
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site  http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Bounding On-Off Sources -- Variability Ordering and 
Majorization to the Rescue

by Armand M. Makowski

CSHCN TR 2001-6
(ISR TR 2001-13)



Bounding on-off sources – Variability ordering and
majorization to the rescue

Armand M. Makowski
armand@isr.umd.edu

Department of Electrical and Computer Engineering
and Institute for Systems Research

University of Maryland
College Park, MD 20742

Abstract—We consider the problem of bounding the loss
rates of the aggregation of on-off sources in a bufferless
model by the loss rates associated with the aggregation of
i.i.d. on-off sources. We use well known results from the the-
ory of variability orderings to establish a conjecture of Ras-
mussen et al., a recent upper bound of Mao and Habibi, and
to discuss a new conjectured upper bound by these authors.

I. INTRODUCTION

Traffic burstiness has long been considered a key factor
for provisioning link and buffer resources at ATM multi-
plexers. In a first step, these issues can be addressed with
the help of a simplebufferlessmodel fed by fluid-like input
traffic. An information source is then characterized by its
IR+-valued rate processfR(t); t � 0g, so that the source
bursts at timet � 0 with an instantaneous rate ofR(t) bps,
say for sake of definiteness. For obvious practical reasons,
it is customary to require the constraint0 � R(t) � P

(t � 0) whereP is the peak rate of the source.

A. Loss rates

In most situations of interest, the rate process
fR(t); t � 0g can be assumed ergodic (as we do from
now on) in the sense that for allx � 0,

lim
T!1

1

T

Z
T

0

1 [R(t) � x] dt = P [R � x] a:s: (1)

for some IR+-valued rvR. If the rate process is sta-
tionary and ergodic, then (1) holds with the steady-state
rate variableR determined through the weak convergence
R(t) =)t R. Under (1) the source admits an average rate
given by

m(R) := lim
T!1

1

T

Z
T

0

R(t)dt = E [R] a:s: (2)
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If the traffic is offered for transmission over a a link op-
erating atC bps, onlymin(R(t); C) bps can be accom-
modated, and in the absence of any buffer, the remain-
ing (R(t) � C)+ 1 bps represents the instantaneous loss
rate over that link. Under (1) the (average) loss rate of the
sourcefR(t); t � 0g over theC bps link is well defined
and given by

L(R;C) := lim
T!1

1

T

Z
T

0

(R(t)� C)+dt

= E
�
(R� C)+

�
a:s: (3)

B. Multiplexing many sources

While the definition (3) forL(R;C) might appear too
poor a marker of source behavior to be of any use, its eval-
uation is nevertheless helpful for dimensioning link capac-
ity or as the basis for a Call Admission Control (CAC) pro-
cedure [1], [2], [5]. In the latter instance, traffic carried on
the link is typically obtained by multiplexing several ide-
pendent information sources. IfN sourcesfRn(t); t � 0g
(n = 1; : : : ; N ) are multiplexed on a link operating atC
bps, the total instantaneous rate is given by

R(t) = R1(t) + : : :+RN (t); t � 0:

Under appropriate ergodic assumptions, it follows that

L(R;C) = L(R1 + : : :+RN ;C)

= E
�
(R1 + : : :+RN � C)+

�
(4)

whereR1; : : : ; RN are the steady-state rate variables for
the component sources.

As indicated already in [2], [3], evaluating (4) can be
computationally prohibitive even in the simplest of cases

1We writex
+ = max(x; 0) for any scalarx.



due to the large number of sources that need to be multi-
plexed at any given time. This difficulty is further exacer-
bated when the component sources are statistically dissim-
ilar (as is the case in practice) [2]. This state of affairs has
prompted a search forupper boundson loss rates which
arecomputationally efficient, and yet sufficientlytight to
provide good approximations.

C. On-off sources

Most of the efforts have been carried out for the class of
on-off sources (e.g., [1], [2], [3], [5]). A source with rate
processfR(t); t � 0g is said to be a (generalized) on-
off source ifR(t) alternates between two states, namely
R(t) = 0 (resp. R(t) = P ) when the source is silent
(resp. active) at timet � 0. Under the ergodic assumption
(1), such an on-off source admits a steady-state rateR with
finite rangef0; Pg. In fact, it is easy to see that

P [R = P ] = 1�P [R = 0] = f(R)

wheref(R) is the activity factor of the source defined by

f(R) := lim
T!1

1

T

Z
T

0

1 [R(t) > 0] dt a:s: (5)

For on-off sources, we havem(R) = f(R)P , so that such
sources are fully characterized by the pairs(P; f(R)) or
(P;m(R)). We find it useful to represent the steady state
rateR of the on-off sourcefR(t); t � 0g with peak rate
P and activity factorf(R) as

R =st PB(f(R))2

where for p in [0; 1], B(p) denotes af0; 1g–valued
(Bernoulli) random variable (rv) withP [B(p) = 1] = p.
We then refer to such an on-off source as the on-off source
(P;B(f(R))).

D. Earlier bounds and new results

ConsiderN independent on-off sources(Pn; B(fn))
with peak ratePn and activity factorfn (n = 1; : : : ; N );
the resulting steady state rate for the aggregate traffic is

NX
n=1

PnBn(fn) (6)

where B1(f1); : : : ; BN (fN ) are independent Bernoulli
rvs. The upper bounds derived in the literature on loss
rates (4) for the aggregate traffic (6) can be interpreted as

2For twoIR-valued rvsX andY with the same distribution, we write
X =st Y .

loss rates for an aggregation offewer, sayL � N , i.i.d.
on-off sources(Pnew; B`(fnew)) with common peak rate
Pnew and activity factorfnew (` = 1; : : : ; L). The result-
ing steady state rate for the aggregate traffic is now

LX
`=1

PnewB`(fnew): (7)

whereB1(fnew); : : : ; BL(fnew) are i.i.d. Bernoulli rvs.
Rasmussen et al. [5, p. 353] conjectured that when the

sources in (6) have identical peak rates, sayP , but possibly
different activity parameters, the aggregation (7) ofN ho-
mogeneouson-off sources with identical peak ratePnew =
P and activity parameterfnew = N�1(f1 + : : : + fN ),
provides an upper bound. This conjecture was recently es-
tablished by Mao and Habibi [3, Thm. 1] from basic prin-
ciples. These authors also establish another upper bound
[3, Thm. 3], this time forN homogeneouson-off sources,
by replacing them with areducednumber of homogeneous
on-off sources. Finally, they conjecture the validity of an
upper bound [3, Conjecture 1] which generalizes both the
upper bound of Rasmussen et al. and their upper bound.

Here, we establish a general comparison result for
weighted sums of independent Bernoulli rvs [Section IV].
In Section V we show how this general result can be used
to readily derive the conjecture of Rasmussen et al., and
the upper bound of Mao and Habibi, and to discuss their
conjectured upper bound. The proper framework for ad-
dressing these issues (and comparisons in general) is one
that combines stochastic orderings [6] with the notion of
majorization [4]: The variability orderings we use are tai-
lored made for comparing loss rates [Prop. 1], while ma-
jorization is useful for formally comparing degrees of het-
erogeneity. The relevant definitions and facts are given in
Section II. This is followed in Section III by a discus-
sion of three simple operations that reduce variability. An
elementary application of this material readily yields the
general comparison result in Section IV.

II. STOCHASTIC ORDERINGS AND MAJORIZATION

The basic tools are introduced in this section.

A. Variability orderings

For IR–valued rvsX andY , we say thatX is smaller
thanY in the convex (resp. increasing convex) ordering if

E ['(X)] � E ['(Y )] (8)

for all mappings' : IR ! IR which are convex (resp. in-
creasing and convex) provided the expectations in (8) ex-
ist; we writeX �cx Y (resp.X �icx Y ). We refer to these



orderings as thevariability orderings. Additional material
on these orderings can be found in the monographs [6].

B. Key facts

We now present well-known facts that help shape the
approach taken here. First, an equivalent definition of the
convex increasing ordering [6, Thm. 1.3.1, p. 9].

Proposition 1: For IR-valued rvsX andY with finite
expectations, we haveX �icx Y if and only if

E
�
(X � a)+

�
� E

�
(Y � a)+

�
; a 2 IR:

Proposition 1 makes it clear why the variability orderings
are likely vehicles for carrying out the comparisons dis-
cussed earlier. Put simply, establishing the comparison
L(R1;C) � L(R2;C) for all values ofC between the loss
rates of two information sources with steady-state ratesR1

andR2 is equivalentto the comparisonR1 �icx R2.
Next, we explore the impact of the constraintE [X] =

E [Y ] [6, Thm. 1.3.1, p. 9].
Proposition 2: For IR-valued rvsX andY with finite

expectations, we haveX �cx Y if and only if X �icx Y

andE [X] = E [Y ].
Finally, the convex ordering is closed under independent

addition [6, p. 9].
Proposition 3: Consider two sets of mutually inde-

pendentIR-valued rvsX1; : : : ;XN and Y1; : : : ; YN . If
Xn �cx Yn for eachn = 1; : : : ; N , then

X1 + : : :+XN �cx Y1 + : : :+ YN :

C. Majorization

LetK denote some given positive integer. For any vec-
tor x = (x1; : : : ; xK) in IRK , let x(1) � x(2) � � � � �
x(K) denote the components ofx arranged in increasing
order. For vectorsx andy in IRK , we say thatx is ma-
jorizedby y, and writex � y, whenever the conditions

kX
i=1

x(i) �
kX
i=1

y(i); k = 1; 2; : : : ;K (9)

hold with
KX
i=1

xi =
KX
i=1

yi: (10)

Additional information regarding majorization can be
found in the monograph [4]. Note that for anyx in IRK ,
we havexave � x with e = (1; : : : ; 1) in IRK , and

xav =
1

K
(x1 + : : :+ xK):

III. R EDUCING VARIABILITY

Below we identify three operations that reduce variabil-
ity, thus leading to comparisons in the ordering�cx.

A. Normalized Bernoulli rvs

We begin with a comparison result for renormalized
Bernoulli rvs. Recall that forp in [0; 1], B(p) denotes an
f0; 1g–valued rv withP [B(p) = 1] = p.

Lemma 1:The collection of rvsfp�1B(p); p 2 (0; 1]g
is monotone decreasing in the convex ordering, i.e.,

q�1B(q) �cx q
�1B(q); p < q:

In other words, increasingp makesp�1B(p) more vari-
able.

Proof. We need to show that

E

h
'(p�1B(p))

i
� E

h
'(q�1B(q))

i
; p < q (11)

for any convex mapping' : IR! IR, where

E

h
'(p�1B(p))

i
= p('(p�1)�'(0))+'(0); p 2 (0; 1]:

Hence, it suffices to establish (11) for convex mappings
' : IR ! IR such that'(0) = 0. However, under this
constraint, it is well known thatx ! x�1'(x) is non-
decreasing on(0;1) and the conclusion follows.

B. Heterogeneity decreases variability

Forp in [0; 1]K , we define the rvSK(p) as the sum

SK(p) �
KX

k=1

Bk(pk)

where the Bernoulli rvsB1(p1); : : : ; BK(pK) are assumed
mutually independent.

Lemma 2:For vectorsp andq in [0; 1]K , it holds that
SK(q) �cx SK(p) wheneverp � q.

Proof. For any integer–convex mapping' : IN ! IR, we
define the mapping�K : [0; 1]K ! IR by

�K(p) � E ['(SK(p))] ; p 2 [0; 1]K : (12)

It is well known [4, F.1, p. 360] that the mapping�K

is Schur–concave in that the conditionp � q implies
�K(q) � �K(p), and the conclusionSK(q) �cx SK(p)



follows from the definition of the convex ordering�cx.

The next result, originally due to Hoeffding [4, p. 359],
is an immediate consequence of Lemma 2.

Lemma 3:For any vectorp in [0; 1]K , it holds that
SK(p) �cx SK(pave) wherepav = 1

K
(p1 + : : : + pK).

C. Linear combinations

Let fXn; n = 1; 2; : : :g denote a sequence of i.i.d.IR-
valued rvs. The following result is an easy consequence of
Proposition B.2 in [4, p. 287]; see also B.2.b in [4, p. 288].

Lemma 4:For each positive integerK, it holds that

KX
k=1

akXk �cx

KX
k=1

bkXk (13)

whenevera � b in IRK .
An immediate corollary to Lemma 4 is obtained by tak-

ing positive integersL < K, anda = K�1(1; : : : ; 1) and
b = L�1(1; : : : ; 1; 0; : : : ; 0) in [0; 1]K .

Lemma 5:For positive integersL < K, it holds that

1

K

KX
k=1

Xk �cx
1

L

LX
`=1

X`: (14)

This last result was first derived by Marshall and Proschan
[4, B.2.c, p. 288], and formalizes the notion that averaging
decreases variability.

IV. T HE MAIN RESULT

ConsiderN independenton-off sources as described in
Section I-C, where for eachn = 1; : : : ; N , thenth source
(Pn; Bn(fn)) has peak ratePn and activity factorfn so
that its average ratemn is given by

mn = Pnfn:

As theseN sources are multiplexed, the resulting total av-
erage rate is simply

mtotal = m1 + : : :+mN : (15)

Proposition 4: With P ? selected so that

max
n=1;:::;N

Pn := Pmax � P ?; (16)

set
f? :=

mtotal

NP ?
: (17)

For any positive integerL � N , it holds that

NX
n=1

PnBn(fn) �cx

NP ?

L

LX
`=1

B`(f
?) (18)

where the rvsB1(f
?); : : : ; BL(f

?) are i.i.d. Bernoulli rvs.

Thus, the aggregation of heterogeneous independent on-
off sources can be upper bounded in the convex ordering
by an aggregation of fewer related i.i.d on-off sources.

Proof. For eachn = 1; : : : ; N , define

f?n :=
Pn

P ?
fn =

mn

P ?

and note that
Pnfn = P ?f?n = mn;

so thatf?n lies in (0; 1] sincef?n � fn. From this last
equality we conclude by Lemma 1 that

f�1n Bn(fn) �cx f
?�1
n Bn(f

?
n): (19)

With this in mind, we now get

NX
n=1

PnBn(fn) =
NX
n=1

Pnfn

�
f�1n Bn(fn)

�

=
NX
n=1

P ?f?n

�
f�1n Bn(fn)

�

�cx

NX
n=1

P ?f?n

�
f?�1n Bn(f

?
n)
�

= P ?
NX
n=1

Bn(f
?
n) (20)

where the inequality follows from (19) via Lemma 3.
Next, we observe that

1

N

NX
n=1

f?n =
1

N

NX
n=1

mn

P ?
= f?:

Invoking Lemma 3 we then find that

P ?
NX
n=1

Bn(f
?
n) �cx P ?

NX
n=1

Bn(f
?)

= NP ? 1

N

NX
n=1

Bn(f
?)

�cx NP ? 1

L

LX
`=1

B`(f
?) (21)

where the second comparison follows from Lemma 5.
Combining (20) and (21) readily leads to (18).



V. A PPLICATIONS

Proposition 4 will now be used to discuss the conjecture
of Rasmussen et al., the upper bound of Mao and Habibi
and their conjectured upper bound. GivenN independent
on-off sources(Pn; Bn(fn)) (n = 1; : : : ; N), all these re-
sults express bounds of the form

NX

n=1

PnBn(fn) �cx Pnew

LX

`=1

B`(fnew) (22)

with i.i.d. on-off sources(Pnew; B`(fnew)) (` = 1; : : : ; L)
for appropriate constantsPnew � Pmax andfnew in (0; 1],
and some positive integerL � N .

A. The bound by Rasmussen et al. [5]

AssumeP1 = : : : = PN =: Pc, and apply Proposition
4 with P ? = Pc = Pmax andL = N . Direct inspection
yields

f? =
mtotal

NP ?
=

1

N

X

n=1

fn

and the bound of Rasmussen and al. is obtained in the form
(22) withL = N , fnew = f? andPnew = Pc. As should
be clear from Lemma 3, this bound is simply a well-known
stochastic comparison result for sums of Bernoulli rvs due
to Hoeffding [4, p. 359].

B. The bound by Mao and Habibi [3, Thm. 3]

AssumeP1 = : : : = PN =: Pc andm1 = : : : =
mN =: mc, whencePmax = Pc,mtotal = Nmc and

fn =
mn

Pn
=
mc

Pc
; n = 1; : : : ; N:

With P ? � Pc andL = dN
U
e for some positive integerU ,

it is plain thatL � N while (17) yields

f? =
mtotal

NP ?
=
mc

P ?
:

Now selectP ? � Pc so thatNP
?

L
= UPc; this is always

possible by takingP ? = U

N
dN
U
ePc. Applying Proposition

4 under these conditions, we get Theorem 3 in [3] in the
form (22) withL = dN

U
e, fnew = f? andPnew = UPc.

C. The conjecture by Mao and Habibi [3, Conjecture 1]

Consider the inequality (18) of Proposition 4 withP ?

and f? selected as in (16)-(17), andL � N . A given
targetvaluePnew � Pmax for the peak rate is achieved in
the upper bound of (18) when selecting the positive integer
L � N so that

NP ?

L
= Pnew; (23)

in which case (18) becomes (22) withfnew = f? deter-
mined onceP ? has been selected.

Reductions in computations are achieved by selecting
the smallestadmissible value ofL, sayLmin, so thatP ?

given via (23) satisfies (16). These constraints yield

Lmin := minfL = 1; : : : ; N :
L

N
Pnew � Pmaxg (24)

whenceLmin and the correspondingP ? are now given by

Lmin = dN
Pmax

Pnew
e and P ? =

Lmin

N
Pnew; (25)

so that

fnew = f? =
mtotal

NP ?
=

mtotal

LminPnew
: (26)

The bound conjectured in [3] is also of the form (22) but
with LMH terms instead where

LMH = d
Ptotal

Pnew
e with Ptotal = P1+ : : :+PN : (27)

We note thatLMH � Lmin. Were we to apply Proposition
4 withLMH terms, we would get (22) with

fnew =
mtotal

NP ?
and Pnew =

NP ?

LMH

(28)

wheneverP ? � Pmax. Unfortunately, if the strict inequal-
ity LMH < Lmin holds, the definition ofLmin precludes
the existence ofP ? � Pmax such that the second equality
in (28) holds for any given value ofPnew. Thus, in gen-
eral, the conjectured bound of Mao and Habibi, if correct,
is not a byproduct of Proposition 4. In fact we suspect that
the conjectured bound is in error, being “too tight,” and
should be replaced by theprovably correctupper bound
(22) characterized by (25) and (26).
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