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Solution of Kushner’s Equation

Abstract

In this paper we solve asymptotically Kushner’s equation for the conditional probability
density function of an one dimensional diffusion process measured in a low noise channel.
We obtain the Stratonovich version and solve asymptotically this equation. The asymptotic
solution agrees with the asymptotic solution of Zakai’s equation.

In the second part of this paper we solve asymptotically Kushner’s equation for a model
of feedback channel and construct a sub-optimal filter for this model.
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Singular Perturbations Methods for the Solution of Kushner’s Equation

1. Introduction

In this paper we apply singular perturbations methods to solve Kushner’s equation for
the following model — a one dimensional diffusion process z(t) transmitted through a low

noise channel, our model is described by the It6 equations

(1.1) dz(t) = m(z(t))dt + odw(t)

(1.2) dy(t) = h(z)dt + pdd(t)

where w(t) and ¥(t) are independent standard Wiener processes, m(z) is assumed to be
an analytic function of z with polynomial growth at infinity and h(z) is analytic monotone

function of z, h(z) > 0. for all —oco < z < co.

The parameter p, the channel noise intensity is assume to be small. In terms of communi-
cations theory this asymption corresponds to high signal to noise ratio (SNR).

The filtering problem is to find the probability density function of z(t) conditioned on the
measurements (y(s), 0 < s <t).

The conditional probability density of z(t)

P(z,t.0) = P(z(t) = z/(v})

satisfies Kushner’s equation ([KU1], [LS1]).

(h — k)P (dy — hdt)

(1.3) dP = LPdt + .




where h is the conditional expectation

(1.4) h=[ ‘: h(z) P(z,t/y})ds.

So equation (1.3) is nonlinear integro differential equation. (1.3) is written in the It6 sense.

An unnormalyzed version ¢(z,t,p) of P(z,t,p) is known to satisfy Zakai’s equation [Z1]

oh

(1.5) db(a,t,p) = Lgdt +

dy(t).

The model (1.1) - (1.2) had been studied recently, in [KBS1] the case where h(z) = =z,
that is linear channel, had been discussed. Using the Itd version of Kushner equation, a
suboptimal filters were constructed. The suboptimal filters converge to the optimal one
as p — 0. But the method described in [KBS1] suffers from two problems — first it gives
only finite number of approximations and not a consistant way of getting a sequence of
approximated filters, and the method is valid only for linear measurements, and can’t be

expanded to the non-linear case.

The nonlinear case had been studied in [KBS2], [YBS1], [SBS1] where the Stratonovich
form of Zakai’s equation had been solved asymptotically as p — 0.

In this paper we apply similar methods for the solution of Kushner’s equation for the
case of nonlinear measurements. We solve Kushner’s equation asymptotically using the
Stratonovich version. The Stratonovich form of Kushner’s equation appeared in [ST1], we
derive this equation using the Wang Zakai correction [WZ1] for the Zakai’s equation. Note
that applying the Wang Zakai correction to Kushner’s equation itself involves differentia-

tion of nonlinear terms like fzp with respect to p.



In the 2§ we derive the Stratonovich version of Kushner equation using the Zakai’s

equation. We believe that this derivation had not been published before.

In 3§ we solve Kushner’s equation for the model (1.1) — (1.2) asymptotically as p — 0.
We use similar technique as in [KBS2] for Zakai’s equation for the same model. The two
asymptotic expansions agree up to a fartor that is a function of ¢ and p - the normalization
factor. Thus the same sequence of suboptimal filters that had been constructed using
Zakai’s equation, can be constructed using Kushner’s equation.

Finally in 4§ we give example for which we use Kushner’s equation in the It sense. In
some engineering models the transmitted signal is function of z — £(¢), in communication
theory, we often use the following model to decrease bits per seconds transmition needed

(see for example [A])
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Figure 1. Block diagram of transmitter

The input to the filter is A(z — £) and an adaptive noise, we describe the model by the



following
(1.6) dz = m(z)dt + odw(t)
(1.7) dy = h(z— Z)dt + pdv(t)

Where h(:) is an analytic function of it’s argument. Since k is a function of Z as well as
z, Zakai’s equation turns to be nonlinear equation as well as Kuhsner’s equation, we solve

Kushner’s equation asymptotically for this case, and construct the first order sub-optimal

filter for this model.

2. The Stratonovich form of Kushner’s Equation

Consider again the model (1.1) - (1.2)

dr = m(z)dt + odw(t)

dy = h(z)dt+ pdd(t),

denote by p(z,t) = p(z(t) = z/y!) the conditional probability density function and ¢(z,?)

the unnormalized version of p that obeys Zakai’s equation, we have

(2.1) p(z.t) = #(a,t)/ [ #(z,1)ds.
denote by

(2:2) n) = [ ¢lz,t)ds.

we have

(2.3) p(z,t) = ¢(,1)/n(t).



The Zakai’s equation in the Stratonovich sense is given by the following (see [KBS2])

1, 8? hié

(2.4 dp(s,t) = (—a%m(m)qs + 500 d(a,1) —) at + 1%

p?

2 Oz? B 2p?

First we write down the differential equation for #(t), for that goal we assume that

. 09
(2.5) Jlim —a—i(z,t) =0 Vt.
and that
(2.6) im m(z)¢(z,t) = 0.

(otherwise i(z) does not exist).

dn(t) = d/_o:o p(z,t)dz

changing the order of integration and differentiation, using integration by parts and (2.5),
(2.6) we obtain

2.7 dn(t) = o dt L
() n - nzpz np2 y

(note that F = [ F(z,t) p(z,t)dz/n(t))

S0

dp = d(¢(z,t)/n(t)) =
(2.8) +1;—?dy + p;h—:zdt - —’:dy
or



or

h — h)p(dy — hdt)
p?

(2.10) dp = Lpdt — 2%2 ((h — ) — (h :\3)2> gt + ¢

equation 2.9 (or 2.10) is the Stratonovich version of Kushner’s equation.

3. Asymptotic Expansion for Kushner’s equation

In this section we construct an asymptotic expansion for the solution of Kushner’s
equation (2.9) for the model (1.1) — (1.2). We assume for simplicity that ¢ is sufficiently
large so that initial layers have decayed. Following the procedure of [KBS2] we adopt the

followign ansatz
(3.1) p(z,t,0) = K(t,p) exp(—¥(z,1,p)/p)

as p(z,t,p) is a density function, we have

o

(3.2) K(t,p) ™ = / exp(—9(z,t, p/p)de. Vp >0, Vi.

— 00

Assume that for every ¢t and p, ¥ has a unique Z(¢, p) such that

B(E(t ), 1o0) < B(oitip) VoA .

Without losing generality we may assume that

P(Z,t,p) =0

(Otherwise we take this term, as a function of ¢ and p, into the K ), and because of (3.2)

it is clear that

(5:3) batp) =3 Lo 2y



Denote by

(3.4) a(t,p) = v (&(t, p),t,0) k=2,3,...
and

(3.5) M =1/g(t,p)

We have the following

_52 —_53 _a4
(@28 g 2mB) yq, 22D +) /e

(3.6) p(z,t,p) = k(t,p)e_(

Using the Laplace expansion for the integral we have the following approximations.

[oe] 5 rl2
(3.7) 5;:/_ :cp(x,t,p)d:z::z+pkq32 \/ﬂ_/’\/§+
Note that
V2
(3.8) k(t,p) = et

and we can express 2 and k(t,p) up to any order in p as a function of M and {g;}{2;. It is

easy to verify that

h = /_o:o h(z)p(z,t,p)dz =
(3.9) = h(%)+ pk\/:;_—zﬁ (”h’;(i) _ h’(i)zqsﬂz) +...

(310) B =K(3) + [ -2@HE L T+ TG + Hh (@) KV

Substitute (3.1) in (2.9) we have

. 1 o V2 K $
K-E¥ K(—m+—-m¢ + 50’ (—f—+%)>*—z(h2“h2)
0 P PP 2p

(3.11) +—(h = h)=(?)



On the minimal path, z = Z we have

_22 [( h2 + hyihy) — 2hh'1q2‘°'ﬂ2} pt ...
(3.12) +;)1; ,o(ﬂ—:Z - %q_s) ] %.
where h; = g;’,‘( ), differentiate (3.11) with respect ot z we obtain
—'/’—:1 = —m"(z) + m:ﬁ” + m%i + %az (¢;”’ + 2‘0”/:/2’“)
(3.13) —%%h’ + h"fl’t’

Substitute the minimal path, using the identity

0 = "bz - d)xz +¢zzfé

i Ve m 1 ,.¢s hh' K dy

= = R o AN Shitd

pr m(x)+ﬂp+2a(p) p? | ptdt
or, multiply by Np we obtain

) 1 Hh' dy
3.14 =—pNn Mgg——|h— —
(3.14) x pIm”(Z) +m+ 20 gs p ( dt)

equation (3.14) is the equation for the minimum path. The first order approximation is

(3.15) j = G (d—y — h(% ))

p dt

In order to get approximated expansion for M we differentiate (2.15) one more time

e = —pm 4 Ve e
T -
p

+ 2 » + m¢zzz

e Uzzz hl2 +hh" hll'
(3.16) p¥e¥ ) - + =

(¢Z$ZZ + 2 zz
p p P p

2



using
(317) "p.zz = "/)zzt + ¢zzz§
we have
— o+ g3 = — "'+ ™ gyt 2o (gt —
zz T §3 pm mqs 20 g4 o2
hrz +hh" hn-
p P
but
. 1 N
(3.18) gs = (H) = ~—3
SO
1 _ , [ dy w . 2m'
= = p[—lh(dt h> pm+ﬂ+mq3
1 2 h'* + hh" A"y
3.19 —o? — .
(3.19) +50 <q4+pﬂz) p + .

Equation (3.19) is a stochastic equation for M that involves g3 and p4, by proceeding as
above, that is, differentiate (3.16) with respect to z and substitute the minimal path z = z,

we obtain an infinite system of differential equation for gx(t,p), (k > 3). For k = 3 we

have
. 3 0(]3 1o 1 2 ' m" 1 2
= -= _Wh") + —o%gs — 3m'gs — 3— + ~o* I
g3 p ( = + 20 as mqs - + 20 9394
1
(3.20) +p [m(h) — gy N mn] + ;[Q4 AR — hm] (y . h(:z:))

Following [KBS2] we expend the Z(t),N(t) and gx(t) (k > 3) in the form

B(t) ~ zo(t) + £y o 2zi(2)

(3.21) M) ~ ro(t) + T2y 072 14 (8)

ar(t) ~ qrol(t) + 22 pil? qri(t).
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where the leading terms are given by

(3.22) Mo(t) = /R (z,(t)

Gro(t) = K9 (z,(t)) /o
Since Z(t) = Z(t) + O(p), the first order filter is given by

(3.23) dz*(t) = o(dy — h(z*(t)dt)/p.

The filter (3.24) is written in the Itd sense, this is the ”constant gain” filter, this is a very
easy to implement filter, however, for the performances of this filter see [BG1].

Using (3.7), (3.8) and the second order solution of Z, and M and the first order term in gs
we obtain the second order filter as follows

o = [~ G+ m(a)] db + Ty 1)k (") S

P

(3.24)
drt = zi:ﬂii"_”iﬁdt.

Proceed as above, we can write infinite sequence of sub-optimal filters whose mean square

estimation error (MSEE) are going closer to the error of the optimal filter (see [KBS2]).

4. Asymptotic analysis of the feedback channel

In this section we apply singular perturbations method for the solution of Kushner’s
equation for the case of feedback channel. The observation process here is a function of
the optimal estimation too, in the following way — denote by Z(t) the maximum square
error estimator (MSEE), then the observation process is a function of z — 2(t).

The signal that we analyze is the first order Bathoworth signal that is govern by the

following It6 equation

dz(t) = —Pz(t)dt +1/28dWy(t)
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(4.1) z(0) = zo
where 3 is a constant (the band ”"width”) and W1 (¢) is a standard Wiener process, z, is a
random variable with a given distribution, the observation process is given by
dy(t) = h(z — Z(t))dt + pdd(t)
(4.2) y(0) = o
where h(-) is an analytic function of z— £, and 9(t) is another standard Wiener process in-

dependent of w(t), p is a small paramter 0 < p < 1. Kushner’s equation for the conditional
q

probability density function is given by

(4.3) dp = (Bzps + Bp + Ppsz)dt + (hp_z h) p(dy — fzdt)

in the It6 sense, or

A

(44)  p=Pzp.+ Bp+ PP — 2% <(h R —(h fﬁ)z) n %(h _ )G —h)

in the Stratonovich sense. (where we use the notation of the ordinary calculus for the
Stratonovich sense). We solve (4.3) asymptotically as p — 0, we take for simplicity ¢ large
enough so that initial layers have decayed, h is the conditional expectation of &, and in

general, for a function F(z,t) we denote
(4.5) Ft,0) = [~ Fla,t)p(ot,p)ds.

If the integral exists, using Kushner’s equation, it is easy to obtain stochastic differential

equation for F, (see [J1]), for F(z,t) = z we have the following

zh — &h .
(4.6) di(t) = —Bz(t)dt + ——pz—(dy — hdt).
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Denote by dJ the innovation process

dy — hdt
p

dJ =

it is well known that J(t) is a standard Wiener process with respect to the same sigma

algebra as ¥(t).
Next we assume that p(z,t, p) has the following form
(4.7) p(z,t,p) = p(z — £(t),t, p).

using It6 formula we differentiate p to obtain

—~ A 2
dp dp 10%p [(zh—2h
. —s,4,0) = Laz 4 Pgp 4 9P dt.
(4.8) dp(z — Z,t,p) 6:?;dx+ atd + 5395 p

where dZ is given by (4.6). Comparing (4.8) and (4.3), and using the following two relations

op  Op
(49) 9% = os
d%*p d%p
(4.10) 957 = oz

We end up with the following equation for p(z — £,1, p)

—~

(4.11) (—p + (z — &)p, + [%2 - (—:-Eh—_zp-(jﬁ)—z] Pez — pt) dt

We solve (4.11) asymptotically as p — 0, following [KBS1] we adapt the following ansatz.
(4.12) plz — &,t,p) = p? K(z — 2,t,p) exp(—t(z — £,t,p)/p*) a>0
where K and 1 are regular functions in z — Z, that is

(4.13) K(z —&,t,p) = fj ki(t, p)(z — 2)°

1=0
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and
(4.14) bz —2,t,p) = ifh(t,p)(l‘ — &)’
such that
})i_rprak;(t,p) < 00
and

})l_l”% A,‘(t,p) < oo.
Note that the sum in (4.14) starts at ¢ = 2 because p(z — Z,t, p) should satisfy

(4.15) / plz — Z,t,p)dz =1 for all ¢t and p.

-—00

Substitute (4.12), (4.13) and (4.14) in (4.15) we obtain

wjR

(4.16) [" (2 kil — z)*‘) exp (— R /pa) d =1

Using the Laplace expansion of the integral, expand the left hand side of (4.15) as a series

in /p, and writing the right hand side as
ad o

(4.17) 1+ pz-0=1
=1

we obtain a sequence of relations between A; and k;, more specific, the zero order term (in
p) gives

(4.18) ko(t, p) = 1/ A2(t,p) /7,

the first order term is identically zero, but the second one yields

(4 19) k2 _ 3a§ko 3]600,4

8a2 2a;
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and so on. On the other hand, by definition

(4.20) (r—%) =0
(4.21) 12(:1: — 2)P(z — %,t,p)dz =0

expand (4.21) as we did for (4.16), using the Laplace expansion of the integral, we obtain

another sequence of relations between a; and the k;, the first is

3a3ko
2a2

(4.22) =k

and so on.
Next we choose a. We apply the technique used by [BZ1] to obtain lower and upper bounds
for the error (z :\:?:)2 and conclude that

(4.23) (z — £)% = 0(p)

Expand

as Laplace expansion of the integral we choose o = 1, and in general we have:

for n even n > 2

/\A n . oo AN ~ _ %(n_l)!!
(z—-2&)r = /_oo(z—x) p(z — 2,t,p)dz =p ——-—(2@)"/2 +

e (—a4 (n + 3)N N aj(n+5)!!  kias(n +3)! /ér_
2

(20,2)2"'% 2(2a2)3+n/2 (2a2)2+n/2
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and for n odd

~\n n!! T as
(z—2)» = (kl( o) (nH1)/2 a (2a2)(3+n)/2) +
nts (n+2)!! [m  as(n+4)!
TP (k3( )(n+3)/2\/ + (2a2)(n+5)/2+

2asas(n +6)!!  al(n + 8)! n4s
(2a)" N2 (2a,) (492 + (p ’ )

(4.25)

We are interesting in asymptotic solution of (4.11) as p — 0, for that aim, because of (4.23)

we define a new set of variables

(4.26) z,t — u,t
where
(4.27) u = (z—Z(t))/v/p

Using (4.24), (4.25) and (4.27) it is easy to verify the following asymptotic equalities
(4.28) h —h = Ly + u/phy + hapu® + hpy/pu® + u*( ) +...
A A
where Ly = h(0) — h
- a hl 1050/ 1504 150/3]91 T
.29 h—2Zh = p— 2 hy 3 _ — L
(4.29) ah -2 Poas  * ( (32 8¢5  8a% \ a

3k2 3k1 150,3 3h3
_n 2 Yy I 0 L
4a2 \/7_”12) th (4a2 a; 8ad ) + 4a2) +0p ) &

Substitute (4.24) — (4.28) in (4.11) and expand everything as a power series in u, we obtain

the following equation:

3('1,3 3(1,3(.12 2 .
. - kay — K,
(4 30) {2,/a27r tu \/— [2,/7ra2 4a2,/7ra2] T [p 2 ag]
+u? | 1+ oo (ko + A/puky + pulky +...) +
Vou |k +u + 2k2+/p | + v’ ]+ .+
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1 L? 2azk, .
+= (02—£) [214:2— %2 +u(6k3\/_—15a3k)+
2 p? p N
87 a3k, 4k,al
+u ( % +—————a2)+u3[ ]+...}dt+
4 a p
2 Ly | uby 3 4
+ 3 (ko + v/Phru + pkau® +...) —p—+7+h2u + u’hsy/p + v’ | +...

—2ask,
+ [kl +u ( \(/l;_ + 2k2\/ﬁ) + u?(3ksp — (3k,as + 2azk;))

L
+ullo. ]+ [ ”] dJ(t) =

p
In order to solve asymptotically (4.30) we separate it into a sequence of stochastic differ-
ential equations for the coefficients of each power of u, that is from coefficients of u° we
get the following equation:

a 1 L 2azk,

(4.31) { + ko + - [ “) [kz % ]}dH—

2./may p? p

k,L
{ 21 k1%§z} dJ(t) =

similar equations can be obtained from any power of u, obviously the system is infinite
coupled sequence of S.D.E. for the a; and the k;, indeed, using relations like (4.13), (4.19)
and (4.22) we can get rid of the k; and have a sequence of equations for a;. The first
equation (4.31) is for a,, indeed all the others a; appears in this equation, but the lugger ¢
is, the coefficient of a; is of higher power of p. This form let us to truncate the expansion

and to construct sub-optimal finite dimensions filters.

Note that direct calculations yield that the terms in (4.28), (4.29) satisfy

h 3(12 3&4 3a3h3
4.32 Ly = — he |22 — =) —
(4:32) n {p2a2+p[ (40,% 4a§') 4a3
3ha
+4—- +p° [F213(a2,a3,a4,a5,a6)]+p (Fa14(as,. .., a7,as))
aj

+0(p°)
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h1 20,2 3a4 3(13 3h3
4.33 Loy = o2 o g2 p, (%% _ 3% _, 303 Shs
(4.33) 2 P24, e ( ' (4@% 443 443 + 44} +

p3F223(a2, ..., 05,06) + P4F224(az, ..oy a7,08) + O(PS)-

SO

h2 h 2(12 304 3a3h2 3h3
4.34 L2, = p? i 37 (g 228 _ 2740 bt
(4:34) 22 P 4a} P\ 4a} 4ad 4a} + 4a} *

+p*Fass(as, . .., a5,a6) + p° Fasa(az, - . ., ar,as) < 0(p%).
where the F' are rational functions.

Using (4.6) we construct a sub-optimal filter. Taking the zero order approximation only

we obtain

ha
4.35 L ~ —p——
( ) 21 P2a2

hy

.36 Ly = p—

(4.36) 22 P2a2

272

2 p°hy

(4.37) L3, i

substitute (4.35) — (4.37) in (4.31) we obtain

sz 1(, h 22k,
. ot = [0 — L) 2k, —
(4.38) {2, /Tag ko + 2 (0 4a2 2 p
—kohy  kihy
+ { 2a2 + 2&2

o

}dJ:O.

Looking at the high order terms in (4.38)

2a2 h?
(4.39) Gy = 22 (02 L )

o U 44

we see that the first order approximation of (4.38) is

(4.40) a; =
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so using (4.6) we obtain

h1

2asp

(4.41) dz* = —pz*(t)dt + dy =

= —Bz*(t)dt + gdy.
p

equation (4.41) is the zero order filter — the constant gain filter, similar constant gain filter
for the non-feedback model is given in [KBS1], [KBS2] the two filters have the same gain

but the drive terms are different.

Discussion and conclusions.

In this paper we derived the Stratonovich version for Kushner’s equation. The Stratonovich
version is easy to treat since it obeys the deterministic calculus rules. We use this version
of Kuhsner’s equation to solve asymptoticallly the filtering problem of an one dimensional
diffusion process measured in a low noise channel. We solve the same model that was
studied in [KBS2] using the Zakai’s equation for the unnormalized conditional probability
density function. The result agree with these in [KBS2].

In the second part of the work we solve Kushner’s equation asymptotically for the
feedback model, that is where the observation process is a function of £ — & where Z(t) is
the optimal estimator at time ¢ (with respect to minimum square error creterion) and we

construct a simple constant gain filter to obtain Z(t).
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