, and calcium levels were observed with 
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Figure 25. Graphs showing the above ground biomass (g/salinity treatment) of the ten most 
abundant plant species from the July 2008 biomass data from all 30 mesocosms.  Individual 
points represent mean species biomass per salinity treatment ± SE. 
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the high salinity mesocosms (12 ppt) having higher magnesium and potassium 

concentrations in the soil compared to the 0 ppt and 1.5 ppt mesocosms.  Mean 

calcium levels were significantly higher in the purely fresh water (0 ppt) mesocosms 

compared to the higher salinity level treatments which was likely due to calcium 

precipitating out in the high salinity mesocosms as CaSO4.  These elemental 

differences were not unexpected as the Instant Ocean mix contains these 

micronutrients and was added to the water supply of all the salt treated tanks.  There 

were no significant differences in average mesocosm porewater pH which ranged 

from 6.08 to 6.97.  A significant overall difference (p = 0.0002, F9,306=3.69) was 

observed between trough water temperatures (Figure 26).  
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Figure 26.  Average trough water temperatures measured at 35 different times over 
the course of the experiment (2007-2008).  Means which share a letter are not 
significant at the 0.05 level.  
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Figure 27. Mean above ground biomass versus salinity for the 
five salinity groups.  Different letters designate significant 
differences values are salinity group means (n=6) ± SE. 
 

Though these data show significant differences between some of the experimental 

trough water temperatures, it’s unlikely that these differences are significant at a 

biological level as the difference between the highest mean temperatures (Trough 6 – 

23.59 0C) and the lowest mean temperatures (Trough 2 – 22.850C) was less than 10C 

during the growing season.      

Biomass 
 

My initial hypothesis was that above and below ground plant biomass would 

be significantly 

higher in the marsh 

mesocosms 

subjected to lower 

salinity and flood 

frequency 

disturbances.  The 

results of the 

ANOVA analysis 

found no significant 

differences in mean 

above ground 

biomass across salinity and flood frequency treatment levels for the study mesocosms 

at the 0.05 level (Figure 27).  These results coupled with the NMS output (Figure 24) 

and individual species biomass graphs (Figure 25) suggest that as some species are 

eliminated with increasing salinity they are replaced by salt tolerant species 
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(assuming seed or propagule material is available).  This replacement of species helps 

offset the loss of biomass in the marsh mesocosms.  Mean above ground biomass 

among salinity treatments separated out by flooding frequency shown in Figure 28 

also show no significant differences between salinity treatments. 

    

Mean below ground biomass (July 2008) versus salinity treatment for the 

three flooding treatments displayed no significant statistical differences between these 

means that is consistent with the above ground biomass data in Figure 27 and 

suggests that the more saline tolerant species were able to minimize the impacts of 

increased salinity and flood frequency on the marsh mesocosms.   
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Figure 28.  Mean above ground biomass versus salinity group for the three flooding 
treatments using July 2008 mesocosm biomass data.   
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Discussion 

 
Considerable research has been conducted on how salt and brackish marshes 

will respond to sea-level rise (Mitsch and Gosselink 2000; Morris et al. 2002; Turner 

et al. 2004). Much of this research has focused on the ability of salt marshes to 

accrete vertically at sufficient rates to keep pace with sea-level rise and the role of 

macrophytes in marsh stability or loss (Kearney et al. 1994; Roman et al. 1997; Day 

et al. 1999), or on the responses of marsh vegetation to increases in salinity and water 

level or soil waterlogging (Mendelssohn et al. 1981; Pezeshki et al. 1993; Broome et 

al. 1995; Naidoo et al. 1997; Gough and Grace 1998). These and other studies have 

demonstrated the importance of mineral sediment and organic matter deposition, 

which are critical to maintaining elevation (Reed 1995), and tolerance of marsh 

vegetation to increases in salinity and water logging (Kozlowski 1997). In general, 

growth and survival of salt and brackish marsh vegetation is reduced by increases in 

soil waterlogging, such as those that may occur due to sea-level rise (e.g., Webb et al. 

1995; Mendelssohn and Batzer 2006). Loss of salt and brackish marshes in areas such 

as the Mississippi River delta plain (Louisiana) and the Chesapeake Bay is believed 

to primarily be the result of an inability of marsh elevation to keep up with relative 

sea level, which increases soil waterlogging and anoxia, stressing or killing salt marsh 

plants (Stevenson et al. 1985; Boesch et al. 1994). 

In contrast to salt and brackish marshes, responses of tidal low-salinity 

marshes to sea-level rise have received little attention, with the exception of those in 

the Louisiana delta plain. Research in Louisiana has shown that increases in salinity, 

as well as soil waterlogging, due to high rates of relative sea-level rise result in 
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vegetation dieback and wetland loss (McKee and Mendelssohn 1989; Boesch et al. 

1994; Flynn et al. 1995; Webb and Mendelssohn 1996). These findings suggest that 

low-salinity marshes in other estuaries are similarly sensitive to increases in both 

relative water level and salinity. In the Chesapeake Bay, Kearney et al. (1988) found 

that marsh losses in the Nanticoke River estuary since the 1920s had occurred 

primarily in the lower portions of the estuary; tidal freshwater marshes remained 

relatively stable, probably because they occur in the sediment-trapping portion of the 

estuary. However, it is likely that as sea level rates continue to accelerate, the salt 

wedge and the zone of major sediment deposition will move farther upstream (Meade 

1972; Officer 1981), resulting in vegetation dieback or conversion to salt-tolerant 

species. 

The overall goal of this research was to understand how changes in salinity 

and water level influenced diversity and ecosystem function of tidal marsh 

communities grown in a controlled greenhouse environment.  My preliminary 

research hypothesis was that marsh mesocosms subjected to increased salinities and 

flood frequencies would display diminished plant species richness, diversity, and 

productivity with an associated shift to fresh marsh plants at low salinities and 

brackish marsh plants at the high end of the spectrum.  Additionally, I was curious as 

to whether or not average plant species richness would be highest in mesocosms 

subjected to low oligohaline (0.75-1.50 ppt) salinity conditions similar to the pattern 

observed in the Nanticoke River (Chapter 2). 
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Salinity and Tidal Marsh Plant Species Richness 

 
The preliminary species richness and plant community data collected in June 

and September 2007 showed no significant differences based on the main effects of 

salinity and flood frequency.  Additionally no significant shifts in the plant 

communities from the initial mixtures were observed between June and September 

2007.  The results in 2007 were contrary to my research hypothesis, however, this 

was likely due to salinity and flooding treatments not being initiated until July of 

2007 which allowed the plants to establish themselves and grow undisturbed for three 

months prior to treatment.  Changes to the salinity and flooding regimes within the 

mesocosms are likely to have less of an effect on vegetation that has already become 

established and thus more resistant to environmental perturbation. 

Plant species community data from the second year (2008) following seedling 

exposure to salinity and flooding treatments yielded results more consistent with my 

research hypothesis.   However while average plant species richness was highest in 

the low-salinity oligohaline marsh mesocosms (0.75 – 1.50 ppt), it was not 

significantly different than purely fresh marsh mesocosms.  This finding supports the 

results from Chapter 2 regarding the similarity in pattern between the low salinity 

mesocosms in the experiment and my observed findings from the Nanticoke River in 

2006.  It would appear from my observations and this experiment that plant species 

richness/diversity along some estuarine systems can be more accurately described by 

a sigmoidal response to salinity rather than a simple linear relationship.   
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Ecological modeling determined that salinity and inundation frequency were 

more important overall than the MDE (Chapter 3).  Therefore, I hypothesized that the 

observed pattern in plant species richness was the result of periodic salt water 

intrusions into low-salinity marshes, which suppressed the more competitively 

dominant fresh marsh plants, and allowed the salt tolerant species to survive and grow 

promoting high plant species richness/diversity.  The results of this experiment which 

removes the influence of the MDE by mixing all short and large range species 

together, support this hypothesis and suggest that low-salinity oligohaline marshes 

may have plant species richness and diversity values equal to or sometimes even 

higher than purely tidal fresh water marshes.  These findings lend further support to 

the theory of a more complex pattern of plant species richness along estuarine 

gradients which is contrary to the general trend of decreasing richness with increasing 

salinity noted widely elsewhere (Anderson et al. 1968, Odum 1988, Mitsch and 

Gosselink 2000, Greenberg et al. 2006).   

 

Elevated Flooding and Salinity Effects on Tidal Low-Salinity Marshes 

 
This research suggests that tidal marsh plant communities continuously 

exposed to salinities as high as 12 ppt with a concurrent increase in flooding 

frequency midway through the growing season are somewhat resilient to perturbation, 

provided the plant community is well established prior to disturbance.  However, 

continued exposure to elevated salinity and flooding frequencies (particularly early in 

the growing season) caused a shift in the plant community types from more fresh-

marsh plants to more brackish-marsh plants.  Based on direct observation and 
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statistical analysis of the harvested biomass it appears that the plant communities 

were able to convert to more mesohaline systems without a significant diminishment 

in biomass, provided that a source of seed/propagules of salt/flood tolerant species 

were available. 

Implications 

 
These findings suggest that low-salinity tidal marshes subjected to increases in 

flooding and salinity can maintain vegetation albeit with reduced plant biomass (at 

least initially), provided that they have a diverse enough assemblage of salt and flood-

tolerant species in the seedbank or as available rhizome material.  One plant species 

that seemed particularly adept at surviving and growing under our range of salinity 

and flooding treatments was Phragmites australis.  In general this plant did not show 

a significant diminishment in biomass across the salinity range, except under extreme 

flooding and salinity treatments.  Given that Phragmites australis is a C3 plant, can 

propagate from seed or rhizome material, and can tolerate high flooding and salinity 

conditions it is already well adapted for marsh growth under elevated atmospheric 

carbon dioxide, salinity, and flooding conditions.  Additionally, despite many efforts 

to remove or limit this plant species from tidal marshes within Chesapeake Bay, it 

still remains prevalent throughout much of the Bay ecosystem.  I suggest that natural 

resource managers and agencies interested in restoring and protecting tidal marsh 

ecosystems without using invasive plants such as Phragmites australis focus on 

selecting species with similar physiological traits, as current climate model trends in 

Chesapeake Bay suggest an increase in salt intrusions into estuarine river systems and 

continual increases in relative sea-level rise (Hayhoe et al. 2007, Pyke et al. 2008). 
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 As tidal marshes face increasing threat from anthropogenic forces, sea-level 

rise, and invasive plant species, understanding the principal mechanisms affecting 

species richness has become increasingly important.  Resource managers intent on 

maintaining tidal marsh plant species diversity with the goal of providing ecosystem 

services such as high habitat diversity for wildlife should focus their efforts on low-

salinity oligohaline marshes as well as on tidal freshwater systems.  Invasive species 

such as Phragmites australis, though viewed by many in the natural resource 

community as undesirable, may be able to offer insights regarding plant selection and 

management of restored tidal marsh ecosystems.  My hope is that this research can be 

utilized to predict tidal marsh community changes over time and develop additional 

controlled experiments examining plant community responses to altered physical and 

biotic conditions, such as those caused by global climate changes. 
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Chapter 5:  Synthesis and Conclusions of Research 

This research program sought to examine the existing (observed) patterns in 

tidal marsh plant species diversity along estuarine river systems in Chesapeake Bay 

(Chapter 2).  The outcomes of those observations were tested against Mid-Domain 

Effect (MDE) predictions of plant species richness along those same gradients to 

determine the importance of abiotic factors versus MDE modeled outcomes (Chapter 

3).  In essence I sought to identify the appropriate null expectation of plant species 

richness patterns and examine the possibility that observed patterns of plant species 

richness could be explained by an underlying Mid-Domain Effect which functions 

independently of environmental factors such as soil salinity, flooding duration, and 

competition.  Lastly, through a controlled greenhouse experiment subjecting synthetic 

marsh mesocosm communities to varied salinity and flood durations I sought to 

quantify the importance of those abiotic factors on plant community composition and 

richness/diversity in the absence of the MDE (Chapter 4).  The mesocosm greenhouse 

experiment also sought to quantity the impacts of increased salinity and flooding on 

low-salinity marshes under increased flooding and salinity conditions.   

Research Questions and Hypotheses 

 
Through these efforts I attempted to answer the following research questions: 

1. Are tidal marsh plant species richness patterns along estuarine river gradients 
more complex than a simple linear relationship? 

 
2. What are the key factors influencing observed plant species richness patterns 

along the Nanticoke and Patuxent Rivers? 
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3. What is the relative importance of non-environmental factors (i.e. MDE) in 
shaping observed patterns of plant species richness in estuarine systems like the 
Nanticoke and Patuxent Rivers? 

 
4. How would high diversity, low salinity marshes respond to elevated salinity and 

flooding frequencies and would they shift in response if seeds/propagules were 
available? 

 
 
5. Could the observed patterns of plant species richness observed from the 

Nanticoke and Patuxent Rivers be duplicated under controlled conditions 
manipulating salinity and flood frequency? 

 
This research utilized a combination of field observational study, computer 

modeling, and controlled experimentation in order to answer my research questions.  

The principal research hypotheses for each phase (chapter) of this research are 

summarized below:  

Primary Research Hypothesis 1:  The pattern of observed plant species richness for 
both river systems will follow a non-linear relationship with increasing salinity. 
 
Primary Research Hypothesis 2:  The observed patterns of plant species richness 
observed on the Nanticoke and Patuxent Rivers will be accurately predicted by the 
MDE model independent of measured abiotic factors.  
 
Primary Research Hypothesis 3:  Marsh mesocosms subjected to intermediate salinity 
and flooding frequencies will exhibit significantly higher biomass and plant species 
richness compared to mesocosms subjected to extreme salt/fresh and flooding 
regimes.  
 

Synthesis and Conclusions 

 
The results of the observational study of the plant species richness patterns along the 

Nanticoke and Patuxent Rivers in 2006 showed a clear non-linear pattern in richness 

for the Nanticoke River and a general linear pattern of richness for the Patuxent 

River.  Two questions arose following the completion of this portion of the study.  

Firstly, what were the key mechanisms affecting plant species richness along the 
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Nanticoke and Patuxent Rivers, and second, why did I not observe the same pattern of 

plant species richness along the Patuxent River?   

I theorized that the principal environmental mechanisms behind the observed 

patterns of plant species richness included salinity, anthropogenic disturbance, and 

possibly the Mid-Domain Effect (MDE).  Salinity is a known plant stressor, causing 

reduced growth and competitive ability of freshwater plants, or alternatively as a 

disturbance when it occurs in pulses that kill freshwater plants. Thus, dry conditions 

in either the Nanticoke or Patuxent Rivers may promote coexistence of salt-tolerant 

and salt-intolerant species in fresh-brackish transition zone marshes (i.e. low-salinity 

oligohaline marshes). Simply stated, periodic salinity pulses reduce the competitive 

advantage of freshwater plant species allowing for less competitive salt tolerant plants 

to survive and grow.  However, the contrasting linear pattern of richness on the 

Patuxent River was more difficult to explain.  Given that there was a significantly 

higher instance of urban land use within the watershed and direct evidence of historic 

and current human induced disturbances to some of the marsh lands along the 

Patuxent River, it seemed likely that the non-linear pattern of plant species richness 

observed across the relatively undisturbed Nanticoke River may represent the true 

normal pattern of plant species richness.   

 Another alternative explanation behind the patterns observed in both estuarine 

river systems was MDE.  The MDE model was run using plant species occurrence 

and range data from both rivers against a range of environmental variables including 

salinity and flood frequency.  The MDE model was not as strong of an individual 

predictor of  plant species richness compared to soil salinity, flooding frequency, and 
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nitrate-nitrogen when all plant species were included in the analysis.  However, MDE 

theory was a strong predictor of plant species richness when only large-range species 

were included, suggesting that there is a possibility of an underlying Mid-Domain 

Effect along these gradients independent of environmental factors and anthropogenic 

influences.   

Interestingly, the MDE model accurately predicted the general location of the 

peak area of plant species richness along the Nanticoke River and predicted a similar 

peak in the low salinity regions of the Patuxent River.  The Patuxent River marsh at 

the MDE predicted peak location was dominated by a monotypic stand of Phragmites 

australis likely caused by ferry construction and operation at this location in the late 

1800s.  As a practical application for this model, resource managers and 

environmental agencies looking to restore marsh land in areas likely to promote high 

plant diversity could utilize the MDE model as a tool for identifying candidate sites 

along these types of gradients. 

Knowing that salinity and flood frequency are two of the dominant 

environmental factors affecting plant species richness along estuarine gradients and 

most likely too significantly change due to global and regional climate changes, I 

developed a controlled greenhouse experiment.  The experimental units were marsh 

mesocosms constructed from seedbank material collected from fresh, oligohaline, and 

brackish marsh sites, and included planted perennials representative of these habitats 

as well.  The overlap of large-range and short-range plant species eliminated the 

possibly of an MDE and the mixture of species allowed for potential plant community 

shifts from low to high salinity plant species following implementation of salinity 
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treatments.  The data showed an overall treatment effect of salinity on plant species 

richness, with low salinity (0 ppt and 1.5 ppt) having significantly higher richness 

than the 12 ppt treatments.  The pattern of plant species richness observed in the 

mesocosm experiment seemed to approximate the sigmoidal pattern observed on the 

Nanticoke River in 2006 (Chapter 2).  Mean plant species richness in the low salinity 

oligohaline treatments was not significantly different from the 0 ppt control group.  

These results did not support my hypothesis of highest plant species richness in the 

intermediate salinity treatment group, but did lend quantitative support to my 

hypothesis of a non-linear pattern in plant species richness with increasing salinity in 

Chapter 2. 

Peak standing crop (g/mesocosm) was not significantly different across 

salinity or flood frequency treatments.  However, the NMS analysis and individual 

species graphs displayed a clear separation of the mesocosms into distinct 

communities, the shift from fresh to brackish plant conditions allowed for the above 

and below ground biomass to remain similar.   This work shows that if sources of 

saline/flood tolerant plant propagules are available in natural systems  a shift to a 

more saline and/or flood tolerant plant communities will emerge, however, this shift 

may come at a loss of total biomass (at least initially) and thus adversely affect marsh 

productivity.   

The implications for of this research are four-fold.  First, the null expectation 

of a linear reduction in plant species richness with increasing salinity in estuarine 

rivers of Chesapeake Bay is more complex than originally assumed.  Second, the non-

linear pattern of richness observed on the Nanticoke River was primarily explained by 
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salinity and flooding frequency, however, there was also an underlying MDE which 

did explain some of the observed pattern (particularly for large ranged species).  

Therefore when assessing the mechanisms driving plant species richness patterns 

along relatively undisturbed estuarine gradients one should consider the MDE as a 

potential factor.  Third, though the MDE was not a strong a predictor of the plant 

species richness patterns along either river system compared to other environmental 

variables, the model was able to identify areas along both gradients where plant 

richness was expected to peak based on the empirical data input into the model.  The 

MDE model could be used as a tool for identifying locations along similar estuarine 

gradients where the goal is to restore tidal marshes for maximum plant species 

richness/diversity.  Lastly, tidal low salinity marshes are likely to see a shift in their 

plant communities from salt-intolerant to salt-tolerant species, assuming that the 

marshes can accrete at a rate equal to or greater than current sea level rise scenarios, 

but with a reduction in total biomass.  Species of plants such as Phragmites australis 

deemed by many in the natural resource community as a nuisance species responded 

well to increases in both salinity and flooding frequencies, suggesting that they are 

pre-adapted for these climate change effects.  If Chesapeake Bay continues to 

experience climate change impacts such as sea level rise and alterations to the timing 

and intensity of salt intrusions into estuarine rivers, then restoration ecologists and 

resource managers should consider including species with similar physiological traits 

such as Spartina cynosuroides in their restoration strategies. 
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Appendices 

Appendix A.  Raw Chemistry and Richness Data, Nanticoke and Patuxent Rivers 

Patuxent River 

Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/25/2006 AX00W Mean Soil Salinity (ppt) 4 3.7 4.3 7.3 
6/12/2006 AX00W Mean Soil Salinity (ppt) 9.9 9.6 10.2 11.9 
8/25/2006 AX00W River Salinity (ppt) 7.3 
6/12/2006 AX00W River Salinity (ppt) 11.9 
8/25/2006 AX00W Mean Specific Conductance (µS) 7095 6.4 7.79 
6/12/2006 AX00W Mean Specific Conductance (µS) 16870 16.37 17.37 
8/25/2006 AX00W Mean Raw Conductivity (µS) 6995 6.32 7.67 
6/12/2006 AX00W Mean Raw Conductivity (µS) 14915 14.41 15.42 
8/25/2006 AX00W Mean Temperature C 24.5 24.6 24.4 
6/12/2006 AX00W Mean Temperature C 18.85 18.8 18.9 
8/25/2006 AX00W River Specific Conductance (µS) 12780 
6/12/2006 AX00W River Specific Conductance (µS) 19880 
8/25/2006 AX00W River Conductivity Raw (µS)  14220 
6/12/2006 AX00W River Conductivity Raw (µS)  18580 
8/25/2006 AX00W River Temperature C 30.8 
6/12/2006 AX00W River Temperature C 11.9 
6/12/2006 AX00W pH 3.9 
6/12/2006 AX00W Buffer pH 7.17 
6/12/2006 AX00W OM% 27.4 
6/12/2006 AX00W M3-P 49.31 
6/12/2006 AX00W M3-K 918.72 
6/12/2006 AX00W M3-Ca 1469.60 
6/12/2006 AX00W M3-Mg 1932.11 
6/12/2006 AX00W M3-Mn 66.33 
6/12/2006 AX00W M3-Zn 19.83 
6/12/2006 AX00W M3-Cu 1.64 
6/12/2006 AX00W M3-Fe 1125.69 
6/12/2006 AX00W M3-B 11.40 
6/12/2006 AX00W M3-S 2792.66 
6/12/2006 AX00W M3-Al 1047.43 
6/12/2006 AX00W TN% 1.078 
6/12/2006 AX00W TC% 12.83 
6/12/2006 AX00W NH4-N 20.56 
6/12/2006 AX00W NO3-N 0.00 
6/12/2006 AX00W EPA-P 824.5 
6/12/2006 AX00W EPA-S 12468.0 
6/12/2006 AX00W CA/Mg  7.82E-06 
6/12/2006 AX00W N/P 1331220 

AX00W % Inundation 35.54 
AX00W Distance Downstream 47.2 
AX00W Richness (1000m2) May-June 11 
AX00W Richness (1000m2) August 10 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/24/2006 AX05W Mean Soil Salinity (ppt) 4.5 5.2 3.8 5.2 
6/17/2006 AX05W Mean Soil Salinity (ppt) 9.45 10.2 8.7 9.7 
8/24/2006 AX05W River Salinity (ppt) 5.2 
6/17/2006 AX05W River Salinity (ppt) 9.7 
8/24/2006 AX05W Mean Specific Conductance (µS) 8185 9.44 6.93 
6/17/2006 AX05W Mean Specific Conductance (µS) 15915 16.87 14.96 
8/24/2006 AX05W Mean Raw Conductivity (µS) 8900 10.22 7.58 
6/17/2006 AX05W Mean Raw Conductivity (µS) 15345 17.06 13.63 
8/24/2006 AX05W Mean Temperature C 29.55 29.3 29.8 
6/17/2006 AX05W Mean Temperature C 21.9 23.5 20.3 
8/24/2006 AX05W River Specific Conductance (µS) 9340 
6/17/2006 AX05W River Specific Conductance (µS) 17090 
8/24/2006 AX05W River Conductivity Raw (µS)  10220 
6/17/2006 AX05W River Conductivity Raw (µS)  18010 
8/24/2006 AX05W River Temperature C 30 
6/17/2006 AX05W River Temperature C 25.9 
6/17/2006 AX05W pH 3.8 
6/17/2006 AX05W Buffer pH 7.14 
6/17/2006 AX05W OM% 32.2 
6/17/2006 AX05W M3-P 67.15 
6/17/2006 AX05W M3-K 1209.44 
6/17/2006 AX05W M3-Ca 2039.11 
6/17/2006 AX05W M3-Mg 3044.74 
6/17/2006 AX05W M3-Mn 90.38 
6/17/2006 AX05W M3-Zn 14.36 
6/17/2006 AX05W M3-Cu 2.21 
6/17/2006 AX05W M3-Fe 1169.91 
6/17/2006 AX05W M3-B 11.01 
6/17/2006 AX05W M3-S 3111.86 
6/17/2006 AX05W M3-Al 1104.81 
6/17/2006 AX05W TN% 1.416 
6/17/2006 AX05W TC% 18.54 
6/17/2006 AX05W NH4-N 30.72 
6/17/2006 AX05W NO3-N 0.00 
6/17/2006 AX05W EPA-P 1026.0 
6/17/2006 AX05W EPA-S 12676.0 
6/17/2006 AX05W CA/Mg  0.669716 
6/17/2006 AX05W N/P 13.80117 

AX05W % Inundation 33.6 
AX05W Distance Downstream 43.3 
AX05W Richness (1000m2) May-June 11 
AX05W Richness (1000m2) August 11 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/24/2006 AX10E Mean Soil Salinity (ppt) 5.05 4.9 5.2 5.9 
6/15/2006 AX10E Mean Soil Salinity (ppt) 5.2 8.1 2.3 9 
8/24/2006 AX10E River Salinity (ppt) 5.9 
6/15/2006 AX10E River Salinity (ppt) 9 
8/24/2006 AX10E Mean Specific Conductance (µS) 9085 8.82 9.35 
6/15/2006 AX10E Mean Specific Conductance (µS) 11681.5 9293 14070 
8/24/2006 AX10E Mean Raw Conductivity (µS) 9085 8.82 9.35 
6/15/2006 AX10E Mean Raw Conductivity (µS) 8910.5 4281 13540 
8/24/2006 AX10E Mean Temperature C 29.15 30 28.3 
6/15/2006 AX10E Mean Temperature C 22 21 23 
8/24/2006 AX10E River Specific Conductance (µS) 10480 
6/15/2006 AX10E River Specific Conductance (µS) 15460 
8/24/2006 AX10E River Conductivity Raw (µS)  11510 
6/15/2006 AX10E River Conductivity Raw (µS)  16310 
8/24/2006 AX10E River Temperature C 30.1 
6/15/2006 AX10E River Temperature C 27.9 
6/15/2006 AX10E pH 4.0 
6/15/2006 AX10E Buffer pH 7.12 
6/15/2006 AX10E OM% 26.2 
6/15/2006 AX10E M3-P 54.00 
6/15/2006 AX10E M3-K 1156.78 
6/15/2006 AX10E M3-Ca 1797.01 
6/15/2006 AX10E M3-Mg 2708.26 
6/15/2006 AX10E M3-Mn 220.39 
6/15/2006 AX10E M3-Zn 14.45 
6/15/2006 AX10E M3-Cu 1.94 
6/15/2006 AX10E M3-Fe 968.58 
6/15/2006 AX10E M3-B 9.86 
6/15/2006 AX10E M3-S 3024.60 
6/15/2006 AX10E M3-Al 1103.44 
6/15/2006 AX10E TN% 1.302 
6/15/2006 AX10E TC% 14.64 
6/15/2006 AX10E NH4-N 26.86 
6/15/2006 AX10E NO3-N 0.00 
6/15/2006 AX10E EPA-P 1007.2 
6/15/2006 AX10E EPA-S 14280.0 
6/15/2006 AX10E CA/Mg  0.663529 
6/15/2006 AX10E N/P 12.92693 

AX10E % Inundation 63.39 
AX10E Distance Downstream 38.8 
AX10E Richness (1000m2) May-June 15 
AX10E Richness (1000m2) August 17 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/24/2006 AX15W Mean Soil Salinity (ppt) 2.05 2.1 2 4.5 
6/16/2006 AX15W Mean Soil Salinity (ppt) 5.15 5 5.3 2.5 
8/24/2006 AX15W River Salinity (ppt) 4.5 
6/16/2006 AX15W River Salinity (ppt) 2.5 
8/24/2006 AX15W Mean Specific Conductance (µS) 3829.5 3850 3809 
6/16/2006 AX15W Mean Specific Conductance (µS) 9180 8.97 9.39 
8/24/2006 AX15W Mean Raw Conductivity (µS) 3850 3900 3800 
6/16/2006 AX15W Mean Raw Conductivity (µS) 8890 8.88 8.9 
8/24/2006 AX15W Mean Temperature C 25.5 25.9 25.1 
6/16/2006 AX15W Mean Temperature C 23.35 24.5 22.2 
8/24/2006 AX15W River Specific Conductance (µS) 8160 
6/16/2006 AX15W River Specific Conductance (µS) 4780 
8/24/2006 AX15W River Conductivity Raw (µS)  8950 
6/16/2006 AX15W River Conductivity Raw (µS)  5080 
8/24/2006 AX15W River Temperature C 30 
6/16/2006 AX15W River Temperature C 28.2 
6/16/2006 AX15W pH 4.2 
6/16/2006 AX15W Buffer pH 7.05 
6/16/2006 AX15W OM% 19.5 
6/16/2006 AX15W M3-P 59.97 
6/16/2006 AX15W M3-K 1012.93 
6/16/2006 AX15W M3-Ca 1762.63 
6/16/2006 AX15W M3-Mg 2158.85 
6/16/2006 AX15W M3-Mn 295.69 
6/16/2006 AX15W M3-Zn 25.77 
6/16/2006 AX15W M3-Cu 1.51 
6/16/2006 AX15W M3-Fe 895.90 
6/16/2006 AX15W M3-B 6.84 
6/16/2006 AX15W M3-S 2579.43 
6/16/2006 AX15W M3-Al 1099.12 
6/16/2006 AX15W TN% 1.066 
6/16/2006 AX15W TC% 11.24 
6/16/2006 AX15W NH4-N 26.12 
6/16/2006 AX15W NO3-N 0.00 
6/16/2006 AX15W EPA-P 1157.4 
6/16/2006 AX15W EPA-S 13456.0 
6/16/2006 AX15W CA/Mg  0.816467 
6/16/2006 AX15W N/P 9.210299 

AX15W % Inundation 56.8 
AX15W Distance Downstream 35.2 
AX15W Richness (1000m2) May-June 17 
AX15W Richness (1000m2) August 21 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/18/2006 AX20E Mean Soil Salinity (ppt) 1.65 1.1 2.2 2.7 
6/15/2006 AX20E Mean Soil Salinity (ppt) 2.75 2.8 2.7 2.7 
8/18/2006 AX20E River Salinity (ppt) 2.7 
6/15/2006 AX20E River Salinity (ppt) 2.7 
8/18/2006 AX20E Mean Specific Conductance (µS) 3138.5 2.193 4.084 
6/15/2006 AX20E Mean Specific Conductance (µS) 5170 5.24 5.1 
8/18/2006 AX20E Mean Raw Conductivity (µS) 1993.604 2.207 3985 
6/15/2006 AX20E Mean Raw Conductivity (µS) 4865 4.94 4.79 
8/18/2006 AX20E Mean Temperature C 25.4 27 23.8 
6/15/2006 AX20E Mean Temperature C 22 22.2 21.8 
8/18/2006 AX20E River Specific Conductance (µS) 5130 
6/15/2006 AX20E River Specific Conductance (µS) 5.05 
8/18/2006 AX20E River Conductivity Raw (µS)  5610 
6/15/2006 AX20E River Conductivity Raw (µS)  5020 
8/18/2006 AX20E River Temperature C 30 
6/15/2006 AX20E River Temperature C 24.2 
6/15/2006 AX20E pH 4.4 
6/15/2006 AX20E Buffer pH 7.12 
6/15/2006 AX20E OM% 16.1 
6/15/2006 AX20E M3-P 59.76 
6/15/2006 AX20E M3-K 540.55 
6/15/2006 AX20E M3-Ca 1786.25 
6/15/2006 AX20E M3-Mg 1552.82 
6/15/2006 AX20E M3-Mn 265.37 
6/15/2006 AX20E M3-Zn 33.70 
6/15/2006 AX20E M3-Cu 1.51 
6/15/2006 AX20E M3-Fe 982.43 
6/15/2006 AX20E M3-B 4.08 
6/15/2006 AX20E M3-S 1483.36 
6/15/2006 AX20E M3-Al 1058.86 
6/15/2006 AX20E TN% 0.919 
6/15/2006 AX20E TC% 9.22 
6/15/2006 AX20E NH4-N 27.63 
6/15/2006 AX20E NO3-N 0.00 
6/15/2006 AX20E EPA-P 1629.9 
6/15/2006 AX20E EPA-S 5864.0 
6/15/2006 AX20E CA/Mg  1.150327 
6/15/2006 AX20E N/P 5.638452 

AX20E % Inundation 50.11 
AX20E Distance Downstream 30.2 
AX20E Richness (1000m2) May-June 12 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/18/2006 AX22W Mean Soil Salinity (ppt) 2 2.2 1.8 3.2 
6/17/2006 AX22W Mean Soil Salinity (ppt) 1.8 1.9 1.7 2.2 
8/18/2006 AX22W River Salinity (ppt) 3.2 
6/17/2006 AX22W River Salinity (ppt) 2.2 
8/18/2006 AX22W Mean Specific Conductance (µS) 3791 4083 3499 
6/17/2006 AX22W Mean Specific Conductance (µS) 3276 3383 3169 
8/18/2006 AX22W Mean Raw Conductivity (µS) 3863.5 4275 3452 
6/17/2006 AX22W Mean Raw Conductivity (µS) 3220.5 3620 2821 
8/18/2006 AX22W Mean Temperature C 25.8 27.4 24.2 
6/17/2006 AX22W Mean Temperature C 20.35 21.4 19.3 
8/18/2006 AX22W River Specific Conductance (µS) 6030 
6/17/2006 AX22W River Specific Conductance (µS) 4177 
8/18/2006 AX22W River Conductivity Raw (µS)  6370 
6/17/2006 AX22W River Conductivity Raw (µS)  4310 
8/18/2006 AX22W River Temperature C 28.1 
6/17/2006 AX22W River Temperature C 26.4 
6/17/2006 AX22W pH 4.8 
6/17/2006 AX22W Buffer pH 7.19 
6/17/2006 AX22W OM% 16.3 
6/17/2006 AX22W M3-P 31.04 
6/17/2006 AX22W M3-K 599.41 
6/17/2006 AX22W M3-Ca 1481.39 
6/17/2006 AX22W M3-Mg 1215.80 
6/17/2006 AX22W M3-Mn 445.34 
6/17/2006 AX22W M3-Zn 22.07 
6/17/2006 AX22W M3-Cu 1.54 
6/17/2006 AX22W M3-Fe 900.94 
6/17/2006 AX22W M3-B 4.11 
6/17/2006 AX22W M3-S 566.00 
6/17/2006 AX22W M3-Al 860.05 
6/17/2006 AX22W TN% 0.800 
6/17/2006 AX22W TC% 9.07 
6/17/2006 AX22W NH4-N 22.80 
6/17/2006 AX22W NO3-N 0.71 
6/17/2006 AX22W EPA-P 2381.1 
6/17/2006 AX22W EPA-S 3528.2 
6/17/2006 AX22W CA/Mg  1.218449 
6/17/2006 AX22W N/P 3.35982 

AX22W % Inundation 30.11 
AX22W Distance Downstream 29.6 
AX22W Richness (1000m2) May-June 20 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/17/2006 AX26W Mean Soil Salinity (ppt) 0.6 0.8 0.4 1.2 
6/15/2006 AX26W Mean Soil Salinity (ppt) 0.65 0.7 0.6 1.3 
8/17/2006 AX26W River Salinity (ppt) 1.2 
6/15/2006 AX26W River Salinity (ppt) 1.3 
8/17/2006 AX26W Mean Specific Conductance (µS) 1218.5 1573 864 
6/15/2006 AX26W Mean Specific Conductance (µS) 1370 1453 1287 
8/17/2006 AX26W Mean Raw Conductivity (µS) 1187.5 1528 847 
6/15/2006 AX26W Mean Raw Conductivity (µS) 1180.5 1259 1102 
8/17/2006 AX26W Mean Temperature C 23.6 23.4 23.8 
6/15/2006 AX26W Mean Temperature C 17.5 18 17 
8/17/2006 AX26W River Specific Conductance (µS) 2368 
6/15/2006 AX26W River Specific Conductance (µS) 2542 
8/17/2006 AX26W River Conductivity Raw (µS)  2543 
6/15/2006 AX26W River Conductivity Raw (µS)  2652 
8/17/2006 AX26W River Temperature C 28.8 
6/15/2006 AX26W River Temperature C 27 
6/15/2006 AX26W pH 4.6 
6/15/2006 AX26W Buffer pH 7.09 
6/15/2006 AX26W OM% 23.3 
6/15/2006 AX26W M3-P 54.50 
6/15/2006 AX26W M3-K 422.84 
6/15/2006 AX26W M3-Ca 2458.13 
6/15/2006 AX26W M3-Mg 1322.50 
6/15/2006 AX26W M3-Mn 385.21 
6/15/2006 AX26W M3-Zn 23.26 
6/15/2006 AX26W M3-Cu 1.52 
6/15/2006 AX26W M3-Fe 963.66 
6/15/2006 AX26W M3-B 4.72 
6/15/2006 AX26W M3-S 1006.24 
6/15/2006 AX26W M3-Al 1240.44 
6/15/2006 AX26W TN% 1.327 
6/15/2006 AX26W TC% 13.67 
6/15/2006 AX26W NH4-N 34.67 
6/15/2006 AX26W NO3-N 0.72 
6/15/2006 AX26W EPA-P 1414.4 
6/15/2006 AX26W EPA-S 4156.0 
6/15/2006 AX26W CA/Mg  1.858699 
6/15/2006 AX26W N/P 9.381805 

AX26W % Inundation 40.43 
AX26W Distance Downstream 25.6 
AX26W Richness (1000m2) May-June 25 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/16/2006 AX30E Mean Soil Salinity (ppt) 0.3 0.3 0.3 0.5 
6/14/2006 AX30E Mean Soil Salinity (ppt) 0.6 0.6 0.6 0.8 
8/16/2006 AX30E River Salinity (ppt) 0.5 
6/14/2006 AX30E River Salinity (ppt) 0.8 
8/16/2006 AX30E Mean Specific Conductance (µS) 660 670 650 
6/14/2006 AX30E Mean Specific Conductance (µS) 1196 1146 1246 
8/16/2006 AX30E Mean Raw Conductivity (µS) 639 636 642 
6/14/2006 AX30E Mean Raw Conductivity (µS) 1064.5 1022 1107 
8/16/2006 AX30E Mean Temperature C 23.75 23.1 24.4 
6/14/2006 AX30E Mean Temperature C 19.4 19.4 19.4 
8/16/2006 AX30E River Specific Conductance (µS) 975 
6/14/2006 AX30E River Specific Conductance (µS) 1658 
8/16/2006 AX30E River Conductivity Raw (µS)  1019 
6/14/2006 AX30E River Conductivity Raw (µS)  1574 
8/16/2006 AX30E River Temperature C 27.5 
6/14/2006 AX30E River Temperature C 22.4 
6/14/2006 AX30E pH 4.7 
6/14/2006 AX30E Buffer pH 7.20 
6/14/2006 AX30E OM% 26.8 
6/14/2006 AX30E M3-P 62.84 
6/14/2006 AX30E M3-K 252.48 
6/14/2006 AX30E M3-Ca 2605.18 
6/14/2006 AX30E M3-Mg 814.42 
6/14/2006 AX30E M3-Mn 370.91 
6/14/2006 AX30E M3-Zn 27.20 
6/14/2006 AX30E M3-Cu 1.91 
6/14/2006 AX30E M3-Fe 1367.30 
6/14/2006 AX30E M3-B 3.98 
6/14/2006 AX30E M3-S 556.38 
6/14/2006 AX30E M3-Al 1181.18 
6/14/2006 AX30E TN% 1.577 
6/14/2006 AX30E TC% 15.83 
6/14/2006 AX30E NH4-N 33.03 
6/14/2006 AX30E NO3-N 1.24 
6/14/2006 AX30E EPA-P 1328.6 
6/14/2006 AX30E EPA-S 3419.6 
6/14/2006 AX30E CA/Mg  3.198816 
6/14/2006 AX30E N/P 11.86964 

AX30E % Inundation 42.9 
AX30E Distance Downstream 20.4 
AX30E Richness (1000m2) May-June 8 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/16/2006 AX30W Mean Soil Salinity (ppt) 0.3 0.3 0.3 0.4 
6/18/2006 AX30W Mean Soil Salinity (ppt) 1 1 1 1.4 
8/16/2006 AX30W River Salinity (ppt) 0.4 
6/18/2006 AX30W River Salinity (ppt) 1.4 
8/16/2006 AX30W Mean Specific Conductance (µS) 616 645 587 
6/18/2006 AX30W Mean Specific Conductance (µS) 1958.5 1926 1991 
8/16/2006 AX30W Mean Raw Conductivity (µS) 587 597 577 
6/18/2006 AX30W Mean Raw Conductivity (µS) 1953 1916 1990 
8/16/2006 AX30W Mean Temperature C 22.9 21.5 24.3 
6/18/2006 AX30W Mean Temperature C 24.75 24.6 24.9 
8/16/2006 AX30W River Specific Conductance (µS) 906 
6/18/2006 AX30W River Specific Conductance (µS) 2648 
8/16/2006 AX30W River Conductivity Raw (µS)  991 
6/18/2006 AX30W River Conductivity Raw (µS)  2690 
8/16/2006 AX30W River Temperature C 29.9 
6/18/2006 AX30W River Temperature C 26.3 
6/18/2006 AX30W pH 4.0 
6/18/2006 AX30W Buffer pH 6.97 
6/18/2006 AX30W OM% 39.8 
6/18/2006 AX30W M3-P 68.07 
6/18/2006 AX30W M3-K 242.95 
6/18/2006 AX30W M3-Ca 3914.41 
6/18/2006 AX30W M3-Mg 1486.70 
6/18/2006 AX30W M3-Mn 256.05 
6/18/2006 AX30W M3-Zn 22.90 
6/18/2006 AX30W M3-Cu 1.90 
6/18/2006 AX30W M3-Fe 1274.30 
6/18/2006 AX30W M3-B 4.51 
6/18/2006 AX30W M3-S 3212.86 
6/18/2006 AX30W M3-Al 1611.18 
6/18/2006 AX30W TN% 1.708 
6/18/2006 AX30W TC% 23.39 
6/18/2006 AX30W NH4-N 24.14 
6/18/2006 AX30W NO3-N 0.00 
6/18/2006 AX30W EPA-P 970.0 
6/18/2006 AX30W EPA-S 14956.0 
6/18/2006 AX30W CA/Mg  2.632952 
6/18/2006 AX30W N/P 17.60897 

AX30W % Inundation 47.45 
AX30W Distance Downstream 22.5 
AX30W Richness (1000m2) May-June 21 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/16/2006 AX35W Mean Soil Salinity (ppt) 0.4 0.5 0.3 0.3 
6/14/2006 AX35W Mean Soil Salinity (ppt) 0.3 0.3 0.3 0.4 
8/16/2006 AX35W River Salinity (ppt) 0.3 
6/14/2006 AX35W River Salinity (ppt) 0.4 
8/16/2006 AX35W Mean Specific Conductance (µS) 763 929 597 
6/14/2006 AX35W Mean Specific Conductance (µS) 589.5 625 554 
8/16/2006 AX35W Mean Raw Conductivity (µS) 771.5 957 586 
6/14/2006 AX35W Mean Raw Conductivity (µS) 531 566 496 
8/16/2006 AX35W Mean Temperature C 24.65 25.7 23.6 
6/14/2006 AX35W Mean Temperature C 19.6 19.7 19.5 
8/16/2006 AX35W River Specific Conductance (µS) 581 
6/14/2006 AX35W River Specific Conductance (µS) 803 
8/16/2006 AX35W River Conductivity Raw (µS)  605 
6/14/2006 AX35W River Conductivity Raw (µS)  762 
8/16/2006 AX35W River Temperature C 27.1 
6/14/2006 AX35W River Temperature C 22.5 
6/14/2006 AX35W pH 4.2 
6/14/2006 AX35W Buffer pH 7.17 
6/14/2006 AX35W OM% 38.6 
6/14/2006 AX35W M3-P 124.70 
6/14/2006 AX35W M3-K 235.14 
6/14/2006 AX35W M3-Ca 3195.68 
6/14/2006 AX35W M3-Mg 701.20 
6/14/2006 AX35W M3-Mn 162.87 
6/14/2006 AX35W M3-Zn 47.81 
6/14/2006 AX35W M3-Cu 2.18 
6/14/2006 AX35W M3-Fe 1309.02 
6/14/2006 AX35W M3-B 5.07 
6/14/2006 AX35W M3-S 2111.51 
6/14/2006 AX35W M3-Al 1697.84 
6/14/2006 AX35W TN% 2.365 
6/14/2006 AX35W TC% 24.52 
6/14/2006 AX35W NH4-N 47.84 
6/14/2006 AX35W NO3-N 1.42 
6/14/2006 AX35W EPA-P 1075.0 
6/14/2006 AX35W EPA-S 8216.0 
6/14/2006 AX35W CA/Mg  31.29817 
6/14/2006 AX35W N/P 66423.33 

AX35W % Inundation 24.54 
AX35W Distance Downstream 14.8 
AX35W Richness (1000m2) May-June 33 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/17/2006 AX39W Mean Soil Salinity (ppt) 0.15 0.2 0.1 0.2 
6/18/2006 AX39W Mean Soil Salinity (ppt) 0.2 0.3 0.1 0.1 
8/17/2006 AX39W River Salinity (ppt) 0.2 
6/18/2006 AX39W River Salinity (ppt) 0.1 
8/17/2006 AX39W Mean Specific Conductance (µS) 355.15 436.1 274.2 
6/18/2006 AX39W Mean Specific Conductance (µS) 444.35 587 301.7 
8/17/2006 AX39W Mean Raw Conductivity (µS) 341.05 416 266.1 
6/18/2006 AX39W Mean Raw Conductivity (µS) 422.25 559 285.5 
8/17/2006 AX39W Mean Temperature C 23.1 23 23.2 
6/18/2006 AX39W Mean Temperature C 22.35 22.6 22.1 
8/17/2006 AX39W River Specific Conductance (µS) 370 
6/18/2006 AX39W River Specific Conductance (µS) 265.1 
8/17/2006 AX39W River Conductivity Raw (µS)  374.4 
6/18/2006 AX39W River Conductivity Raw (µS)  271.7 
8/17/2006 AX39W River Temperature C 25.6 
6/18/2006 AX39W River Temperature C 26.4 
6/18/2006 AX39W pH 3.8 
6/18/2006 AX39W Buffer pH 6.92 
6/18/2006 AX39W OM% 24.1 
6/18/2006 AX39W M3-P 122.62 
6/18/2006 AX39W M3-K 137.06 
6/18/2006 AX39W M3-Ca 2390.81 
6/18/2006 AX39W M3-Mg 412.73 
6/18/2006 AX39W M3-Mn 226.39 
6/18/2006 AX39W M3-Zn 45.29 
6/18/2006 AX39W M3-Cu 3.23 
6/18/2006 AX39W M3-Fe 1568.89 
6/18/2006 AX39W M3-B 3.41 
6/18/2006 AX39W M3-S 1776.83 
6/18/2006 AX39W M3-Al 1353.90 
6/18/2006 AX39W TN% 1.212 
6/18/2006 AX39W TC% 14.78 
6/18/2006 AX39W NH4-N 38.00 
6/18/2006 AX39W NO3-N 0.80 
6/18/2006 AX39W EPA-P 1773.0 
6/18/2006 AX39W EPA-S 9344.0 
6/18/2006 AX39W CA/Mg  5.792673 
6/18/2006 AX39W N/P 6.835871 

AX39W % Inundation 52.98 
AX39W Distance Downstream 10.5 
AX39W Richness (1000m2) May-June 19 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/15/2006 AX43W Mean Soil Salinity (ppt) 0.2 0.2 0.2 0.2 
6/13/2006 AX43W Mean Soil Salinity (ppt) 0.2 0.2 0.2 0.2 
8/15/2006 AX43W River Salinity (ppt) 0.2 
6/13/2006 AX43W River Salinity (ppt) 0.2 
8/15/2006 AX43W Mean Specific Conductance (µS) 412.15 423.1 401.2 
6/13/2006 AX43W Mean Specific Conductance (µS) 352.4 319.5 385.3 
8/15/2006 AX43W Mean Raw Conductivity (µS) 407.75 421.9 393.6 
6/13/2006 AX43W Mean Raw Conductivity (µS) 310.65 277.3 344 
8/15/2006 AX43W Mean Temperature C 24.8 25.3 24.3 
6/13/2006 AX43W Mean Temperature C 18.75 18 19.5 
8/15/2006 AX43W River Specific Conductance (µS) 323.7 
6/13/2006 AX43W River Specific Conductance (µS) 339.4 
8/15/2006 AX43W River Conductivity Raw (µS)  329.9 
6/13/2006 AX43W River Conductivity Raw (µS)  322.4 
8/15/2006 AX43W River Temperature C 25.9 
6/13/2006 AX43W River Temperature C 22.6 
6/13/2006 AX43W pH 4.3 
6/13/2006 AX43W Buffer pH 7.10 
6/13/2006 AX43W OM% 18.2 
6/13/2006 AX43W M3-P 168.35 
6/13/2006 AX43W M3-K 97.37 
6/13/2006 AX43W M3-Ca 1912.10 
6/13/2006 AX43W M3-Mg 223.05 
6/13/2006 AX43W M3-Mn 179.54 
6/13/2006 AX43W M3-Zn 28.01 
6/13/2006 AX43W M3-Cu 2.61 
6/13/2006 AX43W M3-Fe 1559.96 
6/13/2006 AX43W M3-B 3.42 
6/13/2006 AX43W M3-S 463.31 
6/13/2006 AX43W M3-Al 1024.12 
6/13/2006 AX43W TN% 1.112 
6/13/2006 AX43W TC% 12.70 
6/13/2006 AX43W NH4-N 17.49 
6/13/2006 AX43W NO3-N 1.59 
6/13/2006 AX43W EPA-P 1226.5 
6/13/2006 AX43W EPA-S 2470.7 
6/13/2006 AX43W CA/Mg  8.572517 
6/13/2006 AX43W N/P 9.066301 

AX43W % Inundation 27.36 
AX43W Distance Downstream 5.5 
AX43W Richness (1000m2) May-June 26 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/15/2006 AX47E Mean Soil Salinity (ppt) 0.2 0.2 0.2 0.1 
6/13/2006 AX47E Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.2 
8/15/2006 AX47E River Salinity (ppt) 0.1 
6/13/2006 AX47E River Salinity (ppt) 0.2 
8/15/2006 AX47E Mean Specific Conductance (µS) 408.8 418.6 399 
6/13/2006 AX47E Mean Specific Conductance (µS) 296 298.6 293.4 
8/15/2006 AX47E Mean Raw Conductivity (µS) 391.85 403 380.7 
6/13/2006 AX47E Mean Raw Conductivity (µS) 252.6 255.9 249.3 
8/15/2006 AX47E Mean Temperature C 22.75 22.9 22.6 
6/13/2006 AX47E Mean Temperature C 17.2 17.4 17 
8/15/2006 AX47E River Specific Conductance (µS) 92 
6/13/2006 AX47E River Specific Conductance (µS) 323.4 
8/15/2006 AX47E River Conductivity Raw (µS)  87.5 
6/13/2006 AX47E River Conductivity Raw (µS)  294.5 
8/15/2006 AX47E River Temperature C 24.3 
6/13/2006 AX47E River Temperature C 20.6 
6/13/2006 AX47E pH 4.5 
6/13/2006 AX47E Buffer pH 6.95 
6/13/2006 AX47E OM% 34.6 
6/13/2006 AX47E M3-P 65.39 
6/13/2006 AX47E M3-K 141.92 
6/13/2006 AX47E M3-Ca 3448.42 
6/13/2006 AX47E M3-Mg 340.18 
6/13/2006 AX47E M3-Mn 498.58 
6/13/2006 AX47E M3-Zn 46.43 
6/13/2006 AX47E M3-Cu 2.71 
6/13/2006 AX47E M3-Fe 1880.41 
6/13/2006 AX47E M3-B 4.34 
6/13/2006 AX47E M3-S 481.08 
6/13/2006 AX47E M3-Al 1377.14 
6/13/2006 AX47E TN% 1.885 
6/13/2006 AX47E TC% 19.54 
6/13/2006 AX47E NH4-N 31.10 
6/13/2006 AX47E NO3-N 4.81 
6/13/2006 AX47E EPA-P 1594.9 
6/13/2006 AX47E EPA-S 2993.7 
6/13/2006 AX47E CA/Mg  10.13705 
6/13/2006 AX47E N/P 11.81907 

AX47E % Inundation 27.24 
AX47E Distance Downstream 0 
AX47E Richness (1000m2) May-June 30 
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Nanticoke River 

Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/4/2006 PS00W Mean Soil Salinity (ppt) 7.2 7.6 6.8 8.7 
5/23/2006 PS00W Mean Soil Salinity (ppt) 8.65 8.8 8.5 
8/4/2006 PS00W River Salinity (ppt) 8.7 
5/23/2006 PS00W River Salinity (ppt) 
8/4/2006 PS00W Mean Specific Conductance (µS) 12745 13.62 11.87 
5/23/2006 PS00W Mean Specific Conductance (µS) 14775 14.96 14.59 
8/4/2006 PS00W Mean Raw Conductivity (µS) 12590 13.73 11.45 
5/23/2006 PS00W Mean Raw Conductivity (µS) 11900 11.9 11.9 
8/4/2006 PS00W Mean Temperature C 24.1 25 23.2 
5/23/2006 PS00W Mean Temperature C 14.7 15.2 14.2 
8/4/2006 PS00W River Specific Conductance (µS) 15180 
5/23/2006 PS00W River Specific Conductance (µS) 
8/4/2006 PS00W River Conductivity Raw (µS)  17210 
5/23/2006 PS00W River Conductivity Raw (µS)  
8/4/2006 PS00W River Temperature C 31.8 
5/23/2006 PS00W River Temperature C 
5/23/2006 PS00W pH 4.0 
5/23/2006 PS00W Buffer pH 7.33 
5/23/2006 PS00W OM% 29.8 
5/23/2006 PS00W M3-P 37.18 
5/23/2006 PS00W M3-K 908.36 
5/23/2006 PS00W M3-Ca 1737.19 
5/23/2006 PS00W M3-Mg 2626.39 
5/23/2006 PS00W M3-Mn 31.63 
5/23/2006 PS00W M3-Zn 11.94 
5/23/2006 PS00W M3-Cu 3.45 
5/23/2006 PS00W M3-Fe 1322.06 
5/23/2006 PS00W M3-B 11.18 
5/23/2006 PS00W M3-S 3475.00 
5/23/2006 PS00W M3-Al 940.94 
5/23/2006 PS00W TN% 1.189 
5/23/2006 PS00W TC% 16.73 
5/23/2006 PS00W NH4-N 31.91 
5/23/2006 PS00W NO3-N 0.00 
5/23/2006 PS00W EPA-P 638.6 
5/23/2006 PS00W EPA-S 9976.0 
5/23/2006 PS00W CA/Mg  0.661436 
5/23/2006 PS00W N/P 18.61769 

PS00W % Inundation 4.45 
PS00W Distance Downstream 55.9 
PS00W Richness (1000m2) May-June 4 
PS00W Richness (1000m2) August 11 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/4/2006 PS05W Mean Soil Salinity (ppt) 4.1 4.7 3.5 6.2 
5/24/2006 PS05W Mean Soil Salinity (ppt) 7 6.5 7.5 
8/4/2006 PS05W River Salinity (ppt) 6.2 
5/24/2006 PS05W River Salinity (ppt) 
8/4/2006 PS05W Mean Specific Conductance (µS) 7470 8.54 6.4 
5/24/2006 PS05W Mean Specific Conductance (µS) 12270 11.61 12.93 
8/4/2006 PS05W Mean Raw Conductivity (µS) 7615 8.75 6.48 
5/24/2006 PS05W Mean Raw Conductivity (µS) 10335 9.77 10.9 
8/4/2006 PS05W Mean Temperature C 25.9 26.2 25.6 
5/24/2006 PS05W Mean Temperature C 16.55 16.2 16.9 
8/4/2006 PS05W River Specific Conductance (µS) 11030 
5/24/2006 PS05W River Specific Conductance (µS) 
8/4/2006 PS05W River Conductivity Raw (µS)  12410 
5/24/2006 PS05W River Conductivity Raw (µS)  
8/4/2006 PS05W River Temperature C 31.4 
5/24/2006 PS05W River Temperature C 
5/24/2006 PS05W pH 4.0 
5/24/2006 PS05W Buffer pH 7.49 
5/24/2006 PS05W OM% 28.0 
5/24/2006 PS05W M3-P 53.89 
5/24/2006 PS05W M3-K 963.86 
5/24/2006 PS05W M3-Ca 2265.26 
5/24/2006 PS05W M3-Mg 2922.18 
5/24/2006 PS05W M3-Mn 55.59 
5/24/2006 PS05W M3-Zn 14.00 
5/24/2006 PS05W M3-Cu 3.43 
5/24/2006 PS05W M3-Fe 1150.92 
5/24/2006 PS05W M3-B 9.72 
5/24/2006 PS05W M3-S 4088.74 
5/24/2006 PS05W M3-Al 1361.81 
5/24/2006 PS05W TN% 1.063 
5/24/2006 PS05W TC% 15.73 
5/24/2006 PS05W NH4-N 74.58 
5/24/2006 PS05W NO3-N 0.00 
5/24/2006 PS05W EPA-P 518.1 
5/24/2006 PS05W EPA-S 10984.0 
5/24/2006 PS05W CA/Mg  0.775195 
5/24/2006 PS05W N/P 20.51648 

PS05W % Inundation 11.75 
PS05W Distance Downstream 54.5 
PS05W Richness (1000m2) May-June 8 
PS05W Richness (1000m2) August 15 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/4/2006 PS10E Mean Soil Salinity (ppt) 2.6 2.7 2.5 2.9 
5/24/2006 PS10E Mean Soil Salinity (ppt) 3.95 3.6 4.3 7.3 
8/4/2006 PS10E River Salinity (ppt) 2.9 
5/24/2006 PS10E River Salinity (ppt) 7.3 
8/4/2006 PS10E Mean Specific Conductance (µS) 5000 5.28 4.72 
5/24/2006 PS10E Mean Specific Conductance (µS) 7125 6.47 7.78 
8/4/2006 PS10E Mean Raw Conductivity (µS) 5255 5.55 4.96 
5/24/2006 PS10E Mean Raw Conductivity (µS) 6020 5.36 6.68 
8/4/2006 PS10E Mean Temperature C 27.4 27.1 27.7 
5/24/2006 PS10E Mean Temperature C 16.7 16 17.4 
8/4/2006 PS10E River Specific Conductance (µS) 5490 
5/24/2006 PS10E River Specific Conductance (µS) 12700 
8/4/2006 PS10E River Conductivity Raw (µS)  6140 
5/24/2006 PS10E River Conductivity Raw (µS)  11590 
8/4/2006 PS10E River Temperature C 31.3 
5/24/2006 PS10E River Temperature C 
5/24/2006 PS10E pH 4.3 
5/24/2006 PS10E Buffer pH 7.38 
5/24/2006 PS10E OM% 24.0 
5/24/2006 PS10E M3-P 36.60 
5/24/2006 PS10E M3-K 808.98 
5/24/2006 PS10E M3-Ca 1770.51 
5/24/2006 PS10E M3-Mg 2094.03 
5/24/2006 PS10E M3-Mn 79.35 
5/24/2006 PS10E M3-Zn 16.15 
5/24/2006 PS10E M3-Cu 2.29 
5/24/2006 PS10E M3-Fe 1062.77 
5/24/2006 PS10E M3-B 7.74 
5/24/2006 PS10E M3-S 2387.17 
5/24/2006 PS10E M3-Al 1167.43 
5/24/2006 PS10E TN% 1.092 
5/24/2006 PS10E TC% 14.28 
5/24/2006 PS10E NH4-N 32.66 
5/24/2006 PS10E NO3-N 0.00 
5/24/2006 PS10E EPA-P 594.4 
5/24/2006 PS10E EPA-S 12176.0 
5/24/2006 PS10E CA/Mg  0.845504 
5/24/2006 PS10E N/P 18.37147 

PS10E % Inundation 30.71 
PS10E Distance Downstream 49.3 
PS10E Richness (1000m2) May-June 12 
PS10E Richness (1000m2) August 16 
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Date Plot Parameter Value Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/3/2006 PS15E Mean Soil Salinity (ppt) 1.35 1.5 1.2 2 
5/24/2006 PS15E Mean Soil Salinity (ppt) 3.4 3.6 3.2 1.4 
8/3/2006 PS15E River Salinity (ppt) 2 
5/24/2006 PS15E River Salinity (ppt) 1.4 
8/3/2006 PS15E Mean Specific Conductance (µS) 2571.5 2580 2563 
5/24/2006 PS15E Mean Specific Conductance (µS) 6130 6.48 5.78 
8/3/2006 PS15E Mean Raw Conductivity (µS) 2654 2662 2646 
5/24/2006 PS15E Mean Raw Conductivity (µS) 5230 5.54 4.92 
8/3/2006 PS15E Mean Temperature C 26.55 26.7 26.4 
5/24/2006 PS15E Mean Temperature C 17 17.4 16.6 
8/3/2006 PS15E River Specific Conductance (µS) 3835 
5/24/2006 PS15E River Specific Conductance (µS) 2729 
8/3/2006 PS15E River Conductivity Raw (µS)  4227 
5/24/2006 PS15E River Conductivity Raw (µS)  2486 
8/3/2006 PS15E River Temperature C 31.4 
5/24/2006 PS15E River Temperature C 20.5 
5/24/2006 PS15E pH 4.4 
5/24/2006 PS15E Buffer pH 7.34 
5/24/2006 PS15E OM% 20.9 
5/24/2006 PS15E M3-P 25.14 
5/24/2006 PS15E M3-K 710.17 
5/24/2006 PS15E M3-Ca 2012.72 
5/24/2006 PS15E M3-Mg 2198.46 
5/24/2006 PS15E M3-Mn 259.94 
5/24/2006 PS15E M3-Zn 17.92 
5/24/2006 PS15E M3-Cu 1.46 
5/24/2006 PS15E M3-Fe 1118.86 
5/24/2006 PS15E M3-B 7.21 
5/24/2006 PS15E M3-S 2067.44 
5/24/2006 PS15E M3-Al 958.17 
5/24/2006 PS15E TN% 1.088 
5/24/2006 PS15E TC% 12.52 
5/24/2006 PS15E NH4-N 31.75 
5/24/2006 PS15E NO3-N 0.00 
5/24/2006 PS15E EPA-P 608.4 
5/24/2006 PS15E EPA-S 11512.0 
5/24/2006 PS15E CA/Mg  0.915514 
5/24/2006 PS15E N/P 17.88297 

PS15E % Inundation 36.8 
PS15E Distance Downstream 44.9 
PS15E Richness (1000m2) May-June 14 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/4/2006 PS19E Mean Soil Salinity (ppt) 1.2 1.4 1 1 
5/25/2006 PS19E Mean Soil Salinity (ppt) 1.85 2.5 1.2 3.7 
8/4/2006 PS19E River Salinity (ppt) 1 
5/25/2006 PS19E River Salinity (ppt) 3.7 
8/4/2006 PS19E Mean Specific Conductance (µS) 2559.5 3219 1900 
5/25/2006 PS19E Mean Specific Conductance (µS) 3466 4607 2325 
8/4/2006 PS19E Mean Raw Conductivity (µS) 2610.5 3296 1925 
5/25/2006 PS19E Mean Raw Conductivity (µS) 2885 3862 1908 
8/4/2006 PS19E Mean Temperature C 26.9 26.3 27.5 
5/25/2006 PS19E Mean Temperature C 16.25 16.5 16 
8/4/2006 PS19E River Specific Conductance (µS) 1901 
5/25/2006 PS19E River Specific Conductance (µS) 6820 
8/4/2006 PS19E River Conductivity Raw (µS)  2123 
5/25/2006 PS19E River Conductivity Raw (µS)  6180 
8/4/2006 PS19E River Temperature C 31.1 
5/25/2006 PS19E River Temperature C 20.3 
5/25/2006 PS19E pH 4.2 
5/25/2006 PS19E Buffer pH 7.27 
5/25/2006 PS19E OM% 30.6 
5/25/2006 PS19E M3-P 38.41 
5/25/2006 PS19E M3-K 591.27 
5/25/2006 PS19E M3-Ca 2228.36 
5/25/2006 PS19E M3-Mg 2412.99 
5/25/2006 PS19E M3-Mn 96.60 
5/25/2006 PS19E M3-Zn 17.54 
5/25/2006 PS19E M3-Cu 2.59 
5/25/2006 PS19E M3-Fe 1261.97 
5/25/2006 PS19E M3-B 8.75 
5/25/2006 PS19E M3-S 3106.49 
5/25/2006 PS19E M3-Al 1204.60 
5/25/2006 PS19E TN% 1.412 
5/25/2006 PS19E TC% 18.72 
5/25/2006 PS19E NH4-N 36.17 
5/25/2006 PS19E NO3-N 0.31 
5/25/2006 PS19E EPA-P 692.0 
5/25/2006 PS19E EPA-S 14488.0 
5/25/2006 PS19E CA/Mg  0.923485 
5/25/2006 PS19E N/P 20.40344 

PS19E % Inundation 18.9 
PS19E Distance Downstream 42.1 
PS19E Richness (1000m2) May-June 24 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/3/2006 PS25E Mean Soil Salinity (ppt) 0.6 0.6 0.6 0.4 
5/25/2006 PS25E Mean Soil Salinity (ppt) 1.95 1.9 2 2.8 
8/3/2006 PS25E River Salinity (ppt) 0.4 
5/25/2006 PS25E River Salinity (ppt) 2.8 
8/3/2006 PS25E Mean Specific Conductance (µS) 1151.5 1130 1173 
5/25/2006 PS25E Mean Specific Conductance (µS) 3641.5 3597 3686 
8/3/2006 PS25E Mean Raw Conductivity (µS) 1218.5 1215 1222 
5/25/2006 PS25E Mean Raw Conductivity (µS) 3089 3045 3133 
8/3/2006 PS25E Mean Temperature C 27.85 28.7 27 
5/25/2006 PS25E Mean Temperature C 17.1 17 17.2 
8/3/2006 PS25E River Specific Conductance (µS) 853 
5/25/2006 PS25E River Specific Conductance (µS) 5130 
8/3/2006 PS25E River Conductivity Raw (µS)  1014 
5/25/2006 PS25E River Conductivity Raw (µS)  4640 
8/3/2006 PS25E River Temperature C 35 
5/25/2006 PS25E River Temperature C 20.3 
5/25/2006 PS25E pH 4.8 
5/25/2006 PS25E Buffer pH 7.24 
5/25/2006 PS25E OM% 16.1 
5/25/2006 PS25E M3-P 29.04 
5/25/2006 PS25E M3-K 349.40 
5/25/2006 PS25E M3-Ca 1793.87 
5/25/2006 PS25E M3-Mg 1627.42 
5/25/2006 PS25E M3-Mn 212.23 
5/25/2006 PS25E M3-Zn 24.30 
5/25/2006 PS25E M3-Cu 1.53 
5/25/2006 PS25E M3-Fe 934.79 
5/25/2006 PS25E M3-B 4.32 
5/25/2006 PS25E M3-S 910.65 
5/25/2006 PS25E M3-Al 903.65 
5/25/2006 PS25E TN% 0.960 
5/25/2006 PS25E TC% 10.54 
5/25/2006 PS25E NH4-N 21.96 
5/25/2006 PS25E NO3-N 1.12 
5/25/2006 PS25E EPA-P 761.0 
5/25/2006 PS25E EPA-S 4232.0 
5/25/2006 PS25E CA/Mg  1.102278 
5/25/2006 PS25E N/P 12.61498 

PS25E % Inundation 31.07 
PS25E Distance Downstream 40.3 
PS25E Richness (1000m2) May-June 27 
PS25E Richness (1000m2) August 29 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/2/2006 PS27W Mean Soil Salinity (ppt) 0.45 0.5 0.4 0.3 
6/11/2006 PS27W Mean Soil Salinity (ppt) 0.8 0.6 1 1.5 
8/2/2006 PS27W River Salinity (ppt) 0.3 
6/11/2006 PS27W River Salinity (ppt) 1.5 
8/2/2006 PS27W Mean Specific Conductance (µS) 935 960 910 
6/11/2006 PS27W Mean Specific Conductance (µS) 1564.5 1224 1905 
8/2/2006 PS27W Mean Raw Conductivity (µS) 985.5 1016 955 
6/11/2006 PS27W Mean Raw Conductivity (µS) 1394.5 1119 1670 
8/2/2006 PS27W Mean Temperature C 28.35 28 28.7 
6/11/2006 PS27W Mean Temperature C 19 19.4 18.6 
8/2/2006 PS27W River Specific Conductance (µS) 640 
6/11/2006 PS27W River Specific Conductance (µS) 2919 
8/2/2006 PS27W River Conductivity Raw (µS)  731 
6/11/2006 PS27W River Conductivity Raw (µS)  2837 
8/2/2006 PS27W River Temperature C 33 
6/11/2006 PS27W River Temperature C 20.1 
6/11/2006 PS27W pH 4.3 
6/11/2006 PS27W Buffer pH 7.09 
6/11/2006 PS27W OM% 28.8 
6/11/2006 PS27W M3-P 34.05 
6/11/2006 PS27W M3-K 429.54 
6/11/2006 PS27W M3-Ca 2132.29 
6/11/2006 PS27W M3-Mg 1932.08 
6/11/2006 PS27W M3-Mn 107.42 
6/11/2006 PS27W M3-Zn 29.60 
6/11/2006 PS27W M3-Cu 2.00 
6/11/2006 PS27W M3-Fe 1184.63 
6/11/2006 PS27W M3-B 5.45 
6/11/2006 PS27W M3-S 2377.36 
6/11/2006 PS27W M3-Al 1083.67 
6/11/2006 PS27W TN% 1.594 
6/11/2006 PS27W TC% 17.64 
6/11/2006 PS27W NH4-N 37.51 
6/11/2006 PS27W NO3-N 0.00 
6/11/2006 PS27W EPA-P 750.6 
6/11/2006 PS27W EPA-S 8756.0 
6/11/2006 PS27W CA/Mg  1.103624 
6/11/2006 PS27W N/P 21.23634 

PS27W % Inundation 28.18 
PS27W Distance Downstream 35 
PS27W Richness (1000m2) May-June 38 
PS27W Richness (1000m2) August 45 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
7/31/2006 PS30E Mean Soil Salinity (ppt) 0.4 0.6 0.2 0.2 
5/25/2006 PS30E Mean Soil Salinity (ppt) 1.2 1.2 1.2 1.8 
7/31/2006 PS30E River Salinity (ppt) 0.2 
5/25/2006 PS30E River Salinity (ppt) 1.8 
7/31/2006 PS30E Mean Specific Conductance (µS) 875 1237 513 
5/25/2006 PS30E Mean Specific Conductance (µS) 2280 2303 2257 
7/31/2006 PS30E Mean Raw Conductivity (µS) 915.5 1265 566 
5/25/2006 PS30E Mean Raw Conductivity (µS) 1981.5 1978 1985 
7/31/2006 PS30E Mean Temperature C 27.15 25.3 29 
5/25/2006 PS30E Mean Temperature C 18.3 17.8 18.8 
7/31/2006 PS30E River Specific Conductance (µS) 362.1 
5/25/2006 PS30E River Specific Conductance (µS) 3396 
7/31/2006 PS30E River Conductivity Raw (µS)  416 
5/25/2006 PS30E River Conductivity Raw (µS)  3103 
7/31/2006 PS30E River Temperature C 33.3 
5/25/2006 PS30E River Temperature C 23.2 
5/25/2006 PS30E pH 3.7 
5/25/2006 PS30E Buffer pH 7.05 
5/25/2006 PS30E OM% 26.5 
5/25/2006 PS30E M3-P 20.29 
5/25/2006 PS30E M3-K 292.86 
5/25/2006 PS30E M3-Ca 2095.92 
5/25/2006 PS30E M3-Mg 2186.61 
5/25/2006 PS30E M3-Mn 301.27 
5/25/2006 PS30E M3-Zn 54.97 
5/25/2006 PS30E M3-Cu 2.86 
5/25/2006 PS30E M3-Fe 1747.88 
5/25/2006 PS30E M3-B 4.83 
5/25/2006 PS30E M3-S 3736.61 
5/25/2006 PS30E M3-Al 1277.43 
5/25/2006 PS30E TN% 1.438 
5/25/2006 PS30E TC% 16.06 
5/25/2006 PS30E NH4-N 38.46 
5/25/2006 PS30E NO3-N 0.00 
5/25/2006 PS30E EPA-P 595.6 
5/25/2006 PS30E EPA-S 15280.0 
5/25/2006 PS30E CA/Mg  0.958525 
5/25/2006 PS30E N/P 24.14534 

PS30E % Inundation 58.25 
PS30E Distance Downstream 33 
PS30E Richness (1000m2) May-June 18 
PS30E Richness (1000m2) August 19 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
7/31/2006 PS33W Mean Soil Salinity (ppt) 0.2 0.2 0.2 0.1 
6/11/2006 PS33W Mean Soil Salinity (ppt) 0.35 0.1 0.6 0.2 
7/31/2006 PS33W River Salinity (ppt) 0.1 
6/11/2006 PS33W River Salinity (ppt) 0.2 
7/31/2006 PS33W Mean Specific Conductance (µS) 429.5 524 335 
6/11/2006 PS33W Mean Specific Conductance (µS) 697.35 216.7 1178 
7/31/2006 PS33W Mean Raw Conductivity (µS) 446 537 355 
6/11/2006 PS33W Mean Raw Conductivity (µS) 619.65 197.3 1042 
7/31/2006 PS33W Mean Temperature C 27.2 26.1 28.3 
6/11/2006 PS33W Mean Temperature C 18.9 19.1 18.7 
7/31/2006 PS33W River Specific Conductance (µS) 182.5 
6/11/2006 PS33W River Specific Conductance (µS) 430.3 
7/31/2006 PS33W River Conductivity Raw (µS)  203.4 
6/11/2006 PS33W River Conductivity Raw (µS)  418.8 
7/31/2006 PS33W River Temperature C 30.9 
6/11/2006 PS33W River Temperature C 20.4 
6/11/2006 PS33W pH 4.1 
6/11/2006 PS33W Buffer pH 7.13 
6/11/2006 PS33W OM% 30.4 
6/11/2006 PS33W M3-P 34.28 
6/11/2006 PS33W M3-K 263.17 
6/11/2006 PS33W M3-Ca 2528.54 
6/11/2006 PS33W M3-Mg 1536.69 
6/11/2006 PS33W M3-Mn 209.08 
6/11/2006 PS33W M3-Zn 44.97 
6/11/2006 PS33W M3-Cu 2.21 
6/11/2006 PS33W M3-Fe 1368.66 
6/11/2006 PS33W M3-B 5.17 
6/11/2006 PS33W M3-S 1876.98 
6/11/2006 PS33W M3-Al 1310.86 
6/11/2006 PS33W TN% 1.673 
6/11/2006 PS33W TC% 17.31 
6/11/2006 PS33W NH4-N 36.74 
6/11/2006 PS33W NO3-N 0.19 
6/11/2006 PS33W EPA-P 691.5 
6/11/2006 PS33W EPA-S 7552.0 
6/11/2006 PS33W CA/Mg  1.645446 
6/11/2006 PS33W N/P 24.19308 

PS33W % Inundation 32.85 
PS33W Distance Downstream 30.1 
PS33W Richness (1000m2) May-June 19 
PS33W Richness (1000m2) August 20 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/7/2006 PS35W Mean Soil Salinity (ppt) 0.25 0.2 0.3 0.1 
5/26/2006 PS35W Mean Soil Salinity (ppt) 0.55 0.5 0.6 0.7 
8/7/2006 PS35W River Salinity (ppt) 0.1 
5/26/2006 PS35W River Salinity (ppt) 0.7 
8/7/2006 PS35W Mean Specific Conductance (µS) 488.05 437.1 539 
5/26/2006 PS35W Mean Specific Conductance (µS) 1097 1045 1149 
8/7/2006 PS35W Mean Raw Conductivity (µS) 495.75 451.5 540 
5/26/2006 PS35W Mean Raw Conductivity (µS) 936 876 996 
8/7/2006 PS35W Mean Temperature C 25.75 26.1 25.4 
5/26/2006 PS35W Mean Temperature C 17.25 16.4 18.1 
8/7/2006 PS35W River Specific Conductance (µS) 211.6 
5/26/2006 PS35W River Specific Conductance (µS) 1450 
8/7/2006 PS35W River Conductivity Raw (µS)  234.3 
5/26/2006 PS35W River Conductivity Raw (µS)  1328 
8/7/2006 PS35W River Temperature C 211.6 
5/26/2006 PS35W River Temperature C 23.5 
5/26/2006 PS35W pH 4.2 
5/26/2006 PS35W Buffer pH 7.21 
5/26/2006 PS35W OM% 45.3 
5/26/2006 PS35W M3-P 42.75 
5/26/2006 PS35W M3-K 213.95 
5/26/2006 PS35W M3-Ca 2619.15 
5/26/2006 PS35W M3-Mg 1546.92 
5/26/2006 PS35W M3-Mn 196.50 
5/26/2006 PS35W M3-Zn 37.91 
5/26/2006 PS35W M3-Cu 5.33 
5/26/2006 PS35W M3-Fe 1316.30 
5/26/2006 PS35W M3-B 5.38 
5/26/2006 PS35W M3-S 882.70 
5/26/2006 PS35W M3-Al 1253.67 
5/26/2006 PS35W TN% 2.463 
5/26/2006 PS35W TC% 26.35 
5/26/2006 PS35W NH4-N 31.01 
5/26/2006 PS35W NO3-N 1.03 
5/26/2006 PS35W EPA-P 852.7 
5/26/2006 PS35W EPA-S 6488.0 
5/26/2006 PS35W CA/Mg  1.693139 
5/26/2006 PS35W N/P 28.8854 

PS35W % Inundation 38.39 
PS35W Distance Downstream 27.5 
PS35W Richness (1000m2) May-June 31 
PS35W Richness (1000m2) August 30 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
7/30/2006 PS40W Mean Soil Salinity (ppt) 0.2 0.3 0.1 0.1 
5/26/2006 PS40W Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
7/30/2006 PS40W River Salinity (ppt) 0.1 
5/26/2006 PS40W River Salinity (ppt) 0.1 
7/30/2006 PS40W Mean Specific Conductance (µS) 468.5 645 292 
5/26/2006 PS40W Mean Specific Conductance (µS) 193.7 172.1 215.3 
7/30/2006 PS40W Mean Raw Conductivity (µS) 459.2 633 285.4 
5/26/2006 PS40W Mean Raw Conductivity (µS) 164.65 145.4 183.9 
7/30/2006 PS40W Mean Temperature C 23.85 24 23.7 
5/26/2006 PS40W Mean Temperature C 17.05 16.8 17.3 
7/30/2006 PS40W River Specific Conductance (µS) 125.8 
5/26/2006 PS40W River Specific Conductance (µS) 191.1 
7/30/2006 PS40W River Conductivity Raw (µS)  126.5 
5/26/2006 PS40W River Conductivity Raw (µS)  177.9 
7/30/2006 PS40W River Temperature C 31.6 
5/26/2006 PS40W River Temperature C 20.7 
5/26/2006 PS40W pH 4.5 
5/26/2006 PS40W Buffer pH 7.25 
5/26/2006 PS40W OM% 49.0 
5/26/2006 PS40W M3-P 46.10 
5/26/2006 PS40W M3-K 213.69 
5/26/2006 PS40W M3-Ca 3127.13 
5/26/2006 PS40W M3-Mg 1316.46 
5/26/2006 PS40W M3-Mn 141.41 
5/26/2006 PS40W M3-Zn 51.16 
5/26/2006 PS40W M3-Cu 5.55 
5/26/2006 PS40W M3-Fe 1179.30 
5/26/2006 PS40W M3-B 4.03 
5/26/2006 PS40W M3-S 758.23 
5/26/2006 PS40W M3-Al 1452.07 
5/26/2006 PS40W TN% 2.559 
5/26/2006 PS40W TC% 28.38 
5/26/2006 PS40W NH4-N 30.05 
5/26/2006 PS40W NO3-N 2.35 
5/26/2006 PS40W EPA-P 820.5 
5/26/2006 PS40W EPA-S 5668.0 
5/26/2006 PS40W CA/Mg  2.375408 
5/26/2006 PS40W N/P 31.18906 

PS40W % Inundation 17.5 
PS40W Distance Downstream 24.9 
PS40W Richness (1000m2) May-June 34 
PS40W Richness (1000m2) August 30 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/7/2006 PS42E Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
6/9/2006 PS42E Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
8/7/2006 PS42E River Salinity (ppt) 0.1 
6/9/2006 PS42E River Salinity (ppt) 0.1 
8/7/2006 PS42E Mean Specific Conductance (µS) 113.8 108.1 119.5 
6/9/2006 PS42E Mean Specific Conductance (µS) 155.7 179.1 132.3 
8/7/2006 PS42E Mean Raw Conductivity (µS) 120.65 107.7 133.6 
6/9/2006 PS42E Mean Raw Conductivity (µS) 141.15 161.6 120.7 
8/7/2006 PS42E Mean Temperature C 28.05 25 31.1 
6/9/2006 PS42E Mean Temperature C 19.85 19.5 20.2 
8/7/2006 PS42E River Specific Conductance (µS) 120.1 
6/9/2006 PS42E River Specific Conductance (µS) 127.9 
8/7/2006 PS42E River Conductivity Raw (µS)  134.5 
6/9/2006 PS42E River Conductivity Raw (µS)  128.2 
8/7/2006 PS42E River Temperature C 31.4 
6/9/2006 PS42E River Temperature C 21.4 
6/9/2006 PS42E pH 4.8 
6/9/2006 PS42E Buffer pH 7.22 
6/9/2006 PS42E OM% 46.5 
6/9/2006 PS42E M3-P 43.66 
6/9/2006 PS42E M3-K 237.80 
6/9/2006 PS42E M3-Ca 3330.34 
6/9/2006 PS42E M3-Mg 872.14 
6/9/2006 PS42E M3-Mn 348.36 
6/9/2006 PS42E M3-Zn 50.88 
6/9/2006 PS42E M3-Cu 5.04 
6/9/2006 PS42E M3-Fe 1471.36 
6/9/2006 PS42E M3-B 4.41 
6/9/2006 PS42E M3-S 256.91 
6/9/2006 PS42E M3-Al 1283.50 
6/9/2006 PS42E TN% 2.574 
6/9/2006 PS42E TC% 26.42 
6/9/2006 PS42E NH4-N 43.04 
6/9/2006 PS42E NO3-N 3.30 
6/9/2006 PS42E EPA-P 986.4 
6/9/2006 PS42E EPA-S 3636.9 
6/9/2006 PS42E CA/Mg  3.818584 
6/9/2006 PS42E N/P 26.09489 

PS42E % Inundation 34.6 
PS42E Distance Downstream 19 
PS42E Richness (1000m2) May-June 20 
PS42E Richness (1000m2) August 22 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/7/2006 PS45E Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
5/27/2006 PS45E Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
8/7/2006 PS45E River Salinity (ppt) 0.1 
5/27/2006 PS45E River Salinity (ppt) 0.1 
8/7/2006 PS45E Mean Specific Conductance (µS) 133.55 142 125.1 
5/27/2006 PS45E Mean Specific Conductance (µS) 112.8 110.1 115.5 
8/7/2006 PS45E Mean Raw Conductivity (µS) 149.95 159.1 140.8 
5/27/2006 PS45E Mean Raw Conductivity (µS) 97.25 91.8 102.7 
8/7/2006 PS45E Mean Temperature C 31.15 30.9 31.4 
5/27/2006 PS45E Mean Temperature C 17.95 16.4 19.5 
8/7/2006 PS45E River Specific Conductance (µS) 122.2 
5/27/2006 PS45E River Specific Conductance (µS) 119 
8/7/2006 PS45E River Conductivity Raw (µS)  122.2 
5/27/2006 PS45E River Conductivity Raw (µS)  111.9 
8/7/2006 PS45E River Temperature C 31 
5/27/2006 PS45E River Temperature C 20.9 
5/27/2006 PS45E pH 4.7 
5/27/2006 PS45E Buffer pH 7.29 
5/27/2006 PS45E OM% 61.1 
5/27/2006 PS45E M3-P 46.95 
5/27/2006 PS45E M3-K 209.72 
5/27/2006 PS45E M3-Ca 3720.46 
5/27/2006 PS45E M3-Mg 1039.16 
5/27/2006 PS45E M3-Mn 159.22 
5/27/2006 PS45E M3-Zn 67.59 
5/27/2006 PS45E M3-Cu 9.45 
5/27/2006 PS45E M3-Fe 1574.18 
5/27/2006 PS45E M3-B 5.08 
5/27/2006 PS45E M3-S 642.97 
5/27/2006 PS45E M3-Al 1561.03 
5/27/2006 PS45E TN% 3.216 
5/27/2006 PS45E TC% 35.62 
5/27/2006 PS45E NH4-N 32.11 
5/27/2006 PS45E NO3-N 1.31 
5/27/2006 PS45E EPA-P 865.2 
5/27/2006 PS45E EPA-S 6512.0 
5/27/2006 PS45E CA/Mg  3.580257 
5/27/2006 PS45E N/P 37.17231 

PS45E % Inundation 27.48 
PS45E Distance Downstream 15 
PS45E Richness (1000m2) May-June 26 
PS45E Richness (1000m2) August 24 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/7/2006 PS49W Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
6/10/2006 PS49W Mean Soil Salinity (ppt) 0.1 0.1 0.1 
8/7/2006 PS49W River Salinity (ppt) 0.1 
6/10/2006 PS49W River Salinity (ppt) 
8/7/2006 PS49W Mean Specific Conductance (µS) 125.45 128.9 122 
6/10/2006 PS49W Mean Specific Conductance (µS) 133.85 137.9 129.8 
8/7/2006 PS49W Mean Raw Conductivity (µS) 131.2 127.1 135.3 
6/10/2006 PS49W Mean Raw Conductivity (µS) 117.4 120.9 113.9 
8/7/2006 PS49W Mean Temperature C 27.35 24 30.7 
6/10/2006 PS49W Mean Temperature C 18.6 18.5 18.7 
8/7/2006 PS49W River Specific Conductance (µS) 121 
6/10/2006 PS49W River Specific Conductance (µS) 
8/7/2006 PS49W River Conductivity Raw (µS)  134.5 
6/10/2006 PS49W River Conductivity Raw (µS)  
8/7/2006 PS49W River Temperature C 30.8 
6/10/2006 PS49W River Temperature C 21.9 
6/10/2006 PS49W pH 4.6 
6/10/2006 PS49W Buffer pH 7.29 
6/10/2006 PS49W OM% 55.3 
6/10/2006 PS49W M3-P 64.34 
6/10/2006 PS49W M3-K 398.26 
6/10/2006 PS49W M3-Ca 3644.04 
6/10/2006 PS49W M3-Mg 763.04 
6/10/2006 PS49W M3-Mn 154.16 
6/10/2006 PS49W M3-Zn 71.28 
6/10/2006 PS49W M3-Cu 8.45 
6/10/2006 PS49W M3-Fe 2081.83 
6/10/2006 PS49W M3-B 6.41 
6/10/2006 PS49W M3-S 594.17 
6/10/2006 PS49W M3-Al 1499.58 
6/10/2006 PS49W TN% 2.849 
6/10/2006 PS49W TC% 31.83 
6/10/2006 PS49W NH4-N 46.20 
6/10/2006 PS49W NO3-N 1.14 
6/10/2006 PS49W EPA-P 984.2 
6/10/2006 PS49W EPA-S 4928.0 
6/10/2006 PS49W CA/Mg  4.775687 
6/10/2006 PS49W N/P 28.94619 

PS49W % Inundation 42.83 
PS49W Distance Downstream 10 
PS49W Richness (1000m2) May-June 17 
PS49W Richness (1000m2) August 18 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/9/2006 PS55W Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
5/27/2006 PS55W Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
8/9/2006 PS55W River Salinity (ppt) 0.1 
5/27/2006 PS55W River Salinity (ppt) 0.1 
8/9/2006 PS55W Mean Specific Conductance (µS) 186.8 119.1 254.5 
5/27/2006 PS55W Mean Specific Conductance (µS) 100.65 104.6 96.7 
8/9/2006 PS55W Mean Raw Conductivity (µS) 181.8 117.2 246.4 
5/27/2006 PS55W Mean Raw Conductivity (µS) 88.85 91.6 86.1 
8/9/2006 PS55W Mean Temperature C 24.1 24.2 24 
5/27/2006 PS55W Mean Temperature C 18.75 18.4 19.1 
8/9/2006 PS55W River Specific Conductance (µS) 137.7 
5/27/2006 PS55W River Specific Conductance (µS) 120.7 
8/9/2006 PS55W River Conductivity Raw (µS)  145.2 
5/27/2006 PS55W River Conductivity Raw (µS)  116.2 
8/9/2006 PS55W River Temperature C 26.9 
5/27/2006 PS55W River Temperature C 23.2 
5/27/2006 PS55W pH 4.6 
5/27/2006 PS55W Buffer pH 7.41 
5/27/2006 PS55W OM% 51.6 
5/27/2006 PS55W M3-P 73.80 
5/27/2006 PS55W M3-K 278.09 
5/27/2006 PS55W M3-Ca 2370.29 
5/27/2006 PS55W M3-Mg 498.68 
5/27/2006 PS55W M3-Mn 159.53 
5/27/2006 PS55W M3-Zn 109.93 
5/27/2006 PS55W M3-Cu 8.50 
5/27/2006 PS55W M3-Fe 1458.11 
5/27/2006 PS55W M3-B 5.12 
5/27/2006 PS55W M3-S 327.64 
5/27/2006 PS55W M3-Al 1615.68 
5/27/2006 PS55W TN% 2.689 
5/27/2006 PS55W TC% 29.39 
5/27/2006 PS55W NH4-N 34.56 
5/27/2006 PS55W NO3-N 1.51 
5/27/2006 PS55W EPA-P 827.4 
5/27/2006 PS55W EPA-S 4100.0 
5/27/2006 PS55W CA/Mg  4.753128 
5/27/2006 PS55W N/P 32.4994 

PS55W % Inundation 33.42 
PS55W Distance Downstream 6 
PS55W Richness (1000m2) May-June 25 
PS55W Richness (1000m2) August 31 
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Date Plot Parameter Value 
Salinity 
S1 (ppt) 

Salinity 
S2 (ppt) 

River 
Salinity 

(ppt) 
8/9/2006 PS56W Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
6/10/2006 PS56W Mean Soil Salinity (ppt) 0.1 0.1 0.1 0.1 
8/9/2006 PS56W River Salinity (ppt) 0.1 
6/10/2006 PS56W River Salinity (ppt) 0.1 
8/9/2006 PS56W Mean Specific Conductance (µS) 156.05 179.7 132.4 
6/10/2006 PS56W Mean Specific Conductance (µS) 109.15 110 108.3 
8/9/2006 PS56W Mean Raw Conductivity (µS) 159.3 188 130.6 
6/10/2006 PS56W Mean Raw Conductivity (µS) 101.55 102.2 100.9 
8/9/2006 PS56W Mean Temperature C 25.75 27.6 23.9 
6/10/2006 PS56W Mean Temperature C 21.5 21.6 21.4 
8/9/2006 PS56W River Specific Conductance (µS) 108.9 
6/10/2006 PS56W River Specific Conductance (µS) 105 
8/9/2006 PS56W River Conductivity Raw (µS)  112.5 
6/10/2006 PS56W River Conductivity Raw (µS)  100.3 
8/9/2006 PS56W River Temperature C 26.8 
6/10/2006 PS56W River Temperature C 22.5 
6/10/2006 PS56W pH 4.6 
6/10/2006 PS56W Buffer pH 7.39 
6/10/2006 PS56W OM% 36.4 
6/10/2006 PS56W M3-P 48.21 
6/10/2006 PS56W M3-K 248.37 
6/10/2006 PS56W M3-Ca 1801.27 
6/10/2006 PS56W M3-Mg 400.23 
6/10/2006 PS56W M3-Mn 273.40 
6/10/2006 PS56W M3-Zn 116.20 
6/10/2006 PS56W M3-Cu 3.75 
6/10/2006 PS56W M3-Fe 1852.13 
6/10/2006 PS56W M3-B 4.38 
6/10/2006 PS56W M3-S 315.43 
6/10/2006 PS56W M3-Al 1603.30 
6/10/2006 PS56W TN% 2.139 
6/10/2006 PS56W TC% 22.62 
6/10/2006 PS56W NH4-N 32.36 
6/10/2006 PS56W NO3-N 2.53 
6/10/2006 PS56W EPA-P 821.6 
6/10/2006 PS56W EPA-S 3443.1 
6/10/2006 PS56W CA/Mg  4.500587 
6/10/2006 PS56W N/P 26.03457 

PS56W % Inundation 47.32 
PS56W Distance Downstream 0 
PS56W Richness (1000m2) May-June 26 
PS56W Richness (1000m2) August 29 
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Appendix B.  Raw Species and Plant Cover Data Nanticoke and Patuxent Rivers 

Nanticoke May 2006 Plant Species and Cover Data 
Date tributary plot Species cover MidPoint% 

23-May-06 Nan N00W SPARPAT 9 85 
23-May-06 Nan N00W IVA_FRUF 6 17.5 
23-May-06 Nan N00W SPARALT 5 7.5 
23-May-06 Nan N00W SPARCYN 5 7.5 
24-May-06 Nan N05W IVA_FRUF 3 1.5 
24-May-06 Nan N05W KOSTVIR 1 0.1 
24-May-06 Nan N05W SPARCYN 3 1.5 
24-May-06 Nan N05W SCHOROB 2 0.5 
24-May-06 Nan N10E SPARCYN 2 1 
24-May-06 Nan N10E SPARPAT 7 50 
24-May-06 Nan N10E IVA_FRUF 6 18.5 
24-May-06 Nan N10E SPARALT 7 27.75 
24-May-06 Nan N10E SCHOROB 2 0.375 
24-May-06 Nan N10E HIBIMOSM 3 2 
24-May-06 Nan N10E BACCHAL 2 0.15 
24-May-06 Nan N10E CARESCOS 2 0.275 
24-May-06 Nan N10E MIKASCA 2 0.15 
24-May-06 Nan N10E POLYPEN 2 0.15 
24-May-06 Nan N10E SCHOAME 4 4.125 
24-May-06 Nan N10E PHRAAUS 2 0.375 
24-May-06 Nan N15E SPARCYN 6 17.5 
24-May-06 Nan N15E SCHOROB 4 3.5 
24-May-06 Nan N15E HIBIMOSM 5 7.5 
24-May-06 Nan N15E ELEOOBT 7 37.5 
24-May-06 Nan N15E POLYHDD 2 0.5 
24-May-06 Nan N15E MIKASCA 4 3.5 
24-May-06 Nan N15E PTILCAP 2 0.5 
24-May-06 Nan N15E CARESCOS 2 0.5 
24-May-06 Nan N15E SPARPAT 7 37.5 
24-May-06 Nan N15E IVA_FRUF 7 37.5 
24-May-06 Nan N15E SPARALT 7 37.5 
24-May-06 Nan N15E PHRAAUS 1 0.1 
24-May-06 Nan N15E PELTVIR 1 0.1 
24-May-06 Nan N15E IMPACPN 1 0.1 
24-May-06 Nan N05W SPARPAT 8 62.5 
24-May-06 Nan N05W SCHOAME 5 7.5 
24-May-06 Nan N05W SPARALT 5 7.5 
24-May-06 Nan N05W LYTHLIN 2 0.5 
25-May-06 Nan N19E CARESCOS 6 17.5 
25-May-06 Nan N19E LEERORY 1 0.1 
25-May-06 Nan N19E JUNCACU 3 1.5 
25-May-06 Nan N19E ELEOOBT 7 37.5 
25-May-06 Nan N19E IVA_FRUF 6 17.5 
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25-May-06 Nan N19E SPARPAT 6 17.5 
25-May-06 Nan N19E POLYARI 1 0.1 
25-May-06 Nan N19E SPARALT 4 3.5 
25-May-06 Nan N19E SCHOROB 2 0.5 
25-May-06 Nan N19E PTILCAP 1 0.1 
25-May-06 Nan N19E CARETRBT 1 0.1 
25-May-06 Nan N19E LYSI1S1 1 0.1 
25-May-06 Nan N19E AMARCAN 1 0.1 
25-May-06 Nan N19E EUPA1S1 2 0.5 
25-May-06 Nan N19E IMPACPN 1 0.1 
25-May-06 Nan N19E IRIS1S1 1 0.1 
25-May-06 Nan N19E SPARCYN 1 0.1 
25-May-06 Nan N19E POLYHDD 1 0.1 
25-May-06 Nan N25E ACORCAL 5 7.5 
25-May-06 Nan N25E PELTVIR 8 62.5 
25-May-06 Nan N25E LEERORY 5 7.5 
25-May-06 Nan N25E SPARCYN 6 17.5 
25-May-06 Nan N25E HIBIMOSM 2 0.5 
25-May-06 Nan N25E IMPACPN 4 3.5 
25-May-06 Nan N25E POLY1S1 2 0.5 
25-May-06 Nan N25E POLYARI 2 0.5 
25-May-06 Nan N25E RUMEVER 5 7.5 
25-May-06 Nan N25E CALYSEP 1 0.1 
25-May-06 Nan N25E PTILCAP 1 0.1 
25-May-06 Nan N25E MIKASCA 2 0.5 
25-May-06 Nan N25E TYPHXGL 5 7.5 
25-May-06 Nan N25E ELEOOBT 1 0.1 
25-May-06 Nan N25E CARESCOS 2 0.5 
25-May-06 Nan N25E GALITIN 1 0.1 
25-May-06 Nan N25E DECOVER 1 0.1 
25-May-06 Nan N25E TYPHANS 2 0.5 
25-May-06 Nan N25E AMARCAN 1 0.1 
25-May-06 Nan N25E CUSCGROG 1 0.1 
25-May-06 Nan N25E PHRAAUS 2 0.5 
25-May-06 Nan N25E SCIR1S1 3 1.5 
25-May-06 Nan N25E BIDE1S1 1 0.1 
25-May-06 Nan N25E SIUMSUA 1 0.1 
25-May-06 Nan N25E SCHOTAB 2 0.5 
25-May-06 Nan N25E PONTCOR 1 0.1 
25-May-06 Nan N25E SCHOPUN 1 0.1 
25-May-06 Nan N30E PELTVIR 8 62.5 
25-May-06 Nan N30E IMPACPN 4 3.5 
25-May-06 Nan N30E POLYARI 5 7.5 
25-May-06 Nan N30E ZIZAAQU1 4 3.5 
25-May-06 Nan N30E TYPHANS 6 17.5 
25-May-06 Nan N30E BIDELAE 2 0.5 
25-May-06 Nan N30E SCIR1S1 2 0.5 
25-May-06 Nan N30E HIBIMOSM 2 0.5 
25-May-06 Nan N30E CUSCGROG 1 0.1 
25-May-06 Nan N30E BIDE1S1 1 0.1 
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25-May-06 Nan N30E AMARCAN 3 1.5 
25-May-06 Nan N30E SIUMSUA 1 0.1 
25-May-06 Nan N30E MENTARV 1 0.1 
25-May-06 Nan N30E LEERORY 1 0.1 
25-May-06 Nan N30E NUPHLUT 1 0.1 
25-May-06 Nan N30E POLYPUN1 1 0.1 
25-May-06 Nan N30E SPARAME 2 0.5 
25-May-06 Nan N30E SCHOTAB 2 0.5 
25-May-06 Nan N19E PANIVIRV 7 37.5 
25-May-06 Nan N19E MIKASCA 3 1.5 
25-May-06 Nan N19E SIUMSUA 1 0.1 
25-May-06 Nan N19E HIBIMOSM 5 7.5 
25-May-06 Nan N19E PELTVIR 2 0.5 
25-May-06 Nan N19E PLUCODOO 2 0.5 
26-May-06 Nan N35W IRIS1S1 1 0.1 
26-May-06 Nan N35W SCHOPUN 1 0.1 
26-May-06 Nan N35W TYPHLAT 2 0.5 
26-May-06 Nan N35W THELPALP 2 0.5 
26-May-06 Nan N35W MENTSPI 2 0.5 
26-May-06 Nan N35W MORECER 1 0.1 
26-May-06 Nan N40W POLYARI 6 17.5 
26-May-06 Nan N40W ACORCAL 9 85 
26-May-06 Nan N40W IMPACPN 6 17.5 
26-May-06 Nan N40W POLYSAG 3 1.5 
26-May-06 Nan N40W PELTVIR 7 37.5 
26-May-06 Nan N40W GALITIN 3 1.5 
26-May-06 Nan N40W CUSCGROG 1 0.1 
26-May-06 Nan N40W TYPHLAT 2 0.5 
26-May-06 Nan N40W SCIR1S1 2 0.5 
26-May-06 Nan N40W SPARAME 2 0.5 
26-May-06 Nan N40W MIKASCA 1 0.1 
26-May-06 Nan N40W CINN1S1 4 3.5 
26-May-06 Nan N40W CICUMACM 4 3.5 
26-May-06 Nan N40W LEERORY 1 0.1 
26-May-06 Nan N40W CEPHOCC 2 0.5 
26-May-06 Nan N40W BIDE1S1 2 0.5 
26-May-06 Nan N40W NUPHLUT 1 0.1 
26-May-06 Nan N40W ZIZAAQU1 1 0.1 
26-May-06 Nan N40W BIDELAE 2 0.5 
26-May-06 Nan N40W SCHOTAB 2 0.5 
26-May-06 Nan N40W UNK2 1 0.1 
26-May-06 Nan N40W CARESCOS 2 0.5 
26-May-06 Nan N40W CARELUR 2 0.5 
26-May-06 Nan N40W BOEHCYL 3 1.5 
26-May-06 Nan N40W CARESTC 2 0.5 
26-May-06 Nan N40W UNK3 2 0.5 
26-May-06 Nan N40W ACERRUB 1 0.1 
26-May-06 Nan N40W VIOLCUC 1 0.1 
26-May-06 Nan N40W SYMPPUNP 4 3.5 
26-May-06 Nan N40W CAREKOB 2 0.5 
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26-May-06 Nan N40W HIBIMOSM 2 0.5 
26-May-06 Nan N40W APIOAME 2 0.5 
26-May-06 Nan N40W IRIS1S1 1 0.1 
26-May-06 Nan N40W CARESTP 2 0.5 
26-May-06 Nan N35W BIDE1S1 2 0.5 
26-May-06 Nan N35W ACORCAL 9 85 
26-May-06 Nan N35W POLYSAG 6 17.5 
26-May-06 Nan N35W POLYARI 6 17.5 
26-May-06 Nan N35W CUSCGROG 1 0.1 
26-May-06 Nan N35W CINNARU 5 7.5 
26-May-06 Nan N35W PELTVIR 7 37.5 
26-May-06 Nan N35W IMPACPN 6 17.5 
26-May-06 Nan N35W SCHOTAB 2 0.5 
26-May-06 Nan N35W GALITIN 4 3.5 
26-May-06 Nan N35W MIKASCA 1 0.1 
26-May-06 Nan N35W LEERORY 1 0.1 
26-May-06 Nan N35W STAC1S1 3 1.5 
26-May-06 Nan N35W ASTE1S1 3 1.5 
26-May-06 Nan N35W CARESCOS 2 0.5 
26-May-06 Nan N35W CICUMACM 2 0.5 
26-May-06 Nan N35W SIUMSUA 1 0.1 
26-May-06 Nan N35W CAREVUL 2 0.5 
26-May-06 Nan N35W BOEHCYL 3 1.5 
26-May-06 Nan N35W NYSSBIF 2 0.5 
26-May-06 Nan N35W BIDELAE 1 0.1 
26-May-06 Nan N35W SPARAME 2 0.5 
26-May-06 Nan N35W ALNUSER 1 0.1 
26-May-06 Nan N35W SCIR1S1 3 1.5 
26-May-06 Nan N35W RUMEVER 3 1.5 
27-May-06 Nan N55W LEERORY 1 0.1 
27-May-06 Nan N55W POLYSAG 3 1.5 
27-May-06 Nan N55W POLYPUN1 1 0.1 
27-May-06 Nan N55W MIKASCA 1 0.1 
27-May-06 Nan N55W IRIS1S1 1 0.1 
27-May-06 Nan N55W CEPHOCC 1 0.1 
27-May-06 Nan N55W UNK3 1 0.1 
27-May-06 Nan N55W APIOAME 1 0.1 
27-May-06 Nan N55W DECOVER 1 0.1 
27-May-06 Nan N55W CARESTC 2 0.5 
27-May-06 Nan N55W THALPUB 1 0.1 
27-May-06 Nan N55W LILISUP 1 0.1 
27-May-06 Nan N55W STAC1S1 1 0.1 
27-May-06 Nan N55W NUPHLUT 4 3.5 
27-May-06 Nan N55W UNK2 1 0.1 
27-May-06 Nan N55W VERNNOV 1 0.1 
27-May-06 Nan N55W ROSAPAL 2 0.5 
27-May-06 Nan N45E ACORCAL 9 85 
27-May-06 Nan N45E IMPACPN 7 37.5 
27-May-06 Nan N45E POLYARI 6 17.5 
27-May-06 Nan N45E BIDELAE 2 0.5 
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27-May-06 Nan N45E CINNARU 3 1.5 
27-May-06 Nan N45E CAREKOB 2 0.5 
27-May-06 Nan N45E PELTVIR 6 17.5 
27-May-06 Nan N45E POLYSAG 6 17.5 
27-May-06 Nan N45E GALITIN 4 3.5 
27-May-06 Nan N45E CICUMACM 3 1.5 
27-May-06 Nan N45E CARESCOS 2 0.5 
27-May-06 Nan N45E SYMPPUNP 2 0.5 
27-May-06 Nan N45E CUSCGROG 1 0.1 
27-May-06 Nan N45E BIDE1S1 4 3.5 
27-May-06 Nan N45E BIDECOR 3 1.5 
27-May-06 Nan N45E DULIARU 1 0.1 
27-May-06 Nan N45E DECOVER 1 0.1 
27-May-06 Nan N45E ROSAPAL 1 0.1 
27-May-06 Nan N45E MIKASCA 1 0.1 
27-May-06 Nan N45E BOEHCYL 2 0.5 
27-May-06 Nan N45E CEPHOCC 2 0.5 
27-May-06 Nan N45E IRIS1S1 1 0.1 
27-May-06 Nan N45E VERNNOV 1 0.1 
27-May-06 Nan N45E HIBIMOSM 2 0.5 
27-May-06 Nan N45E CARELUR 1 0.1 
27-May-06 Nan N45E APIOAME 1 0.1 
27-May-06 Nan N55W ACORCAL 9 85 
27-May-06 Nan N55W IMPACPN 4 3.5 
27-May-06 Nan N55W PELTVIR 5 7.5 
27-May-06 Nan N55W COMMCOM 3 1.5 
27-May-06 Nan N55W UNK1 1 0.1 
27-May-06 Nan N55W POLYARI 3 1.5 
27-May-06 Nan N55W BIDELAE 2 0.5 
27-May-06 Nan N55W GALITIN 1 0.1 

9-Jun-06 Nan N42E ACORCAL 9 85 
9-Jun-06 Nan N42E IMPACPN 7 37.5 
9-Jun-06 Nan N42E POLYARI 7 37.5 
9-Jun-06 Nan N42E BIDECOR 5 7.5 
9-Jun-06 Nan N42E LEERORY 1 0.1 
9-Jun-06 Nan N42E CUSCGROG 2 0.5 
9-Jun-06 Nan N42E PELTVIR 6 17.5 
9-Jun-06 Nan N42E BIDEFRO 3 1.5 
9-Jun-06 Nan N42E TYPHLAT 4 3.5 
9-Jun-06 Nan N42E SAGILAT 2 0.5 
9-Jun-06 Nan N42E SPARAME 2 0.5 
9-Jun-06 Nan N42E CINN1S1 3 1.5 
9-Jun-06 Nan N42E SYMPPUNP 3 1.5 
9-Jun-06 Nan N42E BIDELAE 4 3.5 
9-Jun-06 Nan N42E NUPHLUT 5 7.5 
9-Jun-06 Nan N42E HIBIMOSM 2 0.5 
9-Jun-06 Nan N42E MIKASCA 1 0.1 
9-Jun-06 Nan N42E IRIS1S1 1 0.1 
9-Jun-06 Nan N42E MENTARV 3 1.5 
9-Jun-06 Nan N42E CEPHOCC 3 1.5 
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10-Jun-06 Nan N49W PELTVIR 6 17.5 
10-Jun-06 Nan N49W IMPACPN 4 3.5 
10-Jun-06 Nan N49W CUSCGROG 3 1.5 
10-Jun-06 Nan N49W LEERORY 4 3.5 
10-Jun-06 Nan N49W CINNARU 3 1.5 
10-Jun-06 Nan N49W POLYSAG 3 1.5 
10-Jun-06 Nan N49W BIDECOR 2 0.5 
10-Jun-06 Nan N49W GALITIN 4 3.5 
10-Jun-06 Nan N49W BIDEFRO 2 0.5 
10-Jun-06 Nan N49W LUDWPAL 1 0.1 
10-Jun-06 Nan N49W BIDELAE 2 0.5 
10-Jun-06 Nan N49W CEPHOCC 1 0.1 
10-Jun-06 Nan N49W CAREKOB 3 1.5 
10-Jun-06 Nan N49W NUPHLUT 2 0.5 
10-Jun-06 Nan N56W ACORCAL 9 85 
10-Jun-06 Nan N56W PELTVIR 6 17.5 
10-Jun-06 Nan N56W LEERORY 4 3.5 
10-Jun-06 Nan N56W POLYLAP 4 3.5 
10-Jun-06 Nan N56W COMMCOM 4 3.5 
10-Jun-06 Nan N56W UNK2 3 1.5 
10-Jun-06 Nan N56W POLYARI 4 3.5 
10-Jun-06 Nan N56W POLYSAG 1 0.1 
10-Jun-06 Nan N56W NUPHLUT 7 37.5 
10-Jun-06 Nan N56W MIKASCA 1 0.1 
10-Jun-06 Nan N56W IMPACPN 2 0.5 
10-Jun-06 Nan N56W CORNAMO 3 1.5 
10-Jun-06 Nan N56W RUBU1S1 3 1.5 
10-Jun-06 Nan N56W SAMBNIGC 3 1.5 
10-Jun-06 Nan N56W CEPHOCC 4 3.5 
10-Jun-06 Nan N56W TOXIRAD 2 0.5 
10-Jun-06 Nan N56W CARE1S1 3 1.5 
10-Jun-06 Nan N56W LUDWPAL 1 0.1 
10-Jun-06 Nan N56W FRAXPEN 5 7.5 
10-Jun-06 Nan N56W VIBUREC 2 0.5 
10-Jun-06 Nan N56W APIOAME 1 0.1 
10-Jun-06 Nan N56W THAL1S1 2 0.5 
10-Jun-06 Nan N56W VIOL1S1 1 0.1 
10-Jun-06 Nan N56W PARTQUI 1 0.1 
10-Jun-06 Nan N56W SYMPPUNP 1 0.1 
10-Jun-06 Nan N56W BOEHCYL 1 0.1 
10-Jun-06 Nan N49W ACORCAL 9 85 
10-Jun-06 Nan N49W POLYARI 7 37.5 
10-Jun-06 Nan N49W COMMCOM 5 7.5 
11-Jun-06 Nan N27W POLYARI 4 3.5 
11-Jun-06 Nan N27W PELTVIR 5 7.5 
11-Jun-06 Nan N27W SPARALT 1 0.1 
11-Jun-06 Nan N27W POLYLAP 2 0.5 
11-Jun-06 Nan N27W SCHOAME 3 1.5 
11-Jun-06 Nan N27W SCHOTAB 2 0.5 
11-Jun-06 Nan N27W SPARCYN 8 62.5 



   

 134 
 

11-Jun-06 Nan N27W ELEO1S1 5 7.5 
11-Jun-06 Nan N27W HIBIMOSM 1 0.1 
11-Jun-06 Nan N27W IMPACPN 6 17.5 
11-Jun-06 Nan N27W CARESTC 5 7.5 
11-Jun-06 Nan N27W GALITIN 3 1.5 
11-Jun-06 Nan N27W STAC1T1 4 3.5 
11-Jun-06 Nan N27W LEERORY 2 0.5 
11-Jun-06 Nan N27W ASCLINC 1 0.1 
11-Jun-06 Nan N27W BOEHCYL 1 0.1 
11-Jun-06 Nan N27W MIKASCA 3 1.5 
11-Jun-06 Nan N27W BIDELAE 1 0.1 
11-Jun-06 Nan N27W RUMEVER 2 0.5 
11-Jun-06 Nan N27W SYMPPUNP 1 0.1 
11-Jun-06 Nan N27W PHRAAUS 7 37.5 
11-Jun-06 Nan N27W JUNCEFF 2 0.5 
11-Jun-06 Nan N27W THAL1S1 2 0.5 
11-Jun-06 Nan N27W TOXIRAD 4 3.5 
11-Jun-06 Nan N27W IRIS1S1 3 1.5 
11-Jun-06 Nan N27W CARESCOS 2 0.5 
11-Jun-06 Nan N27W TRIAVIR 2 0.5 
11-Jun-06 Nan N27W UNK1 1 0.1 
11-Jun-06 Nan N27W EUPAPERP 1 0.1 
11-Jun-06 Nan N27W BOEHCYL 3 1.5 
11-Jun-06 Nan N27W POLYCONC 1 0.1 
11-Jun-06 Nan N27W ROSAPAL 3 1.5 
11-Jun-06 Nan N27W HELEAUT 1 0.1 
11-Jun-06 Nan N27W OSMUCINC 2 0.5 
11-Jun-06 Nan N27W TYPHLAT 1 0.1 
11-Jun-06 Nan N27W TYPHANS 1 0.1 
11-Jun-06 Nan N27W PTILCAP 1 0.1 
11-Jun-06 Nan N27W CUSCGROG 1 0.1 
11-Jun-06 Nan N33W PELTVIR 8 62.5 
11-Jun-06 Nan N33W ACORCAL 6 17.5 
11-Jun-06 Nan N33W POLYARI 7 37.5 
11-Jun-06 Nan N33W HIBIMOSM 5 7.5 
11-Jun-06 Nan N33W CUSCGROG 2 0.5 
11-Jun-06 Nan N33W IMPACPN 4 3.5 
11-Jun-06 Nan N33W TYPHANS 5 7.5 
11-Jun-06 Nan N33W SCHOTAB 3 1.5 
11-Jun-06 Nan N33W LEERORY 1 0.1 
11-Jun-06 Nan N33W BIDELAE 4 3.5 
11-Jun-06 Nan N33W SIUMSUA 1 0.1 
11-Jun-06 Nan N33W PTILCAP 2 0.5 
11-Jun-06 Nan N33W CINNARU 2 0.5 
11-Jun-06 Nan N33W RUMEVER 3 1.5 
11-Jun-06 Nan N33W LYSI1S1 1 0.1 
11-Jun-06 Nan N33W POLY1S1 3 1.5 
11-Jun-06 Nan N33W NUPHLUT 2 0.5 
11-Jun-06 Nan N33W CICUMACM 1 0.1 
11-Jun-06 Nan N33W BIDECOR 1 0.1 
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Nanticoke August 2006 Plant Species and Cover Data 
Date tributary plot Species cover MidPoint% 
30-Jul-06 Nan N40W ACORCAL 7 37.5 
30-Jul-06 Nan N40W POLYARI 7 37.5 
30-Jul-06 Nan N40W IMPACPN 8 62.5 
30-Jul-06 Nan N40W POLYSAG 3 1.5 
30-Jul-06 Nan N40W PELTVIR 3 1.5 
30-Jul-06 Nan N40W GALITIN 4 3.5 
30-Jul-06 Nan N40W CUSCGROG 2 0.5 
30-Jul-06 Nan N40W LEERORY 4 3.5 
30-Jul-06 Nan N40W CINNARU 4 3.5 
30-Jul-06 Nan N40W TYPHXGL 3 1.5 
30-Jul-06 Nan N40W BIDECOR 3 1.5 
30-Jul-06 Nan N40W MIKASCA 3 1.5 
30-Jul-06 Nan N40W SCIR1S1 2 0.5 
30-Jul-06 Nan N40W TYPHLAT 4 3.5 
30-Jul-06 Nan N40W CICUMACM 3 1.5 
30-Jul-06 Nan N40W CEPHOCC 3 1.5 
30-Jul-06 Nan N40W SYMPPUNP 2 0.5 
30-Jul-06 Nan N40W NUPHLUT 3 1.5 
30-Jul-06 Nan N40W SPARAME 1 0.1 
30-Jul-06 Nan N40W SCHOTAB 1 0.1 
30-Jul-06 Nan N40W CARESCOS 1 0.1 
30-Jul-06 Nan N40W BOEHCYL 4 3.5 
30-Jul-06 Nan N40W CARESTC 1 0.1 
30-Jul-06 Nan N40W ACERRUB 1 0.1 
30-Jul-06 Nan N40W CARELUR 1 0.1 
30-Jul-06 Nan N40W VIOL1S1 1 0.1 
30-Jul-06 Nan N40W CARECMS 2 0.5 
30-Jul-06 Nan N40W HIBIMOSM 4 3.5 
30-Jul-06 Nan N40W AMARCAN 1 0.1 
30-Jul-06 Nan N40W ASCLINC 1 0.1 
31-Jul-06 Nan N30E SCHOTAB 2 0.5 
31-Jul-06 Nan N30E PELTVIR 4 3.5 
31-Jul-06 Nan N30E POLYARI 9 85 
31-Jul-06 Nan N30E ZIZAAQU1 6 17.5 
31-Jul-06 Nan N30E BIDELAE 3 1.5 
31-Jul-06 Nan N30E TYPHANS 4 3.5 
31-Jul-06 Nan N30E AMARCAN 3 1.5 
31-Jul-06 Nan N30E CUSCGROG 2 0.5 
31-Jul-06 Nan N30E SCIR1S1 2 0.5 
31-Jul-06 Nan N30E BIDECOR 1 0.1 
31-Jul-06 Nan N30E CICUMACM 1 0.1 
31-Jul-06 Nan N30E IMPACPN 3 1.5 
31-Jul-06 Nan N30E CINN1S1 1 0.1 
31-Jul-06 Nan N30E HIBIMOSM 4 3.5 
31-Jul-06 Nan N30E SCUTGAL 1 0.1 
31-Jul-06 Nan N30E SIUMSUA 3 1.5 
31-Jul-06 Nan N30E LEERORY 2 0.5 
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31-Jul-06 Nan N30E POLYHDR 2 0.5 
31-Jul-06 Nan N30E PONTCOR 3 1.5 
31-Jul-06 Nan N33W HIBIMOSM 4 3.5 
31-Jul-06 Nan N33W PELTVIR 7 37.5 
31-Jul-06 Nan N33W POLYARI 8 62.5 
31-Jul-06 Nan N33W ACORCAL 6 17.5 
31-Jul-06 Nan N33W CUSCGROG 3 1.5 
31-Jul-06 Nan N33W IMPACPN 4 3.5 
31-Jul-06 Nan N33W SCHOTAB 2 0.5 
31-Jul-06 Nan N33W LEERORY 2 0.5 
31-Jul-06 Nan N33W TYPHANS 5 7.5 
31-Jul-06 Nan N33W PTILCAP 1 0.1 
31-Jul-06 Nan N33W AMARCAN 2 0.5 
31-Jul-06 Nan N33W CINNARU 2 0.5 
31-Jul-06 Nan N33W TYPHXGL 2 0.5 
31-Jul-06 Nan N33W ZIZAAQU1 3 1.5 
31-Jul-06 Nan N33W BIDELAE 1 0.1 
31-Jul-06 Nan N33W BIDECOR 1 0.1 
31-Jul-06 Nan N33W SAGILAT 2 0.5 
31-Jul-06 Nan N33W SCIR1S1 2 0.5 
31-Jul-06 Nan N33W POLYHDR 2 0.5 
31-Jul-06 Nan N33W POLYSAG 1 0.1 
2-Aug-06 Nan N19E SONCOLE 2 0.5 
2-Aug-06 Nan N19E LEERORY 4 3.5 
2-Aug-06 Nan N19E PANIVIRV 7 37.5 
2-Aug-06 Nan N19E HIBIMOSM 6 17.5 
2-Aug-06 Nan N19E MIKASCA 3 1.5 
2-Aug-06 Nan N19E DISTSPI 4 3.5 
2-Aug-06 Nan N19E KOSTVIR 3 1.5 
2-Aug-06 Nan N19E PELTVIR 1 0.1 
2-Aug-06 Nan N19E CINNARU 1 0.1 
2-Aug-06 Nan N19E PLUCODOO 3 1.5 
2-Aug-06 Nan N19E ASCLINC 3 1.5 
2-Aug-06 Nan N19E JUNCCAN 4 3.5 
2-Aug-06 Nan N19E CYPE1S1 2 0.5 
2-Aug-06 Nan N19E SYMPPUNP 1 0.1 
2-Aug-06 Nan N19E IVA_FRUF 3 1.5 
2-Aug-06 Nan N19E EUPAPERP 3 1.5 
2-Aug-06 Nan N19E CYPESTR 1 0.1 
2-Aug-06 Nan N19E SPARALT 4 3.5 
2-Aug-06 Nan N19E SPARPAT 5 7.5 
2-Aug-06 Nan N19E ELEOPAR 2 0.5 
2-Aug-06 Nan N19E SPARCYN 2 0.5 
2-Aug-06 Nan N19E SCIR1S1 2 0.5 
2-Aug-06 Nan N27W SPARCYN 8 62.5 
2-Aug-06 Nan N27W POLYARI 5 7.5 
2-Aug-06 Nan N27W PELTVIR 4 3.5 
2-Aug-06 Nan N27W KOSTVIR 3 1.5 
2-Aug-06 Nan N27W SCHOTAB 2 0.5 
2-Aug-06 Nan N27W POLYPUN1 1 0.1 
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2-Aug-06 Nan N27W SCHOAME 3 1.5 
2-Aug-06 Nan N27W IMPACPN 3 1.5 
2-Aug-06 Nan N27W LEERORY 3 1.5 
2-Aug-06 Nan N27W PLUCODOO 2 0.5 
2-Aug-06 Nan N27W MIKASCA 4 3.5 
2-Aug-06 Nan N27W POLYHDR 3 1.5 
2-Aug-06 Nan N27W HIBIMOSM 5 7.5 
2-Aug-06 Nan N27W HYPEMUT 1 0.1 
2-Aug-06 Nan N27W TEUCCAN 4 3.5 
2-Aug-06 Nan N27W CARESTC 5 7.5 
2-Aug-06 Nan N27W GALITIN 2 0.5 
2-Aug-06 Nan N27W SYMPPUNP 2 0.5 
2-Aug-06 Nan N27W CYPESTR 1 0.1 
2-Aug-06 Nan N27W CINNARU 1 0.1 
2-Aug-06 Nan N27W LOBECAR 2 0.5 
2-Aug-06 Nan N27W PANIVIRV 5 7.5 
2-Aug-06 Nan N27W AMARCAN 2 0.5 
2-Aug-06 Nan N27W TOXIRAD 3 1.5 
2-Aug-06 Nan N27W EUPAPERP 2 0.5 
2-Aug-06 Nan N27W PHRAAUS 6 17.5 
2-Aug-06 Nan N27W THAL1S1 1 0.1 
2-Aug-06 Nan N27W JUNCEFF 2 0.5 
2-Aug-06 Nan N27W CAREFRN 2 0.5 
2-Aug-06 Nan N27W IRIS1S1 3 1.5 
2-Aug-06 Nan N27W ROSAPAL 3 1.5 
2-Aug-06 Nan N27W LYCOAME 1 0.1 
2-Aug-06 Nan N27W CUSCGROG 2 0.5 
2-Aug-06 Nan N27W BOEHCYL 4 3.5 
2-Aug-06 Nan N27W CARE1S1 1 0.1 
2-Aug-06 Nan N27W ELEO1S1 2 0.5 
2-Aug-06 Nan N27W ASCLINC 2 0.5 
2-Aug-06 Nan N27W TYPHLAT 2 0.5 
2-Aug-06 Nan N27W SAGILAT 2 0.5 
2-Aug-06 Nan N27W CICUMACM 1 0.1 
2-Aug-06 Nan N27W UNK5 1 0.1 
2-Aug-06 Nan N27W OSMUCINC 2 0.5 
2-Aug-06 Nan N27W PONTCOR 3 1.5 
2-Aug-06 Nan N27W TYPHXGL 1 0.1 
2-Aug-06 Nan N27W SCUTLATL 1 0.1 
3-Aug-06 Nan N15E SPARCYN 6 17.5 
3-Aug-06 Nan N15E SCHOROB 3 1.5 
3-Aug-06 Nan N15E HIBIMOSM 4 3.5 
3-Aug-06 Nan N15E MIKASCA 3 1.5 
3-Aug-06 Nan N15E ELEO1S1 4 3.5 
3-Aug-06 Nan N15E SYMPPUNP 1 0.1 
3-Aug-06 Nan N15E PLUCODOO 3 1.5 
3-Aug-06 Nan N15E IVA_FRUF 8 62.5 
3-Aug-06 Nan N15E SPARALT 7 37.5 
3-Aug-06 Nan N15E PTILCAP 1 0.1 
3-Aug-06 Nan N15E KOSTVIR 3 1.5 
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3-Aug-06 Nan N15E DISTSPI 4 3.5 
3-Aug-06 Nan N15E PHRAAUS 2 0.5 
3-Aug-06 Nan N15E SPARPAT 3 1.5 
3-Aug-06 Nan N15E ELEOPAR 2 0.5 
3-Aug-06 Nan N15E ASCLINC 1 0.1 
3-Aug-06 Nan N15E AMARCAN 1 0.1 
3-Aug-06 Nan N25E ACORCAL 4 3.5 
3-Aug-06 Nan N25E LEERORY 5 7.5 
3-Aug-06 Nan N25E PELTVIR 7 37.5 
3-Aug-06 Nan N25E HIBIMOSM 5 7.5 
3-Aug-06 Nan N25E IMPACPN 3 1.5 
3-Aug-06 Nan N25E POLYARI 3 1.5 
3-Aug-06 Nan N25E POLYPRS 2 0.5 
3-Aug-06 Nan N25E SPARCYN 8 62.5 
3-Aug-06 Nan N25E MIKASCA 6 17.5 
3-Aug-06 Nan N25E ASCLINC 3 1.5 
3-Aug-06 Nan N25E POLYHDR 2 0.5 
3-Aug-06 Nan N25E CINNARU 1 0.1 
3-Aug-06 Nan N25E RUMEVER 3 1.5 
3-Aug-06 Nan N25E CUSCGROG 3 1.5 
3-Aug-06 Nan N25E PLUCODOO 2 0.5 
3-Aug-06 Nan N25E PTILCAP 3 1.5 
3-Aug-06 Nan N25E ELEO1S1 3 1.5 
3-Aug-06 Nan N25E KOSTVIR 3 1.5 
3-Aug-06 Nan N25E TYPHANS 4 3.5 
3-Aug-06 Nan N25E TYPHLAT 4 3.5 
3-Aug-06 Nan N25E GALITIN 2 0.5 
3-Aug-06 Nan N25E AMARCAN 1 0.1 
3-Aug-06 Nan N25E PHRAAUS 3 1.5 
3-Aug-06 Nan N25E BIDECOR 1 0.1 
3-Aug-06 Nan N25E SCHOROB 3 1.5 
3-Aug-06 Nan N25E PONTCOR 2 0.5 
3-Aug-06 Nan N25E TEUCCAN 2 0.5 
3-Aug-06 Nan N25E JUNCEFF 4 3.5 
3-Aug-06 Nan N25E SCHOTAB 2 0.5 
4-Aug-06 Nan N00W SPARPAT 9 85 
4-Aug-06 Nan N00W IVA_FRUF 5 7.5 
4-Aug-06 Nan N00W DISTSPI 5 7.5 
4-Aug-06 Nan N00W SCHOROB 2 0.5 
4-Aug-06 Nan N00W PLUC1S1 3 1.5 
4-Aug-06 Nan N00W ELEOPAR 1 0.1 
4-Aug-06 Nan N00W SYMPSUB 2 0.5 
4-Aug-06 Nan N00W KOSTVIR 2 0.5 
4-Aug-06 Nan N00W SPARALT 6 17.5 
4-Aug-06 Nan N00W SYMPSUB 1 0.1 
4-Aug-06 Nan N00W SPARCYN 5 7.5 
4-Aug-06 Nan N05W SPARPAT 8 62.5 
4-Aug-06 Nan N05W SCHOAME 6 17.5 
4-Aug-06 Nan N05W LYTHLIN 4 3.5 
4-Aug-06 Nan N05W KOSTVIR 2 0.5 
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4-Aug-06 Nan N05W IVA_FRUF 1 0.1 
4-Aug-06 Nan N05W DISTSPI 6 17.5 
4-Aug-06 Nan N05W PLUCODOO 3 1.5 
4-Aug-06 Nan N05W AMARCAN 1 0.1 
4-Aug-06 Nan N05W SPARALT 6 17.5 
4-Aug-06 Nan N05W CYPEBIP 1 0.1 
4-Aug-06 Nan N05W FIMBCAR 4 3.5 
4-Aug-06 Nan N05W SABASTE 2 0.5 
4-Aug-06 Nan N05W SCHOROB 3 1.5 
4-Aug-06 Nan N05W SPARCYN 3 1.5 
4-Aug-06 Nan N05W ELEOPAR 2 0.5 
4-Aug-06 Nan N10E SPARALT 6 17.5 
4-Aug-06 Nan N10E SPARPAT 8 62.5 
4-Aug-06 Nan N10E SPARCYN 5 7.5 
4-Aug-06 Nan N10E IVA_FRUF 7 37.5 
4-Aug-06 Nan N10E HIBIMOSM 6 17.5 
4-Aug-06 Nan N10E SCHOROB 2 0.5 
4-Aug-06 Nan N10E ELEOPAR 2 0.5 
4-Aug-06 Nan N10E KOSTVIR 5 7.5 
4-Aug-06 Nan N10E MIKASCA 3 1.5 
4-Aug-06 Nan N10E PLUCODOO 2 0.5 
4-Aug-06 Nan N10E DISTSPI 1 0.1 
4-Aug-06 Nan N10E SCHOAME 4 3.5 
4-Aug-06 Nan N10E SYMPPUNP 1 0.1 
4-Aug-06 Nan N10E PHRAAUS 7 37.5 
4-Aug-06 Nan N10E ASCLINC 1 0.1 
4-Aug-06 Nan N10E UNK4 1 0.1 
7-Aug-06 Nan N35W PELTVIR 4 3.5 
7-Aug-06 Nan N35W ACORCAL 8 62.5 
7-Aug-06 Nan N35W BIDECOR 2 0.5 
7-Aug-06 Nan N35W CINNARU 3 1.5 
7-Aug-06 Nan N35W LEERORY 3 1.5 
7-Aug-06 Nan N35W POLYARI 6 17.5 
7-Aug-06 Nan N35W POLYSAG 4 3.5 
7-Aug-06 Nan N35W GALITIN 3 1.5 
7-Aug-06 Nan N35W SCHOTAB 2 0.5 
7-Aug-06 Nan N35W IMPACPN 4 3.5 
7-Aug-06 Nan N35W MIKASCA 4 3.5 
7-Aug-06 Nan N35W CUSCGROG 3 1.5 
7-Aug-06 Nan N35W CICUMACM 2 0.5 
7-Aug-06 Nan N35W SCIR1S1 4 3.5 
7-Aug-06 Nan N35W STACTEN 4 3.5 
7-Aug-06 Nan N35W BOEHCYL 5 7.5 
7-Aug-06 Nan N35W SYMPPUNP 3 1.5 
7-Aug-06 Nan N35W TYPHLAT 2 0.5 
7-Aug-06 Nan N35W NYSSBIF 2 0.5 
7-Aug-06 Nan N35W SPARAME 3 1.5 
7-Aug-06 Nan N35W ALNUSER 2 0.5 
7-Aug-06 Nan N35W SIUMSUA 2 0.5 
7-Aug-06 Nan N35W PILEPUMP 2 0.5 
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7-Aug-06 Nan N35W HIBIMOSM 3 1.5 
7-Aug-06 Nan N35W TYPHANS 2 0.5 
7-Aug-06 Nan N35W AMARCAN 1 0.1 
7-Aug-06 Nan N35W RUMEVER 1 0.1 
7-Aug-06 Nan N35W MORECER 1 0.1 
7-Aug-06 Nan N35W THELPALP 2 0.5 
7-Aug-06 Nan N35W TEUCCAN 2 0.5 
7-Aug-06 Nan N42E IMPACPN 5 7.5 
7-Aug-06 Nan N42E SAGILAT 2 0.5 
7-Aug-06 Nan N42E ACORCAL 7 37.5 
7-Aug-06 Nan N42E CUSCGROG 2 0.5 
7-Aug-06 Nan N42E POLYARI 7 37.5 
7-Aug-06 Nan N42E PELTVIR 6 17.5 
7-Aug-06 Nan N42E BIDECOR 3 1.5 
7-Aug-06 Nan N42E SCIR1S1 2 0.5 
7-Aug-06 Nan N42E CINN1S1 2 0.5 
7-Aug-06 Nan N42E TYPHLAT 4 3.5 
7-Aug-06 Nan N42E BIDELAE 1 0.1 
7-Aug-06 Nan N42E SYMPPUNP 2 0.5 
7-Aug-06 Nan N42E LEERORY 2 0.5 
7-Aug-06 Nan N42E SPARAME 1 0.1 
7-Aug-06 Nan N42E CALYSEP 1 0.1 
7-Aug-06 Nan N42E NUPHLUT 4 3.5 
7-Aug-06 Nan N42E CEPHOCC 2 0.5 
7-Aug-06 Nan N42E HIBIMOSM 2 0.5 
7-Aug-06 Nan N42E CICUMACM 2 0.5 
7-Aug-06 Nan N42E MENTARV 3 1.5 
7-Aug-06 Nan N42E MIKASCA 1 0.1 
7-Aug-06 Nan N42E AMARCAN 1 0.1 
7-Aug-06 Nan N45E ACORCAL 8 62.5 
7-Aug-06 Nan N45E BIDECOR 3 1.5 
7-Aug-06 Nan N45E IMPACPN 5 7.5 
7-Aug-06 Nan N45E GALITIN 3 1.5 
7-Aug-06 Nan N45E POLYARI 6 17.5 
7-Aug-06 Nan N45E CARECMS 3 1.5 
7-Aug-06 Nan N45E CINNARU 4 3.5 
7-Aug-06 Nan N45E POLYSAG 5 7.5 
7-Aug-06 Nan N45E CARELUR 3 1.5 
7-Aug-06 Nan N45E CICUMACM 4 3.5 
7-Aug-06 Nan N45E SYMPPUNP 2 0.5 
7-Aug-06 Nan N45E CUSCGROG 3 1.5 
7-Aug-06 Nan N45E IRIS1S1 2 0.5 
7-Aug-06 Nan N45E DULIARU 3 1.5 
7-Aug-06 Nan N45E PELTVIR 5 7.5 
7-Aug-06 Nan N45E LEERORY 2 0.5 
7-Aug-06 Nan N45E DECOVER 2 0.5 
7-Aug-06 Nan N45E BOEHCYL 3 1.5 
7-Aug-06 Nan N45E ROSAPAL 1 0.1 
7-Aug-06 Nan N45E MIKASCA 2 0.5 
7-Aug-06 Nan N45E BIDELAE 1 0.1 
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7-Aug-06 Nan N45E CEPHOCC 2 0.5 
7-Aug-06 Nan N45E HIBIMOSM 3 1.5 
7-Aug-06 Nan N45E EUPAPERP 1 0.1 
7-Aug-06 Nan N49W POLYARI 8 62.5 
7-Aug-06 Nan N49W LEERORY 3 1.5 
7-Aug-06 Nan N49W ACORCAL 6 17.5 
7-Aug-06 Nan N49W PELTVIR 6 17.5 
7-Aug-06 Nan N49W COMMCOM 4 3.5 
7-Aug-06 Nan N49W CUSCGROG 2 0.5 
7-Aug-06 Nan N49W IMPACPN 4 3.5 
7-Aug-06 Nan N49W CINNARU 3 1.5 
7-Aug-06 Nan N49W POLYSAG 3 1.5 
7-Aug-06 Nan N49W ZIZAAQU1 5 7.5 
7-Aug-06 Nan N49W BIDELAE 3 1.5 
7-Aug-06 Nan N49W BIDECOR 3 1.5 
7-Aug-06 Nan N49W GALITIN 2 0.5 
7-Aug-06 Nan N49W CEPHOCC 1 0.1 
7-Aug-06 Nan N49W CARE1S1 1 0.1 
7-Aug-06 Nan N49W NUPHLUT 1 0.1 
7-Aug-06 Nan N49W BOEHCYL 1 0.1 
7-Aug-06 Nan N49W CICUMACM 1 0.1 
9-Aug-06 Nan N55W COMMCOM 4 3.5 
9-Aug-06 Nan N55W ACORCAL 9 85 
9-Aug-06 Nan N55W PELTVIR 6 17.5 
9-Aug-06 Nan N55W LEERORY 3 1.5 
9-Aug-06 Nan N55W POLYSAG 2 0.5 
9-Aug-06 Nan N55W BIDELAE 3 1.5 
9-Aug-06 Nan N55W IMPACPN 5 7.5 
9-Aug-06 Nan N55W POLYARI 2 0.5 
9-Aug-06 Nan N55W GALITIN 2 0.5 
9-Aug-06 Nan N55W POLYPUN1 3 1.5 
9-Aug-06 Nan N55W CEPHOCC 3 1.5 
9-Aug-06 Nan N55W MIKASCA 3 1.5 
9-Aug-06 Nan N55W BIDEFRO 2 0.5 
9-Aug-06 Nan N55W BIDECOR 2 0.5 
9-Aug-06 Nan N55W STACTEN 2 0.5 
9-Aug-06 Nan N55W HUMULUP 2 0.5 
9-Aug-06 Nan N55W CUSCGROG 2 0.5 
9-Aug-06 Nan N55W APIOAME 2 0.5 
9-Aug-06 Nan N55W BOEHCYL 2 0.5 
9-Aug-06 Nan N55W CARESTC 2 0.5 
9-Aug-06 Nan N55W ROSAPAL 2 0.5 
9-Aug-06 Nan N55W THALPUB 1 0.1 
9-Aug-06 Nan N55W VITIRIP 1 0.1 
9-Aug-06 Nan N55W LILISUP 1 0.1 
9-Aug-06 Nan N55W VERNNOV 2 0.5 
9-Aug-06 Nan N55W SYMPPUNP 1 0.1 
9-Aug-06 Nan N55W NUPHLUT 4 3.5 
9-Aug-06 Nan N55W LUDWPAL 1 0.1 
9-Aug-06 Nan N55W SAGILAT 1 0.1 
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9-Aug-06 Nan N55W ALNUSER 2 0.5 
9-Aug-06 Nan N55W IPOM1S1 1 0.1 
9-Aug-06 Nan N56W ACORCAL 9 85 
9-Aug-06 Nan N56W SAGILAT 2 0.5 
9-Aug-06 Nan N56W PELTVIR 5 7.5 
9-Aug-06 Nan N56W POLYARI 2 0.5 
9-Aug-06 Nan N56W COMMCOM 3 1.5 
9-Aug-06 Nan N56W LEERORY 2 0.5 
9-Aug-06 Nan N56W BIDELAE 2 0.5 
9-Aug-06 Nan N56W POLYPUN1 2 0.5 
9-Aug-06 Nan N56W IMPACPN 3 1.5 
9-Aug-06 Nan N56W MIKASCA 2 0.5 
9-Aug-06 Nan N56W CORNAMO 2 0.5 
9-Aug-06 Nan N56W ROSAPAL 2 0.5 
9-Aug-06 Nan N56W TOXIRAD 2 0.5 
9-Aug-06 Nan N56W CARESTC 2 0.5 
9-Aug-06 Nan N56W CEPHOCC 2 0.5 
9-Aug-06 Nan N56W NUPHLUT 6 17.5 
9-Aug-06 Nan N56W POLYSAG 2 0.5 
9-Aug-06 Nan N56W AMARCAN 3 1.5 
9-Aug-06 Nan N56W LUDWPAL 1 0.1 
9-Aug-06 Nan N56W FRAXPEN 5 7.5 
9-Aug-06 Nan N56W APIOAME 1 0.1 
9-Aug-06 Nan N56W BOEHCYL 1 0.1 
9-Aug-06 Nan N56W THALPUB 1 0.1 
9-Aug-06 Nan N56W VIBUREC 2 0.5 
9-Aug-06 Nan N56W PILEPUMP 1 0.1 
9-Aug-06 Nan N56W SYMPPUNP 1 0.1 
9-Aug-06 Nan N56W PARTQUI 1 0.1 
9-Aug-06 Nan N56W VIOL1S1 1 0.1 
9-Aug-06 Nan N56W NYSSBIF 2 0.5 
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Patuxent  June 2006 Plant Species and Cover Data  
Date tributary plot Species cover Mid-Point % 
12-Jun-06 Pax X00W SPARALT 5 7.5 
12-Jun-06 Pax X00W SPARPAT 8 62.5 
12-Jun-06 Pax X00W IVA_FRUF 6 17.5 
12-Jun-06 Pax X00W PLUCODOO 3 1.5 
12-Jun-06 Pax X00W DISTSPI 6 17.5 
12-Jun-06 Pax X00W ATRIPRO 2 0.5 
12-Jun-06 Pax X00W ELEOPAR 2 0.5 
12-Jun-06 Pax X00W SCHOAME 1 0.1 
12-Jun-06 Pax X00W SPARCYN 4 3.5 
12-Jun-06 Pax X00W PHRAAUS 2 0.5 
12-Jun-06 Pax X00W AMARCAN 1 0.1 
17-Jun-06 Pax X05W SPARCYN 6 17.5 
17-Jun-06 Pax X05W IVA_FRUF 9 97.5 
17-Jun-06 Pax X05W PLUC1S1 3 1.5 
17-Jun-06 Pax X05W SPARALT 4 3.5 
17-Jun-06 Pax X05W SPARPAT 5 7.5 
17-Jun-06 Pax X05W PHRAAUS 6 17.5 
17-Jun-06 Pax X05W HIBIMOSM 1 0.1 
17-Jun-06 Pax X05W DISTSPI 2 0.5 
17-Jun-06 Pax X05W ELEOPAR 2 0.5 
17-Jun-06 Pax X05W ATRIPRO 2 0.5 
17-Jun-06 Pax X05W AMARCAN 1 0.1 
16-Jun-06 Pax X10E SPARALT 7 37.5 
16-Jun-06 Pax X10E IVA_FRUF 7 37.5 
16-Jun-06 Pax X10E AMARCAN 3 1.5 
16-Jun-06 Pax X10E SPARPAT 6 17.5 
16-Jun-06 Pax X10E ATRIPRO 2 0.5 
16-Jun-06 Pax X10E HIBIMOSM 1 0.1 
16-Jun-06 Pax X10E RUMEVER 2 0.5 
16-Jun-06 Pax X10E ELEOPAR 2 0.5 
16-Jun-06 Pax X10E PLUCODOO 2 0.5 
16-Jun-06 Pax X10E SCHOROB 1 0.1 
16-Jun-06 Pax X10E SYMPTEN 1 0.1 
16-Jun-06 Pax X10E DISTSPI 3 1.5 
16-Jun-06 Pax X10E UNK1 2 0.5 
16-Jun-06 Pax X10E CUSCGROG 1 0.1 
16-Jun-06 Pax X10E SPARCYN 5 7.5 
16-Jun-06 Pax X15W SPARALT 5 7.5 
16-Jun-06 Pax X15W SCHOAME 6 17.5 
16-Jun-06 Pax X15W PLUCODOO 2 0.5 
16-Jun-06 Pax X15W SPARCYN 7 37.5 
16-Jun-06 Pax X15W POLYPUN1 1 0.1 
16-Jun-06 Pax X15W ELEOPAR 2 0.5 
16-Jun-06 Pax X15W ELEOOBT 2 0.5 
16-Jun-06 Pax X15W PELTVIR 2 0.5 
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16-Jun-06 Pax X15W SCHOTAB 1 0.1 
16-Jun-06 Pax X15W PHRAAUS 2 0.5 
16-Jun-06 Pax X15W AMARCAN 2 0.5 
16-Jun-06 Pax X15W TYPHANS 3 1.5 
16-Jun-06 Pax X15W HIBIMOSM 2 0.5 
16-Jun-06 Pax X15W ASCLINC 1 0.1 
16-Jun-06 Pax X15W SCHOROB 1 0.1 
16-Jun-06 Pax X15W DISTSPI 2 0.5 
16-Jun-06 Pax X15W SPARPAT 5 7.5 
15-Jun-06 Pax X20E PELTVIR 7 37.5 
15-Jun-06 Pax X20E SPARCYN 7 37.5 
15-Jun-06 Pax X20E SCHOROB 3 1.5 
15-Jun-06 Pax X20E LEERORY 6 17.5 
15-Jun-06 Pax X20E IMPACPN 3 1.5 
15-Jun-06 Pax X20E AMARCAN 2 0.5 
15-Jun-06 Pax X20E POLYARI 3 1.5 
15-Jun-06 Pax X20E HIBIMOSM 4 3.5 
15-Jun-06 Pax X20E SCHOAME 3 1.5 
15-Jun-06 Pax X20E ASCLINC 2 0.5 
15-Jun-06 Pax X20E SCHOTAB 1 0.1 
15-Jun-06 Pax X20E RUMEVER 1 0.1 
17-Jun-06 Pax X22W POLYPUN1 3 1.5 
17-Jun-06 Pax X22W SPARCYN 8 62.5 
17-Jun-06 Pax X22W PELTVIR 7 37.5 
17-Jun-06 Pax X22W STAC1S1 4 3.5 
17-Jun-06 Pax X22W CUSCGROG 2 0.5 
17-Jun-06 Pax X22W ATRIPRO 1 0.1 
17-Jun-06 Pax X22W AMARCAN 2 0.5 
17-Jun-06 Pax X22W HIBIMOSM 2 0.5 
17-Jun-06 Pax X22W ASCLINC 1 0.1 
17-Jun-06 Pax X22W POLYARI 2 0.5 
17-Jun-06 Pax X22W MIKASCA 2 0.5 
17-Jun-06 Pax X22W SCHOAME 3 1.5 
17-Jun-06 Pax X22W RUMEVER 2 0.5 
17-Jun-06 Pax X22W SCIR1S1 1 0.1 
17-Jun-06 Pax X22W IMPACPN 1 0.1 
17-Jun-06 Pax X22W ELEO1S1 1 0.1 
17-Jun-06 Pax X22W LEERORY 2 0.5 
17-Jun-06 Pax X22W PONTCOR 1 0.1 
17-Jun-06 Pax X22W SCHOTAB 2 0.5 
17-Jun-06 Pax X22W TYPHANS 2 0.5 
15-Jun-06 Pax X26W PELTVIR 7 37.5 
15-Jun-06 Pax X26W TYPHANS 6 17.5 
15-Jun-06 Pax X26W IMPACPN 6 17.5 
15-Jun-06 Pax X26W POLYARI 6 17.5 
15-Jun-06 Pax X26W HIBIMOSM 4 3.5 
15-Jun-06 Pax X26W LEERORY 3 1.5 
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15-Jun-06 Pax X26W AMARCAN 3 1.5 
15-Jun-06 Pax X26W SPARCYN 8 62.5 
15-Jun-06 Pax X26W POLYPUN1 2 0.5 
15-Jun-06 Pax X26W CUSCGROG 2 0.5 
15-Jun-06 Pax X26W MIKASCA 2 0.5 
15-Jun-06 Pax X26W ASCLINC 2 0.5 
15-Jun-06 Pax X26W UNK2 2 0.5 
15-Jun-06 Pax X26W PONTCOR 3 1.5 
15-Jun-06 Pax X26W LYSITER 2 0.5 
15-Jun-06 Pax X26W RUMEVER 1 0.1 
15-Jun-06 Pax X26W ONOCSEN 1 0.1 
15-Jun-06 Pax X26W TYPHXGL 4 3.5 
15-Jun-06 Pax X26W OSMUCINC 1 0.1 
15-Jun-06 Pax X26W BIDELAE 1 0.1 
15-Jun-06 Pax X26W GALITIN 1 0.1 
15-Jun-06 Pax X26W SIUMSUA 1 0.1 
15-Jun-06 Pax X26W CARESTC 2 0.5 
15-Jun-06 Pax X26W SCHOAME 2 0.5 
15-Jun-06 Pax X26W SCHOTAB 2 0.5 
14-Jun-06 Pax X30E PHRAAUS 10 10 
14-Jun-06 Pax X30E IMPACPN 3 1.5 
14-Jun-06 Pax X30E PELTVIR 4 3.5 
14-Jun-06 Pax X30E POLYARI 1 0.1 
14-Jun-06 Pax X30E POLYPUN1 1 0.1 
14-Jun-06 Pax X30E RUMEVER 1 0.1 
14-Jun-06 Pax X30E MIKASCA 1 0.1 
14-Jun-06 Pax X30E LEERORY 1 0.1 
18-Jun-06 Pax X30W PELTVIR 8 62.5 
18-Jun-06 Pax X30W LEERORY 3 1.5 
18-Jun-06 Pax X30W TYPHANS 7 37.5 
18-Jun-06 Pax X30W HIBIMOSM 4 3.5 
18-Jun-06 Pax X30W AMARCAN 1 0.1 
18-Jun-06 Pax X30W IMPACPN 4 3.5 
18-Jun-06 Pax X30W POLYARI 2 0.5 
18-Jun-06 Pax X30W CUSCGROG 1 0.1 
18-Jun-06 Pax X30W SAGILAT 2 0.5 
18-Jun-06 Pax X30W OSMUCINC 2 0.5 
18-Jun-06 Pax X30W LYSI1S1 1 0.1 
18-Jun-06 Pax X30W TYPHXGL 3 1.5 
18-Jun-06 Pax X30W POLYPUN1 2 0.5 
18-Jun-06 Pax X30W MIKASCA 2 0.5 
18-Jun-06 Pax X30W EUPA1S1 2 0.5 
18-Jun-06 Pax X30W PONTCOR 3 1.5 
18-Jun-06 Pax X30W ROSAPAL 4 3.5 
18-Jun-06 Pax X30W RUMEVER 1 0.1 
18-Jun-06 Pax X30W ASCLINC 1 0.1 
18-Jun-06 Pax X30W SCHOAME 1 0.1 
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18-Jun-06 Pax X30W SPARAME 2 0.5 
14-Jun-06 Pax X35W TYPHLAT 7 37.5 
14-Jun-06 Pax X35W ZIZAAQU1 4 3.5 
14-Jun-06 Pax X35W SAGILAT 5 7.5 
14-Jun-06 Pax X35W PELTVIR 3 1.5 
14-Jun-06 Pax X35W MIKASCA 4 3.5 
14-Jun-06 Pax X35W LEERORY 7 37.5 
14-Jun-06 Pax X35W ELEOOBT 3 1.5 
14-Jun-06 Pax X35W LUDWPAL 2 0.5 
14-Jun-06 Pax X35W PLUC1S1 2 0.5 
14-Jun-06 Pax X35W POLYPUN1 2 0.5 
14-Jun-06 Pax X35W BIDELAE 1 0.1 
14-Jun-06 Pax X35W LIMNSPO 1 0.1 
14-Jun-06 Pax X35W UNK2 2 0.5 
14-Jun-06 Pax X35W PILEPUMP 1 0.1 
14-Jun-06 Pax X35W RANUSCLS 1 0.1 
14-Jun-06 Pax X35W CARE1S1 1 0.1 
14-Jun-06 Pax X35W COMMCAR 4 3.5 
14-Jun-06 Pax X35W PHRAAUS 6 17.5 
14-Jun-06 Pax X35W TYPHANS 4 3.5 
14-Jun-06 Pax X35W TYPHXGL 2 0.5 
14-Jun-06 Pax X35W AMARCAN 2 0.5 
14-Jun-06 Pax X35W DECOVER 1 0.1 
14-Jun-06 Pax X35W SCHOTAB 3 1.5 
14-Jun-06 Pax X35W PONTCOR 2 0.5 
14-Jun-06 Pax X35W HIBIMOSM 1 0.1 
14-Jun-06 Pax X35W CAREKOB 1 0.1 
14-Jun-06 Pax X35W PTILCAP 1 0.1 
14-Jun-06 Pax X35W SIUMSUA 1 0.1 
14-Jun-06 Pax X35W CARE1S2 1 0.1 
14-Jun-06 Pax X35W SPARAME 1 0.1 
14-Jun-06 Pax X35W RUMEVER 1 0.1 
14-Jun-06 Pax X35W POLYSAG 1 0.1 
14-Jun-06 Pax X35W POLYARI 1 0.1 
18-Jun-06 Pax X39W PELTVIR 6 17.5 
18-Jun-06 Pax X39W TYPHANS 8 62.5 
18-Jun-06 Pax X39W IMPACPN 3 1.5 
18-Jun-06 Pax X39W TYPHXGL 6 17.5 
18-Jun-06 Pax X39W LEERORY 3 1.5 
18-Jun-06 Pax X39W SAGILAT 2 0.5 
18-Jun-06 Pax X39W POLYPUN1 2 0.5 
18-Jun-06 Pax X39W POLYARI 2 0.5 
18-Jun-06 Pax X39W NUPHLUT 6 17.5 
18-Jun-06 Pax X39W BIDELAE 1 0.1 
18-Jun-06 Pax X39W UNK1 2 0.5 
18-Jun-06 Pax X39W SIUMSUA 1 0.1 
18-Jun-06 Pax X39W MIKASCA 1 0.1 
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18-Jun-06 Pax X39W RUMEVER 1 0.1 
18-Jun-06 Pax X39W SPARAME 1 0.1 
18-Jun-06 Pax X39W SCHOTAB 2 0.5 
18-Jun-06 Pax X39W HIBIMOSM 2 0.5 
18-Jun-06 Pax X39W PONTCOR 1 0.1 
18-Jun-06 Pax X39W AMARCAN 1 0.1 
13-Jun-06 Pax X43W POLYARI 5 7.5 
13-Jun-06 Pax X43W GALITIN 3 1.5 
13-Jun-06 Pax X43W ACORCAL 7 37.5 
13-Jun-06 Pax X43W PILEPUMP 5 7.5 
13-Jun-06 Pax X43W SYMPPUN 4 3.5 
13-Jun-06 Pax X43W POLYSAG 3 1.5 
13-Jun-06 Pax X43W CUSCGROG 3 1.5 
13-Jun-06 Pax X43W PELTVIR 5 7.5 
13-Jun-06 Pax X43W IMPACPN 6 17.5 
13-Jun-06 Pax X43W UNK2 1 0.1 
13-Jun-06 Pax X43W COMMCAR 2 0.5 
13-Jun-06 Pax X43W TYPHLAT 3 1.5 
13-Jun-06 Pax X43W BOEHCYL 1 0.1 
13-Jun-06 Pax X43W LEERORY 1 0.1 
13-Jun-06 Pax X43W HIBIMOSM 3 1.5 
13-Jun-06 Pax X43W CICUMACM 1 0.1 
13-Jun-06 Pax X43W MIKASCA 2 0.5 
13-Jun-06 Pax X43W MENTARV 5 7.5 
13-Jun-06 Pax X43W SCIR1S1 2 0.5 
13-Jun-06 Pax X43W POLYPUN1 1 0.1 
13-Jun-06 Pax X43W BIDELAE 1 0.1 
13-Jun-06 Pax X43W NUPHLUT 1 0.1 
13-Jun-06 Pax X43W SCHOTAB 2 0.5 
13-Jun-06 Pax X43W DECOVER 1 0.1 
13-Jun-06 Pax X43W SPARAME 1 0.1 
13-Jun-06 Pax X43W CARESTC 1 0.1 
13-Jun-06 Pax X47E IMPACPN 6 17.5 
13-Jun-06 Pax X47E PELTVIR 7 37.5 
13-Jun-06 Pax X47E POLYARI 5 7.5 
13-Jun-06 Pax X47E SCIR1S1 5 7.5 
13-Jun-06 Pax X47E SPARAME 3 1.5 
13-Jun-06 Pax X47E TYPHLAT 2 0.5 
13-Jun-06 Pax X47E CUSCGROG 2 0.5 
13-Jun-06 Pax X47E PILEPUMP 2 0.5 
13-Jun-06 Pax X47E POLYSAG 3 1.5 
13-Jun-06 Pax X47E SYMPPUN 5 7.5 
13-Jun-06 Pax X47E GALITIN 3 1.5 
13-Jun-06 Pax X47E CINN1S1 3 1.5 
13-Jun-06 Pax X47E CAREVUL 2 0.5 
13-Jun-06 Pax X47E CAREKOB 2 0.5 
13-Jun-06 Pax X47E COMMCAR 2 0.5 
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13-Jun-06 Pax X47E LEERORY 1 0.1 
13-Jun-06 Pax X47E RANU1S1 1 0.1 
13-Jun-06 Pax X47E SIUMSUA 1 0.1 
13-Jun-06 Pax X47E RORIPALF 1 0.1 
13-Jun-06 Pax X47E CARESCOS 2 0.5 
13-Jun-06 Pax X47E MENTARV 2 0.5 
13-Jun-06 Pax X47E MIKASCA 2 0.5 
13-Jun-06 Pax X47E APIOAME 1 0.1 
13-Jun-06 Pax X47E UNK1 1 0.1 
13-Jun-06 Pax X47E CARE1S1 2 0.5 
13-Jun-06 Pax X47E SAGILAT 1 0.1 
13-Jun-06 Pax X47E ZIZAAQU1 1 0.1 
13-Jun-06 Pax X47E PTILCAP 1 0.1 
13-Jun-06 Pax X47E CICUMACM 1 0.1 
13-Jun-06 Pax X47E BIDELAE 1 0.1 
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Patuxent August 2006 Plant Species and Cover Data 
Date tributary plot Species cover Mid-Point % 

25-Aug-06 Pax X00W SPARALT 7 37.5 
25-Aug-06 Pax X00W SPARPAT 8 62.5 
25-Aug-06 Pax X00W IVA_FRUF 6 17.5 
25-Aug-06 Pax X00W PLUCODOO 5 7.5 
25-Aug-06 Pax X00W DISTSPI 6 17.5 
25-Aug-06 Pax X00W SPARCYN 5 7.5 
25-Aug-06 Pax X00W SCHOAME 2 0.5 
25-Aug-06 Pax X00W ELEOPAR 2 0.5 
25-Aug-06 Pax X00W SALIVRG 1 0.1 
25-Aug-06 Pax X00W PHRAAUS 1 0.1 
24-Aug-06 Pax X05W SPARCYN 5 7.5 
24-Aug-06 Pax X05W IVA_FRUF 9 85 
24-Aug-06 Pax X05W SPARALT 5 7.5 
24-Aug-06 Pax X05W PLUCODOO 2 0.5 
24-Aug-06 Pax X05W SPARPAT 3 1.5 
24-Aug-06 Pax X05W PHRAAUS 6 17.5 
24-Aug-06 Pax X05W ATRIPRO 2 0.5 
24-Aug-06 Pax X05W KOSTVIR 2 0.5 
24-Aug-06 Pax X05W HIBIMOSM 1 0.1 
24-Aug-06 Pax X05W DISTSPI 2 0.5 
24-Aug-06 Pax X05W AMARCAN 1 0.1 
24-Aug-06 Pax X10E SPARALT 7 37.5 
24-Aug-06 Pax X10E IVA_FRUF 8 62.5 
24-Aug-06 Pax X10E AMARCAN 6 17.5 
24-Aug-06 Pax X10E SPARCYN 5 7.5 
24-Aug-06 Pax X10E PLUCODOO 2 0.5 
24-Aug-06 Pax X10E SCHOROB 1 0.1 
24-Aug-06 Pax X10E ELEOPAR 2 0.5 
24-Aug-06 Pax X10E SYMPTEN 5 7.5 
24-Aug-06 Pax X10E SPARPAT 6 17.5 
24-Aug-06 Pax X10E ATRIPRO 2 0.5 
24-Aug-06 Pax X10E CUSCGROG 2 0.5 
24-Aug-06 Pax X10E DISTSPI 4 3.5 
24-Aug-06 Pax X10E LYTHLIN 2 0.5 
24-Aug-06 Pax X10E RUMEVER 2 0.5 
24-Aug-06 Pax X10E HIBIMOSM 1 0.1 
24-Aug-06 Pax X10E CYPEODO 1 0.1 
24-Aug-06 Pax X10E ECHIMUR 1 0.1 
24-Aug-06 Pax X15W SPARALT 7 37.5 
24-Aug-06 Pax X15W ECHIMUR 3 1.5 
24-Aug-06 Pax X15W PLUCODOO 2 0.5 
24-Aug-06 Pax X15W ELEOPAR 2 0.5 
24-Aug-06 Pax X15W SCHOAME 6 17.5 
24-Aug-06 Pax X15W SPARCYN 7 37.5 
24-Aug-06 Pax X15W ELEO1S1 3 1.5 
24-Aug-06 Pax X15W SCHOROB 3 1.5 
24-Aug-06 Pax X15W SCHOTAB 1 0.1 
24-Aug-06 Pax X15W PHRAAUS 2 0.5 



   

 150 
 

24-Aug-06 Pax X15W AMARCAN 2 0.5 
24-Aug-06 Pax X15W TYPHANS 4 3.5 
24-Aug-06 Pax X15W HIBIMOSM 2 0.5 
24-Aug-06 Pax X15W KOSTVIR 4 3.5 
24-Aug-06 Pax X15W PELTVIR 2 0.5 
24-Aug-06 Pax X15W DISTSPI 4 3.5 
24-Aug-06 Pax X15W ASCLINC 2 0.5 
24-Aug-06 Pax X15W SPARPAT 5 7.5 
24-Aug-06 Pax X15W PONTCOR 1 0.1 
24-Aug-06 Pax X15W MIKASCA 1 0.1 
24-Aug-06 Pax X15W CYPEODO 1 0.1 
18-Aug-06 Pax X20E SPARCYN 8 62.5 
18-Aug-06 Pax X20E PELTVIR 7 37.5 
18-Aug-06 Pax X20E SCHOROB 2 0.5 
18-Aug-06 Pax X20E LEERORY 7 37.5 
18-Aug-06 Pax X20E POLYARI 3 1.5 
18-Aug-06 Pax X20E IMPACPN 2 0.5 
18-Aug-06 Pax X20E POLYHDR 2 0.5 
18-Aug-06 Pax X20E AMARCAN 3 1.5 
18-Aug-06 Pax X20E HIBIMOSM 3 1.5 
18-Aug-06 Pax X20E SCHOAME 3 1.5 
18-Aug-06 Pax X20E ASCLINC 2 0.5 
18-Aug-06 Pax X20E KOSTVIR 2 0.5 
18-Aug-06 Pax X20E CINNARU 1 0.1 
18-Aug-06 Pax X20E ELEOPAR 5 7.5 
18-Aug-06 Pax X20E IRIS1S1 2 0.5 
18-Aug-06 Pax X20E SCHOTAB 1 0.1 
18-Aug-06 Pax X22W PELTVIR 5 7.5 
18-Aug-06 Pax X22W CUSCGROG 2 0.5 
18-Aug-06 Pax X22W AMARCAN 4 3.5 
18-Aug-06 Pax X22W POLYPUN1 5 7.5 
18-Aug-06 Pax X22W TEUCCAN 6 17.5 
18-Aug-06 Pax X22W SPARCYN 7 37.5 
18-Aug-06 Pax X22W ATRIPRO 2 0.5 
18-Aug-06 Pax X22W ECHIMUR 3 1.5 
18-Aug-06 Pax X22W KOSTVIR 5 7.5 
18-Aug-06 Pax X22W ASCLINC 3 1.5 
18-Aug-06 Pax X22W MIKASCA 4 3.5 
18-Aug-06 Pax X22W POLYARI 2 0.5 
18-Aug-06 Pax X22W LEERORY 2 0.5 
18-Aug-06 Pax X22W SCHOAME 3 1.5 
18-Aug-06 Pax X22W IMPACPN 2 0.5 
18-Aug-06 Pax X22W HIBIMOSM 4 3.5 
18-Aug-06 Pax X22W PLUCODOO 2 0.5 
18-Aug-06 Pax X22W CYPESTR 2 0.5 
18-Aug-06 Pax X22W SONCOLE 2 0.5 
18-Aug-06 Pax X22W RUMEVER 2 0.5 
18-Aug-06 Pax X22W CINNARU 1 0.1 
18-Aug-06 Pax X22W SAGILAT 2 0.5 
18-Aug-06 Pax X22W ELEO1S1 4 3.5 



   

 151 
 

18-Aug-06 Pax X22W TYPHANS 4 3.5 
18-Aug-06 Pax X22W PONTCOR 2 0.5 
18-Aug-06 Pax X22W SCHOTAB 2 0.5 
18-Aug-06 Pax X22W SCHOROB 1 0.1 
17-Aug-06 Pax X26W PELTVIR 6 17.5 
17-Aug-06 Pax X26W TYPHANS 5 7.5 
17-Aug-06 Pax X26W POLYARI 6 17.5 
17-Aug-06 Pax X26W IMPACPN 5 7.5 
17-Aug-06 Pax X26W HIBIMOSM 4 3.5 
17-Aug-06 Pax X26W CUSCGROG 2 0.5 
17-Aug-06 Pax X26W SPARCYN 8 62.5 
17-Aug-06 Pax X26W AMARCAN 2 0.5 
17-Aug-06 Pax X26W LEERORY 2 0.5 
17-Aug-06 Pax X26W MIKASCA 3 1.5 
17-Aug-06 Pax X26W ASCLINC 2 0.5 
17-Aug-06 Pax X26W VERNNOV 3 1.5 
17-Aug-06 Pax X26W POLYHDR 2 0.5 
17-Aug-06 Pax X26W LYTHSAL 3 1.5 
17-Aug-06 Pax X26W PONTCOR 2 0.5 
17-Aug-06 Pax X26W SAGILAT 1 0.1 
17-Aug-06 Pax X26W THELPALP 2 0.5 
17-Aug-06 Pax X26W ONOCSEN 2 0.5 
17-Aug-06 Pax X26W GALITIN 1 0.1 
17-Aug-06 Pax X26W CALYSEP 1 0.1 
17-Aug-06 Pax X26W CINNARU 1 0.1 
17-Aug-06 Pax X26W CARE1S1 2 0.5 
17-Aug-06 Pax X26W SCHOTAB 1 0.1 
17-Aug-06 Pax X26W KOSTVIR 1 0.1 
16-Aug-06 Pax X30E PHRAAUS 10 97.5 
16-Aug-06 Pax X30E PELTVIR 2 0.5 
16-Aug-06 Pax X30E IMPACPN 2 0.5 
16-Aug-06 Pax X30E POLYARI 1 0.1 
16-Aug-06 Pax X30E CALYSEP 1 0.1 
16-Aug-06 Pax X30W PELTVIR 4 3.5 
16-Aug-06 Pax X30W LEERORY 4 3.5 
16-Aug-06 Pax X30W HIBIMOSM 5 7.5 
16-Aug-06 Pax X30W TYPHANS 7 37.5 
16-Aug-06 Pax X30W SAGILAT 5 7.5 
16-Aug-06 Pax X30W IMPACPN 4 3.5 
16-Aug-06 Pax X30W POLYARI 5 7.5 
16-Aug-06 Pax X30W CUSCGROG 2 0.5 
16-Aug-06 Pax X30W PONTCOR 2 0.5 
16-Aug-06 Pax X30W THELPALP 2 0.5 
16-Aug-06 Pax X30W LYTHSAL 3 1.5 
16-Aug-06 Pax X30W TYPHXGL 3 1.5 
16-Aug-06 Pax X30W MIKASCA 3 1.5 
16-Aug-06 Pax X30W POLYHDR 1 0.1 
16-Aug-06 Pax X30W AMARCAN 2 0.5 
16-Aug-06 Pax X30W ASCLINC 1 0.1 
16-Aug-06 Pax X30W VERNNOV 2 0.5 
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16-Aug-06 Pax X30W SPARAME 2 0.5 
16-Aug-06 Pax X30W RUMEVER 2 0.5 
16-Aug-06 Pax X30W ROSAPAL 2 0.5 
16-Aug-06 Pax X30W SCHOAME 1 0.1 
16-Aug-06 Pax X35W TYPHLAT 6 17.5 
16-Aug-06 Pax X35W ZIZAAQU1 6 17.5 
16-Aug-06 Pax X35W SAGILAT 5 7.5 
16-Aug-06 Pax X35W PELTVIR 1 0.1 
16-Aug-06 Pax X35W MIKASCA 5 7.5 
16-Aug-06 Pax X35W LEERORY 7 37.5 
16-Aug-06 Pax X35W PLUCODOO 3 1.5 
16-Aug-06 Pax X35W COMMCOM 4 3.5 
16-Aug-06 Pax X35W POLYPUN1 2 0.5 
16-Aug-06 Pax X35W ECHIWAL 3 1.5 
16-Aug-06 Pax X35W LIMNSPO 2 0.5 
16-Aug-06 Pax X35W CYPESTR 2 0.5 
16-Aug-06 Pax X35W ELEOOBT 2 0.5 
16-Aug-06 Pax X35W BIDELAE 1 0.1 
16-Aug-06 Pax X35W SONCOLE 3 1.5 
16-Aug-06 Pax X35W ELEOPAR 1 0.1 
16-Aug-06 Pax X35W AMARCAN 2 0.5 
16-Aug-06 Pax X35W PHRAAUS 6 17.5 
16-Aug-06 Pax X35W RANUSCLS 1 0.1 
16-Aug-06 Pax X35W UNK2 2 0.5 
16-Aug-06 Pax X35W SCHOTAB 2 0.5 
16-Aug-06 Pax X35W PONTCOR 1 0.1 
16-Aug-06 Pax X35W SIUMSUA 1 0.1 
16-Aug-06 Pax X35W HIBIMOSM 1 0.1 
16-Aug-06 Pax X35W PTILCAP 1 0.1 
16-Aug-06 Pax X35W CARECMS 2 0.5 
16-Aug-06 Pax X35W LAMI-S1 1 0.1 
16-Aug-06 Pax X35W MIMURINR 1 0.1 
16-Aug-06 Pax X35W POLYARI 1 0.1 
17-Aug-06 Pax X39W TYPHANS 8 62.5 
17-Aug-06 Pax X39W PELTVIR 5 7.5 
17-Aug-06 Pax X39W IMPACPN 5 7.5 
17-Aug-06 Pax X39W POLYARI 5 7.5 
17-Aug-06 Pax X39W SAGILAT 5 7.5 
17-Aug-06 Pax X39W BIDELAE 2 0.5 
17-Aug-06 Pax X39W LEERORY 2 0.5 
17-Aug-06 Pax X39W ZIZAAQU1 6 17.5 
17-Aug-06 Pax X39W POLYPUN1 3 1.5 
17-Aug-06 Pax X39W PONTCOR 2 0.5 
17-Aug-06 Pax X39W AMARCAN 3 1.5 
17-Aug-06 Pax X39W SIUMSUA 1 0.1 
17-Aug-06 Pax X39W NUPHLUT 2 0.5 
17-Aug-06 Pax X39W MIKASCA 2 0.5 
17-Aug-06 Pax X39W PILEPUMP 1 0.1 
17-Aug-06 Pax X39W SPARAME 2 0.5 
17-Aug-06 Pax X39W SCIR1S1 1 0.1 
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17-Aug-06 Pax X39W HIBIMOSM 2 0.5 
17-Aug-06 Pax X39W SCHOTAB 1 0.1 
17-Aug-06 Pax X39W LYTHSAL 1 0.1 
17-Aug-06 Pax X39W ECHIWAL 1 0.1 
17-Aug-06 Pax X39W PTILCAP 1 0.1 
15-Aug-06 Pax X43W SYMPPUNP 5 7.5 
15-Aug-06 Pax X43W PILEPUMP 7 37.5 
15-Aug-06 Pax X43W PELTVIR 6 17.5 
15-Aug-06 Pax X43W ACORCAL 8 62.5 
15-Aug-06 Pax X43W POLYSAG 2 0.5 
15-Aug-06 Pax X43W POLYARI 7 37.5 
15-Aug-06 Pax X43W GALITIN 3 1.5 
15-Aug-06 Pax X43W IMPACPN 5 7.5 
15-Aug-06 Pax X43W CUSCGROG 4 3.5 
15-Aug-06 Pax X43W BOEHCYL 3 1.5 
15-Aug-06 Pax X43W TYPHLAT 5 7.5 
15-Aug-06 Pax X43W MIKASCA 4 3.5 
15-Aug-06 Pax X43W HIBIMOSM 5 7.5 
15-Aug-06 Pax X43W CICUMACM 1 0.1 
15-Aug-06 Pax X43W COMMCOM 3 1.5 
15-Aug-06 Pax X43W LYSI1S1 1 0.1 
15-Aug-06 Pax X43W MENTARV 6 17.5 
15-Aug-06 Pax X43W SCIR1S1 3 1.5 
15-Aug-06 Pax X43W SPARAME 2 0.5 
15-Aug-06 Pax X43W POLYHDR 2 0.5 
15-Aug-06 Pax X43W SCHOTAB 3 1.5 
15-Aug-06 Pax X43W LEERORY 2 0.5 
15-Aug-06 Pax X43W NUPHLUT 2 0.5 
15-Aug-06 Pax X43W LOBECAR 1 0.1 
15-Aug-06 Pax X43W JUNCEFF 1 0.1 
15-Aug-06 Pax X47E SPARAME 5 7.5 
15-Aug-06 Pax X47E POLYARI 7 37.5 
15-Aug-06 Pax X47E POLYSAG 3 1.5 
15-Aug-06 Pax X47E SCIR1S1 8 62.5 
15-Aug-06 Pax X47E CUSCGROG 8 62.5 
15-Aug-06 Pax X47E PILEPUMP 8 62.5 
15-Aug-06 Pax X47E COMMCOM 5 7.5 
15-Aug-06 Pax X47E PELTVIR 7 37.5 
15-Aug-06 Pax X47E SYMPPUNP 6 17.5 
15-Aug-06 Pax X47E GALITIN 3 1.5 
15-Aug-06 Pax X47E LEERORY 3 1.5 
15-Aug-06 Pax X47E CINNARU 4 3.5 
15-Aug-06 Pax X47E IMPACPN 1 0.1 
15-Aug-06 Pax X47E ZIZAAQU1 4 3.5 
15-Aug-06 Pax X47E CICUMACM 2 0.5 
15-Aug-06 Pax X47E TYPHLAT 3 1.5 
15-Aug-06 Pax X47E POLYSAG 3 1.5 
15-Aug-06 Pax X47E CARECMS 3 1.5 
15-Aug-06 Pax X47E MENTARV 5 7.5 
15-Aug-06 Pax X47E CARESCOS 1 0.1 
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15-Aug-06 Pax X47E LYSI1S1 1 0.1 
15-Aug-06 Pax X47E MIKASCA 4 3.5 
15-Aug-06 Pax X47E LOBECAR 1 0.1 
15-Aug-06 Pax X47E CLEM1S1 1 0.1 
15-Aug-06 Pax X47E APIOAME 2 0.5 
15-Aug-06 Pax X47E LYSINUM 2 0.5 
15-Aug-06 Pax X47E CARECRN 2 0.5 
15-Aug-06 Pax X47E BIDEFRO 1 0.1 
15-Aug-06 Pax X47E SIUMSUA 3 1.5 
15-Aug-06 Pax X47E CARELUR 1 0.1 
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 Appendix C.  Raw Species and Plant Cover Data Mesocosm Study June 2007  
Date Mesocosm Species Frequency Cover Class Mid-Point Percent 

6/19/2007 1 Pilea pumila 12 7 37.5 
6/19/2007 1 Amaranthus cannabinu 5 7 37.5 
6/19/2007 1 Leersia oryzoides 20 6 17.5 
6/19/2007 1 Pluchea purpurascens 14 7 37.5 
6/19/2007 1 Polygonum arifolium 1 6 17.5 
6/19/2007 1 Polygonum punctatum  1 6 17.5 
6/19/2007 1 Mast. offi. 4 2 0.5 
6/19/2007 1 Typha angustifolia 5 2 0.5 
6/19/2007 1 Spartina patens 24 5 7.5 
6/19/2007 1 Spartina cynosuroides 1 3 1.5 
6/19/2007 1 Spartina alterniflora 7 5 7.5 
6/19/2007 1 Phragmites australis 4 3 1.5 
6/19/2007 1 Mikania scandens 5 3 1.5 
6/19/2007 1 Distichlis spicata 11 5 7.5 
6/19/2007 1 Cyprus escul. 1 2 0.5 
6/19/2007 1 Acorus calamus 2 3 1.5 
6/19/2007 1 Murdannia keisak 2 2 0.5 
6/19/2007 1 Peltandra virginica 1 2 0.5 
6/19/2007 2 Cuscuta gronovii 6 3 1.5 
6/19/2007 2 Pilea pumila 14 7 37.5 
6/19/2007 2 Amaranthus cannabinu 4 6 17.5 
6/19/2007 2 Polygonum arifolium 2 6 17.5 
6/19/2007 2 Leersia oryzoides 13 6 17.5 
6/19/2007 2 Polygonum punctatum  2 6 17.5 
6/19/2007 2 Spartina alterniflora 8 5 7.5 
6/19/2007 2 Spartina cynosuroides 1 3 1.5 
6/19/2007 2 Spartina patens 10 5 7.5 
6/19/2007 2 Distichlis spicata 16 5 7.5 
6/19/2007 2 Acorus calamus 4 3 1.5 
6/19/2007 2 Typha angustifolia 3 2 0.5 
6/19/2007 2 Mikania scandens 3 3 1.5 
6/19/2007 2 Pluchea purpurascens 12 8 62.5 
6/19/2007 2 Murdannia keisak 2 2 0.5 
6/19/2007 2 Phragmites australis 2 2 0.5 
6/19/2007 2 Schoenplectus sp. 1 2 0.5 
6/19/2007 2 Peltandra virginica 1 3 1.5 
6/19/2007 2 Mast. offi. 4 2 0.5 
6/19/2007 3 Amaranthus cannabinu 3 9 85 
6/19/2007 3 Pilea pumila 9 6 17.5 
6/19/2007 3 Leersia oryzoides 15 6 17.5 
6/19/2007 3 Mikania scandens 3 6 17.5 
6/19/2007 3 Pluchea purpurascens 16 7 37.5 
6/19/2007 3 Polygonum arifolium 3 7 37.5 
6/19/2007 3 Polygonum punctatum  1 7 37.5 
6/19/2007 3 Spartina patens 14 5 7.5 
6/19/2007 3 Spartina alterniflora 8 5 7.5 
6/19/2007 3 Spartina cynosuroides 1 2 0.5 
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6/19/2007 3 Typha angustifolia 3 2 0.5 
6/19/2007 3 Acorus calamus 4 3 1.5 
6/19/2007 3 Phragmites australis 2 3 1.5 
6/19/2007 3 Murdannia keisak 5 2 0.5 
6/19/2007 3 Cuscuta gronovii 3 3 1.5 
6/19/2007 3 Echina walt 3 4 3.5 
6/19/2007 3 Gal tinc 2 2 0.5 
6/19/2007 4 Amaranthus cannabinu 4 8 62.5 
6/19/2007 4 Polygonum arifolium 2 7 37.5 
6/19/2007 4 Polygonum sagittatum 1 6 17.5 
6/19/2007 4 Pilea pumila 8 6 17.5 
6/19/2007 4 Mikania scandens 4 5 7.5 
6/19/2007 4 Leersia oryzoides 13 6 17.5 
6/19/2007 4 Cuscuta gronovii 3 4 3.5 
6/19/2007 4 Spartina patens 14 5 7.5 
6/19/2007 4 Spartina alterniflora 5 5 7.5 
6/19/2007 4 Spartina cynosuroides 1 2 0.5 
6/19/2007 4 Phragmites australis 5 3 1.5 
6/19/2007 4 Peltandra virginica 1 2 0.5 
6/19/2007 4 Typha angustifolia 3 2 0.5 
6/19/2007 4 Polygonum punctatum  1 7 37.5 
6/19/2007 4 Acorus calamus 4 3 1.5 
6/19/2007 4 Murdannia keisak 4 3 1.5 
6/19/2007 4 Pluchea purpurascens 12 6 17.5 
6/19/2007 5 Pilea pumila 17 7 37.5 
6/19/2007 5 Amaranthus cannabinu 1 8 62.5 
6/19/2007 5 Polygonum sagittatum 1 4 3.5 
6/19/2007 5 Leersia oryzoides 21 6 17.5 
6/19/2007 5 Spartina cynosuroides 1 2 0.5 
6/19/2007 5 Phragmites australis 3 2 0.5 
6/19/2007 5 Mikania scandens 4 4 3.5 
6/19/2007 5 Spartina patens 10 5 7.5 
6/19/2007 5 Spartina alterniflora 4 5 7.5 
6/19/2007 5 Distichlis spicata 14 5 7.5 
6/19/2007 5 Acorus calamus 4 3 1.5 
6/19/2007 5 Pluchea purpurascens 20 7 37.5 
6/19/2007 5 Polygonum punctatum  1 6 17.5 
6/19/2007 5 Typha angustifolia 4 2 0.5 
6/19/2007 5 Polygonum arifolium 1 7 37.5 
6/19/2007 5 Murdannia keisak 2 2 0.5 
6/19/2007 5 Rorippa islandica 1 2 0.5 
6/19/2007 5 Aster puniceus 1 2 0.5 
6/19/2007 5 Mast. offi. 5 2 0.5 
6/19/2007 6 Echina walt 1 2 0.5 
6/19/2007 6 Amaranthus cannabinu 5 9 85 
6/19/2007 6 Pilea pumila 14 7 37.5 
6/19/2007 6 Leersia oryzoides 22 6 17.5 
6/19/2007 6 Pluchea purpurascens 22 7 37.5 
6/19/2007 6 Mikania scandens 3 4 3.5 
6/19/2007 6 Phragmites australis 3 4 3.5 
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6/19/2007 6 Acorus calamus 2 3 1.5 
6/19/2007 6 Spartina cynosuroides 1 2 0.5 
6/19/2007 6 Spartina patens 16 5 7.5 
6/19/2007 6 Spartina alterniflora 4 5 7.5 
6/19/2007 6 Distichlis spicata 14 5 7.5 
6/19/2007 6 Cuscuta gronovii 3 3 1.5 
6/19/2007 6 Polygonum sagittatum 2 3 1.5 
6/19/2007 6 Polygonum arifolium 1 6 17.5 
6/19/2007 6 Typha angustifolia 2 2 0.5 
6/19/2007 6 Schoenplectus sp. 1 2 0.5 
6/19/2007 6 Murdannia keisak 4 2 0.5 
6/19/2007 6 Aster puniceus 1 2 0.5 
6/19/2007 7 Amaranthus cannabinu 2 7 37.5 
6/19/2007 7 Pilea pumila 16 8 62.5 
6/19/2007 7 Mikania scandens 4 4 3.5 
6/19/2007 7 Leersia oryzoides 12 6 17.5 
6/19/2007 7 Pluchea purpurascens 17 8 62.5 
6/19/2007 7 Phragmites australis 2 4 3.5 
6/19/2007 7 Polygonum punctatum  1 5 7.5 
6/19/2007 7 Polygonum arifolium 3 7 37.5 
6/19/2007 7 Distichlis spicata 10 5 7.5 
6/19/2007 7 Spartina alterniflora 7 5 7.5 
6/19/2007 7 Spartina patens 15 5 7.5 
6/19/2007 7 Typha angustifolia 2 2 0.5 
6/19/2007 7 Acorus calamus 2 3 1.5 
6/19/2007 7 Cuscuta gronovii 1 2 0.5 
6/19/2007 7 Galium palustre 1 2 0.5 
6/19/2007 7 Spartina cynosuroides 1 3 1.5 
6/19/2007 8 Mast. offi. 2 2 0.5 
6/19/2007 8 Mikania scandens 2 4 3.5 
6/19/2007 8 Echina walt 2 6 17.5 
6/19/2007 8 Pluchea purpurascens 32 7 37.5 
6/19/2007 8 Pilea pumila 21 8 62.5 
6/19/2007 8 Polygonum sagittatum 1 5 7.5 
6/19/2007 8 Leersia oryzoides 17 6 17.5 
6/19/2007 8 Amaranthus cannabinu 1 6 17.5 
6/19/2007 8 Spartina cynosuroides 1 2 0.5 
6/19/2007 8 Polygonum punctatum  1 6 17.5 
6/19/2007 8 Phragmites australis 3 5 7.5 
6/19/2007 8 Gal tinc 1 2 0.5 
6/19/2007 8 Spartina patens 9 5 7.5 
6/19/2007 8 Spartina alterniflora 4 5 7.5 
6/19/2007 8 Distichlis spicata 10 5 7.5 
6/19/2007 8 Typha angustifolia 3 2 0.5 
6/19/2007 8 Cyprus escul. 2 2 0.5 
6/19/2007 8 Peltandra virginica 1 2 0.5 
6/19/2007 8 Acorus calamus 3 3 1.5 
6/19/2007 8 Polygonum arifolium 1 6 17.5 
6/19/2007 8 Murdannia keisak 1 2 0.5 
6/19/2007 8 Cuscuta gronovii 1 2 0.5 
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6/19/2007 9 Amaranthus cannabinu 3 9 85 
6/19/2007 9 Polygonum arifolium 3 8 62.5 
6/19/2007 9 Mikania scandens 4 4 3.5 
6/19/2007 9 Phragmites australis 2 2 0.5 
6/19/2007 9 Pluchea purpurascens 28 7 37.5 
6/19/2007 9 Leersia oryzoides 22 6 17.5 
6/19/2007 9 Murdannia keisak 6 2 0.5 
6/19/2007 9 Pilea pumila 12 6 17.5 
6/19/2007 9 Cuscuta gronovii 3 2 0.5 
6/19/2007 9 Typha angustifolia 2 2 0.5 
6/19/2007 9 Acorus calamus 3 3 1.5 
6/19/2007 9 Spartina patens 12 5 7.5 
6/19/2007 9 Bidens laevis 1 7 37.5 
6/19/2007 9 Spartina alterniflora 4 5 7.5 
6/19/2007 9 Spartina cynosuroides 1 2 0.5 
6/19/2007 9 Galium palustre 2 2 0.5 
6/19/2007 9 Polygonum sagittatum 1 5 7.5 
6/19/2007 9 Peltandra virginica 3 2 0.5 
6/19/2007 10 Amaranthus cannabinu 1 7 37.5 
6/19/2007 10 Bidens spp 2 (coronatus) 1 6 17.5 
6/19/2007 10 Pilea pumila 14 7 37.5 
6/19/2007 10 Leersia oryzoides 10 6 17.5 
6/19/2007 10 Mikania scandens 2 3 1.5 
6/19/2007 10 Phragmites australis 3 3 1.5 
6/19/2007 10 Spartina cynosuroides 1 2 0.5 
6/19/2007 10 Spartina patens 14 5 7.5 
6/19/2007 10 Spartina alterniflora 4 5 7.5 
6/19/2007 10 Distichlis spicata 11 5 7.5 
6/19/2007 10 Typha angustifolia 2 2 0.5 
6/19/2007 10 Murdannia keisak 1 2 0.5 
6/19/2007 10 Pluchea purpurascens 19 7 37.5 
6/19/2007 10 Aster puniceus 1 2 0.5 
6/19/2007 10 Acorus calamus 3 3 1.5 
6/19/2007 10 Polygonum arifolium 1 7 37.5 
6/19/2007 10 Galium palustre 1 2 0.5 
6/19/2007 10 Mast. offi. 1 2 0.5 
6/20/2007 11 Amaranthus cannabinu n/a 7 37.5 
6/20/2007 11 Polygonum punctatum  n/a 6 17.5 
6/20/2007 11 Pluchea purpurascens n/a 6 17.5 
6/20/2007 11 Pilea pumila n/a 7 37.5 
6/20/2007 11 Leersia oryzoides n/a 6 17.5 
6/20/2007 11 Murdannia keisak n/a 4 3.5 
6/20/2007 11 Phragmites australis n/a 2 0.5 
6/20/2007 11 Spartina patens n/a 5 7.5 
6/20/2007 11 Spartina cynosuroides n/a 5 7.5 
6/20/2007 11 Typha angustifolia n/a 2 0.5 
6/20/2007 11 Distichlis spicata n/a 5 7.5 
6/20/2007 11 Galium palustre n/a 2 0.5 
6/20/2007 11 Cuscuta gronovii n/a 3 1.5 
6/20/2007 11 Spartina alterniflora n/a 5 7.5 
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6/20/2007 11 Acorus calamus n/a 3 1.5 
6/20/2007 11 Mikania scandens n/a 5 7.5 
6/20/2007 11 Peltandra virginica n/a 3 1.5 
6/20/2007 12 Pilea pumila n/a 6 17.5 
6/20/2007 12 Polygonum arifolium n/a 8 62.5 
6/20/2007 12 Cuscuta gronovii n/a 5 7.5 
6/20/2007 12 Leersia oryzoides n/a 6 17.5 
6/20/2007 12 Murdannia keisak n/a 2 0.5 
6/20/2007 12 Typha angustifolia n/a 2 0.5 
6/20/2007 12 Polygonum punctatum  n/a 4 3.5 
6/20/2007 12 Spartina alterniflora n/a 5 7.5 
6/20/2007 12 Spartina patens n/a 5 7.5 
6/20/2007 12 Spartina cynosuroides n/a 3 1.5 
6/20/2007 12 Distichlis spicata n/a 5 7.5 
6/20/2007 12 Acorus calamus n/a 4 3.5 
6/20/2007 12 Mikania scandens n/a 6 17.5 
6/20/2007 12 Amaranthus cannabinu n/a 6 17.5 
6/20/2007 12 Pluchea purpurascens n/a 7 37.5 
6/20/2007 12 Phragmites australis n/a 2 0.5 
6/20/2007 12 Peltandra virginica n/a 2 0.5 
6/20/2007 13 Bidens laevis n/a 6 17.5 
6/20/2007 13 Polygonum punctatum  n/a 5 7.5 
6/20/2007 13 Amaranthus cannabinu n/a 7 37.5 
6/20/2007 13 Pilea pumila n/a 7 37.5 
6/20/2007 13 Spartina alterniflora n/a 5 7.5 
6/20/2007 13 Spartina patens n/a 5 7.5 
6/20/2007 13 Spartina cynosuroides n/a 3 1.5 
6/20/2007 13 Distichlis spicata n/a 5 7.5 
6/20/2007 13 Leersia oryzoides n/a 5 7.5 
6/20/2007 13 Polygonum arifolium n/a 7 37.5 
6/20/2007 13 Mikania scandens n/a 4 3.5 
6/20/2007 13 Typha angustifolia n/a 2 0.5 
6/20/2007 13 Phragmites australis n/a 5 7.5 
6/20/2007 13 Acorus calamus n/a 3 1.5 
6/20/2007 13 Pluchea purpurascens n/a 6 17.5 
6/20/2007 14 Mikania scandens n/a 6 17.5 
6/20/2007 14 Amaranthus cannabinu n/a 9 85 
6/20/2007 14 Polygonum punctatum  n/a 6 17.5 
6/20/2007 14 Phragmites australis n/a 6 17.5 
6/20/2007 14 Pluchea purpurascens n/a 6 17.5 
6/20/2007 14 Pilea pumila n/a 7 37.5 
6/20/2007 14 Leersia oryzoides n/a 6 17.5 
6/20/2007 14 Spartina patens n/a 5 7.5 
6/20/2007 14 Spartina cynosuroides n/a 2 0.5 
6/20/2007 14 Spartina alterniflora n/a 5 7.5 
6/20/2007 14 Typha angustifolia n/a 2 0.5 
6/20/2007 14 Acorus calamus n/a 3 1.5 
6/20/2007 14 Senecio sp.  n/a 2 0.5 
6/20/2007 14 Distichlis spicata n/a 5 7.5 
6/20/2007 15 Amaranthus cannabinu n/a 8 62.5 
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6/20/2007 15 Zizania aquatica n/a 6 17.5 
6/20/2007 15 Pluchea purpurascens n/a 7 37.5 
6/20/2007 15 Pilea pumila n/a 7 37.5 
6/20/2007 15 Polygonum sagittatum n/a 4 3.5 
6/20/2007 15 Leersia oryzoides n/a 6 17.5 
6/20/2007 15 Spartina patens n/a 5 7.5 
6/20/2007 15 Spartina alterniflora n/a 5 7.5 
6/20/2007 15 Spartina cynosuroides n/a 3 1.5 
6/20/2007 15 Aster puniceus n/a 2 0.5 
6/20/2007 15 Typha angustifolia n/a 2 0.5 
6/20/2007 15 Acorus calamus n/a 3 1.5 
6/20/2007 15 Phragmites australis n/a 3 1.5 
6/20/2007 15 Senecio sp.  n/a 2 0.5 
6/20/2007 15 Mikania scandens n/a 5 7.5 
6/20/2007 15 Apios americana n/a 3 1.5 
6/20/2007 15 Distichlis spicata n/a 5 7.5 
6/20/2007 15 Polygonum arifolium n/a 6 17.5 
6/20/2007 16 Acorus calamus n/a 5 7.5 
6/20/2007 16 Amaranthus cannabinu n/a 6 17.5 
6/20/2007 16 Polygonum arifolium n/a 8 62.5 
6/20/2007 16 Pilea pumila n/a 6 17.5 
6/20/2007 16 Phragmites australis n/a 5 7.5 
6/20/2007 16 Mikania scandens n/a 5 7.5 
6/20/2007 16 Pluchea purpurascens n/a 7 37.5 
6/20/2007 16 Leersia oryzoides n/a 6 17.5 
6/20/2007 16 Spartina patens n/a 5 7.5 
6/20/2007 16 Spartina cynosuroides n/a 2 0.5 
6/20/2007 16 Spartina alterniflora n/a 5 7.5 
6/20/2007 16 Distichlis spicata n/a 5 7.5 
6/20/2007 16 Typha angustifolia n/a 2 0.5 
6/20/2007 16 Aster puniceus n/a 2 0.5 
6/20/2007 16 Polygonum punctatum  n/a 5 7.5 
6/20/2007 17 Amaranthus cannabinu n/a 8 62.5 
6/20/2007 17 Polygonum arifolium n/a 7 37.5 
6/20/2007 17 Phragmites australis n/a 4 3.5 
6/20/2007 17 Pluchea purpurascens n/a 8 62.5 
6/20/2007 17 Mikania scandens n/a 5 7.5 
6/20/2007 17 Leersia oryzoides n/a 6 17.5 
6/20/2007 17 Polygonum sagittatum n/a 3 1.5 
6/20/2007 17 Cuscuta gronovii n/a 2 0.5 
6/20/2007 17 Spartina alterniflora n/a 5 7.5 
6/20/2007 17 Spartina patens n/a 5 7.5 
6/20/2007 17 Spartina cynosuroides n/a 4 3.5 
6/20/2007 17 Distichlis spicata n/a 5 7.5 
6/20/2007 17 Acorus calamus n/a 3 1.5 
6/20/2007 17 Typha angustifolia n/a 2 0.5 
6/20/2007 17 Polygonum punctatum  n/a 4 3.5 
6/20/2007 17 Echina walt n/a 6 17.5 
6/20/2007 17 Rorippa islandica n/a 2 0.5 
6/20/2007 18 Amaranthus cannabinu n/a 7 37.5 
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6/20/2007 18 Echina walt n/a 6 17.5 
6/20/2007 18 Phragmites australis n/a 5 7.5 
6/20/2007 18 Gal tinc n/a 2 0.5 
6/20/2007 18 Leersia oryzoides n/a 6 17.5 
6/20/2007 18 Polygonum sagittatum n/a 5 7.5 
6/20/2007 18 Impatiens capensis n/a 5 7.5 
6/20/2007 18 Pilea pumila n/a 6 17.5 
6/20/2007 18 Polygonum punctatum  n/a 5 7.5 
6/20/2007 18 Pluchea purpurascens n/a 6 17.5 
6/20/2007 18 Mikania scandens n/a 3 1.5 
6/20/2007 18 Cuscuta gronovii n/a 2 0.5 
6/20/2007 18 Spartina patens n/a 5 7.5 
6/20/2007 18 Spartina cynosuroides n/a 3 1.5 
6/20/2007 18 Spartina alterniflora n/a 5 7.5 
6/20/2007 18 Distichlis spicata n/a 5 7.5 
6/20/2007 18 Peltandra virginica n/a 2 0.5 
6/20/2007 18 Acorus calamus n/a 3 1.5 
6/20/2007 18 Typha angustifolia n/a 2 0.5 
6/20/2007 18 Lythrum salicaria n/a 2 0.5 
6/20/2007 18 Hibiscus sp. n/a 4 3.5 
6/20/2007 19 Amaranthus cannabinu n/a 6 17.5 
6/20/2007 19 Polygonum punctatum  n/a 6 17.5 
6/20/2007 19 Polygonum arifolium n/a 6 17.5 
6/20/2007 19 Mikania scandens n/a 5 7.5 
6/20/2007 19 Polygonum sagittatum n/a 4 3.5 
6/20/2007 19 Cuscuta gronovii n/a 2 0.5 
6/20/2007 19 Leersia oryzoides n/a 6 17.5 
6/20/2007 19 Phragmites australis n/a 5 7.5 
6/20/2007 19 Spartina cynosuroides n/a 2 0.5 
6/20/2007 19 Pluchea purpurascens n/a 7 37.5 
6/20/2007 19 Spartina patens n/a 5 7.5 
6/20/2007 19 Spartina alterniflora n/a 5 7.5 
6/20/2007 19 Distichlis spicata n/a 5 7.5 
6/20/2007 19 Pilea pumila n/a 6 17.5 
6/20/2007 19 Echina walt n/a 5 7.5 
6/20/2007 19 Typha angustifolia n/a 2 0.5 
6/20/2007 19 Acorus calamus n/a 3 1.5 
6/20/2007 19 Murdannia keisak n/a 2 0.5 
6/20/2007 19 Peltandra virginica n/a 6 17.5 
6/20/2007 19 Aster puniceus n/a 2 0.5 
6/20/2007 20 Sonchus sp. n/a 6 17.5 
6/20/2007 20 Polygonum arifolium n/a 8 62.5 
6/20/2007 20 Echina walt n/a 7 37.5 
6/20/2007 20 Mikania scandens n/a 4 3.5 
6/20/2007 20 Leersia oryzoides n/a 4 3.5 
6/20/2007 20 Phragmites australis n/a 3 1.5 
6/20/2007 20 Spartina cynosuroides n/a 3 1.5 
6/20/2007 20 Spartina patens n/a 5 7.5 
6/20/2007 20 Spartina alterniflora n/a 5 7.5 
6/20/2007 20 Acorus calamus n/a 3 1.5 
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6/20/2007 20 Pilea pumila n/a 7 37.5 
6/20/2007 20 Pluchea purpurascens n/a 6 17.5 
6/20/2007 20 Peltandra virginica n/a 2 0.5 
6/20/2007 20 Typha angustifolia n/a 2 0.5 
6/20/2007 20 Distichlis spicata n/a 5 7.5 
6/20/2007 20 Nasturtium officinale n/a 2 0.5 
6/20/2007 20 Murdannia keisak n/a 2 0.5 
6/20/2007 21 Amaranthus cannabinu n/a 7 37.5 
6/20/2007 21 Polygonum arifolium n/a 9 85 
6/20/2007 21 Leersia oryzoides n/a 6 17.5 
6/20/2007 21 Pilea pumila n/a 7 37.5 
6/20/2007 21 Typha angustifolia n/a 2 0.5 
6/20/2007 21 Mikania scandens n/a 5 7.5 
6/20/2007 21 Phragmites australis n/a 4 3.5 
6/20/2007 21 Spartina patens n/a 5 7.5 
6/20/2007 21 Spartina alterniflora n/a 5 7.5 
6/20/2007 21 Spartina cynosuroides n/a 4 3.5 
6/20/2007 21 Pluchea purpurascens n/a 6 17.5 
6/20/2007 21 Acorus calamus n/a 3 1.5 
6/20/2007 21 Distichlis spicata n/a 5 7.5 
6/20/2007 21 Aster puniceus n/a 2 0.5 
6/20/2007 21 Murdannia keisak n/a 2 0.5 
6/20/2007 21 Rorippa islandica n/a 2 0.5 
6/20/2007 21 Lythrum salicaria n/a 2 0.5 
6/20/2007 22 Amaranthus cannabinu n/a 8 62.5 
6/20/2007 22 Polygonum punctatum  n/a 7 37.5 
6/20/2007 22 Mikania scandens n/a 6 17.5 
6/20/2007 22 Leersia oryzoides n/a 5 7.5 
6/20/2007 22 Pilea pumila n/a 6 17.5 
6/20/2007 22 Pluchea purpurascens n/a 7 37.5 
6/20/2007 22 Cuscuta gronovii n/a 2 0.5 
6/20/2007 22 Boehmeria cylindrica n/a 2 0.5 
6/20/2007 22 Gal tinc n/a 2 0.5 
6/20/2007 22 Phragmites australis n/a 2 0.5 
6/20/2007 22 Spartina patens n/a 5 7.5 
6/20/2007 22 Spartina cynosuroides n/a 3 1.5 
6/20/2007 22 Spartina alterniflora n/a 5 7.5 
6/20/2007 22 Typha angustifolia n/a 2 0.5 
6/20/2007 22 Acorus calamus n/a 3 1.5 
6/20/2007 22 Polygonum sagittatum n/a 4 3.5 
6/20/2007 22 Polygonum arifolium n/a 7 37.5 
6/20/2007 22 Murdannia keisak n/a 2 0.5 
6/20/2007 23 Amaranthus cannabinu n/a 6 17.5 
6/20/2007 23 Polygonum arifolium n/a 7 37.5 
6/20/2007 23 Echina walt n/a 7 37.5 
6/20/2007 23 Pluchea purpurascens n/a 8 62.5 
6/20/2007 23 Leersia oryzoides n/a 6 17.5 
6/20/2007 23 Cuscuta gronovii n/a 2 0.5 
6/20/2007 23 Phragmites australis n/a 2 0.5 
6/20/2007 23 Spartina cynosuroides n/a 2 0.5 
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6/20/2007 23 Spartina patens n/a 5 7.5 
6/20/2007 23 Spartina alterniflora n/a 5 7.5 
6/20/2007 23 Distichlis spicata n/a 5 7.5 
6/20/2007 23 Pilea pumila n/a 4 3.5 
6/20/2007 23 Typha angustifolia n/a 2 0.5 
6/20/2007 23 Acorus calamus n/a 3 1.5 
6/20/2007 23 Peltandra virginica n/a 2 0.5 
6/20/2007 23 Mikania scandens n/a 4 3.5 
6/20/2007 23 Hibiscus sp. n/a 2 0.5 
6/20/2007 24 Amaranthus cannabinu n/a 6 17.5 
6/20/2007 24 Leersia oryzoides n/a 6 17.5 
6/20/2007 24 Polygonum arifolium n/a 8 62.5 
6/20/2007 24 Typha angustifolia n/a 2 0.5 
6/20/2007 24 Phragmites australis n/a 3 1.5 
6/20/2007 24 Cuscuta gronovii n/a 2 0.5 
6/20/2007 24 Mikania scandens n/a 5 7.5 
6/20/2007 24 Spartina cynosuroides n/a 2 0.5 
6/20/2007 24 Spartina patens n/a 5 7.5 
6/20/2007 24 Spartina alterniflora n/a 5 7.5 
6/20/2007 24 Distichlis spicata n/a 5 7.5 
6/20/2007 24 Pluchea purpurascens n/a 6 17.5 
6/20/2007 24 Acorus calamus n/a 3 1.5 
6/20/2007 24 Murdannia keisak n/a 2 0.5 
6/20/2007 24 Pilea pumila n/a 6 17.5 
6/20/2007 25 Amaranthus cannabinu n/a 7 37.5 
6/20/2007 25 Leersia oryzoides n/a 6 17.5 
6/20/2007 25 Polygonum punctatum  n/a 6 17.5 
6/20/2007 25 Pilea pumila n/a 6 17.5 
6/20/2007 25 Cuscuta gronovii n/a 2 0.5 
6/20/2007 25 Mikania scandens n/a 4 3.5 
6/20/2007 25 Phragmites australis n/a 3 1.5 
6/20/2007 25 Spartina cynosuroides n/a 2 0.5 
6/20/2007 25 Bidens laevis n/a 6 17.5 
6/20/2007 25 Spartina alterniflora n/a 5 7.5 
6/20/2007 25 Spartina patens n/a 5 7.5 
6/20/2007 25 Distichlis spicata n/a 5 7.5 
6/20/2007 25 Acorus calamus n/a 3 1.5 
6/20/2007 25 Typha angustifolia n/a 2 0.5 
6/20/2007 25 Pluchea purpurascens n/a 6 17.5 
6/20/2007 25 Polygonum arifolium n/a 7 37.5 
6/20/2007 25 Echina walt n/a 6 17.5 
6/20/2007 25 Polygonum sagittatum n/a 4 3.5 
6/20/2007 26 Amaranthus cannabinu n/a 6 17.5 
6/20/2007 26 Pluchea purpurascens n/a 6 17.5 
6/20/2007 26 Polygonum arifolium n/a 9 85 
6/20/2007 26 Pilea pumila n/a 5 7.5 
6/20/2007 26 Phragmites australis n/a 3 1.5 
6/20/2007 26 Mikania scandens n/a 3 1.5 
6/20/2007 26 Polygonum sagittatum n/a 4 3.5 
6/20/2007 26 Gal tinc n/a 2 0.5 
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6/20/2007 26 Cuscuta gronovii n/a 2 0.5 
6/20/2007 26 Spartina cynosuroides n/a 3 1.5 
6/20/2007 26 Spartina alterniflora n/a 5 7.5 
6/20/2007 26 Spartina patens n/a 5 7.5 
6/20/2007 26 Distichlis spicata n/a 5 7.5 
6/20/2007 26 Typha angustifolia n/a 2 0.5 
6/20/2007 26 Acorus calamus n/a 3 1.5 
6/20/2007 26 Aster puniceus n/a 2 0.5 
6/20/2007 26 Leersia oryzoides n/a 6 17.5 
6/20/2007 27 Amaranthus cannabinu n/a 8 62.5 
6/20/2007 27 Leersia oryzoides n/a 6 17.5 
6/20/2007 27 Polygonum arifolium n/a 7 37.5 
6/20/2007 27 Pluchea purpurascens n/a 6 17.5 
6/20/2007 27 Pilea pumila n/a 6 17.5 
6/20/2007 27 Polygonum sagittatum n/a 4 3.5 
6/20/2007 27 Phragmites australis n/a 3 1.5 
6/20/2007 27 Spartina cynosuroides n/a 3 1.5 
6/20/2007 27 Cuscuta gronovii n/a 2 0.5 
6/20/2007 27 Typha angustifolia n/a 2 0.5 
6/20/2007 27 Acorus calamus n/a 3 1.5 
6/20/2007 27 Spartina patens n/a 5 7.5 
6/20/2007 27 Spartina alterniflora n/a 5 7.5 
6/20/2007 27 Distichlis spicata n/a 5 7.5 
6/20/2007 27 Mikania scandens n/a 5 7.5 
6/20/2007 28 Murdannia keisak n/a 2 0.5 
6/20/2007 28 Amaranthus cannabinu n/a 8 62.5 
6/20/2007 28 Polygonum arifolium n/a 7 37.5 
6/20/2007 28 Leersia oryzoides n/a 6 17.5 
6/20/2007 28 Polygonum punctatum  n/a 4 3.5 
6/20/2007 28 Pluchea purpurascens n/a 7 37.5 
6/20/2007 28 Polygonum sagittatum n/a 4 3.5 
6/20/2007 28 Mikania scandens n/a 5 7.5 
6/20/2007 28 Pilea pumila n/a 6 17.5 
6/20/2007 28 Phragmites australis n/a 3 1.5 
6/20/2007 28 Spartina cynosuroides n/a 2 0.5 
6/20/2007 28 Spartina patens n/a 5 7.5 
6/20/2007 28 Spartina alterniflora n/a 5 7.5 
6/20/2007 28 Distichlis spicata n/a 5 7.5 
6/20/2007 28 Typha angustifolia n/a 2 0.5 
6/20/2007 28 Acorus calamus n/a 3 1.5 
6/20/2007 28 Cuscuta gronovii n/a 2 0.5 
6/20/2007 28 Peltandra virginica n/a 2 0.5 
6/20/2007 29 Amaranthus cannabinu n/a 7 37.5 
6/20/2007 29 Mikania scandens n/a 6 17.5 
6/20/2007 29 Leersia oryzoides n/a 6 17.5 
6/20/2007 29 Polygonum punctatum  n/a 6 17.5 
6/20/2007 29 Polygonum sagittatum n/a 5 7.5 
6/20/2007 29 Pluchea purpurascens n/a 7 37.5 
6/20/2007 29 Aster puniceus n/a 2 0.5 
6/20/2007 29 Cuscuta gronovii n/a 2 0.5 
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6/20/2007 29 Pilea pumila n/a 7 37.5 
6/20/2007 29 Gal tinc n/a 2 0.5 
6/20/2007 29 Phragmites australis n/a 2 0.5 
6/20/2007 29 Spartina cynosuroides n/a 2 0.5 
6/20/2007 29 Spartina patens n/a 5 7.5 
6/20/2007 29 Spartina alterniflora n/a 5 7.5 
6/20/2007 29 Distichlis spicata n/a 5 7.5 
6/20/2007 29 Typha angustifolia n/a 2 0.5 
6/20/2007 29 Acorus calamus n/a 3 1.5 
6/20/2007 29 Peltandra virginica n/a 2 0.5 
6/20/2007 29 Polygonum arifolium n/a 6 17.5 
6/20/2007 30 Phragmites australis n/a 4 3.5 
6/20/2007 30 Polygonum sp. 1 n/a 5 7.5 
6/20/2007 30 Cuscuta gronovii n/a 7 37.5 
6/20/2007 30 Polygonum arifolium n/a 8 62.5 
6/20/2007 30 Mikania scandens n/a 6 17.5 
6/20/2007 30 Leersia oryzoides n/a 5 7.5 
6/20/2007 30 Pluchea purpurascens n/a 7 37.5 
6/20/2007 30 Pilea pumila n/a 6 17.5 
6/20/2007 30 Zizania aquatica n/a 5 7.5 
6/20/2007 30 Peltandra virginica n/a 2 0.5 
6/20/2007 30 Spartina cynosuroides n/a 2 0.5 
6/20/2007 30 Spartina patens n/a 5 7.5 
6/20/2007 30 Spartina alterniflora n/a 5 7.5 
6/20/2007 30 Distichlis spicata n/a 5 7.5 
6/20/2007 30 Typha angustifolia n/a 2 0.5 
6/20/2007 30 Acorus calamus n/a 3 1.5 
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Appendix D.  Raw Species and Plant Cover Data Mesocosm Study September 2007 

Date Mesocosm Species Frequency Cover Class 
Mid-Point 
Percent 

9/13/2007 1 Pilea pumila n/a 6 17.5 
9/13/2007 1 Amaranthus cannabinu n/a 7 37.5 
9/13/2007 1 Leersia oryzoides n/a 7 37.5 
9/13/2007 1 Pluchea purpurascens n/a 5 7.5 
9/13/2007 1 Polygonum arifolium n/a 6 17.5 
9/13/2007 1 Polygonum punctatum  n/a 6 17.5 
9/13/2007 1 Mast. offi. n/a 0 0 
9/13/2007 1 Typha angustifolia n/a 3 1.5 
9/13/2007 1 Spartina patens n/a 2 0.5 
9/13/2007 1 Spartina cynosuroides n/a 2 0.5 
9/13/2007 1 Spartina alterniflora n/a 0 0 
9/13/2007 1 Phragmites australis n/a 5 7.5 
9/13/2007 1 Mikania scandens n/a 6 17.5 
9/13/2007 1 Distichlis spicata n/a 3 1.5 
9/13/2007 1 Cyprus escul. n/a 2 0.5 
9/13/2007 1 Acorus calamus n/a 4 3.5 
9/13/2007 1 Murdannia keisak n/a 4 3.5 
9/13/2007 1 Peltandra virginica n/a 0 0 
9/13/2007 2 Cuscuta gronovii n/a 4 3.5 
9/13/2007 2 Pilea pumila n/a 0 0 
9/13/2007 2 Amaranthus cannabinu n/a 6 17.5 
9/13/2007 2 Polygonum arifolium n/a 6 17.5 
9/13/2007 2 Leersia oryzoides n/a 7 37.5 
9/13/2007 2 Polygonum punctatum  n/a 6 17.5 
9/13/2007 2 Spartina alterniflora n/a 0 0 
9/13/2007 2 Spartina cynosuroides n/a 3 1.5 
9/13/2007 2 Spartina patens n/a 5 7.5 
9/13/2007 2 Distichlis spicata n/a 3 1.5 
9/13/2007 2 Acorus calamus n/a 4 3.5 
9/13/2007 2 Typha angustifolia n/a 0 0 
9/13/2007 2 Mikania scandens n/a 6 17.5 
9/13/2007 2 Pluchea purpurascens n/a 5 7.5 
9/13/2007 2 Murdannia keisak n/a 0 0 
9/13/2007 2 Phragmites australis n/a 0 0 
9/13/2007 2 Schoenplectus sp. n/a 0 0 
9/13/2007 2 Peltandra virginica n/a 0 0 
9/13/2007 2 Mast. offi. n/a 0 0 
9/11/2007 3 Amaranthus cannabinu n/a 8 62.5 
9/11/2007 3 Pilea pumila n/a 5 7.5 
9/11/2007 3 Leersia oryzoides n/a 7 37.5 
9/11/2007 3 Mikania scandens n/a 5 7.5 
9/11/2007 3 Pluchea purpurascens n/a 5 7.5 
9/11/2007 3 Polygonum arifolium n/a 5 7.5 
9/11/2007 3 Polygonum punctatum  n/a 0 0 
9/11/2007 3 Spartina patens n/a 5 7.5 
9/11/2007 3 Spartina alterniflora n/a 0 0 
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9/11/2007 3 Spartina cynosuroides n/a 4 3.5 
9/11/2007 3 Typha angustifolia n/a 2 0.5 
9/11/2007 3 Acorus calamus n/a 3 1.5 
9/11/2007 3 Phragmites australis n/a 3 1.5 
9/11/2007 3 Murdannia keisak n/a 2 0.5 
9/11/2007 3 Cuscuta gronovii n/a 2 0.5 
9/11/2007 3 Echina Walt n/a 6 17.5 
9/11/2007 3 Gal tinc n/a 2 0.5 
9/11/2007 3 Kost vir n/a 3 1.5 
9/6/2007 4 Amaranthus cannabinu n/a 6 17.5 
9/6/2007 4 Polygonum arifolium n/a 0 0 
9/6/2007 4 Polygonum sagittatum n/a 0 0 
9/6/2007 4 Pilea pumila n/a 0 0 
9/6/2007 4 Mikania scandens n/a 0 0 
9/6/2007 4 Leersia oryzoides n/a 6 17.5 
9/6/2007 4 Cuscuta gronovii n/a 0 0 
9/6/2007 4 Spartina patens n/a 4 3.5 
9/6/2007 4 Spartina alterniflora n/a 6 17.5 
9/6/2007 4 Spartina cynosuroides n/a 5 7.5 
9/6/2007 4 Phragmites australis n/a 6 17.5 
9/6/2007 4 Peltandra virginica n/a 0 0 
9/6/2007 4 Typha angustifolia n/a 0 0 
9/6/2007 4 Polygonum punctatum  n/a 7 37.5 
9/6/2007 4 Acorus calamus n/a 0 0 
9/6/2007 4 Murdannia keisak n/a 0 0 
9/6/2007 4 Pluchea purpurascens n/a 0 0 
9/13/2007 5 Pilea pumila n/a 7 37.5 
9/13/2007 5 Amaranthus cannabinu n/a 8 62.5 
9/13/2007 5 Polygonum sagittatum n/a 0 0 
9/13/2007 5 Leersia oryzoides n/a 5 7.5 
9/13/2007 5 Spartina cynosuroides n/a 3 1.5 
9/13/2007 5 Phragmites australis n/a 5 7.5 
9/13/2007 5 Mikania scandens n/a 6 17.5 
9/13/2007 5 Spartina patens n/a 2 0.5 
9/13/2007 5 Spartina alterniflora n/a 2 0.5 
9/13/2007 5 Distichlis spicata n/a 0 0 
9/13/2007 5 Acorus calamus n/a 2 0.5 
9/13/2007 5 Pluchea purpurascens n/a 3 1.5 
9/13/2007 5 Polygonum punctatum  n/a 6 17.5 
9/13/2007 5 Typha angustifolia n/a 2 0.5 
9/13/2007 5 Polygonum arifolium n/a 6 17.5 
9/13/2007 5 Murdannia keisak n/a 3 1.5 
9/13/2007 5 Rorippa islandica n/a 0 0 
9/13/2007 5 Aster puniceus n/a 0 0 
9/13/2007 5 Mast. offi. n/a 0 0 
9/13/2007 5 Cyprus strig n/a 3 1.5 
9/11/2007 6 Echina Walt n/a 5 7.5 
9/11/2007 6 Amaranthus cannabinu n/a 8 62.5 
9/11/2007 6 Pilea pumila n/a 7 37.5 
9/11/2007 6 Leersia oryzoides n/a 6 17.5 
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9/11/2007 6 Pluchea purpurascens n/a 6 17.5 
9/11/2007 6 Mikania scandens n/a 6 17.5 
9/11/2007 6 Phragmites australis n/a 6 17.5 
9/11/2007 6 Acorus calamus n/a 4 3.5 
9/11/2007 6 Spartina cynosuroides n/a 4 3.5 
9/11/2007 6 Spartina patens n/a 3 1.5 
9/11/2007 6 Spartina alterniflora n/a 3 1.5 
9/11/2007 6 Distichlis spicata n/a 2 0.5 
9/11/2007 6 Cuscuta gronovii n/a 5 7.5 
9/11/2007 6 Polygonum sagittatum n/a 0 0 
9/11/2007 6 Polygonum arifolium n/a 4 3.5 
9/11/2007 6 Typha angustifolia n/a 2 0.5 
9/11/2007 6 Schoenplectus sp. n/a 0 0 
9/11/2007 6 Murdannia keisak n/a 0 0 
9/11/2007 6 Aster puniceus n/a 0 0 
9/13/2007 7 Amaranthus cannabinu n/a 8 62.5 
9/13/2007 7 Pilea pumila n/a 0 0 
9/13/2007 7 Mikania scandens n/a 0 0 
9/13/2007 7 Leersia oryzoides n/a 4 3.5 
9/13/2007 7 Pluchea purpurascens n/a 0 0 
9/13/2007 7 Phragmites australis n/a 5 7.5 
9/13/2007 7 Polygonum punctatum  n/a 0 0 
9/13/2007 7 Polygonum arifolium n/a 0 0 
9/13/2007 7 Distichlis spicata n/a 2 0.5 
9/13/2007 7 Spartina alterniflora n/a 3 1.5 
9/13/2007 7 Spartina patens n/a 5 7.5 
9/13/2007 7 Typha angustifolia n/a 2 0.5 
9/13/2007 7 Acorus calamus n/a 2 0.5 
9/13/2007 7 Cuscuta gronovii n/a 0 0 
9/13/2007 7 Galium palustre n/a 0 0 
9/13/2007 7 Spartina cynosuroides n/a 4 3.5 
9/13/2007 8 Mast. offi. n/a 0 0 
9/13/2007 8 Mikania scandens n/a 7 37.5 
9/13/2007 8 Echina Walt n/a 8 62.5 
9/13/2007 8 Pluchea purpurascens n/a 6 17.5 
9/13/2007 8 Pilea pumila n/a 2 0.5 
9/13/2007 8 Polygonum sagittatum n/a 0 0 
9/13/2007 8 Leersia oryzoides n/a 5 7.5 
9/13/2007 8 Amaranthus cannabinu n/a 6 17.5 
9/13/2007 8 Spartina cynosuroides n/a 2 0.5 
9/13/2007 8 Polygonum punctatum  n/a 6 17.5 
9/13/2007 8 Phragmites australis n/a 5 7.5 
9/13/2007 8 Gal tinc n/a 0 0 
9/13/2007 8 Spartina patens n/a 2 0.5 
9/13/2007 8 Spartina alterniflora n/a 3 1.5 
9/13/2007 8 Distichlis spicata n/a 2 0.5 
9/13/2007 8 Typha angustifolia n/a 0 0 
9/13/2007 8 Cyprus escul. n/a 4 3.5 
9/13/2007 8 Peltandra virginica n/a 0 0 
9/13/2007 8 Acorus calamus n/a 2 0.5 
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9/13/2007 8 Polygonum arifolium n/a 7 37.5 
9/13/2007 8 Murdannia keisak n/a 0 0 
9/13/2007 8 Cuscuta gronovii n/a 0 0 
9/13/2007 8 Uni dic n/a 2 0.5 
9/13/2007 8 Boehmeria cylindrica n/a 3 1.5 
9/13/2007 9 Amaranthus cannabinu n/a 6 17.5 
9/13/2007 9 Polygonum arifolium n/a 5 7.5 
9/13/2007 9 Mikania scandens n/a 7 37.5 
9/13/2007 9 Phragmites australis n/a 5 7.5 
9/13/2007 9 Pluchea purpurascens n/a 4 3.5 
9/13/2007 9 Leersia oryzoides n/a 7 37.5 
9/13/2007 9 Murdannia keisak n/a 5 7.5 
9/13/2007 9 Pilea pumila n/a 5 7.5 
9/13/2007 9 Cuscuta gronovii n/a 4 3.5 
9/13/2007 9 Typha angustifolia n/a 0 0 
9/13/2007 9 Acorus calamus n/a 4 3.5 
9/13/2007 9 Spartina patens n/a 5 7.5 
9/13/2007 9 Bidens laevis n/a 8 62.5 
9/13/2007 9 Spartina alterniflora n/a 4 3.5 
9/13/2007 9 Spartina cynosuroides n/a 3 1.5 
9/13/2007 9 Galium palustre n/a 2 0.5 
9/13/2007 9 Polygonum sagittatum n/a 0 0 
9/13/2007 9 Peltandra virginica n/a 3 1.5 
9/13/2007 9 Distichlis spicata n/a 0 0 
9/11/2007 10 Amaranthus cannabinu n/a 7 37.5 
9/11/2007 10 Bidens spp 2 (coronatus) n/a 0 0 
9/11/2007 10 Pilea pumila n/a 0 0 
9/11/2007 10 Leersia oryzoides n/a 6 17.5 
9/11/2007 10 Mikania scandens n/a 6 17.5 
9/11/2007 10 Phragmites australis n/a 5 7.5 
9/11/2007 10 Spartina cynosuroides n/a 0 0 
9/11/2007 10 Spartina patens n/a 6 17.5 
9/11/2007 10 Spartina alterniflora n/a 0 0 
9/11/2007 10 Distichlis spicata n/a 3 1.5 
9/11/2007 10 Typha angustifolia n/a 0 0 
9/11/2007 10 Murdannia keisak n/a 2 0.5 
9/11/2007 10 Pluchea purpurascens n/a 4 3.5 
9/11/2007 10 Aster puniceus n/a 3 1.5 
9/11/2007 10 Acorus calamus n/a 4 3.5 
9/11/2007 10 Polygonum arifolium n/a 6 17.5 
9/11/2007 10 Galium palustre n/a 0 0 
9/11/2007 10 Mast. offi. n/a 0 0 
9/11/2007 10 Juncus sp. n/a 2 0.5 
9/11/2007 11 Amaranthus cannabinu n/a 6 17.5 
9/11/2007 11 Polygonum punctatum  n/a 0 0 
9/11/2007 11 Pluchea purpurascens n/a 0 0 
9/11/2007 11 Pilea pumila n/a 6 17.5 
9/11/2007 11 Leersia oryzoides n/a 7 37.5 
9/11/2007 11 Murdannia keisak n/a 5 7.5 
9/11/2007 11 Phragmites australis n/a 0 0 
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9/11/2007 11 Spartina patens n/a 5 7.5 
9/11/2007 11 Spartina cynosuroides n/a 5 7.5 
9/11/2007 11 Typha angustifolia n/a 0 0 
9/11/2007 11 Distichlis spicata n/a 3 1.5 
9/11/2007 11 Galium palustre n/a 0 0 
9/11/2007 11 Cuscuta gronovii n/a 2 0.5 
9/11/2007 11 Spartina alterniflora n/a 4 3.5 
9/11/2007 11 Acorus calamus n/a 4 3.5 
9/11/2007 11 Mikania scandens n/a 0 0 
9/11/2007 11 Peltandra virginica n/a 3 1.5 
9/6/2007 12 Pilea pumila n/a 2 0.5 
9/6/2007 12 Polygonum arifolium n/a 6 17.5 
9/6/2007 12 Cuscuta gronovii n/a 2 0.5 
9/6/2007 12 Leersia oryzoides n/a 8 62.5 
9/6/2007 12 Murdannia keisak n/a 0 0 
9/6/2007 12 Typha angustifolia n/a 0 0 
9/6/2007 12 Polygonum punctatum  n/a 5 7.5 
9/6/2007 12 Spartina alterniflora n/a 0 0 
9/6/2007 12 Spartina patens n/a 3 1.5 
9/6/2007 12 Spartina cynosuroides n/a 3 1.5 
9/6/2007 12 Distichlis spicata n/a 2 0.5 
9/6/2007 12 Acorus calamus n/a 6 17.5 
9/6/2007 12 Mikania scandens n/a 7 37.5 
9/6/2007 12 Amaranthus cannabinu n/a 5 7.5 
9/6/2007 12 Pluchea purpurascens n/a 0 0 
9/6/2007 12 Phragmites australis n/a 4 3.5 
9/6/2007 12 Peltandra virginica n/a 2 0.5 
9/13/2007 13 Bidens laevis n/a 6 17.5 
9/13/2007 13 Polygonum punctatum  n/a 7 37.5 
9/13/2007 13 Amaranthus cannabinu n/a 7 37.5 
9/13/2007 13 Pilea pumila n/a 5 7.5 
9/13/2007 13 Spartina alterniflora n/a 2 0.5 
9/13/2007 13 Spartina patens n/a 4 3.5 
9/13/2007 13 Spartina cynosuroides n/a 3 1.5 
9/13/2007 13 Distichlis spicata n/a 0 0 
9/13/2007 13 Leersia oryzoides n/a 6 17.5 
9/13/2007 13 Polygonum arifolium n/a 5 7.5 
9/13/2007 13 Mikania scandens n/a 6 17.5 
9/13/2007 13 Typha angustifolia n/a 0 0 
9/13/2007 13 Phragmites australis n/a 5 7.5 
9/13/2007 13 Acorus calamus n/a 4 3.5 
9/13/2007 13 Pluchea purpurascens n/a 5 7.5 
9/11/2007 14 Mikania scandens n/a 7 37.5 
9/11/2007 14 Amaranthus cannabinu n/a 7 37.5 
9/11/2007 14 Polygonum punctatum  n/a 5 7.5 
9/11/2007 14 Phragmites australis n/a 4 3.5 
9/11/2007 14 Pluchea purpurascens n/a 3 1.5 
9/11/2007 14 Pilea pumila n/a 7 37.5 
9/11/2007 14 Leersia oryzoides n/a 8 62.5 
9/11/2007 14 Spartina patens n/a 5 7.5 
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9/11/2007 14 Spartina cynosuroides n/a 4 3.5 
9/11/2007 14 Spartina alterniflora n/a 0 0 
9/11/2007 14 Typha angustifolia n/a 3 1.5 
9/11/2007 14 Acorus calamus n/a 4 3.5 
9/11/2007 14 Senecio sp.  n/a 0 0 
9/11/2007 14 Distichlis spicata n/a 2 0.5 
9/11/2007 14 Peltandra virginica n/a 2 0.5 
9/11/2007 14 Cyperus sp.  n/a 4 3.5 
9/11/2007 15 Amaranthus cannabinu n/a 8 62.5 
9/11/2007 15 Zizania aquatica n/a 5 7.5 
9/11/2007 15 Pluchea purpurascens n/a 6 17.5 
9/11/2007 15 Pilea pumila n/a 6 17.5 
9/11/2007 15 Polygonum sagittatum n/a 0 0 
9/11/2007 15 Leersia oryzoides n/a 7 37.5 
9/11/2007 15 Spartina patens n/a 6 17.5 
9/11/2007 15 Spartina alterniflora n/a 0 0 
9/11/2007 15 Spartina cynosuroides n/a 3 1.5 
9/11/2007 15 Aster puniceus n/a 5 7.5 
9/11/2007 15 Typha angustifolia n/a 2 0.5 
9/11/2007 15 Acorus calamus n/a 2 0.5 
9/11/2007 15 Phragmites australis n/a 4 3.5 
9/11/2007 15 Senecio sp.  n/a 0 0 
9/11/2007 15 Mikania scandens n/a 6 17.5 
9/11/2007 15 Apios americana n/a 0 0 
9/11/2007 15 Distichlis spicata n/a 6 17.5 
9/11/2007 15 Polygonum arifolium n/a 5 7.5 
9/11/2007 15 Decadon pert? (vegetative) n/a 2 0.5 
9/13/2007 16 Acorus calamus n/a 6 17.5 
9/13/2007 16 Amaranthus cannabinu n/a 6 17.5 
9/13/2007 16 Polygonum arifolium n/a 5 7.5 
9/13/2007 16 Pilea pumila n/a 2 0.5 
9/13/2007 16 Phragmites australis n/a 6 17.5 
9/13/2007 16 Mikania scandens n/a 5 7.5 
9/13/2007 16 Pluchea purpurascens n/a 3 1.5 
9/13/2007 16 Leersia oryzoides n/a 7 37.5 
9/13/2007 16 Spartina patens n/a 5 7.5 
9/13/2007 16 Spartina cynosuroides n/a 2 0.5 
9/13/2007 16 Spartina alterniflora n/a 3 1.5 
9/13/2007 16 Distichlis spicata n/a 0 0 
9/13/2007 16 Typha angustifolia n/a 2 0.5 
9/13/2007 16 Aster puniceus n/a 3 1.5 
9/13/2007 16 Polygonum punctatum  n/a 4 3.5 
9/13/2007 16 Cypreus escul. n/a 3 1.5 
9/13/2007 17 Amaranthus cannabinu n/a 7 37.5 
9/13/2007 17 Polygonum arifolium n/a 7 37.5 
9/13/2007 17 Phragmites australis n/a 4 3.5 
9/13/2007 17 Pluchea purpurascens n/a 3 1.5 
9/13/2007 17 Mikania scandens n/a 0 0 
9/13/2007 17 Leersia oryzoides n/a 7 37.5 
9/13/2007 17 Polygonum sagittatum n/a 0 0 
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9/13/2007 17 Cuscuta gronovii n/a 4 3.5 
9/13/2007 17 Spartina alterniflora n/a 4 3.5 
9/13/2007 17 Spartina patens n/a 3 1.5 
9/13/2007 17 Spartina cynosuroides n/a 5 7.5 
9/13/2007 17 Distichlis spicata n/a 2 0.5 
9/13/2007 17 Acorus calamus n/a 2 0.5 
9/13/2007 17 Typha angustifolia n/a 2 0.5 
9/13/2007 17 Polygonum punctatum  n/a 0 0 
9/13/2007 17 Echina Walt n/a 7 37.5 
9/13/2007 17 Rorippa islandica n/a 0 0 
9/13/2007 18 Amaranthus cannabinu n/a 7 37.5 
9/13/2007 18 Echina Walt n/a 7 37.5 
9/13/2007 18 Phragmites australis n/a 7 37.5 
9/13/2007 18 Gal tinc n/a 0 0 
9/13/2007 18 Leersia oryzoides n/a 7 37.5 
9/13/2007 18 Polygonum sagittatum n/a 4 3.5 
9/13/2007 18 Impatiens capensis n/a 0 0 
9/13/2007 18 Pilea pumila n/a 6 17.5 
9/13/2007 18 Polygonum punctatum  n/a 0 0 
9/13/2007 18 Pluchea purpurascens n/a 4 3.5 
9/13/2007 18 Mikania scandens n/a 6 17.5 
9/13/2007 18 Cuscuta gronovii n/a 0 0 
9/13/2007 18 Spartina patens n/a 5 7.5 
9/13/2007 18 Spartina cynosuroides n/a 3 1.5 
9/13/2007 18 Spartina alterniflora n/a 3 1.5 
9/13/2007 18 Distichlis spicata n/a 2 0.5 
9/13/2007 18 Peltandra virginica n/a 0 0 
9/13/2007 18 Acorus calamus n/a 4 3.5 
9/13/2007 18 Typha angustifolia n/a 2 0.5 
9/13/2007 18 Lythrum salicaria n/a 4 3.5 
9/13/2007 18 Hibiscus sp. n/a 4 3.5 
9/13/2007 19 Amaranthus cannabinu n/a 5 7.5 
9/13/2007 19 Polygonum punctatum  n/a 7 37.5 
9/13/2007 19 Polygonum arifolium n/a 0 0 
9/13/2007 19 Mikania scandens n/a 6 17.5 
9/13/2007 19 Polygonum sagittatum n/a 0 0 
9/13/2007 19 Cuscuta gronovii n/a 0 0 
9/13/2007 19 Leersia oryzoides n/a 5 7.5 
9/13/2007 19 Phragmites australis n/a 6 17.5 
9/13/2007 19 Spartina cynosuroides n/a 2 0.5 
9/13/2007 19 Pluchea purpurascens n/a 5 7.5 
9/13/2007 19 Spartina patens n/a 4 3.5 
9/13/2007 19 Spartina alterniflora n/a 2 0.5 
9/13/2007 19 Distichlis spicata n/a 3 1.5 
9/13/2007 19 Pilea pumila n/a 0 0 
9/13/2007 19 Echina Walt n/a 6 17.5 
9/13/2007 19 Typha angustifolia n/a 3 1.5 
9/13/2007 19 Acorus calamus n/a 2 0.5 
9/13/2007 19 Murdannia keisak n/a 0 0 
9/13/2007 19 Peltandra virginica n/a 0 0 
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9/13/2007 19 Aster puniceus n/a 4 3.5 
9/13/2007 20 Sonchus sp. n/a 0 0 
9/13/2007 20 Polygonum arifolium n/a 7 37.5 
9/13/2007 20 Echina Walt n/a 7 37.5 
9/13/2007 20 Mikania scandens n/a 4 3.5 
9/13/2007 20 Leersia oryzoides n/a 5 7.5 
9/13/2007 20 Phragmites australis n/a 5 7.5 
9/13/2007 20 Spartina cynosuroides n/a 4 3.5 
9/13/2007 20 Spartina patens n/a 4 3.5 
9/13/2007 20 Spartina alterniflora n/a 3 1.5 
9/13/2007 20 Acorus calamus n/a 3 1.5 
9/13/2007 20 Pilea pumila n/a 0 0 
9/13/2007 20 Pluchea purpurascens n/a 6 17.5 
9/13/2007 20 Peltandra virginica n/a 0 0 
9/13/2007 20 Typha angustifolia n/a 0 0 
9/13/2007 20 Distichlis spicata n/a 0 0 
9/13/2007 20 Nasturtium officinale n/a 0 0 
9/13/2007 20 Murdannia keisak n/a 0 0 
9/13/2007 20 Cuscuta gronovii n/a 2 0.5 
9/6/2007 21 Amaranthus cannabinu n/a 7 37.5 
9/6/2007 21 Polygonum arifolium n/a 6 17.5 
9/6/2007 21 Leersia oryzoides n/a 7 37.5 
9/6/2007 21 Pilea pumila n/a 7 37.5 
9/6/2007 21 Typha angustifolia n/a 2 0.5 
9/6/2007 21 Mikania scandens n/a 6 17.5 
9/6/2007 21 Phragmites australis n/a 4 3.5 
9/6/2007 21 Spartina patens n/a 2 0.5 
9/6/2007 21 Spartina alterniflora n/a 0 0 
9/6/2007 21 Spartina cynosuroides n/a 3 1.5 
9/6/2007 21 Pluchea purpurascens n/a 5 7.5 
9/6/2007 21 Acorus calamus n/a 2 0.5 
9/6/2007 21 Distichlis spicata n/a 3 1.5 
9/6/2007 21 Aster puniceus n/a 2 0.5 
9/6/2007 21 Murdannia keisak n/a 2 0.5 
9/6/2007 21 Rorippa islandica n/a 2 0.5 
9/6/2007 21 Lythrum salicaria n/a 0 0 
9/6/2007 21 Cuscuta gronovii n/a 3 1.5 
9/13/2007 22 Amaranthus cannabinu n/a 7 37.5 
9/13/2007 22 Polygonum punctatum  n/a 0 0 
9/13/2007 22 Mikania scandens n/a 6 17.5 
9/13/2007 22 Leersia oryzoides n/a 7 37.5 
9/13/2007 22 Pilea pumila n/a 6 17.5 
9/13/2007 22 Pluchea purpurascens n/a 4 3.5 
9/13/2007 22 Cuscuta gronovii n/a 4 3.5 
9/13/2007 22 Boehmeria cylindrica n/a 3 1.5 
9/13/2007 22 Gal tinc n/a 3 1.5 
9/13/2007 22 Phragmites australis n/a 5 7.5 
9/13/2007 22 Spartina patens n/a 4 3.5 
9/13/2007 22 Spartina cynosuroides n/a 3 1.5 
9/13/2007 22 Spartina alterniflora n/a 2 0.5 
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9/13/2007 22 Typha angustifolia n/a 2 0.5 
9/13/2007 22 Acorus calamus n/a 4 3.5 
9/13/2007 22 Polygonum sagittatum n/a 5 7.5 
9/13/2007 22 Polygonum arifolium n/a 3 1.5 
9/13/2007 22 Murdannia keisak n/a 3 1.5 
9/13/2007 22 Peltandra virginica n/a 2 0.5 
9/13/2007 22 Distichlis spicata n/a 3 1.5 
9/13/2007 23 Amaranthus cannabinu n/a 6 17.5 
9/13/2007 23 Polygonum arifolium n/a 0 0 
9/13/2007 23 Echina Walt n/a 8 62.5 
9/13/2007 23 Pluchea purpurascens n/a 6 17.5 
9/13/2007 23 Leersia oryzoides n/a 5 7.5 
9/13/2007 23 Cuscuta gronovii n/a 0 0 
9/13/2007 23 Phragmites australis n/a 5 7.5 
9/13/2007 23 Spartina cynosuroides n/a 3 1.5 
9/13/2007 23 Spartina patens n/a 6 17.5 
9/13/2007 23 Spartina alterniflora n/a 3 1.5 
9/13/2007 23 Distichlis spicata n/a 3 1.5 
9/13/2007 23 Pilea pumila n/a 0 0 
9/13/2007 23 Typha angustifolia n/a 2 0.5 
9/13/2007 23 Acorus calamus n/a 2 0.5 
9/13/2007 23 Peltandra virginica n/a 0 0 
9/13/2007 23 Mikania scandens n/a 0 0 
9/13/2007 23 Hibiscus sp. n/a 5 7.5 
9/6/2007 24 Amaranthus cannabinu n/a 6 17.5 
9/6/2007 24 Leersia oryzoides n/a 8 62.5 
9/6/2007 24 Polygonum arifolium n/a 6 17.5 
9/6/2007 24 Typha angustifolia n/a 2 0.5 
9/6/2007 24 Phragmites australis n/a 3 1.5 
9/6/2007 24 Cuscuta gronovii n/a 5 7.5 
9/6/2007 24 Mikania scandens n/a 4 3.5 
9/6/2007 24 Spartina cynosuroides n/a 2 0.5 
9/6/2007 24 Spartina patens n/a 3 1.5 
9/6/2007 24 Spartina alterniflora n/a 2 0.5 
9/6/2007 24 Distichlis spicata n/a 2 0.5 
9/6/2007 24 Pluchea purpurascens n/a 4 3.5 
9/6/2007 24 Acorus calamus n/a 4 3.5 
9/6/2007 24 Murdannia keisak n/a 2 0.5 
9/6/2007 24 Pilea pumila n/a 5 7.5 
9/6/2007 24 Hibiscus mo. n/a 5 7.5 
9/6/2007 24 Bidens laevis n/a 5 7.5 
9/6/2007 25 Amaranthus cannabinu n/a 6 17.5 
9/6/2007 25 Leersia oryzoides n/a 5 7.5 
9/6/2007 25 Polygonum punctatum  n/a 6 17.5 
9/6/2007 25 Pilea pumila n/a 0 0 
9/6/2007 25 Cuscuta gronovii n/a 0 0 
9/6/2007 25 Mikania scandens n/a 0 0 
9/6/2007 25 Phragmites australis n/a 6 17.5 
9/6/2007 25 Spartina cynosuroides n/a 0 0 
9/6/2007 25 Bidens laevis n/a 0 0 
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9/6/2007 25 Spartina alterniflora n/a 3 1.5 
9/6/2007 25 Spartina patens n/a 5 7.5 
9/6/2007 25 Distichlis spicata n/a 4 3.5 
9/6/2007 25 Acorus calamus n/a 0 0 
9/6/2007 25 Typha angustifolia n/a 2 0.5 
9/6/2007 25 Pluchea purpurascens n/a 4 3.5 
9/6/2007 25 Polygonum arifolium n/a 0 0 
9/6/2007 25 Echina Walt n/a 6 17.5 
9/6/2007 25 Polygonum sagittatum n/a 0 0 
9/11/2007 26 Amaranthus cannabinu n/a 8 62.5 
9/11/2007 26 Pluchea purpurascens n/a 6 17.5 
9/11/2007 26 Polygonum arifolium n/a 6 17.5 
9/11/2007 26 Pilea pumila n/a 6 17.5 
9/11/2007 26 Phragmites australis n/a 5 7.5 
9/11/2007 26 Mikania scandens n/a 3 1.5 
9/11/2007 26 Polygonum sagittatum n/a 4 3.5 
9/11/2007 26 Gal tinc n/a 2 0.5 
9/11/2007 26 Cuscuta gronovii n/a 4 3.5 
9/11/2007 26 Cyperus sp.  n/a 3 1.5 
9/11/2007 26 Spartina cynosuroides n/a 2 0.5 
9/11/2007 26 Spartina alterniflora n/a 2 0.5 
9/11/2007 26 Spartina patens n/a 6 17.5 
9/11/2007 26 Distichlis spicata n/a 2 0.5 
9/11/2007 26 Typha angustifolia n/a 2 0.5 
9/11/2007 26 Acorus calamus n/a 4 3.5 
9/11/2007 26 Aster puniceus n/a 0 0 
9/11/2007 26 Leersia oryzoides n/a 6 17.5 
9/11/2007 26 Boehmeria cylindrica n/a 5 7.5 
9/11/2007 27 Amaranthus cannabinu n/a 8 62.5 
9/11/2007 27 Leersia oryzoides n/a 7 37.5 
9/11/2007 27 Polygonum arifolium n/a 7 37.5 
9/11/2007 27 Pluchea purpurascens n/a 6 17.5 
9/11/2007 27 Pilea pumila n/a 6 17.5 
9/11/2007 27 Polygonum sagittatum n/a 4 3.5 
9/11/2007 27 Phragmites australis n/a 4 3.5 
9/11/2007 27 Spartina cynosuroides n/a 4 3.5 
9/11/2007 27 Cuscuta gronovii n/a 3 1.5 
9/11/2007 27 Typha angustifolia n/a 0 0 
9/11/2007 27 Acorus calamus n/a 4 3.5 
9/11/2007 27 Spartina patens n/a 3 1.5 
9/11/2007 27 Spartina alterniflora n/a 2 0.5 
9/11/2007 27 Distichlis spicata n/a 4 3.5 
9/11/2007 27 Mikania scandens n/a 6 17.5 
9/11/2007 27 Cinna sp.   n/a 2 0.5 
9/11/2007 27 Cypreus fili n/a 3 1.5 
9/11/2007 27 Peltandra virginica n/a 4 3.5 
9/11/2007 27 Echina Walt n/a 3 1.5 
9/11/2007 28 Murdannia keisak n/a 3 1.5 
9/11/2007 28 Amaranthus cannabinu n/a 8 62.5 
9/11/2007 28 Polygonum arifolium n/a 8 62.5 
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9/11/2007 28 Leersia oryzoides n/a 7 37.5 
9/11/2007 28 Polygonum punctatum  n/a 5 7.5 
9/11/2007 28 Pluchea purpurascens n/a 6 17.5 
9/11/2007 28 Polygonum sagittatum n/a 0 0 
9/11/2007 28 Mikania scandens n/a 7 37.5 
9/11/2007 28 Pilea pumila n/a 6 17.5 
9/11/2007 28 Phragmites australis n/a 0 0 
9/11/2007 28 Spartina cynosuroides n/a 4 3.5 
9/11/2007 28 Spartina patens n/a 4 3.5 
9/11/2007 28 Spartina alterniflora n/a 2 0.5 
9/11/2007 28 Distichlis spicata n/a 3 1.5 
9/11/2007 28 Typha angustifolia n/a 0 0 
9/11/2007 28 Acorus calamus n/a 5 7.5 
9/11/2007 28 Cuscuta gronovii n/a 5 7.5 
9/11/2007 28 Peltandra virginica n/a 0 0 
9/11/2007 28 Bidens sp.   n/a 2 0.5 
9/6/2007 29 Amaranthus cannabinu n/a 6 17.5 
9/6/2007 29 Mikania scandens n/a 0 0 
9/6/2007 29 Leersia oryzoides n/a 6 17.5 
9/6/2007 29 Polygonum punctatum  n/a 0 0 
9/6/2007 29 Polygonum sagittatum n/a 0 0 
9/6/2007 29 Pluchea purpurascens n/a 5 7.5 
9/6/2007 29 Aster puniceus n/a 4 3.5 
9/6/2007 29 Cuscuta gronovii n/a 0 0 
9/6/2007 29 Pilea pumila n/a 0 0 
9/6/2007 29 Gal tinc n/a 2 0.5 
9/6/2007 29 Phragmites australis n/a 4 3.5 
9/6/2007 29 Spartina cynosuroides n/a 3 1.5 
9/6/2007 29 Spartina patens n/a 6 17.5 
9/6/2007 29 Spartina alterniflora n/a 4 3.5 
9/6/2007 29 Distichlis spicata n/a 5 7.5 
9/6/2007 29 Typha angustifolia n/a 0 0 
9/6/2007 29 Acorus calamus n/a 0 0 
9/6/2007 29 Peltandra virginica n/a 0 0 
9/6/2007 29 Polygonum arifolium n/a 0 0 
9/6/2007 29 Cyperus sp.  n/a 2 0.5 
9/13/2007 30 Phragmites australis n/a 6 17.5 
9/13/2007 30 Polygonum punctatum  n/a 0 0 
9/13/2007 30 Cuscuta gronovii n/a 0 0 
9/13/2007 30 Polygonum arifolium n/a 0 0 
9/13/2007 30 Mikania scandens n/a 6 17.5 
9/13/2007 30 Leersia oryzoides n/a 6 17.5 
9/13/2007 30 Pluchea purpurascens n/a 5 7.5 
9/13/2007 30 Pilea pumila n/a 6 17.5 
9/13/2007 30 Echina Walt n/a 6 17.5 
9/13/2007 30 Peltandra virginica n/a 0 0 
9/13/2007 30 Spartina cynosuroides n/a 4 3.5 
9/13/2007 30 Spartina patens n/a 4 3.5 
9/13/2007 30 Spartina alterniflora n/a 3 1.5 
9/13/2007 30 Distichlis spicata n/a 0 0 
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9/13/2007 30 Typha angustifolia n/a 0 0 
9/13/2007 30 Acorus calamus n/a 4 3.5 
9/13/2007 30 Boehmeria cylindrica n/a 3 1.5 
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Appendix E.  Raw Species and Plant Cover Data Mesocosm Study July 2008 

Date Mesocosm Species Frequency Mid-Point Percent 
7/29/2008 1 Spartina patens n/a 0.5 
7/29/2008 1 Spartina alterniflora n/a 0 
7/29/2008 1 Typha angustifolia n/a 0.5 
7/29/2008 1 Spartina cynosuroides n/a 0 
7/29/2008 1 Phragmites australis n/a 17.5 
7/29/2008 1 Distichlis spicata n/a 3.5 
7/29/2008 1 Acorus calamus n/a 0.5 
7/29/2008 1 Leersia oryzoides n/a 37.5 
7/29/2008 1 Cyperus spp1 n/a 7.5 
7/29/2008 1 Mikania scandens n/a 62.5 
7/29/2008 1 Pluchea purpurascens n/a 1.5 
7/29/2008 1 Murdannia keisak n/a 0.5 
7/29/2008 1 Amaranthus cannabinu n/a 0.1 
7/29/2008 1 Pilea pumila n/a 0.1 
7/29/2008 1 Peltandra virginica n/a 0.1 
7/29/2008 2 Spartina patens n/a 62.5 
7/29/2008 2 Phragmites australis n/a 0 
7/29/2008 2 Distichlis spicata n/a 3.5 
7/29/2008 2 Leersia oryzoides n/a 7.5 
7/29/2008 2 Typha angustifolia n/a 1.5 
7/29/2008 2 Spartina alterniflora n/a 0 
7/29/2008 2 Acorus calamus n/a 0.1 
7/29/2008 2 Spartina cynosuroides n/a 3.5 
7/29/2008 2 Pluchea purpurascens n/a 17.5 
7/29/2008 2 Mikania scandens n/a 3.5 
7/29/2008 2 Echina mur n/a 37.5 
7/29/2008 2 Amaranthus cannabinu n/a 0.5 
7/29/2008 2 Rumex sp n/a 3.5 
7/29/2008 2 Cyperus spp1 n/a 0.5 
7/30/2008 3 Phragmites australis n/a 0 
7/30/2008 3 Spartina cynosuroides n/a 3.5 
7/30/2008 3 Leersia oryzoides n/a 17.5 
7/30/2008 3 Typha angustifolia n/a 7.5 
7/30/2008 3 Acorus calamus n/a 0 
7/30/2008 3 Distichlis spicata n/a 1.5 
7/30/2008 3 Spartina patens n/a 37.5 
7/30/2008 3 Spartina alterniflora n/a 0 
7/30/2008 3 Kost vir n/a 17.5 
7/30/2008 3 Amaranthus cannabinu n/a 37.5 
7/30/2008 4 Distichlis spicata n/a 0 
7/30/2008 4 Leersia oryzoides n/a 0 
7/30/2008 4 Acorus calamus n/a 0 
7/30/2008 4 Spartina alterniflora n/a 0 
7/30/2008 4 Phragmites australis n/a 37.5 
7/30/2008 4 Spartina patens n/a 0 
7/30/2008 4 Spartina cynosuroides n/a 17.5 
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7/30/2008 4 Typha angustifolia n/a 0 
7/30/2008 4 Amaranthus cannabinu n/a 37.5 
7/29/2008 5 Acorus calamus n/a 7.5 
7/29/2008 5 Phragmites australis n/a 17.5 
7/29/2008 5 Typha angustifolia n/a 3.5 
7/29/2008 5 Spartina patens n/a 7.5 
7/29/2008 5 Leersia oryzoides n/a 17.5 
7/29/2008 5 Distichlis spicata n/a 0.1 
7/29/2008 5 Spartina alterniflora n/a 0 
7/29/2008 5 Spartina cynosuroides n/a 1.5 
7/29/2008 5 Mikania scandens n/a 37.5 
7/29/2008 5 Cyperus spp1 n/a 3.5 
7/29/2008 5 Murdannia keisak n/a 0.1 
7/29/2008 5 Pluchea purpurascens n/a 0.5 
7/29/2008 5 Lythrum salicaria n/a 1.5 
7/29/2008 5 Samolus parviflorus n/a 3.5 
7/29/2008 5 Aster puniceus n/a 3.5 
7/29/2008 5 Cinna sp.   n/a 0.5 
7/29/2008 5 Amaranthus cannabinu n/a 0.5 
7/30/2008 6 Spartina cynosuroides n/a 3.5 
7/30/2008 6 Distichlis spicata n/a 0.5 
7/30/2008 6 Phragmites australis n/a 37.5 
7/30/2008 6 Spartina alterniflora n/a 1.5 
7/30/2008 6 Leersia oryzoides n/a 37.5 
7/30/2008 6 Typha angustifolia n/a 0.5 
7/30/2008 6 Spartina patens n/a 3.5 
7/30/2008 6 Acorus calamus n/a 0 
7/30/2008 6 Mikania scandens n/a 17.5 
7/30/2008 6 Aster puniceus n/a 3.5 
7/30/2008 6 Amaranthus cannabinu n/a 7.5 
7/30/2008 6 Cyperus spp1 n/a 17.5 
7/30/2008 6 Schoenplectus sp1 n/a 7.5 
7/30/2008 6 Echina mur n/a 0.5 
7/30/2008 7 Spartina patens n/a 37.5 
7/30/2008 7 Spartina alterniflora n/a 0 
7/30/2008 7 Spartina cynosuroides n/a 7.5 
7/30/2008 7 Phragmites australis n/a 37.5 
7/30/2008 7 Distichlis spicata n/a 0 
7/30/2008 7 Typha angustifolia n/a 3.5 
7/30/2008 7 Leersia oryzoides n/a 0 
7/30/2008 7 Acorus calamus n/a 0 
7/30/2008 7 Amaranthus cannabinu n/a 62.5 
7/30/2008 7 Echina mur n/a 0.1 
7/29/2008 8 Spartina cynosuroides n/a 1.5 
7/29/2008 8 Spartina alterniflora n/a 0.1 
7/29/2008 8 Acorus calamus n/a 0.1 
7/29/2008 8 Distichlis spicata n/a 0.5 
7/29/2008 8 Spartina patens n/a 7.5 
7/29/2008 8 Phragmites australis n/a 37.5 
7/29/2008 8 Typha angustifolia n/a 0 
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7/29/2008 8 Mikania scandens n/a 37.5 
7/29/2008 8 Amaranthus cannabinu n/a 7.5 
7/29/2008 8 Pluchea purpurascens n/a 37.5 
7/29/2008 8 Leersia oryzoides n/a 17.5 
7/30/2008 9 Phragmites australis n/a 17.5 
7/30/2008 9 Samolus parviflorus n/a 17.5 
7/30/2008 9 Mikania scandens n/a 85 
7/30/2008 9 Leersia oryzoides n/a 17.5 
7/30/2008 9 Aster puniceus n/a 7.5 
7/30/2008 9 Pluchea purpurascens n/a 7.5 
7/30/2008 9 Spartina patens n/a 17.5 
7/30/2008 9 Acorus calamus n/a 0.5 
7/30/2008 9 Distichlis spicata n/a 0.5 
7/30/2008 9 Typha angustifolia n/a 0 
7/30/2008 9 Spartina alterniflora n/a 0 
7/30/2008 9 Spartina cynosuroides n/a 0 
7/30/2008 9 Echina mur n/a 0.5 
7/30/2008 9 Murdannia keisak n/a 1.5 
7/30/2008 9 Gal tinc n/a 0.5 
7/30/2008 9 Cyperus spp1 n/a 0.5 
7/30/2008 9 Amaranthus cannabinu n/a 0.5 
7/30/2008 10 Spartina alterniflora n/a 0 
7/30/2008 10 Leersia oryzoides n/a 3.5 
7/30/2008 10 Typha angustifolia n/a 1.5 
7/30/2008 10 Spartina cynosuroides n/a 0 
7/30/2008 10 Acorus calamus n/a 0 
7/30/2008 10 Phragmites australis n/a 37.5 
7/30/2008 10 Distichlis spicata n/a 7.5 
7/30/2008 10 Eleocharis parvula n/a 3.5 
7/30/2008 10 Amaranthus cannabinu n/a 62.5 
7/30/2008 10 Spartina patens n/a 7.5 
7/30/2008 10 Pluchea purpurascens n/a 0.5 
7/30/2008 10 Juncus eff n/a 0.5 
7/30/2008 11 Spartina patens n/a 0 
7/30/2008 11 Leersia oryzoides n/a 37.5 
7/30/2008 11 Spartina alterniflora n/a 0 
7/30/2008 11 Phragmites australis n/a 7.5 
7/30/2008 11 Typha angustifolia n/a 0.5 
7/30/2008 11 Acorus calamus n/a 1.5 
7/30/2008 11 Distichlis spicata n/a 0 
7/30/2008 11 Cyperus spp1 n/a 37.5 
7/30/2008 11 Amaranthus cannabinu n/a 7.5 
7/30/2008 11 Murdannia keisak n/a 3.5 
7/30/2008 11 Pluchea purpurascens n/a 7.5 
7/30/2008 11 Pilea pumila n/a 0.1 
7/30/2008 11 Spartina cynosuroides n/a 3.5 
7/30/2008 12 Spartina alterniflora n/a 0 
7/30/2008 12 Spartina cynosuroides n/a 7.5 
7/30/2008 12 Phragmites australis n/a 37.5 
7/30/2008 12 Acorus calamus n/a 7.5 
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7/30/2008 12 Typha angustifolia n/a 0 
7/30/2008 12 Distichlis spicata n/a 0 
7/30/2008 12 Spartina patens n/a 0.5 
7/30/2008 12 Amaranthus cannabinu n/a 3.5 
7/30/2008 12 Pilea pumila n/a 1.5 
7/30/2008 12 Murdannia keisak n/a 3.5 
7/30/2008 12 Leersia oryzoides n/a 62.5 
7/29/2008 13 Leersia oryzoides n/a 37.5 
7/29/2008 13 Typha angustifolia n/a 0 
7/29/2008 13 Distichlis spicata n/a 0 
7/29/2008 13 Spartina alterniflora n/a 0 
7/29/2008 13 Phragmites australis n/a 62.5 
7/29/2008 13 Acorus calamus n/a 1.5 
7/29/2008 13 Spartina cynosuroides n/a 3.5 
7/29/2008 13 Spartina patens n/a 3.5 
7/29/2008 13 Pluchea purpurascens n/a 17.5 
7/29/2008 13 Cyperus spp1 n/a 17.5 
7/29/2008 13 Pilea pumila n/a 0.5 
7/29/2008 13 Samolus parviflorus n/a 0.1 
7/29/2008 13 Juncus eff n/a 0.5 
7/29/2008 13 Mikania scandens n/a 37.5 
7/29/2008 13 Uni dic2 n/a 0.1 
7/30/2008 14 Leersia oryzoides n/a 62.5 
7/30/2008 14 Spartina patens n/a 7.5 
7/30/2008 14 Spartina alterniflora n/a 0 
7/30/2008 14 Typha angustifolia n/a 3.5 
7/30/2008 14 Spartina cynosuroides n/a 3.5 
7/30/2008 14 Acorus calamus n/a 3.5 
7/30/2008 14 Phragmites australis n/a 37.5 
7/30/2008 14 Distichlis spicata n/a 3.5 
7/30/2008 14 Mikania scandens n/a 62.5 
7/30/2008 14 Cyperus spp1 n/a 37.5 
7/30/2008 14 Kost vir n/a 7.5 
7/30/2008 14 Boehmeria cylindrica n/a 7.5 
7/30/2008 14 Amaranthus cannabinu n/a 0.5 
7/30/2008 14 Schoenplectus sp1 n/a 3.5 
7/30/2008 14 Cinna sp.   n/a 1.5 
7/30/2008 15 Phragmites australis n/a 17.5 
7/30/2008 15 Spartina patens n/a 37.5 
7/30/2008 15 Acorus calamus n/a 0 
7/30/2008 15 Spartina alterniflora n/a 0 
7/30/2008 15 Leersia oryzoides n/a 7.5 
7/30/2008 15 Typha angustifolia n/a 0.5 
7/30/2008 15 Spartina cynosuroides n/a 3.5 
7/30/2008 15 Distichlis spicata n/a 0 
7/30/2008 15 Amaranthus cannabinu n/a 62.5 
7/30/2008 15 Lythrum salicaria n/a 7.5 
7/30/2008 15 Cyperus spp1 n/a 0.1 
7/30/2008 16 Spartina alterniflora n/a 0 
7/30/2008 16 Phragmites australis n/a 37.5 
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7/30/2008 16 Distichlis spicata n/a 0 
7/30/2008 16 Acorus calamus n/a 7.5 
7/30/2008 16 Spartina cynosuroides n/a 3.5 
7/30/2008 16 Spartina patens n/a 17.5 
7/30/2008 16 Leersia oryzoides n/a 3.5 
7/30/2008 16 Typha angustifolia n/a 0.5 
7/30/2008 16 Samolus parviflorus n/a 17.5 
7/30/2008 16 Pluchea purpurascens n/a 17.5 
7/30/2008 16 Amaranthus cannabinu n/a 0.5 
7/30/2008 16 Cyperus spp1 n/a 37.5 
7/30/2008 16 Aster puniceus n/a 17.5 
7/30/2008 16 Uni. grass n/a 7.5 
7/30/2008 17 Typha angustifolia n/a 1.5 
7/30/2008 17 Acorus calamus n/a 1.5 
7/30/2008 17 Spartina alterniflora n/a 0 
7/30/2008 17 Leersia oryzoides n/a 37.5 
7/30/2008 17 Spartina cynosuroides n/a 7.5 
7/30/2008 17 Phragmites australis n/a 7.5 
7/30/2008 17 Spartina patens n/a 0.5 
7/30/2008 17 Distichlis spicata n/a 1.5 
7/30/2008 17 Mikania scandens n/a 17.5 
7/30/2008 17 Samolus parviflorus n/a 3.5 
7/30/2008 17 Cyperus spp1 n/a 17.5 
7/30/2008 17 Amaranthus cannabinu n/a 3.5 
7/30/2008 17 Echina mur n/a 0.5 
7/30/2008 17 Pluchea purpurascens n/a 0.1 
7/30/2008 18 Spartina patens n/a 37.5 
7/30/2008 18 Leersia oryzoides n/a 37.5 
7/30/2008 18 Typha angustifolia n/a 3.5 
7/30/2008 18 Spartina alterniflora n/a 0 
7/30/2008 18 Acorus calamus n/a 3.5 
7/30/2008 18 Spartina cynosuroides n/a 7.5 
7/30/2008 18 Distichlis spicata n/a 1.5 
7/30/2008 18 Phragmites australis n/a 62.5 
7/30/2008 18 Cyperus spp1 n/a 17.5 
7/30/2008 18 Lythrum salicaria n/a 17.5 
7/30/2008 18 Amaranthus cannabinu n/a 1.5 
7/30/2008 18 Kost vir n/a 17.5 
7/30/2008 18 Boehmeria cylindrica n/a 1.5 
7/30/2008 19 Typha angustifolia n/a 7.5 
7/30/2008 19 Distichlis spicata n/a 7.5 
7/30/2008 19 Acorus calamus n/a 0 
7/30/2008 19 Leersia oryzoides n/a 3.5 
7/30/2008 19 Spartina alterniflora n/a 0 
7/30/2008 19 Phragmites australis n/a 37.5 
7/30/2008 19 Spartina patens n/a 37.5 
7/30/2008 19 Spartina cynosuroides n/a 3.5 
7/30/2008 19 Pluchea purpurascens n/a 62.5 
7/30/2008 19 Rumex sp n/a 17.5 
7/30/2008 19 Amaranthus cannabinu n/a 17.5 
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7/30/2008 19 Echina mur n/a 17.5 
7/29/2008 20 Distichlis spicata n/a 0 
7/29/2008 20 Spartina cynosuroides n/a 3.5 
7/29/2008 20 Phragmites australis n/a 17.5 
7/29/2008 20 Acorus calamus n/a 0.1 
7/29/2008 20 Leersia oryzoides n/a 1.5 
7/29/2008 20 Spartina alterniflora n/a 0.1 
7/29/2008 20 Spartina patens n/a 1.5 
7/29/2008 20 Cyperus spp1 n/a 0.1 
7/29/2008 20 Typha angustifolia n/a 0 
7/29/2008 20 Pluchea purpurascens n/a 17.5 
7/29/2008 20 Amaranthus cannabinu n/a 3.5 
7/29/2008 20 Mikania scandens n/a 7.5 
7/30/2008 21 Leersia oryzoides n/a 85 
7/30/2008 21 Phragmites australis n/a 37.5 
7/30/2008 21 Typha angustifolia n/a 0 
7/30/2008 21 Distichlis spicata n/a 0.5 
7/30/2008 21 Spartina alterniflora n/a 0 
7/30/2008 21 Spartina cynosuroides n/a 17.5 
7/30/2008 21 Cyperus spp1 n/a 1.5 
7/30/2008 21 Aster puniceus n/a 17.5 
7/30/2008 21 Lythrum salicaria n/a 7.5 
7/30/2008 21 Acorus calamus n/a 0 
7/30/2008 21 Spartina patens n/a 7.5 
7/30/2008 21 Polygonum arifolium n/a 0.5 
7/30/2008 21 Amaranthus cannabinu n/a 17.5 
7/29/2008 22 Spartina cynosuroides n/a 1.5 
7/29/2008 22 Typha angustifolia n/a 0.1 
7/29/2008 22 Spartina patens n/a 1.5 
7/29/2008 22 Phragmites australis n/a 7.5 
7/29/2008 22 Acorus calamus n/a 1.5 
7/29/2008 22 Leersia oryzoides n/a 62.5 
7/29/2008 22 Spartina alterniflora n/a 0 
7/29/2008 22 Distichlis spicata n/a 7.5 
7/29/2008 22 Boehmeria cylindrica n/a 17.5 
7/29/2008 22 Gal tinc n/a 3.5 
7/29/2008 22 Murdannia keisak n/a 0.5 
7/29/2008 22 Mikania scandens n/a 62.5 
7/29/2008 22 Uni dic n/a 0.1 
7/29/2008 22 Cyperus spp1 n/a 3.5 
7/30/2008 23 Spartina alterniflora n/a 0 
7/30/2008 23 Distichlis spicata n/a 7.5 
7/30/2008 23 Typha angustifolia n/a 1.5 
7/30/2008 23 Spartina patens n/a 37.5 
7/30/2008 23 Spartina cynosuroides n/a 17.5 
7/30/2008 23 Leersia oryzoides n/a 0 
7/30/2008 23 Acorus calamus n/a 0 
7/30/2008 23 Phragmites australis n/a 37.5 
7/30/2008 23 Kost vir n/a 17.5 
7/30/2008 23 Eleocharis parvula n/a 0.1 
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7/30/2008 23 Amaranthus cannabinu n/a 37.5 
7/30/2008 23 Pluchea purpurascens n/a 17.5 
7/30/2008 23 Rumex sp n/a 3.5 
7/30/2008 24 Typha angustifolia n/a 0.5 
7/30/2008 24 Phragmites australis n/a 37.5 
7/30/2008 24 Acorus calamus n/a 3.5 
7/30/2008 24 Distichlis spicata n/a 1.5 
7/30/2008 24 Spartina alterniflora n/a 0 
7/30/2008 24 Spartina cynosuroides n/a 7.5 
7/30/2008 24 Leersia oryzoides n/a 62.5 
7/30/2008 24 Spartina patens n/a 17.5 
7/30/2008 24 Cyperus spp1 n/a 37.5 
7/30/2008 24 Amaranthus cannabinu n/a 3.5 
7/30/2008 24 Murdannia keisak n/a 0.1 
7/30/2008 24 Cinna sp.   n/a 1.5 
7/30/2008 25 Spartina cynosuroides n/a 3.5 
7/30/2008 25 Spartina patens n/a 85 
7/30/2008 25 Distichlis spicata n/a 37.5 
7/30/2008 25 Leersia oryzoides n/a 0.1 
7/30/2008 25 Phragmites australis n/a 7.5 
7/30/2008 25 Spartina alterniflora n/a 0 
7/30/2008 25 Acorus calamus n/a 0 
7/30/2008 25 Typha angustifolia n/a 0 
7/30/2008 25 Amaranthus cannabinu n/a 17.5 
7/30/2008 25 Kost vir n/a 3.5 
7/30/2008 25 Pluchea purpurascens n/a 0.1 
7/30/2008 26 Distichlis spicata n/a 3.5 
7/30/2008 26 Acorus calamus n/a 1.5 
7/30/2008 26 Spartina cynosuroides n/a 0 
7/30/2008 26 Leersia oryzoides n/a 37.5 
7/30/2008 26 Phragmites australis n/a 17.5 
7/30/2008 26 Typha angustifolia n/a 1.5 
7/30/2008 26 Spartina alterniflora n/a 0 
7/30/2008 26 Spartina patens n/a 17.5 
7/30/2008 26 Cyperus spp1 n/a 17.5 
7/30/2008 26 Pluchea purpurascens n/a 37.5 
7/30/2008 26 Amaranthus cannabinu n/a 3.5 
7/30/2008 26 Iva fruf n/a 1.5 
7/30/2008 26 Mikania scandens n/a 37.5 
7/30/2008 26 Murdannia keisak n/a 7.5 
7/30/2008 26 Schoenplectus sp. n/a 0 
7/30/2008 27 Cyperus strig n/a 3.5 
7/30/2008 27 Amaranthus cannabinu n/a 17.5 
7/30/2008 27 Distichlis spicata n/a 7.5 
7/30/2008 27 Spartina cynosuroides n/a 0 
7/30/2008 27 Typha angustifolia n/a 0 
7/30/2008 27 Acorus calamus n/a 3.5 
7/30/2008 27 Phragmites australis n/a 37.5 
7/30/2008 27 Spartina patens n/a 3.5 
7/30/2008 27 Leersia oryzoides n/a 37.5 
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7/30/2008 27 Spartina alterniflora n/a 0 
7/30/2008 27 Pluchea purpurascens n/a 3.5 
7/30/2008 27 Peltandra virginica n/a 0.5 
7/30/2008 28 Phragmites australis n/a 1.5 
7/30/2008 28 Acorus calamus n/a 3.5 
7/30/2008 28 Distichlis spicata n/a 7.5 
7/30/2008 28 Typha angustifolia n/a 0 
7/30/2008 28 Spartina cynosuroides n/a 7.5 
7/30/2008 28 Leersia oryzoides n/a 62.5 
7/30/2008 28 Spartina patens n/a 17.5 
7/30/2008 28 Spartina alterniflora n/a 0 
7/30/2008 28 Amaranthus cannabinu n/a 17.5 
7/30/2008 28 Schoenplectus sp. n/a 1.5 
7/30/2008 28 Cyperus spp1 n/a 0.5 
7/30/2008 29 Distichlis spicata n/a 17.5 
7/30/2008 29 Spartina patens n/a 17.5 
7/30/2008 29 Acorus calamus n/a 0 
7/30/2008 29 Leersia oryzoides n/a 7.5 
7/30/2008 29 Spartina alterniflora n/a 0 
7/30/2008 29 Spartina cynosuroides n/a 7.5 
7/30/2008 29 Phragmites australis n/a 37.5 
7/30/2008 29 Typha angustifolia n/a 0.5 
7/30/2008 29 Amaranthus cannabinu n/a 37.5 
7/30/2008 29 Pluchea purpurascens n/a 3.5 
7/30/2008 30 Acorus calamus n/a 0 
7/30/2008 30 Distichlis spicata n/a 0 
7/30/2008 30 Leersia oryzoides n/a 7.5 
7/30/2008 30 Typha angustifolia n/a 0 
7/30/2008 30 Spartina cynosuroides n/a 3.5 
7/30/2008 30 Spartina patens n/a 62.5 
7/30/2008 30 Spartina alterniflora n/a 0 
7/30/2008 30 Phragmites australis n/a 37.5 
7/30/2008 30 Kost vir n/a 17.5 
7/30/2008 30 Mikania scandens n/a 62.5 
7/30/2008 30 Amaranthus cannabinu n/a 3.5 
7/30/2008 30 Cyperus spp1 n/a 3.5 
7/30/2008 30 Peltandra virginica n/a 0.1 
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Appendix F.  Mesocosm Biomass, Richness, and Soil Chemistry Data 

Mesocsom Salinity 
Flood 
Freq 

Richness 
2008 

Soluable 
P 

(grams) 

Total 
Biomass 

Aboveground 

Below 
Ground 
Biomass 

Temp 
Celcius 

M3-Mg 
(Mg/kg)      

M3-Al 
(Mg/kg)    

M3-K 
(Mg/kg)       

M3-Ca 
(Mg/kg)     

M3-Fe 
(Mg/kg)      

M3-P 
(Mg/kg)   

NO3-
N 

(mg/l) 
1 0 44.35 13 2.0004 89.75 45.2 23.59 1015 856 213 6773 333 82 0.025 
2 6 22.77 12 1.9999 58.11 47.1 23.32 1895 959 951 3102 268 158 0 
3 6 44.35 7 2.0002 96.42 63.5 23.19 1970 868 1183 3498 223 216 0.275 
4 12 62.15 3 2.0000 99.71 94.0 23.28 1696 1002 475 5263 418 75 0.4 
5 1.5 44.35 15 2.0005 86.81 59.1 23.13 1568 908 582 4402 298 161 0.2 
6 3 22.77 13 2.0000 140.27 115.5 23.04 1640 1072 535 3489 940 123 0.05 
7 12 62.15 6 2.0002 67.58 65.4 22.86 2071 859 1607 3188 216 195 0.1 
8 6 44.35 10 1.9999 115.03 93.3 23.32 1928 1044 915 3212 478 159 0 
9 1.5 22.77 14 2.0006 122.55 76.1 23.13 1549 715 512 5373 238 119 0.2 
10 6 62.15 9 2.0001 80.22 41.1 23.19 1936 904 1073 3516 271 242 0.275 
11 1.5 62.15 10 2.0002 134.62 99.6 22.92 1634 978 421 4624 542 99 0.2 
12 0 62.15 8 2.0000 116.91 89.6 23.07 1155 874 525 7783 225 182 0.45 
13 0 62.15 12 2.0001 193.38 161.6 23.59 968 982 260 6913 691 97 0.025 
14 1.5 44.35 13 2.0000 180.61 218.5 22.92 2092 902 1570 3134 309 178 0.2 
15 6 22.77 8 2.0000 117.65 61.5 23.19 1800 1180 1025 3201 1217 149 0.275 
16 3 62.15 12 2.0003 96.61 93.8 23.39 1780 917 767 4905 243 192 0.15 
17 1.5 62.15 13 2.0001 97.47 106.1 23.13 1658 900 500 5203 292 162 0.2 
18 3 44.35 12 2.0003 164.61 260.7 23.39 1616 1059 753 4224 461 192 0.15 
19 12 22.77 10 1.9999 83.69 71.8 22.86 1983 977 1338 2872 243 126 0.1 
20 6 62.15 10 2.0000 85.07 70.4 23.32 2011 899 1063 3808 232 165 0 
21 0 22.77 10 1.9998 201.31 183.4 23.07 1009 957 704 6433 365 176 0.45 
22 0 22.77 13 2.0001 133.13 88.4 23.59 1097 930 263 6643 256 57 0.025 
23 12 44.35 10 1.9997 82.74 87.9 22.86 2011 926 1275 3182 288 134 0.1 
24 0 44.35 11 2.0000 198.39 196.6 23.07 975 1073 529 5983 1118 165 0.45 
25 12 22.77 6 1.9998 154 97.5 23.28 2060 1019 1366 2755 424 131 0.4 
26 1.5 22.77 12 2.0003 121.48 85.8 22.92 1580 1096 458 5053 595 62 0.2 
27 3 62.15 9 1.9997 111.88 78.8 23.04 1789 930 541 4372 332 121 0.05 
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28 3 44.35 9 1.9999 100.66 30.0 23.04 1755 964 632 3935 382 133 0.05 
29 12 44.35 8 2.0006 93.9 130.3 23.28 2065 998 1375 2960 286 145 0.4 
30 3 22.77 9 2.0004 182.14 117.9 23.39 1586 1042 741 4220 639 121 0.15 
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Appendix G.  Redox Chemistry and pH Raw Data 

Mesocosm 
Flood 

Frequency Time 

Redox 
Potential (Eh) - 

5 cm Depth 

Redox Potential 
(Eh) - 20 cm 

Depth 

Redox Potential 
(Eh) - 30 cm 

Depth pH 
M1 44.35 1 251 360 493 6.63 
M1 44.35 2 252 329 365 6.78 
M1 44.35 3 253 475 302 6.78 
M10 62.15 1 433 380 355 7.33 
M10 62.15 2 373 394 268 6.2 
M10 62.15 3 395 387 224 6.78 
M11 62.15 1 372 355 364 7.83 
M11 62.15 2 358 413 336 6.37 
M11 62.15 3 414 390 254 6.71 
M12 62.15 1 530 389 481 7.73 
M12 62.15 2 390 315 351 6.14 
M12 62.15 3 349 540 119 6.62 
M13 62.15 1 469 233 400 5.52 
M13 62.15 2 425 285 222 6.61 
M13 62.15 3 371 408 130 6.96 
M14 44.35 1 461 372 458 7.63 
M14 44.35 2 378 382 364 6.27 
M14 44.35 3 367 485 373 6.65 
M15 22.77 1 504 382 480 6.88 
M15 22.77 2 382 335 367 6.19 
M15 22.77 3 350 501 297 6.65 
M16 62.15 1 509 380 476 6.41 
M16 62.15 2 368 325 294 5.07 
M16 62.15 3 348 503 293 6.76 
M17 62.15 1 493 359 460 7.27 
M17 62.15 2 367 435 296 6.49 
M17 62.15 3 409 486 375 6.58 
M18 44.35 1 504 380 470 6.36 
M18 44.35 2 374 330 361 5.7 
M18 44.35 3 360 505 308 6.35 
M19 22.77 1 511 292 490 7.19 
M19 22.77 2 288 374 261 6.3 
M19 22.77 3 373 522 351 6.62 
M2  22.77 1 484 360 500 7.02 
M2  22.77 2 345 364 356 5.74 
M2  22.77 3 363 509 351 6.78 

M20 62.15 1 524 261 480 7.31 
M20 62.15 2 279 322 251 5.93 
M20 62.15 3 396 523 273 6.8 
M21 22.77 1 559 381 551 6.74 
M21 22.77 2 373 389 360 5.86 
M21 22.77 3 366 585 366 6.79 
M22 22.77 1 517 328 482 6.14 
M22 22.77 2 355 403 382 6.74 
M22 22.77 3 390 509 360 7.03 
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M23 44.35 1 453 359 464 7.02 
M23 44.35 2 354 348 268 6.19 
M23 44.35 3 346 479 347 6.32 
M24 44.35 1 522 367 484 7.64 
M24 44.35 2 309 341 302 6.23 
M24 44.35 3 338 540 310 6.59 
M25 22.77 1 508 345 393 7.46 
M25 22.77 2 347 382 294 6.07 
M25 22.77 3 375 519 375 6.27 
M26 22.77 1 516 386 460 7.68 
M26 22.77 2 377 397 278 6.46 
M26 22.77 3 372 517 383 6.52 
M27 62.15 1 460 355 386 7.05 
M27 62.15 2 363 396 255 6.3 
M27 62.15 3 390 484 328 6.45 
M28 44.35 1 488 369 494 7.49 
M28 44.35 2 376 402 358 6.22 
M28 44.35 3 390 494 368 6.28 
M29 44.35 1 487 378 460 7.43 
M29 44.35 2 379 363 287 6.49 
M29 44.35 3 342 485 332 6.34 
M3 44.35 1 471 371 422 7.08 
M3 44.35 2 366 379 335 5.97 
M3 44.35 3 370 478 331 6.45 
M30 22.77 1 508 373 491 6.65 
M30 22.77 2 362 383 338 5.5 
M30 22.77 3 365 516 311 6.45 
M4 62.15 1 453 357 410 7.62 
M4 62.15 2 355 328 229 6.46 
M4 62.15 3 315 458 275 6.35 
M5 44.35 1 491 408 456 7.26 
M5 44.35 2 371 395 336 6.57 
M5 44.35 3 387 478 406 6.51 
M6 22.77 1 506 347 489 6 
M6 22.77 2 334 370 348 6.04 
M6 22.77 3 362 485 358 6.55 
M7 62.15 1 461 283 394 7.47 
M7 62.15 2 351 317 75 6.4 
M7 62.15 3 356 477 265 6.36 
M8 44.35 1 501 342 484 6.88 
M8 44.35 2 353 388 259 6.01 
M8 44.35 3 368 499 290 6.73 
M9 22.77 1 460 381 476 7.37 
M9 22.77 2 360 345 357 6.22 
M9 22.77 3 336 467 347 6.62 
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Appendix H.  Example SAS Codes From Data Analysis 

 
Repeated Measures ANOVA Richness Data (Chapter 2) 
ods  html ; 
   ods  graphics on; 
title1  'Repeated Measures ANOVA analysis of Patuxent and N anticoke 
River Data' ; 
Options  ls= 70 ps= 48 pageno= 1; 
data rich; 
input  River $ Plot $ Group Time Inun BpH CAMg  DisDwn
 EPAP EPAS M3Al M3B M3Ca M3Cu M3Fe M3K M3Mg M3Mn
 M3P M3S M3Zn MRC MSC MSS MT NP NH4N NO3N OM
 pH Richness RRC RS RSC RT TC TN 
; 
datalines ; 
Pax X00W 1 1 35.54 7.17 0.760619219 47.2 824.52
 12468 1047.43 11.4 1469.6 1.64 1125.69 918.72
 1932.11 66.33 49.31 2792.66 19.83 10955 11982.5
 6.95 21.675 13.07427352 20.5591 0 27.4 3.9 11
 16400 9.6 16330 21.35 12.83 1.078 
Pax X05W 1 1 33.6 7.14 0.669715641 43.3 1026 12676
 1104.81 11.01 2039.11 2.21 1169.91 1209.44
 3044.74 90.38 67.15 3111.86 14.36 12122.5 12050
 6.975 25.725 13.80116959 30.7183 0 32.2 3.8 11
 14115 7.45 13215 27.95 18.54 1.416 
Pax X10E 1 1 63.39 7.12 0.663529351 38.8 1007.2
 14280 1103.44 9.86 1797.01 1.94 968.58 1156.78
 2708.26 220.39 54 3024.6 14.45 8997.75
 10383.25 5.125 25.575 12.92692613 26.8588 0
 26.2 4 15 13910 7.45 12970 29 14.64 1.302 
Pax X15W 1 1 56.8 7.05 0.816467101 35.2 1157.4
 13456 1099.12 6.84 1762.63 1.51 895.9 1012.93
 2158.85 295.69 59.97 2579.43 25.77 6370 6504.75
 3.6 24.425 9.210298946 26.1201 0 19.5 4.2 17
 7015 3.5 6470 29.1 11.24 1.066 
Pax X20E 2 1 50.11 7.12 1.150326503 30.2 1629.88
 5864 1058.86 4.08 1786.25 1.51 982.43 540.55
 1552.82 265.37 59.76 1483.36 33.7 3429.30175
 4154.25 2.2 23.7 5.638451911 27.6307 0 16.1
 4.4 12 5315 2.7 2567.525 27.1 9.22 0.919 
Pax X22W 2 1 30.11 7.19 1.218448758 29.6 2381.08
 3528.24 860.05 4.11 1481.39 1.54 900.94
 599.41 1215.8 445.34 31.04 566 22.07 3542
 3533.5 1.9 23.075 3.359819914 22.8001 0.71
 16.3 4.8 20 5340 2.7 5103.5 27.25 9.07 0.8 
Pax X26W 2 1 40.43 7.09 1.858699433 25.6 1414.44
 4156 1240.44 4.72 2458.13 1.52 963.66 422.84
 1322.5 385.21 54.5 1006.24 23.26 1184 1294.25
 0.625 20.55 9.381804813 34.6691 0.72 23.3 4.6 25
 2597.5 1.25 2455 27.9 13.67 1.327 
Pax X30W 2 1 47.45 6.97 2.632952176 20.4 969.96
 14956 1611.18 4.51 3914.41 1.9 1274.3 242.95
 1486.7 256.05 68.07 3212.86 22.9 1270 1287.25
 0.65 23.825 17.60897357 24.1364 0 39.8 4 8
 1840.5 0.9 1777 28.1 23.39 1.708 
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Pax X35W 2 1 24.54 7.17 4.557444381 14.8 1075 8216
 1697.84 5.07 3195.68 2.18 1309.02 235.14
 701.2 162.87 124.7 2111.51 47.81 651.25 676.25
 0.35 22.125 22 47.8412 1.42 38.6 4.2 33
 683.5 0.35 692 24.8 24.52 2.365 
Pax X39W 2 1 52.98 6.92 5.792673176 10.5 1773 9344
 1353.9 3.41 2390.81 3.23 1568.89 137.06
 412.73 226.39 122.62 1776.83 45.29 381.65
 399.75 0.175 22.725 6.835871404 37.9974 0.8
 24.1 3.8 19 323.05 0.15 317.55 26 14.78
 1.212 
Pax X43W 3 1 27.36 7.1 8.572517373 5.5 1226.52
 2470.72 1024.12 3.42 1912.1 2.61 1559.96
 97.37 223.05 179.54 168.35 463.31 28.01
 359.2 382.275 0.2 21.775 9.066301406 17.4881
 1.59 18.2 4.3 26 326.15 0.2 331.55 24.25
 12.7 1.112 
Pax X47E 3 1 27.24 6.95 10.13704509 0 1594.88
 2993.68 1377.14 4.34 3448.42 2.71 1880.41
 141.92 340.18 498.58 65.39 481.08 46.43
 322.225 352.4 0.15 19.975 11.81907103 31.1001
 4.81 34.6 4.5 30 191 0.15 207.7 22.45 19.54 1.885 
Pax X00W 1 2 35.54 7.17 0.760619219 47.2 824.52
 12468 1047.43 11.4 1469.6 1.64 1125.69 918.72
 1932.11 66.33 49.31 2792.66 19.83 10955 11982.5
 6.95 21.675 13.07427352 20.5591 0 27.4 3.9 10
 16400 9.6 16330 21.35 12.83 1.078 
Pax X05W 1 2 33.6 7.14 0.669715641 43.3 1026 12676
 1104.81 11.01 2039.11 2.21 1169.91 1209.44
 3044.74 90.38 67.15 3111.86 14.36 12122.5 12050
 6.975 25.725 13.80116959 30.7183 0 32.2 3.8 11
 14115 7.45 13215 27.95 18.54 1.416 
Pax X10E 1 2 63.39 7.12 0.663529351 38.8 1007.2
 14280 1103.44 9.86 1797.01 1.94 968.58 1156.78
 2708.26 220.39 54 3024.6 14.45 8997.75
 10383.25 5.125 25.575 12.92692613 26.8588 0
 26.2 4 17 13910 7.45 12970 29 14.64 1.302 
Pax X15W 1 2 56.8 7.05 0.816467101 35.2 1157.4
 13456 1099.12 6.84 1762.63 1.51 895.9 1012.93
 2158.85 295.69 59.97 2579.43 25.77 6370 6504.75
 3.6 24.425 9.210298946 26.1201 0 19.5 4.2 21
 7015 3.5 6470 29.1 11.24 1.066 
Pax X20E 2 2 50.11 7.12 1.150326503 30.2 1629.88
 5864 1058.86 4.08 1786.25 1.51 982.43 540.55
 1552.82 265.37 59.76 1483.36 33.7 3429.30175
 4154.25 2.2 23.7 5.638451911 27.6307 0 16.1
 4.4 16 5315 2.7 2567.525 27.1 9.22 0.919 
Pax X22W 2 2 30.11 7.19 1.218448758 29.6 2381.08
 3528.24 860.05 4.11 1481.39 1.54 900.94
 599.41 1215.8 445.34 31.04 566 22.07 3542
 3533.5 1.9 23.075 3.359819914 22.8001 0.71
 16.3 4.8 27 5340 2.7 5103.5 27.25 9.07 0.8 
Pax X26W 2 2 40.43 7.09 1.858699433 25.6 1414.44
 4156 1240.44 4.72 2458.13 1.52 963.66 422.84
 1322.5 385.21 54.5 1006.24 23.26 1184 1294.25
 0.625 20.55 9.381804813 34.6691 0.72 23.3 4.6 24
 2597.5 1.25 2455 27.9 13.67 1.327 
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Pax X30W 2 2 47.45 6.97 2.632952176 20.4 969.96
 14956 1611.18 4.51 3914.41 1.9 1274.3 242.95
 1486.7 256.05 68.07 3212.86 22.9 1270 1287.25
 0.65 23.825 17.60897357 24.1364 0 39.8 4 5
 1840.5 0.9 1777 28.1 23.39 1.708 
Pax X35W 2 2 24.54 7.17 4.557444381 14.8 1075 8216
 1697.84 5.07 3195.68 2.18 1309.02 235.14
 701.2 162.87 124.7 2111.51 47.81 651.25 676.25
 0.35 22.125 22 47.8412 1.42 38.6 4.2 29
 683.5 0.35 692 24.8 24.52 2.365 
Pax X39W 2 2 52.98 6.92 5.792673176 10.5 1773 9344
 1353.9 3.41 2390.81 3.23 1568.89 137.06
 412.73 226.39 122.62 1776.83 45.29 381.65
 399.75 0.175 22.725 6.835871404 37.9974 0.8
 24.1 3.8 22 323.05 0.15 317.55 26 14.78
 1.212 
Pax X43W 3 2 27.36 7.1 8.572517373 5.5 1226.52
 2470.72 1024.12 3.42 1912.1 2.61 1559.96
 97.37 223.05 179.54 168.35 463.31 28.01
 359.2 382.275 0.2 21.775 9.066301406 17.4881
 1.59 18.2 4.3 25 326.15 0.2 331.55 24.25
 12.7 1.112 
Pax X47E 3 2 27.24 6.95 10.13704509 0 1594.88
 2993.68 1377.14 4.34 3448.42 2.71 1880.41
 141.92 340.18 498.58 65.39 481.08 46.43
 322.225 352.4 0.15 19.975 11.81907103 31.1001
 4.81 34.6 4.5 30 191 0.15 207.7 22.45 19.54 1.885 
Nan N00W 1 1 4.45 7.33 0.66143642 55.9 638.64
 9976 940.94 11.18 1737.19 3.45 1322.06 908.36
 2626.39 31.63 37.18 3475 11.94 12245 13760 7.925 1 9.4
 18.61768759 31.9052 0 29.8 4 4 17210 8.7
 15180 31.8 16.73 1.189 
Nan N05W 1 1 11.75 7.49 0.775195231 54.5 518.12
 10984 1361.81 9.72 2265.26 3.43 1150.92 963.86
 2922.18 55.59 53.89 4088.74 14 8975 9870 5.55
 21.225 20.51648267 74.5838 0 28 4 8
 12410 6.2 11030 31.4 15.73 1.063 
Nan N10E 1 1 30.71 7.38 0.845503646 49.3 594.4 1217 6
 1167.43 7.74 1770.51 2.29 1062.77 808.98
 2094.03 79.35 36.6 2387.17 16.15 5637.5 6062.5
 3.275 22.05 18.37146703 32.6605 0 24 4.3 12
 8865 5.1 9095 31.3 14.28 1.092 
Nan N15E 1 1 36.8 7.34 0.915513587 44.9 608.4 11512
 958.17 7.21 2012.72 1.46 1118.86 710.17
 2198.46 259.94 25.14 2067.44 17.92 3942 4350.75
 2.375 21.775 17.88297173 31.7475 0 20.9 4.4 14
 3356.5 1.7 3282 25.95 12.52 1.088 
Nan N19E 1 1 18.9 7.27 0.923484971 42.1 692.04
 14488 1204.6 8.75 2228.36 2.59 1261.97 591.27
 2412.99 96.6 38.41 3106.49 17.54 2747.75 3012.75
 1.525 21.575 20.40344489 36.1714 0.31 30.6 4.2 24
 4151.5 2.35 4360.5 25.7 18.72 1.412 
Nan N25E 2 1 31.07 7.24 1.102278453 40.3 761 4232
 903.65 4.32 1793.87 1.53 934.79 349.4 1627.42
 212.23 29.04 910.65 24.3 2153.75 2396.5
 1.275 22.475 12.61498029 21.9618 1.12 16.1 4.8 27
 2827 1.6 2991.5 27.65 10.54 0.96 
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Nan N27W 2 1 28.18 7.09 1.103624074 35 750.6 8756
 1083.67 5.45 2132.29 2 1184.63 429.54
 1932.08 107.42 34.05 2377.36 29.6 1190 1249.75
 0.625 23.675 21.23634426 37.5077 0 28.8 4.3 38
 1784 0.9 1779.5 26.55 17.64 1.594 
Nan N30E 2 1 58.25 7.05 0.95852484 33 595.56
 15280 1277.43 4.83 2095.92 2.86 1747.88 292.86
 2186.61 301.27 20.29 3736.61 54.97 1448.5
 1577.5 0.8 22.725 24.1453422 38.4622 0
 26.5 3.7 18 1759.5 1 1879.05 28.25 16.06
 1.438 
Nan N33W 2 1 32.85 7.13 1.645445731 30.1 691.52
 7552 1310.86 5.17 2528.54 2.21 1368.66 263.17
 1536.69 209.08 34.28 1876.98 44.97 532.825
 563.425 0.275 23.05 24.19308191 36.7441 0.19 30.4
 4.1 19 311.1 0.15 306.4 25.65 17.31 1.673 
Nan N35W 3 1 38.39 7.21 1.693138624 27.5 852.68
 6488 1253.67 5.38 2619.15 5.33 1316.3 213.95
 1546.92 196.5 42.75 882.7 37.91 715.875 792.525
 0.4 21.5 28.88539663 31.0088 1.03 45.3 4.2 31
 781.15 0.4 830.8 117.55 26.35 2.463 
Nan N40W 3 1 17.5 7.25 2.375408292 24.9 820.48
 5668 1452.07 4.03 3127.13 5.55 1179.3 213.69
 1316.46 141.41 46.1 758.23 51.16 311.925
 331.1 0.15 20.45 31.18906006 30.0543 2.35 49 4.5 3 4
 152.2 0.1 158.45 26.15 28.38 2.559 
Nan N42E 3 1 34.6 7.22 3.818584172 19 986.4 3636.92
 1283.5 4.41 3330.34 5.04 1471.36 237.8 872.14
 348.36 43.66 256.91 50.88 130.9 134.75 0.1
 23.95 26.09489051 43.0355 3.3 46.5 4.8 20 131.35
 0.1 124 26.4 26.42 2.574 
Nan N45E 3 1 27.48 7.29 3.580257131 15 865.16
 6512 1561.03 5.08 3720.46 9.45 1574.18 209.72
 1039.16 159.22 46.95 642.97 67.59 123.6 123.175
 0.1 24.55 37.17231495 32.1127 1.31 61.1 4.7 26
 117.05 0.1 120.6 25.95 35.62 3.216 
Nan N49W 3 1 42.83 7.29 4.775686727 10 984.24
 4928 1499.58 6.41 3644.04 8.45 2081.83 398.26
 763.04 154.16 64.34 594.17 71.28 124.3 129.65
 0.1 22.975 28.94619199 46.1978 1.14 55.3 4.6 17
 134.5 0.1 121 26.35 31.83 2.849 
Nan N55W 3 1 33.42 7.41 4.753128259 6 827.4 4100
 1615.68 5.12 2370.29 8.5 1458.11 278.09
 498.68 159.53 73.8 327.64 109.93 135.325
 143.725 0.1 21.425 32.4993957 34.5612 1.51
 51.6 4.6 25 130.7 0.1 129.2 25.05 29.39 2.689 
Nan N56W 3 1 47.32 7.39 4.500587162 0 821.6 3443.08
 1603.3 4.38 1801.27 3.75 1852.13 248.37
 400.23 273.4 48.21 315.43 116.2 130.425 132.6
 0.1 23.625 26.0345667 32.3617 2.53 36.4 4.6 26
 106.4 0.1 106.95 24.65 22.62 2.139 
Nan N00W 1 2 4.45 7.33 0.66143642 55.9 638.64
 9976 940.94 11.18 1737.19 3.45 1322.06 908.36
 2626.39 31.63 37.18 3475 11.94 12245 13760 7.925 1 9.4
 18.61768759 31.9052 0 29.8 4 11 17210 8.7
 15180 31.8 16.73 1.189 
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Nan N05W 1 2 11.75 7.49 0.775195231 54.5 518.12
 10984 1361.81 9.72 2265.26 3.43 1150.92 963.86
 2922.18 55.59 53.89 4088.74 14 8975 9870 5.55
 21.225 20.51648267 74.5838 0 28 4 15
 12410 6.2 11030 31.4 15.73 1.063 
Nan N10E 1 2 30.71 7.38 0.845503646 49.3 594.4 1217 6
 1167.43 7.74 1770.51 2.29 1062.77 808.98
 2094.03 79.35 36.6 2387.17 16.15 5637.5 6062.5
 3.275 22.05 18.37146703 32.6605 0 24 4.3 16
 8865 5.1 9095 31.3 14.28 1.092 
Nan N15E 1 2 36.8 7.34 0.915513587 44.9 608.4 11512
 958.17 7.21 2012.72 1.46 1118.86 710.17
 2198.46 259.94 25.14 2067.44 17.92 3942 4350.75
 2.375 21.775 17.88297173 31.7475 0 20.9 4.4 17
 3356.5 1.7 3282 25.95 12.52 1.088 
Nan N19E 1 2 18.9 7.27 0.923484971 42.1 692.04
 14488 1204.6 8.75 2228.36 2.59 1261.97 591.27
 2412.99 96.6 38.41 3106.49 17.54 2747.75 3012.75
 1.525 21.575 20.40344489 36.1714 0.31 30.6 4.2 22
 4151.5 2.35 4360.5 25.7 18.72 1.412 
Nan N25E 2 2 31.07 7.24 1.102278453 40.3 761 4232
 903.65 4.32 1793.87 1.53 934.79 349.4 1627.42
 212.23 29.04 910.65 24.3 2153.75 2396.5
 1.275 22.475 12.61498029 21.9618 1.12 16.1 4.8 29
 2827 1.6 2991.5 27.65 10.54 0.96 
Nan N27W 2 2 28.18 7.09 1.103624074 35 750.6 8756
 1083.67 5.45 2132.29 2 1184.63 429.54
 1932.08 107.42 34.05 2377.36 29.6 1190 1249.75
 0.625 23.675 21.23634426 37.5077 0 28.8 4.3 45
 1784 0.9 1779.5 26.55 17.64 1.594 
Nan N30E 2 2 58.25 7.05 0.95852484 33 595.56
 15280 1277.43 4.83 2095.92 2.86 1747.88 292.86
 2186.61 301.27 20.29 3736.61 54.97 1448.5
 1577.5 0.8 22.725 24.1453422 38.4622 0
 26.5 3.7 19 1759.5 1 1879.05 28.25 16.06
 1.438 
Nan N33W 2 2 32.85 7.13 1.645445731 30.1 691.52
 7552 1310.86 5.17 2528.54 2.21 1368.66 263.17
 1536.69 209.08 34.28 1876.98 44.97 532.825
 563.425 0.275 23.05 24.19308191 36.7441 0.19 30.4
 4.1 20 311.1 0.15 306.4 25.65 17.31 1.673 
Nan N35W 3 2 38.39 7.21 1.693138624 27.5 852.68
 6488 1253.67 5.38 2619.15 5.33 1316.3 213.95
 1546.92 196.5 42.75 882.7 37.91 715.875 792.525
 0.4 21.5 28.88539663 31.0088 1.03 45.3 4.2 30
 781.15 0.4 830.8 117.55 26.35 2.463 
Nan N40W 3 2 17.5 7.25 2.375408292 24.9 820.48
 5668 1452.07 4.03 3127.13 5.55 1179.3 213.69
 1316.46 141.41 46.1 758.23 51.16 311.925
 331.1 0.15 20.45 31.18906006 30.0543 2.35 49 4.5 3 0
 152.2 0.1 158.45 26.15 28.38 2.559 
Nan N42E 3 2 34.6 7.22 3.818584172 19 986.4 3636.92
 1283.5 4.41 3330.34 5.04 1471.36 237.8 872.14
 348.36 43.66 256.91 50.88 130.9 134.75 0.1
 23.95 26.09489051 43.0355 3.3 46.5 4.8 22 131.35
 0.1 124 26.4 26.42 2.574 
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Nan N45E 3 2 27.48 7.29 3.580257131 15 865.16
 6512 1561.03 5.08 3720.46 9.45 1574.18 209.72
 1039.16 159.22 46.95 642.97 67.59 123.6 123.175
 0.1 24.55 37.17231495 32.1127 1.31 61.1 4.7 24
 117.05 0.1 120.6 25.95 35.62 3.216 
Nan N49W 3 2 42.83 7.29 4.775686727 10 984.24
 4928 1499.58 6.41 3644.04 8.45 2081.83 398.26
 763.04 154.16 64.34 594.17 71.28 124.3 129.65
 0.1 22.975 28.94619199 46.1978 1.14 55.3 4.6 18
 134.5 0.1 121 26.35 31.83 2.849 
Nan N55W 3 2 33.42 7.41 4.753128259 6 827.4 4100
 1615.68 5.12 2370.29 8.5 1458.11 278.09
 498.68 159.53 73.8 327.64 109.93 135.325
 143.725 0.1 21.425 32.4993957 34.5612 1.51
 51.6 4.6 31 130.7 0.1 129.2 25.05 29.39 2.689 
Nan N56W 3 2 47.32 7.39 4.500587162 0 821.6 3443.08
 1603.3 4.38 1801.27 3.75 1852.13 248.37
 400.23 273.4 48.21 315.43 116.2 130.425 132.6
 0.1 23.625 26.0345667 32.3617 2.53 36.4 4.6 29
 106.4 0.1 106.95 24.65 22.62 2.139 
 
; 
 
data rich; 
set  rich; 
run; 
quit; 
proc sort data = rich; 
by  river; 
quit; 
 
 
proc mixed data =rich; 
class  group time; 
model  Richness = group|time / ddfm =satterth outp =resids; 
by  river; 
lsmeans  group|time/ diff =all adjust =tukey; 
ods  output  lsmeans=lsmean1; 
ods  listing  exclude  diffs; ods  output  diffs=diff1; 
ods  output  tests3=stat1; 
quit; 
 
proc plot data =resids vpercent =50; 
plot  resid*pred/ vref =0; 
by  river; 
quit; 
Proc univariate data =resids plot  normal ; 
var  resid; 
by  river; 
quit; 
proc print data =lsmean1; 
quit; 
proc print data =diff1; 
format  estimate stderr 6.2; 
var  river group _group time _time Estimate StdErr Adjp ; 
quit; 
proc print data =stat1; 
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quit; 
title  "" ; 
quit; 
 
ods  graphics off ; 
   ods  html  close ; 
   quit; 

 
Stepwise Regression Analysis Mid-Domain Effect and Richness Data (Chapter 3) 
ods  html ; 
   ods  graphics on; 
title1  'Stepwise Regression Analysis of Models for Empiric al versus 
RangeModel Data Nanticoke River Full Data Set' ; 
Options  ls= 70 ps= 48 pageno= 1; 
data stepreg; 
input  plot$ Group$ Inun BpH  CAMg  DisDown EPAP  EPAS  M 3Al  
M3B  M3Ca M3Cu M3Fe  M3K  M3Mg  M3Mn  M3P   M3S  M3 Zn  MSS MSC   NP  
NH4N NO3N  OM  pH  RSC  TC  TN  EmpR RMRich 
 
; 
datalines ; 
N00W     1 4.449999809 7.329999924 -0.17951189 55.9
 2.805256128 3.998956442 2.973562002 1.048441768 3. 239847422
 0.537819088 3.121251106 2.958257914 3.419359207 1. 500099182
 1.570309401 3.540954828 1.077004313 7.925 13760 18 .61768723
 1.503861427 0 29.79999924 4 15180 16.72999954
 0.075181857 7 11.0462 
N05W     1 11.75 7.489999771 -0.110588901 54.5
 2.714430332 4.040760517 3.13411665 0.987666249 3.3 55118036
 0.535294116 3.06104517 2.984014034 3.465707064 1.7 44996667
 1.731508136 3.611589432 1.146128058 5.55 9870 20.5 1648331
 1.872644544 0 28 4 11030 15.72999954 0.02653325
 11.5 18.939 
N10E     1 30.70999908 7.380000114 -0.072884522 49. 29
 2.774078846 4.085504532 3.06723094 0.888740957 3.2 48098373
 0.359835476 3.02643919 2.907937765 3.320982933 1.8 99546981
 1.563481092 3.377883434 1.20817256 3.275 6062.5
 18.37146759 1.514022827 0 24 4.300000191 9095
 14.27999973 0.038222641 14 24.8548 
N15E     1 36.79999924 7.340000153 -0.038335212 44. 9
 2.784189224 4.061150551 2.981442451 0.85793525 3.3 03783417
 0.164352864 3.048775673 2.851362228 3.342118502 2. 414873123
 1.400365233 3.315432787 1.253337979 2.375 4350.75
 17.88297081 1.50170958 0 20.89999962 4.400000095 3 282
 12.52000046 0.036628921 15.5 29.8686 
N19E     1 18.89999962 7.269999981 -0.034570165 42. 09
 2.840131283 4.161008358 3.080842733 0.942008078 3. 347985268
 0.413299739 3.101048946 2.771785975 3.382555485 1. 984977126
 1.584444284 3.492269993 1.244029641 1.525 3012.75
 20.40344429 1.558365345 0.117271274 30.60000038 4. 199999809
 4360.5 18.71999931 0.149834678 23 34.7418 
N25E     2 31.06999969 7.239999771 0.042291325 40.2 9
 2.881384611 3.626545668 2.956000328 0.635483742 3. 253790855
 0.184691429 2.970714092 2.543322802 3.211499691 2. 326806784
 1.462996602 2.95935154 1.385606289 1.275 2396.5
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 12.6149807 1.341667891 0.326335847 16.10000038 4.8 00000191
 2991.5 10.53999996 -0.017728776 28 38.2106 
N27W     2 28.18000031 7.090000153 0.042821176 35
 2.875408649 3.942305803 3.034897089 0.736396492 3. 328846216
 0.30103001 3.073582649 2.633003712 3.286025047 2.0 31085253
 1.532117128 3.376095057 1.471291661 0.625 1249.75
 21.23634338 1.574120402 0 28.79999924 4.300000191 1779.5
 17.63999939 0.202488318 41 39.7666 
N30E     2 58.25 7.050000191 -0.018396636 33
 2.77492547 4.184123516 3.10633707 0.683947146 3.32 1374655
 0.456366003 3.242511511 2.466660023 3.339771271 2. 478955984
 1.30728209 3.572477818 1.740125775 0.8 1577.5
 24.14534187 1.585034132 0 26.5 3.700000048 1879.05 0049
 16.05999947 0.157758877 18.5 39.7752 
N33W     2 32.84999847 7.130000114 0.21628356 30.1
 2.839804649 3.87806201 3.117556334 0.713490546 3.4 0286994
 0.34439227 3.136295557 2.420236349 3.186586142 2.3 203125
 1.535040855 3.273459673 1.652922869 0.275 563.4249 878
 24.19308281 1.565187573 0.07554698 30.39999962 4.0 99999905
 306.3999939 17.30999947 0.22349593 19.5 39.755 
N35W     3 38.38999939 7.210000038 0.228692517 27.5
 2.930786133 3.812110901 3.098183155 0.73078227 3.4 18160439
 0.726727188 3.119354963 2.330312252 3.189467907 2. 293362617
 1.630936146 2.945813179 1.578753829 0.4 792.525024 4
 28.88539696 1.491485 0.307496041 45.29999924 4.199 999809
 830.7999878 26.35000038 0.391464412 30.5 39.735 
N40W     3 17.5 7.25 0.375738293 24.89 2.914067984
 3.75342989 3.161987543 0.605305076 3.495146036 0.7 44292974
 3.071624279 2.329784155 3.119407654 2.150480032 1. 663700938
 2.879801035 1.708930492 0.15 331.1000061 31.189060 21
 1.477906585 0.525044799 49 4.5 158.4499969 28.3799 9916
 0.408070296 32 38.0928 
N42E     3 34.59999847 7.21999979 0.581902385 19
 2.994053125 3.560733795 3.108395815 0.644438565 3. 522488594
 0.702430546 3.167718887 2.376211882 2.940586329 2. 542028189
 1.640083671 2.409780979 1.706547141 0.1 134.75
 26.09489059 1.633826852 0.633468449 46.5 4.8000001 91 124
 26.42000008 0.41060853 21 34.6294 
N45E     3 27.47999954 7.289999962 0.553914249 15
 2.937096357 3.813714504 3.19341135 0.705863714 3.5 70596695
 0.9754318 3.197054386 2.321639776 3.016682386 2.20 1997519
 1.671635628 2.808190584 1.829882383 0.1 123.175003 1
 37.17231369 1.506676793 0.363611966 61.09999847 4. 699999809
 120.5999985 35.61999893 0.507316053 25 29.7418 
N49W     3 42.83000183 7.289999962 0.679035842 10
 2.99310112 3.692670584 3.175969601 0.806858003 3.5 61583042
 0.926856697 3.318445206 2.600166798 2.882547379 2. 18797183
 1.808480978 2.773910761 1.852967739 0.1 129.649993 9
 28.94619179 1.664621234 0.330413789 55.29999924 4. 599999905
 121 31.82999992 0.454692453 17.5 24.8268 
N55W     3 33.41999817 7.409999847 0.676979542 6
 2.917715549 3.612783909 3.208355427 0.709269941 3. 374801397
 0.929418921 3.163790226 2.444185257 2.697821856 2. 202842474
 1.868056417 2.515396833 2.041116238 0.1 143.725006 1
 32.49939728 1.538588762 0.39967373 51.59999847 4.5 99999905
 129.1999969 29.38999939 0.429590791 28 18.9186 
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N56W     3 47.31999969 7.389999866 0.653269172 0
 2.914660454 3.536947012 3.205014706 0.641474128 3. 255578756
 0.574031293 3.267671585 2.395099163 2.602309704 2. 436798573
 1.683137178 2.498903036 2.065206051 0.1 132.600006 1
 26.03456688 1.510031343 0.547774673 36.40000153 4. 599999905
 106.9499969 22.62000084 0.330210775 27.5 11.0978 
 
 
; 
proc reg data =stepreg; 
      model  EmpR = CAMg Inun DisDown MSS NO3N pH RMRich 
   / selection =maxr details =summary; 
 
proc reg data =stepreg; 
model  EmpR = CAMg Inun DisDown MSS NO3N pH RMRich 
   / selection =rsquare  aic  cp  tol  vif  collin ; 
   quit; 
 
   ods  graphics off ;  
   ods  html  close ; 
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