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Abstract

We apply a set of recent results by Malysev and Mensikov, concerning
necessary or sufficient conditions for ergodicity of constrained M-dimensional
random walks to the problem ofstability of M coupled queueing systems that
describe a system of M buffered terminals accessing a common channel by
means of the slotted ALOHA protocol. We obtain a neccesary and sufficient
condition for the stability of such a system. Although the condition does
not yield a descriptive characterization of the stability region, it allows a
reduction of the stability problem of a M—user system to the determination
of the steady state distribution of a (M — 1)-user system. The plausibility of
a recent conjecture concerning the stability of this system is also discussed.



Ergodicity of M—dimensional Random Walks
and Random Access Systems

Minas A. Karatzoglu and Anthony Ephremides
Department of Electrical Engineering
University of Maryland
College Park, MD 20742

1 Introduction

Some systems of multiple access used in radio and/or local area networks are
modeled by Markov Chains in the positive sector of M~dimensional space, whose
transitions allow them to coincide with special forms of M-dimensional random
walks. As one of the problems of interest in these multiple access systems is
the determination of conditions for the stability (or ergodicity) of the underlying
Markov Chain, it is natural that the problem of ergodicity of general random walks
is directly relevant.

In this paper we focus on the discrete time slotted ALOHA protocol, operat-
ing with M buffered terminals over the collision channel. The model of this system
is essentially the same with the one proposed by Tsybakov and Mikhailov in [1].
We consider a set of M users, accessing a common error-free channel. Time is
assumed to be slotted and each user, ¢, generates packets for transmission in the
channel according to a Bernoulli process with rate ;. ! During each slot user :
attempts to transmit the first packet in his queue with probability p;, provided
that he has a nonempty queue. The usual assumptions of slotted ALOHA are
made, concerning successful transmissions and collisions (see {2,3]). In particu-
lar if exactly one packet is transmitted during:any given slot, then this packet is
perfectly received by all users (successful transmission), while, if more than one
packets are transmitted during any given slot, then they are all lost and must be
retransmitted during a later slot (collision).

This system is modeled by a random walk with state Q(t) = (Q1(t),. .., Q@m(%))
where Q;(t) denotes the queue size (number of packets) in the buffer of terminal ¢,
just prior to slot . From time slot to time slot, Q executes transitiens in the grid of
points whose coordinates take non-negative values and the probabilities of which

In [1] a general arrival pattern is assumed. The restriction to Bernoulli arrivals here is not
of crucial importance and is made fo rthe sake o notational simplicity.



are ‘given easily in terms of the packet arrival rates A; and packet transmission
probabilities p;, ¢ = 1,..., M, see [1].

Our goal in this-paper is to derive a necessary .and sufficient condition for
ergodicity of the random walk Q(t), that describes the M~user slotted ALOHA
system. In particular, we will prove that there exists a set of “well defined” drifts

8; (where i =1,..., M) such that
i<l Vi = Q(t) isergodic

8; > N for some ¢ = Q(t) is non-ergodic

To prove this result we use the notion of persistent user, introduced by Rao
and Ephremides in [4] and a necessary condition for ergodicity of general Random
Walks (expressed in terms of existence of Lyapunov functions) due to Malysev and
Mensikov, [5].

The paper is organized as follows: In the next section, 2, we introduce the
necessary notation and draw the connections to the notation used in [5]. The
objective of this section is to give a proper physical interpretation to the abstract
tools used in [5] and use this interpretation to draw some interesting properties of
them, that will lead to the main results. The necessary and suffincient condition
for the ergodicity of the random walk Q(t) is derived in section 3.

2 Notation

We consider a system slightly different than the one described in the introduction.
In particular we assume two disjoint sets of users, Nyy = { 1,..., M } and L, of
cardinalities M and [ respectively. Each user ¢ € Npy behaves as described in
the introduction, namely he transmits a packet in every slot with probability p;,
provided that he has a nonemty queue, (typical user). Each user ¢ € L transmits
always with probability p; independently of whether he has a nonempty queue or
not (persistent user). The concept of persistent users was introduced in [4]. We
will denote this system calSp(L).

We want to study the random walk calSy(L), in ZM, describing the queues
of the M users i € N, in the overall system of M + [ users, the [ of which attempt
transmission regardless of their queue status and are of no direct interest to us.

Consider now a set A C Nj. For this set, define the faces of Z} and RY,
respectively denoted by Bas(A) and ®ps(A) , as follows

Bu(A)2{ z=(21,...,2m) €ZM : ;>0Vi€ A and z=0VigA} (1)

@M(A)é{ r=(r,...,rm) ERY : 1y >0Vie A and r; =0 Vigd } (2)

Observe that the face By(A) corresponds to the set of states with the common
property that in each of them the queues of users i A are empty while the queues



of users ¢ € A are nonempty. As a consequence, for any given A C Ny, the face
Bum(A) constitutes a homogeneous subset of the state space, in the sense that

Vx',x* € By(d) and Vy : Pr{qn+1)=x'+y /qn)=x'}=

Pr{q(n+1)=x’+y / q(n) =x}

The existence of different homogeneous phases Ba(A), each with countable
states renders the analysis of the random walk calSp(L) a very difficult problem.
To bypass this difficulty we consider a number of auxilliary systems. In particular,
with any set Ay C Nu, having k elements, we associate an auxilliary system
Sm(Ay), that is identical to calSy(L), except that the users i € Sp(Ax) have
been removed from the set of typical users, Ny, to the set of persistent users, L.
There are three important observations that can be made regarding the aux1lha.ry
systems SM(Ak)

1. Each system Su(Ax) dominates the initial system calSa(L). (For a proof
see [4].)

2. Each system SM(Ak) is of actually a system of the form Spr—r(L U Ax) (i. e.
a system with a set Nps — A of M — k typical users and a set L|J Ax of [ +k
persistent users).

3. Each system Spr(Ay) is described by an induced (M ~ k)-dimensional random
walk Tps(Ayx), that is actually the projection of the initial random walk on a
(M — k)-dimensional hyperplane Cps(Ax), orthogonal to Ba(Ax) at a point
x € ®pr(Ag). We denote the state space of the M — k-dimensional random
walk IM(Ak) by \I’(Ak).

We say that the face Bas(Ay) is ergodic if the induced random walk Tas(Ay) is
ergodic. In this case we denote the steady state probablhty distribution of Zps(A)
by 74(x) (where x € ¥(A)).

following probability distribution

7rA,‘(E) = lim Pr{q(t) € Unm(Ax) : () =0VigE, ¢(t)21Vi e E}

We have
74,(E) = 2 74,(Q) )

qa€¥rm(Ax) () 2M(E)

If Tpr(Ax) is nonergodic then
74, (X) =0 Vx € Pp(As)

However in any case

ﬂA(E) $ 0



and
z T A(E) =1
ECNy-A

Note that 74(E) (for E € Np— A) is the probability that in Tps(A) the usersi € E
have a nonempty buffer, and that the users i¢FE have an empty buffer. A very
useful property is that these probabilities do not become identically zero when the
random walk Zjs(A) is nonergodic.

We will use the distribution 7 4( E) in order to define a set of drift vectors, that
will play a key role in the determining the stability of the random walk calSy(L).
Let A C Ny and r € Bpy(A), where By(A) is an ergodic face. Consider the

vector
v(r) = (vi(r),...,vm(r))
defined by
. D;(A) ifie A
A% Ny, wi(r)2 {0 (4) i
if A= Ny, v(r)2 D(r)
where

D{A)E Y max)Di(x) (forie€ A)
X€¥u(A)
is the expectation of the i-th component of D(x) (for ¢ € A) with respect to the
probability distribution 74(x), i. e. the steady state probability distribution of the
induced random walk Zps(A).

An important observation is that the mean jump vector D(x), associated
with the random walk Sp(L), is independent of x as far as x belongs to a given
face ®ar(A). Henceforth we will denote the mean jump vector as D(A) in order
to show that it depends on the face in which x belongs (which in turn is com-
pletely determined by the set A) rather than on x itself. Then we can express the
components D;(A) as '

Di4)= ¥ wa(E)D(E)  (forie A) (4)
ECNpy-A

The same property is carried to the vector v(r), for which we will henceforth use
the notation

v(4) = (n(A4),..., vm(A))
We recall that, using the new notation, the vector v(A) = (v1(4),...,vm(A)) is
defined (for A # Npy) as:

Di(A) ifie A
”‘(A)"{o “ if igA

The vectors v(A) can be interpreted as drifts for the queues of users i € A in a sys-
tem Spr— (LU A). The entire set of these vectors may determine the nonergodicity
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of the random walk calSp(L). In particular, it was proved in [5] that a random
walk of the form of calSar(L) is transient if there exist 8,5, > 0, a nonempty set
T c RY and a function f(-) : RY — R that satisfy the following four conditions:

(T.1): f(x) >0 Vx € RY
(T2): f(x)—f(y)<blx-yll VxyeRY
(T.3): flx)>t VxeT

f(x) <t vxeRY -T
(T4): f(r+v(A)—f(r)>6 VreBy(A)

where (T. 4) holds for all A C Ny, for which By(A) is an ergodic face as well as
for A = Npy.

These conditions together are sufficient for transience (and their negation
necessary for ergodicity).

3 A Necessary and Sufficient Condition for Er-
godicity

We can now proceed to prove the necessary and sufficient condition for ergodicity of
calSy(L). We start by recursively defining a nested set of M conditions, denoted
by C.1,...,C.M , as follows:

(C.1): i, € Ay 2 Ny such that v;,(Apr) <0

For k € {1,...,M —1}, if conditions (C.1) up to (C.k) are satisfied with
%1,...,4 (distinct), then (C.(k + 1)) is defined as:

(C.k+1): Jirsy € Apk 2 Nur — {in,...,0x} such that v;,,,(An-z) <0

The interpretation of these conditions is as follows: Starting with condition (C.
1) and by the use of the vector v(Nys) the existence of a stable user in a system
consisting entirely of persistent users is verified. As soon as one such user is found
he is moved from the set of persistent users to the set of the typical ones. The
procedure continues by examining, in the new system, the existence of a persistent
user that is stable and removing him, if one exists, to the set of typical users.

The following Theorem 1 provides a necessary and sufficient condition for
ergodicity of the M-user slotted ALOHA system and the underllying random walk
cal SM(L),

Theorem 1 The M-dimensional random walk Sy (L) is ergodic iff there exists
a sequence of M distinct integers i,...,im € Ny such that for k = 1,...,.M
condition ( C. k ) is satisfied with if.



The sufficiency of the above condition is intuitively clear. It merely states
that the M-user sldttgd ALOHA system is stable if each user is stable in a dominant
system of the form Spr(Ax). A formal proof is given in Appendix Al.

On the other hand, the necessity of the above condition is pretty counter-
intuitive, stating that the M-user slotted ALOHA system is unstable unless we can
find a dominant system of the form Sar(A), that is stable. A formal proof for it
is given in Appendix A2.

The following two corollaries provide alternative forms for Theorem 1.

Corollary 1 The M-dimensional random walk Sy(L) is ergodic iff there exists
an i € Ny such that the (M — 1)-dimensional random walk Tps({:}) is ergodic
and, furthermore, such that v;({i}) < 0.

To prove Corollary 1 we make use of Lemma 2, proved in Appendix A.
Observe that, if its condition is satisfied, then

e By the ergodicity of Zp/({:}) we have that there exists a sequence of distinct
integers %1,...,ip—1 where {41,...,ipm-1} = Ny — {1} such that for all
n=1,...,M —1, condition (C.n) is satisfied with ¢,.

o By v;({¢}) < 0 we have that condition (C.M) is satisfied with ips = 3.

Then the hypothesis of Lemma 2 (see Appendix A) is satisfied and the ran-
dom walk calSpy(L) is ergodic.

If, on the other hand, there exists ¢ € Ny such that Zps({:}) is ergodic but
vi({¢}) > 0, then, as explained above, there exists a sequence of distinct integers
i1,+++,iM~1, Where {31,...,5M-1} = Ny — {1}, such that forn = 1,...,.M -1
condition (C.n) is satisfied with i,. However condition (C.M) is not satisfied with
the unique element of the set Nps — {41,...,2pq } = {¢}. Then, following Lemma
1, we conclude that calSpy(L) is nonergodic.

If now there exists no 1 € Ny such that Zps({¢}) is ergodic then there exists
some k < M —1 and a sequence of distinct integers {1,...,%.} such that for n =
1,..., k condition (C.n) is satisfied with i,, but there existsno j € Nyy—{41,...,% }
such that condition (C.k + 1) is satisfied with j. Again, following Lemma 1, we
conclude that calSps(L) is nonergodic.

The proof is completed.

The above theorem can be interpreted as follows: If we can find a system
that dominates Syr(L) and that is ergodic, then, obviously, Sam(L) is also ergodic.
If on the other hand all systems dominant to Sy/(L) are nonergodic then so is

Sm(L).

Corollary 2 The M-dimensional random walk Sp(L) is ergodic if
vi({7}) <0 , Vi€ Ny

while it is unstable if

vi({1}) <0 , forsome i € Ny
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Proof The proof is straightforward by observing that if (14) is true then all
component queues are stable, which implies that Sy (L) is ergodic.
On the other hand, if for some i we have that

v,({z}) >0

then there can be no sequence 4y,...,1p such that (C. n) is satisfied with ,, since
this would contradict the observation made earlier (section 3).

Corollary 2 establishes the fact that there exists a set of well defined “drift”
vectors §; 2 v;i({7}) that completely determine the stability of the random walk
calSy(L). Unfortunately, computing these drifts constitutes, in general, a formidable
problem, since they are expressed in terms of the stationary distribution of (M —1)-
dimensional random walks. Still they can be used to obtain the following necassary
condition for stability of the M-user slotted ALOHA system, that already improves
the one given in [5].

Corollary 3 The M-user ALOHA system with arrival rate vector A\ and trans-
mission probability vector p is ergodic only if there exist i,,1, satisfying:

Ay <pi, [T —pj)
i#in

and P;
Aiz < pi; H (1- p;) — 1_2—,"\1'1
J#i2 — Pig
The above corollary is a straightforward application of Theorem 1 and its
proof is not presented here.

A Appendix
A.1 Sufficiency of Theorem 1

Here we prove the sufficiency of Theorem 1. We use induction on M.

For M = 2 the result is well known (see [5]).

Assume that it holds for M — 1. We will prove it for M. To do so we assume that

the condition in Theorem 1 is satisfied and we will show that calSy(L) is ergodic.
Observe that for all sets A; C Nar; Zpr(A1) is equivalent to

Sm-1(LU A;). Then by the induction hypothesis and by the hypothesis that

Jiy,e.entm s {i1,...5t } = Ny D (C.k) is satisfied with i for k =1,..., M,
we conclude that the hypothesis of Lemma 2 is satisfied for Spr—1(L U{ ?m }), hence

Sm-1(LU{*m }) is ergodic. |
Consider now the dominant system with M users 1,..., M in which:



e user i) transmits with probability pys even when having an empty buffer
o users i ( Vi # iy ) transmit normally

e there is an arbitrary number of users ¢ € L that transmit always with
probability p;.

We consider the ergodicity of the system of users 1,..., M. This system is described
by an M—-dimensional Markov Chain. Ergodicity of Zas({ar }) implies that all users
i # i) are stable in the sense of Definition 1. Furthermore, iy has average arrival
rate smaller than its average service rate, hence (see [4]) it is also stable. Then by
Proposition 1, this system is ergodic and, since it dominates calSy (L), calSp (L)
is also ergodic.

The proof is completed.

A.2 Necessity of Theorem 1

Here we provide a proof for the necessity part of Theorem 1. We start by proving
couple of statements that will be needed in our proof.

Lemma 1 Assume that there erists a sequence of k—1 distinct integersiy,...,1k-1
(in € Ny forn = 1,...,k — 1) such that (C.n) is satisfied with i, for n =
1,...,k—1. Assume furthermore that (C.k) is satisfied with both ix,1x41 € Ny —
{i1,...,ik-1}. Then forn =1,...,k+ 1, condition (C.n) is satisfied with i,.

Proof We use dominant systems. In particular we define a system that dominates
calSy(L) and consists of

e userst € Land i € {41,...,%k-1 } who behave as in calSp(L).

o users i € Ny — {41,...,%k-1 } Who transmit in every slot with probability
p; regardless of their status.

By our hypothesis, as well as by Lemma 2 (Appendix A), we conclude that the
random walk that describes the queues of users 7y,...,%-1 is ergodic. Hence users
i1,...,0k-1 are all stable. Furthermore both users ¢; and #x41 have average service
rate larger than their average arrival rate, hence they are also stable.. This implies
that the random walk that describes the queues of users iy,...,%r41 is ergodic.

If in the above system we modify the status of user i, i. e. force him to
behave as in calSy(L) (that is to transmit only when he has a non-empty buffer)
we obtain a new system, obviously dominated by the one described in the beginning
of the proof. Then the random walk that describes the queues of users i1, ..., %+
is ergodic, hence user 74, is stable. Since user ix41 always transmits, his stability
implies that his average service rate is larger than his average arrival rate. The
proof is completed.

The following corollary folows directly from Lemma 1.
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Corollary 4 Assume that

there exists sequence of distinct integers iy,...,1x € Ny such that for
n=1,...,k condition (C.n) is satisfied with i,
condition (C (k + 1)) .is not satisfied with any i € Np — {i1,...,%x}.

Then, for all i € {1,...,k}, condition (C.n) is not satisfied with any i+ € Ny —
{ib'“,ik}'

We proceed now with the proof of the necessity in Theorem 1. Observe first
that, for the extreme case k = 0, the necessity of the condition in Theorem 1
becomes trivially true. We will omit this case and consider only the case k > 1.

Proof of (only-if) part of Theorem 1 We use induction on M .

For M = 2 the assertion of Lemma 1 is well known (see for example [3, 4, 8]).

Assume now that the assertion of Lemma 1 is valid for M =2,...,M -1 and for

all k=1,...,M —1, where we use the symbol M as a running index in place of M

(as it was used in Lemma 1) in order not to confuse it with the value of M in this

proof. We prove then that it is also valid for M=Mandforallk=1,...,M~1.

To do so we assume that there exists a sequence of distinct integers ¢,...,%x where

{%1,...,ix} C Nu, such that for n = 1,...,k condition (C.n) is sa.tisﬁed with
"4n. We assume furthermore that condition (C.k + 1) is not satisfied with any

i € Nyp—{i1,...,ix}. We will show then that calSy(L) is nonergodic.

In the following we will use the notation:

{Z1y00 00tk }
Ny = Ji

Jk
Ji

e e

We prove the nonergodicity of calSay(L) in 2 steps:

Step 1: We show that for all Ar C -Ny (with T elements, where T' < M),

Tn(Ar) is nonergodic unless
Ji C Ar (5)

To do so we define
A% & Ny — Ar = {my,...,mum-1}
Observe that, unless equation (5) is valid,
A5 () Jg #0

Thus assume that
At ﬂ Ji ={mps,...,mm-1}

or, equivalently,
mi,...,MR & Jf} (6)

MR41,.. ., mM-7 € J§

9



The fact that the induced random walk Ty (Ar) is equivalent to a random
walk of the form Sy-r(L U Ar) and that M — T < M, justify the use of the
induction hypothesis for the completion of Step 1.

Observe that if (6) holds, then at most R conditions (i. e. (C. 1), ..., (C.
R)) can be satisfied. The reason is that, even if there exist distinct jy,...,Jr,
({71,--+,Jr} = {m1,...,mp}) such that forn = 1,..., R, (C. n) is satisfied with
Jn, condition (C. (R + 1)) will not be satisfied with any j € {m4,...,mpy-1} —
{715---,Jr} = {mr41,...,mum-1}. ( This is a direct consequence of the obser-
vation immediately preceeding Lemma 1; namely that for all n = 1,...,k + 1
, hence also for n = R+ 1 < k + 1, condition (C.n), is not satisfied with any
j € Ji D{mpy,...,mu-1}) ) )

Thus, if (6) is valid, then there exists a k < M —T such that forn = 1,...,k,
condition (C.n) is satisfied with j, (where j, ’s are distinct) but condition (C.k+1)
is not satisfied with any j € {my,...,mpm-7} —{ j1,...,754 }. Then by the
induction hypothesis the walk Sp_7(L U Ar), is nonergodic, and hence Zps(Ar) is
nonergodic either.

This completes Step 1. Notice that we do not claim that whenever (5) is
valid Zp(Ar) will be ergodic. We are only interested in excluding from the set of
ergodic faces, the faces Byr(Ar) for which Ar does not satisfy (5).

Step 2: We apply the results in [4], as described in section 2, to prove nonergod-
icity of calSm(L).
We define f(-): RY — R by

f(r) & z Iri] (7)

Obviously f(r) satisfies conditions (T. 1) - (T. 3).

We want to show that f(r) also satisfies condition (T. 4). By the result
obtained in Step 1, we are only interested in subsets Ar —with T elements— for
which equation (5) holds (i. e. J§ € Ar). Then by equation (5) we have that

T> M-k

or, equivalently
M-T<k (8)

Observe now that:
for any n = 1,...,k + 1, condition (C. n) is not satisfied with any 5 € J;
Hence

w(Ar)>0 , V i€ J C Ar (9)

Furthermore by equation (6) we have that

>0 , YV i€JiC Ar; r € dyu(Ar) (10)
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Equations (9) and (10) imply that
Iri + vi(Ar)| =ri+vi(Ar) , V 1t €J{ C Ar , r € Op(Ar)
Hence we have that

Vredy(A) DJi:
fr+v(A) = f(r) = Tics(Iri(Ar) +vi(A7)| — [ri(A7)]) =
= Lies(ri+vi(Ar) — i)

or, equivalently,

VA>3 Ji C A: fr+v(A) - f(r) = §Vr € By(A) (11)
e 6 min { ¥ v}(4)) (12)
A:iJSCA €T :
Since, now

Y u(d)>0 , VA3 JCA

ieJe

and since (12) is a maximization problem over a finite set we have that
6>0 (13)

Then by equations (11) and (13) we have that

Je(e=6/2) 3> V A D Ji for which By(A) is ergodic :
fir+v(A) = f(r) > ¢ >0Vr € By(A)

Hence f(r) satisfies also condition (T. 4) and calSm(L) is nonergodic. This
concludes Step 2 as well as the proof of Lemma 1.
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