
Effective Iterative Techniques for Fingerprinting Design IP�

Andrew E. Caldwell, Hyun-Jin Choi, Andrew B. Kahng,
Stefanus Mantik, Miodrag Potkonjak, Gang Qu and Jennifer L. Wong

UCLA Computer Science Dept., Los Angeles, CA 90095-1596

Abstract

While previous watermarking-based approaches to intellectual
property protection (IPP) have asymmetrically emphasized the IP
provider’s rights, the true goal of IPP is to ensure the rights of both
the IP provider and the IP buyer. Symmetric fingerprinting schemes
have been widely and effectively used to achieve this goal; how-
ever, their application domain has been restricted only to static ar-
tifacts, such as image and audio. In this paper, we propose the
first generic symmetric fingerprinting technique which can be ap-
plied to an arbitrary optimization/synthesis problem and, therefore,
to hardware and software intellectual property. The key idea is to
apply iterative optimization in an incremental fashion to solve a fin-
gerprinted instance; this leverages the optimization effort already
spent in obtaining a previous solution, yet generates a uniquely fin-
gerprinted new solution. We use this approach as the basis for de-
veloping specific fingerprinting techniques for four important prob-
lems in VLSI CAD: partitioning, graph coloring, satisfiability, and
standard-cell placement. We demonstrate the effectiveness of our
fingerprinting techniques on a number of standard benchmarks for
these tasks. Our approach provides an effective tradeoff between
runtime and resilience against collusion.

1 Introduction

With rapid deployment of new process technologies, shorter time-
to-market design requirements, and advances in CAD tool capabil-
ity, core-based design and software reuse methodologies have at-
tracted a great deal of industrial and academic interest.Intellectual
property protection(IPP) techniques are an unavoidable prerequi-
site for development and adoption of reuse-based system integra-
tion business models. In such reuse-based IP business models, as
well as the related IPP model, there are two basic types of legal
entities involved in an IP transation:provider (seller, owner) and
buyer (user). The goal of IPP is to protect the rights of both the
provider and the buyer.

Recently, a number ofwatermarking-basedIPP techniques
have been proposed [8, 10, 12]. All of these techniques are based
on a single fundamental concept, namely, to translate the provider’s
signature as additional designconstraintsand add these constraints
into the design process. The effectiveness of this concept has been
shown at various stages of the VLSI design process ranging from

�This research was supported in part by NSF under grant CCB-9734166, and by a
grant from Cadence Design Systems, Inc.

behavioral synthesis to physical design [8, 10, 12, 13]. However,
no protection for the IP buyer is afforded.

To discourage piracy and unauthorized redistribution, it is not
enough to protect the ownership rights of the IP provider: the
buyer’slegal ownership of a given piece of IP must symmetrically
be protected as well. The IP provider desires the ability to trace
a dishonest buyer from unauthorized resold copies of the IP. This
is achieved by embedding the provider’s signature into the design,
and additionally embedding a unique signature to each realization
of the design. Similarly, the IP buyer desires protection from be-
ing “framed” by other dishonest buyers working in collusion, or by
a dishonest provider who sells extra copies of the IP and then at-
tempts to blame the buyer. The buyer can provide the IP provider
with his signature which is encrypted using the buyer’s public key.
He can easily check whether the purchased design indeed contains
this signature. Since the buyer is the only entity who can inter-
pret the signature (using his secret key), he is also protected in the
sense that now the provider can not resell the IP without the buyer’s
permission.

Such symmetric protection of the provider’s and buyer’s rights
is afforded by afingerprinting methodology, whereby the IP
providerfingerprintsand delivers to each buyer a unique copy of
functionally identical IP. The difficulty is that the IP provider most
often cannot afford to apply a given watermarking technique with
each buyer’s signature and repeat the entire design process: creat-
ing a large number of different high-quality solutions from scratch
has a clear time and cost overhead. Therefore, we require protocols
that can provide a number of distinct versions of the same IP with
reasonable amortized design effort.

The first IP fingerprinting technique in the literature is due to
Lach et al. [13]. Their approach is based on solution partition-
ing. By partitioning an initial solution into a large number of parts
and by providing for each part several different realizations, one
can realize a fingerprinting scheme with relatively low performance
impact for their application (a restricted FPGA mapping problem).
However, the technique of [13] cannot be applied to design steps
that do not have natural geometric structure and that are sensitive
to the cost of the solution. More importantly, the technique has
relatively low resilience against collusion attacks since it produces
solutions with identical global structure (cf. the work of Boneh
and Shaw [4]). Finally, the time overhead associated with creating
fingerprinted solutions is relatively high.

Contributions of This Paper

In this paper, we propose a generic fingerprinting methodology that
applies to arbitrary optimization/synthesis problems, and that com-
bines existing watermarking techniques and iterative approaches
to solving optimization problems. Our approach allows the IP
owner/provider to design the IP with his (provider’s) watermark
embedded, in order to obtain an initial “seed” solution. We may
view this initial design as a “from-scratch optimization”. Then, for
each IP buyer, a newfingerprintedoptimization instance is created
based on the buyer’s fingerprint and some knowledge of the current
seed solution. Solving this new fingerprinted instance with an “in-



cremental optimization” yields a different but functionally identical
fingerprinted IP, and is inexpensive because it leverages the design
optimization effort that is inherent in the seed solution.

As we will see later, our use of fingerprinted instances to-
gether with incremental optimization has several subtleties. (1)
Fingerprinting the instance in some sense corresponds to using a
smoother, more continuous version of the constraint-based water-
marking approach. (2) The approach relies on the property that
good solutions of the fingerprinted instance will also be good solu-
tions with respect to the original objective. (3) The one-way nature
of the iterative optimization heuristic itself (i.e., given a solution,
it is very difficult to determine the exact instance for which the
solution is a local minimum) can be useful in the authentication
protocol.

In the following section, we review the relevant literature on IP
watermarking, fingerprinting, and iterative optimization. Section 3
then sets out the requirements for a viable IP fingerprinting proto-
col. In Section 4, we propose our new fingerprinting approach, and
illustrate its application to four distinct CAD optimizations: hyper-
graph partitioning, graph coloring, satisfiability, and standard-cell
placement. Section 5 presents experimental results showing that
the proposed techniques maintain good solution quality while pro-
viding an effective tradeoff between runtime and resilience against
collusion. We conclude in Section 6 with directions for future re-
search.

2 Related Work

We now review the necessary background for IP watermarking, fin-
gerprinting, and iterative optimization.

2.1 IP Watermarking

A major characteristic of IP watermarking, as distinguished from
artifact watermarking, is that it must maintain the correct function-
ality of the IP. This is the main reason why IP watermarking is
not trivially achievable. Theconstraint-based watermarkingtech-
nique [9] translates a to-be-embedded signature into a set of addi-
tional constraints during the design and implementation of the IP,
in order to uniquely encode the author’s signature into the IP. The
effectiveness of this technique lies in the large solution space of
the optimization problem that corresponds to the design of the IP:
(i) the author’s signature is added via extra constraints that reduce
the solution space, and (ii) ownership is typically proved via the
exceptionally small probability of obtaining a given solution from
the initial solution space without the benefit of the signature con-
straints. The methodology is mathematically sound [16] and has
been shown to yield strong proofs of authorship with little or no
loss of solution quality, at the level of behavior [8], logic synthesis
and physical design [12] [10], as well as in FPGA design [13].1

2.2 Fingerprinting

Fingerprints have been used for human identification for a long
time because of their uniqueness. Protocols have been developed
for adding fingerprint-like marks into digital data to protect both

1The constraint-based watermarking technique implicitly requires a large solution
space, since it relies on transparent introduction of new constraints that are then veri-
fied in “binary” fashion (i.e., a given constraint is either satisfied or not satisfied in the
final solution). The constraint-based approach is also more suitable to large problem
instances, since structural elements of the instance are changed by the constraints (e.g.,
edges in a graph representation are added or deleted) and we would like such changes
to be unobtrusive. One aspect of our proposed fingerprinting methodology, below, is
that it is less “binary”: it changes the design optimization instance more smoothly and
yields a richer set of possible watermarked solutions.

the provider and the buyers [3, 4, 15]. Such marks are made by
introducing minute errors to the original copy, with such errors be-
ing so insignificant that their effect is negligible. All of these tech-
niques are aimed at protectingartifacts, such as digital data, image,
and audio/video streams. This is very different from protectingIP:
since a minor error can change the functionality of the IP and ren-
der the entire design useless, IP fingerprinting cannot be achieved
in the same way.

To the best of our knowledge, only one published work ad-
dresses IP protection using fingerprinting [13]. The approach is
to partition the problem into small parts, and impose constraints
as needed to make solutions for each part “connectable”. Multiple
solutions are found independently for each part, and a solution to
the original problem can be constructed by mixing and matching
these solutions according to the buyer’s fingerprint. However, the
method is relatively impractical (the problem must have a specific
(usually, geometric) structure, the approach can affect solution cost
significantly, and it is vulnerable to collusion since fingerprinted so-
lutions all have the same structure). An analogous approach would
be to introduce a set of independently relaxable constraints before
solving the problem. Then, once a solution is found, relaxing each
constraint independently guarantees that a number of distinct so-
lutions can be derived.2 The runtime overhead is almost zero, but
many similarities are expected among fingerprinted solutions, mak-
ing the approach vulnerable to collusion.

2.3 Iterative Optimization Techniques

An instance of finite global optimization has a finite solution setS
and a real-valued cost functionf : S!ℜ. Without loss of general-
ity, global optimization seeks a solutions� 2 Swhich minimizesf ,
i.e., f (s�) � f (s) 8s2 S. This framework applies to most combi-
natorial domains (scheduling, coloring, partitioning, quadratic as-
signment, etc.); continuous optimizations can also be discretized
to yield finite instances. Many optimization problems are NP-hard
[7], and hence heuristic methods are often applied which use an
iterative approach broadly described by the iterative global opti-
mization template of Figure 1.

Typically, s0 in Line 2 of Figure 1 is generated by a perturba-
tion tosi , i.e.,s0 2N(si) whereN(si) indicates theneighborhood, or
set of all possible “neighbor” solutions, ofsi under a given neigh-
borhood operator. Example operators include changing a vertex’s
color in graph coloring; swapping two cells in standard-cell place-
ment; moving a vertex to a different partition in graph partition-
ing; etc. The collection of neighborhoodsN(si) implicitly defines
a topology overS, which we denote as theneighborhood structure,
N. Together withN, the cost functionf defines acost surfaceover
the neighborhood topology, and iterative optimization searches this
surface for (an approximation to) a globally minimum solution.
Each iteration of Lines 2 through 4 is astepin the algorithm; the
sequence of steps from stepi = 0 until the algorithm terminates in
Line 5 is arun of the iterative optimization algorithm.

We make two observations:

� Steps 2-4 of Figure 1 can be hierarchically applied to cre-
ate very complicated metaheuristics. For example, the
Kernighan-Lin [11] and Fiduccia-Mattheyses [6] graph par-
titioning heuristics are both greedy iterative optimizers with
respect to a complicatedpassmove that is itself a move-based
iterative optimization.3

2This is similar to the approach of [13] in that a fingerprinted solution is obtained
by independently combining elements of the solution (either solutions to sub-parts, or
independent relaxations of constraints).

3For example, the Fiduccia-Mattheyses algorithm starts with a possibly random so-
lution and changes the solution by a sequence of moves which are organized aspasses.



Iterative Global Optimization

1. for i = 0 to +∞
2. Given the current solutionsi , generate a new trial solutions0

3. Decide whether to setsi+1= si or si+1= s0

4. if a stopping condition is satisfied
5. return the best solution found

Figure 1: Basic template for iterative global optimization.

� The complexity of the metaheuristic and its sensitivity to per-
turbations of the instance can be a vehicle for IPP: given a
solution (say, an assignment of vertices to partitions) it is typ-
ically extraordinarily difficult to identify the instance (say, the
weighted edges of a graph over the vertices) for which a given
metaheuristic would return the solution.

3 Fingerprinting Objectives

A fingerprint, being the signature of the buyer, should satisfy all the
requirements of any effective watermark:

� High credibility. The fingerprint should be readily de-
tectable in proving legal ownership, and the probability of
coincidence should be low.

� Low overhead. Once the demand for fingerprinted solu-
tions exceeds the number of available good solutions, the so-
lution quality will necessarily degrade. Nevertheless, we seek
to minimize the impact of fingerprinting on the quality of the
software or design.

� Resilience. The fingerprint should be difficult or impossi-
ble to remove without complete knowledge of the software or
design.

� Transparency. The addition of fingerprints to software and
designs should be completely transparent, so that fingerprint-
ing can be used with existing design tools.

� Part Protection. Ideally, a good fingerprint should be dis-
tributed all over the software or design in order to identify the
buyer from any part of it.

At the same time, the IPP business model implies that fingerprints
have additional mandatory attributes:

� Collusion-secure. Different users will receive different
copies of the solution with their own fingerprints embedded.
These fingerprints should be embedded in such a way that it
is not only difficult to remove them, but also difficult to forge
a new fingerprint from existing ones (i.e., the fingerprinted
solutions should be structurally diverse).

� Runtime. The runtime for embedding the fingerprint should
be much less than the runtime for solving the problem from
scratch.

� Preserving watermarks. Fingerprinting should not dimin-
ish the strength of the author’s watermark.

A move changes the assignment of a vertex from its current partition to another parti-
tion. At the beginning of a pass, all vertices are free to move (i.e., they areunlocked),
and each possible move is labeled with the immediate change in total cost it would
cause; this is called thegain of the move (positive gains reduce solution cost, while
negative gains increase it). Iteratively, a move with highest gain is selected and exe-
cuted, and the moving vertex islocked, i.e., is not allowed to move again during that
pass. Since moving a vertex can change gains of adjacent vertices, after a move is
executed all affected gains are updated. Selection and execution of a best-gain move,
followed by gain update, are repeated until every vertex is locked. Then, the best so-
lution seen during the pass is adopted as the starting solution of the next pass. The
algorithm terminates when a pass fails to improve solution quality.

From the above objectives, we extract the following key re-
quirements for fingerprinting protocols:

� A fingerprinting protocol must be capable of generating so-
lutions that are “far away” from each other. If solutions are
too similar, it will be difficult for the seller to identify distinct
buyers. In most problems, there exist generally accepted def-
initions for distance or similarity between different solutions.

� A fingerprinting protocol should be non-intrusive to existing
design optimization algorithms, so that it can be easily inte-
grated with existing software tool flows.

� The cost of the fingerprinting protocol should be kept as low
as possible. Ideally, it should be negligible compared to the
original design effort.

4 A New Fingerprinting Approach

To maintain reasonable runtime while producing a large number of
fingerprinted solutions, we will exploit the availability of iterative
heuristics for difficult optimizations. Notably, we propose to apply
such heuristics (i) in anincrementalfashion, and (ii) to design opti-
mization instances that have been perturbed according to a buyer’s
signature. The basic approach is as follows.4

1. Given an initial instanceI0 containing the provider’s water-
mark, generate a watermarked initial solutionS0 using afrom-
scratchoptimization.

2. For j = 1 ton (n is the number of buyers)

3. Create a fingerprinted instanceI j with fingerprint Fj added
into I0

4. Starting fromS0 as the initial solution, apply anincremental
optimization to generate a new fingerprinted solutionSj for
the fingerprinted instanceI j .

Given a design instanceI0, our approach starts by generating
an initial watermarked solutionS0 using an (iterative) optimization
heuristic in “from-scratch” mode. For a given buyer, we embed
the buyer’s signature into the design as a fingerprint (e.g., by per-
turbing the weights of graph edges), which yields a fingerprinted
instanceI j . Starting fromS0 as an initial solution,5 we then per-
form an incrementaliterative optimization step to obtain solution
Sj for instanceI j .

We observe that the iterative optimization heuristic will be ap-
plied using a known high-quality solution as a starting point, so that
the runtime until the stopping criterion is reached (e.g., arriving at
a local minimum) will be much less than that of a from-scratch op-
timization. Essentially, we leverage the design optimization effort
that is inherent in the “seed” solutionS0.

Another important point is that fingerprinting the instance sub-
tly changes its optimization cost surface. There are several advan-
tages to this: (i) changing the cost surface prevents the iterative op-
timizer from falling into the same local minima as before; (ii) the
optimization cost surface together with the iterative heuristic will
itself fingerprint the design;6 and (iii) as noted in the metaheuris-

4We do not discuss the mechanics of encoding a buyer’s signature as a set of
weights or constraints. Such techniques (using, for example, the cryptographic hash
function MD5, the public-key cryptosystem RSA, and the stream cipher RC4) have
been discussed at length in the recent literature on IPP (e.g., [10]).

5Alternatively, we could useSj�1 as the initial solution.
6As noted above, it is exceedingly difficult to reverse-engineer the particular

weighting of the instance for which a given solution is a local minimum. For some
fingerprinting protocols, this can be useful for authentication. In the partitioning and
standard-cell placement fingerprinting approaches below, which use weights rather
than constraints, authentication will entail confirming that the solution IP is a local
minimum with respect to a particular weighting (i.e., fingerprinted version) of the in-
stance.



tics literature, such changes can actually lead to improved solution
quality.7

In the remainder of this section, we develop specific fingerprint-
ing approaches for four classes of VLSI CAD optimizations.

4.1 Partitioning

Given a hyperedge- and vertex-weighted hypergraphH = (V;E), a
k-way partitioningof V assigns the vertices tok disjoint nonempty
partitions. Thek-way partitioning problemseeks to minimize a
given objective functionc(Pk) whose arguments are partitionings.
A standard objective function iscut size, i.e., the number of hyper-
edges whose vertices are not all in a single partition. Constraints are
typically imposed on the partitioning solution, and make the prob-
lem difficult. For example, the total vertex weight in each partition
may be limited (balance constraints), which results in an NP-hard
formulation [7]. To achieve flexibility and speed in addressing var-
ious formulations, move-based iterative optimization heuristics are
typically used, notably the Fiduccia-Mattheyses (FM) heuristic [6].
In our partitioning testbed, we use the recent CLIP FM variant [5]
and the net cut cost function.

For a given partitioning instanceI0, we iteratively construct
a sequence of fingerprinted solutions according to the following
steps.

1. Generate an initial partitioning solutionS0 by finding the best
solution out of 40 starts of CLIP FM for instanceI0.

2. Reset all hyperedge weights to 20.
3. According to thej th user’s fingerprint, select a subsetE0 �

E of size equal to some percentage of the total number of
hyperedges inH, and increment the weight of each hyperedge
e2E0 by +/- 19 (also according to the user’s fingerprint). This
yields instanceI j .

4. Partition the hypergraph instanceI j using a single start of
CLIP FM, usingS0 (the initial unfingerprinted solution) as
the starting solution.8 This yields the fingerprinted solution
Sj .

5. If another fingerprinted solution is needed, return to Step 2.

4.2 Satisfiability

The boolean satisfiability problem (SAT) seeks to decide, for a
given formula, whether there is a truth assignment for its variables
that makes the formula true. We necessarily assume that the SAT
instance to be protected is satisfiable and that there is a large enough
solution space to accommodate multiple fingerprinted solutions.

Given a formulaF on a set of boolean variablesV, we itera-
tively construct a sequence of fingerprinted solutions according to
the following steps.

1. SolveF and store the value for each variable ofV. This is
solutionS0.

2. According to thej th user’s fingerprint, select a subsetV 0 �V.
3. Keep the current assignment for variables inV 0 and create a

new formulaF 0 as follows:

� Delete fromF all clauses that are satisfied by the as-
signment toV 0.

7We refer the reader to the development ofproblem-spaceand heuristic-space
methods in the metaheuristics literature [17] [14]. Such methods perturb a given in-
stance to allow a given optimization heuristic to escape local minima. The perturba-
tions induce alternate cost surfaces that one hopes are correlated to the original cost
surface (so that good solutions in the new surface correspond to good solutions in
the original), yet which have sufficiently different structure (so that the optimization
heuristic can move away from the previous local minimum).

8We use only one start since our CLIP FM implementation is deterministic; multi-
ple starts fromS0 will yield the same local minimum.

� Delete from the rest of the formula all literals that are
in V 0.

� Apply an existing SAT watermarking technique to em-
bed the user’s fingerprint into the remaining formula.

4. SolveF 0 and get an assignment to all the variables inV�V 0.
5. Combine the new assignment toV �V 0 and the old assign-

ment toV 0. This is the fingerprinted solutionSj to F ; store it
as the current assignment.

6. If another fingerprinted solution is needed, return to Step 2.

4.3 Graph Coloring

The NP-hard graph vertex coloring (GC) optimization seeks to
color a given graph with as few colors as possible, such that no two
adjacent vertices receive the same color. Given a graphG(V;E),
we iteratively construct a sequence of fingerprinted GC solutions
according to the following steps.

1. Apply a graph coloring heuristic to colorG, thus obtaining a
k-color scheme as solutionS0. I.e., the vertex setV is parti-
tioned intok independent sets,fC1; : : : ;Ckg, each marked by
a different color.

2. According to thej th user’s fingerprint, selectfCi1 ; : : : ;Cil g �
fC1; : : : ;Ckg.

3. Create a new graphG0 as follows:

� Among all independent sets infC1; : : : ;Ckg �
fCi1 ; : : : ;Cil g, for each independent set that is not
maximal, create a new vertex and connect it to all the
vertices that are neighbors of this independent set.

� Delete vertices infC1; : : : ;Ckg � fCi1 ; : : : ;Cil g along
with their associated edges.

� Apply an existing GC watermarking technique to em-
bed the user’s fingerprint and denote the resulting graph
by G0.

4. Apply a graph coloring heuristic to colorG0 and get a coloring
solution.

5. Replace the new vertices created in Step 3 by the correspond-
ing independent sets, and append the rest of the maximal in-
dependent sets. Report this solution asSj and retain it as the
current solution.

6. If another fingerprinted solution is needed, return to Step 2.

4.4 Standard-Cell Placement

The standard-cell placement problem seeks to place each cell of a
gate-level netlist onto a legal site, such that no two cells overlap
and the wirelength of the interconnections is minimized. We iter-
atively construct a sequence of fingerprinted placement solutions
according to the following steps (note that our approach is compat-
ible with the LEF/DEF and Cadence QPlace based constraint-based
watermarking flow presented in [10]).

1. Given an instanceI0 in LEF/DEF format, apply the placer
(Cadence QPlace version 4.1.34) to generate an initial place-
ment solutionS0.

2. Reset the weights of all signal nets to 1.
3. According to thej th user’s fingerprint, select a subsetN0 �N

of the signal nets in the design, and set the weight of each net
in N0 to 10. This yields a fingerprinted instanceI j .

4. Incrementally re-place the design, starting from the current
solution solutionSj�1 and using the new net weighting. This
is achieved by invoking theIncremental Modeof theQPlace
tool, and yields the fingerprinted placement solutionSj .

5. Save the new placement solutionSj as the current solution.
6. If another fingerprinted solution is needed, return to Step 2.



Test Case: IBM01 IBM02 IBM03
Number of Vertices 12752 19601 23136

Number of Hyperedges 14111 19584 27401

Table 1: Test cases for partitioning experiments.

Test S0 Cost S0 CPU Time Si Cost Si CPU Time Hamming Dist.
Cases Max Ave Max Ave Max Ave Max Ave Min Ave
IBM01 308 252.2 261 187.6 307.2 253.8 3.25 2.42 16.3 71.1
IBM02 296 272.0 379 329.8 278.5 273.1 15.2 8.4 7.3 41.2
IBM03 1047 881.5 808 695.5 912.5 867.5 36.1 18.4 66.6 263.4

Table 2: Results for the fingerprinting flow on three standard bi-
partitioning test cases. Tests were run using actual cell areas, and
a partition area balance tolerance of 10%. Each trial consists of
generating an initial solution, then generating a sequence of 20 fin-
gerprinted solutions. All results are averages over 20 independent
trials.

5 Experimental Results

5.1 Partitioning

We test our fingerprinting method on 3 standard test cases from the
ISPD-98 Benchmark Suite [2] [1]. These correspond to internal
IBM designs that have been recently released to the VLSI CAD
community. We apply the CLIP FM partitioner with a 10% bal-
ance constraint, and actual cell areas as vertex weights. For each
test case, a single experimental trial generates an initial solution,
followed by a sequence of 20 fingerprinted solutions (i.e., we go
through Step 2 of the method in Section 4.1 a total of 20 times).
Table 2 reports the average results of 20 independent trials.9 We
report the maximum and average solution cost for the initial solu-
tions S0, as well as the maximum and average solution costs for
the fingerprinted solutionsSi . We also report the maximum and
average CPU times required to generate an initial solutionS0 or a
fingerprinted solutionSi . (All CPU times that we report are for a
300MHz Sun Ultra-10 running Solaris 2.6.) Finally, we report the
minimum and average Hamming distances (i.e., number of trans-
positions required to transform one solution into another) over all
C(21;2) pairs among the solutionsS0;S1; : : : ;S20. The data show
that the fingerprinted solutions: (i) require much less CPU to gen-
erate than the original solutions (by factors ranging from 18 to 77);
(ii) are reasonably distinct from each other and from the original
solutions; and (iii) can even have better average quality than the
original solutions (which we attribute to the similarity between our
fingerprinting methodology and the problem-space iterative opti-
mization metaheuristic [14]).

5.2 Satisfiability

Our SAT instances are generated from the problem of inferring
the logic in an 8-input, 1-output “blackbox” [18]. All instances
that we use are satisfiable and we useWalkSAT as the solver
[19]. As described in Section 4.2, we first solve each instance
once to obtain the “seed” solution. We then retain the assignments
for k% of the variables and re-solve the smaller instance involv-
ing only the remaining variables. We find five solutions for the
smaller fingerprinted instances and compare them to the original
solution. The distance of two solutionsS = fs1;s2; : : : ;sng and
T = ft1;t2; : : : ;tng is defined as:dist(S ;T ) = ∑n

i=1 jsi � ti j.
Table 3 reports the results when we maintain 20%, 30%, and

50% of the “seed”S0 solution. From the last two rows, we can see

9Thus, most entries in the table are non-integer.

Original Solution 20% Preserved 30% Preserved 50% Preserved
File Var. CPU Var. Dist. CPU Var. Dist. CPU Var. Dist. CPU
ii8a1 66 8.0 52 20 6.6 46 16 7.2 33 21 6.8
ii8a2 180 9.2 144 35 7.0 126 33 6.8 90 24 7.0
ii8a3 264 9.4 211 48 8.4 184 43 7.4 132 38 7.4
ii8a4 396 12.8 316 78 8.4 277 60 7.8 198 56 9.2
ii8b1 336 9.6 268 80 9.0 235 53 7.4 168 55 8.4
ii8b2 576 13.8 460 146 7.6 403 138 7.2 288 147 7.0
ii8b3 816 18.8 652 203 7.8 571 198 8.4 408 224 8.0
ii8b4 1068 30.8 854 272 8.2 747 246 9.0 534 277 7.4
ii8c1 510 12.4 408 92 8.0 357 103 8.4 255 72 7.8
ii8c2 950 17.4 760 218 8.6 665 238 7.8 475 246 7.4
ii8d1 530 12.2 424 68 8.6 371 60 8.8 265 71 7.8
ii8d2 930 17.2 744 246 7.8 651 251 8.0 465 212 7.2
ii8e1 520 12.0 416 82 8.4 364 56 8.6 260 68 6.8
ii8e2 870 17.2 696 165 7.4 609 223 8.0 435 98 8.2

Ave. Distance (%) - 22% - - 20% - - 19% -
Ave. CPU Saving (%) - - 38% - - 39% - - 41%

Table 3: Number of undetermined variables (Var.), average dis-
tance from original solution (Distance), and average CPU time (in
1=100ths of a second) for fingerprinting SAT benchmarks.

that on average, we are able to achieve solutions which are around
20% different from the seed with a near 40% CPU time saving. Fur-
thermore, the more variables we preserve from the seed, the smaller
the new instance is. This allows us to trade off CPU time and vul-
nerability to collusion, i.e., preserving more of the seed results in
less CPU time consumed, with the new solution being closer to the
seed solution.

5.3 Graph Coloring

We have implemented our proposed GC fingerprinting technique
from Section 4.3 and applied it to the DIMACS challenge graph.
This graph is a random graph with 1000 vertices and an edge prob-
ability slightly larger than1

2. It is believed that coloring this graph
is hard and that the optimal solution is still open [18].

We colored the graph once and achieved an 86-color solution.
Based on this “seed” solution, we choose various percentages of
independent sets (IS) and create a new graph as described in Step
3 of the description in Section 4.3. For each new graph, we color it
5 times. Parameters of the new graphs and fingerprinted solutions
to the original graph, along with average runtimes, are reported in
Table 4. We again see a tradeoff between the quality of the solution
and the credibility of the fingerprints. When we recolor more ISs,
we can provide more convincing fingerprints, but it will take more
time to color the graph. In any case, the savings over the original
from-scratch runtimes is still significant.

solution Run-time
Nodes Edges Edge Prob. Ave. Best (hours)

Original Graph 1000 249826 0.5002 86 86 15.45
Recolor 20% ISs 222 13630 0.5556 86 86 1.10
Recolor 30% ISs 319 26908 0.5305 86 86 1.46
Recolor 40% ISs 397 40712 0.5179 86 86 2.02
Recolor 50% ISs 495 62726 0.5130 87 87 3.07
Recolor 60% ISs 593 89006 0.5071 87 87 4.55
Recolor 70% ISs 694 121591 0.5056 87.2 87 6.42

Table 4: Results for coloring the DIMACS challenge graph with
iterative fingerprinting.

5.4 Standard-Cell Placement

For standard-cell placement, we have applied our fingerprinting
technique to the four industry designs listed in Table 5. For each
test case, we generate an initial solutionS0 and a sequence of 20
different fingerprinted solutionsS1; : : : ;S20; for each fingerprinted
solution, the previous fingerprinted solution is used as the initial
solution for QPlace Incremental Mode. Table 6 presents a detailed



Test Case: Test1 Test2 Test3 Test4
Number of Cells 3286 12133 12857 20577
Number of Nets 2902 11828 10880 25634

Table 5: Test cases for Standard-Cell Placement experiment.

Solution 1% Nets Weighted 2% Nets Weighted 5% Nets Weighted
Cost Dist. CPU Cost Dist. CPU Cost Dist. CPU

Orig(S0) 1.000 0 6:24 1.000 0 6:24 1.000 0 6:24
S1 0.994 3.532 2:58 1.001 3.757 2:58 1.020 3.946 2:58
S2 0.986 4.341 2:57 0.994 3.858 2:58 1.023 4.518 2:54
S3 0.981 4.666 2:58 0.997 4.032 3:03 1.016 4.536 2:51
S4 0.982 4.545 3:02 0.997 4.203 3:03 1.018 4.990 2:52
S5 0.979 4.807 3:01 0.986 4.574 2:57 1.005 5.095 2:54
S6 0.981 4.989 2:59 0.990 5.115 3:01 1.007 5.272 2:55
S7 0.971 5.121 3:30 0.982 5.359 3:33 1.014 5.543 3:28
S8 0.972 5.257 3:32 0.989 5.510 3:30 1.005 5.657 3:28
S9 0.970 5.513 3:38 0.979 5.804 3:32 1.004 5.972 3:29
S10 0.970 5.820 3:33 0.976 6.354 3:29 0.998 6.089 3:29
S11 0.970 6.011 3:34 0.977 6.253 3:30 1.005 6.248 3:30
S12 0.974 6.030 3:34 0.983 6.794 3:34 1.006 6.264 3:29
S13 0.974 6.738 3:35 0.974 6.554 3:34 0.998 6.356 3:30
S14 0.972 6.826 3:38 0.966 6.441 3:32 1.002 6.742 3:30
S15 0.978 6.975 3:36 0.972 6.354 3:32 1.004 7.106 3:28
S16 0.976 6.762 3:39 0.976 6.107 3:33 0.992 7.034 3:29
S17 0.978 6.911 3:38 0.975 6.654 3:34 0.992 7.129 3:27
S18 0.970 7.144 3:39 0.974 6.657 3:34 0.990 7.198 3:26
S19 0.974 7.254 3:37 0.969 6.440 3:28 0.995 7.161 3:27
S20 0.969 7.331 3:40 0.977 6.414 3:34 0.986 6.989 3:26

Table 6: Standard-cell placement fingerprinting results for the
Test2 instance. We report CPU time (mm:ss) needed to generate
each solution, as well as total wirelength costs normalized to the
cost of the initial solutionS0. Manhattan distances fromS0 are
given in 106 microns.

analysis of the solutions obtained for the Test2 instance. We mea-
sure the structural difference between solutions as “Manhattan Dis-
tance”: the sum over all cells in the design of the Manhattan dis-
tance between the two placed locations for each cell. We see that
a fingerprint that perturbs just 1% of the net weights achieves rea-
sonably large Manhattan distance fromS0, and that the incremental
optimization saves a significant amount of CPU versus the from-
scratch optimization. Again, there is a “problem-space metaheuris-
tic” effect in that the fingerprinted solutions are typically of higher
quality than the original solution. A summary of results for all four
test cases is given in Table 7. From this table we can see that we
can reduce the time to generate the next fingerprinted solution while
maintaining the quality as well as producing a unique solution.

Test % weighted Normalized Cost CPU (sec) Manhattan Dist.
cases nets Max Ave Max Ave Min Ave

Original 1.000 1.000 97 97 0 0
1% 1.009 0.986 53 51 0.530 0.861

Test1 2% 1.003 0.987 54 50 0.509 0.886
5% 1.024 0.992 58 53 0.801 1.084

Original 1.000 1.000 384 384 0 0
1% 0.994 0.976 220 205 3.532 5.829

Test2 2% 1.001 0.982 214 202 3.757 5.662
5% 1.023 1.004 210 198 3.946 5.992

Original 1.000 1.000 344 344 0 0
1% 1.000 0.988 168 164 3.232 4.048

Test3 2% 1.007 0.995 165 162 3.239 4.123
5% 1.015 1.009 166 163 3.503 4.423

Original 1.000 1.000 960 960 0 0
1% 1.006 0.983 510 499 11.39 15.53

Test4 2% 0.997 0.987 506 485 13.06 17.44
5% 1.031 1.018 514 496 12.35 18.02

Table 7: Summary of results for fingerprinting of all four standard-
cell placement instances. “Original” lines refer to the initial solu-
tions S0. All other lines refer to fingerprinted solutionsSi , i > 0.
Manhattan distance is again expressed in 106 microns.

6 Conclusions

The key problem in fingerprinting for intellectual property protec-
tion is the tradeoff between collusion resiliency and runtime. In this
paper, we have proposed a new generic fingerprinting technique for
IPP of solutions to optimization/decision problems and, therefore,
of hardware and software intellectual property. By judiciously ex-
ploiting partial solution reuse and the incremental application of
iterative optimizers, we have developed fingerprinting techniques
for partitioning, graph coloring, satisfiability and placement that si-
multaneously provide high collusion resiliency and low runtimes.
Our current research seeks improved methods for fingerprinting,
and also assesses the resiliency of our methods to various attacks.

References

[1] C. J. Alpert, “Partitioning Benchmarks for the VLSI CAD Community”,
http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html

[2] C. J. Alpert, “The ISPD-98 Circuit Benchmark Suite”,Proc. ACM/IEEE Inter-
national Symposium on Physical Design, April 98, pp. 80-85. See errata at
http://vlsicad.cs.ucla.edu/~cheese/errata.html

[3] I. Biehl and B. Meyer, “Protocols for Collusion-Secure Asymmetric Fingerprint-
ing”, Proc. 14th Annual Symposium on Theoretical Aspect of Computer Science,
Springer-Verlag, 1997, pp. 399-412.

[4] D. Boneh and J. Shaw, “Collusion-Secure Fingerprinting for Digital Data”,Proc.
15th annual International Cryptology Conference, Springer-Verlag, 1995, pp.
452-465.

[5] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-Removal Using
Iterative Improvement Techniques”,Proc. IEEE International Conference on
Computer-Aided Design, 1996, pp. 194-200.

[6] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for Improving
Network Partitions”,Proc. ACM/IEEE Design Automation Conference, 1982,
pp. 175-181.

[7] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the
Theory of NP-completeness, New York, W. H. Freeman and Company, 1979.

[8] I. Hong and M. Potkonjak, “Behavioral Synthesis Techniques for Intellectual
Property Protection”, unpublished manuscript, 1997.

[9] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M.
Potkonjak, P. Tucker, H. Wang and G. Wolfe, “Watermarking Techniques for
Intellectual Property Protection”,Proc. ACM/IEEE Design Automation Confer-
ence, June 1998, pp. 776-781.

[10] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, H. Wang and
G. Wolfe, “Robust IP Watermarking Methodologies for Physical Design”,Proc.
ACM/IEEE Design Automation Conference, June 1998, pp. 782-787.

[11] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning
Graphs”,Bell System Tech. Journal49 (1970), pp. 291-307.

[12] D. Kirovski, Y. Hwang, M. Potkonjak and J. Cong, “Intellectual Property
Protection by Watermarking Combinational Logic Synthesis Solutions”,Proc.
IEEE/ACM International Conference on Computer Aided Design, 1998.

[13] J.Lach, W.H.Mangione-Smith and M.Potkonjak, “FPGA Fingerprinting Tech-
niques for Protecting Intellectual Property”,Proceedings of CICC, 1998.

[14] I. H. Osman and J. P. Kelly, eds.,Meta-Heuristics: Theory and Applications,
Kluwer, 1996.

[15] B. Pfitzmann, and M. Schunter, “Asymmetic Fingerprinting”,Proc. Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Springer-Verlag, 1996, pp. 84-95.

[16] G. Qu and M. Potkonjak, “Analysis of Watermarking Techniques for Graph Col-
oring Problem”,Proc. IEEE/ACM International Conference on Computer Aided
Design, 1998.

[17] R. H. Storer, S. D. Wu and R. Vaccari, “New Search Spaces for Sequencing
Problems With Application to Job Shop Scheduling”,Management Science38
(1992), pp. 1495-1509.

[18] http://dimacs.rutgers.edu/

[19] http://aida.intellektik.informatik.th-darmstadt.de/˜hoos/SATLIB/


