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Abstract

A global discretization approach was taken to solve a self-consistent DC glow discharge model to study

the interplay between modeling assumptions and convergence of the numerical solution techniques. It

was found that the assumed form of electron di�usivity temperature dependence had a profound inuence

on the computed solutions. The numerical techniques developed o�er a simple to implement alternative

for plasma model discretization.
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1 Introduction

Plasmas with low gas pressure (1mtorr to 10torr), temperature (300 to 500K), and degree of ionization

(10�6 to 10�1) are used extensively for manufacturing integrated circuits (ICs). Plasma processing is a key

fabrication step, especially for etching and deposition of thin �lms. Despite the wide use of the processes,

there are virtually no commercial computer-aided design tools for plasma processing reactors based on �rst-

principles models. Even though three-dimensional simulation tools are emerging [1], the computational

cost is still una�ordable to most users since these simulators require supercomputer-sized computational

resources. One primary reason is that current simulation techniques inevitably result in a �nely-resolved

spatial discretization mesh in the plasma sheath regions.
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2 MODELING EQUATIONS 2

In this paper, we report on solutions to a uid simulation for the plasma physics submodel1 with a direct

current (DC) ionization source by a pseudospectral (PS) discretization method. We present this global basis

function approach as an alternative to localized basis function discretizations such as �nite elements [4]

and the block implicit implementation of �nite di�erences [5]. Our approach is motivated by the excellent

convergence property of the PS method [6], the transparency of its implementation to discretizing partial

di�erential equations (PDEs) and their boundary conditions (BCs), and the great exibility of selecting and

optimizing trial functions for particular applications.

2 Modeling Equations

The smallest set of self-consistent continuum modeling equations consists of four partial di�erential equations

and their associated boundary conditions: Poisson's equation, electron and ion continuity equations, and

the electron energy balance. These equations can be solved for potential �eld, electron and ion number

densities, and electron temperature. Electric �eld strengths, particle uxes, and ionization rates may then

be computed as secondary quantities from these solutions.

The model used in this report is similar to Graves and Jensen's [4]. The boundary conditions and

parameters for the argon-like gas were also taken from [4]. One di�erence, however, is the expression for

electron ux ~je and the electron di�usivity De:

~je = �De
~rne � �ene ~E

De = �e
kbTe
e

(1)

where ne, �e, and Te are electron number density, mobility, and temperature, respectively. ~E is the electric

�eld strength, kb is the Boltzmann constant, and e is the unit charge. Our expression for temperature-

dependent di�usivity implicitly assumes Terne � nerTe, an assumption valid for the results presented in

this paper. The dimensionless modeling equations for DC simulation are listed below in the order of Poisson,

electron and ion continuity, and electron energy equations. While only one-dimensional discharge simulations

are reported in this paper (so r = � @
@Z

and r2 = �2 @2

@Z2
), the following nondimensional model is valid for

higher dimensions and so is written in vector notation.

r2� = ��(u+ � ue)

~r � ~Je = k2ue

~r � ~J+ = k2ue

~r � ~Qe = "e ~Je � ~r�� k2ue

1The uid type formulation for the plasma physics submodels (for the detailed classi�cation see [2]) have had great success

in explaining the physics of the glow discharge [3]. The results are comparable to those by Monte Carlo particle simulation

techniques.
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The four basic variables are de�ned as � = V
V0
, ue =

ne
n0
, u+ = n+

n0
, and T = Te

Te0
. The resultant auxiliary

equations for electron, ion, and electron energy uxes, and ionization rate coe�cient are

~Je = �
T

D
~rue + Peue~r�

~J+ = �

�
1

De+

�
~ru+ �

�
P+
De+

�
u+~r�

~Qe =
5

3Hi

�
�
Tue
D

~rT + T ~Je

�

k2 = Dae
�E

T :

The boundary conditions at z = 0 (grounded electrode) are

� = 0

ue = 0

ru+ = 0

5

3
rT � "eHir� = 0;

and at z = 1 (powered electrode)

� = ��DC

�

�
T

D

�
rue + Peuer� =

�
P+
De+

�
u+r�

ru+ = 0

T = Tc:

The values of nondimensional parameters are calculated in Table (1). The gas and scaling parameters used

are listed in Table (2).

Symbol De�nition Value Symbol De�nition Value

� en0R
2

�0V0
406 De+

De

D+
104

D 106=(�e
kbTe0
e

) 5 E Ei

kbTe0
24

Da
kioR

2N
De

1:83� 106 "e
eV0
Hei

29:5

Pe
�eV0
De

92 Hi
Hei

3
2
kbTe0

10:4

P+
�+V0
D+

9200 � R
L

1:44

Table 1: Values of dimensionless parameters used in simulations
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Symbol Description Value

L interelectrode spacing 3:525cm

R radius of the electrode 5:08cm

N neutral density 2:83� 1016cm�3

n0 reference density for charge particles 4� 109cm�3

V0 reference voltage 460V

Te0 reference electron temperature 1eV

D+ ion di�usivity 102 cm
2

sec

�e electron mobility 2� 105 cm2

V �sec

�+ ion mobility 2� 103 cm2

V �sec

Ei ionization rate activation energy 24eV

Hei ionization enthalpy loss 15:578eV

 secondary electron coe�cient 0.046

VDC direct current voltage 77:4V

kio ionization rate prefactor 2:5� 10�6 cm
3

sec

Tec electron temperature at cathode 0:5eV

Table 2: Gas and Scaling Parameters

3 Numerical Methods

3.1 Discretization

The modeling equations and boundary conditions are discretized and solved by a weighted residual method

that combines elements of collocation and pseudospectral methods. If each of the states (�, ue, u+, or T ) is

represented by a linear combination of trial functions  i(z) de�ned over 0 � z � 1, i.e.,

u(z) =

NX
i=1

ci i(z);

a set of residual functions over z and at the boundaries can be de�ned with the partial di�erential equations

(PDEs) and boundary conditions (BCs), respectively, and are minimized to determine the solution.

In this report, the building blocks of a Lagrangian interpolation polynomial are selected as the trial

functions  i. An (N-1)th order Lagrangian interpolation polynomial u(N�1) can be considered as a linear

combination of N polynomials of order N � 1, i.e., u(N�1) =
PN

i=1 ci i(z) where the building blocks are

 i(z) =

NY
j=1

j 6=i

(z � zj)

(zi � zj)
:

The coe�cient ci represents the value of that state at the discretization point zi because  i(zj) = �i;j .
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Since the  i are continuous and di�erentiable over the entire domain, explicit formulas for di�erentiation of

up to order (N � 1) can be obtained for all z. Once the discretization grid is speci�ed, di�erentiations are

matrix-vector operations, i.e., du
dz

= Ac and d2u
dz2

= Bc where the elements of aji and bji for the di�erentiation

matrices A and B are

aji =
d i(zj)

dz
and bji =

d2 i(zj)

dz2
; i; j = 1; 2; � � � ; N ;

and c = [c1; c2; � � � ; cN ]
T = [u(z1); u(z2); � � � ; u(zN)]

T . Using Lagrangian building blocks as the global basis

trial functions has another advantage. The function value of a Lagrangian polynomial can be evaluated

with a recurrence formula as well as its derivatives. In this report, the recurrence formula of Lagrangian

polynomial for di�erentiation matrices are used to facilitate the generation of the matrices [7].

Theoretically, any discretization grid can be used to construct the Lagrangian interpolation polynomial.

However, the interpolated solutions between discretization points are accurate only if the individual building

blocks behave well between the points. Lagrangian polynomials with a uniform grid will exactly pass through

all construction points but will oscillate between points with increasing amplitude near the interval end points.

It has been shown [8] that discretization in a quadratic manner towards the ends will suppress the spurious

oscillation near the ends. In this report, the discretization positions used (for z 2 [0; 1]) are the Chebyshev

extrema distribution as suggested by Fornberg [8],

zj =
1

2

�
cos

�
(j � 1)�

N � 1

�
+ 1

�
; j = N;N � 1; � � � ; 1:

This discretization procedure produces 4(N � 1) nonlinear equations from the modeling PDEs and 8 from

the BCs.

Neville's algorithm [9] is used for interpolation. The algorithm is based on rearranging Lagrangian

polynomial and noting that any interpolated value of the polynomial, passing through zi, zi+1, � � �, zi+m,

can be obtained by the values of two lower order polynomials, passing through zi to zi+m�1 and zi+1 to

zi+m. A tableau of values thus is established from the zeroth order polynomials, passing through only one

point, to the highest order, the interpolation result.

3.2 Numerical Continuation

Plasma simulations are well-known to be highly sensitive to small disturbances and so poor initial guesses

are unlikely to converge to the solution. A predicator-corrector continuation technique, with an Euler

predictor and the Newton corrector step [10], is used in this report to �nd a converged self-sustained solution

corresponding to a low voltage drop, and then to study the solution dependence on the voltage drop.

The simulation was initiated with an external uniform ionization source, i.e., a uniform ionization rate

was used in place of the temperature dependent terms k2ue. This is similar to simulation of photoioniza-

tion. Converged solutions were easily obtained within several iterations. With this set of solution pro�les,
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the ionization reaction term was gradually modi�ed until the self-sustained solutions was obtained. The

homotopy form for the ionization term was used, i.e., (uniform rate) � (1 � s) + (k2ue) � s where s is the

continuation parameter. The continuation technique was started at s = 0, corresponding to the uniform

reaction rate, and proceeded to the self-sustained solution of s = 1. Once a self-sustained solution was

reached, the continuation parameter was changed to compute solutions as a function of applied voltage at

the powered electrode.

As one method for validating our converged self-sustained solutions, di�erent uniform ionization rates

were chosen as initial continuation points. All resulted in the same self-sustained solution. Solutions reported

in the next section were found by starting with an ionization rate of 1 � 10�3 and a dimensionless voltage

drop of 0:1521. Once a self-sustained solution was reached, the voltage drop was varied as the continuation

parameters, for values up to 0:1683 (corresponding to 77.4 volts).

4 Results and Discussions

4.1 Results for a representative D.C. case

A self-sustained solution for the one-dimensional model with a DC exciting source is shown in �gure (1). The

number of discretization points used is �fty (N = 50). The electric �eld and currents computed from the

basic variables V , ne, n+, and Te are also shown. The results corroborate with those previously reported in

the literature [4, 5]. Figure (a) shows the plasma potential, cathode fall region, and the at bulk phase. The

electric �eld strength is much greater at the powered electrode (z = 1) compared to the grounded electrode

(z = 0); thus ions bombard both electrode surfaces and with greater intensity at the powered electrode. The

fact that the electric �eld passes through zero increases the di�culty of numerical simulation. It suggests

that the \convection" changes direction in the center of the reactor, a characteristic di�erence from the uid

dynamics simulation, and makes some traditional techniques such as upwind �nite di�erence scheme harder

to use.

Both sheaths and bulk phases can be seen in the particle number density pro�les (�gure 1(b)). The

numerical continuation results show that if the voltage drop is increased, the di�erence between the two

densities becomes smaller. The most important simulation result is the electron number density in the

cathodic sheath. The density inside the sheath is much lower than that of the bulk phase: four order of

magnitude according to our simulations. The density in the sheath, however, cannot be treated as zero

because the sheath region is the source of the particle generation by electron impact reaction. Zero density

here means no reactions. If during the simulation the electron density pro�le is allowed to oscillate around

zero, the adjacent regions of positive and negative ionization rates would cancel each other. To compensate for

\negative" reaction values while retaining a signi�cant total charged particle generation rates, the \positive"

reaction node values increase, leading to oscillations in the electron temperature curve. Our interpolation
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Figure 1: Self-sustained DC solutions. (a) voltage (V use the left axis) and electric �eld ( V
cm

use the right

axis). (b) electron and ion number densities (cm�3). (c) electron temperature (eV ) and (d) electron and ion

currents (mA
cm2 ) versus the dimensionless positions.
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curves in �gure (2) show no such spurious oscillation.
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Figure 2: The magni�ed pro�les after interpolation: (a) corresponds to the area near the powered electrode

for number densities and (b) is from the electron temperature plot near the powered electrode. The circles

represent the solutions right at the collocation points while the dots represent the points obtained after

reinterpolation with Lagrangian polynomials.

The mechanism described above is one of several responsible for the numerical sti�ness encountered in

solving these simulation problems - note that this problem is encountered regardless of the discretization

method. The total current shown in �gure 1(d) is a constant as it should be in DC case. The electrons are

the major current carrier near the grounded electrode while the ions are the one near the powered electrode.

The electron current at z = 1 is not equal to zero because of the secondary electron emission boundary

condition.

Electron temperature pro�le (�gure 1(c)) also gives the electron energy distribution. Electrons quickly

gain energy from the electric �eld and are accelerated inwards; thus, the temperature increases dramatically

near the powered electrode. The curve then quickly dips down due to strong electron cooling by ionization

reactions, which are highly endothermic. The bulk phase temperature is rather at and becomes atter with

increasing voltage drop. The small drop near the grounded electrode is due to the electrons moving against

the electric �eld.

Figure (3) shows the same results with individual terms and associated modeling residuals. According

to (a) (the Poisson equation), the electric �eld gradient faithfully reects the space charge. (b) shows that

the major balancing forces in the electron continuity equation are di�usion and electric drift. The reaction is

comparably smaller and may indicate that this discharge is sustained via the secondary electron emissions,

i.e., the  mode discharge. (c) shows that the two major terms are electric drift and ionization. The di�usion
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Figure 3: The individual terms in modeling equations with their associated residuals. (a) to (d) are for Pois-

son equation, electron particle balance, ion particle balance, and electron temperature balance, respectively.

The values are in dimensionless form and in terms of dimensionless position.

At z = 0 Residual At z = 1 Residual

V � = 0 9:7047� 10�28 � = �0:1683 0

ue ue = 0 �1:0768� 10�27 �
�
T
D

�
rue = 1:2924� 10�8 �2:2630� 10�19

Peuer� = �4:2510� 10�4�
P+
De+

�
u+r� = �4:2509� 10�4

u+ ru+ = 0 �7:9277� 10�16 ru+ = 0 0

T 5
3rT = 26:1517 2:3448� 10�13 T = :5 0

�"eHir� = �26:1517

Table 3: The residuals at the boundary conditions
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term is small as expected. Finally, (d) shows a more complicated interaction among four forces. Di�erent

terms have di�erent signi�cance locally. The ohmic heating reects the local electron heating e�ect. The

residuals and the computed boundary conditions are also shown in table (3). As shown in the table, all

boundary conditions are completely satis�ed.

4.2 Temperature Dependent Electron Di�usivity

Plasma uid models using \di�usion-drift" approximation assume constant di�usivities, which is valid when

local acceleration and convection acceleration (inertia) in the momentum balance for each species are neg-

ligible (see [3]), and each species temperature is constant. The last assumption is reasonable for heavy

species (such as ions) due to their e�ectiveness of energy exchange with background species, but may not

be valid for electrons. Many RF simulations rely on this assumption, while reported DC simulations either

take di�usivity temperature dependence explicitly into account [4] or are formulated in terms of the three

moment approach and so cannot be directly compared with the di�usion-drift modeling equations. To test

the e�ects of this assumption on the solution behaviors, simulations were performed with equation (1) and

were compared to results obtained with a constant De = 106 cm
2

sec
.

As shown in the �gure (4), the temperature dependence of the electron di�usivity has a signi�cant

inuence on the solutions. For constant De, the number densities are one order smaller (compared with

�gure 1(b)). The density di�erence is larger; thus, bulk phase of the voltage pro�le is not at. The currents

are also smaller than the temperature dependent case. One of the most signi�cant di�erences, however, is

seen in the behavior of the electron temperature as a function of voltage drop. It was found that as the

voltage value at z = 1 reaches approximately 80volts, the temperature at the grounded electrode reaches

zero and continues below zero for large voltage drops when a constant De is used.

The observation can be explained by examining the electron energy equation and the solution curves

of �gure (1) and (4). Near z = 0, both the ohmic heating (�"e ~Je � ~r�) and reaction cooling (k2ue) terms

contribute to electron cooling. Because the electron current has a signi�cant magnitude at z = 0 suggests

di�usion dominates in this region. Since the electron current, and, hence, electron cooling increases with

applied voltage drop, there is no mechanism to prevent Te from reaching and passing through zero when

De is constant. However, if De is proportional to Te (see equation (1)), as the voltage drop increases, the

electron di�usion terms become smaller owing to a smaller Te, thus alleviating the unrealistic cooling e�ect.

5 Conclusions

A global basis function approach has been used to solve a self-consistent DC glow discharge physics submodel.

A continuation technique was used to �nd the initial self-sustained solution and to study the voltage-drop

dependence of the solution. Computed results corroborate with previously published simulations. The
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Figure 4: The test results for constant electron di�usivity (solid curves): (a) voltage pro�le (V ); (b) the

electron and ion densities (cm�3); (c) the electron temperature (eV ); and (d) electron and ion currents

(mA
cm2 ) versus dimensionless position. The dashed curves represent results obtained with electron temperature

dependent di�usivity.
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residual analysis showed that the modeling equations and the boundary conditions were satis�ed accordingly.

The interpolation results indicated that the global trial functions behave well between discretization points.

The strong inuence of the electron temperature on the electron di�usivity was also investigated.

Further studies are in progress for the temperature-dependent electron di�usivity and the global function

discretization. The formulation for the di�usivity used in this report may serve as a more accurate but still

simple representation than the constant De typically used in RF simulation. The global basis function

method on spatial domain provides an alternative approach to discretizing in plasma processing models.

Further improvements in simulator performance by generating the di�erentiation matrices in a fast and

numerically more stable manner [11] and by optimization of the trial functions with suitable discretization

are in progress.
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