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This thesis outlines methodology and development of an atomic layer deposition (ALD) 

process for the well-known solid-state electrolyte lithium phosphorous oxynitride 

(LiPON).  I have developed a quaternary ALD LiPON process through a novel stepwise 

additive development procedure.  ALD process kinetics and chemistry were investigated 

using in-operando spectroscopic ellipsometry and in-situ x-ray photoelectron 

spectroscopy (XPS).  ALD LiPON exhibits a tunable ionic conductivity proportional to N 

content, with the highest conductivity of 6.5x10-7 S/cm at 16.3% N. 

Two applications of ALD LiPON are investigated: ALD LiPON films as a protection 

layer for next-generation lithium metal anodes in the lithium sulfur battery system, and as 

solid electrolytes in 3D thin film batteries with discussion towards development of an all 

ALD 3D battery. 

Lithium metal is considered the “holy grail” of battery anodes for beyond Li-ion 

technologies, however, the high reactivity of Li metal has until now prevented its 

commercial use.  Here, ALD protection layers are applied directly to the Li anode to 



 

 

 

 

prevent chemical breakdown of the liquid electrolytes while allowing ion transport 

through the protection layer.  Protection of lithium metal is investigated with two 

materials: low ionic conductivity ALD Al2O3, demonstrating a 60% capacity 

improvement in Li-S batteries by protecting the Li anode from sulfur corrosion during 

cycling, and high ionic conductivity ALD LiPON, demonstrating a 600% improvement in 

Li-S battery capacity over unprotected anodes.  Interestingly, ALD LiPON also forms a 

self-healing protection layer on the anode surface preventing deleterious Li dendrite 

formation during high rate cycling. 

Solid Li-based inorganic electrolytes offer two profound advantages for energy 

storage in 3-D solid state batteries: enhanced safety, and high power and energy density. 

Until now, conventional solid electrolyte deposition techniques have faced hurdles to 

successfully fabricate devices on challenging high aspect ratio structures, required for 

improvements in both device energy and power density.  In this thesis, I demonstrate 

fabrication of ALD heterostructures suitable for use in 3D solid batteries, and although 

this work is incomplete I discuss progress towards future use of ALD LiPON solid 

electrolytes in all ALD solid-state 3D batteries.  
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Chapter I: Beyond Li-Ion Batteries 

Motivation 

Over the past 25 years, the world’s demand for greater energy storage capacity has 

increased exponentially, however battery technology has not achieved the same 

remarkable performance gains as have been achieved in the semiconductor industry.1 

This lack of advancement is due partially to slowing materials development, as well as a 

conservative risk-averse battery industry reluctant to introduce new materials 

technologies to the market.  Currently, most Li-ion batteries consist of a graphitic carbon 

anode, an organic liquid electrolyte, and a LiCoO2 cathode.  Both electrodes are 

composed of micron-sized particles of active material mixed with conductivity enhancing 

additives and binders.  A cartoon cross section of a conventional Li-ion battery is shown 

in Figure 1.  While these batteries are cheap, and the performance is sufficient for 

practical use, significant opportunities exist to improve both the capacity and 

performance of Li-ion batteries.2 



 

 

 

 

2 

 

Figure 1. Cartoon of current Li-ion battery technology, showing aggregate anode and cathode composed 
of active material, binder, and conductive additives bathed in an organic electrolyte, and separated by 
a polymeric ion permeable separator. 

Two of the most promising avenues for improving both gravimetric and volumetric 

energy density of batteries are by improving the battery materials themselves, and by 

changing the architecture and morphology of the battery electrodes.  

Next Generation Materials 

The capacity of both current and future Li-ion battery materials is summarized as a 

function of electrochemical potential vs. gravimetric capacity is shown in Figure 2.  

Currently commercialized batteries are limited by both the capacity of the graphite anode 

(372 mAh/g) and the LiCoO2 cathode (300 mAh/g).  On the cathode side, Li-rich nickel 

manganese cobalt oxide (LNMC) shows the most immediate commercialization promise 

as both a higher capacity and a higher voltage cathode material.3,4  Other promising 

cathode materials include gaseous O2
5,6 and elemental sulfur7, however fundamental 

chemistry issues currently prevent these battery systems from commercialization in the 

next 5 years. 



 

 

 

 

3 

On the anode side, both silicon (4200 mAh/g) and lithium metal (3850 mAh/g) 

represent the most promising high capacity anode materials, however they suffer from a 

number of challenges to widespread adoption.8  Silicon undergoes a massive volume 

expansion of ~400% when fully lithiated, and repeated cycling results in cracking and 

pulverizing of the material.9  Reducing the size of the silicon particles accommodates for 

the lithiation strain, however requires exotic processing techniques to realize 

nanostructured silicon.10,11 

The ideal anode for a lithium-based battery is pure Li metal, as it has a gravimetric 

capacity of 3840 mAh/g, and an electrochemical potential of 0V.  Indeed the first Li-

based batteries commercialized by Sony used Li metal anodes.  However, after a number 

of spectacular failures due to Li dendrite formation these batteries were removed from the 

commercial market due to safety concerns.  This phenomenon will be described further in 

Chapter VI. 
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Figure 2. Summary of chemistries used as electrode materials for Li-based batteries.  From Tarascon and 
Armand, Nature, 2001.12 

3D Nanobattery Architectures 

When incorporating high concentrations of charge-carrying ions, in this case Li+, into 

an anode or cathode material, a limiting factor is the ion transport kinetics of the diffusing 

ion.  For a fixed diffusivity, D, of an ion in a material phase, the ion transport time, τ, 

varies as the square of the distance travelled, l 2.  In an electrode, this relationship means 

thicker storage layers require increasingly longer times for ion diffusion than thinner 

layers.  The storage capacity of thicker layers can only be accessed at low charge and 

discharge rates, and the devices only achieve their full energy density (full lithiation) by 

sacrificing power capability.  Yet, the need for power as well as energy is important - 

even critical - in many demanding energy storage applications such as defense and space 

applications.   
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Figure 3. Example high aspect ratio 3D battery geometries.  (a) interdigitated MIM electrostatic 
capacitor;13 (b) self-aligned electrodeposited electrochemical supercapacitor;14 (c) array of individual 
nanopore batteries.15 

While chemistry is the determining factor affecting the lithiation behavior of 

electrochemical storage materials, experimental and computational studies have made 

critical advances in understanding and optimizing the chemistries of cathode materials 

such as oxides12 16-21 and anode materials such carbons22 and silicon23.   Further device 

improvement can be realized through novel architectures, especially nanoheterostructured 

materials, which open the possibility of using thinner storage layers with much larger 

surface area to access ions in the electrolyte for high power operation. 

The motivation and ability to create nanostructured electrodes for electrochemical 

energy storage has been recognized for some time10,24-35, and recent advances in nano 

science and technology provide new capability to construct multicomponent 

nanostructures and storage devices.  

Indeed, recent nanostructured energy storage systems have demonstrated the radical 

increase in both power density and gravimetric energy density of these 

nanoheterostructured systems36-38. As these devices approach the size limits of scalable 

architectures they indicate a need for new alignment, deposition, and patterning 

techniques to realize device performance39.  Atomic layer deposition (ALD) is ideally 
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suited to fabricate these next-generation nanostructures due to its low temperature 

deposition, highly conformal and tunable nature, and self-alignment to a nanopatterned 

scaffold40-43, all fundamental requirements for fabrication of nanoheterostructured 

batteries. 

Solid Nanoheterostructured Batteries 

Despite the high power and energy density realized by nanostructuring electrodes in 

conventional batteries, and even the nanopore battery array, it still includes a liquid 

electrolyte, which due to recent accidents involving battery overheating and subsequent 

failure underscore the importance of proper battery thermal management. This issue 

becomes especially important when using nanoheterostructured devices during high rate 

charge/discharge, as these devices may not be able to achieve long device lifetimes under 

high power operating conditions due to increased thermal and mechanical stress. 

Additionally, liquid electrolytes suffer from formation of an insulating solid 

electrolyte interphase (SEI), which is caused by electrolyte breakdown at the active 

materials interface due to electron transfer mechanisms during charge/discharge44. 

Clearly, replacement of liquid electrolytes with their solid counterparts is the ideal 

solution to both safety and device degradation challenges, since while all solid-state 3D 

batteries have been proposed45, extensive processing difficulties remain46,47, mostly due 

to the limitations of sputtered ceramic electrolytes37,48.   
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Figure 4. FIB X-section of solid 3D battery fabricated using sputtering techniques for all active material 
layers.  Note the major non-uniformities inherent from the line of sight sputtering technique result in 
poor interfacial and film quality.  Image courtesy of A. Alec. Talin. 

Sputtering is a line of sight deposition technique that has been well utilized to 

fabricate planar solid batteries with great success46,48-50, however it is limited to aspect 

ratios of ~10, limiting the increases in power and energy density available due to 

nanostructuring51.   Also, sputtered solid electrolyte films do not perform well at 

thickness < 70 nm due to inhomogeneities and voids at the interface between the 

electrode and the sputtered solid electrolyte37. 
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Atomic Layer Deposition (ALD) 

ALD is one of the most promising ways to deposit electrochemically active materials 

onto high aspect ratio templates.  ALD’s high degree of conformality and unprecedented 

thickness control enable the deposition of electrochemically active films as thin as 5 nm 

on templates with aspect ratios of up to 100043.  ALD of electrochemically active films 

has so far been limited to only a few materials: V2O5
52, Ru53 and RuO2

54, and TiO2
41, 

however there has also been significant work on using thin ALD films as protective 

coatings on both anode55-58 and cathode59-61 materials, as well as using ALD for the 

deposition of TiN current collectors in nanoheterostructured EES devices13,62.  More 

recently, a nanopore battery array was developed using ALD materials for conformal 

current collectors as well as both anode and cathode materials15.  This device can retain 

50% of the active material’s theoretical capacity when operated at 150C discharge rate 

(75 full charge/discharge cycles per hour), illustrating the remarkable performance 

possible with nanoheterostructured batteries. 

Lithium Phosphorus Oxynitride (LiPON) 

One of the first and most popular solid electrolytes developed is lithium phosphorous 

oxynitride (LiPON).  The ionic conductivity of LiPON can be as high as ~5x10-6 S/cm, 

and LiPON is stable against Li metal anodes, potentially enabling the use of Li metal 

anodes in all-solid devices.  Due to the body of literature available on the characterization 

and behavior of LiPON50,63-73, this material was selected as the best candidate for ALD 

solid electrolyte development. 
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Figure 5. Summary of ionic conductivities for well-known Li+ solid electrolytes, adapted from Tarascon.12 
The arrows to the dotted line indicate the effective conductivity enhancement possible by using a thin 
solid electrolyte on high aspect ratio nanostructures for enhanced device surface area. 

As such, this thesis focuses on the methodology and progress toward development of 

an ALD process for the solid-state electrolyte LiPON. Nitrogen will be included in the 

ALD Li3PO4 films using either NH3 gas or an NH3 or N2 remote plasma source.  The 

influence of film growth and processing parameters will be investigated to understand the 

process parameters that define conductivity, morphology, and stability.  Lastly, 

development of an ALD process for the solid electrolyte LiPON will facilitate future 

development of all-ALD solid-state batteries on highly aspect ratio nanostructured 

scaffolds. 
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Next Generation Metal Anodes for Beyond Li-ion Batteries 

The ever increasing demand for higher energy density storage devices for transportation 

(electric vehicles), grid storage (power leveling), and other applications is challenging the 

scientific community to develop a rechargeable battery with cycle life comparable to Li-

ion but with significantly higher capacity.  Major R&D centers increasingly look to metal 

anode systems, including Li-S, Li-O2, and advanced oxide cathode systems combined 

with Li metal anodes for increased performance.  Recent analysis of beyond-Li-ion 

options by the Joint Center for Energy Storage Research (JCESR) highlights the high 

priority for metal anode systems, while recognizing that the reactivity of the metal anode 

poses serious technical and manufacturing challenges.8   



 

 

 

 

11 

From an 

operational point 

of view, lithium’s 

high reactivity 

with most organic 

chemicals used in 

battery 

electrolytes 

causes corrosion 

reactions to occur 

during cycling 

due to reduction 

of solvents, active 

species, or 

impurities in the 

electrolyte, eventually leading to degradation of the anode, consumption of electrolyte 

and active materials, and eventual battery failure.   

In fact, the battery industry expended considerable effort to commercialize Li metal 

anodes via electrolyte additive engineering in the late 1980s.74-76 However due to the 

propensity of lithium metal to form dangerous dendrites upon repeated cycling, resulting 

in a number of high profile fires in 1989, the use of lithium anodes decreased in 

popularity.75 

 

Figure 6. Potential beyond Li-ion battery chemistries.  Note that the three most 
promising options: Lithium advanced cathode, Lithium sulfur, and Lithium 
air all utilize Li metal anodes.  Adapted from Gallagher et.al.8 
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Realization of stable Li metal anodes in rechargeable batteries is a challenge with many 

facets.  From a processing perspective, lithium metal will oxidize and corrode under 

atmospheric conditions via reaction with H2O and CO2 via the stepwise reactions 

2𝐿𝑖 + 2𝐻!𝑂 → 2𝐿𝑖𝑂𝐻 + 𝐻!        (1) 

2𝐿𝑖𝑂𝐻 + 𝐶𝑂! → 𝐿𝑖!𝐶𝑂! + 𝐻!𝑂        (2) 

producing a characteristic black tarnish on the Li metal surface.77  This oxidation is 

prevented by limiting the exposure of the Li metal to H2O, necessitating the use of costly 

dry rooms for lithium metal extrusion and battery assembly. 

Lithium metal protection is particularly important in systems where the active material 

diffuses freely through the electrolyte (e.g. polysulfide in Li-S cells), or if inherent 

contamination is present in the electrolyte (e.g. H2O, CO2, and N2 in a real Li-air system).  

In both of these cases the highly reactive Li anode forms a high impedance solid 

electrolyte interphase (SEI) layer on its surface consuming electrolyte and active material 

resulting in practical capacity loss and low of Coulombic efficiency.78 

Previous attempts to passivate Li metal with organic molecules79,80 and polymeric 

coatings81,82 have achieved limited success due to poor thickness and compositional 

control of the applied protection layer.  Protection with sputtered solid electrolytes,64,83 

while effective at preventing electrolyte decomposition on the Li metal surface, can result 

in large cell overpotentials during recharge at even moderate rates due to the large 

thicknesses (~µms) and low ionic conductivity of the sputtered solid electrolytes.  

Recently, protection of the Li surface with self-assembled carbon spheres84 has proven 

effective at preventing Li dendrite growth upon cycling, but offers limited options for 
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scalable manufacturing and also adds significant mass to the anode.  Lithium metal 

powder is commercially available from the FMC company, and shows promise towards 

stable lithium anodes.79,85 

I demonstrate a new approach to study Li metal surface stabilization via application of 

ALD protection layers directly on the Li metal, creating a new thin phase between the 

metal and various corrosive surroundings. Using a unique UHV system described 

elsewhere,86 I deposit ALD Al2O3 coatings directly on Li metal foil to mitigate corrosion 

reactions due to both atmosphere and electrolyte exposure.  I determine and measure 

directly, for the first time, the nominal layer thickness for effective Li metal protection, 

and use Li-S cells to demonstrate a dramatic capacity increase of protected Li metal 

anodes over their unprotected counterparts via mitigation of the Li corrosion by sulfur 

species shuttling in the electrolyte.87 While the focus of this work is on Li metal anodes, 

these studies open a new opportunity for realization of other metal anode based systems 

such as Na, Mg, and Al rechargeable batteries, and for protection of those metal by 

various thin layers deposited atomically or molecularly. 

ALD Solid Electrolyte Process Development Strategy 

There are two ways to consider quaternary ALD process development.  First, 

quaternary process development can be seen as the combination of multiple constituent 

ALD processes in different ratios.  For example, in our case this would be a combination 

of the Li3PO4, Li2O, and LiN ALD processes.  Each of these individual materials is 

composed of two precursors (e.g. A+B, C+D, and E+F), and combining these constituent 
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materials in different ratios of ALD supercycles can result in a degree of tunability in the 

resulting nanolaminate film. 

However, this approach presents a few problems.  First, if two of the constituent ALD 

materials use the same precursor, then this creates a precursor pulse redundancy during 

the process.  Second, due to the surface termination of the films, some precursors may 

only be compatible with specific surface species, preventing the incorporation of 

elements into the resulting films due to differences in ligand exchange reaction energies. 

Lastly, in order to control film stoichiometry different ratios of the constituent ALD 

precursors must be used, which can result in nanolaminates with an uneven distribution 

of constituent elements.  

Instead, I take a novel additive synthesis approach to quaternary ALD process 

development, starting with the thermal ALD process for Li2O and LiOH,88 a full 

description of which is discussed in Chapter III: ALD Li2O Process Development.  From 

this binary ALD process, I add an additional precursor, TMP, and determine the 

saturation dose of the ternary Li3PO4 ALD process, discussed in detail in Chapter IV: 

ALD Li3PO4. I next add an additional ALD precursor, plasma N2, and subsequently 

optimize the ALD process for the quaternary material LiPON, discussed in detail in 

Chapter V: ALD LiPON. 
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Chapter II: Laboratory Design, Equipment, and Experimental 

Methods 

Ultraclean, Ultrahigh Vacuum System 

To pursue the objectives of this Thesis, a custom UHV system (integrated system) 

was designed and constructed in order to be able to deposit, transfer, and characterize Li-

containing ALD materials without air exposure, facilitating novel materials discovery and 

chemical analysis.  This integrated ultraclean deposition and characterization system is 

based upon a previous system used to investigate the utility of ALD Al2O3 dielectric 

films for fabrication of Josephson junction superconducting qubit devices.  This initial 

study was published in Applied Physics Letters in 2013,86 and illustrates the utility of 

ultraclean integrated synthesis and characterization. 

In particular, this system offers a unique experimental configuration that links 

ultraclean (i.e., high vacuum) ALD process capability (Cambridge Nanotech Fiji F200) 

with in-operando spectroscopic ellipsometry (J.A. Woollam M-2000D) and in-situ x-ray 

photoelectron spectroscopy (XPS) (Kratos AXIS Ultra DLD) characterization for 

materials analysis.   

The Kratos AXIS Ultra DLD surface analysis platform is outfitted for x-ray and 

ultraviolet photoelectron spectroscopy (XPS/UPS) including x-ray imaging and mapping 

capabilities using a monochromated Ag/Al XPS source, scanning Auger microscopy 

(SAM), and scanning electron microscopy (SEM). Additional components that are 

extremely useful include an Ar+/Coronene/He+ ion cannon for sputter depth profiling and 
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ion scattering spectroscopy (ISS), and a charge neutralization system for charge 

balancing insulating materials. All of the XPS measurements discussed in this work were 

collected with this system.  

The integrated system was designed around a central Kurt J. Lesker RTTA radial 

UHV transfer chamber, which is isolated via 8” diameter pneumatic gate valves to 4 

other vacuum chambers: one aluminum evaporator/load lock chamber, one load 

lock/sample holding chamber, one Ultratech Fiji F200 ALD tool (Mario), and one Kratos 

Ultra DLD surface analysis system.  Both load lock chambers and the RTTA chamber on 

the integrated system have their own dedicated maglev turbo pump (Oerlikon-Leybold, 

80 L/s), each of which is both backed and roughed by a dedicated mechanical pump 

(Oerlikon-Leybold, 14 cfm).  These pumps hold the base pressure of the system at < 

1x10-8 Torr.  The ALD chamber is maintained at 1x10-6 Torr, while the XPS is 

maintained at 2x10-9 Torr.  The UHV section of the integrated system is connected to an 

MBraun Labmaster Ar glovebox for battery assembly and testing, which is also 

integrated to a second Ultratech Fiji F200 ALD system (Luigi).  The glovebox is 

customized with multiple 8” conflat port attachments for direct integration with other 

vacuum systems attachments.  One of these CF ports connects to the UHV system, while 

a second one is attached to another vacuum chamber with an effusion cell for thermal 

evaporation of lithium metal, providing a cleaner, thin film alternative to the lithium 

ribbon used in most battery experiments. 
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Sample transfers between the ALD system and the surface analysis system are fast (1 

minute), minimizing potential contamination from chamber outgassing, even at UHV 

pressure regimes.  A schematic of this system is shown in Figure 7. 

 

Figure 7. Schematic and setup of the UHV integrated system in the ALD Nanostructures Lab (ANSLab) at 
the University of Maryland, College Park. 

Substrate Preparation 

3” diameter silicon wafers were used for ALD process development for a few 

reasons.  First, the entire integrated system is tooled for 3” wafers to simplify sample 

handling and transfer.  Second, given the difficulty of developing optical models to 

enable accurate ellipsometric monitoring of deposition processes, selection of a well-

characterized substrate is necessary to simplify the process.  Lastly, since ALD processes 
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are known to be substrate dependent due to the surface energy and availability of reactive 

hydroxyl ligands, so Si wafers allow materials deposition on a clean, smooth, and 

consistent substrate. 

Silicon substrates were cleaned with stepwise acetone, methanol, and isopropanol 

rinses, blown dry with compressed air, and then rinsed with deionized H2O and blown 

dry again.  Once clean, the substrates were pumped down in the load lock chamber until a 

base pressure of < 5x10-8 Torr was achieved, and then transferred to the ALD system for 

materials deposition. 

Atomic Layer Deposition (ALD) 

ALD is a low temperature sequential pulse-purge thin film growth technique known 

for high quality films with angstrom tunable thickness.  ALD uses conventional CVD 

metalorganic and oxidation precursors, however instead of introducing both precursors 

into the reactor at the same time, ALD alternates pulsing and purging of each precursor 

sequentially.  Therefore, instead of a vapor phase chemical reaction, the reaction is 

limited to chemisorbed species on the surface.  This results in incredible conformality, 

but does suffer from much slower deposition rates than CVD.  The ALD tool most used 

in this thesis is a Ultratech Fiji F-200 system, custom-designed for UHV operation and 

integration into a UHV radial transfer chamber. 

ALD Additive Synthesis 

There are two ways to consider quaternary ALD process development.  First, 

quaternary process development can be seen as the combination of multiple constituent 
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ALD processes in different ratios.  For example, in our case this would be a combination 

of the Li3PO4, Li2O, and LiN ALD processes.  Each of these individual materials is 

composed of two precursors (A+B, C+D, and E+F respectively). Combining these 

constituent materials in different ratios of ALD supercycles can achieve limited tunability 

of the resulting films. For example, the following pulse sequence would be achieved: 

1 (A+B) - 2 (C+D) - 3 (E+F) = ABCDCDEFEFEFABCDCDEFEFEF 

This approach presents a few problems.  First, if two of the constituent ALD materials 

used in the quaternary process use the same precursor, then there is a precursor pulse 

redundancy during the process, slowing deposition time and potentially wasting 

expensive ALD precursor chemicals.  Second, due to the surface chemistry of the films, 

some precursors may only react with specific surface ligands, preventing the 

incorporation of some precursors into the resulting films or resulting in non-ideal growth. 

Last, in order to control film stoichiometry different ratios of the constituent ALD 

precursors must be used, which can result in highly nonuniform, lamellar films where the 

desired dopants are not evenly distributed among the final film. 

Instead, a different approach to quaternary ALD process development will be taken, 

starting with the thermal ALD process for Li2O88 using H2O and LiOtBu.   Once this 

process is fully characterized, a second precursor, trimethylphosphate (TMP) will be 

added to the process.  Once deposition conditions for the ternary ALD material are 

optimized, nitrogen will be incorporated into this ternary ALD process to determine the 

optimal deposition parameters for high ionic conductivity and stability.  I will use NH3 

gas, NH3 plasma, and N2 plasma doses at various points during the ALD process.  The 
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amount of N incorporated into the LiPON films will either be tuned by varying the N 

precursor pulse time, if favorable, or by using multiple doses of the N precursor at 

multiple points in the ALD process.  

X-ray Photoelectron Spectroscopy (XPS) 

XPS analysis provides information on chemical composition and atomic binding 

environment at the film surface. All XPS spectra collected during the course of this thesis 

were collected using a Kratos Ultra DLD surface analysis system. Due to the low escape 

depth of ejected photoelectrons, generally XPS is only able to sample  < 10 nm from the 

material surface. XPS is one of the few methods available that is sensitive to Li due to the 

low electron cross section and generally low signals from Li from most other 

measurement techniques. 

During XPS data collection, no charge neutralization was used, as due to the high 

reactivity of lithium compounds even at low currents (1 nA) the electron flux from the 

charge neutralizer was found to degrade the ALD films, consistent with previous 

reports89.  XPS data was analyzed using CasaXPS using a Shirley background algorithm, 

and quantification was performed using peak areas normalized by standard 

photoionization cross sections corrected for our instrument geometry90. 

Spectroscopic Ellipsometry 

This thesis relies heavily on the use of both in-operando and ex-situ spectroscopic 

ellipsometry in order to measure thickness from both in-situ ALD thin film deposition 

and post-deposition ex-situ ALD films.  Both arrangements use the same J.A. Woollam 
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M-2000D spectroscopic (λ = 193-1000 nm) ellipsometer, whose source and detector can 

easily be moved from the ex-situ goniometer to fixed angle (72˚) fixtures attached to the 

Cambridge Nanotech Fiji F200 ALD tool for in-situ data collection.  Spectroscopic 

ellipsometry uses both the phase shift and polarization shift of elliptically polarized light 

reflected off thin, transparent films in order to measure the refractive index as a function 

of wavelength using the Cauchy and Sellmeier relationships91.  To determine thin-film 

thicknesses, optical models must be employed to convert the phase shift of the light 

(delta) to the film thickness.  Optical models for the ALD materials described in this 

thesis were developed in concert with the J.A. Woollam company, and thickness 

measured using these models are externally calibrated using profilimetry and TEM/SEM 

imaging measurements on MWCNT and SiNW substrates. 
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Chapter III: ALD Li2O Process Development 

Introduction 

Lithium compounds play multiple critical roles in electrochemical energy storage.  

Typically Li is incorporated into either anode or cathode structures in a battery during 

manufacture, so the development and understanding of ALD processes for Li-containing 

electrode compounds is essential to next-generation materials design. Li2O represents an 

attractive starting point for ALD of Li compounds - a superionic conductor in its own 

right92 and a model process for incorporating Li into multicomponent ALD materials for 

electrodes and electrolytes. 

Previously, ALD films deposited using lithium tert-butoxide (LiOtBu) and H2O have 

been reported93, but the chemistry of the deposited films has not been conclusively 

identified due to the extreme air sensitivity of lithium oxides and hydroxides and the lack 

of in-situ characterization.  In the course of this thesis, ALD films of ultrapure LiOH and 

Li2O have been deposited and characterized via XPS for the first time, resulting in the 

only known carbon-free (< .1%) XPS spectra of these materials in the literature.  These 

results have been published in the Journal of Physical Chemistry C88, and are summarized 

in this chapter. 

Thermal ALD Using H2O 

First, saturation doses for the ALD Li2O process were determined by fixing the H2O 

pulse time and varying the LiOtBu pulse time at fixed purge times, shown in Figure 8. 
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Unlike many other 

ALD processes, the 

LiOtBu + H2O system 

does not exhibit 

saturating growth as a 

function of LiOtBu 

precursor dose, 

consistent with previous 

studies in literature 

using these precursors94.  

This non-saturating 

growth is attributed to 

possible decomposition 

of the LiOtBu precursor on the substrate, leading to CVD-like growth.  As such, the 

LiOtBu pulse time is fixed at 3s for this work to enable a reasonable growth rate of the 

ALD materials. 

Thermal ALD using the precursors LiOtBu and H2O is favorable within the 

temperature window from 225˚C to 300˚C as shown by the thermal ALD results in Figure 

9(survey, 250˚C) and Figure 10A-C (hi-resolution spectra, multiple temperatures). [Note 

that Figure 10A-C also include PO2 spectra, with features relevant to carbonate, discussed 

below in terms of energy axis calibration and plasma-based ALD process.] 

 

Figure 8. Growth curve demonstrating self-saturating behavior for ALD 
Li2O as a function of LiOtBu pulse time at 250˚C. H2O pulse time 
was fixed at 0.06 s, and purge times for both precursors were 30 
seconds.  The data points are fit to an arbitrary function. 
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Figure 9. In-situ XPS survey spectra of as-deposited ALD Li2O at 250˚C demonstrating ultraclean carbon-
free nature of the as-deposited films.  Carbon content is < .1% as determined by the signal to noise 
ratio of the data. 

XPS reveals that films deposited at 225˚C are composed almost entirely of LiOH, 

while films deposited at 240˚C, 265˚C and 300˚C are composed of Li2O with a 

hydroxylated surface layer.  

 

Figure 10. High resolution in-situ (a) O1s; (b) C1s; and (c) Li1s XPS spectra of as-deposited ALD films 
using LiOtBu, H2O, and plasma O2 with deposition ending on the oxidation precursor half cycle.  Inset 
in (b): XPS C1s spectra of Li2O deposited at 250C ending on the LiOtBu half cycle. All spectra have 
been normalized to the same arbitrary intensity to highlight peak locations and peak shapes.  
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While it has been suggested in prior work that the carbon in ALD deposited films is 

due to incomplete reaction of the butyl ligands from the LiOtBu precursor94, The thermal 

ALD processing ending with the LiOtBu dose do show carbon (Figure 10B inset) only 

limited to submonolayer coverage, but distinctly different from Li2CO3 spectra, while the 

process ending in an H2O dose shows no carbon signal due to the complete ligand 

exchange reaction of the LiOtBu.  

Due to the simple nature of the measured spectra, the film chemistry can be 

conclusively identified via atomic quantification. Low temperature deposition (225˚C) 

results in a close to 1:1 Li:O ratio consistent with LiOH, while deposition at all attempted 

higher temperatures shows a 2:1 Li:O ratio consistent with Li2O. We always find a slight 

oxygen excess inconsistent with theoretical stoichiometry, probably due to both hydroxyl 

termination of the Li2O surface95 and also sub-surface photoelectron screening by surface 

oxygen.  While a 1:1 Li:O ratio would also be consistent with Li2O2, we consider this 

unlikely due to the reactivity of Li2O2 with H2O96. 

Conventionally, XPS peak positions are calibrated to the adventitious C 1s peak at 

284.8 eV as a reference.  However given the absence of carbon in these XPS spectra, the 

spectra are calibrated by assigning the Li2O O1s peak to 528.5 eV based on a consensus 

of reported literature values97.  Given this calibration, the LiOH O 1s photoelectron peak 

is placed at 531.1 eV, with a LiOH-Li2O O 1s peak separation of 2.6 eV.  Notably, after 

energy calibration of all spectra to this O1s peak, upon air exposure and reexamination of 

the LiOH films both the C1s peaks attributed to Li2CO3 at 290.3 eV (observed only for 

the PO2 process and discussed later) and adventitious carbon at 285.0 eV (discussed later) 
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are at their nominally correct locations. It is worth noting that both the Li2O and LiOH O 

1s photoelectron peaks are present to some degree in each sample, likely due to the 

surface hydroxylation of the Li2O films during transfer and characterization in UHV. In 

the Li1s spectra (Figure 10C), there is a peak associated with Li2O at 53.8 eV in the high 

temperature films, while a different peak associated with LiOH is located at 54.7 eV in 

the low temperature films, generally consistent with previous studies97. 

The chemical mechanisms controlling half-cycle reactions for this ALD process are 

not well understood. Lithium tert-butoxide is an alkoxide precursor, but it differs 

considerably from other common alkoxide precursors such as hafnium or zirconium tert-

butoxide in that lithium is monovalent. In the multivalent tert-butoxides, a self-limiting 

surface reaction is realized through the hydrolysis of one of the tert-butoxide ligands, 

preserving the remaining ligands as inert site-blockers. In the case of LiOtBu, hydrolysis 

of the single ligand would produce lithium hydroxide and tert-butanol, putting the 

existence of a stable, self-limiting surface species in question. Indeed, previous studies by 

Cavanaugh et al. relate non-saturating growth rates as a function of LiOtBu pulse time to 

a mechanism involving the chemisorption of the intact LiOtBu molecule on the surface93. 

Identification of the surface species present after the LiOtBu pulse was attempted using 

in-situ XPS (Figure 10B, inset). There are two hydrocarbon peaks, one at ~285 eV and a 

small peak centered at ~289 eV. The peak at 289 eV is possibly consistent with 

carboxylate species, however a chemical origin is not identified at this time. This 

spectrum is likely incompatible with the presence of intact tert-butoxide ligands, from 

which a peak associated with the C-O bond in a 1:4 areal ratio with and at approx. 2 eV 
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above the hydrocarbon peak would be expected. Further work will be needed to identify 

the exact nature of the half-cycle surface chemistry. Nevertheless, the film chemistry of 

the LiOtBu/PO2 process strongly supports the existence of significant amounts of carbon-

containing surface species. 

Plasma ALD Using O2 

Deposition using LiOtBu and PO2 as the oxidation precursor was attempted between 

225˚C and 300˚C.  While this has been previously used to deposit Li2O as one component 

of the multicomponent ALD material LiCoO2
98, here it is found that use of  PO2 as the 

oxidation precursor results in films that are composed of both Li2CO3 and Li2O, the ratios 

of which are independent of deposition temperature and plasma dose.  The presence of 

significant amounts of Li2CO3 for the PO2 process demonstrates that stable carbon-

containing surface species are formed by the plasma ALD process during the LiOtBu 

half-cycle. High resolution XPS spectra of the as-deposited films, shown in Figure 10A-

C, identify the resulting films as a mixture of Li2CO3 and Li2O.  The formation of Li2CO3 

when PO2 is used as the oxidation precursor is attributed to an incomplete combustion 

reaction that causes significant residual carbon to be trapped in the films, resulting in the 

formation of Li2CO3.  Consistent with the previous analysis, the O1s Li2O binding energy 

is calibrated to 528.5 eV.  However, in this case the O1s Li2CO3 peak is shifted to a 

slightly lower binding energy at 531.9 eV, a peak separation of 3.4 eV from the Li2O O1s 

peak.  The peak at 290.1 eV is assigned to the C1s of Li2CO3, while the Li 1s spectra 

shows two peaks at 53.8 and 55.3 eV, consistent with Li2O and Li2CO3 respectively. 
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Elucidating Hydration/Dehydration Reactions 

Consistent with previous work by Comstock99, ALD films deposited at 225˚C and 

subjected to extended purging at the same temperature result in a ~ 20% decrease in film 

thickness. This mass loss is attributed to thermal decomposition of LiOH and H2O 

product evolution, as the reaction product LiOH formed below 240˚C exhibits the 

decomposition when held post-process at elevated (225˚C) temperature.  ALD films 

deposited at higher temperatures do not exhibit post-deposition thickness relaxation, as 

the LiOH decomposition time is less than the purge time, allowing the films to 

continuously relax during the ALD process. 

XPS results shown in Figure 11A-C demonstrate this thermal decomposition of LiOH 

via the following reaction96: 

2𝐿𝑖𝑂𝐻 → 𝐿𝑖!𝑂 + 𝐻!𝑂         (1) 

The as-deposited film is dehydrated here due to deposition at 250˚C.   

 

Figure 11. Hi resolution in-situ (a) O1s; (b) C1s; and (c) Li1s XPS spectra of as-deposited, fully hydrated, 
and subsequent 24-hour dehydrated Li2O ALD films using LiOtBu and H2O at 250˚C with deposition 
ending on the oxidation precursor half cycle.  All XPS data are from the same wafer. 

Subsequent treatment of the Li2O film with sequential ALD half-cycle H2O pulses 

reverses the reaction (Equation 1), forming LiOH.  This reaction is highly reversible, and 
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could conceivably be driven back and forth forever, given the favorable formation of 

LiOH from Li2O in an H2O atmosphere and the thermal decomposition temperature of 

LiOH.100 

To understand the reaction kinetics of this hydration/dehydration reaction, the same 

ALD Li2O film was fully hydrated by exposure to water vapor at 250 mTorr in our ALD 

chamber at temperatures from 225˚C to 275˚C.  Once the film was fully hydrated to 

LiOH as determined by real-time spectroscopic ellipsometry and XPS, real-time 

spectroscopic ellipsometry was again used to track the dehydration rates of the ALD 

films at different temperatures as plotted in Figure 12A.  

 
Figure 12.  (a) Real time in-situ ellipsometric measurement of the dehydration of LiOH to Li2O as a 

function of temperature under vacuum at different temperatures; (b) Arrhenius plot of the LiOH to 
Li2O dehydration reaction along with linear fit. 
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These data can be used to plot an Arrhenius relationship (Figure 12B) and then 

extract an activation energy of 112.7 ± 0.6 kJ/mol for the reaction in Equation 1, 

consistent with results from previous studies101.  This technique is useful to quantify and 

track changes in both film thickness and optical properties during a chemical reaction, but 

requires no prior knowledge of the sample chemistry, thickness, or even the reaction 

mechanism.  As long as the optical properties and thickness change during the reaction, 

the onset and completion of the chemical reaction can be identified with relative 

precision.  In this case, a 5-layer graded optical model combining B spline models for 

both Li2O and LiOH was used to model the dehydration of the ALD films as occurring 

from the top down. 

The activation energy of 112.7 kJ/mol was then applied to develop an “ALD phase 

diagram” of the LiOtBu + H2O process as a function of process purge time and reactor 

temperature for the chosen precursor pulse times, shown in Figure 13.  As long as the 

purge time during the ALD process is longer than the time required for the deposited 

monolayer to decompose from LiOH to Li2O, the film will continuously relax during the 

deposition process, resulting in Li2O at temperatures below 240˚C.  Given this 

knowledge, the resulting ALD films can be tailored at a given temperature to be LiOH or 

Li2O simply by changing the purge times while keeping static precursor pulse times.  

Notably, this is the first example where a “hybrid” ALD + relaxation process has been 

deconvoluted and characterized.  For the purposes of this thesis, selection of the Li2O 

phase is critical, given that H in the deposited films competes with Li for active sites in 

LiPON and may drastically decrease the conductivity of the eventual ALD LiPON. 
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Deconstructing the Air-

Reactivity of Li2O 

The extreme air reactivity 

of lithium containing thin films 

is well known, and is 

challenging for materials 

characterization. Indeed, upon 

exposure of the as-deposited 

Li2O films to atmosphere for 

60 seconds and then 

subsequent reintroduction to 

the integrated system, XPS 

shows that the surface LiOH formed has completely reacted with atmospheric CO2, 

irreversibly forming a surface layer of Li2CO3, shown in Figure 14. 

 

Figure 13. Phase diagram of the LiOtBu + H2O ALD process at 
fixed (.06s, 30s, 3s, 30s pulse and purge times for the H2O 
and LiOtBu precursors respectively).  Phase boundary is 
calculated based on experimental fit to the Arrhenius 
equation using experimental data.  This phase diagram 
allows selection of LiOH or Li2O depending on temperature 
and purge time of the ALD process. 
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Figure 14. High resolution in-situ (a) O1s; (b) C1s; and (c) Li1s XPS spectra of ALD LiOH and Li2O ALD 
films after saturating exposures to CO2 at 225˚C, as well as air-exposed ALD Li2O. 

The reaction of Li2O with CO2 is known to occur with the top few nm of Li2O 

between 200˚C and 400˚C via the following reaction102: 

𝐿𝑖!𝑂 + 𝐶𝑂! → 𝐿𝑖!𝐶𝑂!          (2), 

Since air exposure forms LiOH from Li2O, Li2CO3 is expected to be formed by the 

LiOH-CO2 reaction even at ambient conditions according to: 

2𝐿𝑖𝑂𝐻 + 𝐶𝑂! → 𝐿𝑖!𝐶𝑂! + 𝐻!𝑂        (3), 

continuing until the entire bulk LiOH is converted to Li2CO3.  This well-known 

reaction is used in the military and space industry to remove waste CO2 from the 

atmosphere of contained environments like submarines and spacecraft. 

 To further investigate this reaction, ALD films of LiOH at 225˚C and Li2O at 250˚C 

were deposited for 1500 cycles.  Then, samples were removed from the ALD chamber 

into a high vacuum holding chamber, while the ALD chamber cooled to 225˚C.  The 

samples were returned to the ALD chamber at 225˚C and dosed with CO2 via a repeating 

1 second pulse / 5 second Ar purge cycle.  Real time in-situ ellipsometric data collected 

during these reactions is shown in Figure 15, where the phase shift of the incident light 

(delta) is plotted against CO2 dosing process time. 
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Since the CO2 is pulsed, the 

amount of reactant available is 

limited, allowing gas-phase titration 

the carbonation reaction Equation 3 

to measure the relative amounts of 

LiOH in the ALD films. XPS 

spectra of both LiOH + CO2 and 

Li2O + CO2 films are shown in 

Figure 14, along with air-exposed 

Li2O for reference.  The spectra 

demonstrate that the LiOH surface is fully reacted to Li2CO3, while the Li2O surface still 

shows some unreacted Li2O (~14%), suggesting that reaction 3 is considerably faster than 

reaction 2. Because of the surface sensitivity of XPS, it can be concluded that the Li2O-

CO2 reaction is limited to the surface region.   

This high reactivity of LiOH with CO2 explains why previous XPS studies of Li2O 

and LiOH have exhibited significant surface carbonate contamination upon air exposure, 

and illustrates the importance of ultraclean synthesis and characterization on Li 

containing ALD process development. The differential reactivity of CO2 provides an 

intriguing path to discriminate the surface composition and chemistry of Li2O films 

versus thicker LiOH films. 

  

 

Figure 15. Real time in-situ ellipsometric measurement of 
the reaction between an ALD film of LiOH + CO2 and 
an ALD film of Li2O + CO2 at 225C and λ=598 nm. 
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High Aspect Ratio Deposition 

The developed ALD process for Li2O was used to coat a multiwalled carbon 

nanotube (MWCNT) sponge to not only calibrate thicknesses of deposited films using 

TEM, but also to characterize the conformality of the ALD Li2O process.   Samples 

produced were transferred under inert packaging to the TEM, where they were loaded 

with < 5 minutes air exposure. Figure 16shows ALD Li2O on a MWCNT, demonstrating 

both the amorphous nature of the as-deposited ALD films, and the highly conformal 

deposition of these films on a MWCNT substrate with aspect ratio ~66.  This conformal 

deposition is necessary to enable the future fabrication of templated nanostructures for 

advanced batteries. 



 

 

 

 

35 

 

Figure 16. (a, b, c) TEM images of ALD Li2O deposited using LiOtBu and H2O at 250˚C on to a MWCNT 
substrate demonstrating ability to conformally coat high aspect ratio nanostructures; (d) electron 
diffraction image of one Li2O crystal showing the <200> plane. 
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Chapter Summary 

The first ultraclean synthesis and characterization of Li2O, LiOH, and Li2CO3 thin 

films using LiOtBu, H2O, and PO2 as precursors has been demonstrated.  At 225˚C, the 

thermal ALD process results in thin films of LiOH, while above 225˚C the ALD process 

results in films of Li2O with a hydroxylated surface layer.  Use of plasma excitation (PO2) 

complicates the deposition product and introduces carbon, leading to a combination of 

Li2CO3 and Li2O, the ratios of which do not vary with temperature.  Further, these 

experiments demonstrate the extreme air reactivity of ALD Li2O films due to reversible 

surface hydroxylation by H2O followed by irreversible carbonate formation at room 

temperature.  Given this and the differential reactivity of Li2O vs. LiOH to CO2, control 

of process ambient and intentional gas dosing provide new avenues for understanding the 

relevant surface and bulk chemistries of Li oxide materials, underscoring the value of 

ultraclean synthesis and in-situ characterization. 
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Chapter IV: ALD Li3PO4 

Introduction 

Others have combined the LiOtBu and H2O chemistry in ternary ALD processes for 

metal oxide cathodes98, anodes103, and solid electrolytes99,104,105, however again a 

fundamental understanding of the film growth processes and surface chemistry during 

deposition is incomplete due to both the high reactivity of the Li-containing ALD 

materials and the difficulty of developing multicomponent ALD processes.  Previously, 

Lithium phosphate ALD films have been demonstrated using the binary process of 

LiOtBu + trimethylphosphate (TMP)105, however the published ALD process did not 

include H2O as a precursor, simplifying deposition chemistry. 

Process Development 

Starting with the ALD Li2O chemistry at 250˚C, the TMP is added at two different 

points in the ALD process: after the H2O pulse and before the H2O pulse, resulting in two 

different precursor orders: LiOtBuèH2OèTMP, and LiOtBuèTMPèH2O.  Precursor 

saturation doses for the LiOtBuèH2OèTMP pulse order are shown in Figure 17 as 

determined by in-situ spectroscopic ellipsometry.  There is no functional difference 

between both precursor pulse orders as determined by the chemistry and morphology of 

the resulting films, suggesting that considerable atomic and molecular reorganization is 

occurring during the ALD growth process. The saturation dose for TMP is .4s when 

inserted into to the ALD Li2O chemistry, with a saturating growth rate of 1.2 Å/cycle.  

ALD Li3PO4 films have been deposited between 150˚C and 300˚C, however the growth 
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rate remains constant over the examined temperature range, indicating a large and robust 

growth process window.   

 

ALD Li3PO4 Characterization  

In-situ XPS determines that 

ALD films deposited using the 

ternary LiOtBuèH2OèTMP 

process sequence (as well as 

those deposited using the 

alternate process sequence) result 

in a film chemistry and 

stoichiometry of Li3PO4, shown 

in Figure 18.   These films do 

show residual carbon 

contamination (~1.5%), most 

likely due to the incomplete exchange of the methyl ligands from the TMP precursor 

during the ALD process.  Without the addition of the water pulse the TMP will not fully 

react with the LiOtBu-terminated surface, resulting in significantly higher (~10%) carbon 

contamination in the resulting films.  Addition of the water precursor after the LiOtBu 

pulse ensures a fully hydroxylated surface during the TMP pulse, nearly eliminating 

carbon from the ALD films via complete ligand exchange during the TMP pulse and 

increasing the saturating growth rate to ~1.1 Å/cycle. 

 

Figure 17. Growth curve demonstrating self-saturating 
behavior for ALD Li3PO4 as a function of TMP pulse time 
at 250˚C for the deposition sequence LiOtBuèH2OèTMP.  
LiOtBu and H2O pulse times were 3 s and 0.06 s 
respectively, and purge times for all precursors were 30 
seconds.  The data points are fit to an arbitrary 
exponential function. 
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Figure 18. In-situ XPS survey spectra of as-deposited ALD Li3PO4 at 250˚C.  Some residual carbon (~1.5% 
at.) is present due to the incomplete reaction of the trimethylphosphate ligands with the LiOtBu. 

External Characterization 

The now-developed ALD process for Li3PO4 was used again to coat a MWCNT 

sponge for both external thickness calibration and to characterize the conformality of the 

ALD Li3PO4 process.   Samples produced were transferred under inert packaging to the 

TEM, where they were loaded with < 5 minutes air exposure. Figure 19A shows ALD 

Li3PO4 on a MWCNT.  Here, as opposed to the ALD Li2O process, the as-deposited films 

are polycrystalline, in agreement with previous results105.  XRD data confirming the ALD 

film crystallinity are shown in Figure 19B.  The labeled XRD peaks are consistent with 

multiple Li3PO4 patterns from the ICDD database. 
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Figure 19. (a) TEM image of ALD Li3PO4 deposited on a MWCNT sponge substrate showing the 
polycrystalline nature of the as-deposited film.  Inset is the atomic composition of the heterostructure 
as determined by in-situ XPS; (b) XRD pattern of the ALD Li3PO4 as-deposited on the MWCNT 
substrate.  XRD peaks are consistent with Li3PO4 from the ICDD database. 

Chapter Summary 

An ALD process for Li3PO4 has been developed and characterized.  The ALD process 

window is between 150˚C and 300˚C with a stable growth rate of ~1.1 Å/cycle as 

determined by in-operando spectroscopic ellipsometry.  ALD Li3PO4 is deposited in 

crystalline form, and the ionic conductivity is determined to be 8x10-9 s/cm, comparable 

with values in literature105,106. 
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Chapter V: ALD LiPON 

Background 

Since its discovery in the early 1990s,107 LiPON (lithium phosphorous oxynitride) has 

been one of the most popular solid-state electrolytes used for planar lithium ion 

microbatteries.  LiPON thin films are commonly deposited using reactive sputtering of a 

Li3PO4 target in an N2 atmosphere.64,66,68,108,109  Generally, sputtered LiPON films are  

~1µm thick, but sputtering of much thinner LiPON films (12 nm) has recently been 

demonstrated.110  As a physical deposition technique, sputtering is generally unable to 

deposit high quality films on 3D geometries.37  Also, the low reactivity of the N2 gas 

during the sputtering process also has difficulty doping these films with > 2% N. 

Highly tunable N doping of LiPON is possible through e-beam evaporation of Li3PO4 

coupled with a N2 plasma discharge above the substrate,111 however this technique is also 

limited to planar substrates. 

More recently, Kim et al. developed a MOCVD process for LiPON,112 but high 

deposition temperatures (500 C) are undesirable for co-processing with many battery 

materials and chip packaging components, and preclude deposition on materials such as 

Li2CoO3 cathodes without degradation during the deposition process or on metallic Li 

metal anodes without melting them. 

ALD has emerged as the premier deposition process for fabrication of uniform thin, 

conformal films on high aspect ratio scaffolds.40-42,113  ALD has been used to fabricate 

LixA2lO3
99,104,105, LixSiyAl2O3,114 and LiLaTiO2.115   
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Stepwise Process Optimization 

During this phase of the ALD process development nitrogen is incorporated into 

Li3PO4 thin films via inclusion of NH3 gas, NH3 plasma, or N2 plasma precursors during 

the ALD process.  During the process sequence, there are 12 possible places to include N 

in the ALD process sequence: 

1: LiOtBu – H2O – TMP – N 
2: LiOtBu – H2O – N – TMP 
3: LiOtBu – N – H2O – TMP 
4: LiOtBu – N – TMP – H2O 
5: LiOtBu – TMP – H2O – N 
6: LiOtBu – TMP – N – H2O 
7: H2O – LiOtBu – TMP – N 
8: H2O – LiOtBu – N – TMP 
9: H2O – N – LiOtBu – TMP 
10: H2O – N – TMP – LiOtBu 
11: H2O – TMP – LiOtBu – N 
12: H2O – TMP – N – LiOtBu 
 
As before, real-time, in-operando spectroscopic ellipsometry is utilized to develop 

variable-dose ALD recipes during process development, eliminating the need to deposit 

all 12 precursor permutations in separate ALD runs on separate substrates.  This 

methodology drastically increases process development and optimization time, while 

allowing real-time process metrology.  ALD recipes with 100 cycles of each set of 

parameters (1-6) were developed, with the process stopped after each permutation for 

XPS characterization and analysis.  After analysis, the same wafer was transferred from 

the XPS back into the deposition chamber for the next deposition sequence, allowing 

process development without film contamination due to air exposure and eliminating 

waiting periods during substrate pump down times.  Process sequences 6-12 were not 
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run, as these are identical to sequences 1-6 through translational symmetry.  After the 

first two precursor pulses, the rest of the sequence is identical. 

Thickness calibration of the optical model for ALD LiPON is an iterative process, 

requiring thickness confirmation using both an external profilimeter and TEM imaging, 

followed by re-analysis of previously collected ellipsometric data.  The optical model 

used for ALD LiPON is a B-Spline model developed in conjunction with the J.A. 

Woollam company, and verified for accuracy within 10% thickness.  This optical model 

is shown in Figure 20. 

 

Figure 20. B-Spline optical model used for ALD LiPON developed in conjunction with the J.A. Woollam 
company. 

The most promising N precursor for ALD LiPON is NH3 gas in order to avoid plasma 

enhanced ALD process, which are known to have limited conformality as compared to 

the thermal ALD processes due to the short mean-free path of the plasma radicals, 

however use of NH3 gas at any point in the ALD process results only in deposition of 
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Li3PO4 films.  As these depositions were unsuccessful at fabrication of ALD LiPON, this 

data is not shown in this thesis.  

Next, doping of ALD Li3PO4 films using plasma N2 pulses during the ALD process 

was attempted at each possible step of the process sequence, which while offering 

lowered conformality over thermal ALD processes, can in certain cases facilitate 

deposition of challenging chemistries due to the high reactivity of the plasma species.   

 

Figure 21. Cartoon of the proposed ALD LiPON process chemistry.  (a) Hydroxyl terminated substrate; (b) 
metastable surface after the LiOtBu pulse; (c) H2O pulse removes the tert-butanol ligands and forms 
LiOH on the surface; (d) TMP reacts with surface LiOH through ligand exchange reaction, evolving 
CH3OH; (e) N2 plasma crosslinks phosphorous atoms and evolves CH3OH; (f) LiOtBu reacts with -
OCH3 ligands and evolves both CH2OH and CH2O.  The initial LiOtBu and H2O pulses shown in (a) 
and (b) are required “activate” the substrate prior to deposition.  For all subsequent ALD cycles, the 
process chemistry in (c) through (f) is repeated as one ALD cycle. 

Indeed, use of PN2 during the ALD process can successfully dope N into Li3PO4, 

however this only works with one specific precursor pulse sequence, as most of the 

surface terminating ligands are non-reactive towards PN2.  We managed to incorporate 
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Nitrogen into the ALD films only when the PN2 was applied after the TMP pulse, directly 

before the LiOtBu pulse. 

The full quaternary ALD LiPON process sequence is shown in Figure 21, which 

elucidates the impact of ligand chemistry on the ALD process sequence.  Application of 

the PN2 dose in any other location during the process sequence resulted in deposition of 

nitrogen-free polycrystalline Li3PO4, likely due to the nature of the nitrogen bonding in 

LiPON.116  In doped phosphate glasses, nitrogen atoms serve as either doubly or triply 

coordinated bridges among phosphorous atoms. In the ALD process, incoming N ions 

presumably act to “crosslink” otherwise disparate TMP fragments on the surface, which 

we believe aids in the amorphization of the film. If the phosphorous atoms are not the 

surface species (such as after any other precursor pulse aside from TMP) then the stable 

bonding sites for N are unavailable due to steric hindrance from ligands on the other 

precursors, preventing incorporation of N into the ALD films.68,70 
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Figure 22 shows 

a pressure trace 

overlaid with an in-

situ ellipsometric 

thickness 

measurement for 

one complete ALD 

cycle of the 

optimized process. 

The changes in film 

thickness are 

generally in line 

with the mechanism 

proposed in Figure 21. The addition of LiOtBu species to the surface leads to a thickness 

gain of approximately 0.3 nm, which is reduced somewhat during the purge period due to 

a combination of vaporization and decomposition. The measured thickness sharply 

decreases upon the addition of H2O, which is consistent with a ligand exchange reaction 

liberating tert-butanol and leaving behind the smaller LiOH unit (Figure 21, b to c). The 

addition of TMP again increases the thickness of the film consistent with a stable, surface 

bound methyl phosphate species. Finally, the application of a remote N2 plasma coincides 

with a linear decrease of film thickness, which is consistent with the crosslinking reaction 

 

Figure 22. (left axis, black) Spectroscopic ellipsometry data for the fully 
optimized ALD LiPON process demonstrating the growth and shrinkage 
due to precursor chemisorption and ligand exchange reactions during the 
individual steps of the ALD cycle. (right axis, red) Pressure trace in the 
ALD reactor showing corresponding precursor pulses during ALD 
growth. 
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proposed in Figure 21 steps d to e. We note that while the N2 plasma is a remote process, 

some high energy ions and neutrals may be reaching the film and etching the surface, 

although the overall growth rate is clearly positive in all cases. 

Chemical Characterization 

Figure 23 shows an XPS survey spectra of ALD LiPON, while Figure 24 shows high-

resolution XPS spectra of the ALD LiPON films demonstrating the impact of the PN2 

dose on the binding environment of the ALD films.   

 

Figure 23. In-situ survey XPS spectra of as-deposited ALD LiPON at 250˚C demonstrating ALD film 
purity. 

Due to the lack of carbon in these films, all spectra are calibrated against the Li 1s 

peak, set at 55.6 eV in line with previously measured values for Li3PO4.117 The Li 1s 

orbital generally shows the least variation of binding energy with chemical environment 

among the elements present, warranting its choice for use in calibration. With no PN2 

dose the O1s (531.6 eV), and P2p 3/2 (133.6 eV) XPS peaks are also consistent with 
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Li3PO4.  As the PN2 dose is increased, the chemistry of the film changes markedly. The 

overall incorporation of N grows with dose time. The N spectrum demonstrates two 

chemical species, which are generally associated with atoms linking either two or three P 

atoms in the glass.70 There is a slight shift of the phosphate O1s peak to lower binding 

energies by ~0.1 eV, along with the emergence of a second O1s peak at 533.0 eV, 

attributed to an increase in bridging oxygen (P-O-P) in the LiPON glass. Interestingly, 

the parallel increase of both the bridging oxygen and nitrogen content stands in contrast 

with previous reports on the chemistry of sputtered LiPON films,118 in which more N 

results in less bridging oxygen. This is likely due to the fact that sputtered LiPON is 

usually amorphous regardless of N content, and so contains a maximum number of 

bridging oxygens when no nitrogen is present to substitute for them. In the case of ALD 

LiPON, the film is also undergoing a transition from crystalline to amorphous with 

increasing N content, and so the overall number of all bridging species is increasing. Both 

P2p peaks are slightly broadened with increasing N content, also consistent with LiPON 

amorphization with higher PN2 dose, as will be demonstrated below.   
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Figure 24. In-situ high-resolution core-level XPS spectra (columns) of as-deposited ALD LiPON at 250˚C 
demonstrating nitrogen doping as a function of N2 pulse time (rows).  Spectra include deconvolution of 
multicomponent peaks.  All ALD films shown here are ~50 nm thick. 

 

In LiPON, nitrogen atoms are incorporated as bridging atoms between lithium-

phosphate complexes in either a doubly coordinated or triply coordinated configuration 
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as seen in Figure 25.  To date, no selectivity over the type of N incorporation into LiPON 

films has been conclusively demonstrated, and it is unclear if one species of N bonding is 

preferred over the other for enhanced ionic conductivity and material stability.   

 

Despite the variable 

PN2 dose during the ALD 

process, the growth rate 

is relatively stable around 

1.05 Å/cycle, as shown in 

Figure 26a.  The slope of 

the fit to the growth rate 

is within experimental 

error.  Figure 26b demonstrates the ratio of doubly coordinated N to triply coordinated N 

in the ALD LiPON is consistent with increasing N dose, indicating that as the N content 

is increased, the doping environment of the LiPON is chemically similar.  This specific 

ratio of triply coordinated N to doubly coordinated N is likely due to the use of a single 

energy remote plasma to nitrogenate the films.  Modification of the N radical energy in 

the plasma could likely modify this ratio, however this is currently instrumentation 

limited.  The elemental ratios of the ALD LiPON films as determined by XPS are plotted 

in Figure 26C.  As the PN2 dose is increased, ALD films transition from polycrystalline 

Li3PO4 to amorphous LiPON, as indicated by the XRD data in Figure 26d.  This 

transition point occurs near 4.5% N content, as ALD LiPON deposited with a 5 second 

 

Figure 25. Cartoon representation of the two possible nitrogen 
coordination environments in LiPON: doubly and triply 
coordinated. 
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PN2 dose remains polycrystalline, while ALD LiPON deposited with a 10 second PN2 

dose is amorphous.  To verify that this effect was due to the nitrogen content of the films 

and not the plasma dose, an ALD LiPON process was run using an Ar plasma instead of 

the usual PN2 step, resulting in the deposition of polycrystalline Li3PO4 films.  Clearly, 

this indicates that LiPON amorphization is due to inclusion of N in glass forming 

networks and not as a result of the PN2 dose. 

AFM height maps of 

ALD LiPON films 40 

nm thick with 1.8% N 

content (Figure 26a) and 

16.3% N content (Figure 

26b) clearly demonstrate 

this crystalline to 

amorphous transition 

with increasing N 

content of the ALD 

films.  The RMS 

roughness of these films 

is 10.1 nm for the 1.8% 

N LiPON film, and 0.78 

nm for the 16.3% N 

LiPON film respectively.  SEM images of the same samples are also presented in Figure 

 

Figure 26. (a) Growth rate as a function of pN2 dose for ALD LiPON.  (b) 
Ratio of doubly coordinated N to triply coordinated N in the LiPON 
structure as determined by XPS, indicating a uniform bonding 
environment as a function of N content. (c) Film stoichiometry as 
determined by peak fitting the high-resolution XPS peaks in Figure 
2. (d) XRD data of 50 nm thick LiPON thin films demonstrating the 
crystalline to amorphous transition with increasing Nitrogen 
content. 
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26c and Figure 26d, showcasing the film texture.  Note that it is incredibly difficult to 

distinguish features on the SEM image of amorphous ALD LiPON; this is due to the 

incredible uniformity and lack of texture of the deposited film.  This crystalline to 

amorphous transition is contrary to previous results, which found that sputter deposited 

Li3PO4 exposed to a high energy N2 plasma discharge exhibited an amorphous to 

crystalline transition with increasing N content, though this is perhaps not surprising 

considering the drastically different deposition techniques.111 

 

One of the hallmarks of 

the ALD process is the 

ability to conformally coat 

high aspect ratio 

nanostructures with thin, 

uniform layers.  Here, ALD 

LiPON films with varied N 

content are deposited on 

MWCNT sponge scaffolds 

for both morphological 

imaging and ellipsometric thickness calibration.  TEM images of MWCNTs covered with 

ALD LiPON films are shown in Figure 28.   

 

Figure 27. AFM height maps of (a) LiPON film with 2% N and (b) 
LiPON film with 17% N.  (c) and (d) show SEM images of the 
same films in (a) and (b) to show texture. 
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The morphology of these 

LiPON films is consistent with 

the AFM and SEM data presented 

in Figure 27, and clearly 

demonstrates the uniform 

deposition possible on high 

aspect ratio scaffolds through the 

ALD process.  Notably, while 

crystalline ALD LiPON is stable, 

amorphous ALD LiPON 

degrades rapidly upon electron 

beam exposure, consistent with 

others’ observations.89  

Amorphous ALD LiPON 

deposited onto MWCNT 

substrates exposed to a 200 keV 

during electron beam during 

TEM imaging is shown in Figure 

29.  After only 180 seconds of 

beam exposure (a typical time required for focusing image collection), the ALD LiPON 

has melted and degraded significantly, making thickness measurements unreliable and 

 

Figure 28. TEM images of ALD LiPON deposited on a 
MWCNT sponge with (a) 0% N, (b) 4.8% N, and (c) 9.3% 
N content.  Both (a) and (b) are polycrystalline, while (c) 
is amorphous.  The diameter of the MWCNTs is 30-40 nm. 
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imaging pristine structures impossible.  This mechanism is poorly understood and 

deserves further investigation, however such research is outside the scope of this thesis. 

 

Figure 29. Beam damage to ALD LiPON deposited onto MWCNTs inside a TEM at 200 keV. 

More accurate measurements of ALD LiPON thickness are collected using SEM 

imaging by deposition onto VLS grown silicon nanowires.119  These nanowires are ideal 

for imaging, as they contain a bead of gold catalyst on the tip of the wire.  As the ALD 

LiPON process nucleates equally well on both Au and Si, imaging of these structures and 

measurement of the LiPON layer is possible by using the contrast between the Au and the 

covering LiPON layer in SEM.  The lower energy of the electron beam during SEM 

imaging (10 kV typical) does not measurably degrade the LiPON films, and allows for 

accurate LiPON thickness measurements. 



 

 

 

 

55 

 

Figure 30. (a) Low resolution and (b) high resolution images of bare Si NWs grown directly on stainless 
steel substrates using VLS growth.119,120  (c) Low resolution and (d) high resolution images of Si NWs 
coated with 40 nm ALD LiPON. 

ALD LiPON Ionic Conductivity Determination 

The most common method of determining ionic conductivity of a material is 
electrochemical impedance spectroscopy (EIS), previously described in   
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Chapter II: Laboratory Design, Equipment.  However, there are many different 

common experimental setups and associated electrochemical circuit models that can be 

used depending on the materials to be investigated. In this thesis, I use three different 

methods to investigate ionic conductivity of LiPON: (1) EIS measurements of LiPON 

assembled into CR2032 coin cells with a liquid electrolyte and a Li counter electrode, (2) 

EIS measurements of Au-LiPON-Au solid-state trilayer solid-state structures, and (3) 

direct ionic current measurements through a single nanopore filled with material. 

 
CR2032 Coin Cells 

In this case, the ionic conductivity of ALD LiPON was tested at various thicknesses 

and N contents by deposition onto stainless steel substrates, which were then assembled 

into CR2032 coin cells. EIS tests on these LiPON films as a function of film thickness, 

all with 5.5% N, are shown in Figure 31. 
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Using the circuit model for 

thin LiPON developed by 

Dudney (Figure 31 inset),121 

the ionic conductivity is 

determined to be 1.45x10-7 

S/cm +/- 1x10-7 S/cm, 

slightly lower than 

previously published results 

of sputter deposited LiPON 

with similar nitrogen 

content.122 However, this 

value represents the highest 

conductivity of any ALD 

solid electrolyte reported to date104,114. In this model, the ionic conduction is modeled by 

two pairs of resistors and constant phase elements (frequency-dependent capacitors) at 

both high (CPEdp/Rion) and medium (CPEMF/RMF) frequencies, as well as a double layer 

capacitance (CPEDL) at low frequency.  Table 1 shows the fitted circuit component values 

corresponding to the data in Figure 31. 

Thickness 
(nm) 

R0 (Ω) Rion (Ω) CPEion (Fa) RMF (Ω) CPEiMF (Fa) CPEDL (Fa) Ionic Conductivity 
(S/cm) 

80 3.165 27.74 .481 2768 7.56E-6 6.02E-3 1.45E-7 
40 1.4E-2 13.97 .385 544 12.9E-6 4.58E-3 4.41E-7 
20 2.4E-3 6.942 .771 809 4.99E-6 10.3E-3 1.45E-7 
Table 1. Table of fitted values to circuit components for ALD LiPON thin films with 5% N content. 

 

Figure 31. EIS curves for 20 nm, 40 nm, and 80 nm thick ALD 
LiPON working electrodes in coin cells with a Li metal counter 
electrode.  Dots are measured data, lines are fits to the 
measured data using the inset circuit model used for impedance 
analysis adapted from Dudney.121 
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Dudney’s model includes a parallel resistor to model the electronic leakage current 

detected in very thin LiPON films. However, the EIS measurement setup used in this 

thesis has the advantage that it adds an electronically insulating liquid electrolyte in 

parallel with the two conducting electrodes, eliminating the possibility of electronic 

leakage in our circuit.  The ionic conductivity of the ALD LiPON does not change 

significantly with film thickness, and as such bulk ionic conductivity in the LiPON likely 

dominates over the interfacial impedance of ALD LiPON.  

The conductivity of 

sputtered LiPON has been 

reported to increase with 

increasing N content,65 and 

indeed here a rather large 

increase in the ionic 

conductivity of the ALD 

LiPON is measured with 

nitrogen content increasing 

from 1.8% to 16.3%, plotted in 

Figure 32.  For non-doped 

ALD Li3PO4, an ionic 

conductivity of 6.5x10-9 S/cm is measured, in the range of acceptable values previously 

measured for the ionic conductivity of Li3PO4.106 

Conductivity Measurements With Solid-State MIM Devices 

 

Figure 32. Ionic conductivity of ALD LiPON films plotted as a 
function of N content along with linear fit to the data. 
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Ideally, the ionic conductivity of ALD LiPON can be reliably measured using fully 

solid-state stacks to more appropriately model the LiPON performance in a solid-state 

battery due to the solid-state Au/LiPON interfaces.  First, 50 nm Au was evaporated onto 

a silicon wafer, and then ALD LiPON was deposited on top of this Au bottom electrode.  

The corner of the wafer was masked from LiPON deposition by a small silicon chunk to 

maintain a clean bottom electrode contact area for electrical testing.  The Au-LiPON 

stack was then removed from the integrated system, and 200 nm-thick top electrodes of 

Au were evaporated using a stainless steel shadow mask to define the top electrode area 

(500 µm diameter, Figure 33).  EIS measurements on these MIM devices were performed 

using a Bio-Logic VSP potentiostat connected to a fully automated probe station in the 

ANSLab constructed by a previous graduate student.  Bottom contract was made to the 

masked Au bottom electrode using a Cu clip as the counter electrode, while the working 

electrode was connected to an Au pin that made contact to one patterned Au top electrode 

at a time. 
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Figure 33. Two EIS plots of Au-LiPON-Au MIM trilayer structures along with data fits, along with an SEM 
image of one of the top Au contact pads and the same EIS equivalent circuit from Dudney.121 

However, due to problems with device fabrication resulting in approximately 95% of 

the fabricated devices shorting, likely due to degradation from air exposure during the 

fabrication process, only two ALD LiPON films with thicknesses of 20 nm and 140 nm 

were successfully measured on Au-LiPON-Au trilayer devices.  To prevent this issue in 

the future, fabrication will proceed entirely inside the glovebox, and the devices will be 

tested using an InGa eutectic droplet electrode to prevent physical puncturing of the top 

contact with the probe station needle.  Fitting the previously described EIS model to these 

devices indicates resistance values corresponding to an ionic conductivity of 8.5x10-6 

S/cm for both thicknesses, an order of magnitude higher than the conductivity determined 

using the coin cell measurements.  This higher conductivity may be due to electronic 

leakage currents from one Au electrode to the other in the MIM structure, which the EIS 

model cannot adequately distinguish from ionic conductivities.  While the accepted value 
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of the electron conductivity of LiPON is 1x10-12 S/cm,122 similar high leakage currents 

have been seen in LiPON films les than 20 nm thick.121 MIM device shorting may be due 

to a number of different factors: air exposure of the ALD LiPON during loading into the 

vacuum chamber for top electrode evaporation, electrical testing in atmosphere after top 

electrode fabrication, or even mechanical damage of the ALD films during the electrical 

testing procedure. 

Single Nanopore Conductivity Measurements 

The last method used to measure ionic conductivity of ALD LiPON is a novel method 

developed by and operated in collaboration with processor Zuza Siwy at UC Irvine.123-125 

This method relies on measurement of ionic current between two electrodes immersed in 

two electrolyte reservoirs.  A SiN membrane with a single nanopore (drilled by a high-

energy electron beam inside a TEM) is placed between these reservoirs, allowing ion 

transport between both reservoirs to be detected by the electrodes.  A schematic of the 

experimental setup is shown in Figure 34A.  This technique is advantageous in that it can 

determine ionic conductivity of the material inside a single nanopore without electronic 

leakage influencing the measurement.  Also, direct measurement of ion current through 

the nanopore using an applied voltage sweep is an improvement over fitting EIS models 

to impedance spectroscopy data. Use of an empty nanopore can measure the ionic 

conductivity of the liquid electrolyte solution in the cell, while filling the nanopore with 

some other material allows direct measurement of the material inside the nanopore.  In 

this case, ionic current is measured through an empty 12 nm diameter, 30 nm length 

nanopore.  The nanopore is filled with ALD LiPON, and then the conductivity 
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experiment is repeated.  The resulting data from a first attempt at this measurement is 

shown in Figure 34B, demonstrating the decreased ionic conduction through the LiPON 

filled nanopore over the liquid electrolyte filled nanopore.   

 

Figure 34. (a) Cartoon representation of the single nanopore ionic conductivity experimental setup.  (b) I-V 
curves of the same empty and ALD LiPON-filled nanopore. 

Analysis of these data indicates that the ionic conductivity of the ALD LiPON filled 

nanopore is approximately 1x10-3 S/cm, well above the expected ionic conductivity 

measured in the two previously described techniques.  This discrepancy may be due to 

degradation of the ALD LiPON due to air exposure during shipping from Maryland to 

California, due to degradation from reactions with water dissolved in the liquid 

electrolyte during testing, or due to only partial filling of the nanopore with the ALD 

LiPON.  However, this measurement has demonstrated the utility of the technique to 

measure the ionic conductivity of materials inside a single nanopore, and the research 

collaboration still ongoing.  

Chapter Summary 
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I have demonstrated the first reported ALD process for the solid lithium electrolyte 

LiPON, and shown the ability to modify the N content in the LiPON films from 0% up to 

16.3% N by variation of the plasma nitrogen dose at a specific location in the ALD 

sequence.   Ionic conductivity of ALD LiPON has been measured by three different 

methods, however there remains some unresolved discrepancy among the measurements 

achieved using these techniques. 

The combination of highly tunable thickness during growth, tunable N content, and 

the ability to conformally deposit LiPON onto high aspect ratio nanostructures is an 

incredibly desirable combination anticipated to enable deposition of solid electrolyte 

protection layers onto challenging electrode geometries, as well as enable fabrication of 

next-generation, 3D solid microbatteries.  This work has been submitted to ACS 

Chemistry of Materials and currently under review. 
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Chapter VI: Lithium Metal Protection with ALD Solid Electrolytes 

Solid Electrolyte Interphase 

The solid electrolyte interphase, or SEI, is a degradation byproduct formed at the 

electrode/electrolyte interface in conventional Li-ion batteries.  This layer is composed of 

reduction products of the liquid electrolyte and lithium halide salts, primarily LiF, 

Li2CO3, but also composed of many different polymeric degradation byproducts.126,127 

The SEI serves to stabilize the anode surface upon repeated cycling, however 

formation of this layer is poorly controlled.  Increasing SEI thickness increases cell 

impedance, eventually leading to high overpotentials upon recharge that can cause Li 

plating, dendrite formation, and subsequent cell shorting and spectacular failure.128 

ALD LiPON as an Artificial SEI Layer 

One use of ALD coatings has been to apply artificial SEI layers to both anode and 

cathode materials.55,129-131  These coatings are generally made of well-known metal oxide 

ALD coatings such as ZrO2, TiO2, and Al2O3. As these metal oxides generally have low 

ionic conductivities on the order of 1x10-10 S/cm, the layer thickness must be < 2 nm to 

prevent unacceptable impedance increases of the electrodes.  Use of higher ionic 

conductivity coatings such as LiPON enable deposition of thicker artificial SEI layers (on 

the order of 50 nm and above) to increase both the mechanical stability and 

electrochemical stability of the electrodes while still allowing acceptable lithium kinetics 

through the protection layer.64,66,67  The drawback of many solid-state ionic protection 
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coatings is the physical vapor deposition processes used, which suffer from poor 

thickness control and low interfacial quality.37,132 

LiPON For Silicon Electrode Stabilization 

In order to demonstrate ALD LiPON’s function in a model electrochemical system, 

LiPON films were applied to sputtered amorphous silicon anodes on copper current 

collectors, as well as to the bare Cu current collector in order to determine the influence 

of the ALD LiPON layers on lithiation behavior of the underlying silicon.  CV scans of 

these anodes collected between 10 mV and 1.2 V vs Li/Li+ at .1 mV/s sweep rate are 

shown in Figure 35.  The ALD LiPON deposited directly on the Cu current collector 

shows a lack of peaks in the CV, indicating a lack of redox reactions occurring during 

lithiation/delithiation in LiPON, expected behavior for an ionic capacitor.  Notably, a 

cathodic current increase due to electrolyte reduction and SEI formation is also not 

obtained even near 0V vs Li/Li+, suggesting the LiPON film is an effective barrier for 

electron transfer from the electrode to the organic electrolyte. 

The uncoated silicon anode behaves electrochemically as expected, with two cathodic 

peaks associated with the organic electrolyte breakdown and lithiation of the silicon, at 

~300 mV and ~180 mV respectively.9 Application of both 20 and 40 nm ALD LiPON 

coatings on the silicon completely extinguishes the cathodic peak associated with SEI 

formation. On the anodic scan, two peaks commonly associated with delithiation are seen 

for both uncoated and LiPON coated silicon. 
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Thicker LiPON layers do 

show a reduced current response 

to the applied potential sweep in 

both anodic and cathodic scan 

regions, indicating that the 

impedance of the coated anodes 

increases with increasing 

LiPON film thickness as 

expected. 

Lithium Metal Anode 

Protection 

Lithium metal is considered 

the most promising anode for next-generation batteries due to its high energy density of 

3840 mAhg-1.  However, the extreme reactivity of the Li surface can induce parasitic 

reactions with solvents, contamination, and shuttled active species in the electrolyte, 

reducing performance of batteries employing Li metal anodes. One promising solution to 

this issue is application of thin chemical protection layers to the Li metal surface. Using a 

custom made ultrahigh vacuum (UHV) integrated deposition and characterization system, 

we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal 

with exquisite thickness control.  We demonstrate as a proof of concept that a 14 nm 

thick, ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, 

sulfur, and electrolyte exposure.  Using Li-S battery cells as a test system, we 

 

Figure 35. CV curves of (black) bare sputtered Si; (red) 20 nm 
ALD LiPON on sputtered Si; (blue) 40 nm ALD LiPON on 
sputtered Si; (green) 40 nm ALD LiPON on Cu.  The sweep 
rate for all CV scans was 0.1 mV/s in 1:1 EC:DEC with 1M 
LiPF6 electrolyte and a Li metal counter electrode. 
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demonstrate an improved capacity of 60% using ALD Al2O3 protected anodes over cells 

assembled with bare Li metal anodes for up to 100 cycles, while we demonstrate a 

capacity improvement of 6X using 20 nm LiPON protected anodes for up to 35 cycles. 

Motivation 

The ever increasing demand for higher energy density storage devices for 

transportation (electric vehicles), grid storage (power leveling), and other applications is 

challenging the scientific community to develop a rechargeable battery with cycle life 

comparable to Li-ion but with significantly higher capacity.  Major R&D centers 

increasingly look to metal anode systems, including Li-S, Li-O2, and advanced oxide 

cathode systems combined with Li metal anodes for increased performance.  Recent 

analysis of beyond-Li-ion options by the Joint Center for Energy Storage Research 

(JCESR) highlights the high priority for metal anode systems, while recognizing that the 

reactivity of the metal anode poses serious technical and manufacturing challenges8. 

Realization of stable Li metal anodes in rechargeable batteries is a challenge with 

many facets.  From a processing perspective, lithium metal will oxidize and corrode 

under atmospheric conditions via reaction with H2O and CO2 via the stepwise reactions 

2𝐿𝑖 + 2𝐻!𝑂 → 2𝐿𝑖𝑂𝐻 + 𝐻!        (1) 

2𝐿𝑖𝑂𝐻 + 𝐶𝑂! → 𝐿𝑖!𝐶𝑂! + 𝐻!𝑂        (2) 

producing a characteristic black tarnish on the Li metal surface77.  This oxidation is 

prevented by limiting the exposure of the Li metal to H2O, necessitating the use of costly 

dry rooms for lithium metal extrusion and battery assembly. 
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From an operational point of view, lithium’s high reactivity with most organic 

chemicals used in battery electrolytes causes corrosion reactions to occur during cycling 

due to reduction of solvents, active species, or impurities, leading to degradation of the 

anode, consumption of electrolyte and active materials, and eventual battery failure. 

Lithium metal protection is particularly important in systems where the active material 

diffuses freely through the electrolyte (e.g. polysulfide in Li-S cells), or if inherent 

contamination is present in the electrolyte (e.g. H2O, CO2, and N2 in a real Li-air system).  

In both of these cases the highly reactive Li anode forms a high impedance solid 

electrolyte interphase (SEI) layer on its surface consuming electrolyte and active material 

resulting in practical capacity loss and low of coulombic efficiency78. 

Previous attempts to passivate Li metal with organic molecules79,80 and polymeric 

coatings81 have achieved limited success due to poor thickness and compositional control 

of the applied protection layer.  Protection with sputtered solid electrolytes64,83, while 

effective at preventing electrolyte decomposition on the Li metal surface can result in 

large cell overpotentials during recharge at even moderate rates due to the large 

thicknesses (~µms) of the sputtered solid electrolytes. Recently, protection of the Li 

surface with self-assembled carbon spheres84 has proven effective at preventing Li 

dendrite growth upon cycling, but offers limited options for scalable manufacturing and 

also adds significant mass to the anode.   

We suggest a new approach to study Li metal surface stabilization via application of 

ALD protection layers directly on the Li, creating a new thin phase between the metal 

and various corrosive surroundings. Using a unique UHV system described elsewhere86, 
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we deposited ALD Al2O3 coatings directly on Li metal foil to mitigate corrosion 

reactions due to both atmosphere and electrolyte exposure.  We determine and measure 

directly, for the first time, the nominal layer thickness for effective Li metal protection, 

and we use Li-S cells to demonstrate a dramatic capacity increase of protected Li metal 

anodes over their unprotected counterparts via mitigation of the Li corrosion by Sulfur 

species shuttling in the electrolyte87.  While the focus of this work is on Li metal anodes, 

our study opens a new opportunity for realization of other metal anode based systems 

such as Na and Mg rechargeable batteries, and for protection of those metal by various 

thin layers deposited atomically or molecularly. 

Deposition of ALD Protection Coatings on Lithium Metal Anodes 

ALD is ideally suited to Li metal protection due to its unique properties of angstrom-

scale thickness control, pinhole-free conformal films, and low temperature deposition 

below the melting point of lithium (180˚C).43  ALD coatings have proven to be effective 

passivation layers for metals such as Cu,133 Mg,134 and Steel135 from corrosion in 

electrolytes, and effective water vapor transmission barriers on polymers136 and even 

reactive metals such as Ca.137 In batteries, thin ALD coatings have been applied to non-

metallic anodes57,138-140 and cathodes129,141,142 to improve battery cycling performance, 

however to maintain high ionic conductivities without increasing cell impedance these 

ALD coatings are less than 2 nm thick.  In contrast to these previous studies, we find that 

< 2 nm ALD coatings are not of sufficient thickness for Li metal protection. 
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Figure 36.  XPS survey spectra of (a) pristine Li metal; (b) uncycled Li metal protected with 5 nm ALD 
Al2O3; and (c) uncycled Li metal protected with 14 nm ALD Al2O3. 

This section focuses exclusively on ALD Al2O3 protection layers, due to the ideal ALD 

process chemistry able to coat Li metal, and the known lithiation mechanism of Al2O3 to 

form the stable, ionically conductive LixAl2O3 alloy.143 While the surface of the Li metal 

is covered with a native oxide as seen in the Li 1s photoelectron peak in Figure 36A, this 

peak is extinguished after application of a 14 nm thick ALD protective layer as shown in 

Figure 36C, which only contains photoelectron peaks consistent with Al2O3. Figure 36B 

shows 5 nm ALD Al2O3 directly on Li metal, which exhibits characteristic photoelectron 

peaks of both Al2O3 and Li metal.  At 14 nm, the ALD layer is thicker than the escape 

depth of the photoelectrons; therefore a lack of a Li 1s peak after application of the Al2O3 

layer indicates not only that the ALD coating is uniform and pinhole-free, but also that 

the top ~8 nm of the layer does not lithiate during the ALD process at 100˚C. XPS 

Spectra of thinner ALD layers on Li metal (not shown) do exhibit the Li 1s photoelectron 

peak, indicating that either these films are thinner than the escape depth of the 

photoelectrons from the underlying Li metal or may contain pinhole defects. 
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Lithium Corrosion Prevention in Three Environments 

We take a stepwise approach to testing the effectiveness of our ALD protection layers 

on Li metal surfaces, with the intent of simulating three environments where 

opportunities for contamination and subsequent chemical corrosion occur either during Li 

metal processing, battery assembly and storage, and finally during battery operation.  

Atmospheric Corrosion 

To test the effect of ALD protection layers against atmospheric corrosion of Li metal 

by H2O and CO2 we exposed pristine and ALD Al2O3 protected Li metal foil to a 

controlled laboratory environment of 20˚C and 40% R.H.  Periodic photographs of the Li 

metal surface were taken under controlled lighting and camera conditions, and then 

ImageJ was used to calculate the amount of surface corrosion that had occurred. Figure 

37A tracks the percent of Li surface tarnishing as a function of air exposure time.  

Notably, un-protected lithium metal begins tarnishing almost immediately after air 

exposure (< 1 minute), while lithium foils coated with 14 nm ALD Al2O3 can prevent the 

onset of surface tarnishing by 20 hours, with higher thicknesses both delaying the onset 

of measurable surface tarnishing as well as hindering the tarnishing rate once it begins. 
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Figure 37.  (a) Optical analysis of lithium foil surface tarnishing during atmospheric 
exposure at 25˚C and 40% R.H. (b) Evolution of H2 gas during organic solvent 
exposure. (c) Correlation between onset time for atmospheric tarnishing and onset 
time for H2 evolution.  (α) Unprotected and (β) 14 nm ALD Al2O3 protected Li metal 
foil immediately upon removal from an argon atmosphere.  (γ) Bare and (δ) 14 nm 
ALD Al2O3 protected Li metal foil after 20 hours exposed to atmosphere at 25˚C and 
40% R.H. 

Organic Solvent Corrosion 

As a test case for the efficacy of ALD protection layers at preventing decomposition 

due to reactions with organic solvents, we immersed bare and protected Li in propylene 

carbonate (PC). By using differential quadrupole mass spectroscopy (dQMS) we sampled 

the gaseous byproducts evolved during the reaction of ALD Al2O3 protected and 

unprotected Li metal with PC. PC was chosen for its known high reactivity with Li 
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surfaces;144 indeed the auto-decomposition of PC has been studied as a protection agent 

of Li surfaces for Li-air batteries.145 Second, PC has a low vapor pressure, making it 

suitable for mass-spec headspace sampling without appreciable loss of electrolyte volume 

over long periods of time (e.g. days).  Our approach enables quantitative detection of the 

gas phase products evolved due to surface reaction of the electrolyte on the interface of 

bare and protected metallic Li, however for the purposes of this study we only measure 

the evolved H2 gas from these solutions, as H2 gas is a viable indicator of multiple Li 

metal corrosion and electrolyte decomposition reactions. 

In Figure 37B, the H2 partial pressure in the container headspace is plotted as a function 

of time for various Al2O3 protection layer thicknesses.  Hydrogen evolution from Li 

metal anodes is a well-known indicator of corrosion reactions.146 These data indicate the 

onset time for H2 evolution is linearly proportional to thickness of ALD layer, implying 

that contamination is diffusing through the ALD layer to the Li metal surface. 

Additionally, after onset of H2 evolution, the H2 partial pressure in the headspace above 

the ALD protected Li is one order of magnitude lower than that of the bare Li, indicating 

that ALD protection also reduces the extent of anode degradation via parasitic reactions 

with the electrolyte. This is with good agreement to what we found with the air exposure, 

as the ALD protection layer is both delaying corrosion and hindering the corrosion 

reaction once it begins. This is attributed to a self-healing mechanism in which ALD 

protection layers < 15 nm contain defects which localize electrolyte decomposition 

reactions, however once a stable phase is formed at these defect sites the corrosion 

reaction is diminished to match that of the fully protected Li metal. 
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Both of these experiments demonstrating direct comparison of the reactivity of pristine 

and protected Li metal allow us to extract a relationship between protection layer 

thickness and degree of lithium protection, shown in Figure 37C. Remarkably, ALD 

Al2O3 has an effective protection thickness dependence of approximately .56 nm/hour, 

independent of atmosphere or liquid exposure environment, suggesting that the duration 

of Li metal protection can be anticipated by careful tailoring of the ALD protection layer 

thickness.  

Dramatic photographic evidence of this protection is exhibited via the remarkable 

optical differences in the lithium surface between unprotected and protected Li metal 

upon initial air exposure (Figure 37α and Figure 37β respectively) and after 20 hours of 

air exposure (Figure 37γ and Figure 37δ respectively) at 25˚C and 40% R.H. 

Sulfur/DME Corrosion  

The efficacy of the Al2O3 protection layers on the Li surface was tested by soaking in a 

solution of dimethyoxylane (DME) and elemental sulfur to simulate a fully assembled Li-

S battery in storage. Although the solubility of elemental sulfur from the cathode in 

glyme electrolytes (commonly used for Li-S batteries) is relatively low, it can still allow 

enough sulfur in the electrolyte to induce Li anode corrosion.  First, long chain soluble Li 

polysulfides (PS) are formed, changing the visual appearance of the DME solvent from 

clear to yellow-brown.  This effect is shown in Figure 38, where bare Li metal readily 

forms PS in solution, while 14 nm ALD Al2O3 protected Li metal soaked in the same 

solution demonstrates remarkable stability against spontaneous PS formation. 
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Figure 38.  Optical images of (a-e) unprotected and (f-j) 14 nm ALD Al2O3 protected Li metal foil 
soaked in 1M sulfur/DME solution for 7 days. 

Once long chain PS are formed in the organic solvent solution, these PS are further 

reduced into short chain PS and precipitate as insulating Li2S on the Li anode surface.  

Bare and protected Li metal soaked in DME\S for 7 days, then washed with pure DME 

are shown in Figure 38.   Clearly, there is significant PS deposition on the bare Li metal 

surface, while the ALD protected metal surface exhibits improved stability and appears 

optically similar to the unreacted Li metal surface.  SEM images of these surfaces are 

shown in Figure 39, which in the case of bare Li metal exhibit major morphological 

changes, while the ALD protected Li metal surface remains intact and relatively free 

from electrolyte decomposition byproducts.  
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Figure 39.  SEM images of (a,b) unprotected Li metal before solvent exposure. (c,d) unprotected 
Li metal after 7 days exposure to DME/sulfur solution; (e,f) 14 nm ALD Al2O3 protected Li 
metal surface after 7 days exposure to DME/sulfur solution. 

This effect may cause Li corrosion even when the battery cell is resting before the start 

of cycling, and drastically reduces the performance of Li-S cells after manufacture before 

the battery is placed into service by consuming available sulfur from the cathode into 

non-electrochemically active species. 

Lithiation Behavior of the Protected Anode 

Figure 40 shows the CV and impedance responses for both unprotected and 14 nm 

Al2O3 protected lithium metal working electrodes cycled between -1V and 1.1V vs. Li in 

a Tee-cell configuration to strip and re-plate Li from the working electrode in order to 

test the influence of the protection layers on the faradaic processes on the anode surface.   
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Figure 40.  (a) Plot of the first 3 CV cycles of a lithium metal anode protected with 14 nm ALD Al2O3. 
Inset: 4th CV cycle. (b) Nyquist plot showing EIS of the same protected lithium metal anode after the 
first (black) and 3rd (red) CV cycles. Inset: expanded region to illustrate high-frequency region of the 
EIS plot in (b). (c) Plot of the first 3 CV cycles of a bare lithium metal anode. (d) Nyquist plot showing 
EIS of the same bare lithium metal anode after the first (black) and 3rd (red) CV cycles. Inset: 
expanded region to illustrate high-frequency region of the EIS plot in (d). 

 

The cathodic scan in Figure 40A on the protected electrode shows two different 

domains with two different slopes for Li plating, whereas the cathodic scan of the bare Li 
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metal in Figure 40C exhibits only 1 line with an identical slope.  After the first 3 CV 

cycles, the plating and stripping behavior of both anodes is identical (Figure 40A inset).  

We attribute the dual-slope behavior of the protected Li CV to a changing impedance for 

Li plating resulting from initial lithiation of the Al2O3 layer followed by a subsequent 

impedance decrease at lower potentials after further lithiation of the Al2O3 (Figure 40B, 

Figure 40D).  For the anodic scan regions similar lithiation behavior was achieved and 

maintained for the first 3 cycles, while again after the first 3 CV scans the protected 

anode exhibits identical behavior to the bare Li anode. 

While the CV study of the protected and unprotected Li anodes shown in Figure 40 

represents the behavior of the Li\Al2O3 interface during a potential sweep, the Li anode 

does not experience a voltage shift of 1.2V vs. Li/Li+ in a real battery.  Instead, the Li 

anode responds to relatively small shifts of the anode voltage by supplying compensation 

current. Therefore the effect of both the 14nm Al2O3 layer and a 20 nm LiPON layer on 

the overpotential of the Li anode during galvanostatic (GV) cycling of symmetric cells 

were tested. Overpotential and impedance spectra (EIS Nyquist plots) of symmetric cells 

composed of 2 bare Li electrodes, and a symmetric cell composed of 2 Al2O3 protected Li 

electrodes shown in Figure 41 demonstrate that the overpotential increase upon 

application of 1 mAcm-2 (a reasonable current density for a working battery) is minimal.  

However, application of the high conductivity LiPON coating actually reduces the 

overpotential during cycling compared to a bare Li anode, as shown in Figure 42. 
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Figure 41.  The first 10 GV cycles of symmetric coin cell with (a) two bare lithium metal 
current collectors and (b) two lithium metal electrodes protected with 14 nm ALD 
Al2O3 showing the overpotential evolution during lithium plating and stripping at 10 
mAcm-2. (c) EIS response (Nyquist plot) of the symmetric bare lithium metal coin 
cell before cycling and then subsequently after every 10 GV cycles. (d) Nyquist plot 
of the symmetric 14 nm ALD Al2O3 protected lithium metal coin cell before cycling 
and then subsequently after every 10 GV cycles. 

This behavior is consistent with previously reported lithium plating studies, and in 

fact we find the influence of the thin ALD Al2O3 on the EIS response is similar to the 

recently published effect of aging the battery in the electrolyte before cycling.147  
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It is important to note 

that the increase in 

impedance of a full cell will 

be half the impedance 

presented in Figure 40, as 

both sides of our symmetric 

cell are protected with 

identical 14 nm thick ALD 

Al2O3 layers.  In a full Li-S 

device, slow Li+ kinetics of 

the sulfur-based cathode 

will dominate the cell 

impedance, especially in the 

case of a metal anode. 

Lithium Sulfur Battery Testing 

CR2032 Li-S coin cells were assembled with activated carbon cloth (ACC)/sulfur 

composite cathodes, a previously demonstrated Li-S system with adequate behavior 

suitable as a proof of concept platform to test the efficacy of the ALD anode passivation 

procedure.148-150 Li-S battery cathodes were fabricated by impregnation of commercial 

activated carbon cloth (ACC) with sulfur under rough vacuum (10-3 Torr) at 150˚C until 

the desired loading amount of S was obtained, typically ~ 12 hours impregnation for a 

total loading amount of 35% S. 

 

Figure 42.  Overpotential trace of bare Li metal vs. 20 nm ALD 
LiPON protected Li metal at 2mA/cm2 current density, above the 
threshold for Li dendrite formation. 
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The long term 

cycling performance 

of these cells is shown 

in Figure 43.  In the 

case of the bare Li 

anode, the lowered 

capacity of the 1st 

cycle strongly 

suggests a self-

discharge mechanism 

similar to that 

suggested by Cairns 

et. al.,151 an often 

downplayed phenomenon in work focusing on Li-S cathode performance.  This self-

discharge mechanism reduces dissolved sulfur species to polysulfides on the anode 

surface even before the start of cycling, proceeding as a self-propagating reaction since 

the medium chain polysulfides can shuttle back to the cathode and reduce sulfur to long 

chain polysulfide.  This phenomenon will result in an initial decrease in cell capacity in 

the 1st cycle, and as available sulfur is consumed at the anode upon cycling it will reduce 

the capacity even further82,150.  In our case reactions at the surface of the bare Li metal 

 

Figure 43.  Discharge capacity (solid circles, left axis) and Coulombic 
efficiency (open circles, right axis) of both (a) bare Li metal anode and 
(b) anode protected with 14 nm ALD Al2O3 Li-S cells. 
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anode reduce the cell capacity from ~ 1200 mAhg-1 to ~ 800 mAhg-1 after the first 10 

cycles, shown in Figure 43A. 

Protection of the Li metal with ALD Al2O3 not only prevents this self-discharge during 

the rest period before we begin electrochemical cycling, but also prevents the capacity 

loss during the first 10 cycles, with the capacity of cells using ALD protected anodes 

falling a negligible amount from ~ 1200 mAhg-1 as shown in Figure 43B.   This is 

reinforced by the Coulombic efficiency (CE) of the first two cycles being >95% in the 

case of the ALD protected Li and the CE of the first two cycles being 70% and 88% 

respectively for the bare Li.  However, as we are using an excess of Li in our cells, the 

C.E. may in this case be less relevent metric as C.E. is normally associated with cathode 

degradation. 

After 100 cycles, Li-S cells with bare Li metal anodes have lost nearly 50% of their 

initial capacity, while those with ALD protected Li metal anodes have lost only ~10% of 

their initial capacity and maintain a gravimetric capacity 60% higher than those with 

unprotected Li metal anodes. Clearly, the ALD Al2O3 protection layer increased both 

initial and long-term capacity of the cell via improved utilization of the sulfur by 

preventing Li metal anode corrosion and thus enabled cycling with enhanced capacity for 

up to 100 charge-discharge cycles.   

Li-S batteries fabricated with considerably more S (4 mg/cm2) were also cycled under 

similar conditions at an approximate rate of C/20.  These cells were only able to be 

cycled 35 times 
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After 100 cycles, Li-S cells with bare Li metal anodes have lost nearly 50% of their 

initial capacity, while those with ALD protected Li metal anodes have lost only ~10% of 

their initial capacity and maintain a gravimetric capacity 60% higher than those with 

unprotected Li metal anodes. 

To investigate the extreme situation of sulfur corrosion behavior of the anodes, we 

cycled Li-S coin cells with ~5 mgcm-2 sulfur and no addition of LiNO3 for 100 charge-

discharge cycles with bare, 14 nm ALD Al2O3, and 14 nm ALD LiPON protected anodes, 

the data from which shown in Figure 45.   Higher loading amounts of sulfur in the 

cathode lead to a higher concentration of dissolved polysulfide species in the electrolyte, 

eventually leading to significantly worse metal anode corrosion and lowered total Li-S 

cell capacity. 
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After 100 cycles, Li-S 

cells with bare Li metal 

anodes have lost nearly 

50% of their initial 

capacity, while those with 

ALD protected Li metal 

anodes have lost only 

~10% of their initial 

capacity and maintain a 

gravimetric capacity 60% 

higher than those with 

unprotected Li metal 

anodes. 

We disassembled these cells in our glovebox, then washed with DME to remove excess 

dried salt, and transferred it to our XPS without subsequent air exposure. 

 

 

Figure 44.  Performance of batteries assembled with (black) bare, 
(red) 14 nm ALD Al2O3 coated, and (blue) 14 nm ALD LiPON 
coated anodes cycled at 45 mA/g sulfur, corresponding to a 
cycling rate of approximately C/24. 
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Figure 45.  (a) SEM and; (b, c, d) EDX maps of bare Li metal anode after 100 charge-discharge cycles in a 
Li-S cell; (e) SEM and; (f, g, h) EDX maps of 14 nm ALD Al2O3 protected Li metal anode after 100 
charge-discharge cycles in a Li-S cell. 

EDX images obtained of the Li surface after cycling, shown in Figure 45, show that the 

density of the sulfur, carbon, and oxygen particulates is significantly lower on the surface 

of the ALD protected anode than on the unprotected anode.   Although we don’t 

thoroughly address the morphology of these deposits, their composition and growth 

conditions suggest hindered dendrite formation on the protected anode surface upon 

cycling.  Due to the low EDX signal from the Al, we are unable to make any conclusions 

about the state of the ALD film, and thus do not include it here. 
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Figure 46.  Hi resolution XPS spectra of (a) Li metal protected with 14 nm ALD Al2O3; (b) Li metal 
protected with 20 nm ALD LiPON after 100 charge-discharge cycles.  Both XPS peaks contain best 
fits to the data. 

Furthermore, XPS analysis of both the Al2O3 protected and the LiPON protected Li 

metal anodes after cycling, shown in Figure 46A and Figure 46B respectively, indicates 

that both the Al2O3 and LiPON remain on the surface of the Li metal after cycling.  This 

is attributed to reduced reactivity of solvent at the protected metal anode interface via 

prevention of electron transfer from the Li metal to the electrolyte, in general agreement 

with prior theoretical predictions.152,153  This will prevent SEI formation on the protected 

areas of the electrode, and indeed the existence of XPS peaks associated with the ALD 

protection layers indicates that the SEI is less than ~8 nm thick on top of the protected 

areas of the electrode.  

Lithium Dendrite Prevention via Self-Healing Protection Layers 

Figure 47 shows SEM images of both bare and LiPON protected anodes are shown 

after being assembled into symmetric CR2032 coin cells using 1M LiPF6 in 1:1 EC:DEC 
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electrolyte.  These coin cells were subjected to 100 30-minute charge-discharge cycles at 

varying current densities both below (500 µA/cm2), at (1 mA/cm2), and above (2 

mA/cm2) the threshold current density for dendrite formation.147 

From these images, it is clear that at cycling rates below, and even at the current 

density required to form Li dendrites, the unprotected metal anodes for an uneven pitted 

surface morphology resulting from SEI formation.  At 2 mA/cm2, above the current 

density required for dendrite formation, Li dendrites are clearly seen forming on the 

surface of the Li anode, shown in Figure 47D.  

 

Figure 47.  SEM images of (a) bare uncycled and (b-d) bare Li metal cycled at increasing current 
densities.  Note the Li dendrite formation in (d).  (e) As-deposited ALD LiPON on Li, showing cracks 
associated with the differing coefficient of thermal expansion between LiPON and Li metal.  (f-g) 
cycled LiPON protected anodes at increasing current densities. 

As for the ALD LiPON protected metal anodes, it is clear that the ALD protection 

layers crack and break during coin cell assembly, likely due to compression of the Li 

metal anode when crimping the coin cells. While most would consider cracks in 

protection layers an absolute failure of the protection layer, we instead find that these 
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cracks may actually be an ideal attribute of the ALD protection layer that help to stabilize 

the anode surface via a self-healing mechanism. 

As the protected metal anodes are cycled, the Li metal is preferentially plated and 

stripped through the cracks in the ALD layer, which are the highest conductivity pathway 

for Li transport.  At low cycling rates, minimal SEI formation occurs on the anode 

surface due to the chemical stability of the LiPON layer against the organic electrolyte, 

and so the surface of the anode is maintained in a stable state. 

At higher cycling rates, electrolyte breakdown, and thus SEI formation is amplified, 

and the beginnings of SEI formation in the cracks can clearly be seen in Figure 47G.  At 

current densities above those required for dendrite formation, there is significant 

formation of SEI at the cracks between the solid electrolyte plates.  The ALD LiPON 

plates “float” on the surface of the metal anode, channeling Li transport through the 

cracks and localizing SEI formation at the cracks. 

As this SEI grows and increases in impedance, this Li transport pathway is 

extinguished.  However, due to the stability of the uncracked LiPON plates that remain 

on the anode surface SEI formation is prevented on the LiPON surface.  As the LiPON 

has a relatively high ionic conductivity, Li transport is maintained through the protection 

layer, effectively acting as a “seasaw” self healing mechanism on the surface of the 

anode.  As long as the surface area of the cracks can be balanced against the surface area 

of the remaining protected Li, this self-healing “seesaw” mechanism can prevent Li 

dendrite formation by extinguishing the Li conduction pathways through defects in the 

protection layers.  This mechanism is shown in detail in the cartoon in Figure 48. 
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Figure 48.  Cartoon demonstrating the proposed self-healing surface protection mechanism of ALD 
LiPON protected metal anodes.  (a) Initial Li surface with spontaneously formed SEI layer. (b) Li 
surface after low rate cycling (c) Li surface after high rate cycling demonstrating dendrite formation.  
(d) As-deposited ALD LiPON protection layer directly on the Li metal.  SEI only forms at the cracks 
in the LiPON film. (e) ALD LiPON protected Li metal at low rate cycling, showing concentrated Li 
plating and stripping.  (f) ALD LiPON protected Li metal cycled at rates above the dendrite formation 
threshold, where the ionic conduction pathways through the cracks in the LiPON are extinguished 
due to excess SEI formation.  

Together, this mechanism indicates that perfect protection layers for Li metal are likely 

unnecessary, provided that the ionic conductivity of the protection layer is great enough 

to allow Li transport upon insulating SEI formation at the cracks.  As long as the surface 

area of the cracks can be balanced against the surface area of the remaining protected Li, 

this self-healing “seesaw” mechanism can prevent Li dendrite formation by extinguishing 

the Li conduction pathways through defects in the protection layers.   

Chapter Summary and Conclusions 

ALD coatings applied directly to Li metal foil could be integrated into the battery 

fabrication process, particularly given recent advances in atmospheric pressure and low 

temperature roll-to-roll ALD tooling.154 Protecting Li anodes in this way could 

potentially enable relaxed environmental controls during Li foil manufacture and battery 
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assembly in dry rooms, thus reducing costly overhead during battery materials 

manufacture. 

In this chapter, a novel proof-of-principle methodology for protection of metallic 

lithium anodes by application of ALD coatings directly on Li metal has been 

demonstrated.  These coatings serve as effective protection barriers against Li metal 

corrosion upon air, sulfur and organic solvent exposure. Furthermore, it is demonstrated 

that Li metal protected with only 14 nm ALD Al2O3 can drastically reduce first cycle 

capacity loss in the Li-S system due to prevention of anode corrosion in the presence of 

sulfur species in the electrolyte, and maintain a 60% increased gravimetric capacity after 

100 cycles. 20 nm of higher conductivity ALD LiPON coatings can increase the 

gravimetric capacity by up to 6X for at least 35 cycles over unprotected anodes, and it is 

expected that this capacity improvement could be maintained for significantly longer 

cycling. 

These thin ALD coatings do crack upon cycling, and indeed this may be beneficial to 

operation of the battery via a self-healing mechanism that can prevent Li dendrite 

formation at high operational currents. 

Together, these results clearly demonstrate that ALD is an effective method for 

protecting Li metal anodes.  The demonstration of this proof of concept metal anode 

protection using ALD Al2O3 has recently been published in ACS Nano.155 However, 

research into this idea will continue, as the versatility of known ALD chemistries 

provides further options for the composition and functionality of the protection layers; of 

particular interest are flexible hybrid organic-ceramic electrolytes.  Finally, it seems 
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likely that corresponding benefits can be accessed for other reactive metal anode systems 

beyond lithium, e.g., Na, Mg, and Al metal anodes as well, some of which will be 

investigated in the future. 
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Chapter VII: Solid 3D Battery Development 

Motivation 

Solid-state batteries are inherently significantly safer than their liquid electrolyte-

based counterparts, and moving from conventional bulk electrodes to thin-film 

geometries can actually improve both the gravimetric and volumetric energy density by 

factors of 2-3.50 The scope of this potential improvement is shown in Figure 49 in 

comparison to current Li-ion technology.  This chart however doesn’t even take into 

account the geometric capacity enhancement offered by moving from planar geometries 

to 3D structures, which can, in practice, enhance volumetric energy density by up to an 

incredible 100X, and possibly more.26,48  

However, current physical vapor deposition techniques suitable for fabrication of 

thin-film solid-state batteries cannot adequately fabricate high-aspect ratio structures with 

the required uniformity and film quality as is necessary for high-performance 3D 

devices.37,49,156,157  These techniques can fabricate single nanoscale model batteries for 

study, however fabrication of uniform large arrays of 3D batteries is currently 

unachievable.47,158   

Finally, use of heavy scaffold materials (including the silicon nanopillars commonly 

used) limits the improvements possible from gravimetric energy density improvement, 

and in fact at some as-yet to be determined point the mass gains of increasing the aspect 

ratio of the scaffold will negate those offered by volumetric energy density improvements 

due to aspect ratio enhancement. 
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The ultimate success of 

this project would be realized 

by development and 

fabrication of an optimized 

high aspect-ratio lithium 

battery architecture using 

ALD processing for all layers 

of active materials in the 

device, research that is 

currently ongoing in the Rubloff group and will be continued by other graduate students 

in the future.  This 3D solid-state lithium-ion battery would have a number of advantages 

over current lithium-ion battery technology.   Improved cell safety and an increased 

operational temperature window could be realized due to replacement of the organic 

electrolyte with a solid-state alternative.  Also, removal of this organic electrolyte could 

drastically reduce total device weight due to elimination of superfluous active material.  

Lastly, fabrication of the entire battery is simplified by only using one deposition 

technique, and with recent advances in roll-to-roll ALD manufacturing154 it is 

conceivable that that this proposed architecture could be scaled up for future 

commercialization. 

ALD Solid Battery Fabrication Strategy 

Generally, fabrication of a 2D planar solid-state battery is significantly easier than 

fabrication of the same battery on a 3D template using non-ALD deposition techniques, 

 

Figure 49.  Volumetric and gravimetric energy density increases 
possible by moving from conventional Li-ion batteries to 
solid-state planar thin film Li batteries.50 
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as the planar substrate is much more forgiving to inhomogeneities in the deposition and 

patterning processes.  Device characterization is also significantly easier in the planar 

geometry, so planar devices will simplify materials optimization by enabling surface 

analysis methods such as AFM, XPS, and spectroscopic ellipsometry.  Indeed, most of 

the previous work on solid-state thin film batteries has been on planar geometries due to 

the limitations of the deposition procedures used, facilitating comparisons among 

different competing devices. 

However, when using ALD processes for the entire battery stack, planar and 3D 

devices can be fabricated and tested concurrently.  As both 2D and 3D devices are 

fabricated using the same materials and process steps, the only difference is the substrate 

geometry.  As ALD deposition is to an extent geometry independent (certainly in the case 

of the substrate geometries used in this thesis), deposited film morphology and 

parameters are expected to be near identical in the case of the 2D and the 3D thin film 

batteries.  This massive overlap in processing allows concurrent device fabrication, but 

then allows possible destructive characterization of the 2D devices while minimizing 

possible damage to the 3D devices from characterization and sample handling.  However, 

due to limitations of sample transfer in our integrated system in the ANSLab, only two 

2D and two 3D substrates can be processed in parallel, limiting concurrent fabrication to 

two devices each.  The devices discussed below should serve as proof of concept devices, 

as this work is only in preliminary stages, and do not represent the ideal or optimized 

devices. 
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2D Device Fabrication 

For the last section of this thesis, planar battery structures were to be fabricated in 

order to demonstrate a working solid-state electrochemical device using an ALD LiPON 

electrolyte.  A planar device simplifies materials characterization by enabling surface 

analysis methods such as AFM and XPS, and is significantly simpler than constructing 

3D solid electrochemical devices.  The planar device will be used to determine the 

fundamental scaling limits of the ALD solid electrolyte by fabricating devices with varied 

electrolyte thickness to determine at what point the device ceases to function, which, 

based on the ionic conductivity measurements of ALD LiPON films should be close to 20 

nm. 

This first attempt at fabrication and testing of a 2D planar battery device was done 

using an Au bottom contact, a cathode of 75 nm ALD V2O5 (unlithiated), a 140 nm ALD 

LiPON electrolyte layer, and an anode of 150 nm Au. The first two I-V scans of this 

device from -7V to 7V are shown in Figure 50. 
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Figure 50.  First two I-V measurements of a V2O5-LiPON-Au solid battery stack from -7V to 7V.  Inset: 
Cartoon of the MIM device stack measured.   

Previous reports have suggested that ALD V2O5 is lithiated during the ALD process 

of a Li-containing top layer, however this appears not to be the case for this device.  At 

low potentials of as high a magnitude as -7V, there is no current, indicating that ALD 

LiPON is stable, but with a large potential barrier to lithiation of the ALD V2O5.  At 

potential biases > 2.5 V during the positive potential sweep, there is a large peak 

associated with breakdown of the ALD LiPON at the Au-LiPON interface, resulting in 

lithiation of the Au anode (confirmed by XPS, but not shown).  However, as the ALD 

V2O5 cathode is unlithiated to begin with, this Li must come from breakdown and 

delithiation of the ALD LiPON.  Indeed, as there is no negative current during the reverse 

potential sweep, this peak is indicative of a breakdown mechanism in the LiPON, and not 

of a reversible Li insertion into the Au anode. 

Additional devices must be fabricated in order to demonstrate a fully functional 

device, and this work is currently ongoing.  An upgrade of the precursor delivery 

manifold of the Ultratech Fiji F-200 ALD system was recently completed, allowing 
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addition of two additional liquid precursors.  This manifold upgrade will allow deposition 

of pre-lithiated V2O5 cathodes by combining the Li2O and V2O5 ALD processes, resulting 

in a pre-lithiated cathode for the solid battery.  A precursor for deposition of TiO2 will 

also be added to this ALD tool, allowing deposition of an amorphous TiO2 anode, which 

should enable fabrication of a solid-state battery with 1.5 V. 

3D Device Fabrication 

In parallel to the planar 2D devices, 3D solid-state batteries were also fabricated.  

Originally, a nanocone templated developed in collaboration with Alec Talin from NIST 

was used as a 3D substrate, however due to capability deflation these substrates became 

unavailable after the first (non-operational) device fabrication. 

Nanocone Template 

The first attempts at fabricating a 3D device were done in collaboration with Alec 

Talin at NIST.  Talin’s group fabricated silicon nanocone templates using nanoimprint 

lithography, and supplied these substrates for use.  However, upon graduation of Alec 

Talin’s postdoc, these substrates were no longer available, so alternative substrates were 

pursued instead.  I was able to fabricate one fully solid-state ALD battery onto the 

nanocone substrate, however this device was shorted and did not function.  FIB X-

sections of the fully solid battery were collected to investigate the morphology and 

quality of the active material layers. 
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Figure 51. (a) Cartoon showing fabricated ALD solid battery structure.  (b) Silicon micropillars fabricated 
using nanoimprint lithography.  (c) Low resolution SEM image of silicon micropillars after sputtering 
a Pt current collector, cathode of 100 nm ALD V2O5, and electrolyte of 140 nm ALD LiPON.  (d-f) FIB 
x-sections of fabricated ALD 3D solid-state batteries deposited onto silicon micropillar substrates at 
increasing magnifications. 

Lightsmyth Diffraction Grating Template 

In-house fabrication of 3D micropillar substrates for 3D batteries is complicated, 

expensive, and time consuming.  To improve throughput and save time, In the future the 

project will switch to commercial silicon diffraction gratings from Lightsmyth.  These 

gratings cost on the order of  $150/ substrate, and can be ordered with specific 

dimensions suitable for nanobattery fabrication.  We will use two different substrate 

geometries: 2D nanopillars arrays and 1D nanoline arrays.  Three SEM Images of both 

the 2D and 1D gratings with ideal spacing are shown in Figure 52.  Battery materials will 

be fabricated on top of both of these substrate geometries in parallel so that the 2D 

substrate can be used for device testing using a nanoprobe, while the 1D substrate can be 

used for cross-sectional imaging of the solid battery stack. 
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Figure 52.  SEM images of commercial Lightsmyth gratings.  (a) 2D nanopillar template, (b) 1D nanoline 
template, (c) side profile of 1D nanoline template.  Images from http://www.lightsmyth.com. 

These commercial gratings will also serve as nanoimprint lithography templates for 

future synthesis of nanostructured 3D battery templates. 

Future Outlook for ALD Sold State Batteries 

While the initial proposed outcome of this thesis was development of a solid-state 3D 

battery fabricated entirely by ALD, constructing such a device has proven to be 

significantly more challenging than initially anticipated.  As such, while prototype 3D 

batteries have been fabricated using ALD materials for all the active layers, a working 

prototype has yet to be demonstrated for either a full ALD planar or a full ALD 3D 

battery due to unanticipated process integration challenges resulting in device shorting.  

While significant work has already been accomplished towards realizing the ultimate 

goal of a working all ALD 3D solid battery prototype, further optimization of materials 

deposition processes, process integration strategies, and tools for device characterization 

are necessary.   

To facilitate prospects for an optimized, commercially competitive device, significant 

effort should be expended to replace the substrate with an alternative to silicon.  Silicon is 
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ideal from a processing perspective, but likely is too expensive for future 

commercialization.  Also, due to the potential issues associated with lithiation of the 

silicon substrate and the low electronic conductivity of silicon, both diffusion barriers and 

current collector layers are necessary, complicating device fabrication.  Ideally, substrates 

would be replaced by a cheap, light, and multifunctional scaffold material that provides 

both mechanical stability and electronic conductivity, eliminating the need for deposition 

of a current collector layer.  Two of the best alternatives are carbon-based: MWCNT 

sponges and carbonized wood fibers.   An example 3D ALD solid-state battery 

fabrication sequence on a MWCNT substrate is shown in Figure 53. 

 

Figure 53. Cartoon representation of an ideal solid battery fabrication sequence utilizing atomic layer 
deposition onto a nanostructured substrate, in this case a MWCNT sponge. 

Both of these carbon-based materials are relatively cheap to produce, environmentally 

friendly, light weight, high porosity, and electronically conductive, and represent an ideal 

future direction for continued device architecture development. 
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Thesis Summary and Professional Output 

This thesis not only summarizes my professional body of work, it also expands upon 

those publications with additional data and analysis, as well as a comprehensive 

discussion about implications and continuing future research that has stemmed from this 

work. I have conducted original research to develop ALD processes for the solid 

electrolyte LiPON, characterized the performance and properties of LiPON and its 

constituent components, and investigated the application of ALD materials for two 

applications: metal anode protection for beyond Li-ion batteries and for fabrication of 

solid-state 3D microbatteries. 

A fire in the LAMP lab at UMD in January 2012 set me back over two years 

research-wise, but in the end I believe this setback has made me significantly stronger as 

a scientist. From 2012 to the end of 2013, Instead of achieving research output, I spent 

my time designing and building a new facility, now the ANSLab. ANSLab started from 

an empty room without electricity or ventilation, and now is a world-class surface science 

laboratory for the fabrication and testing of ALD heterostructured devices for 

electrochemical energy storage.  However, this facility is not limited to current research 

topics, and hopefully in the future other students will expand upon the instrumentation 

and lab capabilities to develop new and exciting avenues of research. 

Experimentally, during the course of my time at University of Maryland I first 

developed the binary ALD process for Li2O/LiOH, and investigated the process kinetics 

of this pseudo-ALD process.  Next, via stepwise precursor addition, I added two 

additional precursors to fabricate the quaternary ALD process for LiPON.  I have 
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demonstrated the utility of using ALD solid electrolyte protection layers directly on Li 

metal anodes for beyond Li-ion batteries, and have started work towards the development 

of an all ALD 3D solid-state heterostructured battery.  While this work is incomplete, I 

expect development and demonstration of ALD LiPON to have a significant impact on 

the advanced battery fabrication community, as it will enable future successful 

fabrication of thin film, all solid-state 3D microbatteries, pushing the fundamental size 

limits of battery technology further towards the nanoscale.   

During the course of this thesis, I have co-authored 7 published peer-reviewed 

works15,39,86,88,113,155,159, and have co-authored 6 more publications submitted in various 

stages of the peer-review process.  I have applied for a provisional patent application for 

“Metal Anode Protection with Atomic Layer Deposition,” and am in the process of 

finalizing the patent. 

In the future, I expect an expansion of this research both to further investigate the 

chemistry and effectiveness of ALD films as protection layers for metal anodes in the Li-

S, Li-O2, and Li-NMC battery systems.  Another Ph.D. student will continue this research 

in the future.  I also expect continuing research to optimize architectures, process 

integration, and testing for all ALD 3D solid-state batteries, with the hope that in the near 

future architectural and process integration challenges will be addressed and a fully 

working 3D solid-state ALD battery will be realized. 
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Appendix: Experimental Parameters 

This appendix describes in detail all the experimental parameters for the methods used 

in this thesis, as well as descriptions of the tools used. 

Atomic Layer Deposition 

ALD materials discussed in this thesis were deposited in an Ultratech Fiji F-200 ALD 

reactor, which was customized for direct coupling to a UHV transfer system.   

ALD Li2O and LiOH films were deposited in Mario from 225°C-300°C, using 

precursors lithium tert-butoxide (LiOtBu) (Aldrich, 99.7%), de-ionized H2O, and O2 gas 

(Praxair, grade 4.3).  Argon (Airgas, grade 5.0) was used as a carrier gas during 

deposition.  The base pressure of the ALD reactor was < 2x10-6 Torr and a process 

pressure of 200 mTorr was maintained via Ar gas flow.  The LiOtBu precursor was kept 

at 165˚C, and was delivered to the ALD chamber using a bubbler with bypass line and 40 

sccm Argon carrier gas flow. ALD films were deposited using precursor saturation doses 

(controlled by fast-acting ALD valves) of 3s for the LiOtBu, .06s for the H2O, and 4s for 

the TMP.  For plasma-enhanced ALD, the plasma O2 (PO2) was pulsed for 20s at a 40 

sccm flow rate and a power of 300W.  For deposition of Li3PO4 ALD films, 

trimethylphosphate (TMP) (Aldrich, 97%) was used and kept at a temperature of 70˚C.  

Fabrication of ALD LiPON was accomplished by addition of a plasma N2 dose in the 

Li3PO4 ALD process.  The final ALD LiPON ALD process uses the following ALD 
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sequence: LiOtBu (3s), purge (20s), H2O (.06s), purge (20s), TMP (.4s), purge (20s), N2 

(10s), purge (20s). 

Li metal (Alpha Aesar) was protected by application of ALD Al2O3 coatings at 150˚C. 

Disks of Li were stamped from 750 µm thick (Alpha Aesar) lithium metal ribbon using a 

punch, and press the disks of Li onto stainless steel metal disks for handling.  We then 

transferred the lithium metal to a Cambridge Nanotech Fiji F200 ALD tool also directly 

connected to the UHV transfer chamber.  Precursors used for the ALD process were 

trimethylaluminum (TMA, Aldrich, 97%) and plasma O2, and the reactor temperature 

was 150˚C.  The ALD process used a .06s/30s/10s/5s TMA pulse/purge/PO2 pulse/purge 

pulse sequence with a growth rate of 1.2 A/cycle.  Thickness of the deposited layer was 

determined by ellipsometric measurements of a blank Si wafer from the same ALD batch 

using a Cauchy optical model. 
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Figure 54. (left) Stock image of an Ultratech Fiji F200 ALD tool.  (right) Bubbler-based delivery system 
constructed in “Mario” in order to deposit Li-containing chemistries.  

Atomic Force Microscopy (AFM) 

AFM is used to determine morphology, grain size, and roughness of ALD thin films. 

AFM measures deflection from a surface of a resonating nanoscale probe using laser 

interferometry to determine surface morphology with nanometer-scale resolution.  AFM 

characterization was conducted using an NT-MDT NTEGRA Spectra system in tapping 

mode at a scan rate of 1 µm/s. Two sample stages were used: one for planar solid films 

used for morphology determination of ALD LiPON, and one stage for liquid samples 

suitable for study of Li metal in a solvent-based environment.   
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Figure 55. (left) Image of the NT-MDT NTEGRA Spectra tool in ANSLab.  (right) Close-up image of the in-
situ liquid AFM cell used during Li metal surface chemistry observations.  

Battery Testing 

CR2032 coin cells were tested using our anodes and ACC/S cathodes with 0.1 M 

LiTFSI in 1:1 DME:DOL with 1% LiNO3 electrolyte.  For extended cycling, we used Li-

S cells loaded with 1.2 and 5 mgcm-2 of sulfur, corresponding to a cell capacity of 1.4 and 

4 mAhcm-2.  The cells were cycled at 0.14 and 0.31 mAcm-2 between potential limits of 

1.7 V and 2.6 V with a rest period of 60 hours before the start of cycling.  No LiNO3 was 

used in the sulfur cells for XPS characterization, and the cells were loaded with 5 mg of 

sulfur per coin cell.  Electrochemical cycling was done using an Arbin potentiostat with 

constant current.  CV and EIS measurements were carried out using a Bio-Logic VSP 

potentiostat in a three electrode tee-cell configuration with Li metal as both the reference 

and working electrodes.  Batteries were assembled in our MBraun LabMaster glovebox 

using standard coin cell assembly procedures.  
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Figure 56. MBraun LabMaster glovebox in ANSLab where batteries 
were assembled and tested. 

Optical Image Analysis 

Samples were placed in a controlled laboratory atmosphere at 25˚C and 40% R.H and 

imaged using an 8-megapixel Apple iPhone 5 camera from a fixed position under 

constant lighting conditions.  We determined the degree of surface tarnishing using the 

open source software ImageJ to first convert the images to 8 bit black and white files, 

then to normalize the dynamic range of each pixel from 0 to 255 saturation, and finally to 

calculate the brightness of each pixel within the lithium metal surface area using binary 

pixel binning to categorize individual pixels as either non-tarnished or tarnished (0-127 or 

128-255 saturation respectively). 

X-Ray Diffraction (XRD) 

XRD analysis was performed at on a shared Bruker D8 diffractometer in the UMD 

Chemistry XRD center using Cu Kα x-rays (1.54 Å). Samples were scanned for ~1 hour 
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per sample depending on angles used.  XRD peaks were compared and matched to the 

ICDD-2014 database for peak identification. 

Transmission Electron Microscopy (TEM) 

TEM imaging is used to obtain extremely high resolution pictures of ALD films 

deposited onto nanotubes, nanowires, and thin cross-sections of material deposited on 

planar substrates.  When samples are thin enough (< 200 nm), high-energy electrons can 

be transmitted through the samples.  Interaction of these electrons with the electrons 

present in the sample enables not only materials imaging, but also chemical identification 

and electron diffraction.  For this work, a shared JEM 2100 LaB6 TEM in the UMD 

NISPLab was used for nanostructure imaging. 

Quadrupole Mass Spectroscopy (QMS) 

For electrolyte decomposition experiments described in Chapter VI, samples were 

placed into sealed glass vials with 2 mL of 1M LiClO4 in PC solution at 25˚C.  A MKS 

Microvision2 differentially pumped quadrupole mass spectroscopy tool was used to 

sample the evolved gasses in the headspace of the sample containers. This tool is also 

capable of UHV operation by removal of the differentially pumped manifold. 
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Figure 57. MKS Microvision 2 quadrupole mass spec tool in ANSLab with control computer rack and 
screenshot of compound fragmentation software used to identify q/m peaks. 

Electrochemistry 

For electrochemical testing experiments a number of different experimental setups 

were used.  For CV measurements, coated and uncoated Li in Swagelok T cells with .1M 

LiTFSI in 1:1 DME:DOL electrolyte using Li as both reference and working electrodes 

were used.  Lithium was loaded into the T cell such that the metal was only placed into 

contact with electrolyte.   CV and EIS measurements of the protected anode were done in 

a three electrode Tee-Cell configuration with Li as both reference and working electrode 

and a Bio-Logic VSP potentiostat.  CV and EIS measurements of ALD films deposited 

directly on stainless steel blocking electrodes were also done in CR2032 coin cells using 

1M LiPF6 in 1:1 EC:DEC electrolyte.  EIS spectra were collected from 100 kHz to 10 

mHz at 20 mA AC bias potential. Lithium plating and stripping of ALD protected and 

unprotected Li metal electrodes was done using CR2032 coin cells using 1M LiPF6 in 1:1 

EC:DEC electrolyte. 
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Figure 58. Bio-Logic VSP potentiostat used for CV, GV, EIS, and battery cycling 
measurements. 

X-ray Photoelectron Spectroscopy 

XPS was done in a Kratos Ultra DLD surface analysis system using a monochromated 

Al anode.  Generally, ALD films were transferred directly from the deposition tool to the 

Kratos Ultra DLD XPS system under UHV conditions in under 3 minutes without air 

exposure.  XPS survey spectra were collected using a monochromatic Al Kα source in 

hybrid lens mode with 160 eV pass energy and 1 eV resolution, while high-resolution 

spectra were collected in hybrid lens mode with a 20 eV pass energy and 0.1 eV 

resolution. 
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Figure 59. Kratos Ultra DLD surface analysis system in the 
ANSLab, primarily used for XPS measurements. 

Spectroscopic Ellipsometer 

We cycled coated and uncoated Li in Swagelok T cells with .1M LiTFSI in 1:1 

DME:DOL electrolyte using Li as both reference and working electrodes.  Lithium was 

loaded into the T cell such that the metal was only placed into contact with electrolyte.   

CV and EIS measurements of the protected anode were done in a three electrode Tee-Cell 



 

 

 

 

112 

configuration with Li as both reference and working electrode and a Bio-Logic VSP 

potentiostat. 

  

 

Figure 60. J.A. Woollam M-2000D spectroscopic 
ellipsometer used for measuring optical 
properties of thin films.  This image shows the 
ellipsometer on its base, however the source 
and detector can be mounted to the Ultratech 
Fiji F-200 ALD tool for in-situ sensing. 
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