

ABSTRACT

Title of Document: TOOLS FOR ADVANCED VIDEO

METADATA MODELING

 Sameer Avinash Kibey, Master of Science, 2007

Directed By: Dr. David Doermann

University of Maryland Institute for Advanced
Computer Studies (UMIACS)

In this Thesis, we focus on problems in surveillance video analysis and propose

advanced metadata modeling techniques to address them. First, we explore the

problem of constructing a snapshot summary of people in a video sequence. We

propose an algorithm based on the eigen-analysis of faces and present an evaluation

of the method. Second, we present an algorithm to learn occlusion points in a scene

using long observations of moving objects, provide an implementation and evaluate

its performance. Third, to address the problem of availability and storage of

surveillance videos, we propose a novel methodology to simulate video metadata.

The technique is completely automated and can generate metadata for any scenario

with minimal user interaction. Finally, a threat detection model using activity analysis

and trajectory data of moving objects is proposed and implemented. The collection of

tools presented in this Thesis provides a basis for higher level video analysis

algorithms.

TOOLS FOR ADVANCED VIDEO METADATA MODELING

By

Sameer Avinash Kibey

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2007

Advisory Committee:
Associate Professor Carol Y. Espy-Wilson (Chair/Advisor)
Dr. David Doermann (Co-Chair)
Associate Professor Min Wu

© Copyright by
Sameer Avinash Kibey

2007

 ii

Acknowledgements

During the Masters program at the University of Maryland, I have been fortunate to

interact with several people who have influenced me greatly. I would like to take this

opportunity to thank everyone who has helped me in successful completion of my

Thesis and the graduate studies at the University.

Firstly I would like to thank Dr. David Doermann for his guidance and support in my

research at the Language and Media Processing Laboratory. He has greatly inspired

the direction of my research by his constructive inputs. I cannot thank him enough for

his supervision and advice at every stage of my work. Dr. Doermann’s reviews and

insightful comments have helped me immensely in writing this Thesis.

I wish to thank my academic advisor Professor Carol Espy-Wilson for her

encouragement and timely help through the entire Masters program. I am also

grateful to the Thesis committee including Professor Espy-Wilson, Dr. Doermann and

Professor Min Wu for agreeing to be on the Committee and taking out the time to

review my Thesis.

I would like to thank the sponsor of this research - Panasonic System Solutions

Development Center (PSDU) at Princeton, NJ. Part of the work presented in this

Thesis are results and extension of results of the collaborative work with Dr. K. C.

Lee, Dr. Hasan Timucin Ozdemir, and Dr. Lipin Liu during summer internship at

 iii

Panasonic. I am sincerely thankful to Dr. Lee, Dr. Hasan and Dr. Liu for providing

me with opportunity to work on very interesting problems in visual surveillance.

PSDU has a very intellectually stimulating environment and I learnt a great deal

through the internship. I am thankful to Panasonic for allowing me to include some of

the ideas developed over the internship at PSDU in the Thesis. The support of this

research by Panasonic is gratefully acknowledged.

I would also like to thank my colleagues at the ECE Department and the Language

and Media Processing Laboratory –Yang Yu, Mudit Agrawal, Zhe Lin, Burcu

Karagol-Ayan, Xiaodong Yu, Yi Li, May Huang, Xu Liu, Ming Luo, Huanfeng Ma,

Tandeep Sidhu, David Mihalcik, Daniel Ramsbrock, Yefeng Zheng, Jian Liang and

Dr. Stefan Jaeger for assisting me with the experiments on snapshot algorithm

evaluation. Many thanks to Kaushik Mitra and Zhe Lin for the useful discussions. I

benefited a lot from their comments and suggestions.

Special thanks to Denise Best at the Language and Media Processing Laboratory for

her help in administrative matters. Thanks to Maria Hoo from the ECE Graduate

Office for her help with the official issues and paperwork at various stages in my

graduate studies.

I would also like to thank Anne Geronimo and Kurt Flick who were my supervisors at

the Office of Research Administration and Advancement during the first two

 iv

semesters at the University of Maryland. Working at ORAA was a wonderful

experience and I am sure it will help me a lot in the professional life ahead.

I wish to thank my family for being very understanding and supportive in my pursuit

for graduate studies. Their love and blessings have been a constant source of

motivation and no amount of words can do justice to acknowledging them.

Finally I have made many friends along the way and they have helped me in some

way or the other in the Graduate life. Thanks to my roommates Abhijit Deshmukh

and Saurabh Srivastava, my friends Kaushik Mitra, Sandeep Manocha, Mudit

Agrawal, Omkar Dandekar, Aniruddha Kembhavi, Ashis Banerjee, Amit Sirsamkar,

Vijay Puppala, Aditya Kalyanpur, Suresh Kumar Santhana Vannan and Giridhar

Ramachandran.

 v

Table of Contents

Acknowledgements... ii

Table of Contents.. v

List of Tables .. vii

List of Figures .. viii

Chapter 1: Introduction ... 1

Chapter 2: Enhanced Snapshot Selection ... 7

2.1 Frontal Face Detection.. 8

2.2 Skin Color Detection .. 11

2.2.1 Skin Color Database .. 12

2.2.1 Skin Color Model... 13

2.2.3 Skin Detection Results ... 14

2.3 Face detection using Principle Component Analysis 15

2.3.1 Construction of Face Space.. 15

2.3.2 Projecting an Image on the Face Space ... 16

2.3.3 Face Detection ... 17

2.3.4 Implementation and Results... 17

2.4 Snapshot Algorithm Evaluation.. 25

2.4.1 Metrics: Recall and Precision .. 28

2.4.2 Results.. 29

2.4.3 Discussion .. 38

Chapter 3: Occlusion Modeling.. 39

3.1 Introduction... 39

3.2 Approach 1: Contour overlap ... 40

3.2.1 Overview.. 40

3.2.2 Results.. 42

3.2.3 Enhancement.. 44

3.3 Approach 2: Distance Transform.. 46

3.3.1 Overview.. 46

3.3.2 Results.. 47

 vi

3.4 Discussion... 49

Chapter 4: Video Metadata Simulation... 51

4.1 Introduction... 51

4.2 Approach... 53

4.2.1 Simulating object trajectories .. 54

4.2.2 Simulating moving foreground objects.. 58

4.2.3 Metadata simulation... 60

4.3 Interface .. 61

4.4 Application 1: Activity Map Visualization... 63

4.4.1 Density Matrix Generation .. 64

4.4.2 Generating Activity Map ... 67

4.4.3 Advantages and Usage of Activity Map .. 68

4.5 Application 2: Entry/Exit zone modeling and route learning 69

4.5.1 Algorithm and results... 69

4.6 Discussion... 71

Chapter 5: Progressive Threat Detection Modeling.. 74

5.1 Introduction... 74

5.2 Overview... 77

5.3 Threat Measures.. 79

5.3.1 “Proximity Measure” using damping factor and activity map................... 79

5.3.2 “Approach Measure” using direction and speed.. 80

5.3.3 “Loiter Measure” .. 81

5.3.4 Total Threat measure ... 82

5.4 Example scenarios: .. 83

5.5 Discussion ... 90

Chapter 6: Summary and Future Work... 91

Bibliography ... 95

 vii

List of Tables

Table 1: Example of snapshot ground truth generation by voting.............................. 26

Table 2: Computing confidence measure to rank snapshots in the ground truth

summary.. 27

Table 3: Final snapshot ground truth summary .. 27

Table 4: Comparison of Ground truths and snapshot algorithm results for the test

sequences .. 29

Table 5: Recall and Precision results the for the test sequences................................. 30

Table 6: Configuration Parameters for Metadata Simulation 62

Table 7: GUI input parameters ... 68

Table 8: Threat Level Thresholds and Corresponding Events.................................... 83

 viii

List of Figures

Figure 1: Categorization of methods for face detection [12].. 9

Figure 2: Distribution plot for Cb, Cr Data... 12

Figure 3: Database of sample images for skin color... 12

Figure 4: (a) to (c) Original image vs. Skin probability image................................... 15

Figure 5: Sample face images from the database.. 18

Figure 6: Eigenfaces generated from the above set of faces....................................... 18

Figure 7: Face detection result – Correctly detected .. 19

Figure 8: Face detection result- Correctly detected .. 19

Figure 9: Face detection result- Correctly detected .. 20

Figure 10: Face detection result – missed detection for a tilted face.......................... 20

Figure 11: Face detection result – false detection for a profile face........................... 21

Figure 12 (a) to (i): Variance neighborhood plots for various face blobs with

corresponding blob smoothness measure γ... 24

Figure 13: Steps involved in Snapshot algorithm... 28

Figure 14 Test Sequence... 32

Figure 15: Distance from Face Space (DFFS) plot for sequence in Figure 17........... 32

Figure 16: Optimal snapshots for sequence in Figure 17 ... 33

Figure 17: Candidate frames for a test Sequence.. 34

Figure 18: Distance from Face Space (DFFS) plot for sequence in Figure 19........... 35

Figure 19: Optimal snapshots for sequence in Figure 20 ... 36

Figure 20: Candidate frames for a test sequence .. 36

Figure 21: DFFS Plot for sequence in Figure 23 .. 37

 ix

Figure 22: Optimal snapshots for sequence in Figure 20 ... 38

Figure 23: (a) Indoor scene for occlusion analysis (b) Ground truth. Occlusion edges

marked in red .. 42

Figure 24: (a) and (b) contours of moving object for successive frames (c) contours

from (a) and (b) shown overlapped. The right edge of the contours corresponds

to an occlusion in the scene. ... 43

Figure 25: Occlusion map after (a)1000 frames (b)2000 frames (c)3000 frames

(d)4000 frames (e)5000 frames (f)6000 frames (g) 8000 frames (h)9000 frames

(i) Final occlusion map by applying Canny filter. .. 44

Figure 26: Occlusion map after (a)1000 frames (b)2000 frames (c)3000 frames

(d)4000 frames (e)5000 frames (f)6000 frames (g) 7000 frames (h)8000 frames

(i)9000 frames (j) Final occlusion map by applying Canny filter 45

Figure 27: (a) Overlapping contours from successive frames (b) Contour distance

transform... 46

Figure 28: Scene for occlusion analysis.. 48

Figure 29: Ground truth. Occlusion edges marked in red... 48

Figure 30: Occlusion map for scene in Figure 28 after (a) 1000 frames (b) 3000

frames (c) 5000 frames (d) 7000 frames (e) 10000 frames (f) 11000 frames (g)

13000 frames (h) 15000 frames (i) Final occlusion map by applying Canny filter

... 49

Figure 31: Examples of surveillance video analysis problems................................... 51

Figure 32: (a) Original scene, (b) to (g) possible trajectory paths for the given scene54

 x

Figure 33 (a) Path image for a scene (b) Selecting start point using Gaussian

distribution (c) Path boundaries (d) Sampled path boundaries (e) Trajectory

points obtained by a Gaussian distribution (f) Final Trajectory 56

Figure 34 (a) Simulated random trajectories for path 3 in given scene (b) 100

trajectories, all paths are equiprobable (c) 100 trajectories with probabilities

assigned to paths, Blue: 50%, White – 20%, Yellow and Cyan – 10%, Red and

Magenta – 5% ... 57

Figure 35: Simulating the foreground blob... 59

Figure 36: Examples of blob libraries extracted by background subtraction ([38]) ... 59

Figure 37: Example of simulated scene of a person walking 59

Figure 38: Scaling the blob based on its location ... 60

Figure 39: Metadata simulation methodology .. 62

Figure 40: Density Matrix... 64

Figure 41: Density Matrix Generation Flow... 65

Figure 42: Activity Map Image Generation Flow... 67

Figure 43: Example GUI for Activity Map Generation.. 67

Figure 44: (a) Unlabeled trajectories (b) Start and end points (c) Clustered entry/exit

zones using EM (d) Trajectories classified into learned routes 70

Figure 45: Activity map for shopping mall scenario .. 78

Figure 46: Sample Trajectory Figure 47: Threat map .. 78

Figure 48: Case 1 - Threat measure for an object approaching target (a) Total threat

measure (b) Loitering measure, approaching measure and proximity measure

shown separately... 85

 xi

Figure 49: Case 2- Object passing by target (a) Total threat measure (b) Loitering

measure, approaching measure and proximity measure shown separately......... 86

Figure 50: Case 3 - Object loitering around the target (a) Total threat measure (b)

Loiter threat measure, Approach threat measure and Proximity threat measure

shown separately... 87

Figure 51: Case 4 - Object loitering and then leaving (a) Total threat measure (b)

Loiter threat measure, Approach threat measure and Proximity threat measure

shown separately... 88

Figure 52: Case 5- Object running towards target (a) Total threat measure (b)

Loitering measure, approaching measure and proximity measure shown

separately .. 89

 1

Chapter 1: Introduction

In recent years there has been a great deal of interest in developing robust algorithms

for the automated analysis of surveillance video and enhancing current security

systems. A typical state of the art video surveillance system consists of a network of

security cameras, which either capture and record video or feed it to a central location

for recording and monitoring by security personnel. The recorded video is often used

for forensic purposes and is typically indexed by time and location so that it can be

retrieved and played back. For real time video, however, it may be physically

impossible for operators to watch all video feeds at the same time. Such videos may

have no activity for long periods of time, making it difficult for a human to pay

attention continuously. During lapses important details can be missed. However, if we

can limit the human activity to key decision points and remove them from monitoring

aspects of the system, efficiency can be improved. The goal is to automate the task of

analyzing the video and making intelligent hypotheses to prompt the security

personnel when abnormal events occur. A key challenge for surveillance systems is

therefore not just recording and archiving video, but in making intelligent use of tools

that will allow an operator to access the video in real time in response to a specific

need.

Although the ultimate goal of surveillance video systems is to automatically detect

various activities and alert the security personnel, current technology is far from

adequate. We are a long way from being able to detect a car theft from a parking lot

or a bank robbery being committed. The activity may appear normal (someone gets in

 2

a car and drives away) or the scene can be too complex (for example, successfully

tracking a person running in a crowded place).

There is also a class of problems where the goal is not necessarily to identify an

activity when it is occurring, but rather to gather information as rapidly and reliably

as possible, so that it can be used for forensic examination. For instance, consider an

event like theft occurring in a parking lot. The security officer would like to use the

recorded surveillance videos to identify what happened and the exact time instance

when the theft occurred. He would then want to track those people to see where they

came from or where they went, identify their vehicle in the parking lot or identify

others they have been talking with. Unfortunately the current video recording systems

provide little more than playback and time indexing of the stored video.

In this thesis we focus on providing a set of techniques that can be used to build tools

to allow operators to control and manipulate video in meaningful ways such as

outlined above. A key component of developing these capabilities is being able to

manage the metadata provided by the low-level vision processes in a useful manner.

Since doing video analysis on the fly is not practical, it is helpful to provide a

structure where this metadata can be efficiently indexed and retrieved.

The thesis builds upon the work done previously at the University of Maryland on

developing applications involving analysis, storage and retrieval of video containing

moving people and vehicles. The existing framework consisted of a robust codebook

 3

based background subtraction module in the form of an API [1], modules for tracking

of objects segmented from the background and annotation of objects with MPEG-7

descriptors including color, shape and motion for incorporation to higher level

retrieval systems [2, 3]. These modules are used as the basic tools upon which the

work in this thesis is based.

In this work, we first explore the problem of determining an optimal view (i.e. a

snapshot) of a person from a video sequence. In scenarios such as theft, the long

duration surveillance videos need to be scanned quickly to extract maximum

information possible for further investigation. Since human operators are very good at

identifying people from snapshots, we explore the problem of automatically

determining an optimal view of a person from an extended video. A measure of

quality of the snapshot includes the ability to discern the face, proximity to the

camera and a lack of occlusion. Given such a capability, the surveillance system

could rapidly build a set of candidate suspects for the operator to view and allow

them to choose suspects to follow.

Learning semantics of the video scene over long periods of time is another active area

of research. Work has previously appeared in the literature on generating semantic

models of scenes, learning entry/exit points, gathering points, routes and junctions

[4]. In this thesis we learn static occlusion points in the scene using moving

foreground blobs. The motivation is to determine locations of doors, desks and other

stationary objects that occlude moving objects and to generate structural information

 4

about the scene. Occlusion analysis can be useful for tracking of moving objects. It is

known that tracking under occlusions is a difficult problem and various techniques

have been presented. We present a mathematical model to locate static occlusions

using overlap of the contours of foreground blobs obtained by robust background

subtraction.

Another challenge in processing surveillance video is obtaining appropriate video

sequences for development of surveillance algorithms. In addition to physical storage

and memory constraints, there are legal issues in monitoring public areas like airports,

train stations or people in indoor environment like offices or shopping malls.

Although these areas need strong security systems, recording video for experimental

purposes is prohibited in such places. Furthermore, recent trends toward statistical

techniques require extensive training data. By noting that in most cases we need to

store the metadata and not the actual video, we propose to address this problem by

“simulating” certain video metadata for a given scene. We can then extract useful

metadata features from the simulated data for low-level vision algorithm analysis

rather than extracting the metadata from real video sequences. In this thesis we

develop a tool to automatically generate metadata for surveillance scenarios with

minimal user interaction.

Activity recognition and abnormal behavior detection in videos is also an active area

of research in surveillance video analysis. The primary task of surveillance system is

to assist the operator in preventing a security breach. Hence learning abnormal

 5

behavior patterns that constitute “threat” will be immensely useful in preventing such

situations. We consider the problem of modeling trajectory patterns that correspond to

a “threat” relative to a pre-specified “target”. Some examples of behaviors that

constitute threat are - a person entering a restricted area, performing activities like

running, loitering and fast approaching a specified target. We describe a model to

compute the threat level at each trajectory point of the moving foreground object and

present the progression of threat level to the operator visually. Thus our threat level

scoring engine analyzes the trajectory and gives real time scoring based on the

learned model. Visual alarm notification is generated when a threshold is reached.

The following summarizes our contributions:

1. An enhanced snapshot selection algorithm based on eigen-analysis of faces has

been proposed and implemented. This algorithm has been tested on various video

sequences and an evaluation of the results against manually labeled ground truths

is presented.

2. A method to learn occlusions in a scene based on long observations has been

proposed, implemented and evaluated.

3. A methodology to simulate the metadata for surveillance videos is proposed and

implemented. The proposed technique is completely automated and can be used to

generate metadata for any scenario with minimal user interaction.

4. A threat detection model using activity map analysis through long observations is

proposed and implemented. We present the results for several scenarios.

 6

The remainder of this thesis is organized in five chapters. In Chapter 2, we provide a

literature review of techniques related to snapshot selection in videos and present our

eigen-analysis based snapshot metadata extraction algorithm in detail. In Chapter 3

we discuss occlusion modeling using long observations in surveillance videos. A

mathematical model, its implementation and results are described for various video

sequences. Chapter 4 proposes a novel methodology to automatically simulate video

metadata for a given surveillance scenario. The proposed technique is illustrated for

an office and shopping mall scenario. The utility of this tool is demonstrated by using

the simulated metadata for entry/exit zone modeling and route learning algorithms. In

Chapter 5, a threat metadata model is described and results are presented for a

shopping mall scenario. In Chapter 6, we summarize the accomplishments.

 7

Chapter 2: Enhanced Snapshot Selection

Consider a scenario where a crime has been committed; the available video footage

needs to be scanned quickly and information about the possible suspects needs to be

collected as soon as possible. Since neither the perpetrator, nor the exact time when

the crime was committed may be known, manual playback of a very long video

sequence to locate the possible suspects may be required. We propose to automate

this scanning process by extracting snapshots of people from the video sequence.

This problem is similar to the problem of key frame extraction from video with the

added constraint of selecting visible faces. Recent approaches to extract key frames

can be found in [5-8]. However, the objective of these algorithms is to pick key

frames that capture the summary of the video. These authors present a video summary

in the context of search, retrieval and browsing. Key frame extraction from the point

of view of surveillance has also been studied in the literature. A multicamera

surveillance strategy for non-overlapping cameras has been proposed by Porikli [9]

where video sequences are generated for each tracked object instead of storing videos

from each camera separately. Latecki et. al. have studied the problem of detecting

changes in surveillance videos, including the appearance/disappearance of objects and

changes in velocity and direction of moving objects using the trajectory data [10].

However, none of these address the problem of identifying snapshots of the people

present. Human operators can be very accurate in identifying people and vehicles

from snapshots. We explore the problem of determining the best discernable view of

 8

a person from an extended video to produce a summary consisting of snapshots of

people present. These snapshots will be presented to the operator for viewing. A

measure of quality of the frame includes the ability to discern a face, size and absence

of occlusion. Given such a capability, the system could rapidly build a set of

candidate suspects for the operator to view and allow them to choose suspects to

follow.

The first step in determining the best view of a person is to detect a face in the

moving foreground objects. A measure of “faceness” of the blob is then used to

decide the appropriateness of the image for snapshoting. (For example, a frontal face

view would be more appropriate as a snapshot than a profile of the face.) In the

following sections we describe the approach used for frontal face detection and

ranking of frames as snapshots.

2.1 Frontal Face Detection

Numerous methods have been proposed to detect faces in a single grayscale or color

image. Chellappa et. al. published a survey on face recognition and detection methods

in 1995 [11] and a more recent survey on face detection alone was published by Yang

et.al. [12] and provides the categorization as shown below (see Figure 1).

 9

Figure 1: Categorization of methods for face detection [12]

Facial feature based methods commonly extract facial features such as eyebrows,

eyes, noses, mouths, and hair-lines using edge detectors. Based on the extracted

features, a statistical model is built to describe their relationships and to verify the

existence of a face. Examples of these detectors have been presented by Govindaraju

[13], Graf et. al. [14] and Leung et. al. [15].

 10

Texture based approaches have been used by Dai and Nakano to separate faces from

different objects [16]. In their work, color information is also incorporated with the

face-texture model.

In template matching based approaches, a standard face pattern (typically frontal) is

manually predefined or parameterized by a function. Given an input image, the

correlations are computed with standard patterns for the face contour, eyes, nose, and

mouth independently. The presence of a face is determined based on the correlation

values. This approach is inadequate for face detection since it cannot effectively deal

with variation in scale, pose, and shape [17].

Various neural network architectures have been proposed for face detection. The

advantage of using neural networks for face detection is the feasibility of training a

system to capture the complex class conditional density of face patterns. However,

one drawback is that the network architecture has to be extensively tuned (number of

layers, number of nodes, learning rates, etc.) to get exceptional performance [17, 18].

Another approach in face detection and recognition is the eigen-space decomposition

[19, 20]. With this method, the image under consideration is projected into a low

dimensional feature space that is spanned by the eigenvectors of a set of test faces.

For the detection task, the image is reconstructed and the resulting error between

original image and the reconstructed image is computed. An image pattern is

classified as a face if its distance to the face space is smaller than a determined

 11

threshold. PCA can also be used for face recognition by comparing the resulting PCA

coefficients (principal components) to those of images in the database.

In this thesis, we use PCA based frontal face detection to build the snapshoting

algorithm. It should be noted that any other face detector could be used in place of the

PCA method and the approach for snapshot selection would remain the same.

Experiments show that with the PCA based face detector, the background leads to a

significant number of false classifications if the face region is relatively small. As

color is the most discriminating feature of a facial region, the first step of many face

detection algorithms is a pixel-based color segmentation to detect skin-colored

regions. We also include color component information to localize the skin regions in

the image. A skin color probability image is generated by color analysis and PCA is

performed on the new image. This helps in identifying a relatively smaller subset of

the original image for face detection rather than searching the whole luminance image

and reduces the false detections.

2.2 Skin Color Detection

The color of human skin is distinctive from the color of many other natural objects,

hence color is a very important feature that can be used for face detection [18].

Analyzing skin-tone color statistics, one observes that skin colors are distributed over

a small area in the chrominance plane and the major difference between skin tones is

intensity. Thus, the image is first converted into a color space that provides a

separation into a luminance channel and two chrominance components in the case of

the YCbCr color space. The distribution of the training skin pixels in the CbCr plane

 12

is given in Figure 2. The figure shows that the color of human skin pixels is confined

to a very small region in the chrominance space.

 Figure 2: Distribution plot for Cb, Cr Data

2.2.1 Skin Color Database

Based on the above observation, the skin color distribution CbCr plane is modeled by

a 2D Gaussian distribution. The database shown in Figure 3 is used to build the

Gaussian model.

 Figure 3: Database of sample images for skin color

 13

The database is created by cropping subimages from the different color images of

faces. A total 50 skin images of various size from 10x10 up to 50x50 are use for

training. The images are manually cropped from colored face images taken from the

CMU color face database [21]. The face database contains people with various

complexions.

2.2.1 Skin Color Model

For a database of M training pixels, the Gaussian distribution is given as),(2
ssN Σµ

with),(CbCrs =µ where,

∑
=

=
M

i
iM CrCr

1

1

 (mean) (2.1)

∑
=

=
M

i
iM CbCb

1

1

 (mean) (2.2)

 ⎟
⎠
⎞⎜

⎝
⎛Σ =

CbCbCrCb
CbCrCrCr

s ,,
,,

σσ
σσ

 (covariance matrix)

(2.3)

We create a skin probability image, which indicates the probability of each image

pixel belonging t o the skin class S. Let wij = [Cb Cr]T denote the chrominance vector

of an input pixel. Then the probability that the given pixel lies in the skin distribution

is given by

() ()

2
1

1

||2

2
1exp

)|(

S

SijS
T

Sij

ij

ww
Swp

∑

⎥⎦
⎤

⎢⎣
⎡ −∑−−

=

−

π

µµ
 (2.4)

 14

where, µs is the mean and Σs is the covariance matrix of the distribution.

2.2.3 Skin Detection Results

The skin probability images obtained after processing different test images are shown

below. In each case, the image on the left is the original image and the image on the

right is the intensity map obtained after skin detection. Since this is a probability map,

the brighter regions in the skin map imply greater probability of skin color being

present. Figures 4 (a), (b) and (c) show that the skin color on the face and arms is

correctly detected with a higher probability. However, a person wearing skin colored

clothes may give false alarms by this method.

 (a)

 (b)

 15

 (c)

Figure 4: (a) to (c) Original image vs. Skin probability image

2.3 Face detection using Principle Component Analysis

PCA for face detection is based on the eigenface representation of faces. The main

idea is to decompose face images into a small set of characteristic feature images

called eigenfaces, which may be thought of as the principal components of the

original images. These eigenfaces function as the orthogonal basis vectors of a linear

subspace called “face space”. Detection is performed by projecting a new image into

this face space and then computing its distance from face space [19, 20].

2.3.1 Construction of Face Space

Suppose a face image consists of N pixels, so it can be represented by a vector of

dimension N. Given a training set of M face images, the average face of these M

images is given by

 ∑
=

Γ=Ψ
M

i iM 1

1 (2.5)

Then each face iΓ differs from the average face by iΦ :

 ()vii Ψ−Γ=Φ (2.6)

 16

A covariance matrix of the training images can be constructed as follows:

TDDC = (2.7)

where []MC ΦΦΦΦ= ...321 . The basis vectors of the face space, i.e., the eigenfaces,

are then the orthogonal eigenvectors of the covariance matrix .

Finding the eigenvectors of the N by N matrix is computationally very expensive

task for typical image sizes, hence, a simplified calculation has to be adopted [19].

Since the number of training images is usually less than the number of pixels in an

image, there will be only M-1, instead of N, meaningful eigenvectors. Therefore, the

eigenfaces are computed by first finding the eigenvectors, vi (i = 1 to M), of the M by

M matrix L:

DTDL = (2.8)

Then it can be shown that ui = D.vi is the eigenvector of C

The eigenvectors are ordered in the decreasing order of eigenvalue. The eigenvector

is rearranged into an NN × eigenface. These images give the eigenspace

corresponding to the training database.

2.3.2 Projecting an Image on the Face Space

The new input image is first preprocessed by subtracting the mean image from it.

()vΨ−Γ=Φ (2.9)

It is then projected onto the face space by taking the dot product between the

eigenfaces and the preprocessed image.

 17

Φ= T
iuiw for i = 1 to p, p < M (2.10)

where p is the reduced face space dimension used for face detection and ui is the

normalized eigenvector.

2.3.3 Face Detection

The reconstructed image is obtained

∑
=

=Φ
p

i iwiur 1
 (2.11)

The reconstruction error is obtained by the Euclidean distance between the original

image and the reconstructed image.

2|||| rΦ−Φ=ε (2.12)

The error is referred to as “distance from face space” (DFFS). If the DFFS is greater

than a threshold the input image is NOT a face. Otherwise it is classified as a face.

2.3.4 Implementation and Results

In this section we present the results obtained by the above method. A database of 86

images was used to construct the face space (downloaded from Rice database [22].

This contains images of 32 individuals with two to three different face images of the

same person (see Figure 5). The sample images from the database are each of the size

30x25. The resulting eigenfaces for these images are shown in Figure 6. The skin

detection algorithm was run on the input color image. For each resulting skin blob in

the image, a sub-image was selected from the original image for face detection. The

image was then converted into gray scale and PCA was run on the regions identified

as skin blobs. The global minimum of all the candidate locations, whose error was

 18

less than the threshold, was selected as a face region. Figures 7 through 11 show the

results of skin detection and face detection for several test images.

Figure 5: Sample face images from the database

Figure 6: Eigenfaces generated from the above set of faces

 19

Figure 7: Face detection result – Correctly detected

Figure 8: Face detection result- Correctly detected

 20

Figure 9: Face detection result- Correctly detected

Figure 10: Face detection result – missed detection for a tilted face

 21

Figure 11: Face detection result – false detection for a profile face

2.4 Reducing false alarms

As seen above, the face detection performs quite well for frontal faces, except for a

few false alarms in cases like profiles. In addition, smooth blobs that sometimes

correspond to hands or feet may produce false alarms. We filter out the hands and feet

by doing ellipse fitting and measuring the ratio of major & minor axes. In addition,

any skin blobs present below the object’s centroid are typically not a face and can be

rejected. To eliminate the smooth blobs, the blob smoothness measure proved very

effective. Blob smoothness measure is defined as:

blobskin in the pixels Total
 odneighborho ncehigh varia with pixels of No

=γ (2.13)

Following figures shows the plots for variance neighborhood and the corresponding

values for γ. The threshold for high variance is computed empirically and is set to 10.

 22

It can be seen that the smooth blobs (Figure 12 (a) to (e)) have much lower value of γ

than the frontal face blobs (Figure 12 (f) to (i)) and therefore can be rejected.

 (a) γ = 0.072727

 (b) γ = 0.013095

 (c) γ = 0

 23

 (d) γ= 0.03125

(e) γ = 0.017593

 (f) γ = 0.17105

 24

 (g) γ = 0.24047

 (h) γ = 0.31019

(i) γ = 0.13587

Figure 12 (a) to (i): Variance neighborhood plots for various face blobs with
corresponding blob smoothness measure γ

 25

2.4 Snapshot Algorithm Evaluation

2.4.1 Data Set

The problem of snapshot selection in a video can be considered as performing skin

color and face detection on individual frames of the video. Thus the algorithms

previously discussed i.e. skin and face detection on images can be applied in the

context of video by considering one frame of the video at a time. These frames are

finally ranked in decreasing order of their face confidence measure. We consider ten

test video sequences to evaluate the performance of the snapshoting algorithm. Each

sequence is between 500 and 1000 frames with one or more people each. In these

videos, a subject typically walks in the scene along a circle or back and forth from

one end to the other. The subject looks at the camera for a few seconds while moving,

thereby allowing frontal face to be captured in a few frames in the video. The

remaining frames contain side or back views of the subject where the face may or

may not be visible. The snapshot summary of such a video sequence should contain

the frontal faces as snapshots. The sequences were manually evaluated by a group of

20 participants who were asked to choose up to five best (subjective) frames for each

video sequences that would qualify as snapshots (i.e. help establish the identity of the

person in the video). The participants were asked to rank the chosen frames in

decreasing order of their usefulness as snapshots. The frame ranks are attached

weights from 5 (highest ranking snapshot) to 1 (lowest ranking snapshot). For a

given video, all frames selected by participants are included in the snapshot ground

truth data. By counting the number of votes each frames receives, the snapshot

confidence measures is calculated as follows:

 26

∑=
j

ji wMeasureConfidence for all i and all j (2.14)

where i is the frame number in the video sequence, j is the participant number and wj

is the weight attached to the vote by participant j for frame i. Snapshots are then

ranked in the decreasing order of their confidence measure. To illustrate this

procedure, we shall consider an example. Let us say the following frames are chosen

and ranked as snapshots by a group of three participants for a video consisting of 100

frames.

Frame

Rank

Weight

Factor

Frames chosen by

Participant 1

(Frame #)

Frames chosen

by Participant 2

(Frame #)

Frames chosen

by Participant 3

(Frame #)

1 5 10 15 10

2 4 15 20 11

3 3 20 10 15

4 2 45 45 5

5 1 12 11 20

Table 1: Example of snapshot ground truth generation by voting

Weight Factor Frame

Number Participant

1

Participant

2

Participant

3

Confidence

Measure

5 - - 2 2

10 5 3 5 13

11 - 1 4 5

12 1 - - 1

 27

15 4 5 3 12

20 3 4 1 8

45 2 2 - 4

Table 2: Computing confidence measure to rank snapshots in the ground truth
summary

The frames are sorted in decreasing order of the confidence measure, to generate the

ground truth snapshot summary for the video sequence. In the above example, the

final ground truth summary will be:

Snapshot Rank Frame # Confidence Measure

1 10 13

2 15 12

3 20 8

4 11 5

5 45 4

6 5 2

7 12 1

Table 3: Final snapshot ground truth summary

To evaluate summary obtained by the snapshot selection algorithm, the algorithm was

applied to each sequence and the DDFS values were monitored. The candidate

images were then ranked in the decreasing order of DFFS and these snapshot results

were compared with the ground truth data. Figure 13 shows a summary of the steps

involved in snapshot algorithm.

 28

Figure 13: Steps involved in Snapshot algorithm

2.4.1 Metrics: Recall and Precision

Recall is a measure of how many frames in the ground truth are matched by the

candidate snapshot summary [23]. A reference frame is matched if there exists at

least one frame in the candidate summary that is similar to the reference frame

according to some preset criterion. Recall is computed as:

Recall = Nref_m / Nref (2.15)

where Nref is the total number of frames in the reference summary and Nref_m is the

total number of reference frames being matched.

Precision is a measure of how many frames in the candidate snapshot summary match

the frames in the reference summary. Intuitively, it gives an indication of how precise

the candidate summary is.

The cumulative average precision (AP) is defined as:

∑
=

=
i

k
ikpiAP

1
/)()((2.16)

where p(k) is the precision at frame k given by:

Precision = Ncan_m / Ncan (2.17)

Background

Subtraction

Skin
detection

Face
detection

Candidate
I/p video
frame Foreground

blobs

Skin blobs to
be examined

DFFS
value

 29

Ncan is the total number of frames in the candidate summary and Ncan_m is the number

of frames being matched.

2.4.2 Results

Sequence # Snapshot Ground Truth Snapshot algorithm results

1 18 17 5 15 34 16 1 4 6 35 23 18 5 4 22 3 19 2

2 9 10 27 28 26 18 30 29 11 17 29 30 9 34 31 26 10 32 28 33 27 24

3 8 7 9 10 11 4 12 11 8 7 10

4 8 7 9 10 5 1 4 5 9 8 1 12 2 15 14 13

5 8 10 9 11 2 4 1 6 2 3 11 10 4 5 1

6 7 9 8 10 1 4 3 9 7 8 1 10 2 3 4

7 11 12 9 10 1 6 5 8 11 4 3 10 2 9 12 5 1

8 8 9 11 12 10 2 12 1 8 11 10 9 14 2

9 9 10 11 8 12 4 13 16 17 11 10 9 16 15 7 8 14

10 9 10 15 14 8 11 13 2 12 9 11

Table 4: Comparison of Ground truths and snapshot algorithm results for the test
sequences

Sequence # Recall (%) Precision

1 66.67 0.68

2 80 0.827

3 66.67 0.659

 30

4 57.14 0.728

5 62.5 0.782

6 100 0.961

7 75 0.661

8 100 0.8

9 62.5 0.679

10 22.2 1.0

Table 5: Recall and Precision results the for the test sequences

Figures 14, 17 and 20 show three video sequences for snapshot algorithm testing.

Figures 15, 18 and 21 show the DFFS plots for these sequences respectively. The

final selected snapshots are shown in Figures 16, 19 and 22 respectively. Table 1

shows a comparison of ground truths and snapshot algorithm results the for the test

sequences. Recall and precision results for the snapshot algorithm are shown in Table

2.

 31

 32

Figure 14 Test Sequence

Figure 15: Distance from Face Space (DFFS) plot for sequence in Figure 17

 33

 26 27

 24 8

 9

 Figure 16: Optimal snapshots for sequence in Figure 17

 34

Figure 17: Candidate frames for a test Sequence

 35

Figure 18: Distance from Face Space (DFFS) plot for sequence in Figure 19

 18 2

 7 11

 36

 8

 Figure 19: Optimal snapshots for sequence in Figure 20

Figure 20: Candidate frames for a test sequence

 37

 Figure 21: DFFS Plot for sequence in Figure 23

7 5

 10 2

 38

 6

 Figure 22: Optimal snapshots for sequence in Figure 20

2.4.3 Discussion

The snapshot results in Figures 16, 19 and 22 show that the performance of the

snapshot algorithm depends upon the accuracy of frontal face detection engine. In

some cases false alarms in face detection can result in incorrect snapshots, for

instance the frames where a person wears skin colored clothes may lead to false

alarms for skin detection (Figure 22).

The snapshot summary may therefore contain some outliers. However, the recall and

precision figures indicate that in most cases the ground truth summary frames appear

in top few frames of the snapshot summary.

The algorithm can be extended to multiple camera scenarios, where tracking results

can be used to correlate the same object across multiple cameras and their snapshots

results can be combined.

 39

Chapter 3: Occlusion Modeling

3.1 Introduction

One fundamental problem of automated surveillance is to track foreground objects

reliably as they move in the scene. The tracking of an object becomes difficult when

the object is either partially or completely occluded by structures such as walls, doors

or desks or the object interacts with other moving objects in the scene and gets

occluded. Several techniques have been presented to successfully track objects under

occlusion. A typical blob based method detects occlusions by merge and split of blobs

[24]. Haritaoglu et al. have used appearance models to handle occlusion problem.

They combine the gray-scale texture appearance and shape information of a person

together in a 2D dynamic template [24]. Roh et al. use an appearance model based on

temporal color to track multiple people in the presence of occlusion. They combine

color values with associated weights determined by the size, duration, frequency of an

object [25]. Senior et. al. use an adaptive color based appearance model to track

people under occlusion [26]. Greenhill et. al. model structural static occlusions in the

scene by generating a depth map of the scene structure at each pixel from a training

set of observations of detected moving people [27]. The depth map is used to predict

the visibility of the object at any point in the image and improves the accuracy of

tracking under occlusion. In addition, stereo cameras have also been used for

automatic detection of static occlusions in a scene [28].

These techniques involve the analysis of complex appearance models and are often

computationally intensive. We present a simple, yet efficient technique to gather

 40

structural information about the “static occlusions” in the scene using long

observations from surveillance video. The motivation for learning occlusions is to

determine locations of doors, desks and other stationary objects that occlude the

moving objects in the scene and generate structural information about the scene. This

information will be useful in improving the accuracy of tracking modules. For

instance, when the object passes by an occlusion we can adapt the appearance model

and use only the visible part of object (which is not occluded) for tracking. Or we can

choose to reset the appearance model and end the track at the occlusion.

In this section we present a model to learn static occlusions in the scene using

contours of foreground blobs obtained by robust background subtraction. The results

of occlusion modeling are shown for sample video sequences and compared with the

ground truth.

3.2 Approach 1: Contour overlap

3.2.1 Overview

When an object moves into an occlusion, the contour of the object changes at all

points except at the points that correspond to the occlusion. This means that the

contours of a moving object overlap (generally partially) along the edges of occluding

objects like a door or desk. For example, Figure 23 (a) shows sample frames from a

five minute sequence recorded at 30 fps. Here, a person walks back and forth in the

scene which consists of a door and partitioning wall of a cubicle as the occlusions.

We perform robust codebook based background subtraction on the video frames and

 41

extract the moving foreground blobs [1]. By tracing the boundary of the detected

foreground blob, we extract its boundary contours. Figures 24 (a) and (b) show two

contours of the person from successive frames extracted by the background

subtraction and boundary extraction processing. In Figure 24 (c) these contours are

shown superimposed. The right edge with maximum contour overlap corresponds to

the cubicle partitioning wall in the scene. In the remaining portions of the contours,

there is not a strong overlap as the person has moved.

We accumulate the overlap counts for each pixel for the successive frames in the

video sequence. The overlap between contours is determined by a binary AND

operation on the binary contour images. The resulting boundary overlap count is

displayed in the form of intensity map in Figure 25. As the number of observed

frames increases (Figure 25 (a) to Figure 25 (h)) the occlusions become stronger. The

final occlusion map is obtained by applying a Canny edge detector on Figure 25 (h)

and is shown in Figure 25 (i). The Canny edge detector finds edges by looking for

local maxima of the gradient of image [29]. The gradient is calculated using the

derivative of a Gaussian filter. The Canny method uses two thresholds, to detect

strong and weak edges, and includes the weak edges in the output only if they are

connected to strong edges. This results is a binarized occlusion map and a comparison

to the ground truth Figure 23 (b) shows the map overlaps with the ground truth

occlusion boundaries wherever the foreground objects have been occluded by these

edges. The top edge of the door has not been captured by the occlusion map as the

boundary overlaps are weak along this edge.

 42

3.2.2 Results

 (a)

 (b)

Figure 23: (a) Indoor scene for occlusion analysis (b) Ground truth. Occlusion edges
marked in red

 43

 (a) (b)

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

 (c)

Figure 24: (a) and (b) contours of moving object for successive frames (c) contours
from (a) and (b) shown overlapped. The right edge of the contours corresponds to an

occlusion in the scene.

Boundary overlap map after frame 1000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 2000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 4000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

 (a) (b) (c)

Boundary overlap map after frame 5000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 6000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 7000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

 (d) (e) (f)

 44

Boundary overlap map after frame 8000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 9000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

 (g) (h) (i)

Figure 25: Occlusion map after (a)1000 frames (b)2000 frames (c)3000 frames
(d)4000 frames (e)5000 frames (f)6000 frames (g) 8000 frames (h)9000 frames (i)

Final occlusion map by applying Canny filter.

3.2.3 Enhancement

Although the result in Figure 25 are as expected along the occluding edges (large

value in the boundary overlap map), the result is very noisy. This is because we

consider only successive frames in finding boundary overlap votes. We can remove

the false and noisy votes by noting that in the presence of an occlusion, the overlap

along the contours of the object will persist for several frames with the number

depending on the speed at which the object is moving. We use this observation to

modify the boundary overlap strategy in the following manner:

Iboundary = {[(I1 & I2) + (I2 & I3) + (I3 & I4) + (I4 & I5) + (I5 & I6)] > τ} (3.1)

Iresult = Iresult + Iboundary (3.2)

where & is the binary AND operation, I1 to I6 are six successive images, Iboundary is

the boundary overlap map for these six images, Iresult is the accumulated boundary

overlap image i.e. occlusion map and τ is a threshold value.

The results for this approach are shown in Figure 26. It can be seen that the occluding

edges are stronger and the noise in the occlusion map has been reduced. Figure 26 (j)

 45

shows the result of applying Canny edge detector on the occlusion map in Figure 26

(i). This result is closer to the ground truth map in Figure 23 (b) than the result in

Figure 25 (i). The occluding edges in the scene that the objects pass during learning

are correctly identified by the algorithm.

Boundary overlap map after frame 1000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 2000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 3000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

 (a) (b) (c)

Boundary overlap map after frame 4000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 5000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 6000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

 (d) (e) (f)

Boundary overlap map after frame 7000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 9000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

Boundary overlap map after frame 8000

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

 (g) (h) (i)

 (j)

Figure 26: Occlusion map after (a)1000 frames (b)2000 frames (c)3000 frames
(d)4000 frames (e)5000 frames (f)6000 frames (g) 7000 frames (h)8000 frames

(i)9000 frames (j) Final occlusion map by applying Canny filter

 46

3.3 Approach 2: Distance Transform

3.3.1 Overview

Since we are interested in locations where the contours of the moving object overlap,

we can also use a distance transform metric to determine the pixels that are close to

each other in the successive contours. Traditionally, the result of distance transform

applied to a binary image is a gray level image where the gray level intensity of

points inside foreground (white) regions are calculated based on the distance to the

closest boundary from each point [30]. In this context, we define the contour distance

transform as the distance from a point on first contour to the nearest point on the

second contour. This is illustrated in Figure 27. Figure 27 (a) shows two contours

from successive frames superimposed. A blue arrow in Figure 27 (b) show the

correspondence between a point on contour 1 and its nearest point on contour 2.

Contour distance transform is the length of this arrow.

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120
100 110 120 130 140 150 160 170

20

25

30

35

40

45

50

55

60

Distance transform plot

 (a) (b)

Figure 27: (a) Overlapping contours from successive frames (b) Contour distance

transform

The contour distance transform is thresholded and resulting occlusion map is

accumulated as follows:

 47

Iocclusion = {[γ(I1, I2) + γ (I2, I3) + γ (I3, I4) + γ (I4, I5) + γ (I5, I6)] < τ} (3.3)

Iresult = Iresult + Iocclusion (3.4)

where γ(I,J) is the result of contour distance transform of images I and J, I1 to I6 are

the six successive images, Iocclusion is the occlusion map for these six images, Iresult is

the net accumulated occlusion map, τ is a threshold value.

3.3.2 Results

The results for this approach are shown below. Figure 28 represents sample images

from another indoor video sequence recorded at 30 fps (about 8 minutes). Figure 29

shows the ground truth occlusion map where the occluding edges are marked red. The

stronger edges in the intensity images shown in Figure 30(a) to 30(h) belong to the

occlusions in the scene. The occlusion map appears stronger as the number of

observed frames increases (Figure 30(a) to Figure 30(h)). The final occlusion map

obtained by applying Canny edge detector on Figure 30(h) is shown in Figure 30(i).

 48

Figure 28: Scene for occlusion analysis

Figure 29: Ground truth. Occlusion edges marked in red

Boundary overlap map after frame 1000

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Boundary overlap map after frame 2000

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Boundary overlap map after frame 4000

20 40 60 80 100 120 140 160

20

40

60

80

100

120

 (a) (b) (c)

Boundary overlap map after frame 6000

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Boundary overlap map after frame 8000

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Boundary overlap map after frame 10000

20 40 60 80 100 120 140 160

20

40

60

80

100

120

 (d) (e) (f)

 49

20 40 60 80 100 120 140 160

20

40

60

80

100

120
 (g) (h) (i)

Figure 30: Occlusion map for scene in Figure 28 after (a) 1000 frames (b) 3000
frames (c) 5000 frames (d) 7000 frames (e) 10000 frames (f) 11000 frames (g) 13000

frames (h) 15000 frames (i) Final occlusion map by applying Canny filter

3.4 Discussion

We have presented two approaches to learn occlusions in a scene. Both the methods

are based on the observation that boundaries of a moving object overlap with the

edges of the occlusion as the object passes the occluding edge. By accumulating the

overlaps we obtain an intensity map that indicates the occlusions. A Canny filter is

used to connect the strong edges and binarize the intensity map.

The results of our approach have been presented for indoor office scenarios with

video sequences of between 5 and 8 minutes duration. The occlusion map is seen to

grow stronger and more accurate as more and more frames are observed. We have

evaluated the results against manually marked ground truth occluding edges.

It is seen that as long as the occluding edges get passed by the moving foreground

objects during the learning period, the final occlusion map captures the edges.

However, in some cases the moving objects do not pass the occlusion, for instance,

the upper edge of a door may not overlap moving object’s boundary due to its height.

 50

In these cases, that edge of the occluding object will not appear in the occlusion map.

Thus the results are sensitive to the activity in the scene during the learning period. A

longer learning period will be required by the algorithm to ensure that all the

occlusions in the scene are passed by the foreground objects. Moreover, depth

information is not obtained from this method. The resulting binary map indicates

spatial locations of occlusions, but we cannot determine the 3D structure of the

occlusions using the intensity map.

Our motivation to learn occlusions is to improve tracking results. Once occluding

edges are determined, for example, we can use only part of the appearance model

when labeling objects that overlap the occluding edges. Or we may decide not to label

the object when it is partially occluded. By predicting whether the moving object is

occluded, we can thus improve the accuracy of tracking results.

 51

Chapter 4: Video Metadata Simulation

4.1 Introduction

To address various problems in surveillance video analysis like tracking [24], object

classification [31, 32], face detection and recognition [11, 12], systems often extract

low level features from the objects of interest (see Figure 31). This data about the

video, called metadata is then processed further. Some algorithms that involve

learning using long video observations (e.g. learning entry/exit or stop zones in a

scene, or other semantics like routes, junctions etc) require large data to gain

statistical stability [4]. Applications like data mining also operate on very large video

repositories [33, 34].

Figure 31: Examples of surveillance video analysis problems

METADATA

Object

Classification

Face Detection

Tracking

Learning

entry/exit zones

Route Learning

 52

The storage of large amounts of surveillance video data, however, is difficult and

there are legal issues in monitoring public areas like airports, train stations or people

in indoor environment like offices or shopping malls (at least in the United States !).

Although these areas need strong security measures, recording videos for

experimental purposes is prohibited in such places.

By noting that in most cases we need to store the metadata and not the full video, we

propose to address this problem by “simulating” the video metadata for the given

scene. We can then extract useful features from the simulated data for data mining

rather than extracting the metadata from real video sequences. Simulated metadata

will approximate the real data depending on the quality of simulations. The advantage

of such an approach is that there is a reduced necessity to capture or store video

sequences. Although the simulated metadata can be used as a test bench for

evaluating the performance of a vision algorithm, the results may vary when the

algorithm is tested with real surveillance videos. Care should be taken to incorporate

all possible cases that occur in the given surveillance scenario in the simulation.

A similar approach has been used by Qureshi and Terzopoulos [35] in testing their

surveillance system for wide field of view (FOV) and pan-tilt-zoom (PTZ cameras).

The authors proposed a Virtual Vision approach to designing surveillance systems

using a virtual train station environment populated by virtual pedestrians that perform

various activities [35, 36]. The system in [37] is designed for New York Penn Station

scenario where the objective is to schedule an array of FOV and PTZ cameras in such

 53

a manner that each pedestrian is in the field of view of at least one camera during

their stay in a designated area. To test the camera-scheduling algorithm, the authors

use a virtual 3D model of Penn Station populated by virtual pedestrians to emulate the

video streams generated by real surveillance cameras.

Our approach to simulate the video data is different from the 3D animation method

used by Qureshi and Terzopolous. We propose using a real scene image captured by a

single camera, simulation moving foreground blobs and superimposing these blobs on

the scene image. Our methodology involves defining normal and abnormal patterns of

people’s movements in a scene with minimal user interaction. The proposed tool can

then simulate random trajectories of moving objects based on the given patterns. We

explain the proposed technique in detail in the next sections.

4.2 Approach

In a given scenario, the objects normally move along specific paths. For instance in a

traffic scene, the moving objects (vehicles) take specific paths and in specific

directions depending on which side of the road they are moving. At a traffic

intersection, the trajectory followed by a vehicle lies within a predictable path.

Similarly, consider another example of an office scenario, shown in Figure 32. Figure

32 (a) shows the original scene to be monitored by a surveillance camera. Figures 32

(b) to (g) show different possible paths (shown by green lines) that people can take as

they move in the scene. To simulate metadata for such a scenario, a realistic

assumption about moving objects will be that they chose one of these paths randomly

 54

and move either in the forward or the backward direction. Thus we need a mechanism

to simulate trajectories randomly for a given path.

 (a) (b) (c)

 (d) (e) (f)

 (g)

Figure 32: (a) Original scene, (b) to (g) possible trajectory paths for the given scene

4.2.1 Simulating object trajectories

To do this we select one of the n possible paths randomly (Figure 33(a)). The first

step to simulate a random trajectory along this path is to pick a starting point X for

the trajectory. Since objects are generally more likely to stay in the center of a path

than the edges of the path, this is done according to a Gaussian distribution between

the two end points (A and B) of the path boundary (Figure 33 (b)). Gaussian

 55

distribution achieves a higher frequency of objects moving along the center of the

path than the path edges. The Gaussian distribution is given by

()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
− 2

2

2
exp

2
1

σ
µ

πσ
x (4.1)

Where mean µ is taken to be the center of the line segment AB and standard deviation

σ is chosen such that 6σ is approximately equal to length (AB) (see Figure 33(b)). A

point generated according to this distribution is translated to an image point by simple

arithmetic. The two path boundaries (shown blue and red in Figure 33(c)) are sampled

into equal number of points and these points are joined by line segments as shown in

Figure 33(d). Based on the ratio that the starting point X makes along line segment

AB, the remaining points of the trajectory are selected on the other line segments

(Figure 33(d)). Since in practice, the trajectories of moving objects extracted by

vision algorithms are jittery (not smooth), we add Gaussian noise to perturb the

trajectory points. The resulting trajectory obtained by this algorithm is shown in

Figure 33(f). It should be noted that if we select the other end of the path, then we

obtain a trajectory for the object moving in reverse direction. Thus we can configure

direction of motion (forward or backward) by selecting an appropriate end of the

path. We have not considered the more complex cases like lane changes or an object

stopping and turning around. It is, however, certainly possible to simulate these

special cases. For instance, to model stop zones a trajectory point can be repeated for

a number of times when the object lies in a manually specified stop zone. A slowing

object can be simulated by increasing the duration between time stamps of trajectory

points as the object approaches a stop zone. For a lane change, trajectory points need

to be interpolated between the current trajectory point and nearest point in the new

 56

lane. However, we have not considered these special cases in the example

simulations.

 (a) (b)

 (c) (d)

 (e) (f)

Figure 33 (a) Path image for a scene (b) Selecting start point using Gaussian
distribution (c) Path boundaries (d) Sampled path boundaries (e) Trajectory points

obtained by a Gaussian distribution (f) Final Trajectory

Using this technique it is possible to automatically generate a set of trajectories for

the given scenario by choosing one of the n possible paths randomly and generating a

random trajectory for that path. Figure 34 (a) shows 100 random trajectories

 57

generated for a particular path in the office scenario of Figure 32. Different paths in a

scene can in general have different usage frequencies. We assign probabilities to the

different paths, so that some paths are more frequently used than others. Figures 34

(b) and (c) show simulations of 100 random trajectories by selecting random paths

with equal probabilities and unequal probabilities respectively. It should be noted that

the advantage of this simulation is that it is completely automatic and very fast. Also,

we can apply this technique to any scenario.

 (a) (b)

 (c)

Figure 34 (a) Simulated random trajectories for path 3 in given scene (b) 100
trajectories, all paths are equiprobable (c) 100 trajectories with probabilities assigned
to paths, Blue: 50%, White – 20%, Yellow and Cyan – 10%, Red and Magenta – 5%

The configuration parameters for the trajectory simulation are the number of paths,

the probability of path usage and speed of moving objects for a path. Change in speed

of the moving object is easily achieved by varying the number of points in which path

 58

boundaries are sampled. For higher speed, the number of sample points is lower, so

that the blob moves a larger distance between two points on a trajectory. Thus we can

have different zones in the scene where objects move with different speeds, e.g.

pedestrians and vehicles.

4.2.2 Simulating moving foreground objects

Existing approaches in the literature use virtual environments to model a scene and

3D animated objects to model the moving objects [36, 37]. A virtual reality 3D

environment is typically stored in VRML or X3D file formats and is not compatible

with common video file formats like AVI or MPEG. For this reason, virtual reality

models cannot be used to simulate moving foreground objects for a video sequence.

Moreover, virtual reality models do not look realistic.

Our aim in simulating foreground objects is to provide a way of viewing the video

sequence associated with a given metadata file. This will enable a visualization of the

video sequence corresponding to given metadata or start and end time stamps. We

propose an approach different from virtual reality to simulate moving objects given a

scene. By using robust background subtraction algorithm, we extract foreground

objects in a scene from sample video sequences (Figure 36). Next, we simulate the

foreground object moving along the random trajectories by taking these blobs and

superimposing them on the trajectories with suitable scaling (Figure 35 and 37). For

instance, in a sequence where people are walking, a set of foreground blobs

corresponding to the portion in which the person is walking are selected and scaled

appropriately to fit the new scene image. We create a database of 60 blobs of a

 59

walking human consisting of views from different angles. These consist of front, back

and sideways views of moving humans. During the simulation, appropriate sets of

blobs are selected based on the path chosen and the location of the blob in the image.

Figure 35: Simulating the foreground blob

Figure 36: Examples of blob libraries extracted by background subtraction ([38])

Figure 37: Example of simulated scene of a person walking

Background
Subtraction

New image

I/p video
frame

Foreground
blob

Simulated sequence
with superimposed
blobs

Trajectory
coordinates

 60

Ideally speaking the camera can have countless viewpoints and we need a larger

database to cover all possible orientations of the blobs. However, current simulations

include only four viewpoints front, back, left and right.

Figure 38: Scaling the blob based on its location

To accurately superimpose the blob at a trajectory point, we need to scale it

appropriately. We assume the blob’s expected height is known at the two ends of a

path. At any intermediate point on a trajectory we linearly interpolate between these

two heights to get the new scaling factor (Figure 38). Different paths can be

programmed to have different speeds.

4.2.3 Metadata simulation

Different types of data is simulated using these moving foreground blobs

• Object’s center of gravity

• Blob binary mask

• Object size

• Object velocity

 61

• Object acceleration

• Object type (e.g. car, person etc)

To simulate surveillance scenario metadata we assume that an alarm is triggered by

one of the many possible sources (motion detection, access control, manual recording,

schedule recording etc.). The user specifies the timestamps between which the

simulated metadata needs to be generated. The tool then generates random alarms

every t minutes and associated with each alarm, a random trajectory using above

technique is generated. Thus we simulate a hierarchy of metadata including alarm

level metadata (Alarm type, timestamp, camera ID), Video level metadata (Video ID,

Video file location, timestamp), Frame level metadata (Frame ID, video ID, fps,

video resolution), and Blob level metadata (Blob ID, Blob size, centroid, speed, color,

object type, binary mask). We provide a tool to automatically generate this metadata

for the specified timestamps and write the simulated metadata into a text file.

4.3 Interface

The metadata simulation methodology is shown in Figure 39. We have implemented

the proposed methodology in MATLAB. To use the interface, the base trajectories are

created manually. These are simple to create and require minimal effort. They should

encapsulate all possible regions where different objects can appear. Table 3 shows the

configuration parameters that the user needs to specify to run the metadata simulation

tool. The simulated metadata is written into text files.

 62

 Select path Simulate track Simulate object

Figure 39: Metadata simulation methodology

No. Parameter Use
1 START_CLOCK Starting clock time:

[year month date hr min sec]

2 DATA_COLLECTION_DURATION Duration in hrs for generating the data

3 ALARM_WAIT_TIME One alarm is generated every
ALARM_WAIT_TIME minutes

4 NUM_TRACK_IMAGES Number of images available used to
simulate different paths

5 PATH_SPEED 1 - slow, 2 - medium, 3 - fast
6 PERTURB_FLAG 0 - smooth track, 1- noisy track
7 DEFAULT_CAMERA_ID Camera id number
8 DEFAULT_FPS Frames per second value
9 DEFAULT_VIDEO_LOC Location of the default camera video

file
10 CAMERA_DEFAULT_IMAGE Location and filename of the image to

be used for the scene
11 IMAGEFILE_PATH Path to the intermediate image files
12 BLOB_PATH Path to the black and white blob image

files
13 PROBABILISTIC_TRACKS 1 - assign probability to paths

0 - use equal probability of occurrence
for all paths

 Table 6: Configuration Parameters for Metadata Simulation

Metadata
extraction
engine

Metadata

file

 63

The tool is completely automated, given the scene and manually defined paths and no

storage of video sequences required.

We can use the tool to generate metadata for different “scenarios”. The simulated

metadata can be used to test other low level vision algorithms, which would otherwise

require collection of a large amount of video data. We give a few examples of using

the simulated metadata to test vision algorithms in the next sections.

Using this tool it is also possible to generate large video metadata for “mining”. The

performance evaluation of different query and visualization tools of a mining system

can be done using a simulated metadata set.

4.4 Application 1: Activity Map Visualization

We present a tool in this section that can be used to visualize the trajectory metadata

generated by the simulation tool described in the previous sections. Viewing a large

amount of recorded data in a meaningful way is a challenging problem for

surveillance systems. One approach is to generate a summary of recorded sequences

and determine which areas in the scene have more frequent activity (e.g. busy aisles

in a supermarket) and which have limited or no activity (e.g. restricted access areas).

Such a summary of the recorded video sequences can be visualized by the activity

map of the scene. An activity is a 2D histogram of moving foreground objects

superimposed on the original scene image. It is an intensity plot where brighter

regions indicate higher level of activity and darker regions indicates less active areas.

The activity map obtained from multiple cameras could generate summary

 64

information for an observed site. We propose an activity map generation tool that

will allow user to monitor the site usage summary across different time intervals.

User can specify the following parameters:

a) Camera ID

b) Time interval

c) Time resolution

The system builds a density matrix by using the Video Content Meta Data to generate

a matrix. This matrix has 3 dimensions, X,Y coordinates in the field of view of

camera, and time intervals.

4.4.1 Density Matrix Generation

The Density Matrix represents the probability of detecting an object at the particular

location (in the field of view of camera) at the particular time interval.

Figure 40: Density Matrix

For example, DM(X1,Y1,T2) gives the probability of object detection at location

(X1,Y1) between T2begin and T2end. The resulting density matrix is superimposed

 65

on camera default image based on the selected time point. This allows user to see the

activity map for different times.

Figure 41 depicts the execution flow of density matrix generation operation.

Figure 41: Density Matrix Generation Flow

The user provides the start time (Ts), end time (Te), camera identifier (Cid), and time

resolution (Tres) parameters from GUI and starts the operation.

Generate Data Points operation uses the given criteria and the data files to generate

data points. Each data point is represented by a tuple. The X and Y denote the

location and Tidx denotes the time interval. There are (Te-Ts)/Tres+1 number of time

intervals. Generate Density Matrix operation generates the 3D matrix data from the

given data points.

Cameras Alarms Alarm
Video

Video Content
Meta data

Generate
Data Points

X Y Tidx

Generate
Density
Matrix

 Ts Te Cid Tres
GUI

 66

The following algorithm generates the Density Matrix from given N center of blob

data points.

GenerateDM(p[N],DM[][][])
{

i=0;
// accumulate the counts
while (i<N) {
 DM(p[i].tidx,p[i].x,p[i].y)++;
 i++;
}
// Normalize
for i=0 to Tidx {
 for j=xmin to xmax {
 for k=ymin to ymax {

 DM(i,j,k)/=N;
 }

 }
 }
 return;
}

The other possible approach is to generate the Density Matrix using the entire blob

mask as the given N data points.

GenerateDM(p[N],DM[][][])
{

i=0;
total=0;
// accumulate the counts
while (i<N) {

 for each detected pixel (dp) in binary mask of p {
 DM(p[i].tidx,p[i].dp[j].x,p[i].dp[j].y)++;
 total++;
 i++;
 }
 }

// Normalize
for i=0 to Tidx {
 for j=xmin to xmax {

 for k=ymin to ymax {
 DM(i,j,k)/=total
 }
 }
 }

 return;
}

 67

4.4.2 Generating Activity Map

Figure 42: Activity Map Image Generation Flow

Figure 42 depicts the flow for generating Activity Map for a given time slice by using

the density matrix and default camera image. Figure 43 shows the GUI for creating

activity map.

Figure 43: Example GUI for Activity Map Generation

Tidx

Select slice
from Density

matrix

Superimpose
matrix on

default image

Activity
Map

Color
Palette

Density
matrix

Default
camera image

 68

The user can specify the following parameters as input to the GUI (Table 4):

Field Type Description

Start Date YYYY-MMM-DD HH-MM Start Date
End Date YYYY-MMM-DD HH-MM End Date
Camera CHAR16 Camera Identifier
Time Resolution INT32 Minutes
Generate Button Starts the activity map

generation process
Display Act Map Button Display the generated

activity map
Activity Map
Method

Radio Button 1. Use blob center: the
center of the blob is used
to generate the 2D
activity map.
2. Use blob mask : select
the entire blob to
generate the activity map
histogram

Display Video Button Display the simulated
video

 Table 7: GUI input parameters

4.4.3 Advantages and Usage of Activity Map

The activity map can be used

a) in retail store applications for identifying frequently visited areas in the store,

b) to model the normal detection probabilities of observed site for different time

intervals

c) to detect abnormal patterns that occur in low detection probability zones.

d) to view probability of detection for different types of objects in the scene e.g.

people, vehicles etc (assuming the video metadata contains result of an object

type classification module)

 69

4.5 Application 2: Entry/Exit zone modeling and route learning

In this section we demonstrate the use of metadata simulation tool discussed in

section 4 to generate test data for other vision algorithms namely entry/exit zone

modeling. The entry/exit zone modeling algorithm is based on trajectory clustering

from Makris and Ellis [4]. The metadata used by this algorithm is a set of trajectories

gathered over a period of time.

Here we simulate the trajectories for a given scenario using our tool and demonstrate

the working of trajectory clustering algorithm to learn entry/exit zones.

4.5.1 Algorithm and results

To cluster trajectories, we use the algorithm from Makris and Ellis [4], which learns

entry/exit zones in the scene for trajectory clustering.

To learn entry/exit zones, only the start and end points of trajectories are required.

The standard Expectation-Maximization (EM) algorithm is used to cluster these

points. The EM algorithm gives parameters of a mixture of Gaussian distributions

that best represent the clusters.

As EM is a supervised algorithm, it requires the number of clusters to be known

beforehand. However, number of entry/exit zones in a surveillance scene is generally

not known. So we start with a larger number of clusters and then eliminate some

clusters based on their density of observation. Also, small clusters that are close

enough to each other are merged into one cluster.

 70

 (a) (b)

(c) (d)

Figure 44: (a) Unlabeled trajectories (b) Start and end points (c) Clustered entry/exit

zones using EM (d) Trajectories classified into learned routes

 71

Once the entry/exit zones are identified, defining the possible paths in the scene is a

straightforward combinatorial task. We can then assign labels to the trajectories and

classify them into routes. Figure 44 shows the results of this algorithm for metadata

simulated by the tool described in Section 4.2 and 4.3. Figure 44 (a) displays a plot of

simulated trajectories read from the metadata file. Figure 44(b) shows the start and

end points of these trajectories. The result of EM clustering is shown in Figure 44(c)

where the four entry /exit zones are correctly clustered. These in turn imply presence

of three possible routes in the scene. Figure 44(d) displays the trajectories classified

into learnt routes.

4.6 Discussion

In this chapter we have presented a solution to address the problem of availability and

storage of surveillance video data. By observing that in most computer vision

algorithms, we need low-level metadata for processing, we propose simulation of the

video metadata for a given scenario instead of using real video sequences. Once the

normal and abnormal paths in the scene are defined, our tool simulates random

trajectories of moving objects. A set of foreground blob libraries for different types of

objects are created and stored beforehand. These are used to simulate the blob

metadata as the object moves along the trajectory. By varying the configuration

parameters, we simulate objects moving at various speeds along different paths in the

scene. The advantage of this technique is that it can be applied to any scenario. Only

one image of the scenario is required and there is a reduced need to record or store the

video sequences for metadata extraction.

 72

We have illustrated the technique for an office scenario. Also, we have shown two

example applications of the metadata simulation tool - the activity map visualization

tool and the entry/exit zone modeling and route-learning algorithm. For both these

applications, the metadata simulation tool is used to generate the trajectories.

Although the metadata simulation technique can be very useful, the current version

has some limitations. We currently support simulation of trajectories of a single

object at a given timestamp. The algorithm needs to be enhanced to include multiple

trajectories at the same time. This will be required for simulating more complex

scenarios.

The accuracy of simulated metadata depends on the set of foreground blob images i.e.

the blob libraries. To include different poses and shapes and behavior patterns, we

need extensive collection of these blob libraries. Another issue with this technique is

the merging of object with the background. For the purpose of visualization,

superimposition of the blob is acceptable, however, if the blob boundary is not

smooth, the ‘simulation’ will be more noticeable and the scene will look less realistic.

Blob merging will be difficult if there are sharp color and contrast differences

between the object and background e.g. under lighting changes.

As discussed, one application of simulated metadata is to test the functionality of the

computer vision algorithms. It should be noted that results obtained by testing these

 73

algorithms on real video sequences would be certainly different than those for

simulated metadata. Additional practical problems like occlusion, lighting changes

will arise when dealing with real videos. Our technique of using simulated metadata

provides a quick and effective way to generate data for testing the basic functionality,

at the cost of possible reduced accuracy of results.

 74

Chapter 5: Progressive Threat Detection Modeling

5.1 Introduction

Video surveillance systems that record non-stop video footage 24 hours a day can

have prohibitively large storage requirements. Likewise, continuous monitoring

requires an operator to be viewing the video continuously. During most of the video,

however, there may be little or no activity in the scene. One approach to reduce the

recording or monitoring requirements is to either record or monitor video footage

only upon receiving an alarm. An alarm can be triggered in one of many possible

ways – by activity (certain modern security cameras are capable of detecting motion

in the scene), with access card control (e.g. when someone unlocks a door using

access card and enters the monitored room), by pre-scheduling, with sensor-generated

alarms or manually by an operator in case of emergency. Without loss of generality,

we will assume all alarm based recording also encompasses alarm based monitoring.

An alarm based system preserves stores video footage starting a few seconds prior to

the trigger and a few seconds after the alarm has been turned off, for instance a

motion based alarm will be turned off when the object has left the scene. Such

discrete notifications reduce the storage requirement considerably and ensure that

important data is not missed. A surveillance system that stores continuous video may

do so for a limited amount of time and compress old video data (say anything more

than a week ago) by storing just segments of video that correspond to alarms.

 75

An interesting problem associated with the alarm-based recording is to automatically

determine the moment at which the recording should start i.e. when to trigger the

alarm. This decision should be based on the video content. Background subtraction

for motion detection is one simple approach. However, it will be useful if the alarm-

triggering algorithm can also determine the level of threat the event corresponds to.

For example, an alarm triggered by a person entering a restricted area may be higher

threat than a motion detection alarm triggered by a person walking in a room. In this

chapter we focus on the problem of analyzing video data to determine a threat level

and then automatically trigger an alarm depending on the threat level.

Detection of abnormal behavior can be used as a decision factor in determining threat

level. Some examples of behaviors that may constitute a threat include - a person

entering a restricted area; activities like running, loitering, theft, fighting, abandoning

baggage; vandalism; or abnormal trajectories that do not confirm to a regular pattern.

For example, a vehicle going in wrong traffic lane or a person moving in opposite

direction of flow of the crowd.

Activity recognition and abnormal behavior detection in videos has been an active

area of research. Johnson and Hogg [39] presented a neural network based model to

learn the probability distribution functions of object trajectories from video

sequences. The normal trajectories are modeled by a flow vector to recognize atypical

movements. Rao and Sastry [40] used a maximum likelihood framework to

characterize normal activities in a scene based on motion trajectories. They tested

 76

their algorithm for normal flow of traffic with abnormal events being a pedestrian

trajectory and vehicle trajectory in opposite direction to the flow. Other examples of

related works are detection of higher level activities. Cuntoor and Chellappa have

developed a model to characterize high level activities by a sequence of key frames

rather than dominant characteristics over the entire video sequence [41]. Detection of

specific suspicious activities like abandoning a package has been studied in [42, 43].

In our approach we define the threat level using trajectory data of the moving object.

In particular, we focus on the object’s motion trajectory relative to a “target”. We

detect events where an object is in close proximity, or is loitering near a target, or an

object is approaching a target. The faster the object approaches the target, the higher

the threat level. A person running toward the target will be considered a higher threat

than a person just walking towards the target. Similarly, a person walking away from

the target is not a threat, whereas a person moving toward the target may be a threat.

Thus the detection is based on distance of the object from the specified target, its

trajectory data and the direction or rate at which the object approaches the target. We

do not incorporate higher level behavior detection like a person abandoning an object,

or crowd gathering near dispersing away from an object or abnormal trajectories that

do not confirm to the regular flow.

For prevention of a security breach, an intelligent systems needs to know the

progression of threat level. Our threat level scoring engine that analyzes the trajectory

 77

and gives real time scoring based on the learned model. Visual alarm notification is

generated when a threshold is reached.

5.2 Overview

A simple implementation of a threat detection model would be to use the activity map

generated by monitoring trajectory data over a period of time. The activity map gives

a 2D histogram or probability distribution of activity in the scene. By comparing the

new trajectory points to the probability of occurrence values from the activity map,

we determine a threat level, assuming that the threat is only a function of the current

position and the previous activity in that area. For example, consider the activity map

shown in Figure 45 for a shopping mall scenario. Figure 46 shows a trajectory of a

burglar who breaks into the first shop on the left in the image. The trajectory drawn

enters the shop through the glass where the mannequins are placed. The threat

detection score engine result is shown below in Figure 47, where green color denotes

low threat, orange medium threat and red denotes high threat level.

Clearly there are other factors, such as where potential targets are located, the

direction and speed of the threat, duration of the threat, and even properties of the

threat (size, class, and history, for example). We extend the threat detection by

including enhancements to the threat level modeling. The mere presence of an object

in an area where there was no activity previously does not establish it as a threat. Our

extensions focus the relative proximity and activities of a potential threat with respect

to the target.

 78

Figure 45: Activity map for shopping mall scenario

 Figure 46: Sample Trajectory Figure 47: Threat map

1. We first consider the location of objects of interest in the scene (called targets).

Threat modeling with respect to these targets will be more meaningful. This is

very common in video analysis where the proximity of two objects has meaning

(two people may be considered meeting if they have some relative proximity over

some minimal amount of time).

2. We use a decay factor to model the distance function around a potential target. A

decay factor can be used to dampen the computed distance to vary the threat level

based on object’s spatial location relative to the target. For example, a decay

 79

factor may be low for a cash register, and higher for a person. A threat does not

need to be as close to a person to be identified a threat as they would to a cash

register.

3. We incorporate directionality of the moving object with respect to the target. An

approaching object is more likely to be a threat than an object moving away from

the target, even if they are at the same distance from the target.

We consider speed and the duration of a potential threat in the scene. Someone

loitering around a target may increase the threat. Likewise someone running to the

object would increase it as a threat. A potential threat simply walking by may be

ignored. This is done by keeping track of time duration for which an object is present

within a distance threshold of the target.

5.3 Threat Measures
Models for various threat measures based on above threat patterns are discussed in

this section. The overall model is a linear combination of these factors.

5.3.1 “Proximity Measure” using damping factor and activity map

The proximity component of the threat is related to the distance from the target. A

person that is closer to the target is a higher threat. The proximity threat decreases

with the object’s distance from the target. By observing trajectories of objects moving

in the scene over a period of time, we can get a measure of activity in the region. An

activity map is a 2D histogram of the given scenario generated based on trajectories

monitored over a period of time. Larger values in the activity map imply the region is

busier than other regions with low value of activity. The activity map value is also

taken into consideration when calculating the threat factor. For a region where there is

 80

more activity, (1.0 - Activity) value will be a small number and will have an effect of

reducing the proximity threat. We use (1.0 - NormalizedDist), so that the proximity

threat increases as the object gets closer to the target.

ProximityThreat = (1.0 - NormalizedDist) * DampingFactor * (1.0 -Activity) (5.1)

where,

 object) andrget between ta distanceeuclidean possible(max
 object) andrget between ta distance (Euclidean

=DistNormalized

Note that we have not converted distances to physical coordinates but knowledge of

the scene can provide a linear conversion to world coordinates.

5.3.2 “Approach Measure” using direction and speed

An object that is approaching the target will be considered a greater threat than an

object heading away from the target, independent of the distance away. If the object

approaches the target and then moves away, the threat level should initially increase

and then decrease. Furthermore, the rate at which the object is approaching a target

also affects the threat level and can be measured as the component of the moving

object’s velocity toward the target. If the object is approaching the target, this

component is positive. For an object moving away from the target, the component

would be negative. This information will be used to determine the threat by an

approaching object as:

 81

θcosj
dt
dyi

dt
dxreatApproachTh += (5.2)

where

(dx/dt) is the velocity component in x direction,

(dy/dt) is the velocity component in y direction,

θ is the angle in between direction of velocity and line joining target and the

object.

5.3.3 “Loiter Measure”

An object that stays within the proximity of the target for a sufficiently long time may

also be classified as a threat. To detect loitering, we first determine whether the

object is staying in a particular region for a predetermined minimum time. If yes, we

increment the time counter to store the loitering time. To determine loitering threat

factor, for each point on the trajectory, we compute

N
NoLoiterRati r= (5.3)

where,

Nr is the number of points that are within a radius R of the current point.

N is the LOITERING_ORDER. This is number of past samples used to

determine if there is loitering.

If LoiterRatio is greater than a threshold, it means the object has been resident in the

same region for too long and we start incrementing a counter. The Loitering factor is

defined as the log of this count, making the loitering constant grow gradually as the

object continues loitering. We decrement the loitering time counter if the object starts

moving, which means the LogRatio is smaller than the chosen threshold.

 82

Pseudocode

LoiterRatio = Nr/N

if (LoiterRatio > LOITER_RATIO_THRESHOLD)
 // increase loitering factor by 1
 LoiteringFactor(i) = max(LoiteringFactor) + 1;
else
 // reduce loitering factor by 1
 LoiteringFactor(i) = max(max(LoiteringFactor) - 1,0);
end

LoiterFactor = log(LoiterFactor)/K, where K is a constant.

5.3.4 Total Threat measure

The net threat factor is computed as a combination of the above measures. To

summarize, the metadata extracted to determine threat level consists of the following:

(a) For trajectory points:

1. Velocity

2. Normalized distance from the target

3. Damping factor

4. Activity map value

5. Direction (approaching target or moving away)

(b) At object level

1. Loitering time duration

TotalThreatVal = max(0, w1 * ProximityThreat + w2 * ApproachingThreat +
 w3 * LoiterThreat) (5.4)

w1, w2, w3 are weighting factors determined empirically for different operational
scenarios.

 83

Thresholds to determine threat level are based on final threat value (Table 5):

Threat Value Threat Level Event
< T1 None (GREEN) -
< T2 Low (YELLOW) Object loitering in proximity of

the target
< T3 Medium/intermediate

(ORANGE)
Object approaching the target

Else High/critical (RED) Object very close to the target OR
Object running towards the target

 Table 8: Threat Level Thresholds and Corresponding Events

The simulated trajectory data is used to generate activity map for the given scene for

a given time duration. The input to the threat detection model is the activity map, test

trajectory, time stamp for the test trajectory and target location and thresholds used in

computing various threat measures i.e. loitering duration, loitering order (number of

past samples used), proximity threshold and damping type (linear or Gaussian).

5.4 Example scenarios:

Without loss of generality, we present the example results for our threat modeling

approach for simulated trajectory metadata from Chapter 4, for a shopping mall

scenario. The metadata simulation tool discussed earlier is used to generate an

activity map for the mall scenario. A target is specified by drawing a bounding box on

the input image.

Case 1: Object approaching target

 Figure 48 shows the result for threat detection for an object that approaches

the target. The trajectory is shown in (a). Resulting threat color map is shown in (b).

The plot of total threat measure against frame number is shown in (c). Finally the

 84

individual threat measures are shown in (d). The Proximity threat is seen to increase

as the object approaches the target. The approach threat has position value as the

object comes closer to the target, but becomes negative as the object moves away

from the target. The loitering threat is zero throughout for this case.

Case 2: Object passing by the target

 Figure 49 shows the result for threat detection for an object that passes by the

target. The trajectory is shown in (a), resulting threat color map is shown in (b). The

plot of total threat measure against frame number is shown in (c). Finally the

individual threat measures are shown in (d). All the individual threat measures are

low in this case and also the final threat measure is low. Consequently, the color map

shows all trajectory points as green.

Case 3: Object loitering near target

 Figure 50 shows the result for threat detection for an object that loiters near

the target. The trajectory is shown in (a), the resulting threat color map is shown in

(b), the plot of total threat measure against frame number is shown in (c) and finally

the individual threat measures are shown in (d). Loitering threat factor is seen to

increase as time passes by. The overall threat measure grows too, as expected.

Case 4: Object loitering near target and then going away

 Figure 51 shows the result for threat detection for an object that approaches

the target. In this case, the result is similar to case 3 for loitering. As the object moves

away from the target, the loitering threat factor reduces gradually, as does the overall

threat measure.

 85

 (a) (b)

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

Trajectory sample number

Th
re

at
 m

ea
su

re

Total threat measure

 (c)

0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Trajectory sample number

Th
re

at
 m

ea
su

re

Indiavidual threat measures

Loitering threat
Approaching threat
Proximity threat

 (d)

Figure 48: Case 1 - Threat measure for an object approaching target (a) Total threat
measure (b) Loitering measure, approaching measure and proximity measure shown

separately

 86

 (a) (b)

0 2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trajectory sample number

Th
re

at
 m

ea
su

re

Total threat measure

 (c)

0 2 4 6 8 10 12 14 16

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trajectory sample number

Th
re

at
 m

ea
su

re

Indiavidual threat measures

Loitering threat
Approaching threat
Proximity threat

 (d)

Figure 49: Case 2- Object passing by target (a) Total threat measure (b) Loitering
measure, approaching measure and proximity measure shown separately

 87

 (a) (b)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trajectory sample number

Th
re

at
 m

ea
su

re

Total threat measure

 (c)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trajectory sample number

Th
re

at
 m

ea
su

re

Indiavidual threat measures

Loitering threat
Approaching threat
Proximity threat

 (d)

Figure 50: Case 3 - Object loitering around the target (a) Total threat measure (b)
Loiter threat measure, Approach threat measure and Proximity threat measure shown

separately

 88

 (a) (b)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Trajectory sample number

Th
re

at
 m

ea
su

re

Total threat measure

(c)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Trajectory sample number

Th
re

at
 m

ea
su

re

Indiavidual threat measures

Loitering threat
Approaching threat
Proximity threat

(d)

Figure 51: Case 4 - Object loitering and then leaving (a) Total threat measure (b)
Loiter threat measure, Approach threat measure and Proximity threat measure shown

separately

 89

 (a) (b)

0 1 2 3 4 5 6 7 8 9
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Trajectory sample number

Th
re

at
 m

ea
su

re

Total threat measure

 (c)

0 1 2 3 4 5 6 7 8 9
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trajectory sample number

Th
re

at
 m

ea
su

re

Indiavidual threat measures

Loitering threat
Approaching threat
Proximity threat

 (d)

Figure 52: Case 5- Object running towards target (a) Total threat measure (b)
Loitering measure, approaching measure and proximity measure shown separately

 90

Case 5: Object running towards the target

 Figure 52 shows the result for threat detection for an object that approaches

the target. The trajectory is shown in (a). Trajectory points are spread apart more than

the previous trajectories, indicating an object moving with greater speed. Here the

velocity component in the direction of the target is high and as the object approaches

the target. Hence the combined threat measure is high as expected.

5.5 Discussion

We have presented a threat model based on trajectory metadata of a moving object. In

our model, we estimate threat relative to a target. Specifically, we consider threat to

be a measure of object’s proximity to the target, approach speed and loitering factor.

The model can be extended by detecting high level complex events like theft, a

baggage being abandoned in public place, abnormal crowd movement like gathering

near an object or moving away from a possibly harmful object. Current model

incorporates a single target. The model can be enhanced to include more than one

target.

Another issue that needs to be addressed is the perspective distortion present in the

camera-captured images. To accurately determine the distance between two locations

in an image, say two people, we need to get their location on the ground plane. This

involves estimating the ground plane homography and removal of perspective

distortion, so that distance between two points on the ground plane is accurate with a

scaling factor.

 91

Chapter 6: Summary and Future Work

In this Thesis , problems central to the automated analysis of surveillance videos were

explored and we proposed advanced metadata models to address them. Our goal was

to automate the task of analyzing the surveillance video by developing intelligent

tools to alert the operators when unusual events occur.

We have explored the problem of building a snapshot of a person from a video

sequence. Given such a capability, systems can rapidly build a set of candidate

suspects for the operator to view and allow them to choose suspects to follow. In the

proposed method for snapshot selection, we first perform skin detection to locate the

possible face blobs in the objects detected by background subtraction. Then an

eigenface based frontal face detection is performed on these skin blobs. The frames

are finally ranked in the order of their "facedness". Snapshoting results for several

video sequences were presented. The performance of the algorithm depends upon the

accuracy of frontal face detection engine. As a future work, the algorithm can be

extended to a multiple camera scenario, where tracking results and appearance

models can be used to correlate trajectories of the same object across multiple

cameras. The snapshot summaries from these multiple views can be combined and

ranked.

We have proposed a simple and effective technique to learn static occlusions in a

scene using long observations from the surveillance videos. By accumulating the

overlap of boundaries of an object across consecutive frames, we generate an

 92

occlusion map for the scene. We described two methods to obtain the occlusion map

and results are presented for indoor office scenarios. The occlusion model can be

extended and applied to tracking algorithms to improve results. By adding depth

information, we can also use this model to learn structural information about static

occluding objects in a scene like doors and desks.

Another contribution was an automated metadata simulation technique. There are

legal and storage issues in obtaining video sequences for surveillance scenarios. By

noting that most low level vision algorithms require metadata to be extracted from the

video, we have developed a tool to directly simulate the metadata given the

surveillance scenario. Our tool has the advantage that it requires minimal user

interaction and is applicable to any scenario. We have illustrated our approach for an

office scenario. To show its usefulness, we present two application of the metadata

simulation technique – activity map analysis and learning of entry/exit zones or routes

in the scene. As these examples show, simulated metadata can be used to test the

functionality of computer vision algorithms. It should be noted that results obtained

by testing these algorithms on real video sequences may be different than those for

simulated metadata. Practical problems like occlusion and lighting changes arise

when dealing with real videos. Our technique of using simulated metadata provides a

quick and effective way to generate data for testing the basic functionality, at the

possible cost of reduced accuracy of results. The technique can be enhanced in

several ways. For instance, the current version of the tool can simulate a single

trajectory at a given time stamp. In future, the metadata simulation tool can be

 93

extended by including multiple trajectories i.e. more than one object at the same time

stamp. This will be required for simulating complex but more realistic scenarios.

Moreover, the accuracy of simulated metadata depends on the set of foreground blob

images i.e. (blob libraries). To include different poses and shapes and behavior

patterns, extensive collection of these blob libraries will be needed. Another possible

enhancement is visualization of simulated blobs. For this smooth merging of

foreground object with the background is required. In the current version, we have

superimposed the simulated blob directly on the scene image. To make the animated

video look more realistic, blob merging should handle boundary, color and contrast

differences between the object and the background e.g. under lighting changes.

Another contribution of our work was to facilitate alarm-based recording of videos

based on a threat model. We proposed a threat level scoring engine that analyses the

trajectory metadata of foreground objects and detects abnormal behavior. The threat

model includes proximity of the moving object to a target, its direction of motion, a

measure of loitering and a previously learned activity map. The scoring engine

generates a visual notification to the operator allowing a progressive monitoring of

threat levels. Once the threat level exceeds a predetermined threshold, alarm based

recording can be triggered. We have shown the threat detection results for several

different behavioral patterns of people moving in a mall. As future enhancement, we

can use higher level activity detection like theft or abnormal crowd behavior to

improve threat modeling. We can also convert the distances between two objects in

 94

the image into world coordinates on the ground plane by using ground plane

homography information in the scene.

To summarize, we have explored the problems of snapshot selection, occlusion

modeling, metadata simulation and progressive threat detection modeling in

surveillance videos. These metadata modeling techniques will automate the task of

analyzing surveillance videos and help the security operators to control and

manipulate the videos in meaningful ways.

 95

Bibliography

1. K. Kim, T. Chalindabhongse, D. Harwood and L. Davis. Background

Modeling and Subtraction by Codebook Construction, IEEE International

Conference on Image Processing (ICIP), Vol. 5, 3061- 3064, 2004

2. B. Manjunath, J.Ohm, V. Vinod, and A. Yamada, Color and Texture

Descriptors. IEEE Trans. Circuits and Systems for Video Technology, 11 (6).

703-715, 2001

3. M. Bober, MPEG-7 Visual Shape Descriptors. IEEE Trans. Circuits and

Systems for Video Technology, 11 (6). 716–719, 2001

4. D. Makris, T. Ellis, Automatic Learning of an Activity-Based Semantic Scene

Model. in IEEE International Conference on Advanced Video and Signal

Based Surveillance, 183-188, 2003

5. V. Vinod, H. Murase. Video shot analysis using efficient multiple object

tracking IEEE Int. Conference on Multimedia Computing and System, 501-

508, 1997

6. A. Divakaran, K. Peker, R. Radharkishnan, Z. Xiong and R.Cabasson. Video

Summarization Using MPEG-7 Motion Activity and Audio Descriptors. in

Video Mining ed. A. Rosenfeld, D. Doermann, D. DeMenthon., Kluwer

Academic Publishers, 2003

7. D. DeMenthon, V. Kobla and D. Doermann, Video Summarization by Curve

Simplification. in Proc. ACM international conference on Multimedia,

(Bristol, United Kingdom), 211 – 218, 1998

 96

8. Y. Gong, X. Liu, Video summarization using singular value decomposition. in

Proc. IEEE Conference on Computer Vision and Pattern Recognition, 174-

180, 2000

9. F. Porikli. Multi-Camera Surveillance: Object-Based Summarization

Approach MERL Technical Report TR2003-145, 2004

10. L. Latecki, W. Xiangdong and N. Ghubade, Detection of changes in

surveillance videos. in Proceedings of IEEE Conference on Advanced Video

and Signal Based Surveillance, 237 – 242, 2003

11. R. Chellappa, C. Wilson and S. Sirohey, Human and machine recognition of

faces: A survey. Proceedings of the IEEE 83 (5). 705-740, 1995

12. M. Yang, D. Kriegman, N. Ahuja, Detecting Faces in Images: A Survey.

IEEE Trans. PAMI, Vol. 24 (1), 2002

13. V. Govindaraju, Locating human faces in photographs. Intl. Journal on

Computer Vision, 19 (2). 129 - 146, 1996

14. H. Graf, T. Chen, E. Petajan, E. Cosatto, Locating faces and facial parts. in

IEEE Proc. of Int. Workshop on Automatic Face-and Gesture-Recognition,

(Zurich, Switzerland), 41–45, 1995

15. T. Leung, M. Burl and P. Perona, Face Localization via Shape Statistics. in

Proc. First Intl. Workshop Automatic Face and Gesture Recognition, 154-

159, 1995

16. Y. Dai, Y. Nakano, Face-Texture Model Based on SGLD and its Application

in Face Detection in a Color Scene. Pattern Recognition, 29 (6). 1007-1017,

1996

 97

17. H. Rowley, S. Baluja, T. Kanade Neural Network-Based Face Detection. in

Proc. IEEE Conf. Computer Vision and Pattern Recognition, 203-208, 1996

18. K. Sung, T. Poggio. Example-Based Learning for View- Based Human Face

Detection Technical Report AI Memo 1521, Massachusetts Inst. of

Technology AI Lab, 1994

19. M. Turk, A. Pentland, Face Recognition Using Eigenfaces. IEEE Conference

on Computer Vision and Pattern Recognition. 586-591, 1991

20. B. Menser, F. Muller, Face detection in color images using Principal

Component Analysis. IEE Conference on Image Processing and its

Applications, 465. 620-624, 1999

21. FaceDatabase, CMU. (http://www.ri.cmu.edu/projects/project_418.html)

22. Rice University Face Database.

(http://www.owlnet.rice.edu/~elec301/Projects99/faces/images.html)

23. M. Huang, A. Mahajan, D. DeMenthon. Automatic Performance Evaluation

for Video Summarization, Technical Report LAMP-TR-114, University of

Maryland, 2004

24. I. Haritaoglu, D.Harwood, L. Davis, W4:Real-time surveillance of people and

their activities. IEEE Trans. PAMI, 22 (8). 809–830, 2000

25. H. Roh, S. Kang, S. Lee, Multiple people tracking using an appearance model

based on temporal color. in Proc. International Conference on Pattern

Recognition, 643–646, 2000

 98

26. A. Senior, A. Hampapur, Y. Tian, L. Brown, S. Pankanti, R. Bolle,

Appearance models for occlusion handling. 2nd IEEE Workshop on

Performance Evaluation of Tracking and Surveillance, 2001

27. D. Greenhill, J. Renno, J. Orwell, G. Jones, Occlusion Analysis: Learning and

Utilising Depth Maps in Object Tracking. in British Machine Vision

Conference, 467-476, 2004

28. G. Triantafyllidis, D. Tzovaras, M. Strintzis, Occlusion Detection in

Stereopairs. International Conference on Trends in Communications

EUROCON 2001, Vol. 1, 99-102, 2001

29. J. Canny, A computational approach to edge detection. IEEE Trans. Pattern

Analysis and Machine Intelligence, Vol.8 . 679-698, 1986

30. Jain, A. K., Fundamentals of Digital Image Processing. Prentice Hall, 1989.

31. E. Rivlin, M. Rudzsky, R. Goldenberg, U. Bogomolov, S. Lepchev, A Real-

Time System for Classification of Moving Objects. International Conference

on Pattern Recognition, Vol. 3, 2002

32. O. Javed, M. Shah, Tracking and Object Classification for Automated

Surveillance. in Proceedings of the 7th European Conference on Computer

Vision, 343-357, 2002

33. A. Rosenfeld, D. Doremann, and D. Dementhon, Video Mining. Kluwer

Academic, 2003.

34. J. Han, M. Kamber, Data Mining: Concepts and Techniques. Morgan

Kaufmann, 2000.

 99

35. F. Qureshi, D. Terzopoulos Surveillance camera scheduling: a virtual vision

approach. in Proc. 3rd ACM international workshop on Video surveillance &

sensor networks, 131 – 140, 2005

36. W. Shao, D. Terzopoulos, Autonomous pedestrians. Proc. ACM SIGGRAPH /

Eurographics Symposium on Computer Animation. 19–28, 2005

37. D. Terzopoulos, Perceptive agents and systems in virtual reality. in Proc. 10th

ACM Symposium on Virtual Reality Software and Technology, 1–3, 2003

38. J. Black, T. Ellis, D. Makris, . Hierarchical Content-based Database of

Surveillance Video Data

(http://www.kingston.ac.uk/~ku32195/VideoDatabase.html)

39. N. Johnson, D. Hogg, Learning the distribution of object trajectories for event

recognition. in Proceedings of the 6th British conference on Machine vision,

583 - 592, 1995

40. S. Rao, P.S. Sastry, Abnormal activity detection in video sequences using

learnt probability densities. in TENCON 2003, Conference on Convergent

Technologies for Asia-Pacific Region, 369- 372, 2003

41. N. P. Cuntoor, R. Chellappa, Key Frame-Based Activity Representation Using

Antieigenvalues. in Proc. Asian Conf. on Computer Vision, 2006

42. M. Beynon, D. Van Hook, M. Seibert, A. Peacock, D. Dudgeon, , Detecting

abandoned packages in a multi-camera video surveillance system. in

Proceedings. IEEE Conference on Advanced Video and Signal Based

Surveillance, 2003., 221- 228, 2003

 100

43. D. Gibbins, G. Newsam, M. Brooks, Detecting suspicious background

changes in video surveillance ofbusy scenes. in Proceedings 3rd IEEE

Workshop on Applications of Computer Vision, 22-26, 1996

