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Dissertation directed by: Professor Millard H. Alexander
Department of Chemistry and Biochemistry

This dissertation is focused on the interaction of open-shell atoms and molecules.

We have studied the systems in the title by means of electronic structure and sta-

tistical reaction dynamics methods.

We present an ab initio study of the O(3P ) + H2 system. In particular,

we have calculated potential energy surfaces for the van der Waals region of the

interaction and derived and calculated the spin-orbit coupling matrix in the diabatic

representation.

The rest of the dissertation is comprised of statistical, coupled-states dynamics

studies. Cross sections are calculated by the coupled-states (CS) statistical method

including the full open-shell character of the systems. All electronic and spin-orbit

couplings are included.

We report state-to-state and overall thermal rate constants for the isotope

exchange

D(2S) + OH(2Π) → OD(2Π) + H(2S)



for 0 K< T <500 K. We predict a reaction rate constant of 14.22 × 10−11 cm3

molecule−1 s−1 at T = 100 K and 10.78 × 10−11 cm3 molecule−1 s−1 at T = 300

K. At lower temperatures, (T ' 50 K), the value rises to k(T ) = 15 × 10−11

cm3molecule−1s−1. A negative temperature dependence in the rate constant is ob-

served. The state-resolved cross sections and rate-constants predict a significant

propensity toward formation of the OD Π(A′) Λ-doublet level and the ground spin-

orbit manifold, F1.

This dissertation is also concerned with the study of vibrational and rotational

relaxation of OH(2Π) by collision with H atoms. Four potential energy surfaces

(PESs) (1,3A′ and 1,3A′′) describe the interaction of OH(X 2Π) with H atoms. Of

these, three are repulsive, while one (1A′) correlates with the deep H2O well. Con-

sequently, rotationally- and ro-vibrationally-inelastic scattering of OH in collisions

with H can occur by scattering on the repulsive PESs, in a manner similar to the in-

elastic scattering of OH by noble gas atoms, or by collisions which enter the H2O well

and then re-emerge. We report state-to-state cross sections and thermal rate con-

stants for the collisions. At 300 K, we predict large (≈ 1×10−10 cm3 molecule−1 s−1)

vibrational relaxation rates out of both v=2 and v=1, comparable to earlier exper-

imental observations.

This surprisingly fast relaxation results from capture into the H2O complex.

There also exists a significant propensity toward formation of OH in the Π(A′) Λ-

doublet level. We also report state-resolved cross sections and rate constants for

rotational excitation within the OH v=0 manifold. Collisional excitation from the

F1 to the F2 spin-orbit manifold leads to an inverted Λ-doublet population.
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Chapter 1

Introduction

Chemical reactions occur everywhere. However, most of them are very complex

involving the interactions of hundreds of particles. Gas phase reactions are relatively

isolated. Consequently, one can exclude the interactions with the environment to

a good approximation to focus exclusively on the interactions between just two

reactants.

The study of chemical reaction dynamics is concerned with obtaining a de-

tailed picture of the chemical and physical changes which occur during a reaction

at the most fundamental level. Independent of all practical importance, the purist

wants to discover what really happens to the atoms in regions of close approach. In

this regard, molecular reaction dynamics lies at the heart of chemistry [1]. For the

pragmatist, phenomena such as chemical lasers or combustion can be truly under-

stood only with the knowledge of how reactivity depends on the degree of excitation

of the reactants. Interstellar chemistry, also, cannot be explained by equilibrium

arguments, since at very low densities thermal equilibrium is rarely obtained.

The only purely exact way to predict the dynamical behavior of atoms and

electrons in chemistry is to solve the Schrödinger equation for the system in question.

This is achieved in a two step process, invoking the Born-Oppenheimer Approxima-

tion (BOA). In a first step, one determines the electronic wave function to obtain the

1



interaction energies for a fixed nuclear geometry. Subsequently, one solves the scat-

tering equations for nuclear motion over a single Potential Energy Surface (PES).

For most systems the BOA gives satisfactory results. However, when the BOA fails,

it is necessary to go beyond approximation of a single PES approach to include

multiple PESs and couplings among them.

In this thesis we focus on several small triatomic systems, namely, O(3P ) +

H2, OH(2Π) + D(2S) and OH(2Π) + H(2S). In these systems the BOA would be

inadequate, since these interactions in principle involves several PESs which are

degenerate asymptotically. This is typical of interactions involving open-shell atom

and molecules, in which there is more than one way to distribute the electrons among

the available molecular orbitals.

The interaction of atomic oxygen in the ground state with atomic hydrogen has

been studied extensively [2–6, 6–30]. However, except for a few studies [2, 25, 31–33],

in most cases the spin-orbit interaction was neglected. Although the magnitudes of

spin-orbit coupling in light atoms are small, it has recently been shown that these

couplings can play a significant role in the dynamics [33]. The work presented in

Chapter 2 is concerned with an accurate description of the van der Waals region of

the three PESs for O(3P ) + H2 in the entrance channel and the calculation of the

spin-orbit terms which couple these surfaces.

The second and a more sizable part of the thesis (Chapters 3-5) involves the

application of statistical capture methods for two reactions: OH + D → OD + H

and OH(v, j) + H → OH(v′, j′) + H. We are interested in the OH + D reaction be-

cause of its interstellar importance [34] as well as because of a discrepancy between

2



the reported rate constants for this reaction.(See Table 4.1) The study of vibrational

relaxation of OH in collisions with H is more of a purist interest. We choose the

OH+H system as a prototype to explore vibrational relaxation dynamics in com-

plex forming reactions, which have not been extensively studied in prior theoretical

work. The collisions of OH with atomic hydrogen are also investigated as a possible

pumping mechanism for the OH maser [35–38].

Two papers reporting the statistical, coupled-states studies presented in this

thesis have already appeared (or will appear) in print:

• S. Atahan, M. H. Alexander and E. J. Rackham. Cross sections and thermal

rate constants for the isotope exchange reaction: D(2S) + OH(2Π) → OD(2Π)

+ H(2S). J. Chem. Phys., 123, art. no. 204306 (2005).

• S. Atahan and M. H. Alexander. Coupled-States Statistical Investigation of

Vibrational and Rotational Relaxation of OH(2Π) by Collisions with Atomic

Hydrogen. J. Phys. Chem. A, (2006), (in press).

In addition, we completed ab initio calculations on the SiAr van der Waals complex

(not presented in this thesis) which were published earlier:

• C. Tao, A. Teslja, P. J. Dagdigian, S. Atahan and M. H. Alexander. Laser

spectroscopic study of SiAr van der Waals complexes , J. Chem. Phys., 116,

9239 (2002) .

In the rest of the Introduction, we introduce the concept of a Potential Energy

Surface (PES) as well as the basic underpinnings of collisional molecular energy

3



transfer. This thesis is a computational study of PESs and dynamics of small tri-

atomic systems. We utilize the best available methods in both electronic structure

theory and time-independent scattering dynamics. The details of the theory is ex-

plained to give enough background for the reader to follow the results presented.

1.1 The Potential Energy Surfaces, (PESs)

PESs are multivariable scalar functions that describe the change in the in-

teraction energy of a system as a function of the coordinates of the nuclei. This

definition is the result of the Born-Oppenheimer Approximation [39], (BOA), in

which one assumes that the electronic motion is decoupled from the nuclear motion

so that one can solve the electronic part of the hamiltonian independently on a grid

of nuclear coordinates.

The idea of the separation of the motion of the nuclei and of the electrons

is suggested by molecular spectroscopy. Molecular spectral lines can be separately

assigned to electronic, vibrational or rotational transitions. This implies that to

first-order the electronic and nuclear motion is separable [39].

The exact nonrelativistic Hamiltonian for an N -nuclei and n-electron system

(in atomic units [40]) is

H = Tn + Tel + Vee + Vnn + Ven (1.1)

= −
N∑
i

1

2Mi

∇2
xi
−

n∑
j

1

2
∇2

xj
+

n∑
i<i′

1

xii′
+

m∑
j<j′

ZjZj′

xjj′
−

m,n∑
i,j

Zj

xij

, (1.2)

where the Mi are the masses of the nuclei and xij are the interparticle distances.

The coordinates xi and xj are defined with respect to the laboratory-fixed Carte-
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Figure 1.1: Illustration of Jacobi coordinates.

sian coordinate system for the nuclei and the electrons respectively. It is always

advantageous to transfer to a Center-of-Mass (CM) coordinate system in which we

separate out the overall translational motion of the system. With respect to the

CM, the system is described by 3N − 3 nuclear coordinates.

In this thesis, we use Jacobi coordinates which are defined as follows: Let A,

B and C be atoms of interest, and ~xi be the column vectors of their coordinates

relative to an origin fixed in the laboratory frame. The Jacobi coordinates then are

~R = ~xA −
mB~xB + mC~xC

mB + mC

(1.3)

~r = ~xC − ~xB. (1.4)

One of the three possible Jacobi coordinates sets are illustrated in the Fig. 1.1. The

angle θ is defined as

θ = cos−1(~R · ~r). (1.5)

In Jacobi coordinates (after the motion of the CM is removed) the Hamiltonian

5



is

H =
1

2µR

∇2
R +

1

2µr

∇2
r + Hel(~q; ~R,~r). (1.6)

Here, ~q designates, collectively, the coordinates of the all electrons; µR and µr are

the reduced masses for the A+BC arrangement and BC, respectively.

µR =
mA(mB + mC)

mA + mB + mC

, (1.7)

µr =
mBmC

mB + mC

. (1.8)

We neglect the mass-polarization [41] term which appears as a result of the coordi-

nate transformation.

By assuming [39] that we can fix the nuclei in space and solve the Schrödinger

Equation for Hel independently, we obtain a set of solutions for Hel as

Hel(~q; ~R,~r) φk
el(~q; ~R,~r) = Ek

el φk
el(~q; ~R,~r). (1.9)

We perform ab initio calculations to obtain the electronic wave functions and eigen-

values. All ab initio calculations in this thesis are performed with the MOLPRO [42]

suite of programs. The electronic wave functions, φk
el(~q; ~R,~r), will form a complete

set of orthogonal functions, in which we can expand the total wave function as

Ψ(~q, ~R,~r) =
∞∑
k

Ck(~R,~r) φk
el(~q; ~R,~r). (1.10)

By substituting the wave function into the full Schrödinger equation, multiplying

by φ∗m(~q; ~R,~r) on the left and integrating over the electronic coordinates we obtain

a set of coupled equations as follows:

∑
k

〈
φm

el

∣∣∣∣∣ 1

2µR

∇2
R +

1

2µr

∇2
r

∣∣∣∣∣Ck(~R,~r)φk
el

〉
+ Em

el Cm(~R,~r) = EtotCm(~R,~r). (1.11)
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Up to this point we have not made any approximations other then neglecting

the mass polarization term. Now, if we neglect all the couplings of the electronic

wave functions due to the kinetic energy operator, we obtain a Schrödinger equation

for the motion of the nuclei within the BOA approximation, namely

[
1

2µR

∇2
R +

1

2µr

∇2
r + Em

el

]
Cm(~R,~r) = EtotCm(~R,~r). (1.12)

The physical meaning of the BOA is that the electronic wave function will change

and adapt to the motion of the nuclei instantaneously so that the system does

not go through transitions between different electronic states. The success of the

BOA is due to the fact that most chemical reactions are adiabatic [43, 44]. The

approximation is valid only if the coupling energies due to the kinetic energy operator

are small compared to the energy gaps between different energy states. In situations

in which the energy gap between PESs is small, as can occur at crossings or avoided

crossings, it is crucial to go beyond the BOA to understand the behavior of the

system.

In dynamics calculations, when multiple PESs are involved, the matrix of the

kinetic energy is not, in principle, diagonal and the coupling terms can be hard

to compute [45]. Therefore, it is disadvantageous to use adiabatic PESs in the

dynamics calculations. If the nonadiabatic effects are important, one would like to

use a representation in which the nuclear couplings are minimal. In this basis the

functions will be little affected by the changes in positions of the nuclei. This is

called a diabatic representation. The spin-orbit coupling terms, in the next chapter,

are reported in a diabatic representation.
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1.2 Molecular Energy Transfer

For any system to reach thermal equilibrium, it is necessary to have means

of energy transfer among the particles constituting the system. Energy transfer

occurs either through molecular collisions or radiation. Since for most molecules in

their ground electronic states radiative lifetimes are relatively long, transfer through

collisions is of fundamental interest. In collisions, molecules can change their veloc-

ity, vibrational and/or rotational levels, and sometimes their electronic states. The

efficiency of these various types of energy transfer reveals subtle details about the na-

ture of the chemical interaction among molecules. The types of transfer in inelastic

collisions are referred [46] to as Translation-Vibration (T −V ), Vibration-Vibration

(V − V ), Vibration-Rotation (V −R) transfer, and so forth.

Chapters 3–5 of this thesis are concerned with rovibrational energy transfer

in complex forming reactions. Here we will try to sketch the basic principles of this

process. For the sake of simplicity, we will decouple rovibrational energy transfer

into the vibrational and the rotational components and start with a simple model.

However, the reader should keep in mind that nature works in complicated ways

coupling all kinds of motion. Further, in principle, the motion of electrons and light

atoms is accurately described only by quantum mechanics. Thus, simple arguments

based on classical mechanics are only approximate.
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1.2.1 Vibrational Energy Transfer

Vibrational energy transfer is important in many chemical phenomena, such

as combustion processes, atmospheric events and vibrational mode selective exper-

iments. Vibrational relaxation is the dissipation of internal energy stored in vibra-

tional modes (in addition to the zero point energy) by means of molecular collisions

or through emission of radiation. Our study is concerned only with collisional re-

laxation. In this section we present a general overview. This section follows closely

the introduction to this topic by Lambert [47]. The interested reader can find more

detail in Lambert’s book [47] and elsewhere [46, 48].

Let us assume a ball and spring model consisting of a diatomic molecule AB

and an atom C, illustrated in Fig. 1.2. The vibration of AB is described by a simple

harmonic oscillator with a frequency, ν. We simplify further by assuming only a

collinear collision between AB and C. Collinear encounters are likely to make the

largest contribution to vibrational energy transfer.

Naturally, the first and foremost requirement to study atomic and molecular

collisions is the availability of a PES representing the geometry dependence of the

interaction. Since the collision of AB with C is restricted to be collinear, the in-

teraction potential, V (r, d), is a function of the distance r and the displacement,

d of atom B from equilibrium. As atom C moves toward AB, there are two forces

acting on atom B, the force exerted by the spring and the change in V (r, d). We

are interested in the probability of transfer of the translational energy of atom C

to the vibration of AB, namely T − V transfer. According to the Adiabatic The-
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Figure 1.2: Collision between an atom and a collinear diatomic molecule.

ory of Ehrenfest [49], slow changes in the system will leave the discrete (quantized)

variables of a quantum system unchanged. If the change of the force exerted by C

is small during a time 1/ν, the vibrational period of AB, the system will behave

adiabatically without a significant transfer of energy. On the other hand, if the force

changes dramatically during a time 1/ν, then efficient transfer of energy -vibrational

excitation/relaxation- occurs.

In an adiabatic limit, the vibrational energy transfer characteristics of the

system can be estimated by the following argument: The rate of change in the force

during the duration of a collision is proportional to the velocity of atom C. We define

the collision duration as rint/v, where rint is the range of the collision. If

1

ν
� rint

v
, (1.13)

then vibrational energy transfer will be facile. For a system at thermal equilibrium

with an average speed of v = (8kT/πm)1/2, higher temperatures, smaller masses

and lower vibrational frequencies will favor efficient transfer.

The Landau-Teller (LT) formulation of vibrational energy transfer based on

the adiabatic principle has been often applied to explain vibrational relaxation es-

10



pecially for non-polar molecules. The authors applied time-dependent perturbation

theory to obtain a probability for vibrational relaxation. Their treatment neglected

the long-range attractive part of the potential under the assumption that the inter-

action potential will be dominated by a simple exponentially repulsive term. For

v = 1 → v = 0 relaxation involving non-polar molecules, most experimental rate

constants follow, roughly, the prediction of the LT theory:

log kv=1→0 = A−BT 1/3. (1.14)

Where attractive forces are important in the interaction, as in hydrogen bonded sys-

tems or where complex formation can occur, the relaxation rate constants are found

to deviate from the T−1/3 temperature dependence predicted by Eq. (1.14). The de-

viations are strongest at low temperature. Relatively weak, attractive dipole-dipole

interactions become more important at low collision energies. As the translational

energy increases, the repulsive part of the potential predominates so that LT theory

better applies.

An early, popular quantum mechanical model for vibrational relaxation is due

to Schwartz, Slawsky and Herzfeld (SSH) [50] in 1952. They slightly modified the

exponentially repulsive potential model from LT theory and lowered the asymp-

tote of the interaction potential to correspond to the Lennard-Jones minimum for

the particular system of interest. That way, they introduced attractive forces into

the system while keeping the exponential behavior that allowed the analytical so-

lution exploited by Landau and Teller. This SSH theory successfully predicts the

qualitative form of the deviation in the T−1/3 plots for strongly polar molecules.

11
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Figure 1.3: Collision between an atom and a rotating diatomic molecule.

However, the quantitative predictions are poor especially at low temperatures for

polar molecules. Low temperatures and strong polarity require a more accurate

treatment of how the attractive part of the potential effects the dynamics. Shin [48]

introduced a more realistic Morse potential [51] with angular dependent terms [52],

but which still allowed an analytical solution. The predictions based on his results

gave somewhat better agreement with experiment [47].

1.2.2 Rovibrational Energy Transfer

A prediction of the efficiency of rovibrational energy transfer requires an ac-

curate description of the angular dependence of the interaction potential. A simple

picture of non-collinear atom-diatom collisions is shown in Fig. 1.3. A formulation,

based on the adiabatic theory of Eq. (1.13) would still hold for rotational energy

transfer, since there is an external force acting on a periodic motion. For diatomic

molecules, rotational frequencies, νrot, are much smaller then vibrational frequen-
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cies, νvib. Therefore, provided that the interaction times are still short, rotational

energy transfer should be more efficient.

The effect of high temperature in rotational and vibrational transfer is differ-

ent. As discussed earlier, the higher the translational energy the more efficient will

be the T − V transfer. In the case of T − R transfer, it is the other way around.

Rotational energy spacings increase quadratically, in contrast to vibrational energy

spacings, where the spacings slightly decrease because of anharmonicity. As a result,

at higher temperatures, where higher rotational levels are predominantly occupied,

the rotational period will be small and it will compete with the effect of the in-

creasing velocity of approach. Equation (1.13) is less likely to be satisfied, and thus

the efficiency of T − R transfer drops for high temperatures in contrast to T − V

transfer.

Smith pointed out [53] that whenever the collisions that lead to relaxation

involve the formation of a transient collision complex, experimental observation in-

dicates that vibrational relaxation is highly facilitated. Such systems usually involve

radical-radical interactions, where complex formation corresponds to establishing a

chemical bond. Vibrational relaxation rates for systems like OH+O, OH+H, O+O2

are found to be larger than for comparable collisions with closed shell atomic part-

ners [47, 53, 54]. For these systems, there is another, reactive pathway involving

atom exchange which will result in vibrational relaxation.

The adiabatic theory would certainly not apply for the case of complex form-

ing collisions since it requires that the collisions should be relatively fast and weak

enough to be treated perturbatively. Long-lived reaction complexes with long colli-
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sion times and with scrambling of motion where atoms might be exchanged and new

bond formation might take place cannot be treated adiabatically. The SSH theory

and its later adaptations based on the perturbation theory are doomed to failure in

such cases.

The OH+H system studied in this dissertation involve the formation of a

transient water complex during which vibrational relaxation is very fast [55]. Re-

laxation is especially efficient at low temperatures, where more of the collisions

enter the complex. Once a collision complex is formed, the vibrational motion of

the diatomic molecule is strongly coupled with the other degrees of freedom. The

statistical method we use can allow for the formation of a complex and exchange of

atoms as well as nonadiabatic effects. It is a hybrid of statistical ideas and quantum

mechanical time-independent scattering theory. Thus we believe, unlike previous ap-

proaches, it will allow to investigate the nature of rovibrational relaxation pathways

which proceeds by means of transient collision complexes.

The study of vibrational relaxation of OH in collisions with H atoms is the

topic of Chapter 5. As introduced in the previous paragraph, the deceptively simple

encounter of a hydrogen atom with OH involves formation of a collision complex.

Also, the presence of multiple PESs complicates the theoretical investigation. In

this prototypical system, we apply statistical, coupled-states scattering theory to

investigate the nature of the vibrational and rotational relaxation processes and

assess the role of the complex formation.
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Chapter 2

An Ab initio Investigation of the O(3P) + H2(
1Σ+

g ) System

2.1 Introduction

The reaction of ground-state oxygen atoms with molecular hydrogen is one of

a few triatomic reactions which has been studied intensively by theoreticians. This

reaction is particularly important in combustion chemistry. Oxidation of hydrogen in

the early stages of the combustion of hydrocarbons contributes to the later stages of

hydrocarbon oxidation [5]. In shocked interstellar clouds, the reaction is responsible

for altering the oxygen chemistry [56]. The reaction is also of some importance to

atmospheric chemistry [57]. In principle, the reaction provides a good test of our

ability to model the dynamics in a fully a priori manner. It is a system which has

only ten electrons so that ab inito PESs can be determined with high accuracy. A

proper description of the O+H2 reaction must include multiple PESs and spin-orbit

coupling. The understanding of the role of these subtleties will provide guidelines

for the understanding of more complex reactions.

Many aspects of the title reaction have been studied in the last 50 years;

and yet still draw considerable attention as better algorithms and computational

power become available. Thanks to the extensive work of scientists in the last

several decades, there have appeared many studies of the PESs [2, 6, 14–21], in

particular the van der Waals region [16, 21–23, 31], of the kinetics [2–13], isotope

15



exchange [58–61], state selective dynamics [62], intersytem crossing and nonadiabatic

effects [24, 25], all these based on quasi classical trajectory [14, 63], and quantum

mechanical calculations [26–30].

2.1.1 Previous Work on the Potential Energy Surfaces of O(3P ) +

H2

There has been a considerable amount of work on the PESs for the O(3P )+H2

system. The first PES was a LEPS function generated in 1967 by Westenberg and

deHaas [2]. It was followed by a second LEPS surface by Johnson and Winter [14].

These LEPS surfaces were obtained by adjusting only one (Sato parameter) param-

eter to the experimental findings and did not quite agree. (Both report a barrier

height around 12 kcal/mol) The work of Gangi and Bader [64] was the first ab

initio calculation done on the system. This gave a barrier height of 35 kcal/mol.

The valence bond-diatomics-in-molecules (DIM) PES of Whitlock et al. [65] and

quasi-classical trajectory calculations based on this gave better agreement with the

experimental rates. Howard, McLean and Lester [15] determined cuts in the PESs

using ab initio methods.

The first detailed ab inito calculation of the reaction was done by Walch et

al. [66]. They calculated the barrier heights and transition state geometries analyz-

ing in detail the affect of basis set, the choice of the orbitals and of the reference

configurations. Subsequently, Walch, Wagner, Schatz, Bowman and coworkers pub-

lished many analysis of the reaction in a series of papers [6–8, 17, 59, 60]. They
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made a detailed comparison of theoretical rate constants obtained for the PESs

available at the time of the study [7, 17]. They also performed reaction dynam-

ics studies [8, 9, 59, 60] Although the comparisons of the rate constants estimated

based on the various PESs mentioned above agreed with experiment, the location

of the saddle point, the height of the barrier and the exothermicity of these surfaces

remained in question [8].

A recent paper by Rogers et al. [20] presented chemically accurate (accu-

racy within ca. 0.3 kcal/mol) ab initio PESs for the lowest 3A′ and 3A′′ states of

O(3P )+H2 → OH(2Π) + H(2S). Quantum reactive scattering [26, 30] and quasi-

classical calculations [27] based on these surfaces agreed with the crossed molecular

beam excitation functions reasonably well except fo low energy collisions. Rogers et

al. did not include the spin-orbit Hamiltonian in the calculations. Their justification

was based on the fact that the spin-orbit splitting of the 3P state of the oxygen atom

(the splitting of 3P1 and 3P0 is ca. 0.2 kcal/mol) is within the estimated accuracy

of the surfaces.

More recently, Brandão and coworkers rebuilt the 3A′′ surface to obtain a

better long-range description [21], since the global fits of Rogers et al. [20] failed to

describe the van der Waals region accurately. Brandão and coworkers used the ab

initio data avaliable [20] to generate a surface using a double many-body expansion

formalism. Their findings on the van der Waals minimum and shape did not agree

with the previous calculations satisfactorily, and they concluded that more studies

were needed.
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2.1.2 Spin-Orbit Coupling

Only a few experimental studies have been performed to look at the effect of

spin-orbit coupling in the O(3P ) + H2 reaction. In a molecular beam non-reactive

scattering study, Aquilanti et al. [31] studied the spin-orbit dependence of the PES

for the long-range region. Together with adiabatic potential energy curves they also

obtained nonadiabatic couplings between these adiabatic states. Another important

experimental study of the reaction was performed by Westenberg and deHaas [2].

They studied the isotope effect by ESR, substituting D2 for H2, and were able to

compare the rate constants for O atoms in the two lower spin-orbit states, both of

which correlate with the OH product molecule in their electronic ground state (see

Figure. 2.1). However, because of the inadequacy of the technique used, they could

detect no difference in the reaction rate for the lowest two spin-orbit states.

There have been important theoretical advances in the effect of the spin-orbit

couplings on the reaction cross sections for the title problem. Schatz and cowork-

ers [25, 32] studied intersystem crossing effects in the O(3P,1 D) + H2 → OH(2Π) +

H reaction. (The crossing of the insertion, O(1D) + H, and abstraction, O(3P ) + H,

pathways are schematically illustrated in Fig. 2.1.) They treated the various spin-

orbit coupling constants by complete active space self-consistent field (CASSCF)

methods. They found that the spin-orbit couplings increased the triplet O + H2

cross sections and product rotational excitation. A recent quantum wave-packet

study by Chu et al. [33] indicated that the spin-orbit couplings among the triplet

states of different symmetry is more important then the singlet-triplet coupling.
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Figure 2.1: Schematic plot of the energy diagram of the O(3P ,1D)+H2 reaction for

the collinear arrangement.

For this much studied system, in this Chapter we present our ab initio findings

on the van der Waals valley to assess the accuracy of the available surfaces and

fits. An accurate description of the van der Waals region is especially important

in cold collisions [67]. In addition, for possible future studies on the nonadiabatic

effects, similar to work of Alexander and coworkers on the F+H2 reaction [68], we

investigated the full geometry dependence of the spin-orbit coupling terms. In the

following sections, we discuss the energetics of the system, the study of the van

der Waals valley by coupled-cluster [CCSD(T)] and multi-reference configuration

interaction (MRCI) methods, and the spin-orbit coupling terms for the system. The

chapter ends with a brief conclusion.
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2.2 The Energetics and the Orbital Occupancies in the O(3P) + H2

System

The O(3P )+H2 reaction proceeds through an abstraction mechanism to yield

OH(2Π) and H(2S). The orbital occupancies of the oxygen and the molecular hy-

drogen are 1s22s22p4 and 1σ2, respectively. In the reaction, one electron leaves H2

bonding orbital to form a new bond with one of the unpaired electrons of the oxygen

atom. In collinear geometry, the orbital occupancies of the mixed atomic/molecular

and full molecular orbital description are as follows:

3Π

1s22s21σ2
g2p

1
z2p

1
x2p

2
y = 1σ22σ23σ24σ11π3 (2.1)

1s22s21σ2
g2p

1
z2p

2
x2p

1
y = 1σ22σ23σ24σ11π3 (2.2)

3Σ−

1s22s21σ2
g2p

2
z2p

1
x2p

1
y = 1σ22σ23σ24σ21π2 (2.3)

Here, 1σ, 2σ and 1π denote the 1s, 2s and 2pπ-like atomic oxygen orbitals, which

are mostly inactive in the reaction. The 3σ and 4σ orbitals represent the bond-

ing and antibonding interaction of O(2pz) with the 1σ orbital of the H2 molecule.

Asymptotically, 3σ corresponds to the H2 ground state and 4σ corresponds to the

2pz orbital of the oxygen. As the H2 approaches the oxygen atom collinearly, the

degeneracy of the 3P state is lifted, and gives rise to 3Σ and 3Π states. This is illus-

trated in Fig. 2.2. Throughout the chapter, the z-axis is assumed to lie along the

H2 bond axis and the y-axis, perpendicular to the molecular plane. The 3Σ state is
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Figure 2.2: Schematic correlation diagram for the O−p orbitals in collinear geometry.

The degeneracy of the 3Π state will be lifted in bent geometries. (Note that only

one lobe of the each p orbital is drawn for clarity.)

very repulsive because the doubly occupied pz orbital has no room to accommodate

an electron from the 1σ orbital of the H2. Thus, only the 3Π state correlates directly

with the electronic ground state of the products OH(2Π) + H(2S) [66].

In bent geometry, because of the different interactions between the nonbonding

p-electrons, the 3Π state will further split into two states classified in terms of their

reflection symmetries as 3A′ and 3A′′. In a perpendicular arrangement, the electronic

states are labeled by the 3B1,
3B2 and 3A2 irreducible representations.

The spin-orbit Hamiltonian couples together all three states. Asymptotically,

at large O(3P)−H2 distances, the nine-fold degeneracy of the 3P state of the oxygen

atom splits into three states: 3P2 (5), 3P1 (3), 3P0 (1). (The degeneracy of the each

state is given in parentheses). In collinear geometry (C∞v point group), all five com-

ponents of the 3P2 and one component of the 3P1 state correlate with the 3Π state.
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(Figure 2.2) The other states correlate with the 3Σ− state. Specifically, (shown in

Fig. 2.1) the 3P2 state correlates with 3Π±2,
3Π±1,

3Π−0, the 3P1 state correlates with

3Π+0,
3Σ−

±1 and 3P0 state correlates with 3Σ−
0 . Since only the 3Π states are reactive,

and the 3Pj states correlate differently, we certainly expect different reactivities for

the three spin-orbit states. Consequently, if there is no nonadiabatic coupling we

would expect the relative reactivity to be 5 : 1 : 0 for 3P2,
3P1 and 3P0, respectively.

2.3 Weakly Bound O(3P )−H2 Complex

A weakly-bound complex is defined by the existence of a well in the long-

range part of the PES which is much less deep than a well of a typical chemical

bond. The strength of these van der Waals interactions are determined by elec-

trostatic, induction and dispersion contributions [69]. The electrostatic energy is

the interaction energy of the permanent charge distributions of the species (such

as dipole-dipole, charge-dipole, ...etc.), whereas the induction energy represent the

interaction energy between a multipole induced by the permanent charge distribu-

tions of the neighbouring species, such as charge-induced dipole, or dipole-induced

dipole. The third contribution, dispersion is the interaction due to the correlation

between two instantaneous dipole associated with the movement of the electrons.

Van der Waals complexes are especially important in low energy collisions,

where the orientation of the molecules may affect the outcome of the reaction sub-

stantially [70]. Therefore, it is important to have a good description of the long-range

part of the potential energy surface. In this section, we investigate the van der Waals
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valley of the O(3P )−H2 complex.

2.3.1 Coupled Cluster Calculations

Coupled cluster [CCSD(T)] methods [71, 72], which are size extensive, are

widely used in the calculations for long-range van der Waals potentials. The advan-

tage with respect to CI calculations, truncated to include only single and double

excitations (CISD), is the recovery of more electron correlation energy by inclu-

sion of triple excitations perturbatively. The disadvantage, however, is that current

CCSD(T) methods are single reference methods, i.e. applicable to electronic states

that can be described by a single reference configuration state function.

We performed ab initio calculations for the O(3P )−H2 van der Waals region in

C∞v and in C2v geometries. The CCSD(T) method is known to recover a large frac-

tion of the electron correlation contribution to the van der Waals interaction [73]. In

particular, we employed a RCCSD(T) (Restricted-Coupled-Cluster) method based

on a RHF (Restricted-Hartree-Fock) wave function. In those calculations, the t1

diagnostic was always observed to be less than 0.02.

In order to correct for the Basis Set Superposition Error (BSSE) we added

Counterpoise Corrections (CP) [74]. In this technique the interaction energy is

calculated as

V (R, r, θ) = EO−H2
(R, r, θ)− EH2(R, r, θ)− EO(R, r, θ), (2.4)

where the energies of the fragments are calculated in the supermolecular basis.

Another challenge in electronic structure calculations is posed by the degree of
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saturation of the orbital basis sets used. Fortunately, by systematically increasing

the size of the basis set, it is possible to extrapolate to the Complete Basis Set

(CBS) limit [19]. Another method to reach the CBS limit is to add midbond basis

functions to the basis instead of increasing the number of nuclear-centered func-

tions [75]. In order to check the behavior of the augmented bases with midbond func-

tions, we have performed restricted coupled-cluster [RCCSD(T)] calculations with

the augmented correlation-consistent polarized valence-(double/triple/quadruple)-

zeta (aug-cc-pVnZ, n = D, T and Q) basis function sets of Dunning et al. [76, 77]

with addition of a set of midbond functions of Tao and Pan [75]. Following these

methods, we used midbond 3s and 3p functions with exponents (0.9, 0.3, 0.1); 2d

and 2f functions with exponents (0.6, 0.2); and a single g function with exponent

(0.3).

Figure 2.3 plots the van der Waals well depths as a function of the augmented

basis set size in C∞v and C2v geometries. The double-zeta [aug-cc-pVDZ (n = 2)]

energies are artificially lower than the bigger bases. The n = 3 and n = 4 results look

quite similar, and our test calculation with an n = 5 basis for θ = 0◦ [Fig. 2.3, panel

(a)] also confirms that the aug-cc-pVQZ (n = 4) basis with addition of midbond

functions is quite accurate and maintains the basis set saturation.

Figure 2.4 shows the van der Waals region of the potential energy surfaces in

the C∞v and C2v geometries calculated by RCCSD(T) method. Table 2.1 summa-

rizes the Van der Waals well depth in various basis sets for the PESs in C2v and C∞v

geometries and compares them to earlier reported results. Our calculations confirm

the earlier MRCI results of Alexander for both the well depth and the minimum
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Figure 2.3: Van der Waals well depth for various PESs in (a) C∞v and (b) C2v

geometries calculated by the RCCSD(T) method as a function of the size of the

aug-cc-pVnZ basis. The basis also includes midbond functions as explained in the

text. The H2 bond distance is fixed at r = 1.402 a.u.

geometry. In this detailed study of the Van der Waals region, Alexander could not

reproduce the results of Li, Apkarian and Harding (LAH) [22] and suggested that

the authors had over estimated the van der Waals well depth of the system. Re-

cently, Brandão and coworkers refitted the earlier calculations of Rogers et al. [20]

and estimated much larger well depths than what had been reported on the system

up to date as shown in Table 2.1. Thus, we believe that the fitting method Brandão

and coworkers applied greatly exagerates the van der Waals well depths and fails to

estimate the shape of the minimum on the surfaces.

Having a good approximation to the van der Waals region of the PESs, now,

we wish to investigate the van der Waals region by the MRCI method.
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Figure 2.4: PESs in (a) C∞v and (b) C2v geometries calculated with RCCSD(T)

method with an aug-cc-pVQZ basis with additional midbond functions for fixed

values of θ = 0◦, 90◦ and r = 1.402 a.u.
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Table 2.1: Van der Waals well depth and position of O(3P )−H2 complex in

various earlier work and present RCCSD(T) calculations with aug-cc-pVQZ

basis with additional midbond functions.

C∞v C2v

Alexander [23] (MRCI) Energy −74.4 −76.9

R 6.34 5.55

Alexander [23] (CCSD(T)) Energy −72.0 −78.9

R 6.39 5.56

Atahan (CCSD(T)) Energy −73.9 −82.8

R 6.37 5.53

Brandão [21] BMS1 Energy −175.6 −92.2

R 6.2 6.3

Brandão [21] BMS2 Energy −124.9 −70.2

R 6.4 6.4

Jaquet [16] (CEPA) Energy −87.8 −72.4

R 6.2 6.2

Li [22](MRCI) Energy −109.7 −96.6

R 6.0 5.5

2.3.2 MRCI Calculations for C2v and C∞v Geometries

In this section, we present PESs for the O+H2 reaction in the entrance region

calculated by IC-MRCI (internally contracted multireference configuration interac-

tion) method. MRCI methods in general are used in calculation of global PESs

where the bond breakage and formation are inevitable and electron correlation is

also very important. Full CI methods are very expensive to apply. Therefore, CI

expansion truncated to include single and double excitations [MRCI(SD)] is widely
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employed in PES calculations.

The basic sources of error in those methods are the errors due to basis set

limitations, the use of the incomplete configuration expansion (truncation of the CI

expansion) and the size consistency errors. The basis sets used in this work are

the augmented correlation consistent basis sets of Dunning. (see Section 2.3.1) The

interaction energy is calculated according to Eq. (2.4) and then extrapolated to the

Complete Basis Set (CBS) limit according to [19]

En = E∞ + Be−(n−1) + Ce−(n−1)2 (2.5)

where n is the cardinal number of the basis sets (n = 2, 3, 4, 5 for DZ, TZ, QZ and 5Z

sets, respectively ) and En is the corresponding electronic energy. The energy at the

CBS limit, E∞, which corresponds to the limit n →∞, is obtained by solving a set

of linear equations. In our calculations, the largest basis we used is the aug-cc-pVQZ

basis where n = 4.

In MRCI methods, the reference SCF wave function contains more than one

configuration. The reference space wave function is chosen to describe all possible

dissociation pathways, which requires an expansion over more than one configura-

tion. In the MCSCF method both the coefficients in this expansion and the orbitals

are optimized. After the multiconfiguration wave function is obtained, a CI expan-

sion (SD) is written based on this MCSCF wave function and this time only the

CI coefficients are optimized variationally (MRCI). The active space we have used

in our system consists of 2s2px2py2pz orbitals of oxygen and 1σ1σ∗ orbitals of H2

molecule.
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Some of the errors due to neglecting the higher-order excitations in the CI

expansion can be approximately recovered by the Davidson correction [78, 79], which

is denoted as MRCI+Q. The Davidson correction recovers some of the electron

correlation as well as reducing the size consistency errors that are typical of truncated

CI methods, but unfortunately not completely. In order to correct the surfaces for

those errors, we have calculated the size consistency errors in the various geometries

as follows:

∆ESC = EO−H2(∞)− EH2 − EO. (2.6)

∆ESC is the correction for the residual size consistency in the calculations.

Another difficulty we encountered in the calculations was the instability caused

by the mixing of the 1σ and 2σ orbitals. A MCSCF wave function is invariant with

respect to the transformations of 1σ and 2σ orbitals, but typical MRCI calculations

are not since only the 2σ orbital is correlated. In order to overcome this difficulty,

we carried out a two step MCSCF calculation as suggested earlier by Stark and

Werner [80]. In the first MCSCF step, we kept the 1σ and 2σ orbitals doubly

occupied so that these orbitals could be uniquely defined as eigenfunctions of an

effective fock operator. In the subsequent MCSCF calculation, we kept the 1σ

orbital from the previous calculation frozen while the 2σ orbital was treated as

active. The orbitals from this two-step calculation are then used in the subsequent

MRCI calculations where the 1σ orbital is not correlated. All MRCI calculations

were done in this manner.

In Fig. 2.5, we compare the van der Waals region of the interaction energy,
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Figure 2.5: The comparison of the PESs in (a) C∞v and (b) C2v geometries calcu-

lated with RCCSD(T) method with an aug-cc-pVQZ basis with additional midbond

functions for fixed values of θ = 0◦, 90◦ and r = 1.402 a.u. (straight lines) with the

MRCI+Q results extrapolated to the CBS limit (dashed-lines)
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Table 2.2: Van der Waals well depth (cm−1) of the O(3P )−H2 complex ob-

tained by MRCI+Q and RCCSD(T) methods for various states and geometries.

Method C∞v C2v

3Σ 3Π 3A2
3B2

3B1

MRCI+Q(CBS) −69.6 −16.7 −5.9 −56.0 −82.4

RCCSD(T)(avqz+bf) −73.9 −18.1 −6.3 −56.2 −82.8

V (R, r, θ) [See Eq. (2.4)], calculated with IC-MRCI+Q and RCCSD(T) methods.

RCCSD(T) and MRCI+Q results in the CBS limit are quite close in collinear geom-

etry and almost identical in perpendicular (C2v) geometry. Table 2.2 lists the values

of the van der Waals well depth of various surfaces in C2v and C∞v geometries.

Based on the close proximity in the well depths, we conclude that MRCI+Q calcu-

lation at the CBS limit with the active space described earlier would be adequate

to recover enough correlation energy for the entrance channel of O+H2 reaction to

describe the van der Waals interaction correctly.

We performed MRCI calculations on a grid defined by the Jacobi coordinates,

R =20, 18, 16, 14, 13, 12, 11, 10, 9, 8.5, 8, 7.5, 7.25, 7, 6.75, 6.5, 6.4, 6.3, 6.25, 6.1,

6, 5.75, 5.6, 5.55, 5.5, 5.45, 5.35, 5.25, 5, 4.5, 4.25, 4, 3.75, 3.5, 3.0 and r =1.05, 1.2,

1.3, 1.402, 1.5, 1.722, 1.888, 2.3, and θ = 0o and θ = 90o.

In Figures 2.6-2.8, we plot the (R, r)-dependent contours of the van der Waals

region of the entrance channel PESs. We see that the 3Σ and 3B1 surfaces have the

deepest van der Waals well, especially as a function of the H2 stretch. This is due to

the strong quadrupole-quadrupole interaction. A larger induction interaction occurs

for those electronic states where the doubly occupied p orbital is aligned collinearly in
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3Σ and perpendicularly in 3B1 symmetries. The 3B2 surface shows a similar pattern

with a shallower interaction region. The 3Π surface extends into the reaction region

as R gets smaller and r is stretched. The reaction path is defined by the behavior

of this surface. However, the barrier height and the saddle point geometry cannot

be determined by the V (R, r, θ) shown in this figure. The saddle point geometry,

reported by Rogers [20] and coworkers is at R = 2.3 a.u. and r = 1.7 a.u., out of

the range spanned by R and r in this figure. Moreover, since this interaction energy,

described by Eq. 2.4, does not include the diatomic H2 potential, it is not sufficient

to determine the saddle point geometry and the barrier height.
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Figure 2.6: (R, r)-dependence of interaction energies in 3Π (a) and in 3Σ (b) sym-

metries. Note that the interaction energy, V (R, r, θ), does not include the diatomic

H2 potential. (θ = 0o, Energies in cm−1)
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Figure 2.7: (R, r)-dependence of energies in 3B1 (a) and in 3B2 (b) symmetries.

(θ = 90o, Energies in cm−1)
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2.4 Spin-Orbit Coupling

In this section, we present a study of the spin-orbit coupling in the O(3P ) + H2

system. As discussed earlier, we determine the matrix of the spin-orbit Hamiltonian

in a diabatic basis. The following subsection summarizes the diabatic representation

we used.

2.4.1 Diabatic Representation

The diabatic representation we used [68] is formed by nine states, which are

characterized by the projections of the electronic angular momentum λ(−1, 0, 1) and

of the spin angular momentum σ(−1, 0, 1) along the vector R. Therefore, the basis

functions are labeled as |λσ〉. The matrix elements for the electronic Hamiltonian
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are defined as follows:

〈λ′σ′|Hel|λσ〉 = Vλ′λ(R, r, θ)δσ′σ (2.7)

The Vλ′λ terms represent the interaction due to the electronic Hamiltonian indepen-

dent of spin. Since Vλ′λ = V−λ′−λ [81], there are four independent Vλ′λ terms (or

diabatic PESs). Because the electronic Hamiltonian is independent of spin, the elec-

trostatic interaction matrix blocks into three 3 × 3 matrices corresponding to each

spin projection quantum number. This 3 × 3 matrix is (in the so-called definite-m

basis):

Hel =



λ 1 0 −1

1 VΠ V1 V2

0 V1 VΣ −V1

−1 V2 −V1 VΠ


(2.8)

In the Cartesian basis, the equivalent form for 3× 3 Hamiltonian matrix is defined

by:

Hel =



λσ Π1
y Π1

x Σ1

Π1
y Vyy 0 Vyz

Π1
x 0 Vxx 0

Σ1 Vyz 0 Vzz


(2.9)

The relation between the interaction potential terms appear in the definite-m, and

in the Cartesian basis are VΣ = Vzz, VΠ = (Vyy + Vxx)/2, V2 = (Vxx − Vyy)/2, and

V1 = Vxz/
√

(2).

The Cartesian diabatic basis can be transformed into the adiabatic basis by
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the following transformation:

1A′′

2A′′

1A′


=



cos γ sin γ 0

− sin γ cos γ 0

0 0 1





Πy

Σ

Πx


(2.10)

where γ is a function of (R, r, θ). The singly-degenerate adiabatic and the diabatic

states of A′ reflection symmetry are identical. For collinear geometry, the diabatic

and adiabatic states are the same. In order to perform this transformation, there are

various approximate diabatization schemes. The mixing angle can be obtained from

diagonalization of some property matrix [82] or from the analysis of configuration

interaction vectors, [83]. In our investigation of the angular dependence of the spin-

orbit terms we employed the former method.

The spin-orbit matrix is fully determined by two distinct matrix elements

which are defined as follows:

A(R, r, θ) ≡ 〈Πx|Hso |Σ〉 , (2.11)

B(R, r, θ) ≡ i 〈Πx|Hso |Πy〉 . (2.12)

where

lim
R→∞

B = lim
R→∞

A. (2.13)

Based on these definitions of the spin-orbit matrix elements, the spin-orbit Hamil-
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tonian in the Cartesian basis is:

Hso =
1√
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Λσ) Π1
y Π1

x Σ1 Π0
y Π0

x Σ0 Π−1
y Π−1

x Σ−1

Π1
y 0 B

√
2 0 0 0 −A 0 0 0

Π1
x −B

√
2 0 0 0 0 iA 0 0 0

Σ1 0 0 0 A −iA 0 0 0 0

Π0
y 0 0 A 0 0 0 0 0 −A

Π0
x 0 0 iA 0 0 0 0 0 iA

Σ0 −A −iA 0 0 0 0 A −iA 0

Π−1
y 0 0 0 0 0 A 0 −B

√
2 0

Π−1
x 0 0 0 0 0 iA B

√
2 0 0

Σ−1
y 0 0 0 −A −iA 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

(2.14)
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and in the signed-λ basis is as follows:

Hso =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(λ, σ) 1, 1 1, 0 1,−1 0, 1 0, 0 0,−1 −1, 1 −1, 0 −1,−1

1, 1 −B 0 0 0 0 0 0 0 0

1, 0 0 0 0 A 0 0 0 0 0

1,−1 0 0 B 0 A 0 0 0 0

0, 1 0 A 0 0 0 0 0 0 0

0, 0 0 0 A 0 0 0 A 0 0

0,−1 0 0 0 0 0 0 0 A 0

−1, 1 0 0 0 0 A 0 B 0 0

−1, 0 0 0 0 0 0 A 0 0 0

−1,−1 0 0 0 0 0 0 0 0 −B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2.15)

In this study, we have calculated the spin-orbit terms A and B for the entrance

channel of the reaction by ab initio methods. In the following subsections, the

method of calculation, computational details and results are presented.

2.4.2 Method

Solution of the Dirac (relativistic) equation is the most rigorous way of calcu-

lating the spin-orbit couplings. However, solving the four-component Dirac equation

is a formidable task. Instead, one can solve the spin part of the Breit-Pauli oper-

ator [84] and introduce the spin-orbit coupling as a perturbation to the electronic

Hamiltonian. This is the approach we followed in this thesis. It is important to

use a good approximation method because we calculate the couplings for the whole

39



surface.

The Breit-Pauli Hamiltonian in atomic units is [85]:

Hso =
∑
α

∑
i

ĥα(i) · ŝα(i) +
∑
i6=j

ĝα(i, j) · ŝα(i)

 , (2.16)

where the one-electron (spin-same-orbit) spin-orbit operator, ĥα(i), is constructed

by a sum over all the nuclei

ĥα(i) =
1

2c2

∑
A

ZA(~riA × ~p(i))α

r3
iA

, (2.17)

and two-electron (spin-other-orbit) spin-orbit operator, ĝα(i, j), is defined as

ĝα(i, j) = − 1

2c2

[
2
(~rij × ~p(j))α

r3
ij

+
(~rji × ~p(i))α

r3
ij

]
. (2.18)

i and j are the labels for the electrons and α = x, y, z.

The spin-orbit operator is evaluated in the electronic basis formed by the

nonrelativistic contracted CI wave functions in a first-order perturbation theory

approach, as implemented in the MOLPRO package [42]. Current implementation

allows the evaluation of the full Breit-Pauli operator for the internal configurations,

whereas the contributions of the external configurations are calculated by a one-

electron mean-field Fock operator. (causing errors no larger than 1 cm−1).

2.4.3 Computational Details

In order to investigate the basis set and active space dependence of the spin-

orbit coupling terms, first we have performed a set of calculations for the oxygen

atom. Table 2.3 lists the results of the calculations and the experimental spin-orbit

coupling constant. Because of technical limitations in MOLPRO, the maximum
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Table 2.3: Effect of active space and the size of the basis set on the spin-orbit

constant (cm−1) for O(3P )

Basis MRCI (2s2p) MRCI (1s2s2p) Exp.

cc-pVTZ(f) −74.84 −75.20 −

cc-pVQZ(f) −75.98 −76.46 −

cc-pV5Z (f) −76.68 −77.26 −

− − − −77.40

angular momentum functions included were restricted to lmax = 3 (f functions).

The absence of g functions is not in general a source of error for the second row

elements [86]. MOLPRO requires the use of uncontracted basis functions in spin-

orbit coupling calculations. The experimental value in the table corresponds only to

the spin-orbit coupling constant of the oxygen atom. Other effects such as spin-spin

coupling and spin-orbit coupling involving higher electronic states are excluded [85,

87]. We see from the table that correlation of the inner shell as well as a bigger basis

improve the results. Because of the uncontracted basis functions and two electron

terms spin-orbit calculations are computationally expensive. Therefore, based on

this investigation, we used cc-pV5Z(f) basis and correlated all the electrons except

the 1σ orbital. (For further information about the details of the calculation of

the spin-orbit matrix elements and the dependency of the matrix elements on the

correlation methods and basis sets, consult Ref. [85]).

We also investigated the behavior of the spin-orbit elements as a function of

the Jacobi angle, θ. Table 2.4 shows the angular dependence of spin-orbit term A.

We calculated the spin-orbit matrix in the adiabatic basis. It is possible to obtain
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Table 2.4: Spin-orbit term A (cm−1) as a function of Jacobi angle θo and R

for a fixed value of r = 1.402 a.u.

θ R/a.u.

10 7 3

0 −76.08 −76.04 −67.32

18 −76.04 −76.02 −69.04

36 −76.04 −76.04 −72.09

54 −76.05 −76.04 −73.48

72 −76.04 −76.04 −73.25

90 −76.13 −76.11 −73.23

the diabatic mixing angle from the spin-orbit coupling matrix itself [88]. Then by a

unitary transformation, we acquired the angular dependence of the matrix elements

in the diabatic basis. The angular dependence is the strongest when the species

are close (R ∼ 3 a. u.). However, at those geometries the electronic surfaces are

farther apart and the coupling tends to be less important. The angular dependence

of the term B is similar. As shown in the table and as concluded in the earlier

work [68, 80], the angular dependence found to be overall quite weak, therefore we

have concluded that the including only R and r as the geometry parameters would

be enough in the spin-orbit calculations.

2.5 Results

Figure 2.9 shows the splined surfaces for the spin-orbit coupling coefficients,

A and B, in the entrance channel of the reaction O+H2 as a function of Jacobi

coordinates R and r. As clearly seen in the figure, in the Van der Waals region A
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Figure 2.9: Spin-orbit coupling terms in the entrance channel of the O+H2 reaction.
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and B are independent of geometry. In the range of large R, they both converge to

the spin-orbit coupling constant of the oxygen atom. For R < 5, changes starts to

take place. Both A and B decreases as R gets smaller. The coupling term A drops

significantly in this region (close to barrier) where OH bond starts to form.

For the O+H2 reaction, the barrier geometry is reported to be collinear (θ = 0)

and at the coordinates Rb = 2.30 a.u., rb = 1.71 a.u. [20], where the subscript ”b”

denotes the position of the barrier. Our calculation at this geometry revealed that

the spin-orbit coupling term B is still nearly independent of R, (B(Rb, rb) = 69.6

cm−1), while A has droped dramatically, (A(Rb, rb) = 26.7 cm−1). Thus, inclusion of

the spin-orbit term in the Hamiltonian will change the barrier height (approximately

40 cm−1). However, since the barrier is reported to be quite high for the title reaction

(approximately 13.2 kcal/mol = 4620 cm−1, [19, 20]), the effect of the spin-orbit

coupling is insignificant (approximately 1.5 %). Figure 2.10 shows a cross section

of the spin-orbit surfaces along the coordinates R (a) and r (b) indicating the ab

initio data points. The corresponding data points are listed in Appendix A.2.

Maiti and Schatz [32] obtained spin-orbit coupling terms for the reaction when

they looked at the intersystem crossings for the O(3P,1 D) + H2 system. They

predicted the reagents fine structure splittings as ∆E(3P1−3 P2) and ∆E(3P0−3 P2)

of 70 cm−1 and 148.6 cm−1 respectively. This would correspond to a coupling value

in the range of 35 to 50 cm−1 which is much less accurate then our results.

44



2 4 6 8 10 12 14 16 18 20
66

68

70

72

74

76

78

R  / a.u.

sp
in

−
or

bi
t c

ou
pl

in
g 

/ c
m

−
1

(a) r = 1.402 a.u. and θ = 0

1 1.2 1.4 1.6 1.8 2 2.2 2.4
35

40

45

50

55

60

65

70

75

r  / a.u.

sp
in

−
or

bi
t c

ou
pl

in
g 

/ c
m

−
1

(b) R = 3.0 a.u. and θ = 0

Figure 2.10: Spin-orbit coupling terms in the entrance channel of the O+H2 reaction

as a function of Jacobi coordinates R and r. The unfilled and filled circles indicate

the data points for terms A and B, respectively.
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2.6 Summary

In this chapter, we reported PESs for the O(3P )−H2 system determined by

RCCSD(T) and MRCI calculations as well as the spin-orbit coupling terms calcu-

lated by the ab initio implementation of the Breit-Pauli Hamiltonian.

We assessed the accuracy of the MRCI+Q results extrapolated to the CBS

limit in comparison to RCCSD(T) calculation with an aug-cc-pVQZ basis with ad-

ditional bond functions. The results showed very good agreement. Based on these

results we predict the van der Waals minimum to be in perpendicular geometry, and

located at a closer distance than a secondary well in collinear geometry. Our cal-

culation corroborates the earlier results of Alexander [23], however, disagrees with

earlier report of Li [22] as well as with recently refitted surfaces of Brandão and

coworkers [21]. Our RCCSD(T) calculations with an aug-cc-pVQZ basis including a

set of bond functions are expected to recover as much of dispersion energy, which is

responsible for the van der Waals minima, as calculations with much larger purely

nuclear-centered orbital bases. Therefore, we have confidence in the geometries and

well depths predicted.

Spin-orbit coupling terms for the O(3P )−H2 system are reported. We found

the angular dependence of the coupling terms negligible. The geometry dependence

in the van der Waals region is very weak. However, a high accuracy description of

the barrier requires the calculation of spin-orbit coupling terms.
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Chapter 3

Introduction to Scattering Dynamics in the Presence of Long-lived

Reaction Complexes

3.1 Introduction

Radical-radical reactions typically have one or more deep wells in the PES

which facilitate complex formation and slow decomposition into products. In an

exact quantum mechanical treatment, because all states in this well which are en-

ergetically accessible must be included, the solution of a large number of coupled

equations is inevitable. If quantum mechanical effects are negligible, we can treat

the system purely classically. The third approach, which is the method applied in

this thesis, is a statistical approach.

The development and the application of statistical theories to chemical reac-

tion dynamics in 1960s coincides with the time that the computers were first applied

to reaction dynamics. Although more than 40 years has elapsed, the exact quan-

tum treatment of the dynamics of complex forming reactions is still a demanding

task. In search of better statistical methods, recent years have seen the development

of time independent [89, 90] and time dependent [91, 92] formulations of complex

forming reactions, which are free of many approximations which were used in the

past. Although exact quantum mechanical calculations are possible, [93] it is com-
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putationally expensive to determine state-to-state cross sections over a large grid of

energies. This information is necessary to calculate thermal rate constants, which

are vital for the modeling of realistic chemical problems. Thus, the development of

more accurate statistical models is a promising advance in scattering dynamics.

Rackham and coworkers successfully unified [89, 90, 94] a venerable statistical

model, developed first by Pechukas and Light, [95] with the close-coupled capture

theory of Clary and Henshaw [96]. This chapter of the thesis is dedicated to the

introduction of this formalism, which has been recently applied to insertion reactions

such as O(1D) + H2 and C(1D) + H2 with accuracy comparable to exact quantum

mechanical calculations.

In comparison with exact quantum scattering calculations on the O(1D)+H2 →

OH+H reaction, [93] in which a single PES was used, the close-coupled, statis-

tical model, [89, 90] in both the full close-coupled and the computationally sim-

pler, coupled-states (CS) approximation [97, 98], yielded excellent agreement for

both integral and differential state-resolved cross sections. Alexander, Rackham

and Manolopoulos (ARM) [94] have extended the close-coupled, statistical model to

include the electronic degrees of freedom (orbital and spin angular momenta) of the

OH and H fragments. This necessitates inclusion of the four PESs (1,3A′ and 1,3A”)

which correlate with OH(X2Π)+H(2S).

The topics of the following two chapters, the isotope exchange reaction of

D+OH→OD+H and the vibrational dynamics of collisions of OH with atomic hy-

drogen both involve complex formation (H2O
† and HOD†) and thus can be treated

semi-statistically, in which capture probabilities from each channel into the com-
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plex region are calculated separately by regular time-independent scattering theory

methods, and then connected according to statistical considerations.

3.2 Coupled-Channel Statistical Theory

The exact quantum mechanical treatment of insertion reactions involving deep

wells is complicated by the necessity of using large basis sets to describe all the

bound and quasi-bound states accessed in these wells [93]. The statistical model

assumes [99] that the complex spends enough time in the well to scramble all direct

connection between reactants and products and that reactive scattering occurs only

through complex formation. Hence, if one can get the capture probabilities from

each channel accurately, then it is possible to connect those channels by probabilistic

ideas without a significant loss of accuracy.

In the close-coupled statistical model, all coupling within the various arrange-

ment channels is included, but separately for each arrangement, to determine exact

capture probabilities. Total angular momentum, J , and the total energy, E, are the

conserved quantities in the reaction. The capture probabilities are then combined,

following the statistical prescription, [95, 100] to yield the state-to-state probability

for reaction from state n to product state n′

P J
nn′(E) =

P J
n (E)P J

n′(E)∑
n′′

P J
n′′(E)

. (3.1)

For simplicity we use the single index n to designate the complete set of quantum

numbers, i. e. {v, j, Fi, ε, σh}. Pn and Pn′ are the respective capture probabilities

in the reactant and product arrangement for a total energy, E and total angular
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momentum, J , and the sum in the denominator runs over both arrangements. The

state-to-state probability P J
n′n(E), is the product of the capture probability from

the reactant state n (P J
n (E)), with the fraction of complexes that decay into the

product channel n′. The capture from a particular channel is the same as the decay

into it by detailed balance; so the fraction of complexes that decay into the channel

n′ is P J
n′(E)/

∑
n′′

P J
n′′(E). Hence, the state-to-state reaction probability in Eq. 3.1 is

obtained.

Rackham, Manolopoulos and co-workers used a time-independent formalism

to determine the capture probabilities. In the time-independent inelastic scattering

theory [101–103], the time-independent Schrödinger equation

HΨ = EΨ (3.2)

is solved by expanding the total wave function in a set of basis functions represen-

tative of the triatomic system with subsequent matching of the propagated solution

to an asymptotic form. The S-matrix contains all transition amplitudes between all

initial, |n〉, and final, |n′〉, states. Unlike conventional inelastic scattering theory,

the S-matrix, although symmetric, is, no longer unitary [89]. The initial condition

for the propagation is a WKB approximation to a purely incoming wave function

at a point well inside the complex region, as illustrated in Fig. 3.1. This capture

boundary condition acts like a sink, thus the S-matrix is not unitary. The size of

the complex, which is set by the capture radius, Rc, is the key parameter. This is

reduced until the calculated cross sections converge. The capture probability from
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Reactants ProductsComplex

Pn(E) Pn'(E)

Figure 3.1: Illustration of a complex-forming reaction described by the statistical

model [104]. The complex region (shaded) is delimited by a capture radius, Rc. The

capture probabilities for both the reactant and products are obtained by solving

coupled scattering equations outside of this capture radius.

any initial state n is readily obtained by

P J,capture
n (E) = 1−

∑
n′

∣∣∣SJ
nn′(E)

∣∣∣2 . (3.3)

In every collision, there is also the possibility of direct scattering because of the

existence of repulsive regions on the PESs. So inelastic transitions can occur even

without penetration into the complex. For these processes, the transition prob-

abilities are given, as in conventional inelastic scattering theory by the square of

a S-matrix element. We define the direct scattering probability for the n → n′

transition as

P J,direct
nn′ (E) =

∣∣∣SJ
nn′(E)

∣∣∣2 . (3.4)

In comparison, exact quantum scattering calculations on the O(1D)+H2 →
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OH+H reaction, [93] in which a single ground state PES was used, the close-coupled,

statistical model, in both the full close-coupled (CC) and the computationally sim-

pler, coupled-states (CS) approximation, [89, 90] yielded excellent agreement for

both integral and differential state-resolved cross sections. In the CS approxima-

tion, apart from the total energy and the total angular momentum, the projection

of the total angular momentum along ~R, K, is conserved. The coupling matrix is

block diagonalized for different projections of the total angular momentum. This

substantially decreases the computational workload. For this reason, we adopt the

the CS approximation in our calculations, since we are interested in thermal rate

constants, which require summing over a large set of energies. In the rest of the

chapter, we present the PESs, Hamiltonian and Basis, frame of references, propaga-

tion methods, and calculation of S-matrix and implementation to obtain the cross

sections for which some brief introduction has been given above.

3.2.1 Ab Initio Potential Energy Surfaces (PESs)

The interaction of H and OH(2Π) is governed by four PESs, as shown schemat-

ically in Fig. 3.2. The doublet H and OH fragments can be spin paired to yield states

of singlet or triplet multiplicity. The orbital degeneracy of the OH fragment gives

rise to states of Π symmetry in linear geometry, or A′ and A′′ reflection symme-

try in non-linear geometry. The 1A′ state corresponds to the ground state of the

H2O molecule, and the corresponding PES has a deep well. The three other states,

1A′′, 3A′ and 3A′′, do not allow covalent bonding between the H and OH. Hence,
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the corresponding PESs are repulsive. Because all four PESs coalesce to the same

asymptotic limit, it is necessary to include all four PESs.

OH+H

H2O (1A')

1A"
3A"

3A'

Figure 3.2: Schematic illustration of the OH + H potential energy surfaces.

Due to its importance in the combustion processes, interaction potentials for

the reaction of O(1D,3 P ) + H2 to yield OH(2Π) is well studied. Global fits to the

interaction potentials of 1,3A′ and of 1,3A′′ states are already available [20, 88]. How-

ever, global fits often fall short in describing the long range interaction, which is

essential in the statistical capture calculations. Therefore, as reported by Alexander

et al. [94] the PESs for the OH(2Π)+H channel were redone by internally-contracted,

multi-reference, configuration-interaction calculations [105, 106] using Dunning’s

avqz atomic orbital basis sets [76]. The potential energies were determined [94]

on a grid of points in Jacobi coordinates appropriate to the OH+H system, namely
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Figure 3.3: Contour plots (cm−1) of the OH-H PESs as a function of Jacobi coordi-

nates R and θ for a fixed OH distance of 1.8324 a.u.
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R, the distance between the H atom and the center-of-mass of the OH molecule; r,

the OH bond distance; and θ, the angle between ~R and ~r. These ab initio points

were then fitted to an appropriate functional form. The average rms deviation for

the fit to all four surfaces was 1.2 cm−1. The scattering calculations in this thesis

are done on the ARM surfaces which govern both OH + H and OH + D collisions.

Surfaces, except 1A′, are all repulsive as indicated earlier, however a van der

Waals minimum exists in the colinear arrangement on the repulsive surfaces.

3.2.2 Hamiltonian and Basis

The quantum mechanical description of triatomic collisions involving open-

shell molecules is similar to that of closed-shell molecules, in that the total wave-

function is expanded in a set of products of functions describing the internal motion

of the diatomic moiety. The expansion coefficients are function of the Jacobi sepa-

ration vector. (The Jacobi coordinates for a triatomic system are defined earlier in

Eq. 1.3-1.5.) In the case of an open-shell molecule, the Hamiltonian for the internal

motion includes both the usual vibrational and rotational motion as well as spin-

orbit and Λ-doubling terms [107]. The present study is based on the framework laid

by Alexander and coworkers [94].

To set the framework, let us assume an OH(2Π) + H encounter. Then the

Hamiltonian is

VOH+H(~R,~r, ~q) = Tn(~R) + Vel(~q; ~R,~r) + Hmol,OH(~q;~r), (3.5)

Here ~R and ~r are the Jacobi coordinates for a particular arrangement, and ~q repre-
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Figure 3.4: Positions of the lower spin-rotation levels of OH(X2Π). For clarity, the

magnitude of the Λ-doublet splitting has been greatly exaggerated.

sents the electronic coordinates. The first term Tn represents the kinetic energy of

the relative atom-diatom motion:

Tn = − h̄2

2µR2

∂

∂R
R2 ∂

∂R
+

L2

2µR2
. (3.6)

The second term in Eq. (3.5), Vel, is the Hamiltonian for the electronic interaction,

Vel = V (~R,~r; ~q), (3.7)

and the third term in Eq. (3.5), Hmol, is the molecular hamiltonian for the di-

atom. The ab initio determination of Vel leads to four PESs introduced earlier

in section 3.2.1. The theory of the free OH/OD diatom is explained in detail in

Appendix B.

As illustrated schematically in Fig. 3.4, there exist two rotational ladders, F1

and F2, separated by the spin-orbit splitting. In addition, for each value of the OH
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rotational angular momentum, there exist two Λ-doublet levels, separated by only

a fraction of a wavenumber. In the high-J limit, the two Λ-doublet levels can be

distinguished by the reflection symmetry of the spatial component of the electronic

wavefunction in the plane of rotation of the diatomic [108, 109]. In the lower (F1)

spin-orbit manifold, the levels of nominal A′ reflection symmetry are conventionally

labelled e and the levels of nominal A′′ reflection symmetry, f . This e/f labelling

is reversed in the upper (F2) spin-orbit manifold. Note that the A′ Λ-doublet levels

are lower in energy in the F1 spin-orbit manifold, but higher in energy in the F2

spin-orbit manifold. This situation is reversed in the F2 spin-orbit manifold for

levels with j ≥ 9/2. Thus, except for the F2 levels with 1/2 ≤ j ≤ 7/2, the lower of

the two Λ-doublet levels always corresponds to nominal A′ reflection symmetry.

Now we have the appropriate basis for the diatom and Hmol in this basis,

we can proceed to the solution of the triatomic scattering process. The overall

wavefunction for the OH-H system is expanded in the basis

ΦJ
n(R̂, ~r) = 〈R̂, ~r|JMKvjkλσσh〉

=
1

r
D̂J∗

MK(φ, θ, 0)d̂j
kω(γ)χvj(r)|λσ〉|σh〉. (3.8)

Here, J is the total angular momentum with projection K along OH-H vector ~R and

M along the space-frame z-axis. The quantum number j designates the rotational

angular momentum of OH diatom, with projection k along ~R and with projection

w along ~r. D̂J∗
MK(Ω) = ([2j + 1]/8π2)1/2DJ∗

MK(Ω) is the normalized Wigner rotation

matrix element, where Ω designate the three Euler angles that relate the space-fixed

and body-fixed axis frames. χ is the OH vibrational wavefunction. The ket |λσ〉
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designates the electronic wavefunction of the OH molecule, where λ and σ are the

projections of the electronic orbital and spin angular momenta along ~r and ω = λ+σ.

The second ket |σh〉 designates the electronic wavefunction of the H atom, where

σh is the projection of the H-atom spin along ~R. The total projection of the total

angular momenta J along ~R is K = k + σh.

Although, this basis is a better choice for the propagation of the radial coef-

ficients, the ideal choice of the asymptotic form of the wave function would be the

one in which Hmol is diagonal, which is

ΦJ
m(R̂, ~r) = 〈R̂, ~r|JMKvjkFiεσh〉

=
1

r
D̂J∗

MK(φ, θ, 0)d̂j
kω(γ)χvj(r)Fiε〉|σh〉. (3.9)

Therefore, the coupled equations are solved in basis (3.8) and then the solution

is transformed into basis (3.9) at the end of the propagation.

At each value of R, the total wave function is expanded as

ΨJ
n(~R,~r) =

1

R

∑
m

ΦJ
m(R̂, ~r)ΨJ

mn(R). (3.10)

Applying the total Hamiltonian operator given in Eq. (3.5), multiplying with ΦJ∗
n′ (R̂, ~r)

on the left and integrating over all angles and ~r, we obtain the following coupled

equations to be solved:

[
d2

dR2
−

J(J + 1) + j(j + 1) + 3
4
− 2K2 + 2kσh

R2
+

2µ

h̄2 (E − En′)

]
ΨJ

n′n(R) =

2µ

h̄2

∑
m

V Jk
n′mΨJ

mn(R)(3.11)

where L2
op is replaced with J(J +1)+ j(j +1)+ 3

4
−2K2 +2kσh and the off diagonal

coupling between different values of k are assumed to be zero according to the
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coupled states (CS) approximation [97, 98]. This significantly reduces the size of

the coupled channels. Here n is a channel label for |JMKvjkλσσh >.

This set of coupled equations can be written in matrix form as

d2

dR2
Ψ(R) = W (R)Ψ(R), (3.12)

The log-derivative [102, 110] propagation employed in the matrix Riccati form:

Y ′(R) = W (R)− Y (R)2, (3.13)

where Y (R) = Ψ′(R)Ψ(R)−1

The main difference between the regular close-coupled scattering calculations

and the present capture calculations are the capture boundary conditions. Capture

boundary condition unlike the usual inelastic scattering calculations allow for a

nonvanishing incoming wave for each adiabatic state which is not energetically closed

at the capture radius Rc [89, 90]. Rc is chosen to be well within the complex

forming region. The best choice of initial condition is an Airy function boundary

condition [104]. The log-derivative matrix, Y , is propagated outward and the S-

matrix is extracted using the standard formula:

SJ(E) = [Y (Ra)O(Ra)−O′(Ra)]
−1

[Y (Ra)I(Ra)− I ′(Ra)] , (3.14)

where O and I are the following incoming and outgoing Riccati-Hankel functions:

Ivjl(R) = k
−1/2
vj ĥ−l (kvjR) (3.15)

Ovjl(R) = k
−1/2
vj ĥ+

l (kvjR). (3.16)

The S-matrix, although symmetric, is, however, no longer unitary since the capture

boundary condition acts like a sink.
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As discussed earlier, [89, 90] the computationally more efficient coupled-states

approximation [97, 98] can be used, wherein both the total angular momentum J

and its projection K along ~R are conserved. At a given value of the total energy

E and the quantum numbers J and K, the probability of capture for an OH+D

collision in which the initial state of diatomic moiety and the spin state of the atom

is described by n is

P JK
n (E) = 1−

∑
n′

∣∣∣SJK
nn′ (E)

∣∣∣2 . (3.17)

Here the sum is over all energetically accessible states. In reality the single index

n designates the set of quantum numbers {v, j, k, Fi, ε, σh}. If we insert, explicitly,

all the relevant quantum numbers, in analogy to 3.1, the probability of a n → n′

capture transition becomes:

P J,capture
vjFiεσh→v′j′F ′

i ε′σ′
h
(E) =

∑
KK′

P JK
vjFiεσh

(E)P JK′

v′j′F ′
i ε′σ′

h
(E)∑

K′′v′′j′′F ′′
i ε′′σ′′

h

P JK′′
v′′j′′F ′′

i ε′′σ′′
h
(E)

. (3.18)

Within the coupled-states approximation the projection K of the total angular mo-

mentum along in the Jacobi vector of relative motion is conserved within each ar-

rangement, and is thus a good quantum number. However, presumably, this is

scrambled within the complex, so that there appear K → K ′ contributions in Eq.

(3.18).

The transition probability for an inelastic n → n′ transition, due to coupling

before capture is given by

P JK,direct
vjFiεσh→v′j′F ′

i ε′σ′
h

=
∣∣∣SJK

vjFiεσh→v′j′F ′
i ε′σ′

h
(E)

∣∣∣2 . (3.19)

Since only the initial arrangement is responsible for the direct contribution, K is

conserved in the inelastic scattering contribution.
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Once the state-to-state capture probabilities are known, the integral cross

sections are readily obtained. Our investigation of OH+D and OH+H collisions

based on the statistical capture theory is presented in the following two chapters.
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Chapter 4

Cross Sections and Thermal Rate Constants for the Isotope

Exchange Reaction: D(2S) + OH(2Π) → OD(2Π) + H(2S)

4.1 Introduction

The isotope exchange reaction of OH with deuterium atoms is a major source

of OD in interstellar clouds [34]. The relative OH/OD abundance in the interstellar

medium (ISM) depends on chemical fractionation mechanisms (in particular isotopic

fractionation) and can be utilized to uncover the importance of various chemical

processes occuring in the ISM [111]. Accurate rate constants for proton/deuteron

exchange are a crucial requirement for the modeling of the chemistry in the ISM.

With no activation barrier, the title reaction is one of the few neutral-neutral

reactions which will occur efficiently at interstellar temperatures, which typically

range from 10 K to 100 K. Because of the difference in zero-point energies, [112]

this reaction is exothermic by 717 K (499 cm−1). The barrierless [113] reaction

proceeds on the potential energy surface of the electronic ground state of the wa-

ter molecule (1A1) as shown schematically in Fig. 4.1. The title reaction involves

the interconversion of the two exit channels of the barrierless O(1D)+H2 insertion

reaction.

There have been only a few theoretical and experimental determinations of
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D + OH OD + H

0.23 eV
0.16 eV

HDO†
     0 eV

Figure 4.1: Schematic illustration of the reaction path for D(2S) + OH(2Π) →

HDO† → OD(2Π) + H(2S). The zero of energy corresponds to D+OH (r = re) and

is identical for the OD+H arrangement. The vibrational zero-point energies of the

diatomic fragment in each arrangement are also indicated.

cross sections and rate constants for the title reaction. Table 4.1 summarizes these.

The degree of disagreement seen here was a stimulus for the present investigation.

Kaufman and co-workers reported the first experimental determination of the

rate coefficient of the title reaction [116]. A more recent measurement by Howard and

Smith [114] yielded a considerably smaller value. The latter authors also reported

a negative temperature dependence of the rate constant, which they attributed to

the increase in the probability of complex formation with decreasing temperature.

Howard and Smith also report rate predictions based on a simple early version of the

Statistical Adiabatic Channel Model (SACM) of Quack and Troe [117, 118] and an

empirical crude potential energy surface. The SACM estimates of the rate constant

fell between the measurements of Howard and Smith and those of Margitan at T =

300 K (See Table 4.1).
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Table 4.1: Summary of reported rate constants for D+OH reaction.

kv→v′ / 10−11 cm3 molecule−1 s−1

T / K Theory Experiment

50 15.31a -

100 14.22a -

300 10.78a 5.19± 0.31b

9.4c 13± 3d

10e

500 9.65a 3.74± 0.20b

10.4c

8e

aThis work.
bTheoretical; Reference [114].
cExperimental; Reference [115]. The statistical uncertainty in these quasiclassical trajetory

calculations was estimated at ±20 %, which overshadows the small predicted temperature depen-

dence.
dExperimental; Reference [116].
eExperimental; Reference [114]; theoretical estimates based on the adiabatic channel model of

Quack and Troe (Refs. [117, 118]).

Dunne and Murrell [115] reported quasiclassical trajectory (QCT) determi-

nations of the rate constant based on a parameterized potential energy surface for

the electronic ground state of water. Their calculated rate constants are roughly

twice as large as those of Howard and Smith [114] and, hence, at 300 K agree better

with the earlier measurement of Kaufman and co-workers [116]. Day and Truhlar

have reported [119] a quantum determination of thermal rate constants for the title

reaction, but restricted solely to zero total angular momentum.

Recently, we have shown [94] how the statistical-close-coupled method of
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Manolopoulos and co-workers [89, 90] can be successfully extended to treat the

O(1D)+H2 →OH(X2Π) + H reaction, with inclusion of all electronic degrees of

freedom. A straightforward modification of this method will allow us to carry out a

similar quantum-statistical treatment of the title reaction.

In Sec. 4.2 below we review briefly the relevant details of the statistical method,

the Hamiltonian, the potential energy surfaces used, and the ensuing calculations.

In Sec. 4.3, we present the calculated cross sections and thermal rate constants.

In particular, we predict significant, non-statistical distributions of the product

OD molecules among the energetically-accessible spin-orbit (fine-structure) and Λ-

doublet levels. The temperature dependence of the rate coefficients is also discussed.

4.2 Theory and Computational Methods

The Coupled-channel statistical model and the relevant PESs are introduced

earlier in Chapter 3. Here we apply the close-coupled, statistical method to the

title reaction, with the modification that both the initial and final arrangements in

Eq. (5.3) correspond to the two hydroxyl isomers (D+OH and OD+H). Because the

OH+H→O(1D)+H2 reaction in endoergic by 1.7 eV, the O+HD arrangement is not

accessible at thermal energies. Similar to the work of ARM, [94] we report here

CS capture calculations of cross sections and rate constants for the title reaction.

Since full details of the statistical capture theory [89, 90] and the extension to

nonadiabatic dynamics [94] have recently been published, we will present here only

the most relevant methodological details.
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Figure 4.2: The effect on the H+OD Jacobi coordinates of the shift in the center-

of-mass due to isotope exchange.

4.2.1 Coordinate Shift

For the close-coupled capture calculations, the wavefunction is expanded in

Jacobi coordinates for each arrangement. For the OH+D arrangement, the Jacobi

coordinates are identical to those for OH+H, so that the original fitted potential

energy surfaces can be used. However, as illustrated in Fig. 4.2, for the OD+H

arrangement, the shift of the position of the center-of-mass of the OD molecule

engenders a slight change in the coordinates. By simple trigonometry one can show

that in terms of the OD+H Jacobi coordinates, the OH+H Jacobi coordinates, in

terms of which the potential energy surfaces are defined, are given by:

|o2 − o1| = rOD
mO(mD −mH)

mOH

(4.1)

R2
OH = |o2 − o1|2 + R2

OD − 2ROD|o2 − o1| cos(π − θOD) (4.2)

θOH = cos−1

(
|o2 − o1|2 + R2

OH −R2
OD

2ROH|o2 − o1|

)
, 0 < θOH < π (4.3)
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4.2.2 Hamiltonian and Basis

The quantum mechanical description of triatomic collisions involving open-

shell molecules is similar to that of closed-shell molecules, in that the total wave-

function is expanded in a set of products of functions describing the internal motion

of the diatomic moiety. The expansion coefficients are function of the Jacobi separa-

tion vector. In the case of an open-shell molecule, the Hamiltonian for the internal

motion includes both the usual vibrational and rotational motion as well as spin-

orbit and Λ-doubling terms [107]. The present study is based on the framework laid

by Alexander and coworkers [94].

The capture probabilities for the OH+D and OD+H arrangements are deter-

mined in separate scattering calculations. In both arrangements the Hamiltonian

is

HOH(D)+D(H)(~R,~r, ~q) = Tn(~R) + Vel(~q; ~R,~r) + Hmol,OH(OD)(~q;~r), (4.4)

Here ~R and ~r are the Jacobi coordinates for a particular arrangement, and ~q repre-

sents the electronic coordinates. The first term Tn represents the kinetic energy of

the relative atom-diatom motion:

Tn = − h̄2

2µR2

∂

∂R
R2 ∂

∂R
+

L2
op

2µR2
. (4.5)

The second term in Eq. (4.4), Hel, is the Hamiltonian for the electronic interaction,

Hel = V (~q; ~R,~r), (4.6)

and the third term in Eq. (4.4), Hmol, is the OH (OD) molecular hamiltonian.

The overall wavefunction for the OH–D (OD–H) system is expanded in the
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basis

〈R̂, ~r|JMKvjkλσσh〉 =
1

r
D̂J∗

MK(φ, θ, 0)d̂j
kω(γ)χvj(r)|λσ〉|σh〉. (4.7)

Here D̂ designates a normalized Wigner rotation matrix element, where α and β

designate the space-frame orientation of ~R, and χ is the OH vibrational wavefunc-

tion. The ket |λσ〉 designates the electronic wavefunction of the OH (OD) molecule,

where λ and σ are the projections of the electronic orbital and spin angular momenta

along ~r and ω = λ + σ. The second ket |σh〉 designates the electronic wavefunction

of the H (D) atom, where σh is the projection of the H(D)-atom spin along ~R.

The determination of the matrix elements of Hel and Hmol in the basis defined

by Eq. (4.7) is presented in detail in Ref. [94]. The matrix elements of Hel are the

four OHH potential energy surfaces, discussed above. The vibration-rotation-fine-

structure levels of the free OH (OD) radical are obtained by diagonalizing Hmol

in a parity-adapted, Hund’s case (a) basis and the matrix elements are given in

Eq. (B.33) of Appendix B. The pertinent spectroscopic constants can be found in

the Table B.1

As illustrated schematically in Fig. 4.3, there exist two rotational ladders, F1

and F2, separated by the spin-orbit splitting. In addition, for each value of the OH

(OD) rotational angular momentum, there exist two Λ-doublet levels, separated by

only a fraction of a wavenumber. In the high-J limit, the two Λ-doublet levels can be

distinguished by the reflection symmetry of the spatial component of the electronic

wavefunction in the plane of rotation of the diatomic [108, 109]. In the lower (F1)

spin-orbit manifold, the levels of nominal A′ reflection symmetry are conventionally
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Figure 4.3: Positions of the lower spin-rotation levels of OD(X2Π).

labelled e and the levels of nominal A′′ reflection symmetry, f . This e/f labelling

is reversed in the upper (F2) spin-orbit manifold. Note that the A′ Λ-doublet levels

are lower in energy in the F1 spin-orbit manifold, but higher in energy in the F2

spin-orbit manifold. This situation is reversed in the F2 spin-orbit manifold for

levels with j ≥ 9/2. Thus, except for the F2 levels with 1/2 ≤ j ≤ 7/2, the lower of

the two Λ-doublet levels always corresponds to nominal A′ reflection symmetry.

4.2.3 Scattering Calculations

The wave function is expanded in the basis of Eq. (4.7). Premultiplication by

individual members of the basis, integration over all the electronic and nuclear co-

ordinates except R and evaluation of the resulting matrix elements gives rise to the

set of close-coupled equations familiar in inelastic scattering. These equations are
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solved subject to modified boundary conditions which allow for a nonvanishing in-

coming wave for each adiabatic state which is not energetically closed at the capture

radius Rc [89, 90]. The resulting S-matrix is obtained by outward propagation, sim-

ilar to that in conventional inelastic scattering [101–103]. The S-matrix, although

symmetric, is, however, no longer unitary, since the capture boundary condition acts

like a sink.

As discussed earlier, [89, 90] the computationally more efficient coupled-states

approximation can be used, wherein, along with the total angular momentum J ,

the projection K of ~J along ~R is assumed conserved. At a given value of the total

energy E and the quantum numbers J and K, the probability of capture for an

OH+D (OD+H) collision in which the diatomic moiety is in initial state n is

P JK
n (E) = 1−

∑
n′

∣∣∣SJK
nn′ (E)

∣∣∣2 . (4.8)

Here the sum is over all energetically accessible states in either OH+D or OD+H

arrangements. For simplicity we use the single index n to designate the complete

set of quantum numbers {v, j, k, Fi, ε, σh}.

By microscopic reversibility the probability of decomposition of the complex

to yield OH+D products in state n is equal to the probability that state n will be

captured into the well. Thus, within the statistical model[95, 100] the state-to-state

D+OH→OD+H transition probabilities for a particular value of the total angular

momentum J are given by [in analogy with Eq. (1)]

P J
vjFiεσh→v′j′F ′

i ε′σ′
h
(E) =

∑
KK′

P JK
vjFiεσh

(E)P JK′

v′j′F ′
i ε′σ′

h
(E)∑

K′′v′′j′′F ′′
i ε′′σ′′

h

P JK′′
v′′j′′F ′′

i ε′′σ′′
h
(E)

, (4.9)
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where the sum in the denominator runs over all energetically accessible states in

both the D+OH and OD+H arrangements. Although within the coupled-states

approximation the projection K of the total angular momentum is conserved within

each arrangement, it is not a good quantum number for the overall reaction, so that

there appear K → K ′ contributions in Eq. (4.9).

The corresponding integral state-to-state cross sections are calculated from the

reaction probabilities as

σvjFiεσh→v′j′F ′
i ε′σ′

h
(E) =

πh̄2

2µ(E − EvjFiε)

1

2j + 1

∑
J

(2J + 1)P J
vjFiεσh→v′j′F ′

i ε′σ′
h
(E),

(4.10)

where µ is the collision reduced mass. Scattering calculations were carried out

at nearly 300 values of the total energy ranging from 0.2248 eV to 0.7412 eV [as

discussed previously, the zero of energy is taken to be D+OH(r = re)]. In all the

calculations presented here, except where specifically mentioned, we refer to cross

sections involving the vibrational ground state of both OH and OD; consequently,

we will hereafter suppress the initial and final vibrational quantum numbers.

The parameters which control the accuracy of the computed statistical-model

cross sections are the capture radius, Rc, and the size of the channel basis. The latter

is controlled by two parameters Emax and jmax, so that all OH or OD channels

with j > jmax or with internal energies εvjFiε > Emax are excluded. The three

parameters Rc, Emax, and jmax were adjusted to ensure the convergence of the

capture probabilities Pc to within 0.5%; the adopted values are listed in Table 4.2.

In particular, jmax was adjusted so that, at the highest value of the total energy,
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Table 4.2: Values of the parameters used in the D+OH calculations.

Arrangements Rc/a.u. jmax Emax/eVa

OH+D 3.5 20 0.9

OD+H 3.0 25 0.9

aThe zero of energy corresponds to OH (r = re)+D and is the same in both arrangements.

all open rotational levels as well as the lowest four energetically closed levels were

included in the channel basis.

4.3 Results and Discussion

4.3.1 Cross Sections

At interstellar temperatures, the two Λ-doublets of the lowest rotational-fine-

structure level of OH (j = 3/2, F1) are the most populated and hence will make the

most important contribution to the reaction cross section (at T=50K, 86% of the

OH population is in these levels). We shall assume that the initial Λ-doublet levels,

which differ in energy by a mere fraction of a wavenumber, are equally populated. In

this case the integral cross sections for reaction to yield a particular j′, F ′
i OD final

state are obtained from Eq. (5.14) by summing over the two final-state Λ-doublet

levels and H-atom spin-projection states, and averaging over the comparable initial

states, to obtain:

σjF1→j′F ′
i
=

1

4

∑
εε′σhσ′

h

σjF1εσh→j′F ′
i ε′σ′

h
. (4.11)
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In this expression , the sum on the right hand side extends over energetically acces-

sible vibrational levels of OD. To determine the initial-state-selected cross section

for reaction to yield all OD final states, we further sum over all final states, namely

σjF1 =
∑
j′F ′

i

σjF1→j′F ′
i
. (4.12)

Of course, entirely similar statistical model calculations could be carried out to

simulate an environment in which the initial Λ-doublet levels were not equally

populated. Figure 4.4 illustrates the dependence on collision energy of the over-
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Figure 4.4: Total cross section as a function of the collision energy for D+OH(j =

3/2, F1) → OD+H.

all D+OH(j = 3/2, F1) →OD+H cross section. As Clary has seen in computational

studies of the O+OH reaction, [120] which has a barrierless attractive potential for a
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large range of O+OH orientations, our computed cross sections for the title reaction

increase as the collision energy decreases. This behavior is expected in general for

reactions without an energy barrier [121]. The plot shown in Fig. 4.4 was obtained

by a spline fit to the calculated cross sections at particular collision energies. The

lowest value of the collision energy in our calculations was 7 K. Consequently, one

should not extrapolate the plotted cross sections (or rate constants) to ultracold

conditions.

Figure 4.5 plots the initial-state-resolved D+OH→OD+H cross-sections for

the thermally accessible OH rotational levels. The cross sections decrease as the ro-

tational quantum number of the diatom increases. The 1A′ OH–H potential energy

surface is, in fact, strongly attractive only in bent geometries, but quite repulsive for

both collinear geometries [94]. Consequently, as the initial OH rotational quantum

number increases, the rotational motion averages out the OH–H potential, so that

the incoming collision partners “see” less of the collision complex. Hence, the mag-

nitude of the cross sections as well as the low-energy enhancement decreases with

increasing j.

In Fig. 4.5 (b), cross sections for OH (F1) in j = 1/2 and j = 5/2 reveals an

oscillation as a function of increasing kinetic energy which is not observed for the

other state selected cross sections. To investigate this behavior, we have performed

less expensive purely inelastic scattering calculations for each of the repulsive triplet

surfaces (3A′ and 3A′′). The total relaxation cross section out of j = 1/2, F2 is

presented in Fig. 4.6 on a much finer grid of energies. At Ecol ≈ 80 K, we observe

structure in the cross sections. This behavior can be attributed to the interaction
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Figure 4.6: Total inelastic scattering cross section for OH(F2, j = 1/2) +D on the

two repulsive triplet potential energy surfaces, 3A′ and 3A′′. The inelastic scatter-

ing calculations were carried out for each potential energy surface separately. The

resulting cross sections were then added.

with a Feshbach resonance corresponding to the OH(j = 7/2, F1)–D state, which

becomes energetically allowed only for Ecol ≥ 108K with respect to the OH(j =

1/2, F2) state. A similar interaction with a Feshbach resonance corresponding to the

OH(j = 9/2, F1)–D state is responsible for the structure in the OH(j = 5/2, F2)+D

cross sections seen in Fig. 4.5 (b).

Murrell et al. used QCT calculations, based on an earlier OHH potential

energy surface, [122] to determine D+OH→ OD+H cross sections, averaged over

a 300 K thermal distribution of OH rotational levels, for several collision energies
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ranging from 0.0055 eV to 3.29 eV (64–38,000 K). In Fig. 4.7, we compare their
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Figure 4.7: Comparison of rotationally averaged D+OH → OD+H cross sections

[Eq. (4.13)] from the present statistical-close-coupled calculations with the predic-

tions of the QCT calculations of Ref. [115].

results to our rotationally-averaged cross sections, [123] which we define as

〈σ(Ecol)〉 =

∑
jFi

(2j + 1)σjFi
(Ecol) exp(−εjFi

/kT )∑
jFi

(2j + 1) exp(−εjFi
/kT )

. (4.13)

The QCT cross sections are comparable in magnitude, but fail to exhibit the sub-

stantial enhancement at low collision energy. It is not clear whether this disagree-

ment reflects shortcomings of the QCT method, differences in the potential energy

surfaces used, or the fact that only one potential energy surface was used in the

QCT calculation.
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4.3.2 Product State Populations

For reactions which are statistical (without any dynamical constraints), the

product state distributions will be proportional to both the degeneracy of the prod-

uct rotational, vibrational and electronic state, and the density of states associated

with the recoil translational energy of the products [121]. This density of states is

ρ(Etr) =
µ3/2

21/2π2h̄3Etr
−1/2. (4.14)

Thus the probability that reaction at a total energy E will produce state v′, j′, F ′
i , ε

′

is

ρ(v′, j′, F ′
i , ε

′; E) =
(2j + 1)µ3/2

21/2π2h̄3

[
E − Ev′,j′,F ′

i ,ε′

]−1/2
. (4.15)

Consequently, one would anticipate that in a purely statistical limit the cross sections

for the title reaction would be given by the ”prior” distribution

σvjFiε→v′j′F ′
i ε′ ∝ (2j′ + 1)

(
E − Ev′j′F ′

i ε′

)−1/2
. (4.16)

Figure 4.8 shows the final-state-resolved cross sections for formation of OD at a

collision energy of 6.7 K (4.7 cm−1). We observe in both cases that the distributions,

particularly those for formation of OD in the A′ Λ-doublet level, [108] display a

dependence on j′ which corresponds closely to the “prior” distribution of Eq. (4.16).

Because the spin-orbit splitting in OD (139 cm−1, Table 2) is a substantial

fraction of the exoergicity of the title reaction (498.6 cm−1), the cross sections for

production of rotational levels in the lower (F1) OD spin-orbit manifold are almost

twice as large as those for production of rotational levels in the upper spin-orbit

manifold. We observe, however, that this nearly 2:1 ratio is considerably larger
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tional fine structure levels in the reaction D + OH (j = 3/2, F1) → OD (j′, Fi, ε) +

H at a collision energy of 6.7 K.

than would be predicted by the ratio of the square root of the available translational

energy, as would be given by Eq. (4.16).

We also observe a marked propensity toward formation of OD in the A′ Λ-

doublet level. This is identical to what was found in our earlier [94] statistical

model calculations on the O(1D)+H2 →OH+H reaction and also to what had been

reported in earlier experimental investigations [124, 125]. Although the exoergicity

of the O(1D)+H2 reaction (∆E = −1.89 eV = −15, 200 cm−1) is much greater

than that of the title reaction (∆E = −0.06 eV = 499 cm−1), nonetheless the same
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Λ-doublet propensity is observed.

As discussed in the earlier publication of Alexander et al., [94] and suggested

by Wiesenfeld, Butler and co-workers [124] in the interpretation of their experi-

ments, the A′ reflection symmetry of the H2O electronic wavefunction is conserved

as the complex breaks apart into OH+H. During this breakup there is a strong

dynamical preference for the plane of rotation of the OH fragment to be roughly

parallel to the plane of rotation of the complex. Consequently, the electronic wave-

function of the nascent OH fragment will be preferentially symmetric with respect to

reflection in the plane of rotation of the OH fragment, which corresponds to the A′

Λ-doublet [108]. An identical Λ-doublet propensity is predicted here for formation

of OD by the OH+D exchange reaction at much lower translational energies.

We observe also in Fig. 4.8 that the dependence on rotational quantum number

of the cross sections for formation of OD products in the A′′ Λ-doublet level are less

well charaterized by the statistical prior distribution of Eq. 4.16. Since the deep

H2O well corresponds to a state of A′ symmetry, for preferential decomposition of

the complex in which the plane of rotation of the nascent OD products corresponds

to the plane of the H2O complex, the A′′ Λ-doublet state can be formed only by a

curve-crossing at longer range with a repulsive potential energy corresponding to a

state of A′′ electronic symmetry [94]. Thus, one might anticipate a less “statistical”

j′ dependence for the OH[Π(A′′)] products, since they are not formed directly by

decomposition of the H2O complex.

Figure 4.9 plots the cross sections for several initial rotational levels of OH.

The reactive cross sections decrease with increasing rotational excitation of the di-
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Figure 4.9: OD rotational populations for each Λ-doublet separately in both the

F1 (upper panels) and F2 (lower panels) spin-orbit manifolds for the reaction

D+OH(j, F1)→OD(j′, F ′
i , ε

′)+H for initial rotational levels j = 3/2− 9/2 at a colli-

sion energy of 6.7 K.

atomic reactant, similarly to what has been observed previously in ion-molecule [96]

reactions and the neutral insertion reactions [92, 120, 126]. We also observe in

Fig. 4.9 that with increasing OH rotational excitation the product OD rotational

distribution encompasses higher values of j′. This occurs because, for a given colli-

sion energy, an increase in reactant rotational energy increases the total energy of

the system, and, hence, the total energy available to OD rotation.
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4.3.3 Rate Constants

Having state-to-state cross sections at our disposal, we can calculate the ther-

mally averaged rate constants by assuming a Maxwellian distribution of translational

energy at temperature T . The corresponding state-to-state thermally averaged rate

constants are given by [127]

ki→f (T ) =< vσi→f >=

[
8

πµ(kT )3

]1/2 ∫ ∞

0
Etr σi→f (Etr) exp(−Etr

kT
) dEtr , (4.17)

where v is the initial relative velocity, and Etr the initial translational energy, for

the OH reactant in initial state i. The overall thermal rate constant, for the OH

reactant in initial state i, is obtained by summing over all energetically accessible

product states, namely

ki(T ) =
∑
f

ki→f (T ) . (4.18)

The overall thermal rate constant for the title reaction is then obtained by averaging

over an assumed Boltzmann distribution of OH rotational levels in both the F1 and

F2 spin-orbit manifolds. We have

k(T ) =

∑
i

gi exp(−εi/kT )ki(T )

Q
(4.19)

Here Q(T ) is the partition function and gi and εi designate, respectively, the de-

generacy and internal energy of the ith state of the OH reactant. Here, the index

i designates the full set of initial quantum numbers {jFiε}. The rate constants

[Eq. (4.18)] corresponding to successively higher degrees of initial rotational excita-

tion of the OH molecule are shown in the Fig. 4.10 (for rotational levels in the F1

spin-orbit manifold) and Fig. 4.11 (for rotational levels in the F2 spin-orbit man-
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Figure 4.10: The temperature dependence of the rate constant for D + OH (j =

3/2 − 17/2, F1)→ OD+H. The rate constants decrease for an increasing degree of

rotational excitation of the OH reactant.

ifold). As seen for the cross sections, the rate constants decrease with increasing

initial rotational excitation. Because the spin-orbit splitting in OH (∆E = 139 cm−1

= 200 K) is much larger than typical interstellar temperatures, the most important

contribution to the overall rate for the title reaction will be from rotational levels

in the ground spin-orbit state of OH. As seen in Fig. 4.5, these have the largest

reactive cross sections.

The rate constants are large, as would be expected for a barrierless reaction.

Although we observe a slight negative temperature dependence for the lowest two

states, namely F1, j = 3/2 and j = 5/2 (see Fig. 4.10), the initial state selected rates
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are generally increase with temperature in contrast to the thermally averaged rate,

k(T ) [114], shown in Fig. 4.12. Thus we conclude, confirming the earlier observa-

tions of Clary and coworkers [120, 126], that the negative temperature dependence of

the thermally averaged rate for barierless reactions controlled by long-range forces

is mostly due to thermal averaging over the rotationally accessible states. Since

rotational excitation reduces the cross sections, the thermally averaged rate con-

stant will decrease at higher temperature as higher rotational levels make a greater

contribution to Eq. (4.19).

A similar behavior has been reported for several radical-radical reactions [10].

This behavior is interpreted as a fingerprint of complex formation [114]. As the
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collision energy increases, the possibility of the breakup back towards reactants

become more probable as the density of accessible states for the products and the

reactants becomes similar.

The most recent and detailed experimental information on the rate constant

for the title reaction are the measurements of Howard and Smith, which were fitted

over the temperature range 300 K< T < 500 K [114]. The fitting function used is

k(T ) = (1.9± 0.3)× 10−9 T−(0.63±0.05) cm3molecule−1 s−1. (4.20)

The thermally averaged rate constant predicted by our calculations is shown in

Fig. 4.12 and compared to the experimental fit of Howard and Smith [114] together

with the earlier theoretical and experimental values. The calculated rate constant

lies between the earlier experimental result of Margitan and the fit by Howard and

Smith, and it confirms the earlier theoretical estimates. Consequently, our results

suggest that Howard and Smith might have underestimated the rate constant for

the title reaction.

4.4 Summary

In this paper, we have reported state-to-state cross sections and thermal rate

constants for the D+OH(X2Π)→OD(X2Π)+H isotope exchange reaction, deter-

mined with the statistical, coupled-states method of Rackham et al. [89, 90] ex-

tended to open-shell systems [94].

The comparison of the thermally averaged cross sections calculated in this

work with the cross section determined by QCT calculations on an earlier potential
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energy surface shows this method fails to predict correctly the low energy behavior

of the cross sections. The cross sections from the statistical capture method are

significantly higher in the low energy range that is important in the interstellar

medium.

We observe a negative temperature dependence of the thermally averaged rate.

The state selected rate constants reveal that this behaviour is due primarily to the

thermal averaging over the rotationally accessible states. Rotation of the OH radical

reduces the cross sections due to the anisotropy in the lowest (the only reactive)

potential energy surface, 1A′. This potential energy surface is attractive, leading

to the HOD complex, in T -shaped geometry (θ = 90o; see Fig. 3 of Ref. [94]), but

repulsive for colinear approach. Correspondingly, if the rotation of the diatom is

fast on the time scale of the collision, the effective potential will be less attractive,

leading to a lower probability of capture into the HOD complex.

On the basis of their experimental results, Howard and Smith [114] inferred

a similar negative energy dependence of the cross sections, however they attribute

this behavior to a tendency for the complexes to decompose preferentially to reac-

tants rather than products as the temperature increases. It would be interesting

to compare the results of statistical model calculations on a single potential energy

surface, similar to those described in Refs. [89, 90] with the results of the present

calculations, in which all four of the OH+H potential energy surfaces were included.

We also predict a marked, nonstatistical propensity for production of OD in the

A′ Λ-doublet level. A similar propensity towards the formation of the symmetric

Λ-doublet has been observed in the production of OD in the reaction O(1D) +
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D2 [128]. This insertion reaction proceeds via the water complex. Because of the

large exoergicity of the O(1D) + D2 →OD+D reaction, the OD products are formed

with far greater internal energy than in the case of the title reaction.

We predict rate constants for D+OH isotopic exchange which confirm the

earlier theoretical and experimental results. At 300 K we predict k(T ) = 10.78 ×

10−11 cm3molecule−1s−1. At lower temperature T ≤ 50K, the value rises to k(T ) =

15 × 10−11 cm3molecule−1s−1, comparable to the value assumed by Croswell and

Dalgarno in their modelling investigation of the abundance of interstellar OD [34].

Our calculations predict that OD from the title reaction will be produced in the

energetically lower Λ-doublet level, except, however, for the j = 1/2 − 7/2 levels

of the upper (F2) spin-orbit manifold. Thus OD masing, for OD producted by the

title reaction, might occur for these latter levels. Although the OD molecule has

not yet been detected in interstellar clouds, [129] we do encourage further searches,

particularly for the five lowest rotational levels of the upper spin-orbit manifold.
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Chapter 5

Coupled-States Statistical Investigation of Vibrational and

Rotational Relaxation of OH(2Π) by Collisions with Atomic

Hydrogen

5.1 Introduction

The hydroxyl radical is an important species in combustion, astrophysics and

atmospheric chemistry. In the Earth’s atmosphere, vibrationally activated OH is

produced by the following reactions [130, 131] :

H + O3 → OH(ν ≤ 9) + O2 (mesopause) (5.1)

O(1D) + H2O → 2OH(ν ≤ 3) (stratosphere and troposphere) (5.2)

To model the chemistry of the OH radical, subsequent to formation, it is essential to

understand the rates of OH vibrational relaxation [132]. The collisional relaxation of

OH in its ground (X2Π) electronic state with a number of atomic [133, 134] as well

as diatomic molecules [133–143], has been subject of many, mostly experimental,

studies.

Vibrational relaxation of free radicals has been less well studied than that of

closed-shell systems. Smith has argued [136] that the rates of vibrational relaxation

in potentially reactive encounters are much higher than for non-reactive encounters.

In particular, for radical-radical collisions, there is often a barrierless access to a

89



deep well. Within this complex, the statistical scrambling of the various degrees

of freedom should allow access to all energetically-allowed rovibrational states [136,

144]. The adiabatic channel model [145–147] can be used to simulate this statistical

scrambling of energy. In addition, collisions of open-shell species are often governed

by multiple potential energy surfaces, which are degenerate asymptotically [148,

149]. In this case crossing between attractive and repulsive adiabats corresponding

to multiple potential energy surfaces should facilitate vibrational relaxation [148].

Smith has argued [136] that the formation of the collision complex is the rate

determining step so that the rate of relaxation will not depend significantly on the

degree of vibrational excitation of the reactants. On the other hand, since the

topology of the attractive potential energy surface will depend on the bond distance

of the diatomic moiety, it may well be that access to the complex does depend on

the degree of vibrational excitation.

Recent developments in statistical theories of reaction dynamics by Manolopou-

los and co-workers [89, 90, 94] now allow one to go beyond earlier adiabatic chan-

nel [145–147] methods by carrying out fully-quantum scattering calculations which

include all couplings prior to capture into the complex. A time-dependent ver-

sion of this method was subsequently developed by Guo and co-workers [91, 92].

These quantum capture calculations have been successfully applied to insertion re-

actions [89–92] which traverse a deep well. More recently, Alexander, Rackham

and Manolopoulos [94] modified and extended the theory to include nonadiabatic

couplings between asymptotically degenerate electronic states.

In this paper, we use the same quantum capture method to investigate the in-
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elastic scattering dynamics of the OH radicals in collision with H. Although collision

of OH with H is not an important process in the mesosphere, this simple system can

serve as a prototype for the study of the effect of complex formation on vibrational

relaxation. One particular goal of the present study will be the investigation of the

relative efficiency of vibrational relaxation during collisions which do not penetrate

the complex as compared to vibrational relaxation by redistribution of energy within

the complex.

To the best of our knowledge, there have appeared only two reports of mea-

surements of vibrational relaxation rates of OH due to collisions with H atoms. In

a study of the reaction of NO2 with atomic hydrogen, Spencer and Glass [144] re-

ported the relaxation rates of OH in v = 2 and v = 1 with collisions with H (see

Table 5.1). More recent measurements have been reported by Smith et al. [55] These

authors determined the rate of reaction and relaxation of H2O by collisions with H

and H2O, and report the relaxation rate of OH (ν = 1 → 0) to be ≈ 1.5 × 10−10

cm3molecule−1s−1 (see Table 5.1), which corresponds to a thermally averaged cross-

section of ≈ 5.5 Å2. The only theoretical determination of OH(v)+H relaxation

rates is an early study by Quack and Troe [145].

In addition to its importance in atmospheric chemistry, the OH radical has

drawn considerable attention because of the importance of the OH maser as a

tool for acquiring insights into the physical processes occurring within interstellar

clouds [150–152]. The presence of the OH molecule in interstellar clouds is iden-

tified by its four radio emission lines at frequencies of 1612, 1665, 1667 and 1720

MHz [153]. These are attributed to maser emission from inverted populations in
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Table 5.1: Summary of calculated and measured rate constants for the vibrational

relaxation of OH(v = 1, 2).

kv→v′ / 10−10 cm3 molecule−1 s−1

T / K 2 → 0 2 → 1 2 → 1 + 0 1 → 0

50 1.259a 0.842a 2.099a 2.013a

100 1.209a 0.788a 1.996a 1.915a

300 1.043a 0.654a 1.697a 1.600a

1.43 b 0.753b 2.18 b 2.1b

3.3c 2.7c

1.5± 0.4d

1.4± 0.12e

aThis work.
bTheoretical; Ref. [145].
cExperimental; Ref. [144].
dExperimental; Ref. [55], derived from an experiment in which H2O was excited to the |13 >

vibrational level.
eExperimental; Ref. [55], derived from an experiment in which H2O was excited to the |12 >

vibrational level.

the Λ-doublet levels of the OH molecule. Fig. 5.1 shows a diagram of the lowest

Λ-doublet with the hyperfine-structure responsible for the indicated emissions.

There have been numerous suggestions about the possible pump mechanisms

responsible for the Λ-doublet level population inversion. One possible cause involves

inelastic collisions of OH with H and H2, followed by radiative decay [35–38]. Sup-

pose that collisional excitation to higher rotational levels were to favor, preferentially,

the upper Λ-doublet. Subsequent radiative transitions to the ground rotational level

will change the parity but conserve the Λ-doublet label. As a consequence, the upper

Λ-doublet of the ground rotational level will be preferentially populated.
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Figure 5.1: Schematic diagram of the lowest two rotational levels in the lower F1

(2Π3/2) spin-orbit manifold of OH. The levels are labeled with the total angular

momentum exclusive of the nuclear spin, j, the e/f symmetry (Λ-doublet) labels

(Refs. [154] and [108]), the total angular momentum including the nuclear spin, F,

and the parity π. This figure is adapted from Fig. 1 of Ref. [155]. The Λ-doublet

and hyperfine splittings are greatly exaggerated for clarity. The four OH maser

transitions at 1612, 1665, 1667 and 1720 MHz are shown by the dashed vertical

lines.
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There have appeared a number of sophisticated studies of rotationally inelastic

collisions of OH with H2 [155–160]. The theoretical simulation of collisions of OH

with H atoms is further complicated by the presence of the deep H2O well, as well

as by the necessity of dealing with the open-shell character of both OH(2Π) and

H(2S), with non-zero electronic orbital angular momentum, electronic spin, and

nuclear spin. An early, approximate study by Bertojo and coworkers [37] supported

the pumping mechanism discussed in the previous paragraph.

To the best of our knowledge, the first rigorous theoretical treatment which re-

tained the open-shell character of both the OH radical and the H atom was presented

by Shapiro and Kaplan [161]. These authors calculated state-to-state rate constants

for transitions between and within the j = 3/2 and j = 5/2 rotational levels in the

(lower) 2Π3/2 spin-orbit manifold. They predicted steady-state level distributions

by means of a simple cloud model which included their rate constants, stimulated

and spontaneous emission probabilities and the 2.7 K background radiation. Their

model predicted that OH + H inelastic collisions could play an important role in

producing the observed Λ-doublet inversions.

As shown schematically in Fig. 5.2, a complete description of the interaction of

OH(X 2Π) with H(2S) requires four potential energy surfaces (1,3A′ and 1,3A′′) [94].

Of these, three are repulsive, while one (1A′) correlates with the deep H2O (X1A′)

well. Consequently, rotational and ro-vibrational relaxation of OH in collisions with

H can occur either by scattering on the repulsive PESs, in a manner similar to

the inelastic scattering of OH by noble gas atoms, or by collisions which enter the

H2O well and then re-emerge (the O+H2 channel is energetically closed at collision
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Figure 5.2: Schematic illustration of the OH + H′ ↔ OH′+H potential energy

surfaces. The O(1D)+H2 arrangement (not shown) lies 1.89 eV higher than the

OH+H asymptotes.

energies below 1.8 eV).

The goal of this chapter will be to use the coupled-states statistical method, [89,

90] as extended by Alexander, [94] in the determination of cross sections for rota-

tional and ro-vibrational relaxation of OH(X2Π) in collisions with H. Section 5.2

summarizes the relevant details of the method, the Hamiltonian, PESs and the

calculations. In Sec. 5.3, we present cross sections and thermal rate constants for

v = 1, 2 → v = 0 rovibrational relaxation and for rotationally inelastic collisions

within the v = 0 level. A brief summary concludes the chapter.
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5.2 Theory and Computational Methods

Even at energies below the O(1D)+H2 channel, the title reaction samples the

product valley of the O(1D)+H2 →OH+H insertion reaction. Here we apply the

close-coupled statistical method to the inelastic scattering of OH in collisions with

H. The Coupled-channel statistical model and the relevant PESs are introduced

earlier in Chapter 3, therefore we present briefly the specifics of the calculations

pertaining to the relaxation of OH in collisions with hydrogen atom.

The probability of collisional transfer from state n to state n′, due to capture

and then subsequent decay of the metastable complex is:

P complex
nn′ =

PnPn′∑
n′′

Pn′′
. (5.3)

Here Pn and Pn′ are the respective capture probabilities for states n and n′. In the

studies of chemical reactions, which were the object of the earlier articles [89, 90, 94],

Pn and Pn′ refer to separate arrangements. Here, as will be discussed in more detail

below, these two capture probabilities can refer either to the same, or different,

arrangements. The sum in the denominator runs over all energetically accessible

states in any arrangement.

Experimentally it would be difficult (if not impossible) to distinguish the sep-

arate contribution to inelastic scattering from collisions which are absorbed into

the complex (P complex
n′n , Eq. 5.3) from the contribution to relaxation which occurs by

scattering on the repulsive potential energy surfaces (P direct
n′n ), in a manner similar

to the inelastic scattering of OH in collisions with noble gas atoms. As will be dis-

cussed in more detail below, the latter probability is calculated from the S-matrix,
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just as in conventional inelastic scattering calculations.

In fact, vibrational relaxation can occur by this direct (non-capture) scattering

in the initial arrangement

OH(v, j) + H′ → OH(v′, j′) + H′ , (5.4)

by decay of the complex back to the initial arrangement

OH(v, j) + H′ → HOH′† → OH(v′, j′) + H′ , (5.5)

or by decay of the complex accompanied by hydrogen atom exchange

OH(v, j) + H′ → HOH′† → OH′(v′, j′) + H. (5.6)

Let us designate by P a
n′ and P b

n′ the capture probabilities for the the OH(v′, j′)+H′

and OH′(v′, j′)+H arrangements, where the single index n′ stands for v′, j′. The total

vibrational deactivation probability for processes (5.4)–(5.6) is given by the sum of

the probabilities for complex-mediated OH(v, j)→OH(v′, j′) and OH(v, j)→OH ′(v′, j′)

relaxation, plus the probability for direct OH(v, j)→OH(v′, j′) relaxation through

collisions which do not enter the complex. In other words

P tot
nn′ =

P a
nP a

n′ + P a
nP b

n′∑
n′′

P a
n′′ + P b

n′′
+ P direct

nn′ =
P a

nP a
n′∑

n′′
P a

n′′
+ P direct

nn′ . (5.7)

The simplification made in Eq. (5.7) exploits the fact that the OH(v′, j′) + H′ and

OH′(v′, j′)+H capture probabilities, P a
n′ and P b

n′ , are identical.

5.2.1 Hamiltonian and Basis
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The capture probabilities are determined according to the Hamiltonian,

HOH+H(~R,~r, ~q) = Tn(~R) + Vel(~q; ~R,~r) + Hmol,OH(~q;~r). (5.8)

Here ~R and ~r are the Jacobi coordinates for a particular arrangement, and ~q repre-

sents the electronic coordinates. The first term Tn represents the kinetic energy of

the relative atom-diatom motion:

Tn = − h̄2

2µR2

∂

∂R
R2 ∂

∂R
+

L2
op

2µR2
. (5.9)

The second term Vel is the electrostatic interaction, while the third term Hmol is

the OH molecular hamiltonian.

The overall wavefunction for the OH–H system is expanded in the basis

〈R̂, ~r|JMKvjkλσσh〉 =
1

r
D̂J∗

MK(Ω)d̂j
kω(γ)χvj(r)|λσ〉|σh〉. (5.10)

Here, J is the total angular momentum with projection K along OH-H vector ~R and

M along the space-frame z-axis. The quantum number j designates the rotational

angular momentum of OH diatom, with projection k along ~R and with projection

w along ~r. D̂J∗
MK(Ω) = ([2j + 1]/8π2)1/2DJ∗

MK(Ω) is the normalized Wigner rotation

matrix element, where Ω designate the three euler angles that relate the space-fixed

and body-fixed axis frames. χ is the OH vibrational wavefunction. The ket |λσ〉

designates the electronic wavefunction of the OH molecule, where λ and σ are the

projections of the electronic orbital and spin angular momenta along ~r and ω = λ+σ.

The second ket |σh〉 designates the electronic wavefunction of the H atom, where

σh is the projection of the H-atom spin along ~R. The total projection of the total

angular momenta J along ~R is K = k + σh.
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The determination of the matrix elements of Vel and Hmol in the basis defined

by Eq. (5.10) is presented in detail in Ref. [94]. As discussed in Ref. [94], the matrix

elements of Vel can be evaluated in terms of the four OHH potential energy surfaces,

shown schematically in Fig. 5.2.

The vibration-rotation-fine-structure levels of the free OH radical are obtained

by diagonalizing Hmol in a parity-adapted, Hund’s case (a) basis. The matrix el-

ements of Hmol are given in Eq. (B.33) of Appendix. The pertinent spectroscopic

constants can be found in the Table B.1

As illustrated schematically in Fig. 5.3, there exist two rotational ladders,

F1 and F2, separated by the spin-orbit splitting. In addition, for each value of the

OH rotational angular momentum, there exist two Λ-doublet levels, separated only

by a fraction of a wavenumber. In intermediate and case (b) Hund’s coupling, the

two Λ-doublet levels can be distinguished by the reflection symmetry of the spatial

part of the electronic wavefunction in the plane of rotation of the diatomic [108].

In the lower (F1) spin-orbit manifold, the e-labelled Λ-doublet levels [154] have, in

the high-j limit, nominal A′ reflection symmetry, while the f -labelled levels have

nominal A′′ reflection symmetry [108, 109]. The association of reflection symmetry

with the e/f label is reversed in the upper (F2) spin-orbit manifold. Note that the

A′ Λ-doublet levels are lower in energy in the F1 spin-orbit manifold, but higher in

energy in the F2 spin-orbit manifold. This situation is reversed in the F2 spin-orbit

manifold for levels with j ≥ 9/2. Thus, except for the F2 levels with 1/2 ≤ j ≤ 7/2,

the lower of the two Λ-doublet levels always corresponds to nominal A′ reflection

symmetry.
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Figure 5.3: Positions of the lower spin-rotation levels of OH(X2Π). For clarity, the

magnitude of the Λ-doublet splitting has been greatly exaggerated in the figure.

5.2.2 Scattering Calculations

The wave function is expanded in the basis of Eq. (5.10). Premultiplication

by individual members of the basis, integration over all the electronic and nuclear

coordinates except R and evaluation of the resulting matrix elements following the

preceding subsection gives rise to the set of close-coupled equations familiar in inelas-

tic scattering. These equations are solved subject to modified boundary conditions

which allow for a nonvanishing incoming wave for each adiabatic state which is

not energetically closed at the capture radius Rc [89, 90]. The resulting S-matrix

is obtained by outward propagation, similar to the procedure in the conventional

treatment of inelastic scattering [101–103]. The S-matrix, although symmetric, is,

however, no longer unitary since the capture boundary condition acts like a sink.

As discussed earlier, [89, 90] the computationally more efficient coupled-states

approximation can be used, wherein both the total angular momentum J and its

100



projection K along ~R are conserved. At a given value of the total energy E and the

quantum numbers J and K, the probability of capture for an OH+H′ collision in

which the diatomic moiety is in initial state n is

P JK
n (E) = 1−

∑
n′

∣∣∣SJK
nn′ (E)

∣∣∣2 = 1−
∑
n′

P JK,direct
nn′ . (5.11)

Here the sum is over all energetically accessible states. In reality the single index n

designates the set of quantum numbers {v, j, k, Fi, ε, σh}. The transition probability

for an inelastic n → n′ transition, due to coupling before capture, which appears in

Eq. (5.7), is given by

P JK,direct
nn′ =

∣∣∣SJK
nn′ (E)

∣∣∣2 . (5.12)

If we insert, explicitly, all the relevant quantum numbers, then Eq. (5.7) be-

comes

P J
vjFiεσh→v′j′F ′

i ε′σ′
h
(E) =

∑
KK′

P JK
vjFiεσh

(E)P JK′

v′j′F ′
i ε′σ′

h
(E)∑

K′′v′′j′′F ′′
i ε′′σ′′

h

P JK′′
v′′j′′F ′′

i ε′′σ′′
h
(E)

+
∑
K

∣∣∣SJK
vjFiεσh→v′j′F ′

i ε′σ′
h
(E)

∣∣∣2.
(5.13)

Within the coupled-states approximation the projection K of the total angular mo-

mentum along in the Jacobi vector of relative motion is conserved within each ar-

rangement, and is thus is a good quantum number. However, presumably, this is

scrambled within the complex, so that there appear K → K ′ contributions in Eq.

(5.13). Since only the initial arrangement is responsible for the direct contribution,

K is conserved in the second summation on the right-hand-side of Eq. (5.13)

The corresponding integral state-to-state cross sections are given by

σvjFiεσh→v′j′F ′
i ε′σ′

h
(E) =

πh̄2

2µ(E − EvjFiε)

1

2j + 1

∑
J

(2J + 1)P J
vjFiεσh→v′j′F ′

i ε′σ′
h
(E) ,

(5.14)
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Table 5.2: Values of the parameters used in the OH+H calculations

Rc/a.u. jmax Emax/eVa

OH(v = 1, 2)+H 3 30 1.6

OH(v = 0)+H 3 25 0.9

aThe zero of energy corresponds to OH (r = re)+H.

where µ is the collision reduced mass. Because of the separation in Eq. (5.13) of

the overall transition probability into a contribution from direct scattering and a

complex-mediated contribution, we can similarly partition the contribution to the

cross sections.

Scattering calculations were carried out at nearly 350 values of the total energy

ranging from 0.2248 eV to 1.5 eV (1800 cm−1–13,000 cm−1). The zero of energy is

taken to be H+OH(r = re), so that this range of total energies corresponds roughly

to collision energies ranging from ≈ 5–11,000 cm−1 in v = 0. The parameters which

control the accuracy of the computed coupled-states statistical-model cross sections

are the capture radius, Rc and the size of the channel basis. The latter is controlled

by two parameters Emax and jmax, so that all OH channels with j > jmax or with

internal energies εvjFiε > Emax are excluded. The three parameters Rc, Emax, and

jmax were adjusted to ensure the convergence of the capture probabilities Pc to

within 0.5%; the adopted values are listed in Table 5.2. In particular, jmax was

adjusted so that, at the highest value of the total energy, all open rotational levels

as well as the lowest four energetically closed levels were included in the channel

basis.
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5.3 Results and Discussion

In our investigation of rovibrational relaxation, we shall assume that the ini-

tial Λ-doublet levels, which differ in energy by a mere fraction of a wavenumber,

are equally populated. In this case the integral cross sections for production of a

particular j′, F ′
i OH final state are obtained from Eq. (5.14) by summing over both

final-state Λ-doublet levels and both H-atom spin-projection states, and averaging

over the comparable initial states, to obtain:

σvFij→v′F ′
i j′ =

1

4

∑
εε′σhσ′

h

σvFijεσh→v′F ′
i j′ε′σ′

h
. (5.15)

By summing over all final states, we obtain the initially-state-selected, total vibra-

tional relaxation cross sections

σvFij =
∑

v′<v,F ′
i ,j′

σvFij→v′F ′
i j′ . (5.16)

5.3.1 Comparison of Multi-PES and Single-PES Calculations

To understand the effect of the inclusion of the three repulsive PESs, we have

performed single-PES calculations for two initial states, v = 1, j = 0 and v =

2, j = 0 to compare them with the open shell calculations on the multi-PESs with

v = 1, j = 3/2, F1, v = 1, j = 1/2, F2, v = 2, j = 3/2, F1 and v = 2, j = 1/2, F2.

The single PES cross sections are devided by a factor of 8 in order to account for

the electronic degeneracy in comparison to the open shell system:

σsingle−PES
v→v′ =

1

8

∑
j′

σv,j=0→v′,j′ . (5.17)
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To obtain the cross section for the lowest rotational level on the multi-PESs, we

average the initial state specific cross sections from the lowest rotational level of the

each spin-orbit manifold as follows

σmulti−PES
v→v′ =

1

2

∑
j′

σv,F1,j=3/2→v′,j′ +
∑
j′

σv,F2,j=1/2→v′,j′

 . (5.18)

The cross sections calculated in this manner are plotted and compared in Fig. 5.4

and Fig. 5.5. The conclusion we draw is that the inclusion of the multi-PESs are

very important at low energy. At higher collision energies (Ecoll > 500 cm−1) cross

sections from the multi and single surface simulations behave similarly, with a small

difference (< 10%). In the low energy range (Ecoll < 200 cm−1), however, the

difference rises to 50%, multi-PES cross sections being bigger. This indicates that

the nonadibatic couplings allow more of the incoming partners sample the complex

and hence relax. Thus, this effect will gain more and more importance as the collision

energy decreases.

5.3.2 Direct as compared to Complex-Mediated relaxation

One of the primary goals of this investigation is to explore the relative im-

portance of direct as compared to complex-mediated mechanisms for vibrational

relaxation. Figure 5.6 shows the dependence on collision energy of the initially-

state-selected, total vibrational relaxation cross section [Eq. (5.16)] for OH(v =

1, F1, j = 3/2). Here, as well as for the v = 2 → 0 and v = 2 → 1 processes (not

shown), we found that vibrational relaxation is due overwhelmingly to collisions

which enter the HOH′ complex and then reemerge. The very small contribution of

104



0 200 400 600 800 1000
0

5

10

15

20

25

30

35

collision energy / cm−1

cr
os

s 
se

ct
io

n 
/ a

ng
2

  H’+OH (v  = 1) → H + OH’ (v = 0)

single PES
Multi PES

Figure 5.4: Comparison of the relaxation total cross sections with multi and single

PESs for v = 1 level. The cross sections from the single and multi PES are compared

according to the Eq.( 5.17) and Eq.( 5.18)

direct scattering is even more insignificant at lower energy. (The magnitude of the

small rise in the direct cross sections that appears at very low energies is within (or

less than) our estimate of the precision of the scattering calculations.)

Figure 5.7 plots the percentage of the direct contribution for the lowest rota-

tional level in both spin-orbit manifolds. The relative importance of direct scattering

increases as a function of increasing collision energy, but remains modest even at

hyperthermal energies. For vibrational relaxation governed by a repulsive potential

energy surface, simple SSH theory [47, 50] predicts that the v = 2 → 1 cross sec-

tion will be roughly two times larger than the 1 → 0 cross section. This prediction

applies well to the direct relaxation cross sections in Fig. 5.7

Recently, Krems, Nordholm and co-workers have described [162, 163] exact

close-coupled calculations of vibrational relaxation cross sections for collisions of
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Figure 5.5: Comparison of the relaxation total cross sections with multi and single

PESs for v = 2 level (panel a: v = 2 → 0 and panel b: v = 2 → 1). The cross

sections from the single and multi PES are compared according to the Eq.( 5.17)

and Eq.( 5.18)

106



0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

collision energy / cm—1

cr
os

s 
se

ct
io

n 
/ Å

2
 

total
direct
complex

0 1000 2000 3000

10
—3

10
—2

10
—1

10
0

10
1

Figure 5.6: Direct and complex-mediated contributions to the initially-state-selected

total vibrational relaxation cross section for OH(v = 1, F1, j = 3/2) + H → OH(v =

0) + H vibrational relaxation. The inset panel is a semilog plot to demonstrate the

negligibly small size of the cross section for direct relaxation.

107



0

2

4

6

8

10

(a)(a)

0 1000 2000 3000 4000
0

2

4

6

8

10

12

collision energy / cm−1

%
 d

ire
ct

 c
ro

ss
 s

ec
tio

n

(b)(b)

v = 1 → 0

v = 2 → 0

v = 2 → 1

Figure 5.7: The relative percentage contribution of direct scattering to the vibra-

tional relaxation cross sections as a function of collision energy for the lowest rota-

tional levels of OH (panel a: j = 3/2, F1 and panel b: j = 1/2, F2.)

108



the closed-shell HF–Ar system. Their computed cross sections are on the order

of 10−4 − 10−3Å2 at collision energies below several thousand cm−1. As might be

expected, these values are very comparable to the direct vibrational relaxation cross

sections shown in Fig. 5.6.

5.3.3 Initial state selected relaxation cross sections

Figure 5.8 shows the initial state specific total cross sections calculated as

described in Eq. 5.16 for relaxation of OH(v = 1). As reported previously, [92,

126, 164] initial OH rotational excitation decreases the capture cross sections. The

topology of the 1A′ OH–H potential energy surface – strongly attractive only in bent

geometries, but quite repulsive for both collinear geometries [94] – is responsible for

this effect. The rotational motion averages out the OH–H potential, so that the

incoming collision partners “see” less of the collision complex. Hence, the magnitude

of the cross sections as well as the magnitude of the enhancement at low-energy

decreases with increasing j. At higher energy, this effect disappears, because the

collision occurs too quickly for the rotational averaging to occur.

We observe a smaller relaxation cross section for the spin-orbit excited OH.

However, the decrease in the vibrational relaxation cross section with increasing

initial rotational angular momentum, discussed in the preceding paragraph, is ap-

parent also in the upper spin-orbit manifold. Both these conclusions apply also to

v = 2 → 1, 0 relaxation.

Figure 5.9 compares the overall vibrational relaxation cross sections for the
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Eq. 5.16.
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Figure 5.9: Initial state selected relaxation total cross sections for OH(v, F1, j = 3/2)

+ H → OH(v′)+H, for v = 2 → 1, 2 → 0, and 1 → 0.

v = 2 → 1, 2 → 0, and 1 → 0 transitions, as a function of energy. We observe that

the v = 1 → 0 process has the largest cross section. If we neglect the small direct

contribution to the relaxation in Eq. (5.13), then, we see that the probabilities for

the v = 2 → 1, 2 → 0, and 1 → 0 transitions are given by

Pv=1→0 =
Pv=1Pv=0∑

Pv=1 +
∑

Pv=0

, (5.19)

Pv=2→0 =
Pv=2Pv=0∑

Pv=2 +
∑

Pv=1 +
∑

Pv=0

, (5.20)

and

Pv=2→1 =
Pv=2Pv=1∑

Pv=2 +
∑

Pv=1 +
∑

Pv=0

. (5.21)

Because the total energy is higher for collisions with OH initially in v = 2, the

denominator is larger in the expressions for relaxation out of v = 2 [Eqs. (5.20) and

(5.21)]. If we assume that the capture cross sections are roughly equal for v = 2, 1,

and 0, then the v = 1 → 0 relaxation probabilities will be larger.
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Figure 5.10: Comparison of the state-to-state cross sections for OH(v, F1, j = 3/2)

+ H → OH(v′, F1, j
′)+H for a collision energy of 580.3 cm−1.

Figure 5.10 shows the dependence on final rotational quantum number at a

collision energy of 580.3 cm−1 for the v = 2 → 1, 2 → 0, and 1 → 0 transitions.

The v = 2 → 1 and v = 2 → 0 cross sections are virtually identical, except at high

j′, where only rotational levels in v = 0 are energetically accessible. Consequently,

when summed over all final rotational levels, the v = 2 → 0 cross sections will be

larger than the v = 2 → 1 cross sections at an identical collision energy, as seen in

Fig. 5.9.

Consequently, it is clear that complex-mediated vibrational relaxation results

in very different propensity rules than direct relaxation. As discussed earlier, and

seen in Fig. 5.7, for direct processes, simple SSH theory [47, 50] predicts much larger

cross sections for v → v−1 as compared to v → v−2 transitions, and, furthermore,

that the cross sections for v → v − 1 transitions will increase as a function of the

initial vibrational quantum number.
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Figure 5.11: State-to-state OH(v, F1, j = 3/2)+H→OH(v′, F ′
i , j

′, ε′)+H cross sec-

tions at a collision energy of 12 cm−1. As in Fig. 5.10 the open cirles, filled squares,

and open squares designate, respectively v = 1 → 0, v = 2 → 0 and v = 2 → 1

processes.

5.3.4 Final State Populations

Figures 5.11 and 5.12 show the dependence on the final rotational, spin-orbit,

and Λ-doublet state of the cross sections for v = 2 →1, 0 and v = 1 → 0 relaxation

at both very low and high collision energies (Ec = 12 cm−1 and 1520 cm−1 ). We

observe that relaxation to the Π(A′) levels exhibits the “prior” like dependence on

the final rotational quantum number,[89, 94, 121, 164] expected for a statistical

mechanism. However, at Ec = 12 cm−1 (and, in fact, at all collision energies below

≈ 800 cm−1) the cross section for production of OH products in the Π(A′′) rotational

levels are smaller in magnitude and do not display a similar “prior”-like shape. As
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Figure 5.12: State-to-state OH(v, F1, j = 3/2)+H→OH(v′, F ′
i , j

′, ε′)+H cross sec-

tions at a collision energy of 1520.3 cm−1. As in Fig. 5.10 the open cirles, filled

squares, and open squares designate, respectively v = 1 → 0, v = 2 → 0 and

v = 2 → 1 processes.
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discussed in our earlier paper on the O(1D)+H2 →OH+H reaction, [94] decay of

the HOH complex leads preferentially to OH products in the Π(A′) Λ-doublet levels.

Production of the Π(A′′) Λ-doublet levels are a result of curve crossing as the OH–H

fragments recede.

Further, in our earlier study [94] of the O+H2 →OH+H reaction we observed

that the OH products in Π(A′) Λ-doublet levels were produced with a significantly

larger degree of rotational excitation than the products in the Π(A′′) Λ-doublet lev-

els. This is exactly what is seen here. As we might have anticipated, the rotational

and Λ-doublet distributions are very similar for OH produced from reaction or by

vibrational relaxation. Within a statistical model, at a given total energy the decay

of the HOH complex will give identical product distributions, regardless of whether

the complex is formed by the O(1D)+H2 reaction or by collision of vibrationally

excited OH with H.

We observe in Fig. 5.12 that at higher initial collision energy the propensity

toward production of products in the Π(A′) Λ-doublet levels is still present, although

less pronounced. In addition, at this higher energy the product rotational distribu-

tions associated with both Λ-doublet levels show a “prior”-like shape.

5.3.5 Vibrational Relaxation Rate Constants

If we assume a Maxwellian distribution of translational energy at temperature

T , the thermal rate constant is given by [127]

ki→f (T ) =< vσi→f >=

[
8

πµ(kT )3

]1/2 ∫ ∞

0
Ec σi→f (Ec) exp(−Ec

kT
) dEc , (5.22)
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where v is the initial relative velocity, and Ec the initial translational energy (col-

lision energy), for the OH reactant in initial state i. Here, the indices i and f

designate the full set of initial and final quantum numbers {vjFiε}. The overall

thermal rate constant, for the OH reactant in initial state i, is obtained by summing

over all energetically accessible product states, namely

ki(T ) =
∑
f

ki→f (T ) . (5.23)

The overall thermally-averaged rate constant for the title reaction is then obtained

by averaging over an assumed Boltzmann distribution of OH rotational levels,

k(T ) =

∑
i

gi exp(−εi/kT )ki(T )

Q
. (5.24)

Here Q(T ) is the partition function and gi and εi designate, respectively, the degen-

eracy and internal energy of the ith state of the OH reactant. The sum in Eq. (5.24)

runs over both spin-orbit manifolds.

Figure 5.13 shows the temperature dependence of the thermally-averaged v =

1 → 0 vibrational relaxation rate constant. The experimental values [55] of the

room temperature v = 1 → 0 rate constant are also shown. In the experiment,

vibrationally excited OH is produced by photolysis of water, itself initially vibra-

tionally excited. We assume that rotational relaxation of the nascent OH photolysis

products will be rapid compared to vibrational relaxation, so that a comparison can

be made with our thermally-averaged rate constants. The agreement between our

calculated v = 1 → 0 rate constant and the earlier experimental values [55] is ex-

cellent. We see from Table 5.1 that the earlier calculations of Quack and Troe [145]
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predict room temperature vibrational relaxation rate constants which are somewhat

higher.

Figure 5.13 also compares the temperature dependence of the thermally aver-

aged rate constants for vibrational removal (deactivation) of the v = 1 and v = 2

vibrational levels. The latter includes both the v = 2 → 1 and v = 2 → 0 processes.

In atmospheric modelling, this vibrational removal rate constant is an important

parameter [142]. We observe that the total vibrational removal rate for the v = 2

manifold is slightly larger than for v = 1. The temperature dependence of the two

vibrational removal rates is, however, very similar. In answer, then, to the question

raised in the Introduction, we predict, at least for the v = 1 and v = 2 levels, that

the overall vibrational removal rate will depend but little on the initial vibrational

quantum number.

5.3.6 Rotational Excitation and Λ-doublet Inversion

As mentioned in the Introduction, the importance of the OH astronomical

maser has stimulated considerable discussion about the role of rotationally inelastic

collisions in either producing or destroying the population inversion that is respon-

sible for maser emission [35–38]. In an attempt to investigate collisional pumping

mechanisms, some 25 years ago Shapiro and Kaplan (SK) presented theoretical cal-

culations of rotational excitation rate constants for the OH+H systems [161]. These

calculations were based on earlier ab initio potential energy surfaces for the 1A′

and 3A′′ states. Shapiro and Kaplan made additional approximations for the po-
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Figure 5.14: State-to-state thermal rate constant for the transition between the two

Λ-doublet levels of the ground rotational level (j=3/2, F1).

tential surfaces for the 3A′ and 1A′′ states, which were not then available. Cross

sections were obtained within the exponential Born approximation. These limita-

tions, both in the treatment of the dynamics and the description of the potential

energy surfaces, can now be overcome. With the availability of high-quality ab initio

potential energy surfaces for all four OHH states, [94] we present here the results of

coupled-states statistical calculations for rotational excitation of OH(v = 0) for 1.5

cm−1 < Ec < 795 cm−1.

Our formulation of the OH+H system does not include the nuclear spin quan-

tum number, F . For comparison,then, we sum and average the hyperfine-resolved

rate constants reported by Shapiro and Kaplan over the nuclear spin quantum num-
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ber:

kjF1ε→j′F ′ε′ =
1

2

∑
FF ′

kjF1εF→j′F ′ε′F ′ . (5.25)

We then compare these rate constants with those from the present calculations,

summed and averaged over the H-atom spin-states, namely

kjF1ε→j′F ′ε′ =
1

2

∑
σhσ′

h

kjF1εσh→j′F ′ε′σ′
h
. (5.26)

At low temperature, the largest relaxation rate constant is associated with Λ-

doublet changing transitions within a given rotational level. It is this processes which

lead to thermalization of a non-equilibrium Λ-doublet population. The temperature

dependence of the rate constant for the Λ-doublet changing transition within the

lowest (j = 3/2, F1) level is shown in Figure 5.14. In contrast to the case of vibra-

tional relaxation, discussed earlier in this paper, the direct and capture processes

make a roughly equal contribution here.

Despite the approximations made by Shapiro and Kaplan to both the OH+H

potential energy surfaces and in their treatment of the scattering dynamics, we

observe that the magnitude and temperature dependence of their calculated rate

constant agrees reasonably well with our present calculation. Within the interstellar

cloud model they adopted, Shapiro and Kaplan concluded that for most reasonable

H-atom densities even a collisional rate on the order of 10−10 cm3 molelcule−1 sec−1

is not large enough to thermalize effectively a non-equilibrium Λ-doublet population

in the j = 3/2, F1 level.

Figure 5.15 shows the temperature dependence of the four possible ε → ε′

transitions corresponding to j = 3/2 → 5/2 rotational excitation in the lower (F1)

120



0

2

4

6

8

x 10
—11

f → f f → e

0 100 200 300
0

2

4

6

8

x 10
—11

T / K

k 
/ 

cm
3   m

ol
ec

ul
e

   
  —

1
   

  s   
—

1

e → f

0 100 200 300

e → e direct
complex
total
SK

Figure 5.15: State-to-state direct, complex-mediated and total rate constants for the

OH(j = 3/2, F1, ε)+H→OH(j′ = 5/2, F1, ε
′) transition within the v = 0 manifold.

The heavy solid curves depict the results of Shapiro and Kaplan (Ref. [161]).
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spin-orbit manifold. We observe a large difference between the rate constants for

the ε-changing as compared to ε-conserving transitions. As seen in the figure, the

much larger contribution of direct scattering to the ε-changing transitions results in

a larger total rate constant. This ε, ε′ propensity seen in the rate constants – and

in the underlying cross sections (not shown) – is entirely similar to the propensities

seen earlier in collisions of molecules in 2Π electronic states with closed-shell atomic

collision partners [165–167]. These propensities are a reflection of the contribution

of different components in the anisotropy in the potential energy surface to the

coupling between two levels of the same (e → e or f → f) as opposed to opposite

(e/f → f/e) symmetry index.

We also observe in Fig. 5.15 that the degree of variation of the rotational

excitation cross section with the e/f index predicted by the present calculations is

much larger than predicted by the earlier calculations of Shapiro and Kaplan.[161]

In addition, the rate constants determined by Shapiro and Kaplan predict, in direct

contrast to the present calculations, that the e/f conserving transitions will be more

efficient than the e/f changing transitions.

In comparison with the direct contributions, the complex-mediated contribu-

tions to the cross sections (not shown) and rate constants (Fig. 5.15) are virtually

insensitive to the initial and final Λ-doublet indices. The capture cross sections are

largely determined by the overall topology of the attractive 1A′ potential energy

surface. Any variation with ε of the capture cross sections for a particular jFi will

reflect the differing degree to which the e and f Λ-doublet states will access the 1A′

potential energy surface. This difference is likely to be small. Figure 5.16 plots the
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rate constants for collisional excitation from the j = 3/2, F1 level (with an assumed

equal population in the two Λ−doublets), to the next rotational level (j = 5/2) in

the lower (F1) spin-orbit manifold as well as into the j = 1/2 and j = 3/2 levels

of the higher (F2) spin-orbit manifold. We observe, referring back to Fig. 5.3, that

collisional excitation will not lead to population inversion in the former case, but

will lead to population inversion in the spin-orbit changing processes. The calcu-

lated e/f collisional propensity supports the proposed maser-pumping mechanism

mentioned in the Introduction, [35–38, 157, 168] whereby if collisional excitation

populates preferentially the upper Λ-doublet, then subsequent radiative transitions

to the ground rotational level, which by necessity change the parity but conserve

the Λ-doublet label, will provide a pump mechanism for the maser. However, for

collisions of OH with molecular hydrogen (H2) the most recent, [159] as well as ear-

lier, [157] calculations predict, in contrast to the present calculations (OH+H), that

collisions out of the j = 3/2, F1 level, averaged over both initial Λ-doublets, will

not result in a population inversion in the lower rotational levels of the F2 spin-orbit

manifold.

5.4 Summary

We have performed a close-coupled, statistical study of vibrational and rota-

tional relaxation of OH(2Π) in collisions with H atoms. The method and Hamilto-

nian include all couplings exactly in the long-range part of the potential, but treats

formation and decay of the HOH complex region statistically. Our calculations al-
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low us to separate the contributions to vibrational and rotational relaxation due

to inelastic scattering involving both the repulsive regions of the 1A′ potential en-

ergy surface as well as coupling between the 1A′ potential energy surface and the

repulsive 1A′′, 3A′, and 3A′′ potential energy surfaces from processes which enter

the HOH complex and then re-emerge into different internal states of the OH moi-

ety. We found that the direct and complex-mediated mechanisms make comparable

contributions to rotationally inelastic processes. However, for vibrationally-inelastic

processes, where the direct contribution is extremely small, the complex-mediated

contribution remains large. Thus, as Smith has suggested, [136] vibrational relax-

ation in radical-radical encounters by means of complex-forming collisions can be a

far more efficient process than in the case of closed-shell collision partners.

At 300 K, the total rate constant for removal from OH(v = 2) (1.697 ×

10−11 cm3 molecule−1 s−1) is slightly higher than for removal from OH(v = 1)

(1.600 in the same units). The v = 1 calculated removal rate constant agrees ex-

tremely well with earlier experimental measurements from the Smith group, [55] but

is somewhat smaller than the earlier predictions of Quack and Troe [145].

Because the complex-mediated mechanism dominates, our calculations also

predict that vibrational relaxation will lead to rotationally hot OH products. In ad-

dition, and entirely similar to our earlier study of OH produced by the O(1D)+H2

reaction, [94]we predict that the relaxed OH will be found preferentially in the

Π(A′) Λ-doublet level. Observations of atmospheric OH, produced in reactions (5.1)

and (5.2), show a markedly larger population in the Π(A′) Λ-doublet levels [142].

Although collisions with H may not play a major role in the vibrational relax-
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ation of OH in the mesosphere, the results of the present study certainly suggest

that complex-mediated vibrational relaxation, through collisions with other radicals

(possibly O atoms), could well result in the observed inequalities in the Λ-doublet

populations.

Our calculations also predict that, at least for relaxation of OH due to collisions

with H, the vibrational removal rate will be insensitive to the initial vibrational

quantum number, in contrast to the predictions of SSH theory.

We also investigated rotationally inelastic collisions in the v = 0 manifold as a

possible contributor to population inversion within the Λ-doublet of the lowest (j =

3/2, F1) rotational level of OH in interstellar gas clouds. Our calculations, which

are free of the approximations which limited the much earlier work of Shapiro and

Kaplan, [161] suggest that collisional excitation to the upper spin-orbit manifold, F2,

followed by radiative relaxation to the ground rotational level in the F1 manifold, will

lead to this population inversion. Along with the considerable body of theoretical

work on rotationally-inelastic collisions of OH with H2, [155–157, 159, 160] the

present calculations on collisions of OH with H should provide insight and input into

modelling of the pump mechanism of the OH maser in astronomical environments,

where both OH and H are both abundant. This can occur, for example, in dense

molecular clouds that are subject to fast interstellar shock waves [169].
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Chapter 6

Conclusions

This thesis has reported the ab initio study of the O(3P )−H2 system as well as

statistical, close-coupled reaction dynamics studies of OH(2Π)+D and OH(2Π)+H

collisions.

In Chapter 2 we reported PESs for the O(3P )−H2 system determined using

RCCSD(T) and MRCI methodology. The accuracy of the MRCI+Q results ex-

trapolated to the CBS limit were assessed in comparison to RCCSD(T) calculation

with an aug-cc-pVQZ basis with additional bond functions. The results showed

very good agreement. Based on these results, we predict the overall van der Waals

minimum to be in perpendicular geometry, and located at a closer distance than a

secondary well in collinear geometry. Our calculation corroborates the earlier re-

sults of Alexander [23], but disagrees with an earlier report of Li [22] as well as with

recently refitted surfaces of Brandão and coworkers. [21] Our RCCSD(T) calcula-

tions with an aug-cc-pVQZ basis including a set of bond functions are expected to

recover the major fraction of the dispersion energy which is responsible for the van

der Waals minima. Therefore, we have confidence in the geometries and well depths

predicted.

One shortcoming of the PESs presented here is the lack of angular depen-

dence since we looked only at collinear and perpendicular orientations. Klos sug-
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gested [170] that one could exploit the symmetry of the H2 molecule to attain the

interaction energies in Cs geometries from the C2v and C∞v values. Hence, based on

the data presented in this dissertation, it should be possible to derive the angular

dependence in this way.

The spin-orbit coupling terms for the O(3P )−H2 system are calculated by an

ab initio implementation of the Breit-Pauli Hamiltonian. The geometry dependence

of the spin-orbit terms in the van der Waals region is very weak. However, an

accurate description of the barrier of the surfaces requires the calculation of spin-

orbit coupling terms if one wants to obtain a very accurate description of the barrier.

The major portion of section in this dissertation is focused on the application

of the recently proposed statistical, coupled-states method of Rackham et al. [89,

90, 94] to the electronically identical, complex forming reactions: OH + D → OD

+ H and OH(v, j) + H → OH(v′, j′) + H.

In Chapter 4, we have reported state-to-state cross sections and thermal rate

constants for the D+OH(X2Π)→OD(X2Π)+H isotope exchange reaction. We ob-

served a negative temperature dependence of the thermally averaged rate. The

state selected rate constants reveal that this behavior is due primarily to the ther-

mal averaging over the rotationally accessible states. At 300 K we predict k(T ) =

10.78 × 10−11 cm3molecule−1s−1. At lower temperature (T ≤ 50K) the value rises

to k(T ) = 15 × 10−11 cm3molecule−1s−1, comparable to the value assumed by

Croswell and Dalgarno in their modelling investigation of the abundance of inter-

stellar OD. [34]

Our calculations predict that OD from the isotope exchange reaction will be
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produced in the energetically lower Λ-doublet level, except, however, for the j =

1/2 − 7/2 levels of the upper (F2) spin-orbit manifold. Thus, OD masing for OD

produced by the OH + D → OD +H reaction, might occur for these latter levels.

Although the OD molecule has not yet been detected in interstellar clouds, [129] we

do encourage further searches, particularly for the five lowest rotational levels of the

upper spin-orbit manifold.

Chapter 5 is a close-coupled, statistical study of vibrational and rotational

relaxation of OH(2Π) in collisions with H atoms. Our calculations allow us to sep-

arate out the contributions to vibrational and rotational relaxation due to direct

inelastic scattering. This process involves, both the repulsive regions of the 1A′

PES as well as coupling between the attractive regions of 1A′ PES and the repulsive

1A′′, 3A′, and 3A′′ PESs. We also determine the contribution due to processes which

enter the HOH complex and then re-emerge into different internal states of the OH

moiety. We found that direct and complex-mediated mechanisms make comparable

contributions to rotationally inelastic processes. However, for vibrationally-inelastic

processes, where the direct contribution is extremely small, the complex-mediated

contribution remains large. Thus, as Smith has suggested, [136] vibrational relax-

ation in radical-radical encounters by means of complex-forming collisions can be

a far more efficient process than in the case of closed-shell collision partners. The

v = 1 calculated removal rate constant agrees extremely well with earlier experi-

mental measurements from the Smith group [55].

The SSH theory [50] predicts that vibrational relaxation rates will be depen-

dent on the initial vibrational level, such that relaxation rate increases as the initial

129



vibrational level quantum number, v, increases. In contrast, in complex-mediated

vibrational relaxation, we observed that the overall relaxation rate is almost inde-

pendent of initial vibrational level. For OH + H collisions we observed that the

relaxation rate from the v = 2 level is only slightly higher than from the v = 1

level. The other significant difference of complex-mediated relaxation from the pre-

dictions of the SSH theory is the dependence of relaxation rate on the amount of

vibrational quantum transfered, ∆v. According to SSH theory ∆v = ±1 processes

have the highest relaxation rate. Here, at least for OH + H collisions, we observed

that v = 2 → 0 relaxation is faster than the v = 2 → 1 relaxation. This indicates

that the relaxation rate in collisions where a long-lived complex is formed is not

proportional to a coupling matrix element between the initial and final vibrational

wave functions of OH, as used in SSH theory. Rather, relaxation happens by the

scrambling of motion in the complex region.

However, we should take caution that the generalizations we made in the pre-

vious paragraph are based on an analysis including only the three lowest vibrational

levels of the OH molecule. In order to establish and generalize these differences from

regular inelastic collisions leading to vibrational relaxation, it will be necessary to

include higher vibrational levels in the simulation. In this case, the O(1D)+H2

channel as well as higher electronic levels might be involved leading to a more com-

plicated picture, with the possibility of electronic quenching, OH(2Π, v > 11) + H→

OH(A2Σ+) + H or reaction, OH(2Π, v > 1) + H → O(3P ) + H2 or OH(2Π, v > 3)

+ H → O(1D,3 P ) + H2. The product channel O(3P ) + H2, although open for

v ≥ 1, is not included in our simulations. Because of the high reaction barrier in
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the O(3P ) + H2 interaction, it is not possible to employ the statistical methods for

this channel. A future study including higher vibrational as well as the accessible

electronic states, we believe, would help to clarify the dependence of relaxation rate

on the initial vibrational level.

Because complex-mediated mechanism dominates, our calculations also predict

that vibrational relaxation will lead to rotationally hot OH products. In addition, we

predict that the relaxed OH will be found preferentially in the Π(A′) Λ-doublet level.

This result is similar to our predictions for the isotope exchange reaction presented in

Chapter 4. Although collisions with H may not play a major role in the vibrational

relaxation of OH in the mesosphere, the results of the present study certainly suggest

that complex-mediated vibrational relaxation, through collisions with other radicals

(possibly O atoms), could well result in the observed [142] inequalities in the OH

Λ-doublet populations.

We also investigated rotationally inelastic collisions in the v = 0 manifold as

a possible contributor to population inversion within the Λ-doublet of the lowest

(j = 3/2, F1) rotational level of OH in interstellar gas clouds. Our calculations

suggest that collisional excitation to the upper spin-orbit manifold, F2, followed by

radiative relaxation to the ground rotational level in the F1 manifold, will lead to

this population inversion, as suggested by Andresen [38] The calculations can be ex-

tended to the determination of state-to-state rate constants for all these vibrational

and rotational states which are important in the modeling of the pump mechanism

of OH maser in the interstellar medium.

We also analyzed the effect of multiple PESs on the relaxation cross sections
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in comparison to single PES calculation. Our analysis showed that an accurate

description of the low energy collisions requires the inclusion of multiple PESs. On

the other hand, in the energy averaging which is included in the calculation of single

as compared to multiple PES cross sections, the difference at low energy may not

make a large contribution to thermal rate constants at room temperature.

In conclusion, the most important contributions of this thesis are three fold.

Firstly, the application of the statistical method to rotational and vibrational re-

laxation in complex-mediated collisions provided a quantitative assessment of the

role of the direct scattering in comparison to the complex-mediated relaxation pro-

cesses. We have found that complex-mediated vibrational relaxation is much more

facile than the direct vibrational relaxation especially at low energy. The impor-

tance of direct scattering increases at higher energy where the repulsive wall of the

PESs become more important. Our results show that the lowest v = 1 and v = 2

vibrational levels have similar total removal cross sections and that the prediction

of SSH theory concerning the dependence on the vibrational quantum number does

not apply to complex-mediated collisions.

The second contribution is related to the accurate calculation of rate constants.

We have used the statistical model to obtain thermal rate constants so that we can

directly compare with the available experimental data. By conventional scattering

methods, calculation of thermal rate constants for complex-mediated reactions is

a formidable task. The calculated thermal relaxation rates for OH + H system

showed a negative temperature dependence due to the thermal averaging over the

initial rotational levels. The studies in this thesis have shown that the statistical
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close-coupled method which includes nonadiabatic effects can be extended to study

rotational and vibrational relaxation processes in other complex-mediated collisions

successfully, for ultimate use in modeling relaxation processes in atmospheric and

interstallar chemistry.
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Appendix A

O+H2 Entrance Channel Data

A.1 RCCSD(T) Data

Table A.1: RCCSD(T) interaction energies for the O(3P )−H2 system as a function
of the Jacobi coordinate R (θ = 0o and r = 1.402 a.u.).

R/ a.u. 3Σ/ cm−1 3Π/ cm−1

11.00 −0.18 −5.93
10.00 −0.76 −10.17
9.00 −2.29 −18.40
8.50 −3.82 −25.18
8.00 −6.20 −34.57
7.50 −9.70 −47.00
7.00 −14.23 −61.60
6.50 −17.95 −73.10
6.40 −18.14 −73.84
6.30 −17.95 −73.60
6.25 −17.67 −73.02
6.10 −15.88 −68.92
6.00 −13.65 −63.67
5.75 −2.52 −37.61
5.50 21.30 17.20
5.25 66.84 119.87
5.00 148.34 300.43
4.50 515.15 1106.08
4.25 874.99 1909.86
4.00 1420.78 3177.32
3.75 2210.08 5145.41
3.50 3286.04 8158.12
3.00 6374.68 19496.11
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Table A.2: RCCSD(T) interaction energies for the O(3P )−H2 system as a function
of the Jacobi coordinate R (θ = 90o and r = 1.402 a.u.).

R/a.u. 3B1/ cm−1 3B2/ cm−1 3A2/ cm−1

11.00 −3.02 −2.11 −0.17
10.00 −5.22 −3.78 −0.75
9.00 −9.64 −7.20 −2.20
8.50 −13.42 −10.18 −3.42
8.00 −18.99 −14.59 −4.95
7.50 −27.15 −21.08 −6.20
7.00 −38.89 −30.29 −4.96
6.50 −54.75 −42.18 5.35
6.25 −63.83 −48.43 18.77
6.00 −72.79 −53.72 42.90
5.75 −80.07 −56.15 84.61
5.50 −82.76 −52.37 154.80
5.25 −75.81 −36.55 270.54
5.00 −50.76 0.88 458.34
4.80 −8.73 56.47 687.35
4.50 116.14 211.17 1235.75
4.25 311.97 445.70 1983.39
4.00 641.46 834.75 3145.78
3.75 1171.97 1459.53 4937.40
3.50 1993.94 2434.61 7674.91
3.00 4999.61 6120.21 18021.43
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A.2 Spin-Orbit Coupling Data

Table A.3: Spin-orbit coupling terms A and B as a function of the Jacobi coordinate
R for θ = 0o and r = 1.402 a.u.

R/ a.u. A/ cm−1 B/ cm−1

20.00 76.79 76.79
18.00 76.79 76.79
16.00 76.79 76.79
14.00 76.79 76.79
12.00 76.79 76.79
10.00 76.79 76.80
9.50 76.79 76.80
9.00 76.79 76.80
8.25 76.79 76.80
7.50 76.78 76.80
6.75 76.78 76.80
6.00 76.78 76.79
5.35 76.76 76.76
5.00 76.74 76.73
4.91 76.72 76.71
4.85 76.72 76.70
4.79 76.71 76.69
4.73 76.69 76.68
4.65 76.68 76.65
4.50 76.62 76.61
4.25 76.48 76.50
4.00 76.18 76.32
3.75 75.58 76.04
3.50 74.39 75.58
3.25 72.05 74.81
3.00 67.90 73.64
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Table A.4: Spin-orbit coupling terms A and B as a function of the Jacobi coordinate
r for θ = 0.0o and r = 3.0 a.u.

r/ a.u. A / cm−1 B / cm−1

1.050 73.48 74.68
1.200 71.63 74.33
1.300 69.98 74.02
1.402 67.90 73.64
1.500 65.45 73.19
1.722 58.42 71.99
1.888 52.30 71.08
2.300 37.97 69.54

Appendix B
The Theory of the Free OH/OD Diatomic Molecule

The electronic configuration of the ground state of OH molecule is 1σ22σ23σ22π3.

In the united atom limit, OH is identical to the open-shell fluorine atom, 2P . The

ground electronic state of OH is designated by the molecular term symbol 2Π.

The nonrelativistic Hamiltonian for the diatomic molecule, after the separation

of the center-of-mass motion, is

H = Tn(r, θ, φ) + Te(~q) + V(~q, r). (B.1)

Here, Tn(r, θ, φ) is the kinetic energy of the nuclei, and the angles θ and φ specify the

orientation of the internuclear axis with respect to the laboratory frame of reference

as illustrated in Fig. B.1. The kinetic energy of the electrons are represented by

Te(~q), and V(~q, r) is the electrostatic potential energy including electron-electron,

nuclei-nuclei and electron-nuclei interactions. Then, within the Born-Oppenheimer

approximation, as explained earlier in chapter 1.1, assuming that the electronic and
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Figure B.1: Relationships between the molecule-fixed (xyz) and space-fixed (XY Z)
axis systems.

nuclear motions are separable, we can obtain the electronic part of the wavefunction

by solving the Schrodinger equation

HelΦel(~q; r) = εelΦel(~q; r), (B.2)

where

Hel = Te(~q) + V(~q, r)

= −1

2

n∑
i=1

∇2
~qi
−

n∑
i=1

2∑
A=1

ZA

qiA

+
n∑
i

n∑
j<i

1

qij

. (B.3)

The electronic wavefunction, Φel, for an open-shell system is designated not only

by its energy eigenvalues but also by the values of the electronic spin and orbital

angular momenta. If we neglect the spin of the nuclei, then we have in addition

the nuclear rotational angular momentum R, and the total angular momentum,

j = l+ s+R. In order to label the electronic levels, one needs to treat carefully the

couplings among these angular momenta.

Since a diatomic molecule has only cylindrical, not spherical symmetry, only

the projection, λ, of the orbital angular momentum around the bond axis is a good
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quantum number. The spin angular momentum, s, can also be quantized along the

internuclear axis. The spin projection quantum number is called σ. In this choice of

quantization, called Hund’s case (a), spin-orbit splitting is assumed large compared

to the rotational energy level splittings.

Since, in the case (a) basis, the electronic wave functions correspond to those

we would obtain in an ab initio calculation, we prefer this coupling case. The Hund’s

case (a) electronic function, Φel, is labeled as

|nsλσ > . (B.4)

Here n is the label for the electronic state.

In case (a), the projection of total angular momentum onto the internuclear

axis is ω = λ+σ. (Note that the rotational angular momentum, R is perpendicular

to this axis, so its projection is null.) This quantum number, ω takes on the values:

|ω| = |λ| − |σ|, · · · , |λ|+ |σ| (B.5)

For OH, in a 2Π electronic state, λ = ±1 and σ = ±1
2
, and so ω = ±3

3
,±1

2
. The

molecular term symbol for the ground state of OH is 2Π 3
2
, (the standard nomencla-

ture: 2S+1λω) since OH has a more than half-filled shell. (Remember that for atoms

with a more than a half-filled shell, the level with the highest value of j lies lowest

in energy. [171])

If the differences between the rotational levels are larger than the splitting

due to spin-orbit coupling, (which occurs as R increases) then the spin is decoupled

from the internuclear axis and coupled to the rotational angular momentum, R to

form a resultant angular momentum called N. This second coupling scheme is called
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Hund’s case (b). [121]. In reality, OH is described as an intermediate coupling case

between (a) and (b). [172]

Equation (B.2) is solved in the basis of B.4 and nuclear repulsion is added to

obtain the potential energy for the motion of the nuclei

v(r) = εel(r) + Vnn(r). (B.6)

Thus, the diatomic Hamiltonian is reduced into:

H = Tn(r, θ, φ) + v(r) (B.7)

The angular part of the kinetic energy can be separated as

Tn(r, θ, φ) = − h̄2

2µOHr

∂2

∂r2
r +

R2

2µOHr2
. (B.8)

where µOH is the reduced mass of the molecule. Thus the Hamiltonian becomes

H = − h̄2

2µOHr

∂2

∂r2
r +

R2
op

2µOHr2
+ v(r). (B.9)

Now we need a set of basis functions with a proper description of the nuclear

motion to expand the Hamiltonian. The rotational wave function is the Wigner

rotation matrix element[173]:

|jωm〉 =
(

2j + 1

4π

) 1
2

Dj∗
mω(φ, θ, 0), (B.10)

where, θ and φ are the Euler angles and j is the total angular quantum number

with projection quantum numbers m along the space-frame Z-axis and ω along

the internuclear axis. The vibrational wave functions are obtained from the solu-

tion of the radial part of the Hamiltonian in Eq. (B.9) with potential energy v(r).
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Consequently, the total wavefunction can be expanded in the product basis with

elements[173]:

|v〉|jωm〉|nsλσ〉. (B.11)

The parity operator, which defines the behavior of the wave function under the

inversion of all spatial coordinates through the origin, commutes with the Hamilto-

nian. By convention the wave function has even parity if it does not changes sign,

odd if it does. Thus we can define wave functions of definite parity as [173]

|n 2Πω vjmε〉 =
1√
2
|v〉 [|j |ω|m〉|nsλσ〉+ ε|j,− |ω|m〉|ns,− |λ| ,− |σ|〉] (B.12)

where ε = ±. The parity of this wave function is

p = ε(−1)j−s. (B.13)

To evaluate the rotational part of the kinetic energy for nuclear motion, since

the rotational angular momentum is not a good quantum number in the case (a)

basis, we use the relation

R = j− l− s, (B.14)

so that

Hrot = (1/2µR2) R2

= (1/2µr2) [j− l− s]2

= (1/2µr2)
[
j2 + l2 + s2 + 2lzsz − 2jzlz − 2jzsz

]
+(1/2µr2) [(l+s− + l−s+)− (j−l− + j+l+)− (j−s− + j+s+)] .(B.15)

Here we follow the conventions for the molecule-fixed raising and lowering operators.

Note that the angular momentum operators which refer to different frames (j: space-
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fixed, l and s: body-fixed) obey anomalous commutation rules, [121] in which A+

and A− are interchanged. Except for the l2 term, the first line of Eq. (B.15) is

diagonal in the case (a) basis. The angular momentum l is not a good quantum

number. However, the expectation value of l2 is only weakly dependent on r. One

assumes that 〈l2〉 will lead only to an overall shift in the electronic energy.[107]

Hence, the diagonal part of the Hamiltonian in the |n 2Πω vjmε〉 basis would be:

〈Hdiag
rot 〉 =

[
j(j + 1) + s(s + 1) + λ2 + 2λσ − 2ω2

]
〈v|(1/2µr2)|v〉 (B.16)

=
[
j(j + 1) + s(s + 1) + λ2 + 2λσ − 2ω2

]
Bv (B.17)

Since the parity operator commutes with the Hamiltonian, the diagonal part of the

Hamiltonian is independent of parity. The Hamiltonian in Eq. (B.1) is nonrelativis-

tic. The spin-orbit contribution can then be added:

Hso = A(r) l · s, (B.18)

so the total Hamiltonian becomes

H = − h̄2

2µOHr

∂2

∂r2
r +

R2
op

2µOHr2
+ v(r) + Hso. (B.19)

The off-diagonal terms in Eq. (B.15) lead to mixings between the ω = 3/2 and

ω = 1/2 spin orbit states as well as between the 2Π and higher electronic states.

The first term, l+s− + l−s+, leads to a coupling of spin to electronic motion, in

a similar manner to the spin-orbit Hamiltonian. The second term, j+l− + j−l+

couples rotational motion and electronic motion; however it does not couple the

various components of the 2Πω states to each other. All of these off-diagonal terms
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will couple only the same parity states. The last term couples the spin to the total

angular momentum. This term (j+s− + j−s+) couples 2Π1/2 to 2Π3/2 states.

〈
n2ΠΩ= 1

2
vjmε

∣∣∣(1/2µr2)(j+s− + j−s+)
∣∣∣n2Πω= 3

2
vjmε′

〉
= −δεε′Bv

[
j(j + 1)− 3

4

] 1
2

.

(B.20)

The matrix elements are roughly linearly dependent on j, so that, as j gets higher,

this term can become comparable to the magnitude of the spin-orbit coupling.

The spin-orbit Hamiltonian in Eq. (B.18)

Hso = A(r) l · s = A(r) [lzsz +
1

2
(l−s+ + l+s−)]. (B.21)

Only the first term leads to the coupling within the 2Π states. Taking into account

the terms that lead to coupling within the 2Π state, the Hamiltonian is evaluated

in a basis consisting of {
∣∣∣2Π3/2

〉
,
∣∣∣2Π1/2

〉
} of a given parity:

Hrot + Hso =

 Bv

[
(j + 1

2
)2 − 2

]
+ A(r)1

2
−Bv

[
(j + 1

2
)2 − 1

] 1
2

−Bv

[
(j + 1

2
)2 − 1

] 1
2 Bv(j + 1

2
)2 − A(r)1

2

 (B.22)

Diagonalization leads to the eigenvalues:

E± = Bv

j(j + 1)− 3

4
± 1

2

(
4j(j + 1) +

(Bv − 2A)2

B2
v

) 1
2

 , (B.23)

= Bv

[
j(j + 1)− 3

4
± 1

2

√
X
]
, (B.24)

where

X =

√
4
(
j +

1

2

)2

+
A

Bv

(
A

B
− 4

)
. (B.25)

The corresponding eigenvectors are[173]

|F1〉 = bj|2Π 3
2
vj〉+ aj|2Π 1

2
vj〉, (B.26)

|F2〉 = aj|2Π 3
2
vj〉 − bj|2Π 1

2
vj〉, (B.27)
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Figure B.2: Positions of the lower spin-rotation levels of OH(X2Π). For clarity, the
magnitude of the Λ-doublet splitting has been greatly exaggerated in the figure.

with coefficients

aj =

[
X + A/Bv − 2

2X

] 1
2

, (B.28)

bj =

[
X − A/Bv + 2

2X

] 1
2

. (B.29)

The eigenvalues forms two rotational ladders, F1 and F2, (see Fig. B.2) separated

by the spin-orbit coupling energy. Figure B.3 plots the change in the coupling

coefficients aj and bj as a function of increasing total angular momentum. It reveals

the intermediate coupling nature of OH. For low j’s, two rotational ladders are

separated by the spin-orbit coupling. In high j-limit, we can no longer assign the F1

and F2 levels as corresponding to separate 2Π3/2 and 2Π1/2 states. Each rotational

level is doubly degenerate without the effect of the (j+l++j−l−) term. It is this term

which is responsible from the so called λ − doubling. It couples electronic angular

momentum to the rotational motion of the nuclei, and become more important as j

increases.
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Figure B.3: Coupling coefficients aj and bj as a function of total angular quantum
number j.

The λ-doubling Hamiltonian including the off-diagonal part of the spin-orbit

and rotational coupling terms of Eq. (B.15) and (B.21), which were omitted previ-

ously, is [173]

H ′ = −B(r)(j+l+ + j−l−) + [B(r) + A(r)/2](l+s− + l−s+). (B.30)

Based on the Van Vleck transformation, the λ-doubling Hamiltonian can be written

in terms of two coupling constants, pv and qv [173]

pv = 4
∑
n′v′

〈2Πv|12A(r)L+|n
′2Σ±v

′〉〈n2Πv|B(r)L+|n′2Σ±v′〉
EΠv − En′v′

, (B.31)

qv = 2
∑
n′v′

|〈2Πv |B(r)L+|n′2Σ±v′〉|2

EΠv − En′v′
. (B.32)

After the addition of the λ-doubling Hamiltonian, the matrix elements of Hmol can

be written in terms of several spectroscopic constants as [174]:

〈ω =
1

2
ε |Hmol|ω =

1

2
ε〉 = Ev − Av/2 + (j + 1/2)2Bv
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Table B.1: Pertinent spectroscopic constants (cm−1) for OH and OD.

OH OD

pv 0.235− 0.006v a 0.1266− 0.005v b

qv −0.0391 + 0.0018v a −0.01093 + 0.0004v b

Av −139.21− 0.275v a −139.23− 0.205v b

Bv 18.910− 0.7242(v + 1/2)a 10.0209− 0.2757(v + 1/2)a

aRef. [112]
bLinear fit in the vibrational quantum number of the data from Ref. [175] for v ≤ 2.

+ [1− ε (j + 1/2)] pv/2 + [1− ε(j + 1/2)]2 qv/2

〈ω =
1

2
ε |Hmol|ω =

3

2
ε〉 = −1

4

[
(j + 1/2)2 − 1

]1/2

{4Bv + pv + 2 [1− ε(j + 1/2)] qv}

〈ω =
3

2
ε |Hmol|ω =

3

2
ε〉 = Ev + Av/2 + [(j + 1/2)2 − 2]Bv

+
[
(j + 1/2)2 − 1

]
qv/2. (B.33)

If we compare the above matrix elements with the matrix elements in Eq. (B.22),

we see that the λ-doubling Hamiltonian slightly splits each rotational level depend-

ing on the parity. The pertinent spectroscopic constants for OH and OD are given

in Table B.1. They are very small in magnitude. However, as will be discussed in

Chapters 4 and 5, investigating the λ-doublet occupations of products is useful to

derive information about the dynamics of the reaction.
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