
STOCHASTIC PERTURBATION THEORY�G. W. STEWARTyAbstract. In this paper classical matrix perturbation theory is approached from a probabilisticpoint of view. The perturbed quantity is approximated by a �rst-order perturbation expansion,in which the perturbation is assumed to be random. This permits the computation of statisticsestimating the variation in the perturbed quantity. Up to the higher-order terms that are ignored inthe expansion, these statistics tend to be more realistic than perturbation bounds obtained in termsof norms. The technique is applied to a number of problems in matrix perturbation theory, includingleast squares and the eigenvalue problem.Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue,eigenvector, invariant subspace, singular valueAMS(MOS) subject classi�cations. 15A06, 15A12, 15A18, 15A52, 15A601. Introduction. Let A be a matrix and let F be a matrix valued function ofA. Two principal problems of matrix perturbation theory are the following. Given amatrix E, presumed small,1. Approximate F (A+E),2. Bound kF (A+ E)� F (A)k in terms of kEk.Here k � k is some norm of interest.The �rst problem is usually, but not always, solved by assuming that F is di�er-entiable at A with derivative F 0A. ThenF (A+E) = F (A) + F 0A(E) + o(kEk);so that for E su�ciently small F 0A(E) is the required approximation. The problemthen reduces to �nding tractable expressions for F 0A(E), which in itself is often anontrivial task. The second problem may be treated in a variety of ways; but if theresults are to be sharp, for small E they have to approach a bound that could beobtained by manipulating F 0A(E).For example, it is well known that if A is nonsingular, then(A + E)�1 = A�1 �A�1EA�1 +O(kEk2):(1.1)Moreover, if in some norm kA�1kkEk < 1 thenk(A+ E)�1 �A�1k � kA�1k2kEk1� kA�1kkEk :(1.2)Except for the denominator, which approaches 1 as E ! 0, the inequality (1.2) couldbe derived from (1.1) by ignoring the quadratic term and taking norms.The formulas (1.1) and (1.2) represent two extremes. If the higher-order termcan be ignored, equation (1.1) tells the entire story, but in overabundant detail: it isnot easy to interpret. On the other hand, the bound (1.2) makes a clear statement� Received by the editors February 8, 1989; accepted for publication (in revised form) January19, 1990.y Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, Maryland 20742. This work was supported in part by the Air Force O�ceof Sponsored Research under contract AFOSR-87-0188.



2 G. W. STEWARTabout the size of the perturbation, but it is likely to be an overestimate, since thesubmultiplicative inequality for norms was used in its derivation.In this paper we will consider a third approach that is in some sense intermediateto the other two. We will take E to be a stochastic matrix and compute expecta-tions of quantities derived from the perturbation expansion (1.1). This represents acompression of the information, but up to higher-order terms it gives nothing away.For example, let �A�1 = A�1 �A�1EA�1be the �rst-order approximation to (A + E)�1. Suppose that the elements of E areuncorrelated with mean zero and standard deviation �. Let us agree to measure thesize of a random matrix by the function k � kS de�ned bykEk2S = E(kEk2F);(1.3)where E is the expectation operator and k � kF is the Frobenius norm. Then from theresults of x3.3, it can be shown thatk �A�1 � A�1kS = �kA�1k2F:(1.4)The equality (1.4) has much the same form as (1.2), when the latter is stripped ofits denominator. The left-hand side of both is a measure of the size of the perturbation.The right-hand side of both consists of a measure of the size of the error times thesquare of a norm of A�1. However, there are two important di�erences. First, (1.4)is an equality|there is no question of sharpness here. Second, if k � k in (1.2) is theFrobenius norm, then the right-hand side of (1.4) will generally be smaller than (1.2),since kEkS = n�.1A person accustomed to using norms to bound errors may feel uncomfortable witha probabilistic statement like (1.4). A statistician would have no such qualms, andin fact might feel uncomfortable with an inequality like (1.2). Even outside statistics,rigorous bounds are often supplemented by informal probabilistic statements, as whenwe say that rounding error in the sum in n numbers grows as the square root of n,although the best upper bound grows as n. To be realistic, we must prune away theunlikely. What is left is necessarily a probabilistic statement.Stochastic perturbation theory, as we shall understand it, consists of two steps.First, the perturbation in F (A) is estimated by the �rst-order expansion F (A) +F 0A(E), a strictly conventional procedure. However, instead of going on to boundF 0A(E), we assume that E is random and compute kF 0A(E)kS.To realize this program fully, we must address three questions.1. How do we compute the stochastic norm of kF 0A(E)kS?2. What does a knowledge of the stochastic norm tell us about theactual error?3. What is the justi�cation for ignoring higher-order terms?These questions will be answered in the next section, which is the technical heart ofthe paper; however, it is appropriate to sketch the answers here.1 Actually, this exaggerates the di�erence in our favor, since kEkF in (1.2) could be replaced bythe spectral norm de�ned below by (1.5). However, a result on the limiting behavior of the spectralnorm of stochastic matrices [15] shows that p2n� is a reasonable estimate of kEk, so that (1.2) willstill be an overestimate.



STOCHASTIC PERTURBATION THEORY 3In principle, the answer to the �rst question is that given the �rst and secondmoments of E the calculation of kF 0A(E)kS is a straightforward, if tedious procedure(see Theorem 2.5). However, this answer ignores the fact that the object of anyperturbation theory is usually insight rather than a speci�c numerical bound. In orderto obtain interpretable formulas we must put restrictions on E. In the next sectionwe will introduce the class of cross-correlated matrices, whose structure is at the sametime su�ciently rich to be useful and su�ciently simple to be tractable. The approachthrough cross-correlated matrices has the added advantage that it incorporates thescaling of the error into the �nal results.The second question is answered by an appeal to the Chebyshev inequality, whichasserts that is is improbable that a random matrix be much larger than its stochasticnorm. It should be stressed that the bounds given by the Chebyshev inequalityare very weak; for a given distribution the situation may be much better than theyindicate.The third question involves subtle issues in probability theory. The crux of thematter is that F (A+E)�F (A) can fail to have even a mean, much less a stochasticnorm. Nonetheless, we will show that provided the second moments of E are smallenough the distributions of F (A + E) � F (A) and F 0A(E) are close, so that anystatement about the size of the latter can be transferred to the former. Moreover,this result is independent of the distribution of E.This paper is organized as follows. In the next section we give the necessaryprobabilistic background and address three questions raised above. The next twosections are devoted to the application of these results, �rst to the pseudo-inverseand least squares problems, then to the eigenvalue problem and the singular valuedecomposition. These sections are of independent interest, since they collect a numberof perturbation expansions that that have lain scattered about in the literature. Thelast section is devoted to a brief summary.Throughout this paper k � kF will denote the Frobenius norm de�ned bykAk2F = trace(ATA);and k � kS will denote the stochastic norm de�ned by (1.3). The norm k � k denotesthe Euclidean vector norm and the spectral matrix norm de�ned bykAk = maxkxk=1 kAxk:(1.5)In dealing with perturbations of a matrix function F (A), we will write ~A forA+E and ~F for F ( ~A). If F is di�erentiable at A, we will write �F for F (A)+F 0A(E).Note that �F is not just any approximation of ~F that is accurate up to terms of the�rst-order; it is the unique �rst order approximation that is linear in E.Notes and references. For general surveys of perturbation theory for matricesand linear operators, see [25],[42]. The idea of using �rst-order expansions of nonlinearfunctions of random variables is by no means new. Gauss [12]{[14], used the tech-nique to approximate the variances of parameters from nonlinear least squares �ts.Hotelling, writing in 1940 [22], refers to a \method of di�erentials," with the implica-tion that the practice was widespread. Recently Chatelin [3]{[5] has used �rst-orderexpansions and random matrices to analyze the e�ects of rounding error on numericalcalculations. As we have pointed out, the chief di�culty with this approach is that



4 G. W. STEWARTthe quantities being approximated may not have means or variances, so that the inter-pretation of the means and variances of the approximations becomes problematical.Theorem 2.8 provides a resolution of this di�culty.The perturbation theory developed in this paper should not be confused withresults on the properties of random matrices. For example, Demmel [9] considersthe distance of a random matrix from a manifold of degenerate problems. Here therandom matrices are not small, and the concern is not with perturbations of a matrixfunction. The work of Weiss et al. [45] is closer to ours in that they assume theirrandom errors are small enough to ignore higher-order terms; but their concern iswith evaluating average condition numbers, not with perturbation theory as such.2. The probabilistic background. In this section we will introduce the ideasand techniques from probability theory that will be used throughout the rest of the pa-per. We will assume that the reader is familiar with the basic concepts of multivariateprobability theory|distributions, expectations, independence, etc.The expectation operator will be denoted by E. The covariance of random vectorsx and y will be writtenC(x; y) def= E �(x� E(x))(y �E(y))T� ;and the variance of a random vector x will be writtenV(x) def= C(x; x):If C(x; y) = 0, the random vectors x and y are said to be uncorrelated .We will denote by Gn the space of all random n-vectors whose components have�nite second moments. Note that Gn is a vector space under addition and multipli-cation by a scalar. The zero element is the vector with mean and variance zero. Wewrite x � Gn(u;�)to say that x 2 Rn has mean u and variance �. If x � Gn(u;�), then x can be writtenin the form x = u+�1=2e;where e � Gn(0; I).2.1. Random matrices. We will denote by Gm�n the space of all random m�n matrices whose elements have �nite second moments. As we pointed out in theintroduction, random matrices are di�cult to manipulate in this generality. Hencewe introduce a more tractable class|the cross-correlated matrices|which cover manyactual applications.Definition 2.1. A random matrix A 2 Rm�n is cross-correlated with mean U ,row scale Sr, and column scale Sc if it can be written in the formA = U + ScHSTr ;(2.1)where H is a random matrix whose elements are uncorrelated with mean zero andvariance 1. We write A � T m�n(U ;Sr; Sc):(2.2)



STOCHASTIC PERTURBATION THEORY 5The matrices Sr and Sc are called scales, because they represent row and columnscalings of the matrix H. Their relation to the variance of A is the following. LetS(2)r = STr Sr and let S(2)c = STc Sc. It can be shown (see Theorem 2.3 below) thatif A � T m�n(U ;Sr; Sc), then the covariance of the ith and jth columns of A is(S(2)r )ijS(2)c . Consequently, if we let vec(A) denote the vector formed by stacking thecolumns of A in their natural order, then C[vec(A)] = S(2)r 
 S(2)c , i.e., the tensor orKronecker product of S(2)r and S(2)c . Hence the symbol T in (2.2).De�nition 2.1 has been phrased with an eye to applications in which the row andcolumns scales are known. For theoretical work, the following characterization leadsto a more compact notation.Theorem 2.2. If A � T m�n(U ;Sr; Sc), then A can be written in the formA = U + S0cH0S0rwhere S0c and S0r are positive semide�nite and the elements of H 0 are uncorrelated withmean zero and variance 1.Proof. We will show how to replace Sc with a positive semide�nite matrix, leavingthe modi�cation of Sr as an exercise. Without loss of generality we may assume thatSc has at least as many columns as rows (if not augment Sc with zero columns whileaugmentingH with rows of uncorrelated elements). Then Sc has a polar factorizationSc = S0cQT, where S0c is positive semide�nite and Q has orthonormal columns.2 Theresult now follows on setting H 0 = QTH. 2For the rest of this paper we will assume that the matrices Sr and Sc are positivesemide�nite. In particular, this permits us to write S2r for STr Sr, and similarly for Sc.If a matrix is cross-correlated, certain quadratic forms involving it may be easilycomputed, as the following theorem shows.Theorem 2.3. Let E � T m�n(0;Sr; Sc), B 2 Rm�m , and C 2 Rn�n. ThenE(ETBE) = trace(ScBSc)S2r = trace(S2cB)S2r = trace(BS2c )S2r ;(2.3)and E(ECE) = S2cCTS2r :(2.4)Proof. The results will �rst be established for the case E � T m�n(0; I; I). For(2.3), let S = ETBE. Then sij =Xk;l ekieljbkl:(2.5)Since the elements of E are uncorrelated, E(sij) = 0 unless i = j. Moreover, if i = j,the expectations of all terms in the sum (2.5) are zero, except those for which k = l.Thus E(sii) = E Xk xkixkibkk! = trace(B);and E(S) = trace(B)I, which is just (2.3) when E � T m�n(0; I; I).2 Namely, let Sc = U	V T be the singular value factorization of Sc [17]. Then the factorizationSc = (U	UT)(UVT) is the required polar decomposition.



6 G. W. STEWARTSimilarly, the (i; j)-element of T = XCX has the formtij =Xk;l xikxljckl:The only term in this sum having nonzero expectation occurs when j = k and i = l.Thus E(tij) = cji or E(T ) = CT. This is just the form (2.4) assumes when E �T m�n(0; I; I).Turning now to the general case, write E = ScHSr, where the elements of H areuncorrelated with mean zero and variance 1. ThenE(ETBE) =E(SrHTScBScHSr)= SrE(HTScBScH)Sr= Sr[trace(ScBSc)I]Sr= trace(ScBSc)S2r :The other inequalities in (2.3) follow from the fact that the trace of a product of twomatrices is independent of the order of multiplication.The derivation of (2.4) goes as follows:E(ECE) =E(ScHSrCScHSr)= ScE(HSrCScH)Sr= Sc(SrCSc)TSr= S2cCTS2r : 2For later reference we note that when B = ATA, equation (2.3) reduces toE(ETATAE) = kScAk2FS2r :(2.6)2.2. Properties of the stochastic norm. The purpose of this subsection is toestablish the basic properties of the stochastic norm de�ned by (1.3). The �rst stepis show that it is indeed a norm.Theorem 2.4. The function k � kS de�ned by (1.3) is a norm on Gn or Gm�n. IfE(ATB) = 0 then kA+ Bk2S = kAk2S + kBk2S:(2.7)If A and B are independent, thenkABkS � kAkSkBkS:(2.8)Proof. We will show �rst that k � kS is a norm on Gn. For any x; y 2 Gn de�nehx; yi = E(xTy):The function h�; �i is bilinear, symmetric, and de�nite in the sense thatx 6= 0 () hx; xi > 0:Hence h�; �i is an inner product on Gn, and the function hx; xi1=2 is a norm. It is easilyveri�ed that hx; xi = kxk2S.To establish the result for Gm�n, identify Gm�n with Gmn and observe that thematrix and vector norms are the same.



STOCHASTIC PERTURBATION THEORY 7Equation (2.7) is established as follows:kA+ Bk2S = Eftrace[(A+B)T(A+ B)]g= E[trace(ATA)] + 2E[trace(ATB)] + E[trace(BTB)]= E[trace(ATA)] +E[trace(BTB)]= kAk2S + kBk2S:Finally to establish (2.8),kABk2S = E(kABk2F) � E(kAk2FkBk2F) = E(kAk2F)E(kBk2F) = kAk2SkBk2S: 2The next theorem shows how to calculate the stochastic norm of a single matrix.Theorem 2.5. Let A = U + E, where U is constant and E 2 Gm�n has meanzero. Let S be the matrix of standard deviations of the corresponding elements of E.Then kAk2S = kUk2F + kEk2S = kUk2F + kSk2F:(2.9)In particular, if A 2 T m�n(U ;Sr; Sc) thenkAk2S = kUk2F + kSrk2FkSck2F:(2.10)Proof. The proof of (2.9) is purely computational and will be left to the reader.For (2.10), we need to to show that kEk2S = kSrk2FkSck2F. By (1.3) and (2.3),kEk2S =E[trace(ETE)]= trace[E(ETE)]= trace[trace(S2c )S2r ]= trace(S2c )trace(S2r )= kSrk2FkSck2F: 2There are some observations to be made about this theorem. In the �rst place,a stochastic perturbation theory can, in principle, be based on (2.9) alone. However,in our applications we will be concerned with sums and products of matrices. Hereany attempt to use (2.9) will result in a welter of incomprehensible formulas. How-ever, if we restrict ourselves to cross-correlated errors, then Theorem 2.3 provides thewherewithal to produce simple expressions for the stochastic norm. Fortunately, theclass cross-correlated matrices is extensive enough to be suitable for a wide variety ofapplications.In the sequel we will take U = 0. Since this seems to be a restriction on ourtheory, an explanation is in order. Returning to the notation of the introduction, wenote that F 0A(U + E) = F 0A(U ) + F 0A(E). Hence by Theorem 2.5,kF 0A(U +E)k2S = kF 0A(U )k2F + kF 0A(E)k2S:Thus the stochastic norm of the error in the �rst-order approximation decomposesinto the Frobenius norm of a constant part and the stochastic norm of a random part.The constant part is just what would be obtained by applying �rst-order perturbationtheory to U . Thus we take U = 0 to focus attention on the random part, which iswhat is new in this paper. However, there is nothing to keep one from adding in aconstant part if the application demands.



8 G. W. STEWART2.3. Interpretation of the stochastic norm. We now turn to the interpreta-tion of the stochastic norm; i.e., to the second question in the introduction. It is notenough to know the size of kAkS. We also need to know how much larger A can bethan kAkS. One answer is provided by the Chebyshev inequality, which says that forany random variable e with �nite second moment,P�jej � �E(e2)1=2	 � 1�2 :Since, E(kAk2F)1=2 = kAkS, we have the following bound.Theorem 2.6. Let A � Gm�n. ThenP�kAkF � �kAkS	 � 1�2 :(2.11)Although this result holds for general matrices, its natural application is to ma-trices E with mean zero. It says that the probability of observing kEkF to be largerthan 10kEkS is less than one in one hundred. It should be appreciated that (2.11)is very conservative, since it takes into account the worst possible distributions. Formost distributions, the probability is much less. For example, if the elements of Eare independently, normally distributed random variables with mean zero and equalvariance and mn > 10, then the probability of kEkF being greater than 2:5kEkS isless than 0.005.2.4. Convergence of linear approximations. As we indicated in the intro-duction to this paper, we will estimate perturbations ~F in a function F by computingthe perturbation in a linearization �F . In such an approach, there is always the prob-lem of determining when the linearization is a good approximation to the actual value.In considering stochastic perturbations, we have the additional problem that the dis-tribution of ~F may not have a mean or variance. What then does a value of k �F �FkSmean?To illustrate the problem, let e be normally distributed with mean zero andstandard deviation �, which is presumed small. Let ~' = 1=(1 � e) be a randomperturbation of the function '(x) = 1=(1 � x) at x = 0. We have �' = 1 + e, fromwhich it follows that k �' � 'kS = �. On the other hand the density function of e isnonzero and continuous at the singularity e = 1 of ~'; hence ~' has neither mean norvariance. Yet one feels that the number � should give us some information about thedistribution of ~', since when � is small it is exceedingly improbable that e will beanywhere near 1.We will solve this problem by showing that �' � ' and ~' � ', suitably scaled,approach each other in probability.Definition 2.7. For each � in an index set with limit point �, let e� be a randomvector. Then e converges in probability to a random vector e if for every � > 0lim�!�P�ke� � ek � �	 = 0:We write plim�!� e� = e:



STOCHASTIC PERTURBATION THEORY 9

Fig. 2.1. Distributions of �� (solid line) and ~� (dashed line) for normal e.It is easily veri�ed that the de�nition is independent of the norm; in fact e� convergesin probability to e if and only if the individual components of e� converge in probabilityto the corresponding coe�cients of e. Moreover, if f is continuous at the point e, thenplime� = e implies that plimf(e�) = f(e).For our problem, the critical fact is that if plim�!� e� = e, then the distributionfunction of e� converges to that of e at all points of continuity. This has the followingconsequence for our example. We will show (Theorem 2.13 below) thatplim�!0 ~'� 1� = �'� 1� :(2.12)Suppose we use the fact that ( �' � 1)=� is normally distributed with mean zero andvariance 1 to predict that �' lies in the interval (1 � 3:3�; 1 + 3:3�) with probabilitygreater than 0.999. Then ultimately the same holds true for ~'. Figure 2.1 illustratesconvergence of the distribution of �� to that of ~� for the case where e is normal.A formal justi�cation of the above claims is provided by the following theorem.Theorem 2.8. Let f : Rn !R have a Frechet derivative f 0x at the point x andlet e � Gn(0;�). Then plim�!0 f(x + e) � f(x) � f 0Tx ek�1=2kF = 0:(2.13)



10 G. W. STEWARTMoreover, if there is an � > 0 such that as �! 0k�1=2f 0xk � �k�1=2kkf 0xk > 0;(2.14)then plim�!0 f(x + e) � f(x) � f 0Tx ek�1=2f 0xk = 0:(2.15)Proof. We will prove (2.15), the proof of (2.13) being similar.For e 6= 0 de�ne 
(e) = jf(x + e) � f(x) � f 0Tx ejkekand set 
(0) = 0. Then 
 is continuous at zero andplim�!0 
(e) = 0:(2.16)Now let �; � > 0 be given. It is su�cient to show that for � su�ciently smallP�kek
(e) � k�1=2f 0xk�	 < �:In view of (2.14) this will be true ifP�kek
(e) � �k�1=2kkf 0xk�	 < �:(2.17)By the Chebyshev inequality (cf. Theorem 2.6) there is a � � 1 so thatP�kek � �k�1=2k	 < �2 ;independently of �. From (2.16) it follows that for all � su�ciently smallP�
(e) � ���1kf 0xk�	 < �2 :In follows thatP�kek
(e) � �k�1=2kkf 0xk�	�P�kek � �k�1=2k	+ P�
(e) � ���1kf 0xk�	< �2 + �2 = �;which establishes the theorem. 2There are some technical comments and some general observations to be madeabout this theorem. We will begin with the technical comments.The denominator k�1=2f 0xk is the standard deviation of �f and serves the same roleas the denominator � in (2.12). Condition (2.14) says that this standard deviationmust not decrease more rapidly than �1=2, as could happen when � is degenerate orwhen f 0x = 0. Equation (2.17) shows clearly that convergence will be delayed wheneither � or f 0x is small.Another way of looking at this is to realize that if the standard deviation of �fis zero, it is impossible to scale the distribution �f � f . However, in this case (2.13)



STOCHASTIC PERTURBATION THEORY 11says that the distribution of ~f degenerates superlinearly|which is almost as good ashaving zero variance.Condition (2.14) can be replaced by�opt def= lim inf�!0 k�1=2f 0xkk�1=2kkf 0xk > 0:In general �opt will depend on � and its relation to f 0x. However if the conditionnumber �(�1=2) = k�1=2kk��12 k is uniformly bounded, we may take� = lim inf��1(�1=2)as a lower bound on �opt.The �rst general observation to be made is that this is a distribution-free result.Not only does it not assume that e has a particular distribution, but it does notassume that e belong to a particular class of distributions (e.g., normal) as �! 0.The price to be paid for for the generality of the theorem is that it does notgive explicit error bounds, something it shares with many asymptotic results fromprobability theory.3 In the sequel we will use results from perturbation theory toevaluate the domain of applicability of the theorem.One of the referees has suggested that sharper results may be obtained by assum-ing that e is uniformly distributed in a sphere not containing a singularity of f , inwhich case f(e) has second moments. Of course, if this is the distribution appropriateto the application at hand, then one should use it. But many applications requirenormal distributions (see x3.4 below), or even distributions with heavier tails.The notion that a uniform distribution will produce sharper bounds is wortha closer examination. Since the stochastic norm depends only on �rst and secondmoments, it is e�ectively independent of the form of distribution, which enters onlyvia its e�ect on the rate of convergence of the linear approximation. Now the proof ofTheorem 2.8 shows that simply excluding singularities from support of the distributionis not enough. The crux of the matter is whether the distribution is concentrated in aregion where a linear approximation is valid. In this respect the uniform distributionis at a disadvantage compared to distributions, like the normal distribution, whosedensity drops o� very rapidly away from its mean. However, we should not make toomuch of this. Although a comparison of Figs. 2.1 and 2.2 shows that convergence isslower for the uniform distribution, it is not very much slower.2.5. Complex values. Since some of the objects we will be treating, such aseigenvalues and their eigenvectors, can have complex values, it is important to indicatehow the results of this section are a�ected by the switch from real to complex numbers.The calculus of expectations remains unchanged as long as we replace the productxy by �xy, so that x2 becomes jxj2. In particular if we replace the transpose by theconjugate transpose, the results on cross-correlated matrices remain unaltered. Sincethe results on the stochastic norm and the convergence theorem deal with real-valuedquantities, they also remain unaltered.3 However, its proof does provide hints about what makes for fast convergence. For example, �should be large, and the distribution should have small tails so that � is small. Moreover, 
 shouldnot grow swiftly; i.e., the �rst-order approximation should be good.



12 G. W. STEWART

Fig. 2.2. Distributions of �� (solid line) and ~� (dashed line) for uniform e.Notes and references. The background for this section will be found in almostany probability or statistics book that treats multivariate distributions. Elementarytreatments may be found in [21],[30].The notation G(M;�) was suggested by the use of the letter G in queuing theoryto stand for a general distribution, a practice started by Kendal [26].x2.1. The material in this section appeared in some lecture notes by the author (c.1982). Theorem 2.3 has been published by Neudecker and Wansbeek [28]. Althoughtheir paper treats normal matrices, their proof is quite general.x2.2. The formal use of the function E[trace(XTX)] as a norm on randommatricesappears to be new. Its major problem is that the submultiplicative inequality (2.8)can fail. For example, if e is distributed normally with mean zero and variance 1,then ke � ek2S = E(e4) = 3 > 1 = E(e2)E(e2) = kek2Skek2S:The inequality can even fail for uncorrelated matrices.x2.4. Theorem 2.8 is the author's, who �rst proved (2.13) in [37]. Ser
ing [32,Thm. 3.3A] gives a similar theorem, but with e normal, � of the form bn�0 for �xed�0, and convergence in distribution. It is worth noting that if e = �1=2e0, wheree0 � Gn(0; I) is a �xed distribution, then the convergence is with probability 1.



STOCHASTIC PERTURBATION THEORY 133. Pseudo-inverses, least squares, and projections. In this section we willconsider perturbation of pseudo-inverses, least squares solutions, and projections.Throughout this section A will denote an m � n matrix of rank n. The matrixC = ATA is the cross-product matrix. The matrix P = AAy is the orthogonal pro-jection onto the column space of A and P? = I � P is its complementary projection.We will assume that the perturbation matrix E is distributed T m�n(0;Sr; Sc).The expressions we derive will be simplest when Sr = �In and Sc = Im so that theelements of E are uncorrelated with variance �2. We will refer to this as a simpleperturbation.3.1. The pseudo-inverse. In this subsection we will consider perturbations ofthe pseudo-inverse of A de�ned byAy = (ATA)�1AT:(3.1)3.1.1. Perturbation expansion. The perturbation expansion for Ay is easilyderived by replacing A by ~A = A +E in (3.1), using the linear part of the Neumannexpansion of ( ~AT ~A)�1, dropping higher-order terms, and simplifying. The result is�Ay = Ay � AyEAy +C�1ETP?:(3.2)3.1.2. Range of applicability. In is important that we have some idea of whenthe linear approximation (3.2) is valid. There are two conditions that must be satis�ed.In the �rst place, the matrix A+E must be of full rank. Most of the perturbationbounds in the literature are derived under the supposition thatkAyEk < 1or the stronger condition kAykkEk < 1;(3.3)both of which insure that A is of full rank. In keeping with our program, let us derivethe stochastic norm of AyE. We havekAyEk2S = trace(ETAyTAyE):By (2.3), kAyEk2S = kAySck2Ftrace(S2r ):Hence d1 def= kAyEkS = kAySckFkSrkF;(3.4)or in the case of a simple perturbationd1 = pn�kAykF:If d1 is near 1, we should not trust �Ay to approximate ~Ay.A second source of nonlinearity is bias in the the cross-product matrix C = ATA.Speci�cally, we have ~C = (A+ PE)T(A + PE) + ETP?E:



14 G. W. STEWARTSince the diagonals ETP?E are nonnegative, its addition causes an upward bias inthe diagonals of (A + PE)T(A + PE). More generally, any quadratic form vTCv isbiased upward by vTETP?Ev. The expected value of vTETP?Ev=vTCv iskP?S2ck2F vTS2r vvTCv :Setting w = Av, so that v = Ayw, we see that the maximum of this expectation isd22 def= kSrAyk2kP?Sck2F;(3.5)or in the simple case d22 = (m � n)�2kAyk2:Again, unless d22 is substantially less than 1, we should not trust the linear approxi-mation.It is instructive to compare the two diagnostics d1 and d22 in the case of a simpleperturbation. The latter varies as �2 and, as the error approaches zero, is dominatedby the former, which varies as �. On the other hand, suppose that � is �xed and weadd rows to A in such a way that limm!1m�1ATA = C1. Then Ay = O(1=pm),and d1 ! 0 while d22 remains uniformly positive. Thus d1 measures an e�ect thatdominates for small errors, while d2 measures an e�ect that dominates as we increasethe size of the problem, holding the size of the errors �xed.3.1.3. The perturbation estimate. We now turn to the computation of k �Ay�AykS, where �A is given by (3.2). Since (AyEAy)(C�1ETP?)T = 0, the matricesAyEAy and C�1ETP? are uncorrelated, and we may bound them separately [cf.(2.7)].We have �rstkAyEAyk2S = E[trace(AyTETAyTAyEAy)] = trace[AyTE(ETAyTAyE)Ay]:Hence by (2.6),kAyEAyk2S = kAyS2ck2Ftrace(AyTS2rAy) = kAySck2FkSrAyk2F:Similarly4 kC�1ETP?k2S = kP?Sck2FkSrC�1k2F:Hence k �Ay � AykS =qkAySck2FkSrAyk2F + kP?Sck2FkSrC�1k2F ;(3.6)or in the simple casek �Ay � AykS = �qkAyk4F + (m� n)kC�1k2F:Since kC�1kF = kAyAyTkF � kAyk2F, we have for the simple casek �Ay �AykSkAykF � �pm� n+ 1kAykF:4 In the sequel we will omit the routine computation of stochastic norms.



STOCHASTIC PERTURBATION THEORY 15The right-hand side of this inequality may be further manipulated to givek �Ay � AykSkAykF � �(A)pm� n+ 1�kAkF ;(3.7)where �(A) = kAkFkAykFis the condition number of A. In this form the bound is similar to others appearing inthe literature. However, we have obtained this pretty form at the expense of sharpness,and in the sequel we will not massage our formulas beyond simple equalities, unlesswe are forced to do so.3.2. Least squares and projections. One seldom has cause to bound pertur-bations of the pseudo-inverse alone, since in most applications the pseudo-inverse isinvoked only to be applied to a vector or matrix. In particular, it is well known thatthe vector x = Ayb solves the least squares problem of minimizing kb�Axk2. In thiscase the residual vector r = b�Ax is the projection onto the orthogonal complementof the column space of A; that is, r = P?b. We now turn to estimating the sizes ofthe perturbations in x, P , and r.3.2.1. Least squares solutions. A perturbation expansion for �x can be easilyfound from the expression (3.2) for �A; namely,�x = x� AyEx+ C�1ETr:(3.8)From this a perturbation estimate is easily calculated in the formk�x� xkS =qkAySck2FkSrxk2 + kScrk2kSrCk2F:In the simple case this becomesk�x� xkS = �qkAyk2Fkxk2 + krk2kCk2F:3.2.2. Individual components. It is useful to have estimates for the errors inthe individual components of x. Multiplying by the transpose of the ith unit vector1i, we get �xi = xi � a(y)Ti Ex+ c(�1)Ti ETr;where a(y)Ti is the ith row of Ay and c(�1)Ti is the ith row of B�1. From this we getk�xi � xikS =qkSca(y)i k2kSrxk2 + kSrc(�1)i k2kScrk2:(3.9)A particularly interesting special case occurs when only one column of A, say the jth,is permitted to vary; that is, when Sc = I and Sr = �j11Tj . In this case (3.9) becomesk�xi � xikS = �jqka(y)i k2jxjj2 + jc(�1)ij j2krk2:(3.10)Thus the quantity qka(y)i k2jxjj2 + jc(�1)ij j2krk2 is a condition number for xi withrespect to perturbations in the jth column of A.



16 G. W. STEWART3.2.3. Projections and the residual vector. The perturbation expansion forthe projection operator ~P = ~A ~Ay may be found by replacing ~Ay by �Ay, droppingsecond-order terms, and simplifying. The result is�P = P � P?EAy � (P?EAy)T:From this a perturbation estimate is easily computed:k �P � PkS = p2kScP?kFkSrAykF;or for the simple case k �P � PkS =p2(m � n) kAykF�:Since P? = I � P , the same perturbation estimates hold also for P?.For the residual vector r = P?b we have�r = r + P?Ex+ AyTETr:Hence k�r � rkS =qkScP?k2FkSrxk2 + kScrk2kSrAyk2F:In the simple case this becomesk�r� rkS = �q(m � n)kxk2 + krk2kAyk2F:3.3. The inverse matrix and linear equations. When A is square, so thatm = n, we have P? = 0. Consequently, perturbation results for the inverse and forlinear systems may be obtained trivially from those of the previous subsections bytaking m = n and dropping all terms containing P?.3.3.1. The inversematrix. The perturbation expansion for ~Amay be obtainedfrom (3.2): �A�1 = A�1 � A�1EA�1:(3.11)For this expansion to be valid, we must have d1 de�ned by (3.4) to be substantially lessthan 1. However, the quantity d22 de�ned by (3.5) is zero and need not be considered.The perturbation estimate can be obtained from (3.6):k �A�1 �A�1kS = kA�1SckFkSrA�1kF;or in the simple case k �A�1 � A�1kS = �kA�1k2F:Note that (3.7) now becomesk �A�1 � A�1kSkA�1kF = �(A) �kAkFwith equality instead of inequality.



STOCHASTIC PERTURBATION THEORY 173.3.2. Linear systems. The perturbation expansion for ~x = ~A�1b may be ob-tained from (3.8) or directly from (3.11):�x = x� A�1Ex:The corresponding estimate is given byk�x� xkS = kAySckFkSrxk;and for the simple case by k�x� xkS = �kAykFkxk:3.4. An application. In this subsection we will give an application of the abovetheory to the statistical analysis of regression problems with errors in the regressionmatrix. The standard model for the ordinary regression problem is written5b = Ax+ e;where e is a vector of independent normal variates with mean zero and commonvariance �2. The vector of estimated regression coe�cients isx̂ = Ayb = x+ Aye:(3.12)Since Aye is linear in e we can approximate the distribution of b̂ provided we have anindependent estimate of �. It turns out that�̂ = kP?bkpm � nis just such an estimate.It sometimes happens that A cannot be observed directly but is measured orotherwise contaminated with errors. Thus the regression matrix we have at hand is~A = A +E. In one widely used model it is assumed thatE � T m�n(0; �1=2; I)and is normally distributed. If � is unknown, we will be forced to work with theestimate ~x = ~Aybinstead of x̂. Obviously, ~x is a nonlinear function of E. Nonetheless, if E is reasonablysmall it is well behaved.To see why this should be true, rewrite the perturbed model in the formb = ~Ax+ (e �Ex):It then follows that~x = x+ ~Ay(e � Ex) = x+Ay(e� Ex) + FH(e� Ex);where we have written FH = ~Ay � Ay. Now as E becomes small F becomes small.Consequently ~x �= �x � x+Ay(e �Eb):Comparing this equation with (3.12), we see that5 This is the model as a numerical analyst would write it. A statistician would write somethinglike y = X� + e, where X is an n� p matrix.



18 G. W. STEWARTIf F is small compared with ~A, then ~x behaves as if it came from thelinear model b = Ax+ (e� Ex).Since the variance of the components of e + Ex is �2 + xH�x, the perturbed modelbehaves as if the variance of the components of E had been in
ated by xH�x. Inmuch the same way, we can show that~� = k ~P?bkpm � nis asymptotically an independent estimate of p�2 + xH�x, so that the usual leastsquares procedures work without further alteration.It should be noted that this is not merely a continuity result; E does not have tobe so small that its errors are negligible. On the contrary, it is possible for e to bezero, so that all the variability in the problem comes from E.Nor is �x a �rst-order expansion. Since we do not assume that � ! 0, the termFHe, which we have thrown away, is of the �rst order. However, it dominated by theterm Aye and must ultimately become negligible.To apply these observations we must determine when F is negligible compared toA. Here we may apply the theory developed previously. Speci�cally, if �F = �Ay � Ay,then it follows from (3.6) thatk �FkSkAykF � pmk�1=2Ayk � �:Thus if � is reasonably less than 1, then we are secure in applying least squaresanalysis to the perturbed model. Note that we do not require a detailed knowledgeof �; crude information su�cient to bound � is su�cient. Simulations suggest thatleast squares analysis can be trusted when � is less than 0:3.Notes and references. Perturbation theory for the least squares problem beginswith Golub and Wilkinson [18], who produced �rst-order expansions for least squaressolutions. For surveys of the theory, see [44, 35, 42]. For extensions to more generalproblems, see [10, 29].In the statistics literature, Hodges and Moore [19] and Davies and Hutton [7]have used �rst order approximations to least squares solutions to assess the e�ects oferrors in the regression matrix|the problem of errors in the variables as it is known.See also [2] for applications to econometrics.x3.1.2. The presence of bias in regression coe�cients with errors in the variableshas long been known to statisticians under the name asymptotic inconsistency; e.g.,see [23, x9.4], and [1, 40].x3.2.1. As mentioned above, the perturbation expansion is due to Golub andWilkinson [18].x3.2.2. The quantities in (3.10) were derived in [36] as sensitivity coe�cients forlinear regression.x3.2.3. The quantity k ~P � Pk2F is twice the sum of squares of the sines of thecanonical angles between R(P ) and R( ~P ) (see [35] for de�nitions). Thus the boundsestimate how far the column space of ~A deviates from that of A.x3.4. The basic idea underlying this section is due to David and Stewart [6]. Thepresent treatment is take from [41]. For an introduction to regression analysis with asurvey of the errors-in-the-variables problem see [31].



STOCHASTIC PERTURBATION THEORY 19When � is too large, one must have recourse to other techniques|techniques thatrequire a precise knowledge of �. As usual, statisticians and numerical analysts haveworked on the problem without consulting one another. Fuller's book on measurementerror models [11] is the de�nitive source for the statistical approach (it contains muchmore than the model treated here). On the numerical side, Golub and Van Loan [16](also see [43]) have created a technique based on the singular value decompositionknown as total least squares, which is closely related to the statisticians technique.When � is small, total least squares and least squares give essentially the same results[38].4. Eigenvalue problems. In this section we will be concerned with stochasticperturbation theory for certain eigenvalue problems. In the �rst subsection we willtreat the perturbation of invariant subspaces and the perturbation of the represen-tation of an operator on an invariant subspace. In the next two subsections we willconsider the simpli�cations that obtain �rst when the matrix is symmetric and thenwhen the dimension of the invariant subspace is 1 (i.e., the perturbation of eigenval-ues and eigenvectors). The section concludes with a treatment of the singular valuedecomposition. Throughout this section, A will denote a square matrix of order n.4.1. Invariant subspaces. It is convenient to approach the perturbation ofeigenvectors and eigenvalues from the problem of the perturbation of invariant sub-spaces, since the latter, more general problem is of independent interest. However,this approach exacts a toll. The perturbation expansion for an invariant subspaceinvolves a linear operator that does not interact nicely with cross-correlated matri-ces. The consequence is that we can only give bounds on the stochastic norms of theperturbations, whereas previously we have been able to compute the norms exactly.Fortunately, in some important special cases we can restore the lost equality.We will start with a review of some facts about invariant subspaces, which willalso �x the notation to be used throughout this section.4.1.1. The representation of invariant subspaces. We begin with the de�-nition of an invariant subspace of A.Definition 4.1. Let X1 be a k dimension subspace of Cn. Then X1 is an invari-ant subspace of A if AX1 def= fAx : x 2 X1g � X1:(4.1)In other words, X1 is an invariant subspace of A if A maps X1 into itself.Let (X1 Y2) be a unitary matrix with R(X1) = X1. Then from (4.1) it followsthat the columns of AX1 can be written as a linear combination of X1; that is,AX1 = X1A11;(4.2)where A11 = XH11AX11:Moreover, from (4.2) and the fact that Y H2 X1 = 0, we haveY H2 AX1 = 0:(4.3)These relations may be summarized by writing� XH1Y H2 �A(X1 Y2) = � A11 A120 A22 � ;(4.4)



20 G. W. STEWARTwhich also de�nes A12 and A22.When A is regarded as an operator on X1, the matrix A11 is the representationof A with respect to the basis formed by the columns of X1. It is easy to see thatR(Y2) is a left invariant subspace of A, or equivalentlyY H2 A = A22Y H2 :Thus A22 is the representation of A of the left invariant subspace R(Y2) with respectto the basis formed by the rows of Y H2 .4.1.2. Simple invariant subspaces. An important example of an invariantsubspace is the space spanned by an eigenvector x1. Unfortunately, even when theyare normalized, say by requiring kx1k = 1 and that some speci�c nonzero componentof x1 be positive, eigenvectors need not be unique. For example, if A is Hermitian andit has an eigenvalue of multiplicity m, the corresponding eigenvectors span a spaceof dimension m. In perturbation theory, the usual way of getting around this prob-lem, is to assume that the eigenvalue is simple, so that A has a unique (normalized)eigenvector.The notion of simplicity can be generalized to invariant subspaces by observingthat the set eigenvalues �(A) of A is the union of �(A11) and �(A22). When A11 isa scalar (i.e., an eigenvalue), it is simple if and only if it is not also an eigenvalue ofA22. This leads to the following de�nition.Definition 4.2. The invariant subspace X1 is simple if�(A11) \ �(A22) = ;:In deriving a perturbation bound, it will be important to be able to solve Sylvesterequations of the form A22P � PA11 = E21:It turns out that this is equivalent to requiring X1 to be simple, as the following widelyused theorem shows.Theorem 4.3. Let the linear operator T be de�ned byT = P 7! A22P � PA11:(4.5)Then T is nonsingular if and only if�(A11) \ �(A22) = ;:Moreover, if we set � def= infkPkF=1 kTPkF = kT�1k�1;(4.6)then � � minfj�1 � �2j : �1 2 A11�2 2 A22g:(4.7)



STOCHASTIC PERTURBATION THEORY 214.1.3. Representation of ~X . Let ~A = A+E, where E � T (0; Sr; Sc). We willbe concerned with the e�ects of E on the simple invariant subspace X1. For now wewill assume that there is an invariant subspace ~X1 of ~A which approaches X1 as Eapproaches zero. We will justify this assumption in x4.1.6.In order to obtain a perturbation expansion for the invariant subspace ~X1 we mustaddress two problems. The �rst is to represent ~X1 in such a way that we can measureits distance from X1. The second is to �nd a perturbation equation from which wemay cast out higher-order terms.Turning to the �rst problem, we will seek a basis for ~X1 in the form~X1 = X1 + Y2P;(4.8)where P is to be determined. There are two reasons for this choice.First, it is easily veri�ed that ~X1(I + PHP )�1=2 has orthonormal columns. Inother words, up to second-order terms in P , which is presumed small, the columns of~X form an orthonormal basis for ~X1.Second, there are many ways of choosing bases for X1 and ~X1, some of whichmay be quite di�erent even when X1 and ~X1 are near. However, if we de�ne ~X1 by(4.8), then of all matrices whose column spaces span X1, the matrixX1 is nearest ~X1.Speci�cally, we have the following theorem.Theorem 4.4. If (X1 Y2) is unitary and ~X1 is de�ned by (4.8), then X1 solvesthe following least squares problemminimize: k ~X1 � �X1kF;subject to: R( �X1) = X1:(4.9)Proof. Let �X1 = X1R. Then the above minimization problem becomesminimize: k ~X1 �X1RkF;subject to: R is nonsingular:If we drop the restriction that R be nonsingular, then from the theory of least squares,the minimizing value of R is given byR = (XH1 X1)�1XH1 ~X1:But from (4.8) XH1 ~X1 = XH1 X1 = I. Hence R = I (which is nonsingular) and X1solves (4.9). 24.1.4. The perturbation bound. The second problem is to determine a per-turbation equation and solve it. The key is to observe that equation (4.3) is not only aconsequence of R(X1) being an invariant subspace, it is actually a su�cient conditionfor R(X1) to be an invariant subspace. For if Y H2 (AX1) = 0, then R(AX1) lies in theorthogonal complement of R(Y2); that is, it lies in R(X1).Thus our problem reduces to �nding a basis for the orthogonal complement of ~X .But if ~X1 is represented in the form (4.8), it is easily veri�ed that the columns ofY2 �X1PHform a basis for the required space. Thus a necessary and su�cient condition forR( ~X1) to span an invariant subspace of ~A is that(Y H2 �X1P )(A+ E)(X1 + Y2P ) = 0:(4.10)



22 G. W. STEWARTEquation (4.10) can be simpli�ed by the introduction of the operator T de�nedby (4.5). Speci�cally, let(X1 Y2)HE(X1 Y2) = � E11 E12E21 E22 � :Then (4.10) is equivalent toTP + (E22P � PE11) = E21 � P (A12 + E12)P;(4.11)where A12 = XH1 AY2 as above.If we drop second-order terms from (4.11), we get our �rst-order perturbationequation T �P = E21:(4.12)Since by hypothesis X1 is simple, T is nonsingular, and�P = T�1E21:(4.13)This gives the perturbation boundk �PkS � kE21kS� = kSrX1kFkScY2kF� ;(4.14)where � is de�ned by (4.6). In the simple case (4.14) becomesk �PkS � pk(n� k)�� :(4.15)4.1.5. Interpretation of the bound. The bounds (4.14) and (4.15) consist oftwo parts: a norm ofE21 and a divisor �. From (4.7) it follows that if the eigenvalues ofA11 andA22 are not well separated, � will be small. In other words, if the eigenvalues ofA corresponding to the invariant subspace X1 are near the eigenvalues correspondingto the complementary invariant subspace, the bounds (4.14) and (4.15) will be large,and we can expect X1 to be sensitive to perturbations in A.The norm of E21 has an interesting interpretation, which is given in the followingtheorem, whose proof is left as an exercise.Theorem 4.5. The Frobenius norm of E21 satis�eskE21kF = minB2Ck�k k ~AX1 �X1BkF;and the minimum is attained when B = XH1 ~AX1.If R(X1) were an invariant subspace of ~A, we could make the residual ~AX1�X1Bzero by choosingB to be equal to the representation of ~A onR(X1); i.e.,B = XH1 ~AX1.Even when R(X1) is not an invariant of subspace of ~A, this choice of B minimizesthe norm of the residual, whose value at the minimum is kE21kF.4.1.6. Range of applicability. The foregoing development presupposes thatthere is an invariant subspace of ~A that approaches X1 as E approaches zero. Thefollowing theorem shows that this is true by showing that if X1 is simple and E issmall enough, the perturbation equation (4.11) has a solution P that approaches zeroas E approaches zero.



STOCHASTIC PERTURBATION THEORY 23Theorem 4.6. If kE11k+ kE22k < �(4.16)and kE21kFkA12 +E12kF(� � kE11k � kE22k)2 < 14 ;(4.17)then (4.11) has a unique solution P that satis�eskPkF � 2kE21kF� � kE11k � kE22k :(4.18)The condition (4.16) essentially says that the perturbations E11 and E22 do notmake the operator T singular [cf. (3.3)]. If we replace the norms by stochastic norms,we get kSrX1kFkScX1kF + kSrY2kFkScY2kF < �;(4.19)or in the simple case n� < �:(4.20)If (4.19) or (4.20) show that E11 and E22 have a negligible e�ect in the denominatorof (4.17), then we ignore it. In this case, the second condition written in terms of thestochastic norm becomeskScY2kFkSrX1kFpkA12k2F + kScX1k2FkSrY2k2F�2 < 14 :(4.21)In the simple case this becomes�pk(n� k)pkA12k2F + k(n� 1)�2�2 < 14 :If (4.20) is satis�ed, this latter condition can be replaced by the simpler, but strongercondition pkA12k2F + k(n� 1)�2� < 14 :4.1.7. The representation of ~A on R( �X1). Just as A11 = XH1 AX1 is therepresentation of A on X1, so is ~XH1 (A + E) ~X1 the representation of ~A on ~X1. Thismatrix is readily found to be ~A11 = A11 + E11 +A12 ~P;and its �rst-order approximation is�A11 = A11 + E11 +A12 �P;(4.22)where �P is de�ned by (4.13).From (4.22) and (4.14) we havek �A11 � A11kS � kSrX1kFkScX1kF + kA12kkSrX1kFkScY2kF� ;(4.23)



24 G. W. STEWARTor in the simple casek �A11 �A11kS �  k + pk(n� k)kA12k� !�:When k = 1 these inequalities provide a stochastic bound on the perturbation of aneigenvalue of A. In the general case, we need more information about A11 (e.g., A11is normal) to say anything about the relation of the eigenvalues of A11 and �A11.4.1.8. Other representations of ~X1. The representation of ~X1 in the form(4.8) amounts to imposing the normalization XH1 ~X1 = I. But this is not the onlydesirable normalization. For example, if AT is stochastic and x1 its Peron vector,then one might wish to impose the normalization 1Tx1 = 1, where 1 is the vector ofall ones. This allows the components of x1 to be regarded as probabilities, since theyare nonnegative and sum to 1.We will consider normalizations of the formWH1 ~X1 = I;(4.24)where W1 satis�es WH1 X1 = I:(4.25)Any matrix satisfying (4.25) can be written in the formW1 = X1 + Y2QH(to see this write W1 = X1R+ Y2QH, and multiply �rst by XH1 and then by Y H2 ).The normalization (4.24) can be regarded as a block transformation of the coor-dinate system de�ned by (X1 Y2). Let(X1 W2) = (X1 Y2)� I Q0 I � = (X1 Y2 +X1Q):Then (X1 W2)�1 = � I �Q0 I �� XH1Y H2 � = � WH1Y H2 � :(4.26)Moreover, � WH1Y H2 �A(X1 W2) = � A11 A(W )120 A22 � ;where A(W )12 = W1AW2 = A12 +A11Q �QA22:(4.27)Thus (X1 W2) de�nes a (nonunitary) similarity that reduces A to block triangularform [cf. (4.4)].We can now repeat our entire development. The normalization (4.24) is equivalentto seeking ~X1 in the form ~X(W )1 = X1 +W2P (W ):



STOCHASTIC PERTURBATION THEORY 25[cf. (4.8)]. From (4.26) it follows that the columns of Y2�W1PH form a basis for theorthogonal complement of R( ~X1). Hence the perturbation equation is(Y2 �W1PH)(A +E)(X1 +W2P (W )) = 0[cf. (4.10)], from which we �nd thatT �P (W ) = E21:(4.28)In this case the representation of A with respect to ~X(W )1 up to �rst order-terms isgiven by �A(W )11 = A11 +E(W )11 + A(W )12 �P (W );(4.29)where E(W )11 = WH1 EX1 and E(W )12 =WH1 EW2 [cf. (4.22)].Comparing (4.12) and (4.28) we obtain the following remarkable theorem.Theorem 4.7. �P (W ) = �P:In other words, the same �P serves for all normalizations. Unfortunately, theranges of applicability may be di�erent, since P (W ) will in general be di�erent fromP . It is therefore worthwhile to give a di�erent proof of Theorem 4.7, which showsexplicitly how they di�er.Second proof of Theorem 4.7. Since the columns of (X1 W2) are linearly indepen-dent, we may write ~X1 = X1U +W2V orX1 + Y2P = X1U +W2V:Multiplying this expression by Y H2 and using the fact that Y H2 W2 = I, we get V = P .Multiplying by XH1 and using the fact that XH1 W2 = Q, we get U = I � QP . AsE ! 0, the matrix U approaches I. Hence for E su�ciently small U is nonsingular,and we may write ~X1 = R[X1 +W2P (I � QP )�1]:Thus P (W ) = P (I �QP )�1:The theorem follows on replacing P by �P and discarding higher-order terms. 2This second proof shows that we can trust the expansion �X(W )1 = X1+W2 �P onlywhen �P is accurate and Q �P is small. We will use this fact in discussing generalizedRayleigh quotients, to which we now turn.4.1.9. Generalized Rayleigh quotients. One of the unsatisfactory aspects ofthe above development is the presence of the term A(W )12 �P (W ) in the expression (4.29)for �A(W )11 . Since W1, or equivalently Q, is a free parameter, we can choose it to makeA(W )12 = 0. From (4.27) we see that this is equivalent to choosing Q to satisfyT�Q = A12;(4.30)



26 G. W. STEWARTwhere T� = Q 7! QA22 � A11Q:As the notation suggests, T� is the adjoint of the operator T. Hence, by Theorem 4.3it is nonsingular and the norm of its inverse is ��1.We will denote by Y1 and X2 the values of W1 and W2 corresponding to thesolution of (4.30). It follows that� Y H1Y H2 �A(X1 X2) = � A11 00 A22 � ;that is, the similarity transformation reduces A to block diagonal form. In particular,R(X2) is an invariant subspace of A. Since it is complementary to X1 is is called thecomplementary invariant subspace. In the same wayR(Y1) is a left invariant subspacecomplementary to R(Y2).We saw at the end of x4.1.8 that in addition to the conditions of Theorem 4.6 werequire that QP be small in order to use the approximation �P . Fortunately, this willbe so to the extent that the conditions of Theorem 4.6 are satis�ed. Speci�cally, from(4.30) we have kQkF � kA22kF=�. Hence by (4.17) and (4.18) we have kQkkPk < 12 .Since A(Y )12 = 0, the �rst-order approximation of the representation of ~A on ~X1has the particularly simple form�A(Y )11 = A11 + Y H1 EX1:In particular k �A(Y )11 � A11kS = kSrX1kFkScY1kF;(4.31)or in the simple case k �A(Y )11 � A11kS = pk�kY1kF;The matrix Y H1 AX1 is sometimes called the generalized Rayleigh quotient of A.Moreover the matrix X1Y H1 is called the spectral projector , since it projects a vectoronto X1 along the complementary invariant subspace R(X2). With the normalizationXH1 X1 = I, the Frobenius norm of the spectral projector is kY1kF. Hence the aboveresult says that the sensitivity of the generalized Rayleigh quotient is determined bythe size of the spectral projector.4.2. Hermitian matrices. The principle simpli�cation that occurs when A isHermitian is that A12 = 0, or equivalently Y1 = X1. This does not change the boundon �P , but it does a�ect the range of applicability. Speci�cally, (4.21) becomeskScY2kFkSrX1kFkScX1kFkSrY2kF�2 < 14 ;or in the simple case pk(n� 1)� � < 12 :The interpretation of the bound becomes simpler, for when A11 and A22 areHermitian � = minfj�1 � �2j : �1 2 �(A11)�2 2 �(A22)g:



STOCHASTIC PERTURBATION THEORY 27Thus for Hermitian matrices the separation of the eigenvalues of an invariant subspacefrom those of its complement determines the sensitivity of the subspace.Finally, since X1 = Y1, the bound (4.31) becomek �A(Y )11 � A11kS = kSrX1kFkScX1kF;(4.32)or in the simple case k �A(Y )11 �A11kS = k�:(4.33)Since A11 and �A11 are both Hermitian, we can make a strong statement about therelation of eigenvalues of the two. Speci�cally, if �1(A11) � �2(A11) � � � � � �k(A11)are the eigenvalues of A11 and �1( �A11) � �2( �A11) � � � � � �k( �A11) are the eigenvaluesof �A11, then by the Ho�man{Wielandt theoremkXi=1[�i( �A11) � �i(A11)]2 � k �A11 �A11k2F;and the right-hand side can be estimated by (4.32) or (4.33).4.3. Eigenvalues and eigenvectors. When k = 1, the matrix X1 becomes aneigenvector of A corresponding to the eigenvalue A11. To remind us of this fact, wewill write X = (x1 Y2) and XHAX = � a11 aH120 A22 � ;with a corresponding notation for XHEX.The principle simpli�cation that occurs with eigenvalues and eigenvectors is thatthe operator T now becomes a matrixT = a11I � A22:This means that we can involve T directly in our calculation of the stochastic norms.Speci�cally, we now have for the perturbation of x1,�x1 = x1 + Y2�p;where �p = T�1Y H2 Ex1:Hence k�pkS = kT�1Y H2 SckFkScx1k:In the simple case this becomes k�pkS = �kT�1kF:If we de�ne �F = kT�1k�1F ;



28 G. W. STEWARTthen the estimate becomes k�pkS = ��F :When this estimate is compared with (4.15) for k = 1, it is seen that, in additionto being an equality, it lacks the factor pn� 1. However, this is compensated for bythe fact that �F will in general be smaller than �.Turning to the Rayleigh quotient, we have�a11 = a11 + yH1 Ex1:Hence k�a11 � a11kS = kScy1kkSrx1k;or in the simple case k�a11 � a11kS = �ky1k:With the normalization yH1 x1 = 1, ky1k is the secant of the angle between x1 and y1.Thus as x1 and y1 become progressively more orthogonal, their eigenvalue becomesmore sensitive to perturbations.4.4. Singular values and singular vectors. LetX 2 Rm�n withm � n Thenthere are orthogonal matrices U and V of order m and n such thatUTXV = � 	0 � ;(4.34)where 	 = diag( 1;  2; : : : ;  n):The decomposition (4.34) is called the singular value decomposition ofX. The number i is called a singular value of X and the corresponding columns ui and vi of U andV are its left and right singular vectors. They are related by the formulasXvi =  iuiand XTui =  ivi:Although the singular value decomposition is de�ned for complex matrices, thesingular values are not di�erentiable functions of the elements of the matrix. Thisis true even for the scalar �, whose \singular value" is  = j�j, since in the complexplane the absolute value is not an analytic function of its argument. The implicationis that if we wish to develop �rst-order expansions, we must restrict ourselves toreal perturbations of real matrices. Even here, we must restrict ourselves to nonzerosingular values, since the absolute value, regarded as a function of a real variable, isnot di�erentiable at zero.Therefore, we will consider the perturbation of a nonzero singular value  1 of areal matrixX and its corresponding right singular vector v1 under a real perturbationE. A perturbation expansion may be obtained by observing that ~ 21 is an eigenvalueof ~A = ~XT ~X with eigenvector ~v1. Speci�cally, we have the following theorem, whoseproof may be found in the references.



STOCHASTIC PERTURBATION THEORY 29Theorem 4.8. Let U = (u1 U2) V = (v1 V2)and 	 = diag( 1;	2):Then � 1 =  1 + uTEv(4.35)Moreover, if T =  21I � 	22;then �v1 = v1 + V2�p;where �p = T�1(UT2 Ev1 + V T2 ETu1):From (4.35) we immediately get the following perturbation estimate for k � 1 � 1kS: k � 1 �  1kS = kScu1kkSrv1k:In the simple case, this becomes k � 1 �  1kS = �The estimate for k�p� pkS is more complicated:k�p� pk2S = kScU2	2T�1k2FkSrv1k+ 2 1uT1 S2cU2	2T�2V T2 S2r v2+  21kSrV2T�1k2FkScu1k2� kScU2	2T�1k2FkSrv1k+  21kSrV2T�1k2FkScu1k2:However, in the simple case the cross product term in the equality vanishes and weget k�p� pkS = �k( 21I �	2)T�1kF= �vuut nXi=2  21 +  2i 21 �  2i :Thus the distance of a singular value from its neighbors controls the sensitivity of itssingular vector to perturbations.



30 G. W. STEWARTNotes and references. The general approach to invariant subspaces taken hereis due to the author [33],[34]. For another view of the subject the reader readeris referred to Kato's work [25], which also treats the perturbation of operators inin�nite-dimensional settings.x4.1.2. The term \simple" referring to an invariant subspace does not seem tohave appeared in the literature before. Theorem 4.3 is important in many of areas,and it has a number of proofs. See [17, x7.6] for a constructive approach. The quantity� was introduced in [33] as the function sep(A11; A22). This name comes from (4.7),which shows that sep(A11; A22) is a lower bound on the separation of the spectra ofA11 and A22. Unfortunately, it can be very much smaller than the actual separation.x4.1.3. Theorem 4.4 is not the only justi�cation of this choice of representation.It can be shown that the singular values of P are the tangents of the canonicalangles between the subspaces X and ~X (see [8],[35] for de�nitions). Consequently,kPk = k ~X �Xk is a bound on the separation of the two subspaces.x4.1.5. Theorem 4.5 may be found in [8]. For generalization, see [24].x4.1.6. A proof of Theorem 4.6 may be found in [34].x4.1.8. Equation (4.24) does not represent all possible normalizations. In [27],which treats only eigenvectors, the normalizing function is allowed to be any di�er-entiable function. Theorem 4.7 appears to be new.x4.1.9. There is some ambiguity in the term \generalized Rayleigh quotient."If � is an eigenvalue of a Hermitian matrix then the Rayleigh quotient �(x;A) =xHAx=xHx has two properties. (1) � = �(x;A);(2) �� = �(x;A+E):If for non-Hermitian matrices we require only the �rst property, then any quotient ofthe form wHAx=wHx generalizes the Rayleigh quotient. However, if we require bothproperties, then we must take w = y, the left eigenvector corresponding to �.x4.2. A completely di�erent approach to perturbation theory for Hermitian ma-trices is given by Davis and Kahan [8]. The Ho�man{Wielandt theorem appears in[20], and Wilkinson [46] gives an elementary proof.x4.4. A proof of Theorem 4.8 may be found in [39]. It is possible to developperturbation bound for spaces of singular vectors corresponding to clusters of singularvalues [34]; however, the bounds are not pretty.5. Conclusions. In this paper we have shown that many problems in matrixperturbation theory can be rigorously treated from a probabilistic point of view. Themain advantage of this approach is that in many cases it gives estimates that areexact equalities: nothing is given away in their derivations. For example, comparethe eigenvalue estimate k�a11 � a11kS = �ky1kwith the more usual bound j�a11 � a11j � ky1kkEk:Not only is the �rst simpler, but it makes it clear that the second can be a consider-able overestimate, since kEk will be larger than the size of a typical element. Thusstochastic perturbation theory can be used to see how well we have done with moreconventional bounds.



STOCHASTIC PERTURBATION THEORY 31The use of cross-correlated errors reduces the applicability of the technique, butnot unduly considering the gain in simplicity. Moreover, the scale of the error appearsexplicitly in the bounds so they may be adjusted to the application.The chief disadvantage of the approach is its reliance on �rst-order approxima-tions. Although Theorem 2.8 provides an asymptotic justi�cation for this, in practicewe must assess when the �rst-order approximations are valid. In this paper we haveproceeded informally, by recasting in terms of stochastic norms conditions that arenecessary for the approximations to be accurate. This insures that for errors su�-ciently small the probability of violating the conditions is small, and we can even usethe Chebyshev inequality to bound the probability.The theory is based on the Frobenius norm, whereas the spectral norm is morefrequently used in usual approach to perturbation theory. For estimating the per-turbations scalars and vectors this makes no di�erence, since the two norms coincidefor the estimated quantities and the exactness of the estimates assures us that anyFrobenius norms in them really have to be there.Nonetheless, one might wonder if there is a stochastic analogue of the spectralnorm. Unfortunately, the natural de�nitionmaxkxk=1 kE(Ex)kdoes not work, since it gives di�erent results for E and ET. If we try to restoresymmetry with maxkxk=1kyk=1 E(yTEx)we get something that is too small. This problem can stand further investigation.REFERENCES[1] A. E. Beaton, D. B. Rubin, and J. L. Barone, The acceptability of regression solutions:Another look at computational accuracy, Journal of the American Statistical Association,71 (1976), pp. 158{168.[2] G. F. Brown, J. B. Kadane, and J. G. Ramage, The asymptotic bias and mean-squarederror of double K-class estimators when the distrubances are small, InternationalEconomicReview, 15 (1974), pp. 667{679.[3] F. Chatelin, Analyse statistique de la qualite numerique et arithmetic de la resolution ap-prochee d'equations par calcul sur ordinateur, Etude F.133, Centre Scienti�que de Paris,1988.[4] , De l'utilisation en calcul matriciel de mod�eles probabilistes pour la simulation deserreurs de calcul, Comptes Rendus de l'Acad�emie des Sciences, Paris, S�erie I, 307 (1988),pp. 847{850.[5] , A probabilistic round-o� error propagation model. application to the eigenvalue problem,in Reliable Numerical Software, D. Cox and S. Hammarling, eds., Oxford, 1990, OxfordUniversity Press. To appear.[6] N. David and G. W. Stewart, Hypothesis testing with errors in the variables, TechnicalReport TR-1735, University of Maryland Department of Computer Science, 1988.[7] R. B. Davies and B. Hutton, The e�ects of errors in the independent variables in linearregression, Biometrika, 62 (1975), pp. 383{391.[8] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM Journalon Numerical Analysis, 7 (1970), pp. 1{46.[9] J. W. Demmel, The probability that a numerical analysis problem is di�cult, Mathematics ofComputation, 50 (1988), pp. 449{480.[10] L. Eld�en, Perturbation theory for the least squares problem with linear equality constraints,SIAM Journal on Numerical Analysis, 17 (1980), pp. 338{350.



32 G. W. STEWART[11] W. A. Fuller, Measurement Error Models, John Wiley, New York, 1987.[12] C. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium,Perthes and Besser, Hamburg, 1809.[13] , Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections,Dover, New York (1963), 1809. C. H. Davis, Trans.[14] , Theoria combinations observationum erroribus minimis obnoxiae, pars prior, in Werke,IV, K�oniglichen Gessellshaft der Wissenschaften zu G�ottinging (1880), 1821, pp. 1{26.[15] A. Geman, A limit theorm for the norm of random matrices, The Annals of Probability, 8(1980), pp. 252{261.[16] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem, SIAMJournal on Numerical Analysis, 17 (1980), pp. 883{893.[17] , Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland, 1983.[18] G. H. Golub and J. H. Wilkinson, Note on the iterative re�nement of least squares solution,Numerische Mathematik, 9 (1966), pp. 139{148.[19] S. D. Hodges and P. G. Moore, Data uncertainties and least squares regression, AppliedStatistics, 21 (1972), pp. 185{195.[20] A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix,Duke Mathematical Journal, 20 (1953), pp. 37{39.[21] R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, Macmillan, New York,1978. 4th Edition.[22] H. Hotelling, The selection of variates for use in prediction with some comments on thegeneral problem of nuisance parameters, The Annals of Mathematical Statistics, 11 (1940),pp. 271{283.[23] J. Johnston, Econometric Methods, Mc Graw-Hill, New York, 2nd ed., 1972.[24] W. Kahan, B. N. Parlett, and E. Jiang, Residual bounds on approximate eigensystems ofnonnormal matrices, SIAM Journal on Numerical Analysis, 19 (1982), pp. 470{484.[25] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, New York, 1966.[26] D. G. Kendall, Stochastic processes occuring in the theory of queues and their analysis bythe method of the imbedded markov chain, Annals of Mathematical Statistics, 24 (1953),pp. 338{354.[27] C. Meyer and G. W. Stewart, Derivatives and perturbations of eigenvectors, SIAM Journalon Numerical Analysis, 25 (1988), pp. 679{691.[28] H. Neudecker and T. Wansbeek, Fourth-order properties of normally distributed randommatrices, Linear Algebra and Its Applications, 97 (1987), pp. 13{22.[29] C. C. Paige, Computer solution and perturbation analysis of generalized linear least squaresproblems, Mathematics of Computation, 33 (1979), pp. 171{184.[30] E. Parzen, Modern Probability Theory and Its Applications, John Wiley, New York, 1960.[31] G. A. F. Seber, Linear Regression Analysis, John Wiley, New York, 1977.[32] R. J. Serfling, Approximation Theorems of Mathematical Statistics, John Wiley, New York,1980.[33] G. W. Stewart, Error bounds for approximate invariant subspaces of closed linear operators,SIAM Journal on Numerical Analysis, 8 (1971), pp. 796{808.[34] , Error and perturbation bounds for subspaces associated with certain eigenvalue prob-lems, SIAM Review, 15 (1973), pp. 727{764.[35] , On the perturbation of pseudo-inverses, projections, and linear least squares problems,SIAM Review, 19 (1977), pp. 634{662.[36] , Sensitivity coe�cients for the e�ects of errors in the independent variables in a linearregression, Tech. Report TR-571, University of Maryland Compute Science, 1977.[37] , A nonlinear version of Gauss's minimum variance theorem with applications to anerrors-in-the-variables model, Technical Report TR-1263, Department of Computer Sci-ence, University of Maryland, 1983.[38] , On the invariance of perturbed null vectors under column scaling, Numerische Mathe-matik, 44 (1984), pp. 61{65.[39] , A second order perturbation expansion for small singular values, Linear Algebra andIts Applications, 56 (1984), pp. 231{235.[40] , Collinearity and least squares regression, Statistical Science, 2 (1987), pp. 68{100.[41] , Perturbation theory and least squares with errors in the variables, Technical ReportUMIACS-TR-89-97, CS-TR 2326, Department of Computer Science, University of Mary-land, 1989. To appear in the Proceedings of the AMS Conference on Measurement ErrorModels, Humboldt, California.[42] G. W. Stewart and G.-J. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.[43] S. Van Huffel, Analysis of the Total Least Squares Problem and Its Use in Parameter Esti-



STOCHASTIC PERTURBATION THEORY 33mation, PhD thesis, Katholeike Universiteit Leuven, 1987.[44] P.-�A. Wedin, Pertubation theory for pseudo-inverses, BIT, 13 (1973), pp. 217{232.[45] N. Weis, G. W. Wasilkowski, H. Wo�zniakowski, and M. Shub, Average condition numberfor solving linear equations, Linear Algebra and Its Applications, 83 (1986), pp. 79{102.[46] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.


