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Dormancy is an adaptive mechanism that enables plants to survive unfavorable 

environmental conditions and resume growth when the conditions become favorable 

again. Bud formation is the morphological event associated with bud dormancy. The 

research presented in this thesis focuses on the role of PtFD1, a bZIP transcription 

factor, in apical bud development in poplar. This research included the construction of 

binary Agrobacterium vectors for the overexpressing of PtFD1 and for down 

regulation or silencing of PtFD1 expression using RNAi technology. These vectors 

were used to create transgenic poplars (Populus alba×Populus tremula) with altered 

expression of PtFD1. The overexpression of PtFD1 prevented apical bud development 

while apical bud development appeared normal in PtFD1 RNAi expressing plants. 

Flowering was also induced in long days in poplars overexpressing PtFD1. Anatomical 

studies indicate that overexpression of PtFD1 impinges on bud scale development 

during short day induced bud formation. 
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Introduction 

 

The growth of temperate woody perennial plants is characterized by growth 

periods (time between spring bud break and fall bud set) interrupted by a vegetative 

dormancy phase during the winter. Dormancy is an adaptive mechanism that 

enables plants to survive unfavorable environmental conditions and resume growth 

when conditions become favorable. Vegetative bud dormancy also influences the 

morphology and architecture of trees (Rohde et al., 2000). 

Formation of the apical buds is the most obvious morphological change 

associated with the transition from vegetative growth to dormancy (Rohde et al., 

2000). The physiological and morphological changes that occur during dormancy 

allow trees to cope with water and temperature stress (Thomas and Vince-Prue, 

1997). The release from dormancy requires exposure to chilling temperature and 

once the chilling requirement has been fulfilled, bud breaking occurs and vegetative 

growth resumes in favorable conditions (Powell, 1987). 

Apical bud formation is central to bud development (Juntilla and Kaurin, 

1990). Although extensive research has been performed in this field, most studies 

focused on physiological aspects of bud dormancy. The molecular mechanisms that 

control apical bud formation still remain elusive. However, with the development 

of modern genetic technologies, research has begun to concentrate on discovering 

the genes regulating this process.  
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The research in this thesis focuses on PtFD1, a basic leucine zipper (bZIP) 

transcription factor expressed in poplar apical buds. The expression of PtFD1 is 

coincident with the process of apical bud formation and maturation. PtFD1 mRNA 

level peaks after several weeks of short day (SD) treatment and then decline. 

Exogenous abscisic acid (ABA) application can also induce the expression of 

PtFD1 (Gnewikow, 2001). From this, PtFD1 appears to be a candidate gene 

regulating poplar apical bud formation and maturation.  

To test this hypothesis, transgenic poplars that either overexpress PtFD1 or 

which downregulate PtFD1 expressing using RNAi were generated. The 

experiments presented in this thesis focused on: 1) the role of PtFD1 in poplar 

apical bud formation; 2) the possible interactions of PtFD1 with other bud 

formation-related genes; 3) whether PtFD1 is involved in other physiological 

events. 
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Literature Review 
 

I. Tree Growth and Dormancy 

Woody perennial plants of the temperate zone synchronize their growth cycle 

with changing seasons, fluctuating temperature, different photoperiod (Villiers, 

1975). Typically, tree growth involves two phases: a period of active growth and a 

dormant period. The growing period begins with spring bud break during which the 

shoot elongates. The shortening of daylength induces growth cessation and bud 

formation in late summer and autumn. The formation of an apical bud usually 

signals the beginning of dormancy and is an adaptive response to harsh 

environments. The breaking or release from dormancy requires exposure to chilling 

temperatures. After the chilling requirement has been fulfilled, the apical bud is 

released from dormancy and shoot elongation can resume (Powell, 1987). In 

Populus, a perennial woody plant, growth cessation, bud formation and dormancy 

are phytochrome-mediated SD photoperiod responses (Howe et al, 1996; Zhu & 

Coleman, 2001). 

Although dormancy is not completely understood, researchers have defined 

dormancy based on practical terms. Dormancy is defined as “the temporary 

suspension of visible growth of any plant structure containing a meristem” (Lang, 

1987). Based on this definition, dormancy can occur in any organ that contain 

meristems, including seeds, buds, tubers, roots and vascular cambium.  

Dormancy is an adaptive mechanism that enables meristems to survive 
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unfavorable environmental conditions such as cold temperature or desiccation, and 

resume growth when the conditions become favorable again (Rohde et al., 2000). 

For trees, dormancy also has a morphogenetic effect in influencing growth habit 

and tree form. Because of dormancy, woody plants can adapt to a wide range of 

circumstances.  

Dormancy has been classified into three categories: ecodormancy, 

paradormancy and endodormancy (Lang, 1987). In ecodormancy, growth cessation 

is imposed by one or more unsuitable environmental factors, such as nutrient or 

water deficiencies or unfavorable temperature. Growth can resume when the 

conditions become favorable. In paradormancy, growth control is imposed by plant 

structures other than the affected organ. When the control of dormancy occurs 

within the dormant organ, it is defined as endodormancy. In endodormancy, growth 

cannot resume even under favorable environmental conditions (Lang, 1987). Once 

the chilling requirement has been fulfilled, apical buds can break (Amling, 1980). 

However, low temperature may still prevent the buds from breaking. Only when 

temperatures become warm can apical buds be released from dormancy (Martin, 

1991). 

Trees can undergo each of the three types of dormancy in their growth cycle 

(Critchfield, 1960). During shoot elongation, the growth of lateral buds is inhibited 

by auxin from the shoot apex, which is the effect of paradormancy. Endodormancy 

occurs when the dormancy enters into a stage when growth will not resume even 

under favorable conditions. Chilling requirements must be fulfilled before the buds 
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are released from dormancy. Also the buds may be held in a dormant status until a 

favorable temperature is reached, which can be defined as ecodormancy. The type 

of dormancy that this research focused on is endodormancy.  

Seed and bud dormancy have some common features such as chilling 

requirements, the regulatory role of GA and ABA, accumulation of reserve proteins 

and acquisition of desiccation tolerance (Powell, 1987; Dennis 1996). Although 

little is known about the genetic regulatory factors involved in bud dormancy, it has 

been shown that Abscisic Acid Insensitive 3 (ABI3) plays an important role in late 

seed development (Giraudat et al., 1992; Parcy et al., 1994). The poplar ABI3 

homologue PtABI3 is essential for correct embryonic leaf differentiation during bud 

set in poplar (Rohde et al., 2002). Because of the similarities between seed and bud 

dormancy, it is possible that similar regulatory mechanisms exist between them. 

 

II. Poplar as a Model Plant to Study Bud Dormancy 

Poplar can serve as a model system for the study of bud dormancy in woody 

plants. First, as a woody perennial plant, poplar undergoes dormancy in response to 

short day (SD) photoperiod and forms apical buds (Howe et al, 1996; Zhu & 

Coleman, 2001). These features can be manipulated in growth chambers using 

different photoperiods. Second, it is one of the fastest growing temperature trees 

and can be easily propagated. Third, many genetic techniques have been practiced 

successfully in poplar, such as Agrobacterium-mediated transformation. Poplar also 

has a relatively small genome size (450-550 Mbp) that has been sequenced. Besides, 
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poplar also has commercial values as a tree for timber, plywood, pulp and paper 

(Taylor, 2002). 

 

III. The Apical Bud 

A. Bud Structure 

Two types of buds are found in woody plants, apical and lateral buds. Apical 

buds consist of the apical meristem that was formed during embryogenesis while 

lateral buds are found in the axis of leaf petioles and contain meristems for branch 

shoots. Lateral buds often do not elongate during the season in which they were 

formed. In angiosperms, the meristem consists of several zones including a central 

zone with three layers of cells, which acts to maintain the population of 

indeterminate cells. Beneath the central zone is the peripheral zone, which is the 

major source of new cells in the apical meristem and of organ primordia. The rib 

meristem in the very center is where cells begin to elongate (Kerstetter and Hake, 

1997). 

The apical bud is located at the apex of a stem. It is a short axis consisting of a 

densely packed series of leaf primordial that is produced by the shoot apical 

meristem (Rohde et al, 2000). In buds that are actively growing, the axis elongates 

with progressive formation of the primordia. During bud set, internode elongation 

ceases above the primordial that will develop into bud scales. Bud scales are formed 

by overlapping, modified stipules of unexpanded leaf primordia. An apical bud of 

Populus trichocarpa usually consists of apical meristem at the center and 6-9 leaf 
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primordia, which are enveloped by bud scales (Critchfield, 1960). 

B. Apical Bud Formation and Dormancy in Poplar 

1. Endodormancy Establishment is a Complex Process 

For most temperate trees, formation of an apical bud is prerequisite to the 

development of dormancy (Junttila and Kaurin, 1990). In poplar, like many woody 

plants, apical bud formation is a phytochrome-mediated SD response (Howe et al., 

1996; Zhu and Coleman, 2001). The process starts once the critical photoperiod for 

cessation of active vegetative growth occurs and before leaf abscission, allowing 

the plant enough time to prepare for bud dormancy prior to freezing temperatures 

(Perry, 1971; Vegis, 1964; Rohde et al., 2000). Typically there is a time lag between 

growth cessation and the establishment of endodormancy (Rinne et al., 1994; Heide, 

1974; Junttila, 1976). After the cessation of stem elongation, the growth in diameter 

still continues until leaf abscission (Perry, 1971). Root growth will also continue as 

long as the soil temperature is favorable (Barney, 1951). 

2. Stages of Apical Bud Development 

Poplar apical bud development can be defined by three stages. During the first 

stage, bud morphogenesis, bud scales are initiated and enclose the shoot tips 

(include meristem, embryonic leaves, leaf primodia and stipules) and in controlled 

environment condition occurs with the first 3 weeks of SD (8 hours light and 16 

hours dark) exposure.  

During the second stage, bud maturation, apical buds enlarge and elongate 

with continued SD treatment. Their colors turn from green to reddish-brown. This 
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stage is also characterized by the decrease of bud water content and accumulation of 

storage reserves. During bud maturation, the meristem is not dormant and when 

plants are transferred to long day (LD, 16 hours light and 8 hours dark) or SD with 

night break, shoot growth will resume and leaves will emerge from the bud. 

The third stage is bud dormancy. In controlled environment conditions, this 

stage occurs after more than 6 weeks of SD exposure. During this stage, bud growth 

eventually ceases, bud water content continues to decline and the meristem 

becomes dormant. At this stage, bud burst and regrowth will be delayed by at least 4 

weeks when treated with LD. 

C. Significance of Bud Formation  

The actual growth period of temperate woody perennials occurs between 

spring bud break and fall bud set and determines tree productivity and wood quality 

(Rohde et al., 2000). In tree breeding programs, an appropriate bud flushing date, an 

indeterminate shoot growth and the timing of bud set are of great importance 

(Dickmann and Keathley, 1996). The timing of bud set in temperate climates is 

crucial for the trees to avoid frost damage. Failure of bud break when chilling 

requirements cannot be fulfilled in warm climates can significantly impact 

productivity. 

Apical bud formation is prerequisite to the development of bud dormancy. 

Since bud scales enclose leaf primordia, they may act as possible regulators 

controlling growth and dormancy (Perry, 1971). In some species, it seems that the 

bud scales produce some unknown compounds that inhibit growth. It has been 



 

 9 

shown that the presence of bud scale inhibits the growth of primordia enclosed 

within the bud and this effect correlate with the stage of quiescence the bud has 

reached (Iwasaki and Weaver, 1977; Tinklin and Schwabe, 1970; Swartz et al., 

1984).  

Since bud formation functions in both adaptive and morphological responses, 

it is essential in the understanding of tree biology. Such knowledge will assist in tree 

breeding, maintenance and improvement.  

 

IV. Physiological and Biochemical Changes during Dormancy 

The physiology of bud dormancy has been extensively studied for decades. In 

addition to the visible morphological changes, many physiological and biochemical 

changes occur within the plant during the process of bud formation and dormancy. 

These include changes in enzyme activities, membrane lipid composition, bud 

water status, amino acids, carbohydrates, proteins and respiration.  

SD treatments result in the accumulation of starch, markedly thickened cell 

walls and much denser cytoplasm, suggesting that plants synthesize and accumulate 

starch, cellulose, lipids, proteins and other bio-polymers during dormancy 

induction (Perry, 1971; Bonicel et al., 1987; Coleman and Chen, 1996).  

Dormant buds usually have reduced water content and water molecules appear 

to be associated with macromolecules (Faust et al., 1997). More than half of the 

bound water molecules disasscociate from macromolecules after the chilling 

requirement has been fulfilled (Faust et al., 1995).  
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SD leads to the closure of plasmodesmata that connect the cells in the apical 

meristem. The altered cell-to-cell communication may initiate growth cessation and 

dormancy development (Jian et al., 1997; Rinne and van der Schoot, 1998). Release 

from bud dormancy by chilling involves restoration of the cell-to-cell connection 

through plasmodesmata.  

Growth cessation leads to the accumulation of photosynthesis assimilates and 

proteins in the plant (Sauter et al., 1996). Cellulose synthesis is reduced prior to 

dormancy while synthesis of lignin is accelerated (Perry, 1971). During the 

induction of dormancy, carbon and nitrogen are stored as starch and protein 

respectively (Coleman and Chen, 1996). SD also induces the expression of bark 

storage protein (BSP) genes (Coleman et al., 1992).  

 

V. Regulators of Bud Formation 

Regulators of bud formation and dormancy include light (photoperiod), 

temperature, water and hormones (abscisic acid, gibberellins) (Rohde et al., 2000) 

A. Environmental Factors 

1. Photoperiod 

Photoperiod is a key regulator of bud formation and dormancy in poplar and 

many other trees with indeterminate growth patterns (Howe et al., 1996). It affects 

both the vegetative growth period and the onset of bud set.  

Growth cessation is one of the initial events in the dormancy process and is 
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mainly induced by perception of critical photoperiod, which is the longest 

photoperiod that can induce growth cessation. The critical photoperiod shows 

ecotypic variation among species and is inherited as a quantitative trait (Hummel et 

al., 1982; Junttila, 1982; Li and Adams, 1993). Generally, northern ecotypes have 

longer critical photoperiods than southern ecotypes so that trees in higher latitudes 

can enter growth cessation and bud formation earlier to cope with the frost that will 

come sooner (Junttila, 1980).  

Phytochrome is the primary photoreceptor in photoperiodism. They are 

dimeric chromoproteins with monomers of 120-130kD, which exist in two forms 

that are interchangeable. They convert to an active far-red light (FR) absorbing 

form (Pfr) after absorbing red light (R); after FR treatment, they convert to an 

inactive R absorbing form (Pr). In darkness, phytochromes are converted from Pfr 

to Pr. The ratio of R to FR declines during sunset and is employed by the plants to 

measure the length of the day (Tai and Zeiger, 2002). 

In Arabidopsis, five distinct phytochrome genes were identified, named phyA 

to phyE. Both phytochrome A and phytochrome B may be involved in 

photoperiodic responses. PhyA is a type I phytochrome that is much more abundant 

in dark-grown seedlings. PHYA protein accumulates in the dark and breaks down 

rapidly after converting to its Pfr form in light. Experiments with transgenic hybrid 

aspen suggest that responses to photoperiod could be affected by the amount of 

phytochromes present in plants. Olsen et al. 1997 showed that poplars (Populus 

tremula × P. tremuloides) that overexpress oat PHYA did not stop shoot elongation 
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under SD treatment, and were unable to shed leaves and cold acclimate (Olsen et al., 

1997) 

2. Temperature 

Lavender et al. 1973 suggested a scenario in which air and soil temperatures 

and photoperiod all interact to permit the earliest possible bud activity compatible 

with the risk of frost for any given year (Lavender et al., 1973). Dormancy intensity 

is promoted in woody plants exposed to a few weeks of chilling temperature after 

bud formation (Walser et al., 1981). Junttila et al. 2003 showed that induction and 

depth of bud dormancy in birch are significantly affected by temperature. In six 

ecotypes of Betula pubescens Ehrh and two ecotypes of Betula pendula Roth that 

were tested by raising temperature during dormancy induction, bud dormancy 

developed most rapidly at 15-18°C and was delayed by both 9-12°C and 21°C 

temperatures (Junttila et al., 2003). These results are consistent with what was 

found in Norway spruce and Acer rubrum (Heide, 1974; Downs and Borthwick, 

1956). In some species that are insensitive to photoperiod, such as apple and pear, 

growth cessation, formation of bud scales and winter buds, leaf senescence and 

abscission, dormancy induction and release occur in response to low temperature 

(Heide and Prestrud, 2005). Plant receptors for low temperatures have not been 

found. Örvar et al. 2000 showed that changes in membrane fluidity in response to a 

decrease in temperature trigger calcium influx from vacuoles or extracellular 

storage and induces a signaling cascade leading to changes in the expression of 

genes that are responsible for increased tolerance of freezing (Örvar et al., 2000).  



 

 13

Temperature also has a role in release of dormancy, bud break and resumption 

of shoot elongation. Buds need to be exposed to chilling temperature for a certain 

time to be released from dormancy. After the chilling requirements have been 

fulfilled, shoot elongation resumes in response to rising temperature (Perry, 1971). 

3. Water and Nutrition 

Both water supply and mineral nutrition interact with dormancy induction. 

Dehydration has been shown to be an integral part of bud dormancy development 

(Rohde et al., 2000). Water stress will deepen dormancy and if severe enough will 

result in a resting bud and leaf abscission in some species. Mineral nutrition, in 

particular nitrogen status influence dormancy induction. High levels of nitrogen 

will delay the onset of dormancy, induce bud break and growth resumption if 

applied to plants in late summer or early fall.  

B. Hormonal Control of Bud Dormancy 

1. Abscisic Acid (ABA) 

Abscisic acid (ABA) is known to be a “stress hormone” involved in plant 

responses to abiotic stress, such as dehydration, low temperature and salinity. ABA 

also plays a role in the regulation of plant development, including embryogenesis, 

shoot growth, seed dormancy and leaf transpiration. ABA triggers rapid stomata 

closure by ion effluxes from guard cells to inhibit water loss through transpiration 

(Taiz and Zeiger, 2002). In seeds, ABA acts as an efficient inhibitor of germination 

and occurs in high concentrations in dormant seeds (Bewley, 1997). The 

involvement of ABA in potato microtuber dormancy has been demonstrated (Suttle 
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& Hulstrand, 1994).  

ABA is assumed to be associated with vegetative growth cessation. Seasonal 

changes in ABA levels have been observed in leaves, buds and xylem saps in 

various species of woody plants. The level is the highest during mid-summer or 

autumn and declines during winter (Rohde et al., 2000). Rinne et al. 1994 showed 

that in apical and lateral buds of Betula pubescens, ABA levels are 5-8 fold higher 

under SD conditions than under LD. Under water stress, the ABA levels in lateral 

buds doubled (Rinne et al., 1994). 

In poplar, it has been found that ABA contents are much higher in apices 

exposed to LD than to SD and the contents increase when temperature is lower 

(Welling et al., 2002). ABA levels increase transiently in developing poplar apical 

buds after 24-27 days of SD treatment and decline with continued SD treatment 

(Rhode et al., 2002).  Exogenous ABA treatment has also been observed to cause 

growth cessation and bud dormancy in some species under LD conditions and can 

also prevent release of bud in ecodormancy (El-Antably et al., 1967; Rinne et al., 

1994). Maintenance of endodormancy requires continuous endogenous ABA 

biosynthesis (Le Bris et al., 1999). 

All evidence indicates that ABA plays a role in maintaining dormancy in 

apical bud. Whether it is an inducer of dormancy remains elusive, but it appears that 

ABA alone is not enough to induce apical bud dormancy. 

2. Gibberellin (GA) 

In addition to ABA, the role of GAs in bud dormancy has been extensively 
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studied. GAs was suggested to act as an antagonist of ABA and functions in 

accelerating growth (Taiz and Zeiger, 2002). Among the GAs, GA1 appears to be 

the active GA involved in stem elongation and growth cessation in woody plants 

(Junttila et al., 1991; Olsen et al., 1995). 

The levels of GAs are lower under SD than under LD in many species, this 

suggests that photoperiodic regulation of shoot elongation may be mediated by the 

regulation of GA biosynthesis (Jackson and Thomas, 1997). SD may block some 

steps in GA biosynthesis and is mediated by PHYA (Olsen et al., 1997). Reduction 

in GA1 levels affect cell divisions in the subapical meristem and result in growth 

cessation (Hansen et al., 1999). Olsen et al. 2004 showed that in deciduous plants, 

GA1 can completely substitute for a long photoperiod, and SD induced growth 

cessation is preceded by a significant reduction of GA1 levels, particularly in the 

elongation zone. Apart from the phytochrome pathway, cessation of growth and 

initiation of hardening in trees can also be controlled through the GA mediated 

pathways (Olsen et al., 2004).   

Due to current experimental results, it is reasonable to hypothesize that GAs are 

involved in shoot growth cessation induced by SD, further evidence are needed to 

confirm this hypothesis. 
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VI. Genes Involved in the ABA Signal Transduction Pathway 

A. Abscisic Acid-Insensitive (ABI) Genes  

The ABA signal transduction pathway involves hormone binding to its 

receptor, amplification of the primary signal and initiation of gene expression that 

are responsible for the physiological effects (Taiz and Zeiger, 2002). In Arabidopsis, 

a series of mutants that have normal ABA biosynthesis but display alternative 

sensitivity to ABA have been isolated to identify the components of the pathway. 

These mutants consist of five loci, abi1, abi2, abi3, abi4 and abi5 that were selected 

by the ability of the seeds to germinate in the presence of inhibitory concentrations 

of ABA. Mutant abi1, abi2 and abi3 display significant reduction in seed dormancy 

while abi3, abi4 and abi5 show defects in various aspects of seed maturation. Also, 

abi1 and abi2 affect ABA responses in vegetative tissues (Koornneef et al., 1984; 

Finkelstein, 1994; Nambara et al., 2000). The ABI1 and ABI2 genes encode 

homologous type 2C serine/threonine protein phosphatases (Leung and Giraudat 

1998). The other three, ABI3, ABI4, and ABI5, encode putative transcription factors 

(Giraudat et al. 1992; Finkelstein and Lynch 2000). ABI3 is the ortholog of the 

maize vp1 gene, encoding a B3-domain transcription factor. ABI4 contains an 

APETALA2-like DNA binding domain. ABI5 encodes a bZIP transcription factor 

(Finkelstein et al., 2002).  

The ABA response effects of ABI3, ABI4 and ABI5 during seed germination 

are well known. Research in poplar demonstrated that ABI3 (PtABI3) is an 

essential factor of bud set and a precondition for dormancy establishment (Rohde et 
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al., 2002). The three transcription factors may form a regulatory complex to 

mediate gene expression (Brocard et al., 2002). 

B. Genes Regulated by ABI5 

ABI5 is a member of the basic leucine zipper transcription factor family, 

grouped as AtbZIP39 in Group A. In Arabidopsis, it is expressed in both seeds and 

vegetative tissues and is required for ABA-regulated gene expression (Finkelstein 

and Lynch, 2000). Mutations in abi5 will cause reduced ABA sensitivity during 

seed germination. Furthermore, abi5 mutation has decreased expression of some 

LEA (Late Embryogenesis Abundant) genes that are ubiquitous in most of the 

higher plants. LEA proteins accumulate during late stages of embryo development 

and are thought to be involved in desiccation tolerance (Bensmihen et al., 2002). In 

Arabidopsis, among the ABREs (ABA-responsive elements) of Em (encodes a 

class I LEA protein) promoter, a G-box type element shows strong binding with 

ABI5, suggesting ABI5’s role in regulating these genes (Carles et al., 2002). In 

sunflower, genes encoding DPBFs (Dc3 promoter-binding factors) that can bind to 

the promoter of Dc3 (a carrot lea class gene) have been isolated. An Arabidopsis 

homolog of DPBF, AtDPBF-1 is identical to ABI5 (Kim et al., 2002).  

 

VII. Basic Leucine Zipper (bZIP) Transcription Factors 

Transcription factors are proteins that bind DNA at a specific promoter or 

enhancer region and facilitate its transcription. They play critical roles in almost all 
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biological processes. Despite the difference in the structures, the transcription 

factors share two functional domains: a DNA-binding domain that recognizes and 

binds to the specific DNA sequence of the promoter or enhancer, a transcription 

activation domain that interacts with other proteins and increasing the efficiency of 

transcription. Transcription factors are categorized according to the structure of 

their DNA binding domains, including zinc finger proteins, helix-turn-helix 

proteins, and leucine zipper proteins. Transcription factors can be activated or 

deactivated by other proteins. 

One group of transcription factors is defined as basic leucine zipper (bZIP) 

motif. Plant bZIP proteins play a role in gene control of many processes, such as 

seed storage, photomorphogenesis and organ establishment (Schmidt et al., 1990; 

Oyama et al., 1997; Waltch et al., 1998). They also exhibit functions of gene control 

in response to stimuli including ABA, light and developmental signals (Menkens et 

al., 1995).  

Basic leucine zipper transcription factors function as dimers. Each of the 

mononers contains a basic DNA binding domain at the carboxyl terminus 

(C-terminus), adjacent to a leucine zipper helix that is characterized by several 

leucine residues regularly spaced at seven-amino acid intervals. These leucine 

residues or other bulky hydrophobic amino acids locate exact nine amino acids 

towards the C-terminus to generate an amphipathic helix. To form a dimer, two 

subunits adhere via interactions between the hydrophobic sides of their helix, 

creating a superimposing coiled-coil structure (so called “leucine zipper”). The 
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monomers can be either identical or not and form homodimers or heterodimers. The 

DNA binding domain consists of a basic region, a highly conserved region enriched 

in basic amino acids that is approximately 25 residues in length, that contacts 

directly with DNA to stimulate or repress transcription. To bind DNA, the two basic 

regions are inserted into the major groove of the DNA, each helix finding an 

identical DNA sequence, results in a scissors look (Landschulz et al., 1988; Pathak 

and Sigler, 1992; Meshi and Iwabuchi, 1995).  

Plant bZIP proteins exhibit a DNA-binding specificity for DNA sequence 

motifs containing an ACGT core (Foster et al., 1994). Experiments demonstrated 

that nucleotides flanking the ACGT core also affected binding specificity. Three 

different types of ACGT motifs were identified: G-box, CACGTG; C-box, 

GACGTC and A-box, TACGTA. Correspondingly, bZIP transcription factors could 

also be categorized into three groups according to their qualitative and quantitative 

specificity for G-box and C-box elements: Group 1 have a stronger binding affinity 

for G-box; Group 2 show a comparable binding affinity to both G-box and C-box 

(Group 2); Group 3 display a stronger binding affinity for C-box (Izawa et al., 

1993). 

Transcription activation domains interact with basal machinery to activate 

transcription. The structure of activation domain has not yet been clarified. They 

exhibit common amino acid sequence features in some cases and thus are classified 

in several categories including acidic activation domains, Glutamine-rich domains 

and Proline-rich domains. In addition, three serine residues that are highly 
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conservative in bZIP transcription factors have been identified. Phosphorylation of 

the serine residues affects the binding preference and ability of the bZIP proteins 

(Meshi et al., 1998).  

A. bZIP Transcription Factors in Arabidopsis 

Transcription factors with bZIP domains are present in almost all eukaryotes. 

In plants, bZIP proteins regulate processes including light and stress signaling, seed 

maturation, flower development. In the Arabidopsis genome, 73 distinct members 

of the bZIP families were found as potential bZIP genes. The AtbZIP family 

members were further classified into ten groups, named from Group A to Group I, 

and Group S, according to similarities of their basic regions. A number of Group A 

bZIP are associated with ABA signal transduction in both seeds and vegetative 

tissues (Jakoby et al., 2002).  

B. PtFD1 

1. PtFD1 Encodes a bZIP Transcription Factor 

First termed as PTBF1 (Poplar Terminal Bud Factor 1;GenBank Access 

Number: AF288616), PtFD1 encodes a bZIP protein of 29.5kD that shares 

significant sequence similarity in the basic and leucine zipper region with 

AtbZIP14, a members of the Arabidopsis Group A bZIP transcription factors, which 

was later identified as FD. FD is a bZIP protein that is required for FT to promote 

flowering through protein interaction in the shoot apex in Arabidopsis (Abe et al., 

2005).  
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2. Expression of PtFD1 in Poplar 

PtFD1 is expressed during bud formation in response to SD photoperiod. The 

expression of PtFD1 occurs after bud morphogenesis and correlates with the 

process of apical bud formation and maturation. The abundance of PtFD1 mRNA 

reaches its peak after 4-6 weeks of SD treatment and then declines with prolonged 

SD treatment.  

PtFD1 expression is limited in the shoot meristem and young leaf primordial. It was 

also detected in lateral buds at a lower level than in apical buds, but not expressed in 

other tissues including leaves, stipules, bud scales, bark.  

Under LD conditions, the expression of PtFD1 in shoot apex can also be 

induced by ABA treatment and high water stress (Gnewikow et al., 2001).  
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Materials and Methods 

 

I. Materials 

A. Plant Material and Growth Conditions 

The hybrid poplar (Populus alba × Populus tremula) clone 717-1B4 was used 

for all experiments. Plants were maintained and propagated using shoot cultures. 

For all growth chamber experiments, rooted plants derived from tissue culture were 

potted in small plastic containers, one in each pot. The plantlets were first grown in 

the growth chamber under LD photoperiod (16hour light/8hour dark, 18 ºC) for 

approximately 4 weeks or until the plantlets have reached 25-30cm in height. After 

this, the photoperiod of the growth chamber was switched to SD photoperiod 

(8hour light/16hour dark, 18 ºC). The plants were treated in SD for 8 weeks. After 

that, the growth chamber was set to SD plus low temperature (LT) (8hour 

light/16hour dark, 10 ºC/4 ºC) for another 4 weeks. After the SD and SD+LT 

treatments, the plants were returned to LD (16hour light/8hour dark, 18 ºC). 

Table 1. Treatments for the plant materials in growth chamber 

 LD SD SD+LT LD 

Light 16 h / 18 ºC 8 h / 18 ºC 8 h / 10 ºC 16 h / 18 ºC 

Dark 8 h / 18 ºC 16 h / 18 ºC 16 h / 4 ºC 8 h / 18 ºC 

Duration 5~6 weeks 8 weeks 4 weeks ∞ 

During the period, the plants were watered every other day supplemented with 

0.5X Hoagland’s solution. 
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B. T-DNA Binary Vectors 

The T-DNA binary vectors used to construct the chimeric genes are 

pB7GWIWG2(II) for RNAi and pB7WG2 for overexpression (Karimi et al., 2002). 

Their maps were shown in the Appendix. 

 

II. Methods 

A. Sample Collection and RNA Extraction 

Tissues (shoots tips, buds, leaves) were collected at specific time intervals (in 

LD or after 3, 6, 8,12 weeks of SD treatment) and immediately frozen in liquid 

nitrogen.  

Following the modifications to Qiagen’s RNeasy mini kit modified by O. 

Shevchenko and A. Brunner, the tissues were grounded to a fine powder in liquid 

nitrogen using a mortal and pestle. Ground tissue (~ 200mg) was added to RNA 

extraction buffer (1ml Qiagen RLT buffer, 0.01g soluble polyvinylpyrrolidone 

(PVP-40, Sigma), 10μl β-mercaptoethanol), and vortex for 1 min to homogenize. 

0.4 Volume of 5M potassium acetate (KoAC) (pH6.5) was added and mixed by 

inversion. The mixture was incubated on ice for 15 min, divided into two 1.5ml 

eppendorf tubes and centrifuged at 12,000 RPM for 15 min at 4 ºC. The supernatant 

were transferred to 2 new 1.5 ml eppendorf tubes and 0.5 Volume of 100% ethanol 

(EtOH) was added, mixed by pipetting up and down. The homogenate was 

transferred to two RNeasy Spin Columns following Qiagen’s instructions for RNA 
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isolation from plant tissues. The column was washed twice with 50μl RNase-free 

water to elute and collect RNA (Qiagen). The RNA (4×50μl) was precipitated 

overnight with 0.1 Volume of 3M sodium acetate (NaoAC) (pH5.2) and 2 Volumes 

of 100% EtOH at –20 ºC. The RNA was pelleted by centrifuging at 14,000RPM for 

30 min at 4 ºC, washed twice with 70% EtOH (cold), dried under vacuum and 

resuspend with 30μl of RNase-free water. RNA concentration was determined by 

measuring absorption at 260 nm wavelength. The RNA samples were stored at –80 

ºC. 

B. Plasmid DNA Extraction 

Plasmid DNA was extracted using Concert™ Rapid Plasmid Miniprep System 

kit (Gibco BRL). Bacteria were cultured at 37 ºC overnight in 5 ml LB broth 

supplemented with appropriate antibiotics. The cells were pelletted by centrifuging 

at 12,000 RPM for 10 min. Following the manufacturer’s instruction, plasmid DNA 

was eluted from the silica-based spin columns with TE or water. The plasmid DNA 

was then digested with restriction enzymes and checked by agarose gel 

electrophoresis. 

C. PCR Amplification 

All PCR reactions used the GeneAmp PCR System 9700 thermocycler (PE 

Biosystems). A single 10µl PCR reaction consisted of 1µl 10X ExTaq Buffer, 2mM 

MgCl2, 200 µM dNTPs, 0.2µM forward primer, 0.2µM reverse primer, 0.25 unit 

Takara ExTaq DNA polymerase (Takara Biomedicals, Japan) and 2-20ng of DNA 
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template. Unless otherwise indicated, the conditions for the PCR reaction are listed 

below: 

Table 2. PCR reaction conditions 

 Denature Anneal Extend 

Temperature 94 ºC 62 ºC 72 ºC 

Duration 30 sec 1 min 1.5 min 

D. Gel Purification of PCR Products 

Extraction of DNA PCR products from agarose gels was accomplished using 

the Concert™ Rapid Gel Extraction System kit (Gibco BRL). DNA bands in the gel 

were stained with ethidium bromide (EtBr) and visualized under UV light. The 

appropriate bands were cut from the gel and weighed. The agarose was dissolved in 

gel extraction buffer at 50 ºC for 15 min. Following the manufacturer’s protocol, 

the DNA/PCR products were purified and eluted from the silica-based spin 

columns with appropriate amount of TE or water. 

E. TOPO Cloning and Transformation with PCR Products 

An appropriate amount of purified PCR product was mixed with 1µl salt 

solution and 1µl TOPO vector and sterile water (optional) to a total volume of 6µl 

(Invitrogen). The tube was incubated at room temperature for 5 min, then placed on 

ice. 2µl of the cloning reaction was added to 100µl competent E. coli (TOP 10) cells 

in an eppendorf test tube, and gently mixed. The tube was incubated on ice for 30 

min, heat treated at 42ºC for 30 sec (heat-shock), and transferred immediately to ice. 

Room temperature S. O. C. medium (250µl) was then added to the tube. The tube 
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was agitated horizontally at 37ºC for 1 hour (200RPM), then centrifuged at 

4,000RPM for 10 min. The supernatant was discarded and 100µl fresh S.O.C. 

medium was added to re-suspend the pellet. The cell suspension was spread on 2-3 

pre-warmed LB agar plates supplemented with appropriate antibiotics. The plates 

were incubated overnight at 37ºC.  

F. Gateway™ LR Recombination Reaction 

Reaction ingredients were added to a 1.5ml microcentrifuge tube at room 

temperature, including 300ng of entry clone, 300ng of binary vectors, 1µl of 

Topoisomerase I and 4µl of 5X LR Clonase™ reaction buffer. Then TE Buffer 

(pH8.0) was added to a final volume of 16µl. The LR Clonase™ Enzyme Mix was 

removed from -80ºC, thawed on ice, and mixed by vortexing briefly twice (2 

sec/each). 4µl of the enzyme mix was added to the 16µl reaction mix (Invitrogen). 

The recombination reaction was incubated at 25ºC for 1 hour. After incubation, 2µl 

of 2µg/µl Proteinase K solution was added to the reaction and incubated at 37ºC for 

10 min to stop the reaction. The expression resulting from the Invitrogen cloning 

reaction was transformed to competent cells and selected on LB agar plates with 

antibiotics. 

G. Make Agrobacterium Competent Cells 

Agrobacterium strain C58/pMP90 were grown overnight at 28 ºC in 5ml LB 

broth with 20mg/L gentamicin. The next day, 2ml of the overnight culture was 

added to 50ml of LB broth with 20mg/L gentamicin in a 250-ml flask and was 



 

 27

shaken vigorously (250RPM) at 28 ºC until the culture grew to an OD600 of 0.5-1.0. 

The cell suspension was chilled on ice and centrifuged at 3,000g for 5 min at 4 ºC. 

The supernatant solution was discarded. The cells were re-suspended in 1ml of 

20mM ice-cold CaCl2, aliquoted into pre-chilled eppendorf tubes (100µl/each tube), 

froze in liquid nitrogen and stored in –80 ºC for future use. 

H. Agrobacterium Transformation (Freeze-Thaw Method) 

Approximately 1µg plamid DNA is added to thawed competent cells at 4ºC. 

The cells were then frozen in liquid nitrogen and thawed by incubating the test tube 

in 37ºC water bath for 5 min (Freeze-Thaw Method). After incubation at 37ºC, 1ml 

of LB broth was added to the tube and incubated at 28ºC for 2 –4 hours with gentle 

shaking (~150RPM). The cells are then centrifuged for 30 sec and the supernatant 

discarded. The cells were re-suspended in 100µl LB broth and spreaded on 2-3 LB 

agar plates containing appropriate antibiotics. The plates were incubated at room 

temperature in the dark. Transformed colonies appeared in 2-3 days. 

I. Agrobacterium-Mediated Poplar Transformation 

Table 3. Media for poplar transformation 

M     
M1    
M2 

10µM 
NAAb 
5µM 
2iPc 

  

M3 

 
4.57g/L basal medium MSa 
1mg/L L-cysteine 
200mg/L L-glutamine 
30g/L Sucrose 
  

500mg/
L Carbd 
 
250mg/
L Cefoe 

 
0.1µM 
TDZf 

 
BASTA 

M1/2 1/2 dose    BASTA 

 

4g/L 

phytaga

r 

aMurashige and Skoog   bNAA= naphthaleneacetic acid   
c2iP=6-(y,y,dimethylally-amino)-purine   dCarb= carbenicillin   eCefo= cefotaxime    
fTDZ= thidiazuron 
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1. Pre-Conditioning 

Explants (stems and petioles) from the plants were pre-incubated on solidified 

M1 medium that included 4.57g/L basal MS medium, 1mg/L L-cysteine, 200mg/L 

L-glutamine, 30g /L sucrose and 4g/L phytagar for 48 hours at 24 ºC in darkness. 

2. Co-Cultivation 

A two-day culture of Agrobacteria containing appropriate binary vectors 

grown on LB agar plates with appropriate antibiotics was used to prepare 25ml LB 

medium with corresponding antibiotics. The 25-ml culture was shaken at 28 ºC 

until OD660 reached about 0.3. The cell suspension was centrifuged at 12,000RPM 

for 10 min and the supernatant was discarded. The cells were resuspended in 100ml 

M liquid that consists of 457mg of basal medium MS, 0.1mg of L-cysteine, 20mg of 

L-glutamine, 3g sucrose and appropriate antibiotics. Forty explants (stems and 

petioles) were dipped into 25ml of the bacteria suspension in Petri dishes and stirred 

slowly. After 16 hours, the explants were blotted on sterile paper towel to remove 

excess bacteria and cultured on solidified M1 medium supplemented with 10µlM 

NAA and 5µM 2iP. The explants were culture at room temperature on M1 medium 

for 48 hours in darkness. 

3. Decontamination 

The explants were washed 4 times (5min/each time) in an antibiotic solution 

that included sterile water, 250mg/L cefotaxime, 500mg/L carbenicillin and 

25mg/L tetracycline with vigorous stirring. After the antibiotic wash, the explants 

were washed 4 more times (5min/each) in sterile water, also vortexed vigorously. 
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After washing, the explants were transferred to M2 medium consisting of 4.57g/L 

basal medium MS, 1mg/L L-cysteine, 200mg/L L-glutamine, 30g/L sucrose and 

4g/L phytagar, supplemented with 10µM NAA, 5µM 2iP, 500mg/L carbenicillin, 

and 250mg/L cefotaxime. The explants were cultured on M2 medium for 10 to 15 

days for stems and about 25 days for leaves in darkness at 24 ºC. 

4. Regeneration 

The explants were transferred from darkness to light and cultured on solidified 

M3 medium consisting of 4.57g/L basal MS medium, 1mg/L L-cysteine, 200mg/L 

L-glutamine, 30g/L sucrose, 4g/L phytagar, supplemented with 500mg/L 

carbenicillin, 250mg/L cefotaxime, 0.1µM thidiazuron. 

5. Rooting 

The shoots were transferred to M1/2 medium that contains the same 

ingredients as M medium but only half the concentration of the macro-nutrients and 

15g/L sucrose.  

J. DNase Treatment of RNA Samples Prior to RT-PCR 

RNA samples were treated with DNase to remove DNA. RNA was mixed with 

RQ1 RNase-Free DNase buffer, RQ1 RNase-Free DNase (1u/µg RNA) and 

Nuclease-free water to a final volume of 10µl (Promega), incubated at 37 ºC for 30 

min. After DNA digestion, the reaction was terminated by adding 1µl of Stop 

Solution and incubating at 65 ºC for 10 min. 
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K. cDNA Synthesis 

First strand cDNA was synthesized using the ImProm-II™ Reverse 

Transcription System (Promega) according to the manufacture’s instructions. 

Approximately 0.4µg of total RNA (in 4.5µl or less) was mixed with 0.5µl 

Oligo(dT), preheated at 70ºC for 5 min and immediately chilled on ice for at least 5 

min. After incubation on ice, 4µl ImProm-II™ 5XReaction Buffer, 4.8µl 25mM 

MgCl2 (6mM final conc.), 1µl 10mM dNTP Mix (0.5mM/each final conc.), 0.5µl 

Recombinant RNasin® Ribonuclease Inhibitor (20 units) and ImProm-II™ Reverse 

Transcriptase (1µl /reaction) (Promega) were added to the cDNA and reaction 

volume adjusted to 20µl with nuclease-free water. The reaction was first incubated 

at 25 ºC for 5 min for annealing followed by 42 ºC for 1 hour for cDNA synthesis. 

After synthesis, the reaction was stopped by incubation at 70 ºC for 15 min. The 

inactivated reverse transcription reaction was used directly for PCR amplification. 

L. Tissue Culture Media Preparation 

Media was prepared with nano pure water, autoclaved at 120 ºC for 15 min. 

Vitamins, growth regulators, antibiotics and herbicides were added by filter 

sterilization after the media was cooled to 50 ºC. After adding filter sterilized 

ingredients, the media was poured to sterile Petri dishes or baby food jars and 

allowed to cool before use. 
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M. DNA and RNA Quantification 

DNA and RNA were quantified by measuring absorbance at 260nm (A260). 

The DNA or RNA samples were diluted with water and loaded in a 96-well Costar 

low UV plate for absorbance detection by µQuant™ Microplate Spectrophotometer 

(Bio-Tek Instruments, Inc) following the manufacturer’s instruction. For reliable 

quantification, A260 readings should lie between 0.1 and 1.0. 

Absorbance at 280nm (A280) was also measured to calculate the ration of A260 

to A280 (A260/A280) ratio, a measure of nucleic acid purity. A ratio between 1.8 and 

2.0 is acceptable. 

N. DNA Sequencing 

All DNA sequencing was performed by the DNA Sequencing Facility 

operated by the Center for Biosystem Research, University of Maryland 

Biotechnology Institute, College Park, MD. DNA samples were prepared according 

to the instructions from facility and M13 Forward and Reverse primers were used 

for all sequencing. 

O. Sequence Analysis 

Sequence similarity searches were performed using BLAST in the NIH 

website (http://www.ncbi.nlm.nih.gov/BLAST) (Altschul et al., 1990). Clustal W 

alignments were performed using Lasergene® (DNASTAR Inc.) or GeneDoc 2.6.02 

from GeneDoc HomePage (http://www.psc.edu/biomed/genedoc/). Restriction site 

http://www.ncbi.nlm.nih.gov/BLAST
http://www.psc.edu/biomed/genedoc/)
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analysis used NEBcutter V2.0 from the website of New England Biolabs, Inc. 

(http://tools.neb.com/NEBcutter2/index.php). 

 

III. Experimentation 

A. Construction of PtFD1 RNAi and Overexpression (OE) Vectors 

For the functional characterization of function of PtFD1 during poplar apical 

bud formation and dormancy, transgenic poplars that either overexpress PtFD1 or 

transgenic poplars with reduced or silence PtFD1 using RNAi were created. DNA 

sequences were first cloned into the entry vector, pENTR/D-TOPO®. After cloning 

into the entry vector, DNA of interest was transferred to the binary T-DNA binary 

vectors pB7GWIWG2 (II) for RNAi and pB7WG2 for overexpression.  

PtFD1 DNA used for chimeric gene construction was produced by PCR using 

4w PCR2-14 PTBF1, a PCR product that contains the full length of PtFD1 cDNA 

sequence. The primers are listed below:  

Table 4. Primers for PCR of 4w PCR2-14 PTBF1 

Direction Primer Name Primer Sequence 

Forward PTBF1-ATG (CACC)1 ATG TGG TCA TCG CCA GGA GCA 

Reverse PTBF1+TGA TCA AAA TGG AGC TGT TGA GGT TCT ATA 

GAG 

Reverse PTBF1-Rev51 GCC AGA GAC ATC ACC GTT TTC TTG AG 
1 (CACC) were added to the 5’ end of the primer for directional cloning of the 

PCR product to the pENTR-TOPO® vector. 

PCR reactions were carried out using 200ng of template DNA, 1µM of each 

primer, 1Xreaction Buffer, 2mM MgCl2, 0.2mM/each dNTPs, and 0.25 unit Takara 

http://tools.neb.com/NEBcutter2/index.php
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ExTaq DNA polymerase. PCR amplification with PTBF1-ATG and PTBF1+TGA 

primer set produced the coding region of PtFD1 (+TGA) while PTBF1-ATG and 

PTBF1-Rev51 primer combination gave a PtFD1 fragment that terminates prior to 

the bZIP basic region (Rev51). PCR products (+TGA and Rev51) were separated 

on a 1% agarose gel. Bands of interest were excised and purified using Concert™ 

Rapid Gel Extraction System kit (Gibco BRL). Purified fragments were cloned into 

the pENTR/D-TOPO entry vector (Invitrogen, MD). Competent E. coli (TOP 10) 

cells were transformed with the entry vector and transformed bacteria selected by 

their resistance to kanamycin (50µg/ml) on solidified LB agar medium. Plasmid 

DNA from kanamycin resistant colonies was extracted, digested with restriction 

enzymes (AscI and NotI ) and visualized in agarose gels. Plasmids that produced the 

desired restriction patterns were sequenced. After confirmation of the DNA 

sequence, it was transferred to the appropriate Gateway™ binary vector by in vitro 

recombination (Invitrogen) (Karimi et al., 2002). 

Construction of PtFD1 RNAi Chimeric Gene 

PtFD1 inserts in pENTR/D-TOPO clones, +TGA and Rev51 were transferred 

to the destination binary vector pB7GWIWG2 (II) using the Gateway™ LR 

Recombination Reaction (Invitrogen, MD). When transcribed, this construct will 

produce a double-stranded RNA (hairpin RNA) from the inserted sequence of 

PTFD1, which then triggers post-transcriptional gene silencing. Competent E. coli 

(TOP 10) cells were transferred with RNAi expression vectors and selected by 

resistance to spectinomycin (50µg/ml) and chloramphenicol (50µg/ml). 
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Construction of PtFD1 Overexpression Chimeric Gene 

PtFD1 DNA sequences in pENTR/D-TOPO clones, +TGA, were transferred 

to the destination binary vector pB7WG2 using Gateway™ LR Recombination 

Reaction (Invitrogen, MD). This results in a chimeric gene where the full length 

PtFD1 cDNA was inserted downstream of the CaMV 35S promoter. The vector 

pB7WG2::+TGA was transformed into competent E. coli (TOP 10) cells and grown 

on LB agar plates containing spectinomycin (50µg/ml). 

Spectinomycin-resistant colonies were selected and cultured in 5ml LB broth 

supplemented with appropriate antibiotics overnight at 37 °C. Plasmids DNA were 

purified and digested with restriction enzymes (RNAi/+TGA and RNAi/Rev51 

vectors: EcoRI; Overexpression/+TGA: SpeI ans XbaI) and visualized in agarose 

gel to confirm the recombination. 

B. Generation of A. tumefaciens with T-DNAs 

After the PtFD1 RNAi [pB7GWIWG2 (II)::+TGA, pB7GWIWG2 (II)::Rev51] 

and overexpression [pB7WG2::+TGA] vectors were verified, bacteria stocks were 

made by mixing 850µl of the cell suspension and 150µl sterile glycerol and directly 

frozen in liquid nitrogen. The bacteria stocks were stored in -80 °C.  

To transfer the binary T-DNA plasmids to Agrobacterium, TOP10 cells 

transformed with the binary T-DNA plasmids were grown on LB agar plates 

supplemented with the antibiotics including spectinomycin (50µg/ml), 

chloramphenicol (50µg/ml) for RNAi or spectinomycin (50µg/ml) for 

overexpression. Single colonies were selected and cultured in 5ml LB broth with 
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the same antibiotics overnight at 37 °C. After overnight incubation, plasmids DNAs 

were extracted and quantified. The Agrobacterium strain used in this experiment is 

C58/pMP90. Approximately 1µg of plasmid DNAs were transformed to 

C58/pMP90 competent cells via the freeze-thaw method. C58/pMP90 cells 

transformed with the PtFD1 RNAi vectors [pB7GWIWG2 (II)::+TGA, 

pB7GWIWG2 (II)::Rev51] were selected on LB agar plates supplemented with 

gentamicin (20µg/ml), spectinomycin (50µg/ml) and chloramphenicol (50µg/ml) 

while cells transformed with PtFD1 overexpression vectors [pB7WG2::+TGA] 

were selected using gentamicin (20µg/ml) and spectinomycin (50µg/ml). The 

plates were incubated at room temperature in darkness.  

Single colonies were selected from the plates and cultured overnight at 28°C in 

5ml LB broth supplemented with antibiotics including gentamicin (20µg/ml), 

spectinomycin (50µg/ml), chloramphenicol (50µg/ml) for RNAi and gentamicin 

(20µg/ml), spectinomycin (50µg/ml) for overexpression. Purified plasmids DNA 

were digested with restriction enzymes (RNAi/+TGA and RNAi/Rev51 vectors: 

EcoRI; Overexpression/+TGA: SpeI ans XbaI) and analyzed by agarose gel 

electrophoresis to confirm the presence and organization of the vectors.  

C. Propagation of Transgenic Poplars 

The protocols used to generate transgenic poplars were adopted from Leple et 

al. 1992. Agrobacterium mediated transformation of poplar (Populus alba × 

Populus tremula) clone 717-1B4 was performed by co-cultivating sterile explants 

with A. tumefaciens containing the RNAi or overexpression binary vectors. 
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Explants used for transformation consisted of stems and petiole sections 

approximately 8mm in length with the stems split longitudinally. The explants were 

first preconditioned on M1 medium for 48 hours before co-cultivation. After 

co-cultivation, the explants were de-contaminated and cultured on M2 medium 

with carbenicillin (500mg/L) and cefotaxime (250mg/L). The explants were 

transferred to M3 medium for regeneration after 2 weeks of culture on M2. 

Regenerated shoots were excised from calli when they were approximately 1cm in 

length and transferred to M1/2 medium for rooting (Leple et al., 1992). The 

regenerated shoots were sub-cultured on M1/2 medium.  

BASTA was added to the medium M3 and M1/2 at 5mg/L to select 

transformed cells. Both the pB7GWIWG2 (II) T-DNA and the pB7WG2 T-DNA 

contain a Bar gene that confers resistance to glufosinate ammonium (Karimi et al., 

2002). Therefore, cells that were not transformed with the Bar gene were killed by 

the herbicide and failed to grow.  

D. RT-PCR of PtFD1 

To determine the expression of PtFD1 in shoot tips or apical buds at different 

development stages, buds or shoot tips were collected from both the transgenic and 

control plants that were grown in either LD or after 3, 6, 8, 12 weeks of SD 

treatment for RT-PCR. PtFD1 specific primers (ATG and Rev51) were used to 

detect PtFD1 mRNA. Total RNA was extracted, precipitated and quantified. The 

RNAs were first treated with DNase to remove the DNAs that might occur in the 

samples. First strand cDNAs were synthesized from 0.4µg of total RNA using the 
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ImProm-II™ Reverse Transcription System kit (Promega). PCR amplification was 

performed using Takara Extaq polymerase (Takara Biomedicals, Japan). PCR 

products were separated and visualized by agarose gel electrophoresis. The primers 

used for PCR amplification are listed below: 

Table 5. PtFD1 specific primers for PCR amplification 

Direction Primer Name Primer Sequence 
Forward ATG ATG TGG TCA TCG CCA GGA GCA 
Reverse Rev51 GCC AGA GAC ATC ACC CTT TTC TTG AG 

Total RNA from leaves of the 717-1B4 and two overexpression transgenic 

lines (OE2-1; OE2-3) treated with LD or after 8 weeks of SD treatment were also 

analyzed by RT-PCR. In addition, flowers produced in two of the overexpression 

lines were also collected and used for RT-PCR experiments with PtFD1 specific 

primers to detect PtFD1 expression. 

E. Histological Analysis of Apical Buds 

For PtFD1 RNAi plants, shoot tips were collected every five days after the 

photoperiod was changed to SD up to 25 days. For PtFD1 overexpression plants, 

shoot tips or apical buds were collected after 3, 6 or 8 weeks of SD treatment. 

Corresponding shoot tips were also collected from control 717-1B4 poplars for 

comparison. 

The collected tissues were fixed immediately in fresh FAA [50% EtOH, 5% 

glacial acetic acid, 10% formaldehyde, 35% water (v/v)]. Vacuum infiltrated for 2 

hours. Fixed tissues were dehydrated and infiltrated according to Table 6.  
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Table 6. Paraffin/TBA method (Ruzin, 1999) 

Step 95% EtOH 100% 

EtOH 

TBA Mineral Oil Duration 

1 50  50  1 day 

2  25 75  1 day 

3  25 75  1 day 

4   100  1 day 

5   100  1 day 

6   100  1 day 

7   67 33 1 day 

After TBA infiltration, about 1/3 volume of the mixture was poured off and 

replaced with an equal volume of melted paraplast. The vials were placed in an 

oven (58 °C) without caps. At 12-hour intervals, 1/2 volume was removed and 

replaced with an equal volume of the melted paraffin. This process was repeated 2-3 

times. As a final step the entire mixture was poured off and replaced with melted 

paraplast. This step was repeated 4-5 times over a 12-hour interval and left 

overnight after the last change of paraplast. When no residual TBA can be detected, 

the tissues were embedded.  

Embedding was performed using the LEICA EG 1160 Paraffin Embedding 

Center. Selected tissues were placed at the center of a mold and melted paraplast 

was added to the mold until it reached the top edge of the plastic ring. The melted 

paraffin in the mold was then solidified on a cooling plate with -5 °C. The paraffin 

block was released from the mold when the paraffin was completely hardened.  

15µm sections were prepared using disposable microtome knife and mounted 

onto microscope slides with Sass’s adhesive. Sections were first deparaffinized in 
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xylene followed by hydration in a graded EtOH series and water (Ruzin, 1999). The 

sections were stained in Safranin O (1% w/v in water) for 1 min, destained with 

water and then dehydrated in a graded EtOH series to 95% EtOH, followed with 

staining in Fast Green FCF (0.1% w/v in 95% EtOH) for 2 min and destained in 

100% EtOH, 2 times at 2 minutes each time (Table 7). 

Sections were cleared with 1:1 xylene and methyl salicylate for 5 sec, then 

dipped 2 times in 100% xylene. Coverslides were mounted with Permount®. 

Table 7. Staining processes for the slides 

Step Name Procedure 

10min in 100% Xylene (2 times) 1 Deparaffinization 

15min in acetone 

2min in 100% EtOH (3 times) 

1min in 95% EtOH 

1min in 85% EtOH 

1min in 70% EtOH 

1min in 50% EtOH 

1min in 30% EtOH 

2 Hydration 

2min in H2O 

3 Staining 1min in Safranin O (1% w/v in H2O) 

4 Destaining 3-4 times in H2O till the water is clear 

5 Dehydration 2min in 30% EtOH 

2min in 50% EtOH 

2min in 70% EtOH 

2min in 85% EtOH 

  

2min in 95% EtOH 

6 Staining 2min in Fast Green FCF (0.1% w/v in 95% EtOH) 

7 Destaining 2min in 100% EtOH (2 times) 
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Results 

 

I. Construction of Transgenic Vectors 

A. PCR Amplification of PtFD1 Fragments 

Two sets of primers (Figure 1) were used to amplify PtFD1 fragments by 

using a full length PtFD1 cDNA (4w PCR2-14 PTBF1) as the PCR template. PCR 

amplification with PTBF1-ATG and PTBF1+TGA primer set produced an 820bp 

DNA fragment consisting of the coding region of PtFD1 while PTBF1-ATG and 

PTBF1-Rev51 primer combination results in a 600bp PtFD1 fragment consisting of 

the 5’ region of the cDNA that terminates prior to the bZIP basic region. The PCR 

products were analyzed on a 1% agarose gel. Figure 2 shows the results of the PCR 

amplification and two bands approximately 820bp and 600bp are detected. After 

gel electrophoresis, the 820bp and 600bp bands were cut from the gel and purified. 

To further verify that the correct fragments were amplified, the purified fragments 

were digested with endonuclease restriction enzymes. For the 820bp product, 

EcoRI digestion was expected to produce 2 bands approximately 400bp while StuI 

gives 2 bands of 580bp and 240bp. For the 600bp product, EcoRI digestion was 

expected to produce 2 bands of 400bp and 200bp while NsiI gives 2 bands of 470bp 

and 130bp. The PCR products were digested with these enzymes and separated by 

agarose gel electrophoresis. The gel image showed bands of these predicted size 
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(data not shown), confirming that the PCR products were consistent with the PtFD1 

cDNA sequence. 
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Figure 1. PtFD1 cDNA sequence. The locations of forward and reverse 
primers are indicated by arrows. 
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Figure 2. PCR of 4wk PCR 2-14 PTBF1. Primer combinations are as 
following: lane +TGA, PTBF1-ATG and PTBF1+TGA; lane Rev51, 
PTBF1-ATG and PTBF1-Rev51. PCR products were resolved through a 1% 
agarose gel containing ethidium bromide.. 
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B. Cloning of PCR Products into pENTR/D-TOPO Vector 

The purified PCR products (+TGA and Rev51) were cloned into 

pENTR/D-TOPO vector, transformed into competent E. coli (TOP 10) cells and 

grown overnight on LB plates containing 50µg/ml kanamycin. Individual colonies 

from the plates were picked and grown in LB broth containing kanamycin overnight 

at 37°C. Plasmid DNA was extracted from bacteria culture, digested with AscI and 

NotI and separated through a 1% agarose gel. For the +TGA clone, digestion with 

AscI and NotI should produce two bands of approximately 2580bp and 840bp. Two 

of the seven colonies tested showed the predicted bands. For the Rev51 clone, 

digestion with AscI and NotI should result in two bands of 2580bp and 620bp. Of all 

the 16 colonies tested, 3 of them showed the predicted bands (data not shown). 

Plasmids containing the predicted bands were sequenced to verify the sequences of 

the cloned PCR products. 

The sequences of the PCR clones were aligned to the PtFD1 cDNA sequence 

and proved to be identical. Two clones (+TGA1 and Rev51-2) were selected for use 

in the LR recombination reaction for producing the binary T-DNA vectors. 

C. Transfer of the PtFD1 Fragments to the Binary Vectors 

The PtFD1 fragments (+TGA1 and Rev51-2) cloned into the 

pENTR/D-TOPO vector were transferred to the RNAi and Overexpression binary 

vectors to generate 3 chimeric genes. These include two RNAi clones 

(pB7GWIWG2(II)::+TGA) and (pB7GWIWG2(II)::Rev51) and one 
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overexpression clone (pB7WG2::+TGA). Transfer to the pB7GWIWG2(II) and 

pB7WG2 binary vectors was accomplished using the GATEWAY™ LR 

recombination reaction. The entry vector pENTR/D-TOPO contains attL sites 

(attL1 and attL2) that will recombine with the attR sites (attR1 and attR2) in the 

destination binary vector resulting in the transfer of the cloned PtFD1 fragments in 

the entry vector to the destination vector. The recombination reaction used the LR 

Clonase™ enzyme mix. Topoisomerase I was added to relax the DNA of the 

destination vector and increase the efficiency of the LR reaction (GATEWAY™ 

Technology Instruction Manual, Invitrogen). The binary vectors were transferred to 

E. coli competent cells (TOP10) and grown overnight on LB agar plates 

supplemented with spectinomycin and chloramphenicol for RNAi and only 

spectinomycin for overexpression. After overnight culture at 37°C, colonies were 

picked from the plates and cultured overnight with shaking in 5ml of LB broth 

containing the appropriate antibiotics. Plasmid DNA was extracted from the 

cultured bacteria cells, digested with restriction enzymes and separated through 1% 

agarose gel electrophesis containing ethidium bromide. Table 8 listed the restriction 

enzymes used to analyze the purified plasmids. 

Table 8. Restriction enzymes and predicted digestion  
production of PtFD1 binary plasmids 

 pB7GWIWG2 
(II)::Rev51 

RNAi 

pB7GWIWG2 
(II)::+TGA 

RNAi 

pB7WG2::+TGA 
overexpression 

EcoRI 880bp, 1.2kb, 10.2kb 10.8kb, 1.4kb, 1.2kb  

SpeI + XbaI   1.3kb, 8.9kb 
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As shown in Figures 3 and 4, clones digested with the respective restriction 

enzymes produced predicted bands, confirming that the PtFD1 fragments had been 

transferred to the T-DNA binary vector. 
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Figure 3. Digestion of the RNAi vector pB7GWIWG2 (II)::Rev51 with 
EcoRI. Lanes 1 to 4 contains pB7GWIWG2 (II)::Rev51 plasmid DNA 
extracted from 4 different colonies. Lane Ø is a control pB7GWIWG2 (II) 
vector without an insert. The digestion reaction was carried out at 37 °C for 1 
hour and resolved through a 1% agarose gel contains ethidium bromide. 1kb 
DNA plus ladder was used as a size marker. 
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Figure 4. Digestion of RNAi vector pB7GWIWG2 (II)::+TGA and 
overexpression vector pB7WG2::+TGA. Lanes 1 to 4 (left side) are four 
independent colonies containing pB7WIWG2(II)::+TGA digested with 
EcoRI. Lane Ø is the pB7WIWG2(II) vector without an insert. Lanes 1 to 4 
(right side) are four independent colonies containing pB7WG2::+TGA 
digested with SpeI and XbaI.  
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D. Transfer of the Binary Vectors to A. tumefaciens 

Approximately 1µg of the binary RNAi and overexpression plasmids were 

individually transferred to A. tumefaciens competent cells (C58/pMP90) using the 

freeze-thaw method. Transformed A. tumefaciens RNAi [pB7GWIWG (II)::+TGA, 

pB7GWIWG (II)::Rev51] cells were selected on LB plates supplemented with 

gentamicin, spectinomycin, chloramphenicol and LB plates with gentamicin and 

spectinomycin for overexpression [pB7WG2::+TGA]. The plates were incubated at 

room temperature in darkness. After 3-4 days transformed colonies were visible. 

After 4 days of growth, colonies transformed with pB7GWIWG (II)::+TGA, 

pB7GWIWG (II)::Rev51 and pB7WG2::+TGA were picked and cultured overnight 

in 5ml LB broth supplemented with corresponding antibiotics. Plasmids was 

extracted, digested by restriction enzymes digestion as previously described and 

separated through a 1% agarose gel containing ethidium bromide. Figure 5 shows 

that the predicted bands (Table 8) for all of the plasmids were detected. 

Agrobacteria with RNAi and overexpression binary T-DNA were then used for 

poplar transformation. 
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Figure 5. Digestion of T-DNA binary plasmids extracted from A. tumefaciens. 
RNAi/Rev51 and RNAi/+TGA were digested with EcoRI. OE/+TGA was 
digested with SpeI and XbaI. 1kb plus DNA ladder was used as the marker. 
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II. Propagation of Transgenic Poplars 

The hybrid poplar clone 717-1B4 (Populus tremula X P. alba) was used for 

the transgenic studies because of its efficiency in adventitious shoot regeneration. 

Shoot cultures of the clone were cultured in vitro on M1/2 MS medium. Sterile 

explants (stems and petioles) were dissected from the 717-1B4 shoot cultures. 

Regenerated transgenic shoots were cultured in M1/2 MS medium supplemented 

with 5mg/L BASTA while non-transgenic 717-1B4 seedlings were grown in M1/2 

MS medium without BASTA.  

Of the 160 explants transformed with pB7WG::+TGA (OE/+TGA) chimeric 

gene, 12 explants regenerated shoots. Among 200 explants transformed with 

pB7WIWG2 (II)::+TGA (RNAi/+TGA), 6 explants regenerated shoots. After 

repeated selection on BASTA, 4 individual lines of each of the transgenic types 

(OE/+TGA and RNAi/+TGA) were obtained. No RNAi/Rev51 plants were 

obtained from the 200 explants transformed with pB7WIWG2(II)::Rev51 

(RNAi/Rev51). Plantlets from individual transgenic lines were transferred to fresh 

M1/2 medium with BASTA in a certain time interval, usually 1-2 months. Cuttings 

were made to propagate more plantlets. It can be noticed that the plantlets of 

OE/+TGA had a thicker stem, a smaller leaf and not as green as RNAi/+TGA and 

the control. 
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III. Morphological Characteristics of the Transgenic Poplars 

When enough plants were generated by tissue culture, seedlings with 5-6cm 

stems, 4-6 leaves and complete roots from several transgenic lines and the control 

were transferred to soil pots and grown in plant growth chambers (30 plantlets /each 

line).  

After 2-3 weeks of growth in LDs, morphological differences between PtFD1 

overexpressing and control plants were observed. PtFD1 overexpression plants 

failed to grow with an upright habit and instead the stems grow with a prostrate 

habit (Figure 6). This growth habit was observed in all of the PtFD1 overexpressing 

lines. In addition to the change in growth habit, the leaves of PtFD1 overexpressing 

plants were smaller and coiled upward compared to non-transgenic control plants. 

There were no significant morphological differences between the RNAi/+TGA and 

the control plants. 
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Figure 6. PtFD1 transgenic plants (Overexpression and RNAi) and control 
(717-1B4) plants in growth chamber (A) and greenhouse (B). 
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After 5-6 weeks of growth in LD, plants were transferred to SD. For control 

717-1B4 poplars, apical bud morphogenesis began after 3 weeks of SD treatment. 

Compared to control plants, apical bud development appeared to be accelerated for 

the PtFD1 RNAi expressing plants but the difference was not significant. Although 

both control and PtFD1 RNAi plants developed apical buds at similar rate after 56 

days of SD, the apical buds of the PtFD1 RNAi expressing poplar were visibly 

smaller in size. In contrast to PtFD1 RNAi expressing plant and control plants, 

poplars overexpressing PtFD1 failed to form apical buds when treated with SD even 

after 8 weeks. Because the shoot apices failed to develop apical buds, shoot growth 

continued in SD (Figure 7). It was also noticeable that the shoot elongation of 

PtFD1 overexpression plants was slower both in tissue culture and in growth 

chambers. After 8 weeks of SD treatment, the plants were transferred to SD plus LT. 

Leaf abscission occurred for both control and PtFD1 RNAi expressing plants while 

leaf abscission for PtFD1 overexpressing plants failed to occur.  

In addition, flowers were induced in both tissue cultured plantlets and 

greenhouse grown plants of all PtFD1 overexpressing lines (Figure 8). Wild type 

poplars usually do not form flower buds during the first several years of their life 

cycle (Hsu et al., 2006). 
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Figure 7. Shoot apices of 717-1B4 and PtFD1 overexpression plants in LD or 
after 8 weeks of SD treatment. 
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Figure 8. Flower buds on PtFD1 overexpression plantlets. The plantlets are 
from (A) tissue culture in continuous light and (B) a one month old green 
house grown plant in LD treatment. 
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IV. RT-PCR of PtFD1 in Transgenic Poplars 

Two RNAi lines (RNAi 1-2, RNAi 1-6), two overexpression lines (OE 2-1, 

OE 2-3) and control 717-1B4 were transferred from tissue culture to growth 

chambers and treated with SD after LD. Plants were treated for 8weeks in SD at 18 

ºC and an additional 4weeks in SD with 10 ºC in the day and 4 ºC at night.  

A. PtFD1 Expression in Shoot Tips and Apical Buds 

Shoot tips or apical buds were collected from LD and after 3, 6, 12 weeks of 

SD treatment. RNA was extracted and used for RT-PCR with PtFD1 gene specific 

primers. As shown in Figure 9, PtFD1 mRNA was not detected in control plants in 

LD and after 3 weeks of SD treatment, but was detected after 6 weeks of SD 

treatment and with continued SD (8 weeks of SD followed by 4 weeks of SD+LT) 

treatment, PtFD1 mRNA abundance decrease to undetectable levels. This 

expression is consistent with that previously observed (Gnewikow, 2001). For the 

two RNAi lines, PtFD1 mRNA levels were similar to that observed in control plants. 

PtFD1 mRNA was detected in all treatments for the PtFD1 overexpression lines.  
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Figure 9. RT-PCR of PtFD1. RNA was extracted from shoot tips or apical 
buds of control 717-1B4 (Ø), overexpression (OE) and RNAi plants under LD 
or after 3 weeks (A), 6 and 12 weeks (B) of SD treatment. Primers 
PTBF1-ATG and PTBF1-Rev51 were used for PCR amplification. RT-PCR 
of UBIQ is shown as an equal loading control. 
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A second experiment was performed using three RNAi lines (RNAi 1-2, RNAi 

1-3, RNAi 1-4), two overexpression lines (OE 2-2, OE T3) and control 717-1B4. 

Shoot tips and apical buds were collected after 3, 6 and 8 weeks of SD treatment for 

the 3 RNAi lines and control plants. For both control and the 2 overexpression lines, 

shoot tips were collected after 3, 6, 8 and 12 weeks of SD treatment. RNA samples 

from the previous experiment were combined with this experiment and RT-PCR 

using PtFD1 primers was performed (Figure 10).  

In the control 717-1B4 plants, PtFD1 was not expressed in LD. The expression 

of PtFD1 peaks after 8 weeks of SD treatment. After 12 weeks of SD treatment, the 

expression of PtFD1 diminishes. 

In the overexpression plants, PtFD1 was expressed in a fairly high level ever 

since in LD. The abundance of PtFD1 mRNA after 12 weeks of SD treatment was 

not reduced compared to the PtFD1 mRNA level after 6 weeks of SD treatment. 

In the RNAi plants, the expression of PtFD1 was higher in two of the lines, 

RNAi 1-2 and RNAi 1-6 compared to the control 717-1B4 plants. Reduced PtFD1 

expression was found in two other lines, RNAi 1-3 and RNAi 1-4 after 8 weeks SD 

treatment.  
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Figure 10. RT-PCR of PtFD1. RNA was extracted from shoot tips or apical 
buds of control 717-1B4 (Ø), overexpression (OE) and RNAi plants under LD 
or after 3, 6, 8 and 12 weeks of SD treatment. Primers PTBF1-ATG and 
PTBF1-Rev51 were used for PCR amplification. RT-PCR of UBIQ is shown 
as an equal loading control. 
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B. PtFD1 Expression in other Tissues 

RT-PCR was also performed on RNA extracted from the leaves of control and 

2 overexpression lines (OE 2-1, OE2-3) growing in LD or after 8 weeks of SD 

treatment. In addition, RNA from flower that developed on the overexpression lines 

was also analyzed. Primers ptbf1+ATG and ptbf1-Rev51 were used for PT-PCR of 

the RNA samples. Figure 11 shows that PtFD1 mRNA was not detected in the 

leaves of control plants in LD or after 8 weeks of SD treatment. This is consistent 

with earlier reports of PtFD1 mRNA expression (Gnewikow, 2001). PtFD1 mRNA 

was detected in the leaves of both overexpression lines in LD and after 8 weeks of 

SD treatment. Besides, PtFD1 mRNA was also detected in the flower buds of 

overexpression plants. 
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Figure 11. RT-PCR of PtFD1. RNA was either extracted from leaves of 
control 717-1B4 (Ø), overexpression (OE) and RNAi plants under LD or after 
8 weeks of SD treatment or from flower buds of overexpression seedlings in 
tissue culture. Primers PTBF1-ATG and PTBF1-Rev51 were used for PCR 
amplification. RT-PCR of UBIQ is shown as an equal loading control. 
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V. Histological Analysis of Transgenic Shoot Tips or Apical Buds 

For RNAi plants, shoot tips and apical buds were collected at 5-day intervals 

after being transferred to SD for 25 days. For overexpression plants, shoot tips were 

collected after 3, 6, 8 and 12 weeks of SD treatment. The tissues were fixed, 

dehydrated, infiltrated, embedded and sectioned. Tissue sections were stained with 

Safranin O and Fast Green FCF. Safranin O stains lignin, cutin, suberin, chitin, 

chromosomes and nucleoli while Fast Green FCF was used as a counterstain to 

reveal tissues that were not labeled by Safranin O (Ruzin, 1999). 

SD induced apical bud formation was shown to be accelerated in PtFD1 RNAi 

plants (Figure 12A). After 15 days of SD treatment, obvious bud scale formation 

was observed in PtFD1 RNAi plants compared to control plants. Buds collected 

from PtFD1 RNAi plants after 56 days of SD treatment were more compact and 

smaller compared to the control plants. 

Noteworthy differences occur between the PtFD1 overexpression and control 

plants. Bud scales fail to develop after 8 weeks of SD treatment in PtFD1 

overexpression plants (Figure 12B). 
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Figure 12.Anatomy of control and transgenic shoot tips or apical buds. 
(LV=leaves, ST=stipules, BS=bud scales) 
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Discussion 

 

I. Origin of the Study of PtFD1 

PtFD1 was first isolated in our lab from the hybrid poplar clone 545-4183 

(Populus deltoids X Populus trichocarpa) during attempts to isolate ABI3 from 

apical buds (Gnewikow, 2001). Instead of amplifying ABI3 cDNA, a putative bZIP 

transcription factor was obtained. It was shown to be related to plant bZIP proteins 

and was named PTBF1 (Poplar Terminal Bud Factor-1) (Gnewikow, 2001). 

Because of the potential role of signaling and gene activation, PTBF1 was selected 

for further study (Schwechheimer et al., 1998).  

Sequence analysis shows that this bZIP protein is related closely to two 

members of the group A Arabidopsis bZIP transcription factors, AtbZIP14 and 

AtbZIP27 (Figure 13). Further alignments revealed PTBF1 a homologue of 

AtbZIP14 (Figure 14), which was recently identified as FD in Arabidopsis (Abe et 

al., 2005). So PTBF1 was re-named as PtFD1 for consistency. 
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Figure 13. Sequence analysis of PtFD1 and the Group A Arabidopsis bZIP 
transcription factors. The analysis was accomplished by using GeneDoc 
2.6.02 from GeneDoc HomePage  (http://www.psc.edu/biomed/genedoc/) 

http://www.psc.edu/biomed/genedoc/)
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Figure 14. ClustalW alignment of PtFD1, AtbZIP14 and AtbZIP27 sequences. 
The alignment was accomplished by using GeneDoc 2.6.02 from GeneDoc 
HomePage (http://www.psc.edu/biomed/genedoc/). Residues on black, dark 
gray, and light gray backgrounds indicate 100%, 80%, and 60% amino acid 
similarity, respectively. 

http://www.psc.edu/biomed/genedoc/
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II. Sequence Analysis of PtFD1  

PtFD1 is composed of 272 amino acids with a predicted molecular weight of 

29.5 kDa (Figure 15). It contains a basic domain common to bZIP transcription 

factors. Located in the N-terminus of PtFD1 is a proline rich region from amino 

acids 35-45, which may function as a transactivation domain.  

Among bZIP proteins, the most conserved sequence is the DNA-binding basic 

region. It contains several residues that almost locate at the same relative positions 

among different bZIP proteins. The conserved residues form a consensus sequence 

of (-18) N XXX A A X X(C/S) R (-10) in which the negative number is labeled 

according to the +1 leucine (Hurst, 1996). Two amino acids are conserved in most 

bZIP proteins, the asparagine (N) at position 211 (of the PtFD1) and the arginine (R) 

at position 219. Two other amino acids, serine (S) at position 214 (of the PtFD1) 

and alanine (A) at position 215 are also found in most most of the known bZIP 

proteins. 

The leucine zipper domain of PtFD1 contains three heptad leucine repeats with 

the leucines locate at position 229, 236 and 243. Three heptad is thought to be the 

minimum number of heptad leucine repeats that can form a zipper although the 

heptad repeats can be as many as seven (Landschultz et al., 1988).  

bZIP proteins can form both homodimers and heterodimers. Forming dimers 

with different bZIP proteins may change protein conformation and DNA binding 

affinity, which would allow a combinatorial level of signaling (Alberts et al., 1994). 
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Figure 15. Amino acid sequence of PtFD1 bZIP protein. Regions showing 
significant homology to conserved motifs are underlined and labeled. The 
asterisks below the leucine residues indicate the presence of leucine repeats 
every 7 residues.  
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III. Characterization of PtFD1 

A. Involvement of PtFD1 in Bud Formation and Development 

The expression of PtFD1 is induced by SD photoperiod and is coincident with 

apical bud formation. Prior research showed that PtFD1 mRNA levels are at their 

highest in apical buds when plants were exposed to SD and at their lowest when 

plants were exposed to SD-NB (Gnewikow, 2001). This expression pattern is 

similar in both apical and auxillary buds. Similar results of photoperiod regulation 

were observed for poplar genotypes of both 717-1B4 and 545-4183. PtFD1 

expression coincides with bud formation and maturation, suggesting an 

involvement of PtFD1 in these processes. To test the role of PtFD1 in bud 

development, PtFD1 expression was altered in transgenic poplars and any 

alterations in bud formation and maturation were observed. 

Bud formation is characterized by the presence of bud scales. In poplar, bud 

scales develop from leaf-subtending stipules that enlarge to enclose the leaf 

primordia (Goffinet and Larson, 1981 & 1982). Bud formation usually occurs after 

about 6 weeks of SD treatment, which is also when PtFD1 expression is at its 

highest level, after which PtFD1 mRNA levels decline. It has been proposed that 

PtFD1 may somehow influence bud scale growth (Gnewikow, 2001). In transgenic 

poplars that overexpress PtFD1, apical bud development was inhibited even after a 

considerable length of SD treatment. Anatomic studies showed overexpression of 

PtFD1 impinged on the formation of bud scales (Figure 12). Besides, poplar 
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homologue of ABI3, PtABI3 also impinges on apical bud formation. Overexpession 

of PtABI3 promoted the growth and differentiation of embryonic leaves while 

suppressing the development of bud scales (Rohde et al., 2002). This is similar to 

the effect of PtFD1 overexpression. This raises the possibility that PtABI3 and 

PtFD1 may interact in this process. 

For the RNAi transgenic plants, bud formation and development was similar to 

that of the control plants. According to the RT-PCR results, the PtFD1 levels in the 

RNAi lines (RNAi1-2 and RNAi 1-6) were not significantly reduced compared to 

the controls. Among available RNAi transgenic lines, RNAi 1-3 and RNAi 1-4 

showed reduced PtFD1 expression than RNAi 1-2 and RNAi 1-6. Regenerating 

plants with RNAi chimeric genes was not efficient compared to PtFD1 

overexpressing construct, which could indicate the PtFD1 is required for shoot 

regeneration. Obtaining strong PtFD1 RNAi lines will probably require an 

inducible promoter. This may be why the RNAi transgenic lines in this experiment 

did not show significant differences to the wild type plants in bud formation.  

B. Involvement of PtFD1 in Flowering 

In the annual plant Arabidopsis, flowering is regulated through four major 

genetic pathways that mediate responses to either environmental or endogenous 

signals (reviewed by Parcy, 2005). These genetic pathways converge on the 

activation of a set of floral pathway integrators including LEAFY (LFY), 

FLOWERING LOCUS T (FT) and SUPPRESSOR OF CO OVEREXPRESSION 

(SOC1). These integrators convert multiple input signals to regulate floral meristem 
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identity (FMI) genes, which in turn initiate the transition from vegetative to 

reproductive development at the shoot apical meristem (Simpson and Dean, 2002). 

In the photoperiodic pathway, a circadian-clock mediator, CONSTANS (CO) plays a 

key role. CO encodes a transcriptional regulator that promotes flowering in LD 

through direct upregulation of FT, a conserved promoter of flowering (Kardailsky 

et al., 1999; Kobayashi et al., 1999; Onouchi et al., 2000; Samach et al., 2000). FD, 

a bZIP protein that is expressed in the shoot apex is required for FT activity. FT 

mRNA moves from leaf phloem to the shoot apical meristem (SAM) where it forms 

a transcriptional complex with FD to activate FMI genes such as APETALA1 (AP1) 

(Huang et al., 2005; Abe et al., 2005; Wigge et al., 2005).  

In contrast to the short life cycles of annual plants, woody plants such as 

poplars have life spans of hundreds of years and a long juvenile phase of about 7 to 

10 years (Braatne et al., 1996). During the juvenile phase, the plants lack 

reproductive capacity and must reach maturity to be able to form flower buds 

(Kozlowski and Pallardy, 1997; reviewed by Poethig, 1990). Flower buds were 

observed in all PtFD1 overexpression transgenic lines indicating that PtFD1 has a 

role in flowering and potentially the transition from juvenility to maturity (Figure 

8.). Recently, the role of two poplar FT family members, PtFT1 and PtFT2 in poplar 

flowering was reported (Böhlenius et al., 2006; Hsu et al., 2006).  

FT2 transcripts were rare in juvenile trees while levels were abundant during 

reproductive growth in mature trees in long days. Overexpression of FT2 was found 

to induce flowering in juvenile poplars within one year (Hsu et al., 2006). Poplars 
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transformed with 35S::PtFT1 were found to generate flower-like structures directly 

from the Agrobacterium-infected explants. Furthermore, trees overexpressing 

PtFT1 did not cease growth when transferred to SD treatment (Böhlenius et al., 

2006). These phenotypes are very similar to what observed for the PtFD1 

overexpression poplars. Unlike the PtFD1 RNAi plants, PtFT1 RNAi plants were 

reported to be much more sensitive to SD treatment (Böhlenius et al., 2006). Thus it 

appears that the CO/FT regulon controls both the flower timing and seasonal 

growth cessation and bud set by regulating photoperiod output signal (Böhlenius et 

al., 2006). Since similar phenotypes between PtFD1 and PtFT1 plants were 

observed, it seems that both flowering and bud development share similar 

regulatory features. 

It is likely that flowering in poplar was regulated through similar pathways as 

those in Arabidopsis. In Arabidopsis, FD mRNA appears to be transported from 

leaves to shoot apex where its regulatory role occurs. In poplars, PtFD1 is also 

expressed in the shoot apex. High levels of FD1 transcripts occur in both leaves and 

shoot apices of PtFD1 overexpression plants. Since flowering occurs in these plants 

suggests that FD alone can induce flowering. 

C. PtFD1 and ABA Pathways 

Arabidopsis Group-A bZIP proteins are thought to play an important role in 

ABA signal transduction in both seeds and vegetative tissues (Jakoby et al., 2002). 

In poplar, exogenous ABA caused a small increase in PtFD1 expression in shoot 

tips (Gnewikow, 2001).  
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The leaves of PtFD1 overexpression lines were smaller than the control plants 

and the margins of the leaves showed a curling shape, which usually occur when 

plants were in low humidity. This phenotype may represent an altered response to 

ABA.  

The similar phenotype was observed in aba1 mutants in Arabidopsis. The 

ABA deficient mutants showed a semi-dwarf phenotype, leaves of reduced size and 

curly leaf margins, which were thought to be related to impaired stomatal closure 

(Barrero et al., 2005). This similarity suggests that PtFD1 may be involved in ABA 

biosynthesis or act as a component of the ABA signal transduction pathway. The 

phenotypes observed in PtFD1 overexpression transgenic plants may be caused by 

defects in stomata function. The malfunctions lead to the failure of stomata closure 

so that water loss through transpiration is greatly increased. The plants then develop 

smaller leaves. 

D. Possible Roles of PtFD1 

From the morphological and anatomic results, it is clear that PtFD1 plays a 

role in suppression of the formation of apical buds. This role appears to be related to 

bud scale formation. PtFD1 acts as a negative inhibitor in the processes of bud 

formation and maturation. Excessive amount of PtFD1 impairs the plant’s 

responses to SD treatment including growth cessation and bud formation. The 

signal transduction pathway of growth cessation and bud formation remains 

unknown. Poplars overexpressing PtFD1, PtFT1, PtABI3 or PHYA all displayed 

defects in growth cessation and bud formation indicating a role for these genes in 
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this pathway. All these factors may be involved in bud formation through one or 

multiple pathways. 

PtFD1 is also a positive regulator of flowering and overexpression of PtFD1 

causes early flowering in juvenile plants. The mechanism is likely to be similar with 

that of Arabidopsis. Growth cessation, bud set and flowering may share some 

common regulators, including the circadian-clock mediator (CO), bZIP 

transcription factor (FD), “florigen” (FT), phytochromes (PHYA).  

In Arabidopsis, FT act as an activator of flowering while its homologue 

TERMINAL FLOWER1 (TFL1) represses flowering (Shannon and Meeks-Wagner, 

1991; Alvarez et al., 1992; Kardailsky et al., 1999; Searle and Coupland, 2004; 

Wigge et al., 2005). The antagonistic functions can be converteds by swapping a 

single amino acid (Hanzawa et al., 2005). The bZIP transcription factor FD can 

interact with both FT and TFL1 (Abe et al., 2005; Wigge et al., 2005). 

Accumulation of CO in LD induces the transcription of FT, which converts FD into 

a strong activator by forming a complex with FD and bind to the promoter of the 

floral identity gene AP1 (Valverde et al., 2004; Wigge et al., 2005; Ahn et al., 2006). 

TFL1 competes with FT to react with FD, converts FD into a strong repressor and 

delays the transition from the vegetative growth to flowering (Hanzawa et al., 2005; 

Ahn et al., 2006). Thus by interacting with different components, FD can change 

between activator and repressor. In poplar, it is very likely that the balance between 

FT and TFL1 regulates the responses to floral inductive signals (Kardailsky et al., 

1999). During the long juvenile period, a chromatin structure-based repression of 
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PtFT1 prevent the plants from entering reproductive phase too early (Böhlenius et 

al., 2006). 

 

IV. Suggestions for Future Study 

PtFD1 has been proven to play roles in bud formation, bud maturation, 

vegetative growth and flowering. It may also take part in ABA and signal 

transduction pathway. How it functions in all of the events remains elusive. 

Since PtFD1 is thought to be involved in several genetic regulatory pathways, 

its direct targets are very likely to be components of the transduction pathways. 

With the available transgenic lines, suppression subtractive hybridization (SSH) 

can be used to isolate differentially expressed transcripts. DNA microarray can be 

used for gene expression profiling. Isolated genes are candidate components in the 

regulation of the physiological events.  

Evidence shows that PtFD1 functions by interacting with other factors of the 

regulatory pathways, forming either a modulating complex or a dimer. Identifying 

these components is another important work that needs to be done. Yeast two hybrid 

system can be applied to identify factors that interact with PtFD1, such as PtFT. 

This may help to elucidate the networks of the pathways. 
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Appendices 

 

                

 

 

 

 

Figure A. 1. The map of over-expression T-DNA binary vector, pB7WG2. 
(Karimi, M., Inze, D., Depicker, A., Gateway vectors for 
Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002 
May;7(5): 193-195.)  
Source of the map: 
http://www.psb.ugent.be/gateway/index.php?NAME=pB7WG2&_app=
vector&_act=construct_show& 

 

http://www.psb.ugent.be/gateway/index.php?NAME=pB7WG2&_app


 

 78

 
 
 
 
 

 
 
 
 
 
 

Figure A. 2. The map of RNAi T-DNA binary vector, pB7GWIWG2(II). 
(Karimi, M., Inze, D., Depicker, A., Gateway vectors for 
Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002 
May;7(5): 193-195.)  

Source of the map:  
http://www.psb.ugent.be/gateway/index.php?NAME=pB7GWIWG2(II)
&_app=vector&_act=construct_show& 

http://www.psb.ugent.be/gateway/index.php?NAME=pB7GWIWG2(II)
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