STOCHASTIC PERTURBATION THEORY"
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Abstract. In this paper classical matrix perturbation theory is approached from a probabilistic
point of view. The perturbed quantity is approximated by a first-order perturbation expansion,
in which the perturbation is assumed to be random. This permits the computation of statistics
estimating the variation in the perturbed quantity. Up to the higher-order terms that are ignored in
the expansion, these statistics tend to be more realistic than perturbation bounds obtained in terms
of norms. The technique is applied to a number of problems in matrix perturbation theory, including
least squares and the eigenvalue problem.
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1. Introduction. Let A be a matrix and let F' be a matrix valued function of
A. Two principal problems of matrix perturbation theory are the following. Given a
matrix F, presumed small,
1. Approximate F'(A+ F),
2. Bound ||F(A+ E) — F(A)|| in terms of || E||.
Here || - || is some norm of interest.
The first problem is usually, but not always, solved by assuming that F' is differ-
entiable at A with derivative F). Then

F(A+E) = F(A) + F4(E) + o(|| E])),

so that for F sufficiently small Fy(E) is the required approximation. The problem
then reduces to finding tractable expressions for I, (F), which in itself is often a
nontrivial task. The second problem may be treated in a variety of ways; but if the
results are to be sharp, for small £ they have to approach a bound that could be
obtained by manipulating F', (E).

For example, it is well known that if A i1s nonsingular, then

(1.1) (A+E) P =A" - AT EAY + O(| E||%).

Moreover, if in some norm ||[A7Y|[|E|| < 1 then

S - A P2
(1.2) I(A+E)~ —A7 < = :
L=l A=Y E]]

Except for the denominator, which approaches 1 as F' — 0, the inequality (1.2) could
be derived from (1.1) by ignoring the quadratic term and taking norms.

The formulas (1.1) and (1.2) represent two extremes. If the higher-order term
can be ignored, equation (1.1) tells the entire story, but in overabundant detail: it is
not easy to interpret. On the other hand, the bound (1.2) makes a clear statement
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about the size of the perturbation, but it is likely to be an overestimate, since the
submultiplicative inequality for norms was used in its derivation.

In this paper we will consider a third approach that is in some sense intermediate
to the other two. We will take F to be a stochastic matrix and compute expecta-
tions of quantities derived from the perturbation expansion (1.1). This represents a
compression of the information, but up to higher-order terms it gives nothing away.

For example, let

v

At =47t A7 lpaAT!

be the first-order approximation to (A + E)~!1. Suppose that the elements of E are
uncorrelated with mean zero and standard deviation o. Let us agree to measure the

size of a random matrix by the function || - ||s defined by
(1.3) 12§ = E(IE(7),
where E is the expectation operator and || - ||r is the Frobenius norm. Then from the

results of §3.3, it can be shown that
(1.4) A= = A7 s = of A7 5.

The equality (1.4) has much the same form as (1.2), when the latter is stripped of
its denominator. The left-hand side of both is a measure of the size of the perturbation.
The right-hand side of both consists of a measure of the size of the error times the
square of a norm of A~!. However, there are two important differences. First, (1.4)
is an equality—there is no question of sharpness here. Second, if || - || in (1.2) is the
Frobenius norm, then the right-hand side of (1.4) will generally be smaller than (1.2),
since ||E||s = no.!

A person accustomed to using norms to bound errors may feel uncomfortable with
a probabilistic statement like (1.4). A statistician would have no such qualms, and
in fact might feel uncomfortable with an inequality like (1.2). Even outside statistics,
rigorous bounds are often supplemented by informal probabilistic statements, as when
we say that rounding error in the sum in n numbers grows as the square root of n,
although the best upper bound grows as n. To be realistic, we must prune away the
unlikely. What is left is necessarily a probabilistic statement.

Stochastic perturbation theory, as we shall understand it, consists of two steps.
First, the perturbation in F(A) is estimated by the first-order expansion F'(A4) +
F\(E), a strictly conventional procedure. However, instead of going on to bound
FL(E), we assume that E is random and compute ||F4(E)|s.

To realize this program fully, we must address three questions.

1. How do we compute the stochastic norm of ||F (E)||s?
2. What does a knowledge of the stochastic norm tell us about the
actual error?
3. What is the justification for ignoring higher-order terms?
These questions will be answered in the next section, which is the technical heart of
the paper; however, it is appropriate to sketch the answers here.

1 Actually, this exaggerates the difference in our favor, since ||E||r in (1.2) could be replaced by
the spectral norm defined below by (1.5). However, a result on the limiting behavior of the spectral
norm of stochastic matrices [15] shows that v/2no is a reasonable estimate of [|F||, so that (1.2) will
still be an overestimate.
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In principle, the answer to the first question is that given the first and second
moments of F the calculation of [|F}(F)||s is a straightforward, if tedious procedure
(see Theorem 2.5). However, this answer ignores the fact that the object of any
perturbation theory is usually insight rather than a specific numerical bound. In order
to obtain interpretable formulas we must put restrictions on E. In the next section
we will introduce the class of cross-correlated matrices, whose structure is at the same
time sufficiently rich to be useful and sufficiently simple to be tractable. The approach
through cross-correlated matrices has the added advantage that it incorporates the
scaling of the error into the final results.

The second question is answered by an appeal to the Chebyshev inequality, which
asserts that 1s is improbable that a random matrix be much larger than its stochastic
norm. It should be stressed that the bounds given by the Chebyshev inequality
are very weak; for a given distribution the situation may be much better than they
indicate.

The third question involves subtle issues in probability theory. The crux of the
matter is that F'(A+ E) — F(A) can fail to have even a mean, much less a stochastic
norm. Nonetheless, we will show that provided the second moments of £ are small
enough the distributions of F(A 4+ E) — F(A) and F4(F) are close, so that any
statement about the size of the latter can be transferred to the former. Moreover,
this result 1s independent of the distribution of £.

This paper i1s organized as follows. In the next section we give the necessary
probabilistic background and address three questions raised above. The next two
sections are devoted to the application of these results, first to the pseudo-inverse
and least squares problems, then to the eigenvalue problem and the singular value
decomposition. These sections are of independent interest, since they collect a number
of perturbation expansions that that have lain scattered about in the literature. The
last section is devoted to a brief summary.

Throughout this paper || - ||r will denote the Frobenius norm defined by

|A||Z = trace(AT A),

and || - ||s will denote the stochastic norm defined by (1.3). The norm || - || denotes
the Euclidean vector norm and the spectral matrix norm defined by

(1.5) 14l = max || Aa].

llll=1

In dealing with perturbations of a matrix function F(A), we will write A for
A+ F and F for F(fi) If F is differentiable at A, we will write F for F(A)+ FL(E).
Note that F' is not just any approximation of F' that is accurate up to terms of the
first-order; it is the unique first order approximation that is linear in £.

Notes and references. For general surveys of perturbation theory for matrices
and linear operators, see [25],[42]. The idea of using first-order expansions of nonlinear
functions of random variables is by no means new. Gauss [12]-[14], used the tech-
nique to approximate the variances of parameters from nonlinear least squares fits.
Hotelling, writing in 1940 [22], refers to a “method of differentials,” with the implica-
tion that the practice was widespread. Recently Chatelin [3]-[5] has used first-order
expansions and random matrices to analyze the effects of rounding error on numerical
calculations. As we have pointed out, the chief difficulty with this approach is that
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the quantities being approximated may not have means or variances, so that the inter-
pretation of the means and variances of the approximations becomes problematical.
Theorem 2.8 provides a resolution of this difficulty.

The perturbation theory developed in this paper should not be confused with
results on the properties of random matrices. For example, Demmel [9] considers
the distance of a random matrix from a manifold of degenerate problems. Here the
random matrices are not small, and the concern is not with perturbations of a matrix
function. The work of Weiss et al. [45] is closer to ours in that they assume their
random errors are small enough to ignore higher-order terms; but their concern is
with evaluating average condition numbers, not with perturbation theory as such.

2. The probabilistic background. In this section we will introduce the ideas
and techniques from probability theory that will be used throughout the rest of the pa-
per. We will assume that the reader is familiar with the basic concepts of multivariate
probability theory—distributions, expectations, independence, etc.

The expectation operator will be denoted by E. The covariance of random vectors
x and y will be written

def
C(z,y) = E[(z — E())(y — E(y)) "],
and the variance of a random vector x will be written
V(z) = C(z, ).

If C(z,y) = 0, the random vectors = and y are said to be uncorrelated.

We will denote by G” the space of all random n-vectors whose components have
finite second moments. Note that G” is a vector space under addition and multipli-
cation by a scalar. The zero element is the vector with mean and variance zero. We
write

z~G"(u,X)

to say that # € R"™ has mean u and variance X. If # ~ G"(u, X), then z can be written
in the form

x:u—i—El/ze,

where e ~ G"(0, 7).

2.1. Random matrices. We will denote by G"™*" the space of all random m x
n matrices whose elements have finite second moments. As we pointed out in the
introduction, random matrices are difficult to manipulate in this generality. Hence
we introduce a more tractable class—the cross-correlated matrices—which cover many
actual applications.

DEeFINITION 2.1. A random matrix A € R™*™ is cross-correlated with mean U,
row scale Sy, and column scale S, if it can be written in the form

(2.1) A=U+SHS,

where H 1s a random matrix whose elements are uncorrelated with mean zero and
variance 1. We write

(2.2) A~ TN (U5 Sy, Se).
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The matrices S; and S, are called scales, because they represent row and column
scalings of the matrix H. Their relation to the variance of A is the following. Let
ng) = S;FSF and let ng) = S;FSC. It can be shown (see Theorem 2.3 below) that
if A ~ T™™(U;5,;,S.), then the covariance of the ith and jth columns of A is

(ng))ij S Consequently, if we let vec(A) denote the vector formed by stacking the
columns of A in their natural order, then Clvec(A4)] = sP g ng), i.e., the tensor or

Kronecker product of ng) and ng). Hence the symbol 7 in (2.2).
Definition 2.1 has been phrased with an eye to applications in which the row and
columns scales are known. For theoretical work, the following characterization leads

to a more compact notation.
THEOREM 2.2. If A ~ T™*™(U;S,, S.), then A can be written in the form

A=U+S.H'S!

where S!. and S, are positive semidefinile and the elements of H' are uncorrelated with
mean zero and variance 1.

Proof. We will show how to replace S, with a positive semidefinite matrix, leaving
the modification of S, as an exercise. Without loss of generality we may assume that
Sc has at least as many columns as rows (if not augment S, with zero columns while
augmenting H with rows of uncorrelated elements). Then S, has a polar factorization
Se = SLQT, where S’ is positive semidefinite and @ has orthonormal columns.? The
result now follows on setting H' = QT H . ad

For the rest of this paper we will assume that the matrices 5. and S are positive
semidefinite. In particular, this permits us to write S? for SIS, and similarly for ..

If a matrix is cross-correlated, certain quadratic forms involving it may be easily

computed, as the following theorem shows.
THEOREM 2.3. Let F ~ T™M*"(0;5;,5:), BE€R™ ™, and C € R**". Then

(2.3) E(ETBE) = trace(S.BS.)5? = trace(S2B)S? = trace(BS?)S?,
and
(2.4) E(ECE) = 520752,

Proof. The results will first be established for the case E ~ 77*"(0;1,1). For
(2.3), let S = EYBE. Then

(2.5) 8ij = Zekiel]’bkl~

k)

Since the elements of E are uncorrelated, E(s;;) = 0 unless ¢ = j. Moreover, if i = j,
the expectations of all terms in the sum (2.5) are zero, except those for which £ = .
Thus

E(Su) =E (Z l‘kll‘klbkk) = trace(B),
k

and E(S) = trace(B)I, which is just (2.3) when E ~ 7™>*™(0;1,1).

2 Namely, let Sc = USVT be the singular value factorization of Sc [17]. Then the factorization
Se = (UVUT)(UVT) is the required polar decomposition.
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Similarly, the (¢, j)-element of T'= XCX has the form
ti; = Zﬂb‘ikﬂé‘ljckl.
il

The only term in this sum having nonzero expectation occurs when j = & and ¢ = [.
Thus E(t;;) = ¢;; or E(T) = CT. This is just the form (2.4) assumes when E ~
Tmxr0;1,1).

Turning now to the general case, write ¥ = S.H Sy, where the elements of H are
uncorrelated with mean zero and variance 1. Then

E(ETBE) = E(S,H"S.BS. HS,)
— S,E(HTS.BS. H)S:
= Sy[trace(S. BS:)1]S:
= trace(S. BS.)S2.

The other inequalities in (2.3) follow from the fact that the trace of a product of two
matrices is independent of the order of multiplication.
The derivation of (2.4) goes as follows:

E(ECE) = E(SeHS:CS.HS;)
= S.E(HS,CS.H)S;
= Se(SCS)TS,
=520Ts2. O

For later reference we note that when B = AT A, equation (2.3) reduces to
(2.6) E(ETATAE) = ||S.A||352.

2.2. Properties of the stochastic norm. The purpose of this subsection is to
establish the basic properties of the stochastic norm defined by (1.3). The first step
is show that it is indeed a norm.

THEOREM 2.4. The function || - ||s defined by (1.3) is a norm on G™ or G™*". If
E(ATB) =0 then

(2.7) 14+ BlIs = [1AlI3 + | BII3.
If A and B are independent, then
(2.8) I1ABlls < [IAlls[IBl]s-
Proof. We will show first that || - [|s is a norm on G". For any z,y € G” define
(x,y) = E(zTy).
The function (-, -} is bilinear, symmetric, and definite in the sense that
t#0 < (z,z)>0.

1/2 is a norm. It is easily

Hence (-, -} is an inner product on G", and the function (z, x)
verified that (z,z) = ||z||2.
To establish the result for G™*™, identify G™*™ with G™" and observe that the

matrix and vector norms are the same.
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Equation (2.7) is established as follows:

|4+ B||2 = E{trace[(A+ B)T(A + B)]}
= Eftrace(AT A)] + 2E[trace(AT B)] + E[trace( BT B)]
= Eftrace(AT A)] + E[trace( BT B)]
— JAIR + 1Bl

Finally to establish (2.8),
IAB| = E(|AB|7) < E(IAIEBllF) = E(IAIR)EBIE) = [[AIEI1BIE.  ©

The next theorem shows how to calculate the stochastic norm of a single matrix.

THEOREM 2.5. Let A = U + E, where U is constant and £ € G™*™ has mean
zero. Let S be the matrix of standard deviations of the corresponding elements of E.
Then

(2.9) AN = 1U11E + N BIIS = 1U11E + 151§
In particular, if A € T"*"(U; Sy, Sc) then
(2.10) NS = 11U[E + 1Sl 115

Proof. The proof of (2.9) is purely computational and will be left to the reader.
For (2.10), we need to to show that ||E||2 = ||S;||2]|Sc||%. By (1.3) and (2.3),

|IE||% = Eltrace( ET E)]
= trace[E(ET E)]
= trace[trace(S?)S?]
= trace(S?)trace(S?)
=[S ElS:NE B

There are some observations to be made about this theorem. In the first place,
a stochastic perturbation theory can, in principle, be based on (2.9) alone. However,
in our applications we will be concerned with sums and products of matrices. Here
any attempt to use (2.9) will result in a welter of incomprehensible formulas. How-
ever, 1f we restrict ourselves to cross-correlated errors, then Theorem 2.3 provides the
wherewithal to produce simple expressions for the stochastic norm. Fortunately, the
class cross-correlated matrices is extensive enough to be suitable for a wide variety of
applications.

In the sequel we will take U = 0. Since this seems to be a restriction on our
theory, an explanation is in order. Returning to the notation of the introduction, we
note that F4(U + E) = F,(U)+ F,(F). Hence by Theorem 2.5,

I1FAU + E)lIs = IFA(U)IE + IFA(E)]S-

Thus the stochastic norm of the error in the first-order approximation decomposes
into the Frobenius norm of a constant part and the stochastic norm of a random part.
The constant part is just what would be obtained by applying first-order perturbation
theory to U. Thus we take U = 0 to focus attention on the random part, which is
what 1s new in this paper. However, there is nothing to keep one from adding in a
constant part if the application demands.
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2.3. Interpretation of the stochastic norm. We now turn to the interpreta-
tion of the stochastic norm;i.e., to the second question in the introduction. It is not
enough to know the size of ||A|ls. We also need to know how much larger A can be
than ||Al|s. One answer is provided by the Chebyshev inequality, which says that for
any random variable e with finite second moment,

1

P{le] = AB(e)2} < oy

Since, E(||A||%)1/2 = ||4]|s, we have the following bound.
THEOREM 2.6. Let A ~ G™*". Then

1
(2.11) P{|l4lle > Ml4lls} < 13-

Although this result holds for general matrices, its natural application is to ma-
trices ' with mean zero. It says that the probability of observing || E||r to be larger
than 10||E||s is less than one in one hundred. Tt should be appreciated that (2.11)
1s very conservative, since it takes into account the worst possible distributions. For
most distributions, the probability is much less. For example, if the elements of F
are independently, normally distributed random variables with mean zero and equal
variance and mn > 10, then the probability of || E||r being greater than 2.5||E||s is
less than 0.005.

2.4. Convergence of linear approximations. As we indicated in the intro-
duction to this paper, we will estimate perturbations F in a function F by computing
the perturbation in a linearization F. In such an approach, there is always the prob-
lem of determining when the linearization is a good approximation to the actual value.
In considering stochastic perturbations, we have the additional problem that the dis-
tribution of F' may not have a mean or variance. What then does a value of ||F— Flls
mean?

To illustrate the problem, let e be normally distributed with mean zero and
standard deviation ¢, which is presumed small. Let ¢ = 1/(1 — €) be a random
perturbation of the function ¢(z) = 1/(1 — z) at # = 0. We have $ = 1 + ¢, from
which it follows that || — ¢||s = ¢. On the other hand the density function of e is
nonzero and continuous at the singularity e = 1 of ¢; hence ¢ has neither mean nor
variance. Yet one feels that the number ¢ should give us some information about the
distribution of ¢, since when o is small it is exceedingly improbable that e will be
anywhere near 1.

We will solve this problem by showing that ¢ — ¢ and ¢ — ¢, suitably scaled,
approach each other in probability.

DEFINITION 2.7. For each A in an index set with limit point p, let ey be a random
vector. Then e converges in probability to a random vector e if for every ¢ > 0

lim P{||e>\ —e|| > 6} =0.
A—p
We write

plimey = e.
A—p
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Fic. 2.1. Distributions of ¢ (solid line) and é (dashed line) for normal e.

It is easily verified that the definition is independent of the norm; in fact ey converges
in probability to e if and only if the individual components of e) converge in probability
to the corresponding coefficients of e. Moreover, if f is continuous at the point e, then
plimey = e implies that plim f(ex) = f(e).

For our problem, the critical fact is that if plim,_,, ex = e, then the distribution
function of ey converges to that of e at all points of continuity. This has the following
consequence for our example. We will show (Theorem 2.13 below) that

2.12 hm — = .
( ) plim pn

Suppose we use the fact that (¢ — 1)/ is normally distributed with mean zero and
variance 1 to predict that ¢ lies in the interval (1 — 3.36, 1+ 3.30) with probability
greater than 0.999. Then ultimately the same holds true for ¢. Figure 2.1 illustrates
convergence of the distribution ofqzvS to that ofqz; for the case where e is normal.
A formal justification of the above claims is provided by the following theorem.
THEOREM 2.8. Let f : R™ — R have a Frechet derivative f. at the point © and
let e ~ G"(0,X). Then

flxte)—flz) = file _

(2.13) plim =0.

5—0 15421k
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Moreover, if there is an o > 0 such that as ¥ — 0
(2.14) ISY220 2 all S22 > 0,
then

flxte)—flz)—file _

(2.15) plim =0.

=0 1272 £

Proof. We will prove (2.15), the proof of (2.13) being similar.
For e # 0 define

and set 4(0) = 0. Then 7 is continuous at zero and

(2.16) plimy(e) = 0.
-0

Now let €,6 > 0 be given. It is sufficient to show that for ¥ sufficiently small
P{[lellv(e) > [I=Y/2f1]le} < 6.
In view of (2.14) this will be true if
(2.17) P{llellv(e) = allS2|[|f2llc} < 6.

By the Chebyshev inequality (cf. Theorem 2.6) there is a 5 > 1 so that
1/2 6
P{jlell > I} < 3,

independently of ¥. From (2.16) it follows that for all ¥ sufficiently small

_ 6
P{3(0) 2 0B~ [If1ll} < o
In follows that

P{llelly(e) > all=2[[1£20le} < PLUlell > BISY2N} + P{y(e) > af™![Ifille}

5 6
< 2 + 2
which establishes the theorem. ad

There are some technical comments and some general observations to be made
about this theorem. We will begin with the technical comments.

The denominator [|£1/2f% || is the standard deviation of f and serves the same role
as the denominator ¢ in (2.12). Condition (2.14) says that this standard deviation
must not decrease more rapidly than ¥'/2 as could happen when X is degenerate or
when fI = 0. Equation (2.17) shows clearly that convergence will be delayed when
either o or fI is small.

Another way of looking at this is to realize that if the standard deviation off
is zero, it 1s impossible to scale the distribution f— f. However, in this case (2.13)

=0

bl
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says that the distribution of f degenerates superlinearly—which 1s almost as good as
having zero variance.
Condition (2.14) can be replaced by

def .. . [|IZYELL]
Qopt = Iminf ———F—— > ().
' S REFA]
In general aope will depend on ¥ and its relation to f,. However if the condition
number I{(El/z) = ||01/2||||E_%|| is uniformly bounded, we may take

a =lim infﬁ_l(El/z)

as a lower bound on agps.

The first general observation to be made is that this is a distribution-free result.
Not only does it not assume that e has a particular distribution, but it does not
assume that e belong to a particular class of distributions (e.g., normal) as ¥ — 0.

The price to be paid for for the generality of the theorem is that it does not
give explicit error bounds, something it shares with many asymptotic results from
probability theory.® In the sequel we will use results from perturbation theory to
evaluate the domain of applicability of the theorem.

One of the referees has suggested that sharper results may be obtained by assum-
ing that e is uniformly distributed in a sphere not containing a singularity of f, in
which case f(e) has second moments. Of course, if this is the distribution appropriate
to the application at hand, then one should use it. But many applications require
normal distributions (see §3.4 below), or even distributions with heavier tails.

The notion that a uniform distribution will produce sharper bounds is worth
a closer examination. Since the stochastic norm depends only on first and second
moments, it is effectively independent of the form of distribution, which enters only
via its effect on the rate of convergence of the linear approximation. Now the proof of
Theorem 2.8 shows that simply excluding singularities from support of the distribution
is not enough. The crux of the matter is whether the distribution is concentrated in a
region where a linear approximation is valid. In this respect the uniform distribution
is at a disadvantage compared to distributions, like the normal distribution, whose
density drops off very rapidly away from its mean. However, we should not make too
much of this. Although a comparison of Figs. 2.1 and 2.2 shows that convergence is
slower for the uniform distribution, it is not very much slower.

2.5. Complex values. Since some of the objects we will be treating, such as
eigenvalues and their eigenvectors, can have complex values, 1t is important to indicate
how the results of this section are affected by the switch from real to complex numbers.

The calculus of expectations remains unchanged as long as we replace the product
xy by Zy, so that #? becomes |z|?. In particular if we replace the transpose by the
conjugate transpose, the results on cross-correlated matrices remain unaltered. Since
the results on the stochastic norm and the convergence theorem deal with real-valued
quantities, they also remain unaltered.

3 However, its proof does provide hints about what makes for fast convergence. For example, o
should be large, and the distribution should have small tails so that 3 is small. Moreover, ~ should
not grow swiftly; i.e., the first-order approximation should be good.
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F1c. 2.2. Distributions of & (solid line) and é (dashed line) for uniform e.

Notes and references. The background for this section will be found in almost
any probability or statistics book that treats multivariate distributions. Elementary
treatments may be found in [21],[30].

The notation G(M, ¥) was suggested by the use of the letter G in queuning theory
to stand for a general distribution, a practice started by Kendal [26].

§2.1. The material in this section appeared in some lecture notes by the author (c.
1982). Theorem 2.3 has been published by Neudecker and Wansbeek [28]. Although
their paper treats normal matrices, their proof is quite general.

§2.2. The formal use of the function E[trace(X T X)] as a norm on random matrices
appears to be new. Its major problem is that the submultiplicative inequality (2.8)
can fail. For example, if e is distributed normally with mean zero and variance 1,
then

lle - ells = E(e*) = 3> 1 = E(e?)E(e”) = [|el[§[|ell3-

The inequality can even fail for uncorrelated matrices.

§2.4. Theorem 2.8 is the author’s, who first proved (2.13) in [37]. Serfling [32,
Thm. 3.3A] gives a similar theorem, but with e normal, ¥ of the form b, %, for fixed
Yo, and convergence in distribution. It is worth noting that if e = X'/2¢y, where
eg ~ G"(0,71) is a fixed distribution, then the convergence is with probability 1.
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3. Pseudo-inverses, least squares, and projections. In this section we will
consider perturbation of pseudo-inverses, least squares solutions, and projections.
Throughout this section A will denote an m x n matrix of rank n. The matrix
C = AT A is the cross-product matrix. The matrix P = AA' is the orthogonal pro-
jection onto the column space of A and P, = I — P is its complementary projection.

We will assume that the perturbation matrix E is distributed 77>*™(0; S, Se).
The expressions we derive will be simplest when S. = i, and S. = I, so that the
elements of E are uncorrelated with variance 02. We will refer to this as a simple

perturbation.

3.1. The pseudo-inverse. In this subsection we will consider perturbations of
the pseudo-inverse of A defined by

(3.1) Al = (AT 4)=1 AT,

3.1.1. Perturbation expansion. The perturbation expansion for AT is easily
derived by replacing A by A = A4 F in (3.1), using the linear part of the Neumann
expansion of (AT A)~! dropping higher-order terms, and simplifying. The result is

(3.2) A=At —AtEAt y 1 ETP,.

3.1.2. Range of applicability. In is important that we have some idea of when
the linear approximation (3.2) is valid. There are two conditions that must be satisfied.

In the first place, the matrix A+ F must be of full rank. Most of the perturbation
bounds in the literature are derived under the supposition that

|ATE|| < 1
or the stronger condition
(3.3) AT < 1,

both of which insure that A is of full rank. In keeping with our program, let us derive
the stochastic norm of ATE. We have

||ATE||§ = trace(ETATTATE).

By (2.3),

|AT B[ = ||ATS.| [} trace(52).
Hence
(3.4) di = || ATE|ls = [|ATS[lellS:le,

or in the case of a simple perturbation
dy = /no||AT||r.

If dy 18 near 1, we should not trust At to approximate At
A second source of nonlinearity is bias in the the cross-product matrix C = AT A.
Specifically, we have

C=(A+PEY'(A+PE)+ETPLE.
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Since the diagonals ET P, E are nonnegative, its addition causes an upward bias in
the diagonals of (A + PE)YY(A + PE). More generally, any quadratic form vTCwv is
biased upward by v* ET P Ev. The expected value of v*ETP) Ev/vTCv is

9 vTva
FoOTCw

I1PLSEl
Setting w = Av, so that v = ATw, we see that the maximum of this expectation is
(3.5) ds S [|SeAT [ PuSe[f.
or in the simple case
d3 = (m —n)o?|| AT,

Again, unless d3 is substantially less than 1, we should not trust the linear approxi-
mation.

It is instructive to compare the two diagnostics d; and d% in the case of a simple
perturbation. The latter varies as ¢ and, as the error approaches zero, is dominated
by the former, which varies as ¢. On the other hand, suppose that ¢ is fixed and we
add rows to A in such a way that lim,,_.. m™tATA = C.,. Then AT = O(1//m),
and d; — 0 while d% remains uniformly positive. Thus d; measures an effect that
dominates for small errors, while ds measures an effect that dominates as we increase
the size of the problem, holding the size of the errors fixed.

3.1.3. The perturbation estimate. We now turn to the computation of ||AJr —
Allls, where A is given by (3.2). Since (ATEAT)(C~'ETP)T = 0, the matrices
ATEAT and C~'ETP; are uncorrelated, and we may bound them separately [cf.

(2.7)].
We have first

|ATEA)|Z2 = Eftrace(ATYETATT ATEAY)] = trace[ATTE(ET ATT AT £) AT).
Hence by (2.6),
[ATEAT(S = || ATSZ [Ftrace(ATTSTAT) = [|ATS|[f ]S ATl

Similarly*
ICT ETPLIE = [ PLSelE(1S-C 15
Hence
(3.6) JAT — AT|ls = \/||AT5c||%||5rAT||% + [1PLSe [R5 C~ g

or in the simple case

| AT — AT|ls = U\/||AT||4F + (m = n)|C7HJf.
Since [|C7Y|r = [|JATATT||p < ||A1||Z, we have for the simple case

JAT — ATls

AT < ovm—n+ 1||Al||F.
F

4 In the sequel we will omit the routine computation of stochastic norms.
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The right-hand side of this inequality may be further manipulated to give

|AT — Al||s Vm—n+1lo

(3.7) A ="

where
r(A) = [|Allel|ATlp

is the condition number of A. In this form the bound is similar to others appearing in
the literature. However, we have obtained this pretty form at the expense of sharpness,
and in the sequel we will not massage our formulas beyond simple equalities, unless
we are forced to do so.

3.2. Least squares and projections. One seldom has cause to bound pertur-
bations of the pseudo-inverse alone, since in most applications the pseudo-inverse 1s
invoked only to be applied to a vector or matrix. In particular, it is well known that
the vector # = AT solves the least squares problem of minimizing ||b — Az||?. In this
case the residual vector » = b — Ax is the projection onto the orthogonal complement
of the column space of A; that is, » = P; . We now turn to estimating the sizes of
the perturbations in #, P, and r.

3.2.1. Least squares solutions. A perturbation expansion for ¥ can be easily
found from the expression (3.2) for A; namely,

(3.8) f=2— A'Ez+C'E"

From this a perturbation estimate is easily calculated in the form

1E —lls = \/Ilz‘UScII%IISM‘II2 + [1Ser [Pl C %

In the simple case this becomes

& —2(ls = 0\/||ATII%||1‘||2 + [P

3.2.2. Individual components. It is useful to have estimates for the errors in
the individual components of #. Multiplying by the transpose of the ¢th unit vector
1;, we get

T; = @ — aET)TEJ: + cg_l)TETr,

where aET)T is the ith row of AT and cg_l)T is the ith row of B~'. From this we get

(3.9) 1 — zills = VlISealDl2{1Se 2 + 1Secl D2/ Ser] 2

A particularly interesting special case occurs when only one column of A, say the jth,
is permitted to vary; that is, when S, = I and S, = Ujll;r. In this case (3.9) becomes

o -1
(3.10) i = zills = o33/ llal V1Pl |7 + [P

Thus the quantity \/||a§T)||2|J:j|2—|— |c§]»_1)|2||7“||2 is a condition number for z; with
respect to perturbations in the jth column of A.
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3.2.3. Projections and the residual vector. The perturbation expansion for
the projection operator P = AAT may be found by replacing AT by AT, dropping
second-order terms, and simplifying. The result is

P=pP—p EAT— (P EANT,
From this a perturbation estimate is easily computed:
1P = Plls = V2|IScPLIr|1S:ATIr,
or for the simple case

1P = Plls = v/2(m —n) || A[|po.

Since Py = I — P, the same perturbation estimates hold also for P, .
For the residual vector r = P b we have

F=r+ P Fx+ ATTE .

Hence

17 =rlls = \/IISCPLII%IISM‘II2 + [ Ser|[*]5- AT

In the simple case this becomes

1= rlls = oylm = mlle? + AT

3.3. The inverse matrix and linear equations. When A is square, so that
m = n, we have P, = 0. Consequently, perturbation results for the inverse and for
linear systems may be obtained trivially from those of the previous subsections by
taking m = n and dropping all terms containing P, .

3.3.1. The inverse matrix. The perturbation expansion for A may be obtained
from (3.2):

(3.11) ATt =A"t—ATtpatt

For this expansion to be valid, we must have d; defined by (3.4) to be substantially less
than 1. However, the quantity d3 defined by (3.5) is zero and need not be considered.
The perturbation estimate can be obtained from (3.6):

JA™ = A7 ls = |47 Selle 1S A e,
or in the simple case
JA™! = A7 Y|s = of A7 I
Note that (3.7) now becomes

A7 — A o
L L H(A)—
1A= H]e 1Al

with equality instead of inequality.
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3.3.2. Linear systems. The perturbation expansion for # = A~!b may be ob-

tained from (3.8) or directly from (3.11):
f=x—A"'FEz.
The corresponding estimate is given by
12 = ls = [|ATSe[|p[|Sp2]],
and for the simple case by
1 = lls = of|AT|pl]].

3.4. An application. In this subsection we will give an application of the above
theory to the statistical analysis of regression problems with errors in the regression
matrix. The standard model for the ordinary regression problem is written®

b= Ax + e,

where e is a vector of independent normal variates with mean zero and common
variance o?. The vector of estimated regression coefficients is

(3.12) &= Alb =z 4 Ale.
Since Ate is linear in e we can approximate the distribution of b provided we have an
independent estimate of ¢. It turns out that

12,5

vm—n

o=

is just such an estimate.
It sometimes happens that A cannot be observed directly but is measured or
otherwise contaminated with errors. Thus the regression matrix we have at hand is

A=A+ FE. In one widely used model it 1s assumed that
E ~ T™5(0; Y2 1)

and is normally distributed. If X is unknown, we will be forced to work with the
estimate

F= At

instead of . Obviously, Z is a nonlinear function of £. Nonetheless, if F is reasonably
small it is well behaved.
To see why this should be true, rewrite the perturbed model in the form

b:fia:—l—(e—Ex).
It then follows that
z :x—i—fiT(e—Ex) =+ Al(e — Ex) 4+ FH(e — Bu),

where we have written FH = AT — AT, Now as F becomes small F' becomes small.
Consequently

F=i=a4 Alle — Eb).
Comparing this equation with (3.12), we see that

5 This is the model as a numerical analyst would write it. A statistician would write something
like y = X3 4 e, where X is an n X p matrix.
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If F is small compared with A, then & behaves as if it came from the

linear model b = Ax + (e — Fx).
Since the variance of the components of ¢ + Ex is ¢ + 29Xz, the perturbed model
behaves as if the variance of the components of £ had been inflated by zHXz. In
much the same way, we can show that

[1PLb]
vm-—n

is asymptotically an independent estimate of v/o2? 4+ zHXz, so that the usual least
squares procedures work without further alteration.

It should be noted that this is not merely a continuity result; E does not have to
be so small that its errors are negligible. On the contrary, it is possible for e to be
zero, so that all the variability in the problem comes from F.

o=

Nor 1s & a first-order expansion. Since we do not assume that ¢ — 0, the term
FHe, which we have thrown away, is of the first order. However, it dominated by the
term Afe and must ultimately become negligible.

To apply these observations we must determine when F' is negligible compared to
A. Here we may apply the theory developed previously. Specifically, if F= At - AT
then it follows from (3.6) that

1£1ls
1A |

< ||zt = 7.

Thus if 7 1s reasonably less than 1, then we are secure in applying least squares
analysis to the perturbed model. Note that we do not require a detailed knowledge
of ¥; crude information sufficient to bound 7 is sufficient. Simulations suggest that
least squares analysis can be trusted when 7 is less than 0.3.

Notes and references. Perturbation theory for the least squares problem begins
with Golub and Wilkinson [18], who produced first-order expansions for least squares
solutions. For surveys of the theory, see [44, 35, 42]. For extensions to more general
problems, see [10, 29].

In the statistics literature, Hodges and Moore [19] and Davies and Hutton [7]
have used first order approximations to least squares solutions to assess the effects of
errors in the regression matrix—the problem of errors in the variables as it 1s known.
See also [2] for applications to econometrics.

§3.1.2. The presence of bias in regression coefficients with errors in the variables
has long been known to statisticians under the name asymptotic inconsistency; e.g.,
see [23, §9.4], and [1, 40].

§3.2.1. As mentioned above, the perturbation expansion is due to Golub and
Wilkinson [18].

§3.2.2. The quantities in (3.10) were derived in [36] as sensitivity coefficients for
linear regression.

§3.2.3. The quantity ||ﬁ — P||3 is twice the sum of squares of the sines of the
canonical angles between R(P) and R(P) (see [35] for definitions). Thus the bounds
estimate how far the column space of A deviates from that of A.

§3.4. The basic idea underlying this section is due to David and Stewart [6]. The
present treatment is take from [41]. For an introduction to regression analysis with a
survey of the errors-in-the-variables problem see [31].



STOCHASTIC PERTURBATION THEORY 19

When 7 is too large, one must have recourse to other techniques—techniques that
require a precise knowledge of ¥. As usual, statisticians and numerical analysts have
worked on the problem without consulting one another. Fuller’s book on measurement
error models [11] is the definitive source for the statistical approach (it contains much
more than the model treated here). On the numerical side, Golub and Van Loan [16]
(also see [43]) have created a technique based on the singular value decomposition
known as total least squares, which is closely related to the statisticians technique.
When 7 is small, total least squares and least squares give essentially the same results

[38].

4. Eigenvalue problems. In this section we will be concerned with stochastic
perturbation theory for certain eigenvalue problems. In the first subsection we will
treat the perturbation of invariant subspaces and the perturbation of the represen-
tation of an operator on an invariant subspace. In the next two subsections we will
consider the simplifications that obtain first when the matrix is symmetric and then
when the dimension of the invariant subspace is 1 (i.e., the perturbation of eigenval-
ues and eigenvectors). The section concludes with a treatment of the singular value
decomposition. Throughout this section, A will denote a square matrix of order n.

4.1. Imnvariant subspaces. It is convenient to approach the perturbation of
eigenvectors and eigenvalues from the problem of the perturbation of invariant sub-
spaces, since the latter, more general problem is of independent interest. However,
this approach exacts a toll. The perturbation expansion for an invariant subspace
involves a linear operator that does not interact nicely with cross-correlated matri-
ces. The consequence 1s that we can only give bounds on the stochastic norms of the
perturbations, whereas previously we have been able to compute the norms exactly.
Fortunately, in some important special cases we can restore the lost equality.

We will start with a review of some facts about invariant subspaces, which will
also fix the notation to be used throughout this section.

4.1.1. The representation of invariant subspaces. We begin with the defi-
nition of an invariant subspace of A.

DEFINITION 4.1. Let A be a k dimension subspace of C*. Then X is an tnvari-
ant subspace of A if

(4.1) A E Arrex)ca.

In other words, Ay is an invariant subspace of A if A maps A into itself.
Let (X1 Y3) be a unitary matrix with R(X;) = A. Then from (4.1) it follows
that the columns of AX; can be written as a linear combination of Xi; that is,

(4.2) AXy = X144,
where

Ay = XBAX.
Moreover, from (4.2) and the fact that Y21.X; = 0, we have
(4.3) Y AX, = 0.

These relations may be summarized by writing

XH _( A A
" (5w (A 4,
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which also defines A;5 and Ass.

When A is regarded as an operator on A7, the matrix A;; is the representation
of A with respect to the basis formed by the columns of X;. It is easy to see that
R(Y3) is a left invariant subspace of A, or equivalently

YHA = Ay VH

Thus Asz is the representation of A of the left invariant subspace R(Y3) with respect
to the basis formed by the rows of Y.

4.1.2. Simple invariant subspaces. An important example of an invariant
subspace 1s the space spanned by an eigenvector 1. Unfortunately, even when they
are normalized, say by requiring ||#1|| = 1 and that some specific nonzero component
of z1 be positive, eigenvectors need not be unique. For example, if A is Hermitian and
it has an eigenvalue of multiplicity m, the corresponding eigenvectors span a space
of dimension m. In perturbation theory, the usual way of getting around this prob-
lem, is to assume that the eigenvalue is simple, so that A has a unique (normalized)
eigenvector.

The notion of simplicity can be generalized to invariant subspaces by observing
that the set eigenvalues A(A) of A is the union of A(A;11) and A(Az2). When A, is
a scalar (i.e., an eigenvalue), it is simple if and only if it is not also an eigenvalue of
Ass. This leads to the following definition.

DEFINITION 4.2. The invariant subspace X7 is simple if
A(A11) N A(Ag2) = 0.

In deriving a perturbation bound, it will be important to be able to solve Sylvester
equations of the form

A2aP — PAy = Eo.

It turns out that this is equivalent to requiring A’y to be simple, as the following widely
used theorem shows.
THEOREM 4.3. Let the linear operator T be defined by

(45) T=P— A22P — PAll.
Then T s nonsingular if and only if
A(A11) N A(Ag2) = 0.

Moreover, if we set

def

(4.6) 6= inf |ITP|lp =T,

1
IP|r=1
then

(47) 6 < HllIl{|A1 — A2| AL €A s € Azz}.
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4.1.3. Representation of ¥. Let A = A+ E, where E ~ 7(0,5;, S:). We will
be concerned with the effects of £ on the simple invariant subspace A;. For now we
will assume that there is an invariant subspace Xy of A which approaches X as F
approaches zero. We will justify this assumption in §4.1.6.

In order to obtain a perturbation expansion for the invariant subspace Xy we must
address two problems. The first is to represent [ in such a way that we can measure
its distance from A’;. The second is to find a perturbation equation from which we
may cast out higher-order terms.

Turning to the first problem, we will seek a basis for X in the form

(4.8) X1 = X1 + V5P,

where P is to be determined. There are two reasons for this choice.

First, it 1s easily verified that )N(l(f + PHP)_I/2 has orthonormal columns. In
other words, up to second-order terms in P, which is presumed small, the columns of
X form an orthonormal basis for .?E'l.

Second, there are many ways of choosing bases for A7 and .?E'l, some of which
may be quite different even when A; and X, are near. However, if we define X by
(4.8), then of all matrices whose column spaces span &7, the matrix X; is nearest Xi.
Specifically, we have the following theorem.

THEOREM 4.4. If (X1 Y2) is unitary and X, is defined by (4.8), then X1 solves
the following least squares problem

(4.9) minimize: ||)~(17— Xi|r,
’ subject to: R(X;) = Xy.

Proof. Let X1 = X1 R. Then the above minimization problem becomes

minimize: ||)~(1 — X1 R||p,
subject to: R is nonsingular.

If we drop the restriction that R be nonsingular, then from the theory of least squares,
the minimizing value of R is given by

R= (XXt XX,

But from (4.8) XF)NQ = X1X; = I. Hence R = I (which is nonsingular) and X;
solves (4.9). a

4.1.4. The perturbation bound. The second problem is to determine a per-
turbation equation and solve it. The key is to observe that equation (4.3) is not only a
consequence of R(X;) being an invariant subspace, it is actually a sufficient condition
for R(X1) to be an invariant subspace. For if Y(AX ;) = 0, then R(AX) lies in the
orthogonal complement of R(Y2); that is, it lies in R(X7).

Thus our problem reduces to finding a basis for the orthogonal complement of X'
But if X; is represented in the form (4.8), it is easily verified that the columns of

Y, — X; PH

form a basis for the required space. Thus a necessary and sufficient condition for
R(X1) to span an invariant subspace of A is that

(4.10) (Yol = X1 P)(A+ E)(X; + Y2P) = 0.
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Equation (4.10) can be simplified by the introduction of the operator T defined
by (4.5). Specifically, let

By FE
X YO E(X] Yy = = 12).
(X3 Vo) R B(X V2) (EZI Eas

Then (4.10) is equivalent to
(4.11) TP + (FyaP — PEy1) = Fa1 — P(A12+ F12)P,

where A5 = XlHAYz as above.
If we drop second-order terms from (4.11), we get our first-order perturbation
equation

(4.12) TP = Ey.

Since by hypothesis A7 is simple, T is nonsingular, and
(4.13) P=T'Fy.

This gives the perturbation bound

1. < IElls _ IS lellScYale
4.14 Plls < =
(4.14) 1Plls < 1= e tale

where 8 is defined by (4.6). In the simple case (4.14) becomes

kin—k)o
s

4.1.5. Interpretation of the bound. The bounds (4.14) and (4.15) consist of
two parts: a norm of Es; and a divisor 8. From (4.7) it follows that if the eigenvalues of
Aq1 and Asgs are not well separated, 6 will be small. In other words, if the eigenvalues of
A corresponding to the invariant subspace A are near the eigenvalues corresponding
to the complementary invariant subspace, the bounds (4.14) and (4.15) will be large,
and we can expect X; to be sensitive to perturbations in A.

The norm of E5; has an interesting interpretation, which is given in the following
theorem, whose proof is left as an exercise.

THEOREM 4.5. The Frobenius norm of oy satisfies

(4.15) I1Plls <

||E21||FI min ||AX1—XlB||F,
Beckxk

and the minimum s attained when B = Xlein.

If R(X1) were an invariant subspace of fi, we could make the residual AXl - X, B
zero by choosing B to be equal to the representation of Aon R(X1);ie,B= Xlein.
Even when R(X7) is not an invariant of subspace of fi, this choice of B minimizes
the norm of the residual, whose value at the minimum is || Fa1||r.

4.1.6. Range of applicability. The foregoing development presupposes that
there is an invariant subspace of A that approaches X, as E approaches zero. The
following theorem shows that this is true by showing that if A} is simple and E is
small enough, the perturbation equation (4.11) has a solution P that approaches zero
as IJ approaches zero.
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THEOREM 4.6. If
(4.16) |Eva]] + (| E22f| <6

and

[|Eo||p||Ar2 + Eroflp 1
(4.17) <z
(6 = [[Enll = |1E22l))* 4

then (4.11) has a unique solution P that satisfies

2| Eanlr

(4.18) [|PllF < .
6 —[[En|l = [| Eaal|

The condition (4.16) essentially says that the perturbations E1; and E22 do not
make the operator T singular [cf. (3.3)]. If we replace the norms by stochastic norms,
we get

(4.19) 15 X1 l|p[[Se X1 llr + 15 Yallel|ScYalle <6,
or in the simple case
(4.20) no < 6.

If (4.19) or (4.20) show that Ey; and Eas have a negligible effect in the denominator
of (4.17), then we ignore it. In this case, the second condition written in terms of the
stochastic norm becomes

[1SeYalle (| Se X [le V[ Aol + (1S X1 7 lIS:Yallf
62

1
4.21 —.
(4.21) <3

In the simple case this becomes

oVk(n = b)V[IAn[f + k= Do? 1

82 4’

If (4.20) is satisfied, this latter condition can be replaced by the simpler, but stronger
condition

VAl + k(n — 1)o?
5

<

N

4.1.7. The representation of A on Z{()v(l) Just as Ay = )ngAX} i1s the
representation of A on A, so is X1(A + E)X; the representation of A on ;. This
matrix is readily found to be

Ay = A+ By + AP
and its first-order approximation is
(4.22) Ay = Ay + By + AP,

where P is defined by (4.13).
From (4.22) and (4.14) we have

[ A2 [[}5: X [ ]| Se Yol

(4.23) 1411 — Auills < (1S X1 ||pllSeX1(lp + | 5
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or in the simple case

A k(n—k)||A
[A11 — A1sls < (k_|_ JT&)II 12||) -

When k£ = 1 these inequalities provide a stochastic bound on the perturbation of an
eigenvalue of A. In the general case, we need more information about Ay; (e.g., A1
is normal) to say anything about the relation of the eigenvalues of Ay; and A;;.

4.1.8. Other representations of ;. The representation of Xy in the form
(4.8) amounts to imposing the normalization X{{)N(l = I. But this is not the only
desirable normalization. For example, if AT is stochastic and #; its Peron vector,
then one might wish to impose the normalization 172, = 1, where 1 is the vector of
all ones. This allows the components of 21 to be regarded as probabilities, since they
are nonnegative and sum to 1.

We will consider normalizations of the form

(4.24) WHX, =1,

where W satisfies

(4.25) WX, =1

Any matrix satisfying (4.25) can be written in the form
Wi = X1 +Y2Q"

(to see this write W, = X; R+ YoQY, and multiply first by X! and then by Y).
The normalization (4.24) can be regarded as a block transformation of the coor-
dinate system defined by (X; Y2). Let

1
(X1 Wa) = (X, Y2)< b ) — (X1 Yot X1Q).

Then

(1 =@ XPN (vt
Moreover,

Wil ) ( Ay ALY )

A(XL Wa) = 12 ,
( V! (X1 W) 0 A

where
(4.27) A = Wi AW, = Ars + 411Q — QAss.

Thus (X7 Ws) defines a (nonunitary) similarity that reduces A to block triangular
form [cf. (4.4)].

We can now repeat our entire development. The normalization (4.24) is equivalent
to seeking X, in the form

X = x4+ w,PW).
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[cf. (4.8)]. From (4.26) it follows that the columns of Y3 — W1 PH form a basis for the
orthogonal complement of R(X7). Hence the perturbation equation is

(Yo — Wi PRY(A + E)( X1 + W2 PPy =0

[cf. (4.10)], from which we find that

(4.28) TPW) = By,

In this case the representation of A with respect to )N(EW) up to first order-terms is
given by

(4.29) A = Ay 4+ B 4 A p),

where E") = WHEX, and E\Y) = WHEW, [cf. (4.22)].
Comparing (4.12) and (4.28) we obtain the following remarkable theorem.
THEOREM 4.7.

POV) Z .

In other words, the same P serves for all normalizations. Unfortunately, the
ranges of applicability may be different, since P(") will in general be different from
P. Tt is therefore worthwhile to give a different proof of Theorem 4.7, which shows
explicitly how they differ.

Second proof of Theorem 4.7. Since the columns of (X; Ws) are linearly indepen-
dent, we may write X; = XU + W,V or

X1+ Y.P =X U+ W,V

Multiplying this expression by Y! and using the fact that YWy = I, we get V = P.
Multiplying by XT and using the fact that XHW, = Q, we get U = I — QP. As
E — 0, the matrix U approaches I. Hence for E sufficiently small U is nonsingular,
and we may write

Xy =R[X, + W P(I - QP)7Y].
Thus
PW) = p(1—QP)"".

The theorem follows on replacing P by P and discarding higher-order terms. ad
This second proof shows that we can trust the expansion )?EW) =X, +WoP only

when P is accurate and QP is small. We will use this fact in discussing generalized
Rayleigh quotients, to which we now turn.

4.1.9. Generalized Rayleigh quotients. One of the unsatisfactory aspects of
the above development is the presence of the term A(lI;V)P(W) in the expression (4.29)
for fi(lzv) Since Wy, or equivalently @), is a free parameter, we can choose it to make

A(II;V) = 0. From (4.27) we see that this is equivalent to choosing @) to satisfy

(4.30) T"Q = Ais,
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where
T =Q — QAz — A11Q.

As the notation suggests, T* is the adjoint of the operator T. Hence, by Theorem 4.3
it is nonsingular and the norm of its inverse is 1.

We will denote by Y7 and X5 the values of Wy and W5 corresponding to the
solution of (4.30). It follows that

H
(3 )acwxa= (5 0, ):
that is, the similarity transformation reduces A to block diagonal form. In particular,
R(X2) is an invariant subspace of A. Since it is complementary to X is is called the
complementary invariant subspace. In the same way R(Y7) is a left invariant subspace
complementary to R(Y2).

We saw at the end of §4.1.8 that in addition to the conditions of Theorem 4.6 we
require that QP be small in order to use the approximation P. Fortunately, this will
be so to the extent that the conditions of Theorem 4.6 are satisfied. Specifically, from
(4.30) we have [|Q||r < ||As2|lr/é. Hence by (4.17) and (4.18) we have ||Q||||P|| < 3.

Since Ag) = 0, the first-order approximation of the representation of A on Ay
has the particularly simple form

1‘1(1}1/) = All + YlHEXl.
In particular
(4.31) AT = Anlls = 1S X1 [lp[1S: Y1 lr,
or in the simple case
14T = Anlls = Vio|[Yi]lr,

The matrix YHAX, is sometimes called the generalized Rayleigh quotient of A.
Moreover the matrix X;Y{! is called the spectral projector, since it projects a vector
onto A along the complementary invariant subspace R(X2). With the normalization
XPX, = I, the Frobenius norm of the spectral projector is ||Y;||r. Hence the above
result says that the sensitivity of the generalized Rayleigh quotient is determined by
the size of the spectral projector.

4.2. Hermitian matrices. The principle simplification that occurs when A is
Hermitian is that A15 = 0, or equivalently Y7 = X;. This does not change the bound
on P, but it does affect the range of applicability. Specifically, (4.21) becomes

[15cYallellSe Xu[le [l Se X [le(lS¥alle 1

62 4’
or in the simple case
k(n—1) 1
TU < 5.

The interpretation of the bound becomes simpler, for when A;; and Ass are
Hermitian

6= HllIl{|A1 — A2| tAL € /\(All)AZ € A(Azz)}
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Thus for Hermitian matrices the separation of the eigenvalues of an invariant subspace
from those of its complement determines the sensitivity of the subspace.
Finally, since X; = Y7, the bound (4.31) become

(4.32) AT = Aulls = [15: X1 [l ]1Se X1 [Ir,
or in the simple case
(4.33) ||fv1(111/) — Anlls = ko.

Since A7 and ;111 are both Hermitian, we can make a strong statement about the
relation of eigenvalues of the two. Specifically, if Ay(A11) < Aa(A11) < -+ < Ap(Ar)
are the eigenvalues of A1; and /\1(14111) < /\2(14111) <. < /\k(ﬁll) are the eigenvalues
of ;111’ then by the Hoffman—Wielandt theorem

k
D i(An) = Ai(An)]? < [JAn = Anll,

i=1
and the right-hand side can be estimated by (4.32) or (4.33).

4.3. Eigenvalues and eigenvectors. When k£ = 1, the matrix X; becomes an
eigenvector of A corresponding to the eigenvalue A;;. To remind us of this fact, we
will write X = (21 Y3) and

H
H _ a1y a4y
XHAX = ( o )

with a corresponding notation for XHEX .
The principle simplification that occurs with eigenvalues and eigenvectors is that
the operator T now becomes a matrix

T = Clll[ — Azz.

This means that we can involve T directly in our calculation of the stochastic norms.
Specifically, we now have for the perturbation of zq,

I =21 + Yap,

where

p=T'VHEz.
Hence

1Blls = 1T~ Y3 Sel|p|Seaa |-

In the simple case this becomes

1Blls = ol T~ |-
If we define

br = | T7HI5,
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then the estimate becomes
Se — 2
Il = 5

When this estimate is compared with (4.15) for k£ = 1, it is seen that, in addition
to being an equality, it lacks the factor v/n — 1. However, this is compensated for by
the fact that ép will in general be smaller than 6.

Turning to the Rayleigh quotient, we have

a1 = a1 + y{{El‘L
Hence
a1 — anlls = [[Sey[ll|Seaall,
or in the simple case

la11 — aills = ofly]]-

With the normalization yilz; = 1, ||y1]| is the secant of the angle between x; and y;.
Thus as z1 and y; become progressively more orthogonal, their eigenvalue becomes
more sensitive to perturbations.

4.4. Singular values and singular vectors. Let X € R™*" with m > n Then
there are orthogonal matrices U and V of order m and n such that

(4.34) UTXV = ( \g )

where

v = diag(,l/)h 1/)2a R 1/)774)

The decomposition (4.34) is called the singular value decomposition of X. The number
; 1s called a singular value of X and the corresponding columns u; and v; of U and
V are its left and right singular vectors. They are related by the formulas

Xvp = iuy
and
XTUZ' = 1/)“)2

Although the singular value decomposition is defined for complex matrices, the
singular values are not differentiable functions of the elements of the matrix. This
is true even for the scalar &, whose “singular value” is ¢ = |£], since in the complex
plane the absolute value is not an analytic function of its argument. The implication
is that if we wish to develop first-order expansions, we must restrict ourselves to
real perturbations of real matrices. Even here, we must restrict ourselves to nonzero
singular values, since the absolute value, regarded as a function of a real variable, is
not differentiable at zero.

Therefore, we will consider the perturbation of a nonzero singular value ¥ of a
real matrix X and its corresponding right singular vector v; under a real perturbation
E. A perturbation expansion may be obtained by observing that 1/:% is an eigenvalue
of A = XTX with eigenvector v1. Specifically, we have the following theorem, whose
proof may be found in the references.
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THEOREM 4.8. Let

U= (U1 Uz) V= (Ul VZ)

and

¥ = diag(¢n, ¥3).
Then
(4.35) by =1 4+ uT Ev

Moreover, if
T = ¢} — W3,
then
U1 = v1 + Vap,
where
p=T YU} Evy + V," ETuy).

From (4.35) we immediately get the following perturbation estimate for ||1/v)1 -

Y1lls:
1 = tulls = [ Scrn[[l|Srval].
In the simple case, this becomes
|1 — ¥ills = o
The estimate for ||p — p||s is more complicated:
15 = plI§ = 115U 2T [fSevn]| + 200u] S2U2 02TV 57w
+ YF[1S V2 T[] Sew [
< (IS W T2 1Spvn ]| + 931 VaT =[] Seun 2

However, in the simple case the cross product term in the equality vanishes and we
get

17 = plls = oll(¥11 — ¥*)T~H|p

Thus the distance of a singular value from its neighbors controls the sensitivity of its
singular vector to perturbations.
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Notes and references. The general approach to invariant subspaces taken here
is due to the author [33],[34]. For another view of the subject the reader reader
is referred to Kato’s work [25], which also treats the perturbation of operators in
infinite-dimensional settings.

§4.1.2. The term “simple” referring to an invariant subspace does not seem to
have appeared in the literature before. Theorem 4.3 is important in many of areas,
and it has a number of proofs. See [17, §7.6] for a constructive approach. The quantity
8 was introduced in [33] as the function sep(A11, A22). This name comes from (4.7),
which shows that sep(A;1, Asz) is a lower bound on the separation of the spectra of
Aq1 and Ass. Unfortunately, it can be very much smaller than the actual separation.

§4.1.3. Theorem 4.4 is not the only justification of this choice of representation.
It can be shown that the singular values of P are the tangents of the canonical
angles between the subspaces X' and X (see [8],[35] for definitions). Consequently,
[|1Pl| = ||)~( — X|| is a bound on the separation of the two subspaces.

§4.1.5. Theorem 4.5 may be found in [8]. For generalization, see [24].

§4.1.6. A proof of Theorem 4.6 may be found in [34].

§4.1.8. Equation (4.24) does not represent all possible normalizations. In [27],
which treats only eigenvectors, the normalizing function is allowed to be any differ-
entiable function. Theorem 4.7 appears to be new.

§4.1.9. There is some ambiguity in the term “generalized Rayleigh quotient.”
If A is an eigenvalue of a Hermitian matrix then the Rayleigh quotient p(x, A) =
" Az /xHe has two properties.

(1) A= ple 4),
(2) A=plx,A+E).

If for non-Hermitian matrices we require only the first property, then any quotient of
the form wH Az /wHz generalizes the Rayleigh quotient. However, if we require both
properties, then we must take w = y, the left eigenvector corresponding to A.

§4.2. A completely different approach to perturbation theory for Hermitian ma-
trices is given by Davis and Kahan [8]. The Hoffman—Wielandt theorem appears in
[20], and Wilkinson [46] gives an elementary proof.

§4.4. A proof of Theorem 4.8 may be found in [39]. Tt is possible to develop
perturbation bound for spaces of singular vectors corresponding to clusters of singular
values [34]; however, the bounds are not pretty.

5. Conclusions. In this paper we have shown that many problems in matrix
perturbation theory can be rigorously treated from a probabilistic point of view. The
main advantage of this approach is that in many cases it gives estimates that are
exact equalities: nothing is given away in their derivations. For example, compare
the eigenvalue estimate

la11 — aiills = olly1ll

with the more usual bound

a1y = av| < ly[l[12]]-

Not only is the first simpler, but it makes 1t clear that the second can be a consider-
able overestimate, since [|E|| will be larger than the size of a typical element. Thus
stochastic perturbation theory can be used to see how well we have done with more
conventional bounds.
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The use of cross-correlated errors reduces the applicability of the technique, but
not unduly considering the gain in simplicity. Moreover, the scale of the error appears
explicitly in the bounds so they may be adjusted to the application.

The chief disadvantage of the approach is its reliance on first-order approxima-
tions. Although Theorem 2.8 provides an asymptotic justification for this, in practice
we must assess when the first-order approximations are valid. In this paper we have
proceeded informally, by recasting in terms of stochastic norms conditions that are
necessary for the approximations to be accurate. This insures that for errors suffi-
ciently small the probability of violating the conditions is small, and we can even use
the Chebyshev inequality to bound the probability.

The theory is based on the Frobenius norm, whereas the spectral norm is more
frequently used in usual approach to perturbation theory. For estimating the per-
turbations scalars and vectors this makes no difference, since the two norms coincide
for the estimated quantities and the exactness of the estimates assures us that any
Frobenius norms in them really have to be there.

Nonetheless, one might wonder if there is a stochastic analogue of the spectral
norm. Unfortunately, the natural definition

max [[E(E)]
z|[=1

does not work, since it gives different results for £ and ET. If we try to restore
symmetry with

max E(yT Ex)
lyll=1

we get something that is too small. This problem can stand further investigation.
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