TecHNIcAL RESsEaARCH REPORT

Bounding On-Off Sources -- Variability Ordering and
Majorization to the Rescue

by Armand M. Makowski

CSHCN TR 2001-6
(ISR TR 2001-13)

catellite o
ot e

1 Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University
of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN

h%
)
= The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
9
&
& series originating at the University of Maryland.

l)’a".’if.‘atlnl‘l ‘AG@‘
Web site http://www.isr.umd.edu/CSHCN/



Bounding on-off sources — Variability ordering and
majorization to the rescue

Armand M. Makowski
armand@isr.umd.edu

Department of Electrical and Computer Engineering
and Institute for Systems Research
University of Maryland
College Park, MD 20742

Abstract—We consider the problem of bounding the loss  If the traffic is offered for transmission over a a link op-
rates of the aggregation of on-off sources in a bufferless erating atC' bps, onlymin(R(t),C) bps can be accom-
model by the loss rates associated with the aggregation of modated, and in the absence of any buffer, the remain-
e o el Tomane M ing (1 () — ) * bps represents the nstantancous loss

y v g J rate over that link. Under (1) the (average) loss rate of the

mussen et al., a recent upper bound of Mao and Habibi, and o .
to discuss a new conjectured upper bound by these authors, SOUrCe{E(t), ¢ > 0} over theC bps link is well defined

and given by
1 rT
I. INTRODUCTION L(R;C) := Jim_ = (R(t) — C)tdt
—00 0
Traffic burstiness has long been considered a key factor = E[R-0O)"] as. A3)

for provisioning link and buffer resources at ATM multi-

plexers. In a f_irst step, these issues can be_ ao_ldrgssed Wi.ﬂ}\llultiplexing many sources

the help of a simpléufferlesamodel fed by fluid-like input . o _

traffic. An information source is then characterized by its While the definition (3) forl.(%; C') might appear too
R, -valued rate processR(t), t > 0}, so that the source POOr @ marker of source behavior to be of any use, its eval-
bursts at time > 0 with an instantaneous rate B{¢) bps, uation is nevertheless helpful for dimensioning link capac-
say for sake of definiteness. For obvious practical reasoff Or @s the basis for a Call Admission Control (CAC) pro-
it is customary to require the constraibt< R(t) < P cedure [1], [2], [5]. In the latter instance, traffic carried on

(t > 0) whereP is the peak rate of the source. the link is typically obtained by multiplexing several ide-
B pendent information sources.Nf sources R, (t), t > 0}
A. Loss rates (n = 1,...,N) are multiplexed on a link operating at

In most situations of interest, the rate proced¥S: the total instantaneous rate is given by

{R(t), t > 0} can be assumed ergodic (as we do from
now on) in the sense that for all> 0,

lim 1 Tl [R(t) < z]dt =P[R<z] as (1) Under appropriate ergodic assumptions, it follows that

T—oo T Jo - - o
for someR,-valued rvR. If the rate process is sta- L(R;C) = L(Ri+...+Rn;0)
tionary and ergodic, then (1) holds with the steady-state = E[(Ri+...+Ry—C)"] 4
rate variableR determined through the weak convergence
R(t) = R. Under (1) the source admits an average rathere Ry, ..., Ry are the steady-state rate variables for
given by the component sources.

T As indicated already in [2], [3], evaluating (4) can be

m(R) := Tlgréo 7/, R(t)dt = E[R] a.s. (2) computationally prohibitive even in the simplest of cases

R(t) = Ry(t) + ...+ Ry(t), ¢>0.

This work was supported through NASA Grant NAGW77S. 'We writez* = max(z, 0) for any scalate.



due to the large number of sources that need to be multiss rates for an aggregation f&wer, sayL < N, i.i.d.
plexed at any given time. This difficulty is further exaceren-off sourcey Ppew, Br(fnew)) With common peak rate
bated when the component sources are statistically dissifz, and activity factorf,ew (£ = 1,...,L). The result-
ilar (as is the case in practice) [2]. This state of affairs hasy steady state rate for the aggregate traffic is now
prompted a search farpper boundson loss rates which .

are computationally efficientand yet sufficientiytight to Z Paow Be(faew)- @)
provide good approximations. =1

C. On-off sources whereBi (fuew), - - - » BL(fnew) are i.i.d. Bernoulli rvs.

. Rasmussen et al. [5, p. 353] conjectured that when the
Most of the efforts have been carried out for the class 86 urces in (6) have identical peak rates, Babut possibl
on-off sources (e.g., [1], [2], [3], [5]). A source with rate P Sapul p y

process{ R(t), t > 0} is said to be a (generalized) onJifferent activity parameters, the aggregation (7)\ofio-

off source if R(t) alternates between two states, name[gofr? dnzt;:sirtl—oﬁasrzl:r]rgfsfwnhl_de]\r;n(ia(t}piak raffe}v ):
R(t) = 0 (resp. R(t) = P) when the source is silent yp new L. N

(resp. active) at time > 0. Under the ergodic assumptionDrOVideS an upper bound. This conjecture was recently es-

(1), such an on-off source admits a steady-stateRatith tablished by Mao and Habibi [3, Thm. 1] from basic prin-
fini’te range{0, P}. In fact, it is easy to see that ciples. These authors also establish another upper bound

[3, Thm. 3], this time forN homogeneousen-off sources,
P[R=P]=1-P[R=0]= f(R) by replacing them with eeducedhumber of homogeneous
on-off sources. Finally, they conjecture the validity of an
wheref (R) is the activity factor of the source defined byupper bound [3, Conjecture 1] which generalizes both the
upper bound of Rasmussen et al. and their upper bound.
£(R) := lim 1 Tl[R(t) >0ldt as.  (5) Here, we establish a general comparison result for
T—oo T Jo weighted sums of independent Bernoulli rvs [Section 1V].
For on-off sources, we have(R) = f(R)P, so that such In Sectl'on \% we show hoyv this general result can be used
. . to readily derive the conjecture of Rasmussen et al., and
sources are fully characterized by the pdif5 f(R)) or - : .
. he upper bound of Mao and Habibi, and to discuss their
(P,m(R)). We find it useful to represent the steady sta{e ,
. conjectured upper bound. The proper framework for ad-
rate R of the on-off sourcg R(t), ¢t > 0} with peak rate . . . . .
P and activity factorf (R) as dressing these issues (and comparisons in general) is one
y that combines stochastic orderings [6] with the notion of
R =, PB(f(R))? majorization [4]: The variability orderings we use are tai-
lored made for comparing loss rates [Prop. 1], while ma-
where for p in [0,1], B(p) denotes a{0,1}-valued jorization is useful for formally comparing degrees of het-
(Bernoulli) random variable (rv) wittlP [B(p) = 1] = p. €erogeneity. The relevant definitions and facts are given in
We then refer to such an on-off source as the on-off sourgection Il. This is followed in Section Ill by a discus-

(P,B(f(R))). sion of three simple operations that reduce variability. An
_ elementary application of this material readily yields the
D. Earlier bounds and new results general comparison result in Section IV.

Consider N independent on-off sourced,, B(fy))
with peak rateP, and activity factorf, (n = 1,..., N); _ _ o '
the resulting steady state rate for the aggregate trafficis The basic tools are introduced in this section.

[I. STOCHASTIC ORDERINGS AND MAJORIZATION

N A. Variability orderings
z_:IP”B”(f”) ©) For R—valued rvsX andY, we say thatX is smaller
"= thanY in the convex (resp. increasing convex) ordering if
where By(f1),...,Bn(fn) are independent Bernoulli
rvs. The upper bounds derived in the literature on loss E [p(X)] <E[p(Y)] (8)

rates (4) for the aggregate traffic (6) can be interpretedgs g mappingsy : R — R which are convex (resp. in-

2For twoR-valued rvsX andY” with the same distribution, we write Cr€asing and convex) provided the expectations in (8) ex-
X =.Y. ist; we writeX <., Y (resp.X <;.. Y). We refer to these



orderings as theariability orderings. Additional material I1l. REDUCING VARIABILITY

on these orderings can be found in the monographs [6]. Below we identify three operations that reduce variabil-

B. Key facts ity, thus leading to comparisons in the orderidg.

We now present well-known facts that help shape ti®¢ Normalized Bernoulli rvs
approach taken here. First, an equivalent definition of the . . . .
. : : We begin with a comparison result for renormalized
convex increasing ordering [6, Thm. 1.3.1, p. 9]. Bernoulli rvs. Recall that fop in [0,1], B(p) denotes an
Proposition 1: For R-valued rvsX andY with finite | p AP

. . . . {0, 1}—valued rv withP [B(p) = 1] = p.
expectations, we hav€ <ic,. Y if and only if Lemma 1: The collection of rvp~—'B(p), p € (0,1]}

E[(X-a)f]<E[Y-a)T], a€cR. is monotone decreasing in the convex ordering, i.e.,

-1 -1
B(q) < B(q), <q.
Proposition 1 makes it clear why the variability orderings 1 (@) Ser g (@), p<q

are likely vehicles for carrying out the comparisons dis-

cussed earlier. Put simply, establishing the comparispnother words, increasing makesp~! B(p) more vari-
L(Ry; C) < L(Ry; C) for all values ofC between the loss gple.

rates of two information sources with steady-state r&tes

and R, is equivalentto the comparisot; <ic, Rs. Proof. We need to show that
Next, we explore the impact of the constrala{ X| =
E[Y][6, Thm. 1.3.1, p. 9]. E[o(p 'B(p)| <E[eld 'Bl@)], p<q @11

Proposition 2: For R-valued rvsX andY with finite
expectations, we ha& <., Y ifand only if X <;., Y forany convex mapping : R — R, where
andE [X] = E[Y].

Finally, the convex ordering is closed under independeﬁt[ﬁp(p_lB(p))] = p(e(p™")—p(0))+¢(0), pe€ (0,1].
addition [6, p. 9].

Proposition 3: Consider two sets of mutually inde-Hence, it suffices to establish (11) for convex mappings

pendentR-valued rvsXi,..., Xy andYi,...,Yy. If % : R — R such thatp(0) = 0. However, under this
X, <e: Y, foreachn = 1,..., N, then constraint, it is well known that — z~'¢(z) is non-

decreasing o0, co) and the conclusion follows. [ |
Xi+...+Xnv<gYi+...+Yn.

L B. Heterogeneity decreases variability
C. Majorization

. o Forpin [0, 115X, we define the n§ as the sum
Let K denote some given positive integer. For any vec- pin{0,1] x(p)

tore = (z1,...,2x) in RE, letz) <z < - < K
z (k) denote the components efarranged in increasing Sk(P) = Br(pk)
order. For vectorg: andy in R¥, we say that is ma- k=1

jorizedby y, and writez < y, whenever the conditions |, here the Bernoulli W81 (p1), ..., Bx(px) are assumed

k k mutually independent.
Sy =D yay, k=12,...,K (9)  Lemma 2:For vectorsp andq in [0,1]%, it holds that
=1 =1 Sk(q) <cz Sk(p) whenevep < q.
hold with

ix. = iy. (10) Proof. For any integer—convex mappigg: N — R, we
el i define the mappin@x : [0,1]X — R by

Additional information regarding majorization can be _ K
found in the monograph [4]. Note that for amyin R, ¢x(p) =Elp(Sk(p))], pe[0.17. (12)

. _ . K
we havez,ve <z withe = (1,...,1) in R™, and It is well known [4, F.1, p. 360] that the mappin
_ 1 is Schur—concave in that the conditign < ¢ implies
Tav = K(QU1 ot T, Pk (q) < @k (p), and the conclusiosx (q) <. Sk (p)



follows from the definition of the convex ordering..,. m For any positive integek. < N, it holds that

N L
NP* .
The next result, originally due to Hoeffding [4, p. 359], ;P”B"(f”) Sex L ;Bé(f ) (18)
is an immediate consequence of Lemma 2. - . o ,
Lemma 3: For any vectorp in [0,1]X, it holds that where the rv®3,(f*),...,Br(f*) arei.i.d. Bernoulli rvs.

S <cx Sk (pave) Wherep,, = L(p1 + ... + pk).
K(P) Sex Sk (pave) Pa K1 P) Thus, the aggregation of heterogeneous independent on-

off sources can be upper bounded in the convex ordering
C. Linear combinations by an aggregation of fewer related i.i.d on-off sources.

Let{X,, n=1,2,. : 1 denotg a sequence of i.i.iR- Pr1pof. Foreachn = 1,...., N, define
valued rvs. The following result is an easy consequence 0

Proposition B.2in [4, p. 287]; see also B.2.bin [4, p. 288]. fr = &fn _Mn
Lemma 4: For each positive integék , it holds that pP* P
and note that

Pyfn = P*f;; = Mp,
so thatf; lies in (0, 1] since f¥ < f,. From this last
equality we conclude by Lemma 1 that
whenevem < b in RX.

B <er [FIBL(fD). 19
An immediate corollary to Lemma 4 is obtained by tak- fu Bolfn) Seo fu " Bulfs) (19)
ing positive integerd, < K, anda = K~'(1,...,1)and  With this in mind, we now get
b=L"'(1,...,1,0,...,0)in[0,1]%.

K K
> ar Xk <o Y biXi (13)
k=1 k=1

N N

Lemma 5: For positive integerg < K, it holds that Z P.By(fn) = Z Py fn ( 1B, ( fn))
n=1 n=1
1 & 1 & N

7 2 Xk S 7D Ko (14) = > P (7 Balfa)
k=1 =1 n=1
N

This last result was first derived by Marshall and Proschan <a > Pfh ( f271B,( fT*L))

[4, B.2.c, p. 288], and formalizes the notion that averaging n=1

decreases variability. N
= P*) Bulfy) (20)
IV. THE MAIN RESULT n=1

ConsiderN independenbn-off sources as described inWhere the inequality follows from (19) via Lemma 3.
Next, we observe that

Section |-C, where for each = 1,..., N, then!” source

(Pn, Bn(frn)) has peak rateé’, and activity factorf, so 1 & 1 Mp

that its average rate, is given by N nz::l =5 ~ I
My = Py fo. Invoking Lemma 3 we then find that

N N
As theseN sources are multiplexed, the resulting total av- P*> " Bu(fy) <ew P*D_ Bu(fY)
erage rate is simply n=1 n=1

1 N
Miota] = M1 + ...+ mMy. (15) = NP*WZBTL(JC*)
n=1

Proposition 4: With P* selected so that 1 .
< NP E Z Bl(f ) (21)
max P, := Ppax < P, (16) =1

n=l...N where the second comparison follows from Lemma 5.

set Combining (20) and (21) readily leads to (18). [ |

* Myotal
= 17
o= it a7)



V. APPLICATIONS

Proposition 4 will now be used to discuss the conjectu
of Rasmussen et al., the upper bound of Mao and Habibl
and their conjectured upper bound. Giv¥rnindependen

in which case (18) becomes (22) with.., = f* deter-
péined onceP* has been selected.
eductions in computations are achieved by selecting

t the smallestadmissible value of., say Ly, SO thatP*

on-off sourceg Py, Bu(fs)) (n = 1, ..., N), all these re- given via (23) satisfies (16). These constraints yield

sults express bounds of the form

N L
Z Pan(fn) <cz Pnew Z Bl(fnew)
(=1

n=1

with i.i.d. on-off source§ Pyew, Be(fnew)) (£ =1,...,L)
for appropriate constant®,cy, > Prax and fpew in (0, 1],
and some positive integdr < N.

A. The bound by Rasmussen et al. [5]

AssumeP; =
4 with P* = P, = P andL = N. Direct inspection
yields
% _ Mtotal __ l
At T DI

L
Linin == min{L = 1,...,N ¢ < Poow > Prnax}  (24)

whenceL.,;, and the corresponding* are now given by
(22)

P, L
Lyin = [N Pz;a;w and P* = ]H\lfm Phew, (25)
so that
* Myotal Myotal
= f* = = . 26
fnew f NP~* Lminpnew ( )

The bound conjectured in [3] is also of the form (22) but

... = Py =: F;, and apply Proposition ith 1,,,;; terms instead where

P,
Ly = [PtLta‘} with  Piotal = P1 +...+ Py. (27)

new
We note thatlyiy < Lmin. Were we to apply Proposition
4 with Ly terms, we would get (22) with

and the bound of Rasmussen and al. is obtained in the form

22) with L = N, fpew = f* and Ppew = P.. As should
be clear from Lemma 3, this bound is simply a well-known

N P*

Lym

_ Mytotal
Jnew

~ NP~ (28)

and Poew =

stochastic comparison result for sums of Bernoulli rvs dygheneverP* > P,.... Unfortunately, if the strict inequal-

to Hoeffding [4, p. 359].
B. The bound by Mao and Habibi [3, Thm. 3]

AssumeP; = ... = Py =: P.andm; = ... =
my =: me, WhencePpax = Pe, Miotal = Nm, and
mp me
=—=—, n=1,...,N.
fTL Pn PC’ ) ?

ity Ly < Lmin holds, the definition of..,;, precludes
the existence oP* > P,.x such that the second equality
in (28) holds for any given value aP,e,,. Thus, in gen-
eral, the conjectured bound of Mao and Habibi, if correct,
is not a byproduct of Proposition 4. In fact we suspect that
the conjectured bound is in error, being “too tight,” and
should be replaced by tharovably correctupper bound

(22) characterized by (25) and (26).

With P* > P, andL = [%1 for some positive integdy/,
it is plain that. < N while (17) yields

f* _ Mtotal _ M
~ NPx  p*’

(1]

Now selectP* > P. so that% = UPF,; this is always 2]
possible by taking®* = £ [X]P.. Applying Proposition

4 under these conditions, we get Theorem 3 in [3] in the
form (22) With L = [N, fuew = f* @ndPyew = UP.. Bl

C. The conjecture by Mao and Habibi [3, Conjecture 1] ]

Consider the inequality (18) of Proposition 4 witPt
and f* selected as in (16)-(17), and < N. A given [5]
targetvalue Py, > Punax fOr the peak rate is achieved in
the upper bound of (18) when selecting the positive integer

L < N so that . (6]
NP
T = PneWa (23)
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