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Residue Calculus and Effective Nullstellensatz
Carlos A. Berenstein and A. Yger*

1. Introduction.

Let p1,...,pnm be polynomials in n variables with coefficients in an integral domain A, and
respective degrees Dy > D, > ... > Dy, with no common zeros in an integral closure of
the quotient field K of A. It follows from effective versions of the Hilbert Nullstellensatz
([Br],[CGH],[Ko]) that one can find an element ro € A \ {0} and polynomials g; € A[z]
such that

M
(1.1) ro = Z%’Pj
j=1

with a priori estimates on the degrees

(1.2) maxdeg(g;) < (3/2)'Dy -+ Dy,

where 4 = min(n, M) and t =max{j: 1<j<p-1,D; =2}

When A = Z, the Arithmetic Bézout Theorem ([Ph2], [BGS, Theorem 5.4.4]) shows
that the Faltings height H of the intersection of the arithmetic cycles X; in P"(Z) corre-
sponding to the polynomials #p; (homogeneous versions of the original polynomials) has

the bound
Y 1 1
H<c,H D; — + -1,

j=1 j=1

for some constant c,, where # := max;(H(Xj;)), v := min(n + 1, M). This implies that
one can solve (1.1) with an rg such that

. z 1 1
(1.3) log|r0| < énh (JI:IIDJ) (ﬁ +Z‘1—); ,

j=1

where h is the maximal size in the sense of Mahler of the p;. There does not seem to
exist so far an Arithmetic Division Theory that could provide good estimates for the
Faltings heights of the cycles corresponding to "g; or for the maximal Mahler size of the
gj- Nevertheless, using analytic methods based on the existence of integral representation
formulas in Complex Analysis and multidimensional residues in C", one can show ([BY1],
[BY2], [El], [BGVY, Section 5]) that the system (1.1) can be solved with the estimates

m
max; deg(g;) < n(2n + 1)(3/2)* (H D.‘i)
=1

b 8
max; h(g;) < k(n)D} (H Dj) (h+1logM + Dy log D,)

=1

(1.4)

* This research has been partially supported by grants from NSA and NSF.

1



These estimates, and the explicit way the g; were obtained in [BY1] as linear combi-
nations of big powers of n affine functions times polynomials of reasonably small degree,
makes it plausible that problems of complexity associated to the Nullstellensatz could be
solved using straight-line programming ideas. In effect, the work of Giusti, Heintz, and
their collaborators has proceeded in this direction [GHS), and, for example, Krick and
Pardo ([KP1], [KP2]) were able to solve (1.1) (in the case A = Z) with polynomials g;

with degree at most x, DT and logarithmic size at most E,,Dlo(")(h + log M), but with
constants and the O(n) not very explicit.

Nevertheless, the problem remained to obtain size estimates similar to (1.3)-(1.4), in
the case where A was an integral domain equipped with a size and whose quotient field
is of positive characteristic. A typical example would be A = Fy[n,..., 7], with size
deg.. In order to solve this problem, as well as improve the exponents in (1.4), which we
do in this paper (see Theorem 6.1 below), we had to get rid of all complex analytic tools
involved in [BY1]. The way we proceed is to keep the structure of our original work, while
eliminating all the analytic artifacts.

The main thing we do in Sections 2 and 3, which are independent of the Nullstellensatz,
is to develop the algebraic theory of residues (as described in [L]) into a computational tool
(see also [An], [AL], [H].) In fact, one can certainly extract from our work an algorithm
to compute total sums of residues with respect to a dominant polynomial map, avoiding
the search for Grobner bases. It will become evident here that the key tool (from the
computational point of view) is the Transformation Law (and its variants.) For example,
the algebraic substitute for Cauchy’s formula, that is the Kronecker interpolation formula,
is an immediate consequence of this property of residues. Already in the analytic context
of [BY2], the key point was the use of the Cauchy-Weil representation formula. Another
consequence of the Transformation Law is that the analytic and algebraic definitions of
residues coincide when A is the local ring of holomorphic functions O,, or any polynomial
ring F[z,,...,z,)], for any subfield F of C [Bo2]. It is interesting to point out that even
for A = Z we were compelled to develop the classical theory of residues in really novel
ways [BGVY].

Analytic techniques have frequently inspired some results which are algebraic in na-
ture. Such is the case for the Lipman-Teissier theorem ([LT], [LS], [HH]), about integral
closures of ideals in regular local rings, which was originally proved in an analytic con-
text by Briancon and Skoda in [BS] using Hérmander’s estimates for the solution of the
9 equation. Then, it is not really a surprise, that our substitute for the use of integral
representation formulas happened to be precisely Lipman-Teissier’s result (as we will see in
Section 3.) In fact, such a result seems to be deeply connected to the vanishing theorems
we prove in Section 3 for total sums of residues with respect to a proper polynomial map
P = (P,...,P,) from K" to K", with Lojasiewicz exponent 4, provided the quotient
max(deg(P;))/é is close to 1. It is quite probable that such vanishing theorems will have
interesting geometric consequences, as it is the case with the classical Jacobi vanishing
theorem ([J], [G], [Ku2].) Note that also in [BY1], [BY2], this kind of vanishing theorem
was crucial.

If Analysis remains present in this paper, it is in the use of the Lojasiewicz type
inequality of [JKS] and its relation to properness in Section 4. For convenience of the
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reader, we have separated all the technical estimates necessary to complete the proof of
the effective Nullstellensatz into Section 5, which may be safely skipped in a first reading.

We hope that the tools we introduce here may help to some of the open problems in this
field, for example [Am)], and the fact that there is a true residue calculus in Algebra, which
may even extend to non-commutative bi-algebras [L, Section 1], suggests that effectivity
results of this type could be applied in more complicated algebraic situations, like the Weyl
algebra (see [Gr].)

Finally, the second author would like to thank the University of Maryland, where this
work was completed, while we both would like to acknowledge illuminating remarks and
discussions we had with many people, among them, J.Y. Boyer, M. Elkadi, R. Gay, M.
Hickel, Q. Liu, P. Philippon.

2. Residue symbols and transformation laws.

Let R be a commutative Noetherian ring. We recall from ([L, p. 44]) that a sequence
P = (Py,...,P,) in R is quasiregular if and only if the Koszul complex over R determined
by P is exact except possibly in degree 0. This is equivalent to say the following: let I
denote the ideal generated by the P; in R, then whenever there is a relation of the form

Z axP* € IP*!, a € R, p € N,

kENT

lki=p
then all ay, are in I (here |k| := ky+- -+ kpn, P¥ = PF* ... P5»). The sequence P is regular
if the Koszul complex is exact at all degrees. Note that the notion of regularity depends
on the ordering of the sequence, while quasiregularity does not.

The following remark will be useful for us later.

Remark 2.1. Let (hy,...,h,) be a quasiregular sequence in a commutative Noetherian
ring R and M an n x n matrix with coefficients in R, then the sequence (u,h — Mu) :=
(U1y- vy Un, hy(T) = (Mu)y, ..., ho(z) — (Mu),) is a quasiregular sequence in Rfuy,. .., up).
In order to see that, let us denote by I the ideal generated by the h; and J is the ideal '
generated by the u; and the hj—(Mu); in R[u]. Let p € N and ax, x, in R[u], k1, k2 € N7,
|k1| + |k2| = p such that

(2.1) Ytk k(W (b= Mu)tr € JPH!
{k1l+|kz|=p

Setting u = 0 in (2.1) and using the fact that h is a quasiregular sequence, one gets that
all ag k,(0) lie in ideal generated by hy, ..., h,, which implies that ag x,(0) € I, and thus
ao k, (u) € J, so that

(2.2) >k k (Wuh (b — Mu)*? € JPH,
lkyl+1kg|=p
k3 #0
Set up = -+ = u, = 0, and denote k;; = (5,0,...,0) then (2.2) implies that
P
Z Z @y ke (U1, 0)ud (B — M (uy,0))* € (I,u,)P*!.
J=1kz|=p~j



Decomposing the two sides as polynomials in u; we see that

Z Gk, 1 ,k2 (O)h‘k2 € I?
lk2|=p—1

so that ay, ,,x,(0) € I and ag, .k, € J. We can repeat this reasoning to see that all az, 4,
with |k1| = 1 belong to J. This procedure can be continued in an obvious way and the
assertion in Remark 2.1 follows.

Remark 2.2. Note that when R = K|z,,...,z,], K a field of arbitrary characteristic,
then, if Py,..., P, is a quasiregular sequence in R such that (Py,...,P,) is a proper ideal
I, it follows that the P; are algebraically independent over K. In fact, assume one has a
non trivial relation

Z axrPP .. Pk =0, a € K;

k|I<M
rewrite it as
Z akP’c = - Z: akPk € JP+1
|kl=go {k]>qo0

From the definition of quasiregularity, all the ay, |k| = go are in the ideal, since this ideal
is proper, they must be zero.

Suppose now that R is a Noetherian K-algebra, where K is a commutative field. Given
arbitrary zi,...,z, in R and hy, ..., h,, also in R, such that (h1, ..., hy) is a quasiregular
sequence (generating an ideal (h) = I in R) such that P := R/(h)R is a finite dimension
K-vector space, we now follow Lipman [L, Chapter 3] (see also [Hu]) to define the residue
symbols

Res [g,lﬁfﬁll".::':k‘fﬁq] = Res [,ﬁ‘ﬁ] , QeR,keN"

Let E = Homyk (P, P). Let o be any K-linear map from P to R such that moo = | dp,
where 7 is the quotient map from R to P. For instance, if R = K[z,,...,z,)], one can
choose o(r) to be the remainder in the division algorithm with respect to a Grobner basis
of any representative of r modulo I. From the quasiregularity, it follows that any element
Q in R has a formal expansion

(23) Q=Y o(a)h*,

keNn

where the g; € P are uniquely determined (depending on the choice of o) and the series

in (2.3) converges in the I-adic completion R of R, with the topology associated to the
pseudodistance

d(@1,Q2) = exp(—v1(Q1 — Q2)),

where

v1(Q) :=sup({p € N, Q € I*}).
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One can define linear operator @ — Q! from R into E[[h]] as follows: given any r in P,
one can write in R

(2.4) Q-o(r)= Y o(r(Q,7))h*,

kENn
where the 74(Q, 1) € P are uniquely determined. Since o is K-linear, each map

QI”c HE "k(Qa 7‘)
defines an element in E. We now define Q* in E[[h]] as the formal series of operators

Q' = Z qﬁhk.
kEN®
One can expand as a product of formal series of operators the product
i
(2.5) Q" det Oz | _ }: Sihk,
Oh; .
€Nn

where the determinant in (2.5) is computed using the standard product rule, keeping track
of the noncommutativity of the multiplication in P (see [L, 1.10.3, p.21}). It is clear that the
previous constructions depend on the choice of the section 0. Nevertheless, it is important
to remark that the traces (in fact, the characteristic polynomials) of the operators d; do
not depend on the choice of the section 0. As done by Lipman, we define the residual
symbols by

(2.6) Res [%ﬁ } = Tr(5) € K.

Note that if Q € I then the expansion (2.5) of Q! does not contain a term with index 0,
and so the residue symbol (2.6) is zero. Another important and immediate consequence of
the definition of the residual symbol is the following lemma (see [Ho}.)

Lemma 2.1. LetR := Kjz,,...,zL,41,...,Yk], where L, K € N and K is a commutative
field. Let Py(z),...,PL(z) be L polynomials defining a quasiregular sequence in K[z and
Qi1fyl, - -.,Qxk[y], K polynomials defining a quasiregular sequence in K{y]. Then, for any
multiindices | € NL, k € NX | one has

' zlykdz A dy }_ [ zldx ] [ ydy ]
Res [Pl(z)a“°1PL(x),Q1(y),“-)QK(y) = Res Pl,”-’PL Res Ql,"'sQK ’

with the standard notations z! := it -- -z, y¥

dy:=dy; \--- ANdyk.

=: yf‘---yf{‘, dr :=dry A--- ANdxp,

As a simple example, let us consider in the algebra K(yi,...,yn){z1,...,2Zn] the

quasiregular sequence (r; — ¥1,...,Tn — Yn). Then, one can verify easily from the def-
initions and the elementary properties mentioned above that for @ € Kizy,...,z,] one
has the identity

Qdzi A+ Adzy, }
2.7 = Res
( ) Q(y) [xl—yh"-smn-yn
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which is the algebraic version of Cauchy’s formula. In fact, one just uses that Q(z) =

Q(y) mod (Z1,Yn ..., Tn — Yn) and the invariance of the residue under translation in the
variables z.

Another important formula, when R = K|[z,,...,z,] and K is infinite, is the Jacobi
vanishing theorem [KK, Theorem 4.8], that is, if P,..., P, € R have no common zeros at
infinity in the projective space P"K’ where K is an integral closure of K. then

Qdxy A---Adzy | _
(2.8) Res P,.... P, =0
if @ € R and
(2.9) deg(Q) < ) degPj—n-1
=1

In the case of a single variable and P(z) = agz? + - -- + ap, we have that
{iz,...,zP"1}
is a basis for the quotient space P. If @ € R = K|z], let
D-1
Q= Z ak':Ek.
k=0

Then, as shown in [Hop, Example 2, p.519], one has

(2.10) Res [ng] = 2b-1

ao

One of the main properties of the residue symbols is the Transformation Law [L,
Corollary 2.8, p.40], namely,

Proposition 2.1. Let f = (f1,...,fn) and g = (91,. - .,9n) be two quasiregular sequences
in R, such that g = Af, where A is a n X n matrix with coefficients in R, and such that

the quotients R/(f) and R/(g), are finite dimensional K-vector spaces. Then for any
.’l,'l,..-,.'lfn,Q € R)

(2.11) Res [Qdﬂh /\---/\dxn] — Res [QAd:z:l A---Adz, |
fh‘"vfﬂ 91y--+99n

where A is the determinant of the matrix A.
Later on, we will use the following variant of this proposition.
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Proposition 2.2. Let f = (fo, f1,...,fn) be a regular sequence in some order in R
and let g = (g1,...,9n) be such that the sequence fo,g1,-..,9n iS quasiregular and the
quotients R/(f) and R/(fo,g) are finite dimensional. Assume that there are nonnegative
integers sy,...,8, and an n X n matrix A of elements in R such that

n
(2.12) folgi= aufi i=1,...,n.
=1

Then, for any ko € N and any xoq,...,Zn,Q € R, one has

Qda:o/\---/\d:rn] [QAd:co/\---/\dxn]
2.13 R =R A
( ) es[ (l)c°+1af1,--.,.fn e f(’)‘0+1+| I,gl,...,g,,

where |s| = 81 + : -+ + 8, and A is the determinant of the matrix A.

Proof. Let N an integer strictly larger than |s| + ko. It follows that the sequence
f&, f1,..., fn is also quasiregular. Hence, from the relations (2.12) we conclude that

there is an n x (n + 1) matrix A with entries in R such that

n n
(2.14) g = aofl + Zaj,f, = jofN-ko-lpkotl | Z&ﬂfl'

=1 =1
Let A’ be the n x n matrix obtained from A by deleting the first column. Using the
Transformation Law (2.11) for the sequences fe°t!, f,..., fn and oot g1, ..., gn we

obtain for any Q,z

0 syGls-++yGn

Qdz ; ] _ Res[ Q det(A')dz ] ‘

Res |  ko+1 ko+1
00 afla"‘ °

A second application of the Transformation Law yields

Q det(A")dz

T =] |
2.15 R =R :
(215) "S[ Kotl i fn) T | et el g gn

where A” is obtained from A’ by multiplying the jth-line by f,’.

In order to finish the proof we need to show that the difference det(A”) — A is in
the ideal I’ generated by f(’f °+1+|’|, g1,...,9n. If that were the case, then, as pointed out
following (2.6), the residue symbol would be zero.

Note that the sequence f', f1,..., fn is regular for some convenient order, as follows
from the original hypotheses on fo,..., fn. Moreover, from (2.12) and (2.14) we obtain
the relations

n
(Z(aﬂ - fo'a)fi) - 71jofév+sj =0 j=1,...,n.
=1
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Since the sequence f3, fi,..., fn is regular, the module of relations in R**! is generated
by the elements of the form

(07 ot a_fj’ 01' ¢t afia 09 ot ’0) 132<JS"”
i J

(fi’ 0) ot a—..f({v’ Oa' ° ot ,0) ISZSn,
1

Observe that the difference between the j lines of the matrices A and A” is in the projection
of this module of relations onto the last n coordinates. Thus, the difference between det(A)
and det(A”) is a sum of determinants of the following form: the ! first lines are either
(0,...,=bf;,0,...,bfi,0,...), or (0,...,bf,0,...), for some b € R which may change
from line to line. The remaining n — I last lines are of the form: (f3’@;1, ..., fo’@;jn). Any
determinant that contains a line (0,...,bf{,0,...) can be ignored since it gives an element
in I’ as soon as N is sufficiently big. Consider then a determinant among those remaining,
for example

_bf2 bf1 0 . 0
_b’fJ “ee b’f1
916 ok ce .o .en e
( ) ngajl e vee e g"ajn
f;"la,jll ng'aJ’n

A simple algebraic manipulation (formally just replace the first column by the linear com-
bination of columns C; + %Cz R fL'l’C,,, where in fact the division by f; is just an
artificial trick to justify the transformation, since everything is multiplied again by f; later)
shows that the determinant (2.16) also equals

0 b 0o ... 0
0 e N 4
fol(g; —ajofd)  @j2fy’ .. .. folGyn
f;j, (gy - &J'Ofév) &j'2f;j' ees “en f(:j,aj'n

which is in the ideal I, since the first column contains only elements of I'. In fact, these
are just the standard computations for the Koszul complex. Note that it is here where
the exactness of this complex played a fundamental role. This completes the proof of the
proposition. . m

Let us now explain an idea which we will use extensively later: the introduction of
additional parameters in order to compute residue symbols. As we have seen in Remark
2.1, if h is a quasiregular sequence in R, then (u,h — u) is a quasiregular sequence in
Rfu]. So, as shown in [L, (3.2,c)], for any u,v € (N*)", the sequence (uf?,...,ué" (h; —
u1)", ..., (hn—uy,)"") is also quasiregular. Let us show that we have the following property.
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Lemma 2.2. Let h:= (hy,...,h,) be a quasiregular sequence in R. For any zy,...,Tn,Q
in R and any k € N",

Q(z)du A dx
Res [u"l'“, e ,uk""(l,)hl ULy, h,, - un] =
_ Q(z)du Adz
(2.17) = Res [ul, ey timy (By = w) B (B — gt

Proof. We write

k;

k k, ki~ .
Ryt =wpt 4 (hy - u))O_uhP ™), j=1,...,n

=0
From the transformation law in K[u, z] with the pairs (u™+1, h —u) and (uF*1, B*+1), one
gets

1.ki=1
Res [Qg)ldi}‘z/\ dx} = Res [Q(x)]’[ = (z""’ P )du/\ dx}
uk+l hk+1

From Lemma. 2.1, one has then

Q(z)du A dzx _ ukdu Q(z)dz
Res [u’f""l,. ey UL Ry g R —ug | Res uk+l Res hk+1

z)dz
= ReS [Q’Sk'*)'l } .
Let us also write

k;
B = (b —uy)ott = (E hj(hj — "j)k""'> yi=1m,
=0

and . .

uj’+1 =u/uj, j=1,...,n
From the transformation law in K{u, z] with the pairs (u, (h—u)*+1) and (u*+1, B5+1) we
also get

Q(z)du A dx _ Q(z)ukdu A dz
Res [ul, oo ting (hy —w)Rr ¥l (R = )Rt T Res uk+l pk+l
which concludes the proof of the lemma. »



The Transformation Law has the following extension [Ky]. The proof in [Ky], based
on the same ideas than the proof of the Transformation Law given in [GH], is not complete.
In the analytic case, an immediate and complete proof of this generalized transformation
law (with the formulation we propose here), was given by [Bol]; his proof is based on the
representation of residues by Bochner-Martinelli formulas [BGVY]. We need here to give
a completely algebraic proof, which is in fact valid under the general hypotheses in [L,
Chapter 3].

Proposition 2.3. Let f = (f1,...,fn) and g = (g1,-..,9n) be two quasiregular sequences
in R, such that
n
gij = Zajlfh .7 =1,.. '
=1

where the coefficients aj; are in R and we let A be the determinant of the matrix A = [aj;].
Then, for any z;,...,Zn,Q € R and any k € N™,

A i ad
(2.18) Res [ﬁ‘iﬂi] = Z H (ﬂ:) Res [Q 1;‘111+<1:J<n,(;l:")+1 :1:] ’

lg;jl=kj; i=1
1<]<n

where we have introduced the following notations for the matrix of indices ¢; j € N

q; = (th,j, . --,qn,j), qi;, = (Qi,l, . --,Qi,n), Hi = IQ.';I

(ui) — pi!
gi; giil - Gin!

Proof. As a consequence of Remark 2.1, we know that the sequence (u,f — u) :=

and

(1. -«yUn, f1 — U1,..., fn — Up) is quasiregular in R[u]. From Lemma 2.2 one obtains
dzx du Adx du A dx
Res [ﬁ'ﬂ] = Res [ ?f U)k'H] = Res [u?'*f,f‘u] )

We know from Remark 2.1 that the sequence (u, g— Au) is also quasiregular in R[u]. Using
the Transformation Law one has

dz AduANdzx
Res [ﬁﬂ] = Res [u(,gﬂ’g _ Au] ,

where A is the determinant of the matrix A. For any j € {1,...,n}, one has
Ld

(2.19) gl — ((Aw),) Y = (g; ~ (Au);) | D gl ((4u)y)'| -
1=0
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Since the polynomials ((Au) j)"‘“'l are in the ideal generated by the uf""l, i=1,...,7,
one can apply the Transformation Law (with the systems @t ukat1, g — Au) and
@it bt gkt .., ghti*"). Thus (2.19) implies that

Kl kit
(2.20) Res Qdz | _ Res QIlj= (Z‘h—.‘o 9_!; I=!((Au) j)l) duAdz
. fr k1+1 kntl glki+] wi+r |
U-l 1'0-71"“ ,gl ,--.,gn

Let r € R denote the coefficient of u™ in the development of
n (& ki—t
QIT | Lo~ (Awi)' | »
j=1 \I=0
so that

(2.21) r= Z ng‘lkl—h e g'nﬂ”"'kn ,
o<l <kl

for some convenient Q; € R. We now appeal to Lemma 2.1 to rewrite (2.20) as

Qdrx rdx
Res {fkﬂ = Res g|1k|+1, . “,ggcl+1 .

Using the previous representation (2.21) of 7, the linearity of the residual symbol,

d
HHReS{ |k|+1H g |k|+1} ,
gl ‘,...’g‘n

and the Transformation Law, one obtains

Qd.’B ng‘kl'll .. g‘k‘_!"d.’c
Res [ FL Y Res g|1k|+1 ki1
1 3o n

o<k Ikl -8
_ Y Res {Q:ff] .
0<li LIk} I

Taking into account the precise value of Qi, we get (2.18). This completes the proof of
Proposition 2.3. =

Remark 2.3. When K is a field of characteristic zero, the generalized transformation law
of the last proposition can be understood as follows. For f and g related as in Proposition
2.3, consider the left R-module K of K-linear operators of R into K of the form

Q+— Z (Res {Hf’ﬁ‘ﬂ + Res {ng‘ix])

kENT
\ki<q
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where the coefficients Hg,Jix € R and the length ¢ are arbitrary. One can consider the
two homomorphisms of R-modules between R[z,,...,z,] and K defined by

or: 3 Hia* > 3 kiRes [H;,;fx]
k k

og: Zszk — Zk! Res [H;k:ldx]
k k

where we we have used e to represent the operators

Res [H ;ldx] (r) = Res [H;ldx] .

Then, one has for any P € Rz},
o§(P)=Aogg(z— P(*A- 1)),

where *A is the transposed of A. When P € R, this is the Transformation Law (2.11).

Let now R = K{z;,...,z,). Given a quasiregular sequence P, ..., P, in R, one can
extend the action of the corresponding residue symbol to rational functions @Q; /@2, when-
ever (1, Q2 are two elements in R such that the ideal (Py,...,P,,Q2) is K[zy,...,z,].
Namely, we define

Qide A+ Adz Q,\Vdz A+ Adz
Q 1 n e— 1 1 n
(2.22) Res[ 2 P.... P, ] Res[ p,... P, ],

where V is any polynomial such that for some Uj,...,U, in Ronehas 1 =U; P, +--- +
UnP, + VQ2. This definition does not depend on the choice of V, since if

1=) UPj+VQy=) UiP;i+V'Q,

=1 =1

then V — V' belongs to the ideal (Py,...,P,). (In fact, V — V' belongs to the localization
of this ideal at any maximal ideal in R..)
In this context, the following lemma will be useful later.

Lemma 2.3. Let P;j,1 <i<n,1<j<m be a collection of polynomials in R such that
the polynomials ©; := [];-, Pij define a quasiregular sequence. Assume additionally that

the ideal generated by aII7 the possible products

Ejrpngn = H Pii,, 1<j1,...,dn <m,

1<i<n
L#In#in
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is the whole ring R. Then fgrﬂ any rational function Q € K(z) with no poles on the set of
common zeros of the ©; in K, we have

Qdz } (@/ T1 Py)ds

= E Res YT
81,...,6,; i*ii

1<01 400 dn<m

(2.23) Res [
Pijy.oy Paj,

Proof. Let Q = Qng be an irreducible representation. Since @, and the ©; have no
common zeros over K, there exist polynomials Vg, V1,...,V; in R such that 1 = V5Q2 +
Y. V;6;. The second hypothesis implies there are polynomials W;, ;. such that

1 = z : :jla'":jnwjlr--)jn *
ISjl ,"'JnS‘m

Using the definition (2.22) of the residue symbol of a rational function and the Transfor-
mation Law we have

Qd:L’ _ [ Q1V0d:L'
Res [el,...,e,. =Res g ....0n

FQ1VO( E Ejl,...,jnle,...,jn)dx

= Res lsjly"')jnsm

= Z Res

1<j1,....in<m ©1,...,0,

QlVO:'jl 1"~vjn WJI 1---’jn dw}

[ Ql‘,owjl’---’jn dx

= Z Res

1<51,0 0 0dn <M | Prjyseeos Prja

(o/ T1 n)e
-— 1<i<n
- Z Res I#Ey
1<is,..in<m
L Py, Py,

To obtain the last line, for every multiindex ¢ we have used the Bézout identity

1=Vo( D EiiaWinin)Q2+ Y Vi6;
i

15]1 1"'ijnsm

n
= VoWis,..oin (Biy,in@2) + D_ Uik P,
k=1
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and the definition (2.22) in order to transform each term in the previous sum. n
The Transformation Laws remain valid for the residue symbols of rational functions,
as shown in the following proposition.

Proposition 2.4. Let (fi,..., fn) and (g1,...,9n) be two quasiregular sequences in the
polynomial ring K[z, ...,z,] such that

n
(2.24) gj=Za_,-1f;,j=1,...,n

k=1

Then, for any rational function Q1/Q2 such that (fi,...,fn,@2) = (91,.-.,9n,Q2) =
K[z;,-..,Zys), and for any multiindex k € N", one has

[(Ql/Qz)dx] ) H (”‘)R [(QI/QZ)A H1<11<n(aiJ)q ’drv] ,

fr+l gi‘l+1 ..., ghntl

lg;j1=k; i=1
1<J<n

with the same notations as in Proposition 2.3.

Proof. One has just to notice that if one takes ¢ = |k|+ 1, then we have a Bézout identity
n
1= Zuq,jg;-’ + V@2
=1

which can also be written (thanks to the relations (2.24)) as
1= Zﬂq,jf;j+1 + VMQ:.

=1

We then have, by definition of the extended residue symbol, that for any x € N such that
lul =g,

[(QI/Q2)A H1<$,J<n(au) de] — Res [QIVMA i< j<n(0is)® de]

9§u+1’ fnt 9‘1‘1-“’ ., ghntl
and also
dz Vmd
Res [(Qlf/g_i) ] = [Q}k{i‘-{l .’C] )
Then the conclusion of the proposition follows from formula (2.18). »

In the same vein, we have also the following proposition.
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Proposition 2.5. Let fo, f1,..., fn be a regular sequence in K|z, ..., z,). Let g1,...,95

in K[zq, . ..,z,) such that the sequence (fo,91,---,9gn) is quasiregular. Assume that there
are nonnegative integers s),...,8, and an n X n matrix A of elements in K[zo,...,,]
such that

n
f(:jgj=z:aﬂfl’ j=1"°'an
=1

Let Q1/Q2 be a rational function such that (fo, fi,...,fn,@2) = (f0,91,--,9n, Q2) =
K|zo,z1,...,Z5). Then, for any ko € N, one has

d dz, Adzo A - ANdz,
Res [(Q1§31)1’$f01’/\ ’;\n * ] = Res [(Q}/k?fzmnf;h gnx ]

where |s| = 81 + -+ s, and A is the determinant of the matrix A.

Proof. It is similar to the last proof. Let us consider uy,...,u,, V such that
n
(2.25) 1=uofy 1+ 5 w05+ VQa.
j=1

and vg,...,V,, W such that

n
(2.26) 1=vof5o" + D vifi + WQ.

=1

Multiplying (2.25) and (2.26) by j"(l)"I and comparing the identities, we conclude that
A’I(W — V) is in the ideal generated by f:°+1+|’|, fi,. .., fn. Therefore,

(Q1/Q2)dz ] [ QiWdz ] [ QlfA"Wd:c }
R O Bl e I A B N LY NS

Qify'Vdz ] [ Q:Vdz ]
* [f:0+1+‘31,f 1y fn e (,)co+1?f1,'°'7fﬂ

Q1VAd.’D ] [ (Ql/Qz)Ad.’L' ]
= R 8 = ReS ,
[fk°+1+| I’Ql,-o-,gﬂ f:o+l+|8I,gl,...,gn
if one uses formula (2.13). n

3. Residue symbols and properness.

In this section, we consider an infinite algebraically closed field K (any characteristic),
equipped with a non trivial absolute value | |. We will consider the norms, defined respec-
tively on K™ and K"*! by,

lz|] = 1réla.x lz;|, £ = (z1,...,2z,) € K"
| X] = ax |X|, = (Xo,...,Xn) € K",

15



Definition 3.1. Let P; € K[z,,...,%,], 1 £ j < n, the polynomial map P = (P, ..., P,)
from K™ to K" is proper if and only if K[z, ...,z,) is a finitely generated K[Py,..., P,]-
module.

Due to the following proposition, one can check properness by means of inequalities.

Proposition 3.1. Let P = (P,...,P,) be a polynomial map from K" to K". The
morphism P is proper if and only if there exist three constants K, vy, § > 0 such that

(3.1) |zl > K = |P(z)| > 7lsl’.

Any exposant § > 0 such that (3.1) holds for convenient constants K,~ is called a Lo-
Jjasiewicz exponent for the map P.

Proof. We are greatly indebted to Q. Liu for the proof of this statement in the case of
positive characteristic. The most interesting part of the proof is the fact that condition
(3.1) implies properness. This can be shown as follows. One can assume that K is complete
(otherwise, take a completion of K.) It is clear from (3.1) that for any point z € K®, the
set P~1(z) is an algebraic set which is closed and bounded, thus finite; this means that
P is a quasi-finite morphism. It follows from Zariski’s Main Theorem [Mu] that one can
factorize P as P = go f, where f : K" — X' is an open immersion from K" into some
affine variety X, and g : X — K" is a finite morphism (therefore proper.) When the
characteristic is 0 (one can assume K is a subfield of C in that case), f (as P) is proper
in the topological sense, so that f(K") is a closed subset (in the topological sense) in X,
that is f(K™) = X and we are done. When the characteristic is positive, one can show
that, under the hypothesis (3.1), P is proper in the rigid sense (see [Ki]), which implies
that in the decomposition P = go f, f is also proper in the rigid sense. Therefore f(K")
is closed (in the rigid analytic sense) and equals X, so we are done in this case.

Let now suppose that P is a proper morphism from K" to K". We can write down
the integral dependency relations satisfied by the z;, j = 1,...,n over K[P;,..., P,], that
is

N;
(3.2) g0 =Y Ajr(Py.. Pzl F, j=1,..,n,
k=1

where A; x € K[z1,...,Z,]. One gets from (3.2) inequalities of the form
(3.3) |21 < G5+ |z )N+ |P@))¥, 5=1,...n,
where C; > 0, g; € N. From these inequalities, it is immediate to deduce that (3.1) holds
for some convenient choice of K, v, d (depending on the Cj, ¢;j, N;, 1 < j < n.) m

Since for any z € K", one has |P(z)| < C(1 + |z|)P, where D := max;<;<n deg P;
and C is a positive constant depending on the coeflicients of the P;. It follows that,
if & satisfies (3.1) (with corresponding constants K, 7), then § < D (just take z such
that |z| is arbitrarily large, which is possible since | | is not the trivial absolute value
on K.) Moreover, let »Py,...,*P, be the homogeneous polynomials in n + 1 variables
corresponding to Pi,..., P,, namely,

deg P; 1, (X1 X .
hPj(Xo,..., Xp) = Xg 8 JP"(X_O’“'Y:)’ j=1,...,n.

Then, one has the following proposition
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Proposition 3.2. Let P = (P,,...,P,) be a proper polynomial map from K" to K"
such that (3.1) is fullfilled with constants K, v, 6. Let D := max;<;<n deg P;. Then, for
any j, 1 < j < n, one can find a positive constant I'; and some homogeneous polynomial
R; in two variables, with coefficients in K and total degree r; > & such that, for any
X = (Xo,...,Xn) € K*+1,

n
(3.4) IR;(Xo, X5)| 1XolP~® < Tj|X |58 (E | Xo|P-de8 P Ith(X)l) :
k=1
Proof. Let us write (3.1) for £ = (X1/Xo, ..., Xn/Xo), where X = (Xo,...,X,) € K",
Xo # 0. Then, whenever max |X;| > K|Xo|, we get
<jsn

1 n
(3:5) (max |X;])?|XolP~% < - (Z | Xo| P~ dee P I"Pk(X)l) :

1<j<n e~
As we have already seen in the proof of Proposition 3.2, the algebraic set P~1(0) is finite
since P is a proper map. From the Hilbert Nullstellensatz it follows that one can find
polynomials R (1), ..., Rn(%y) in one variable, such that R;(z;) lies in the ideal generated
by Py,..., Py in K[zy,...,Z5]). One can assume that r; := deg R; > 4. Let us define

Rj(Xo,Xj) = ngRj(Xj/Xo), X e K"t
For any z = (z1,...,7,) such that |z] < 2K, one has |R;(z;)| < &;|P(x)| for some

k; = k;(K) > 0. One has also, for some £; > 0, |R;(X)| < &£;|X|™. Therefore, for any
X = (Xo,...,Xn) € K™ X, # 0, such that max |X;] < 2K|Xo|, one gets
<j<n

k=1
So, if X € K**! and X # 0, we have, either

(3.6) IR (X0, X;)] < w1 Xo|~P (Z | Xo| P8 P [Py (X )l) :

WE

IR(Xo0, X;)[|Xo|P~% < K| Xo|7 78 ( | Xo|P—des P Ith(X)I)

o
I

1

M-

37 s'c,-IXl"f“’( | Xo| P=des P |th(X)l)’

e
|

1
when max |X;| < 2K|Xg|, or
1<j<n

- 1 = -
(max |X;])%Xo|P~|R;(Xo, X;)| < ;IRJ-(XO,X,-)I (Z | Xo|P—dee P I"Pk(X)I)

1<j<n
=I= k=1

~ n
< Zixr (Z | Xo|P=de8 P I“Pk<x>|)

k=1

K; hdd
L -0 3 Y75 D—deg P; |h
- ’len(l,K) (1213&5)(7; ‘XJl) J (g |X0| I Pk(X)l)
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which, together with (3.5), implies

D-§|p . | < R’J' r;—6 - D—deg P, (h
(38) 'XOI IRJ(XOaXJ)I = 'ymm(l,K) 'XI 7 (g IXOI I Pk(X)') y

when max |X;| > K|Xo|- Note that (3.8) is similar to (3.7). In fact we just proved that
<jsn
for any X € K**1, X, # 0, then

[R; (X0, X;)||XolP~* < Tj|X|75~° (Z | Xo|Pdes P l"Pk(X)I) :

k=1

where I'; = max(k;, £;/ymin(1,K)). The inequality remains valid when Xo = 0, so
Proposition 3.2 is completely proved. n

The following proposition is a corollary of the Lipman- Teissier theorem ([LT], [LS])
about integral closure of ideals.

Proposition 3.3. Let Pi,..., P, be homogeneous polynomials with degree D in n + 1
variables Xy, ..., Xy, with coeflicients in the field K. Let Q be another homogeneous
polynomial in K[Xo, ..., Xy, of deg @ > D, such that, for some positive constant T',

(3.9) |Q(X)| < T|X|%82~P max |P;(X)|, X e K™*'.
1<j<m

Then Q"+ lies in the ideal generated by P;,...,Pm in K[Xo,..., Xa].

Proof. Let us consider the regular local ring K[Xo, ..., X,]am (of dimension n + 1), where
M denotes the maximal ideal (Xo,...,Xy). Let T be the ideal generated by P;,...,Pn
in this local ring.

Fix s > D and consider the ideal in K[Xo,...,Xn]um, Zs := T + M*. We want to
show that Q is in the integral closure of Z, in K[Xp, ..., Xn]am. This can be done following
the ideas in [LT].

First, since v/Z, = M (see [NR]), one can find a regular sequence (pi,...,Pn+1) such
that the ideal J, := (p1,--.,Pn+1) is a reduction of T + M*® in K[Xy, ..., X;|m. The p;,
1 < j < n+1, are linear combinations of the P; and of all the monomials generating M?.
Since s > D, one can assume that the homogeneous parts of higher degree (in fact s) of
the p; have the origin as only common zero in K"+l The Pj,j=1,...,n+1, define a
zero dimensional algebraic variety V, = V in K®*!, containing the origin. Since J, is a
reduction of Z,, Pi,...Pm, which are in Z;, are also in the integral closure of J; in the
local ring K[Xo, ..., Xn]am. This implies, by means of integral dependency relations, that
for any X € K™*! such that |X| < € (for a convenient choice of € > 0), one has

(3.10) max [P;(X)| <C_ max |p,(X))

for some positive constant C, so that, for |X| < ¢,

(3.11) [QX)| <Te max  |p;(X)|.
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Let ¢, € K[Xj,...,Xy] be a polynomial in K[Xy,...,X,] such that g,(0) # 0 and g, is
in the ideal generated by pi,...,pn+1 in all the localizations K[Xy,..., Xn]m,, where a

is any point in V \ {0}. Therefore, each R > 0 one can find a positive constant I'(R) such
that, for any X € K*+1, with |X| < R, one has

(312) 1Q(X).(X)| < T(R), max Ip;(X)].

Since the homogeneous parts of higher degree of p;,...,pn+1 have the origin as only com-
mon zero in K"+, it follows from Proposition 3.1 that the polynomial map (py, - .., Pn+1) is
proper (in the algebraic sense), with [K[Xo, ..., Xn] : K[p1,...,Pn+1]] = s"*! (by Bézout’s
theorem.) This implies that one can find a relation of integral dependency

,n+1
n+1_’

(3.13) (Qe)"" =3 Aoy, ..., Pat1)(Qg,)" T,
=1

which can be obtained just writing that the multiplication operator corresponding to Qg,,
acting on the finite dimensional K(u;, ..., u,41)-vector space

K(ul, ey un+1)[Xo, oo .,Xn]
(P1(X) —u1,. .o, Ppg1(X) = Unya)’

annihilates its characteristic polynomial. From (3.12), we deduce that for u in K®*+! such
that |u| <1 and any 1 <1 < s™*!, there is a constant C; > 0 such that

|4i(u)| < Cilul'.

(Since A;(u) corresponds to the l-elementary symmetric polynomial in the [Qg,](o;(u)),
where a;(u),...,azn+1(u) are the zeroes of (p; — u1,...,Pn+1 — Un+1).) Therefore, the
polynomial A;(pi,...,pn+1) is in J! and (3.13) provides a relation of integral dependency
for @ over the ideal 7, in the local ring K[Xp,...,X,)sm. Since J, is a reduction of Z,,
the polynomial Q is in the integral closure of Z, in the local ring K[Xg,..., Xp]Mm.

Then, from Lipman-Teissier theorem applied in the regular local ring K[ X, . . . , Xp] M,
we conclude that Q"% is also in the integral closure of Z, in this local ring. Since this is
true for any s > D and from

I=()1z,

8>D
we conclude that Q"*! € Z. Because Q is bomogeneous and the Pj, 1 < j < m are
homogeneous with the same degree, Q! is in the ideal generated by Pi,..., Py, in
K[Xo,...,Xn). This concludes the proof of our assertion. n

The Jacobi vanishing theorem (2.8) was extended, using analytic methods, to proper
polynomial maps in C" in [BY1] and [BY2] as follows. Let us assume the degrees D, of
the polynomials P; are in decreasing order and that J is an exponent such that (3.1) holds.
Then, for any polynomial Q € C[z] and multiindex k, one has

(3.14) (k| +2n—-1)6 >degQ+ Dy + -+ Dy_1 + n => Res [ﬁkﬂﬁ] =0.

19



This statement was crucial in the proof of the effective Nullstellensatz over C given in
[BY1]. On the other hand, one can see that this vanishing theorem is not the best one
could expect. For example, (3.14) implies that

(315)  degQ < (2n—1)6— (Dy+ -+ Dp_y) — 1 => Res [Ple‘"P ] ~o.

A more careful analysis of the Bochner-Martinelli representation of the residue current (see
[Y1], [Y2]) yields the statement

o Qdz _
(3.16) deg@Q <né—n—1=> Res [P1,---,Pn]_0'

The point here is that this result depends on the Lojasiewicz exponent 4, related to the
properness condition, but not on the degrees of the P;. We do not know how to prove
such result when K has positive characteristic, though it is possibly true. Nevertheless, we
have the following result that will be enough to prove the effective Nullstellensatz theorem
below. ‘

Proposition 3.4. Let Pi,..., P, be polynomials in K[z, ..., Zy], such that deg P; = D,
1 < j < n, and such that there exist strictly positive constants K, -, and a strictly positive
integer 6 such that

X > ; s,
(3.17) |z| > K = lxéljasxn |P;(z)] > 7|z|

Assume that

1

(3.18) 0 <D, and (1-¢€,)D <4, for ¢, := Yy

Then, for any (ki,...,k,) € N™, one has
(3.19) deg@Q < n(n+1)(Jk|+n)(6 — (1 —€,)D) —n—1=> Res [gkdfl_] =0.

Moreover, under the stronger hypothesis that

€n

(3.20) (1—n+1)D<6,
one has
degQ < n(D-1) Qdz | _
(3.21) {k 20 => Res prt1| = 0.
Proof. It is clear that global residual symbols in R = K|z, ..., z,] are well defined since

1+1

the sequence (Py, ..., P,) (and therefore all sequences (P %!, ..., Pk»+1)) is quasi-regular
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in K{zy,...,z,] (because of the properness of the map (Py,...,P,), see Proposition 3.1.)
Let R;,...,Rp, be the polynomials associated to (Pi,...,P,) by Proposition 3.2. From
Proposition 3.3 it follows that, for any 1 < j < n,

[XP~OR; (X0, X;)I"* € (Py,..., Pn),

where P;(X) = *P;(X), 1 < j <'n. Note that we can choose R; to be distinguished in
X;. For any multi-index k, we have then

[X5 "R (Xo, X;)| DUk € (Pt . Pt
Let R%(Xo, X;) := [R;(Xo, X;)]("*+1(Ikl+n) 1 < § < n. One can write

n
RE(Xo, X;) XD P-OWI - 5™ Rk (X)Pf+(X),
=1

k . .
where R;; is homogeneous, with degree

deg’R;‘,, = deg'Rf +(n+1)(kl+n)(D-68)-(ki+1)D, 1< jl<n.

Let R;-‘ (z;) == ’R;?(l,xj). Then, one has the polynomial identities
n

(3:22) Rf(z;) = ) _ RS (a)Pf* (a),
=1

where RY (z) = R¥,(1,z). Let A; be the determinant of the matrix [S5]
degree of Ay is at most

1<j<n . The
1<i<n

n
deg Ar <) _deg RY + (|k| + n)[n(n+1)(D - §) - D].
Jj=1
From the Transformation Law in R = K{z,,...,z,] (Proposition 2.1), applied to the two
quasi-regular sequences (P, ..., P,) and (R}, ..., Rk), one has, for any Q € K[zy,...,z,],

Qdzi A---Adz, | QArdzy A--- ANdxy,
Res [P{°1+1,...,P,':n+1 =Res | " "Rk .RE |-

Since the homogeneous parts of highest degree in RY,..., R¥ have no common zeroes
except at the origin, one can apply the Jacobi vanishing theorem (2.8) and get, if we define

Pk = E?:l deg R;c,
pr+degQ —n(n+1)(Jk| +n)[6 — (1 —€,)D] < pr —n—1=> Res [}?kdé] =0,
which gives the conclusion (3.19). In order to check (3.21), we have just to check that
condition (3.20) implies that
n(D-1)<n(n+1)}6 - (1—-e€,)D]—n,

that is
(n(rn+1)2-1)D < n(n+1)36,

which is exactly the condition (3.20). -

As a corollary of this result, let us state the following proposition (that will be crucial
for our purposes later.)
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Proposition 3.5. Let Py,...,P, be n polynomials in K[z,...,z,], of degree D with

the property that there exist strictly positive constants K, 7y, such that (3.17) holds for

some integer § > 0 satisfying 1 — m < £ < 1. Suppose that the gji;, 1 < j,I < n are

elements in K[z1,...,Zn,¥1,--.,Yn), With degree less or equal than D — 1, such that
n

(323) -PJ(:D) - 'PJ(y) = Z(xl - yl)gjl(x’y)’ 1 S J < n,zye€ Kn;
=1

Then, if A(z,y) := det[g;i(z, y)) 1<i<n (such a A is called a Bézoutian for the map P), the
following polynomial identity holds

Az, y)dz ]
3.24 1 =Res ’ , K".
(3.24) e [Pl(x),...,P,,(a:) ye
Proof. The first remark one can make here is that, since (P,...,P,) is proper (from
Proposition 3.1), it defines a quasiregular sequence in K[z,,...,z,]. On the other hand,

there are integral dependence relations of the form
N;
N; Nj-l .
z;’ = ZAjz(Pl,...,Pn):z:j’ ,Jj=1,...,n,
=1
which can be rewritten in the form
aki N—l o
N; i— .
(3.25) z;’ —ZAj;(ul,...,un)xj’ =ZA§-(1:J-,P,U)(Pz—u;), i=1,...,n,
=1 =1

where the A;- are polynomials in 2n + 1 variables. Such relations show that, for any
v = (ug,...,u,) € K", the sequence (P, — uy,...,P, — u,) remains quasiregular. Re-
mark 2.1 shows that one can also consider such a sequence as a quasiregular sequence in
K(u)[zy,...,zs) and compute for any polynomial Q € K|z,,...,z,], the residue symbol
with values in K(u)

o Qdzx
(I)(u) = Res [Pl —ul,...,P,, — Up ’

Applying Proposition 2.1, together with the identities (3.25), one gets

Q(z) det[A}(z;, P, u)]1g 50 dz

1<Ii<n
®(u) = Res N e
th - Et:—.ll All(u)x‘yl_l’ ceey an" - Zl:nl Ani (u)xrly"-l

While ® is a priori a ratiopnal function, it follows from Lemma 2.1 and (2.10) that ® €
Kluy,...,u,]. We want to show now that @ is in fact a constant that belongs to K, when
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deg @ < n(D —1), provided the hypothesis on the ratio /D is satisfied. This will be done
in two steps: first, we will show that for any polynomial @, one has
(3.26)

Qi = Qdz ki, gk
Res [P1 —Upyeeoy Pa—tun| Z Res P+l [ pkatl Uy uS
OSkl y-'-’anK(Q)

for x(Q) large enough and independent of u. (This will hold in fact under the weaker
hypothesis 1 — (€,,/2) < /D < 1, where, as before, €, := 1/n(n+1).) Then, in the second
step, we will use statement (3.21) from Proposition 3.4 to conclude that ® is an element
in K provided deg@Q < n(D-1)and 1 - (e,/n+1)<d/D < 1.

e Let us prove the first step. Let u € K”. Then the morphism (P (Py — u1),...,Pa(Py —
uy)) is also proper (see Proposition 3.1) and such that, for |z| > K (u),

2
Y 26
. () — us)| > — )
jpax |F;(z)(P;(z) - u;)| 2 5 |a]
Then, the statement (3.19) in Proposition 3.4 implies that for any Qe K|z,,...,z,) one

has

degQ < 2n(n+1)(|k|+n)(6— (1 - en)D) —n—1 =>
(3.27) éd.’l:
= RS (PP — )R+, (Pl - un»k"“] ="

This implies that for any polynomial @ such that
(3.28) deg Q@ < 2n(n + 1)(|k|+n)(6 — (1 — %")D)—n-—l,

and any choice of 71,...7, in {0,1}, one has

Qdz —
Res [Pllcl+1(P1 - ul)'“, e ,P,’f"+1(P" - u,,)”" -

P; — u;)kit1i-ni g
= Res QJ.];‘[I( ) * =0.

(Py(Py — w))511Y, ..., (PP — tn))Fnt

(3.29)

The first equality is just a consequence of Proposition 2.1, while the second follows from
the fact that condition (3.28) is equivalent to

degQ+ (Jk| +n)D < 2n(n+1)(Jk|+n)(0 — (1 - €,)D)-n-1,

which implies that if
n
Q=Qx:=QJI (B —ups*i-m,

j=1
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then _
degQ < 2n(n+ 1)(Jk|+n)(0 —(1—€,)D)—n -1

and we can therefore apply (3.27). Clearly, since 1 — (€,,/2) < §/D < 1, for k such that
condition (3.28) holds, (for instance, if |k| > & = x(Q), depending on the degree of @, but
not on the choice of u,) one has

Qdz =
(330) Res [Plkl-'-l(Pl - ‘Ul)mv .. -’P:"+1(P" - u")n" =9

for any choice of ny,...,7, € {0,1}, and any u € K". Now, we note that applying the
Transformation Law again, for any u € K", one has

n prtl K+l

3 3
Qdzx k k Q dz
Z Res [P{&21+1 PFka+l uyt eyt = Res JI;II .P_, — Uy
0<ki,....kn <K T 1
FHeeind P Pt
n
QII®r+ — ufth)de
— J 3
= Res =1

PEYPy —wy),..., P3P, — uy,)

Now, one can rewrite

n
QH(P;+1 _ u;“)dx

Res =1 =
PIN+1(P1 - ul)’ v ,P:+1(Pn - un)
n
prtl _ g stlyg
= Res lel,( J Ui )do —
P, — Ul,P;+1(P2 - uz),.. -aP:-H(Pn - Up)
P{€+1 _ l§+1 d
— uf*'Res le=—-[2( J uj")de =
Pln+1(P1 - ul), . ,P:+1(Pn - ’U,n)
n
. ch+1 _ uo§+1 dz
. QI+ -
P1 - U, P;-H(Pz - U2), e ,P:+1(Pn - u,,)
since "
P{¢+l _ I§+1 d
Res le;lz( A A =0
PFYY (P —w),..., PEtY(Po — un)
because it can be written as a sum of expressions of the form
Qdz _
Res [P{““(Pl —w)™, ., Pt (P —yy)mn | =0
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where |k| +n > k; + 1 = kK + 1. Iterating this procedure, we get the required polynomial
identity (3.26). We would like to point out that these computations are the algebraic
counterpart of the manipulations of the kernel of the Cauchy-Weil formula that appears
in [BT, Section 1).

e We now apply (3.21) in Proposition 3.4 to get, as announced, that & is a constant in K,

provided that deg @ < n(D—1) (we are asumming in this case that the stronger hypothesis
1-(en/n+1) <d/D <1 holds.)

We are now ready to conclude the proof of our proposition. Recall from Cauchy’s
formula (2.7) that one has for any Q € K[z],the polynomial identity in K[y;,...,¥n],

1 =Res [ Qdz ] .

Z1—Y1y--sTn —Yn

We can now apply to this formula the Transformation Law to the two regular sequences (in
K(y)[z1,---,Zn)), (1 = ¥1,- .-, Tn — yn) and (P, — Pi(y),..., Py — Pa(y)). The identities
(3.23) imply the following identity in K(y;,...,yn):

_ A(z,y)dz
H = Res [Pl —Pl(w,...,Pn—Pn(y)] '

From what we have just proved, as deg, A(z,y) < n(D - 1), we conclude that

Res [ A(z,y)de Als, y)dx] |

=R
2 —Pl(y),...,Pn—Pn(y)] s [Pl,...,P,,

which completes the proof of (3.24). N

In order to complete this section, we need a few complements about computations
of residue symbols for polynomial maps of the form (Py,...;P,), where (Py,...,P,) is a
quasiregular sequence in K[z, ...,z,] generating a proper ideal. Applying Remark 2.2
and [Pe, Satz 56] we conclude that the corresponding polynomial map P is dominant, that
is, one can find n relations of the form

N;
Ajo(P)z}? =Y Ap(P)z;" ™, G=1,...,n,
=1

with coefficients that are polynomials in n variables and Ao # 0. This equality can be
rewritten in the form

Nj n
(831)  Ajo(wes” =Y Ap(w)e;" ™ =Y Az, Pu)(Pi—w), j=1,...,n,
=1 =1

where the Ag- are polynomials in 2n + 1 variables.
Relations of the form (3.31) show that, for any u = (uy,...,u,) € K™ outside the
hypersurface [, Ajo(u) = 0, thast is u generic, the sequence (P1—us, ..., P, —us) remains
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quasiregular. In particular, the set of common zeros of this sequence of polynomials is a
zero dimensional variety or it could be empty. For such u, using the Transformation Law
(2.11), the relations (3.31), Lemma 2.1, and the explicit computation (2.10) in the one
variable case, one can show that for any Q € K|z}

Res [ I?(S‘)”)fxu] = U(u) € K(u)

(see also [Bi] for an analytic proof of this result.) The main difficulty one has when P is
not a proper map over the origin, (that is, when H A;o(0) = 0 [Je],) is that it is in general
impossible to compute the different residue symbols

Res [I?,fﬁ”l] , keN",

from the rational function ¥. For example, if P; = z(1 + z2yz), P, = y(1 + z2yz), Py = 2
and @ = 1, then one can see that ¥ = 0 while

Res [1;::] =1.

We overcome this difficulty by means of the following interesting lemma.

Lemma 3.1. Let P,,..., P, be a quasiregular sequence in K[z], then for any ¢ € N and

for any o € K™, the sequence (t911, Pi(z)—ait,. .., Py(z) —ant) is a quasiregular sequence
in K[z, t]. Moreover, we have the formula

Q(z)dt A dx Qdz o
(3.32) Res t4+1 P, (z) — ast, . Z Res pk+l .

lkl=g

Proof. From Remark 2.1 we obtain the quasiregularity in K[z, t] of the longer sequence
(9, P, — ayt,..., P, — ast). To compute the residue symbol in the left hand side of
(3.32), let us consider the identities

q
Pt = (ait) ™ + (Pj—ajt) Y (at) PFH .
k;=0

We apply the Transformation Law replacing P; — ot by P""'1 in the left hand side of
(3.32) to obtain

n q
o g—k;
Res | QdtAdz 1 _g QII (3 (at)yPf™™)dt ndx
S lpatl p_op | =T | =1 k=0
1
to+t, ppti, . Pgt!

We use the linearity of the residue symbol, the Transformation Law in order to simplify

common factors in both lines of the symbol, and, finally, the Fubini property (Lemma 2.1),

to obtain the desired formula (3.32). -
This lemma is usually applied in the following form.
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Proposition 3.6. Let Py,..., P, be a quasiregular sequence defining a proper ideal in
K[z;,...,z,]. Consider a system of integral dependency relations for the coordinates, of
the form

Nj n
Bj(zj,u) = Ajo(u)z;’ — 3 Au(u)z)’ ™ =3 Al(z;, Bu)(Pi—w), j=1,...,n
=1 =1
and let s; be the valuation (in u) of the polynomial B, thus
(3.33) Bj(:L‘j, at, ..., a,,t) = t% (Rj(.’l)j, a) — tSj(.’L'j, a,t)), Rj Z0.

Let o € K" be such that, for any j € {1,...,n}, one has R;(.,a) # 0. Then, for any
q € N, one has

(3.34)
n
Qdt A dx QA(z, Pat) [ 57 (25, a,t)dt A dz
Res 1941 p_ ot | = Res =1
0<k1,....kn<q+|s| tq+1+|s|—|k|, R71c1+1($1’ a), e, R,'ﬁ""'l(zn, a)

where A(z, P, u) is the determinant of the matrix [A}(z, P, u)] 15ign

Proof. Since the sequence Py,..., P, is quasiregular, so is the sequence ¢, P,—a;t, ..., P,—
ant in K[t, z]. Moreover, since the base field K is infinite, there is an n x n invertible matrix
A with coefficients in K such that the sequence AP is regular for the increasing order. Then

the sequence
n n n n
(t,ZauP; - tzauaz, R Zanlpl - tzanlal)
=1 =1 I=1 =1

is also regular. Hence, we can use Proposition 2.2 with R = K[t,z], and fo = ¢, f;(t,z) =
Y0P =ty e, gi(z,t) = t7% Bj(zj,at), 1 < j < n. Then, we have, from
formula (2.13) and an additional application of the Transformation Law

Qdtndz | _ QA(z, P,at)dt A dz
Re [tq'“,P - at] = Res [tq"’l"'"',R(x,a) —tS(z,a,t)

where we denote by R(z,a) — tS(z,a,t) the sequence
Rl(xl’a) - tSl(zl’a, t), .. -’Rn(xnya) - tSn(.'En, avt) .

We now use the identities

q+]s|
R;g+1+|a| - tq+1+|als;l+1+|8| + (R; — tSj)( Z (tsj)k.iR;l'*'l’I_kf) ,
k;=0

(where the variables have been left implicit), together with the Transformation Law (2.11)
and the linearity of the residue symbols, in order to obtain formula (3.34). n
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Remark 3.1. Note that if one lets ¢ = 0 and chooses a convenient «, the last proposition
yields a formula to compute the residue symbol

Qdzx
Res [PI,"')Pn]

from the knowledge of relations of dependency for the coordinates z; over K(P,,..., P,).
In fact, as it follows from Lemma 3.1, the right-hand side of (3.33) is a polynomial in «,
though it would seem to be a rational function if one just looks at its expression.

Remark 3.2. Lemma 3.1 and Proposition 3.6 remain valid if one replaces Q by Q;/Q,
where (Py,..., Py, Q2) = K(z),...,z,], with the residue symbols understood in the gen-
eralized sense of (2.22). This follows from Propositions 2.4 and 2.5.

4. Lojasiewicz inequalities.

In this section, the ring R will be K[zy,...,z,], where K is an infinite algebraically
closed field of arbitrary characteristic, equipped with a non trivial absolute value | |. The
corresponding absolute value in K™ was defined at the beginning of Section 3. Given n
integers Dy > D,... > Dy, > 1 we define, as in [JKS],

4.1) B:=B(Ds,...,D,) = (g-)‘Dl---D,,

where ¢ = #{j < n—1|D; = 2}. The main result of this section is based on the arguments
in [BY1] and [BGVY, Propositions 5.7 and 5.8]. Small modifications are required by the
fact that we are now working with fields of arbitrary characteristic. We recall that a
sequence of polynomials P, ..., P, is said to be normal if it is a regular sequence for any
ordering.

Proposition 4.1. Let P,,..., P, be a quasiregular sequence in K|z, .. ,:z:,,] then one
can find n linear combmatwns (with coefficients in K) of the P;, namely P1, P,,, n
linearly independent K-linear forms L;,...,Ly,, and a positive constant K such that for
any N € N* and any z € K" with |z| > K one has

(4.2) Dax L) NP |Pi(z)] 2 |2l VDB

for some constant vy > 0.

Proof. Since the base field is infinite and the sequence of P; is quasiregular, using the
pigeonhole principle as in [MW] we can find a triangular, 1nvert1ble matrix My, with
coeflicients in K, such that the sequence of polynomials P’ J = 1,...,n defined by the
system of linear equations P’ = M, P is a regular sequence. Note that deg P' D;. Using
the same principle, one can find an invertible matrix M; with coefﬁc1ents in K so that
the new system P” = M;P’ is normal and every minor of M; is non zero [BY1, Lemma
5.2]. Let J be any subset of {1,...,n} of cardinality 1 < k < n — 1. As in the proof of

[El},{[BGVY, Proposition 5.8, p.125], one can find a collection of polynomials 131,3-, JjEJ,
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deg Py i < Dj, which are linear combinations with coefficients in K of the P;/, given by an
invertible matrix, so that one has

Py | < /| < k! max|Py;
kg max |Py ;| < max|Fj| < wymax|Pyl

for some strictly positive constants xj, ' 7- Clearly, the polynomials P, j define the same
algebraic variety as the P}, j € J. That is, a variety of codimension at least n — k. From
the Noether Normahzatlon Theorem [ZS, vol 1, Chapter 5, p. 266] applied to all possible
systems with different J, we can show there is an invertible matrix M, and two positive
constants Cp, K¢ such that for any x € K™ with |z| > Ko, any k € {1,...,n—1}, and any
subset in {1,...,n} with #J =k,

P;j(Mz) =0,Vj € J < Pf'(sz) =0,YjeJ

=>Z|a:,| < Co Z |z -

I=k+1

(4.3)

Using the global Lojasiewicz inequality proved in [JKS, Corollary 6], we get that, for any
k € {1,...,n — 1}, there exists ¢x > 0 such that, for any subset J, #J = k, the set

() ._ n >
X% = {z € K" |z] 2 Ko+ 1, max|Py;(Myz)| < (1+I:c|)B}

is included in the cone
= {z € K", E|$z|<(co+1) Z |z} .
i=k+1

We associate to this fan of cones Vi, 1 < k < n-—1, a collection of linear forms A;,..., A,
as follows. Let M = [mj;] be some element in M, (K) (the space of n X n matrices with
entries in K) such that all the minors of M are different from zero. We let p be the
maximum of the norm of all these minors. Since the absolute value is non trivial, one can
always find some element o € K such that |a| > (Co + 1)np. Let A; be the linear forms
defined by

n
Aj(z) = ijta"lw: i=1,...,n

It follows from Cramer’s rule that there is a constant ¢y > 0 such that for any & < n, the
inequality

(4.4) lz1| + ...+ |lz| < (Co + 1)(|zksr| + - - . + |Zn])

implies that

(45) ngin (310 2 colel

jeJ!
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Note that because the A; were chosen to be independent, the inequality (4.5) is valid even
if J = @. Since the P/ are linear combinations of the P;, and conversely, it follows from
[JKS, Corollary 6], applied to the sequence Pi,..., P,, that for convenient constants Cj,
and ¢, one has for |z| > C},
€n
P/ (M;z)| 2 ———5

ltéla.<x l ( 2‘5)' (1 i le)B

Hence, for < ¢, the set {|z| > C1} can be written as the disjoint union of the sets

— " _n . .
Zy:= {lxl >C: IP (Maz)| < a+ lzl)B if jeJd

and IP.;’(Mgzz:)|>(1 TeD® if j¢J}.
Fix J of cardinal #(J) = k. Then, if z € 2, one has
K5n €k

P;i(Myz)| < :
525 1P S T = T jap®

Hence, z € X} (e "), and so z € Y, thus it satisfies (4.4), hence also (4.5) and
> 1Ai(@)] = eolx] .
ieJ
Therefore, we have for z € Z;
maxlA ()| > >

lwl

Hence, for any N € N*,

ZIA (@) |NB|P (Maz)| > ) |A;(2) VB P} (Myz)|
jeJ
> (rJr};} A, (z)|VB )(rjrgy |P}' (Maz)|)

> 77(e_o)NB lxINB

- ont (I+]e))B
The fact that the sets Z; form a partition of the set {|z| > K = K + 1} implies that, for
a convenient choice of yx > 0, for any z with |[z| > K one has the inequality

max [A;(z)|VP|P} (Mpz)| 2 || VDB

1>j>n
This concludes the proof of Proposition 4.1 if we choose for the matrix of linear forms
L= AM;!, where A is the matrix of the linear forms A;. =

Remark 4.1. It is clear in the previous that the only restriction on the choxce of the
matrices My, My, M, is that they lie outside some algebraic variety in K3, Moreover,
any choice for the coefficients of the linear forms L; can be slightly perturbed, in fact, we
can also consider affine perturbations of the L;. One can also keep, for NV fixed, the same
constant vy for all small perturbations.

One can combine this result with Proposition 3.5 and get the following technical but
important result.
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Proposition 4.2. Let Py,..., P, be a quasiregular sequence in K[z,...,z,)], with D; >
D3 > ---2 Dy, Dj := deg P;. Then one can find a polynomial ® in n(n+1)+n? variables
ujt, Yik, 1 £ 4,k < n,0 < U < n, with coeficients in K, with deg® < 2"+(n + 1)*Dp,
such that, for any (U, V) € K**("+t1) ¢ M, (K), with &(U, V) # 0, the polynomials

(4.6) I, (2) := U¥(z) < V3, P(z) >:= (“j,o + Xn:ujm) (z": vjth)
=1

=1

have degree exactly Dy + 1, define a quasiregular sequence in K|z, . ..,z,], and moreover,
if N € N* is such that

B+ D, 1

(4.7) NB + Dy < n(n+1)2’

then the following polynomial identity holds in K[z, ..., z,]

(4.8) 1= Res [ Anuv(z,y)dziA--- Adzy, ]

UYz)NB < VLP>,...,.Uz)NB < V™", P>

This formula (which is a polynomial identity in y), holds whenever Ay yv(z,y) is the
determinant of an arbitrary n x n matrix whose coefficients 6;; in K[U, V, z,y] have degree
in z,y at most NB + D; — 1 and satisfy the relations

(4.9)

Uj(z)NB < Vj,P(.'L’) > _Uj(y)NB < VJ’-P(y) >= Z(xl = yl)(sjl(ma y)9 .7 = 1, crey N
=1

Remark 4.2. For example, one can construct §;; as
o — T7i{-\NB j 1 3 (U\N)
‘Sjl-U(x) <V,g(m,y)>+<V,P(y)>gpj, (IE,y),

where the ¢ is a vector of components g;-, which are polynomials in the 2n variables (z, y)
of degree D; — 1 such that

Pi(z) - Pi(y) =) (mi—w)gi(z,y), j=1,...,n.
=1

and the go(-U’N)

;i are polynomials in the variables (U, z,y) such that

deg(zy) ¥y = NB -1

and
n

V@V -V = (@ —w)ey " (2,9), §=1,...,n.
=1
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Proof. For a generic choice of V2,...,V" in K", the sequence < VI,P >, j=1,...,n,is
a normal sequence. (This follows from the pigeonhole principle, since the field is supposed
to be infinite.) Choose V so that it is the case. For any subset J C {1,...,n}, #(J) =k,
the polynomials < VI, P >, j € J, define an algebraic set in K® with dimension n — k.
Therefore, for any generic choice of the U7, j ¢ J, the polynomials < VI, P >, j € J,
together with the affine functions U7 (z), j ¢ J, define a zero dimensional set in K™, that is,
they define a quasiregular sequence. We conclude from these remarks that the polynomials
Ui(z) < VI,P(z) >, j = 1,...,n, define a quasiregular sequence in K(U, V)[z1,...,z,],
so that for any j € {1,...,n}, there exist a polynomial Q;(U,V,z;) € K[U,V,z;], such
that Q; lies in the ideal generated by the U’(z) < V4, P(z) > in K[U,V,xy,...,z,). Of
course, one could find such polynomials just by using elimination theory, as done in [vdW],
later on we shall do it in a more constructive way, in order to obtain sharper estimates for
the degree in U, V. Let us write for the moment

(4.9) Q,(U,V,z;) = Qjo(U, V):z:;-'J + f:Qﬂ(U, V)x;-"—' ,i=1,...,n.
=1
We then define
(4.10) YU, V):= fI Qjo(U,V).
i=1
and
(4.11) (U, V) =¥, V)ln—[ vj1.
j=1

For any choice U,V such that ®(U,V) # 0, all the polynomials (in x) H{},V have degree
D, + 1 and define a quasiregular sequence in K[z]. To construct Q; with good degree
estimates, let us proceed as follows. Choose a subset J € {1,...,n} and consider the
n polynomials in K[U,V,z;][z2,...,%,], U¥(z),j € J, < VI,P >, j ¢ J. The ring
A := K[U,V, z;] is a factorial regular ring, with Krull dimension 2n2 + n + 1, which can
be equipped with a size, in the sense of [Phl, Section 1, p. 3-4]. Namely, we can take for
the definition of the size on A the map t defined by

where Pol(A) is the A module A[(Y;)ien] of polynomials in some arbitrary number of
variables with coefficients in A. From [Phl, Theorem 4], one can find a polynomial
Q71(U,V,z;) € A, such that

n

degyy Qua < (2(n? +1) + 2n)D} (1 + D
J

) < 2(n+1)3D?
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which belongs to the ideal generated in A[zs,...,z,] by the polynomials U/ (z), j € J,
and < Vi,P >, j ¢ J. Let Q; be the product of all the polynomials Q1, where J runs
over all the subsets of {1 .,n}. It is clear that this polynomial is in the ideal generated
by the IIUV ,1<j<n,in K[U V, z]. The degree in U,V of Q, is at most 2"+!(n+1)3D}.
One can repeat this construction for the other indices # 1, in this case, the polynomial &
associated to this sequence Q; via (4.10) and (4.11) has degree at most 2"+!(n 4 1)4 D7,

Let us fix now an integer N such that the condition (4.7) is satisfied. For any U,V
for which ®(U, V) # 0, we can rewrite the residue symbol in (4.8) as

n
Anuv(z,y) H < VI, P(z) >NB-1 |dz
j=1
Ty (D2, .., T (@)

Res

Using the form (4.9) of the polynomials Q;, the generalized transformation law of Propo-
sition 2.3, and formula (2.10) for the computation of residues in one variable, one can show
that the residue symbol (4.8) is a rational function in U, V of the form A//¥T, where N is a
polynomial in (U, V') and T is a nonnegative integer. Choose now (U, V) in a neighborhood
of the point ((0,Uy), Vo) found in Proposition 4.1 and so that (U, V) # 0. By Remark
4.1, the polynomial map

(4.12) g (UM )NB < VLP>,..., UMz)NB < V™, P>)

is a proper map with Lojasiewicz exponent at least § = dy = (N — 1) B. Moreover, every
entry of the map (4.12) has the same degree, namely, D = D; + (N —1)B. If the condition
(4.7) is satisfied, we can apply Proposition 3.5 so that, from (3.24), we conclude that

(4.13) N(U,V)=¥(U,V)T.

This follows from the fact that the determinant Ay y v (z,y) is a Bézoutian for the poly-
nomial map (4.12). Therefore, the identity (4.13), which originally holds only in a neigh-
borhood of ((0, Uyp), Vo) and outside the hypersurface ®(U, V) = 0, is valid everywhere. So,
for any (U, V) outside the locus ® = 0, one can rewrite (4.13) as

B TUAD L
which is the identity (4.8). Thus we have completed the proof of the proposition. =

Remark 4.3. Since for any generic choice of V, the sequence < V, P, >,...,< V,P, > is
a normal sequence, any subfamily of these polynomials with cardinal 1 < k < n defines,
for V generic, an algebraic variety in K" with codimension at least k. Therefore, for any
pair of subsets J,J’ C {1,...,n} such that #J + #J' = n + 1, the polynomials

<Vi,P(x)>,je J; UV (z),5 € T
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(considered in K(U,V)[zy,...,Zy)]) define a non proper ideal in this ring. From [Phl,
Theorem 4], one can find, for any such pair of subsets J, J', a polynomial &7 5 €
K[U, V] \ {0}, of degree at most 2(n + 1)3D?, such that, whenever &7 5/ (U, V) # 0, then
the polynomials

<Vi,P> jeJ; U (), e,

have no common zeros in K™. We will define the polynomial ® as the product of all the
polynomials ® 7 7 for all possible choices of J, J’ such that #J + #J’' = n+ 1. The
degree of the polynomial & is at most 22"+1(n + 1)3D}. It will be important for us later
on the fact that if we choose (U, V) such that

(4.14) (U, V)®(U,V)#£0,

then, the polynomials ©;(z) := U(z) < VI, P(z) > satisfy the hypothesis required in
Lemma 2.3 and the identity (4.8) for a convenient choice of N.

5. Size estimates.

In this section, A will a unitary factorial regular integral domain with a size, its quotient
field will be denoted by K and assumed to be infinite. The basic examples in the char-
acteristic zero case are A = Z[r,...,7],q € N and in the characteristic p > 0 case,
A =F,[r,..., 7

Let us recall from [Phl] that a size in A is a map t from Pol(A) = A[(Y;)ien] into
{—o00} U [0, 00[ such that:

(T0) For any bijection o of N into itself and for any f € Pol(A) one has t(6(f)) =
t(f), where & is the isomorphism of the A-module Pol(A) such that &(Y;) = Yo,).

(T1) t(0) = —o0, t(v) = 0 for any v € A*, and t(Y;) = 0 for any indeterminate Y;.

(T2) t(fg) = t(f) + t(9).

(T3) There are constants ¢,c¢’ > 0 such that if F = v; /1Y + -+ - + v, fr Y% with
v1,...,Ux € A* and the Y% are monomials of degree at most d in m indeterminates which
do not appear in any of the elements f; € Pol(A), then

(5-1) t(F) < c max (t(fi) + ' deg(f1) log(m(f1) +1)) + ¢'logk,

where m(fi) denotes the number of indeterminates Y; that actually appear in f;.

(T4) There is an additional constant ¢’ > 0 such that if F = v; fiY* +- - -+ vy fr, Y **,
with vy,...,vx € A* and the Y%/ are pairwise distinct monomials of degree at most d in
m indeterminates which do not appear in any of the elements f; € Pol(A), then

(5.2) 1réllagsc(t(f;)) < d"t(F)+ d'dlog(m +1).

To simplify the estimations in this paper , we shall assume that ¢ > ¢”, and ¢ > 1.

We will also need the following lemma, which is a simple consequence of these prop-
erties.

34



Lemma 5.1. Let A be a ring with a size and f be an element in A[y,...,&1,Y1,...,Yk],
with size t (when considered as an element of Pol(A) and total degree d in all the variables
(¢,Y). There exist elements f,..., fx in A[¢,Y1,...,Yk, Z4,...,Zk] such that

K
&+ 2., Yk + Zk) - f(&,Yh, -, Yk) = Y fil6, Y, 2) 2,

and

(5.3) ax t(f;) < c*(ct + 7c'dlog(L + 2K +1)).

Proof. Let f be the element of Pol(A) defined as the polynomial in the L + 2K variables
(€,Y,Z) by

f&Y.2):= f(& i+ Zy,..., Yk + Zk) - (YA, -, Yi).
Iff(€,Y, Z) == f(€, Y1+ Zu,..., Yk + Zx), then it follows from (5.1) that
t(f) < c(max(t(f), t(f)) + c'dlog(L + 2K + 1)) + ' log2.

On the other hand, it follows from (5.2) that, if we develop f as a polynomial in Z,

f&.,2)= > fal&,V)2°,

BE(NK)*
and we have the size estimates

max(fg) < ct(f) +¢'(d - 1) log(K +1).

In order to estimate the size of f, we need to estimate the size of f . For that purpose we
develop f as a polynomial in Y.

F6Y)= Y fi(o)Y7.

JENK
One has, again from (5.2),

m}xt(f,y) <ct(f)+cdlog(K +1).

We also have

K K
t(H(Y,- + z.-)J") =) Jit(Yi+ Z;) < | J|log2 < c'dlog 2.

i=1 i=1
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Therefore, we have

K
(7O TIW + 20%) <ctlr) + dloglaK +2),

=1
and so,

K+d

t(f) < c®t + 2cc'dlog(L + 2K + 1) + c'( K ) < c®t + 3cc/dlog(L + 2K +1).

We now construct the f; as follows: first, let

1 .
— 8
H(Y,2): Z E fa(€,Y)ZF.
ﬂ1ﬁ1>0
Then, for 2 < j < n, we define

D=2 Y jEev)ze.

Zj 8.81=---=Bj_1=0
Bj)O

The size estimate for f; is given by (5.1), namely

t(f;) < ¢ mgxt(fp) +c'(d — 1) log(L + 2K + 1)) + ' log (KI-; d)

< c(ct(f) +3c'(d — 1) log(L + 2K +1)).

These inequalities combine to give the conclusion of the lemma.
Let us now introduce the function ¥4 from [0, co[ to N U {+00} defined by

Jo(€) :=#{a € A : t(a) < E}.

This function is increasing, so we can consider its one-side inverse ¥ defined for & €

N U {+o0} as
9(k) := inf{€ € [0, 00[: 9o(£) > &} .

This function will play a role in the estimates of sizes in the following way. If 0 # ® €
Alyy,...,y,] has total degree D in the y variables, one can find elements ay,...,a, € A
such that t(a;) < 9(D + 1) and ®(ay,...,a,) # 0. This is immediate by induction on g.

Example 5.1. If A[U] is a polynomial ring, U being a finite set of indeterminates, a
size t on A induces in a natural way a size on the polynomial ring A[U]: let 7 be any
homomorphism of A-algebras between A (U] and Pol(A) which injects U into {Y;,i € N};
such an homomorphism 7 can be extended as an homomorphism from Pol(A[Y]) into

Pol(A). One defines a size on A[U] as
t(f) = t(v(f)), f € Pol(A[U]).
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Example 5.2. On A[U], where U = {uy,...,u,} is a finite set of indeterminates, there is
another way to define a size, completely independent of the fact that A may be equipped
with a size, namely

t(f) = degy f, f € Pol(A[U]).

When A is equipped with a size, one can combine on A[Y] the size t in Example 5.1
and the size t of Example 5.2. For any positive constant C,

(5.4) tc : f € Pol(AU]) = CE(S) + t(f)

is a size on A[U]. Moreover, one can see that conditions T3 and T4 for this size are satisfied
with constants independent of C. For instance, to verify T3 we let

f= Zflvlya' = E Z fzp'vzuﬁYa'

I=1 BeN¢

where v; € A[U], fi = Ygcne st € AU] and the Y*! do not contain any coordinate
involved in one of the f;. It follows from (5.1) and (5.2) that, if c,c’,c” are the constants
relative to the size t,

te(f) < cmax (t(fw) + ¢’ deg fig log(m(fig) + 1)) + ' log [k (deguqf * q)] + Cdegy f
<ecd max (t(fr) + deg filog(m(f;) +1)) + (C + ¢ (c+ 1) log(g + 1)) degy, f + ¢’ logk

Therefore, provided that C > ¢’(c + 1) log(g + 1),
I

65 tolf) < (' +Dmpx tolf) + oy

deg fi log(m(fi) + 1)) +c'logk.

On the other hand, since

k
degy, (Z v f;Y"“) = m?.x(degu ),

=1

when the monomials Y* are distinct and do not involve any U variable, any size t¢ on
A[U] satisfies condition T4, namely, if F = E,_ v fiY® with distinct monomials Y
which do not involve coordinates appearing in one of the fi,

(5.6) 1rélka.)sc(tc(f,)) < (" +1)tc(F) +c'dlog(m +1).

where m is the number of variables involved in the Y*, d is the maximum of the degrees
of these monomials, and the constants ¢, c¢”, are the constants related to the size t on A
by (5.3).
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Example 5.3. On Fp[n,...,7,] there are several natural choices of size, for instance,
given a multiindex m € N? we define

(5.7) tm(f) = deg, (f(r™,...,77"))

whenever f € Pol(Fp[r]). The constants for such a size are ¢ = ¢ = 1,¢ = 0. In this
example it is easy to compute the function ¥y explicitly, namely, if [¢] denotes the integral
part of £, then

Bo(€) = p¥© = 4O108P  where d(g) = (q + [&]) .
q

Thus, it is finite-valued and
I(k) ~ (logk/logp)/9.

Example 5.4. For A{U] = Z[u,,...,u,] and a positive constant C, we have a size t¢,
associated to the Mahler measure t over Z, as done in [BY1, (4.9)]. The Mahler measure
is defined as follows, for f € Pol(Z) depending on m variables, we integrate on the torus
T™, with respect to the normalized measure d¢, and let

t)= [ toglre)ide.

In this particular case, if C' > 2log(g + 1) then we can take c = 3, ¢’ =1, and ¢" = 2 for
the constants corresponding to the size tc. Similarly, the function 9 corresponding to the
Mahler measure is approximately the exponential function, so ¥(k) ~ log k.

Notation. From now on (in this section and the following one), when we consider the
constants c,c’,c” relative to a size t and the function w related to it, we will take them
as the constants relative to the size tc in example 5.3 (for C large enough.) Generally
speaking, this means we replace the original values of ¢ and ¢” by cc¢” + 2 and ¢” + 1
(see Example 5.2.); the constant ¢’ remains unchanged. Of course, in some particular
situations, one can make better choices for c,c/,c” (see Remarks 5.2 and 5.3 below.)

As a consequence of Theorem 4 in [Phl], we have the following result.

Lemma 5.2. Let A be any factorial regular integral domain, with size t, of Krull dimen-
sion & and quotient field K. Assume that p,...,pn are elements in A[z,,...,x,), which
are algebraically independent over K and such that z — (p1(z),...,pn(x)) is a dominant
polynomial map from K" to K". Let also q be a given polynomial in A[r,, ..., Zy). Let

h := max(t(p;), 1 < j < n,t(g), ¢ log(n + 2))

and
1 1

+ :
= degp  deggq




Then, there exists a polynomial Sq € Alxo,z1,...,%,) and a positive constant w, which
depends on n, k,c,c’,c”, such that

(58) Sq(Qapl) cee ’pn) =0 y
n
(5.9) deg Sq < w(20 + 1) degq H degp
=1
and
n
(5.10) t(Sq) < w(1+ 20¢(h + ¢'Dlog(2n + 2))) dequdegpg .

=1

Remark 5.1. The fact that there exists a polynomial S, satisfying (5.8) and (5.9) with
w = 1,0 = 0, is a consequence of the theorem of Perron [Pe, Satz 57). Since we are
interested in size estimates, this theorem is not sufficient for us.

Proof. We consider the polynomial ring Al[uo,...,u,] equipped with the size to from
Example 5.2, with C to be chosen later sufficiently large. Since the polynomials Py yPnrq
are algebraically dependent, the ideal generated by the polynomials g—u,, DP1—Ul,y...,Ppn—
un in A(U)|[z] is a non proper ideal, and therefore, by [Phi, Theorem 4], one can find an
element Sg(uo,u1,...,u,) € A[U] which belongs to the ideal generated by ¢ — Ug, P1 —
%1,...,Pn — Uy in A[U, z] and such that

n
(5.11)  to(Sy) < w(1+omax(te(p; ~u;),1 < j < n,to(g —uo))) degq [[ degm,
=1
where w depends only on ¢, c¢/,c”, k. From the inequality (5.1) we conclude that

max(tc(p; — u;),1 < j < n,to(g —u)) < c(h+c'Dlog(n+1)) +c'log2 + C
<c(h+c'Dlog(2n+2)) +C.

From (5.11) we have

(5.12)  t(S,) + Cdeg(S,) < w(1+ a(c(h+ c'Dlog(2n + 2)) + C))degg H degp;,
=1

that is,

n
deg(S,) < w (a+ 1+ oc(h+ c’glog(2n+ 2))) dequdegp;.
=1

If we choose C =~ c(h + ¢’Dlog(2n + 2)) then C > c'(c + 1)log(n + 2) provided h >
¢’ log(n + 2), and we have then

deg(Sy) < w(20 + 1)deggdegp; - - - deg p,, .
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With this choice of C' we get also

t(Sq) < w(1 + 20¢(h + ¢’ Dlog(2n + 2))) deg qH degp; .
=1

This concludes the proof of the lemma. "

Remark 5.2. When A = Fy[n,...,7,] we can take as in Example 5.3 the size t¢ in
Afug, ..., uy,] defined by

to(f) = deg, , f(r,...,7u§,...,u$) and C € N.

As we have pointed out before, the constants relative to this size are independent of C
and thus coincide with those for C = 0, that is, ¢ = ¢’ = 1, ¢ = 0. We can take here
h = max(t(p;), 1 £ j < n,t(¢g)) and w = 2n+ ¢+ 1 in Lemma 5.2.

Remark 5.3. When A = Z and t is the size corresponding to the Mahler measure, we
have ¢ = ¢/ = ¢”” = 1 and the constants corresponding to t¢ are respectively, c=3, ¢ =1,
and ¢” = 2. In this case, @ = 9(n + 1)2"*2(1 + 4log(n + 1))"+2.

Remark 5.4. The last two remarks use the estimates in [Phl, Theorem 4], but for
A = Z we could have also used the height estimates from the Arithmetic Bézout Theorem
from [BGS, Section 5.4]. The estimates in the last paper are more natural but they are
expressed in terms of Faltings heights instead of the Mahler measure. We refer to [Ph2]
for a comparison of these two points of view.

Lemma 5.2 will be crucial for the estimates of multidimensional residues. Such esti-
mates are given by the following result.

Lemma 5.3. Let m > n and p1,...,pm a family of polynomials in A[z], where A is a
regular factorial domain (with infinite quotient field K) equipped with a size t. Let their
ordering satisfy degpm = Dy, > degp; = D1 > ... > degpm-1 = Dy,—1. Assume also

m

that p;,...,pn Is a quasiregular sequence and that the product H p; does not vanish
j=n+1
on the set of common zeros of p;,...,pn. Let h and D be defined by
:= max(t(p;), 1 < j < m, c'log(n + 2)), D=D,---D,.

Then, for any multiindices J € N™ and k € N™ we have

:z:"da:/( ﬁ P§j+1) _n

(513) Res j=n+1 Ta y
pitt, L phett

where 1y = r1(J, k), re = ro(J, k) € A satisfy

(5.14)

max t(a;) < Cow*n’c* D(|k| + D + m)(|J| + D2 D(|k| + D + m))(h + ¢’ Dy log(2n + 2))
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where Cy is an absolute constant (independent of n and of the size.) Moreover, the same
denominator 0 # r2 can be used if one replaces ki,...,k, by any n~uplet (13,...,1,) of
integers such that || < |k| and J by any multiindex J' such that |J'| < |J|.

Proof. All along the proof of this lemma, C will denote an absolute constant (independent
of n and of the size.) Since the proof is rather technical, we will never make this constant
explicit. Nevertheless, a careful look at the estimates shows that this constant remains
below 103.

One can assume that the p; generate a proper ideal. In order to compute the residue
symbols (5.13) we use Lemma 3.1 and Remark 3.3, which imply the following: if o € A",
and k¥’ = (k1,...,k,), one has

Res zldt A da:/( ﬁ p;?f"l)

j=m+1
tlk |+1,p1(1»') - agt,... ,pn(x) — anl

(5.15) m
J k;+1
z'dzx p;’
= Z Res /(J=In1+1 I ) a'.
Witk pi(@)"*, . pa(z)int?

We now rewrite the left hand side of (5.15) (for o fixed) using Lemma 5.2. We first apply
this lemma to the polynomials p1,...,p, and z;. (Later, z; will be replaced by the other
coordinates z;.) Since the ideal generated by the p; is a proper ideal and the sequence is
quasiregular, we know that these polynomials are algebraically independent. One can find
a polynomial Q; in A[ug,u,...,u,] which contains at least two monomials with distinct
powers of ug and is such that

(5.16) Q1(z1,pa(x),...,Pn(x)) =0,

The total degree of Q; is at most w(20 + 1)D and its size is at most w(l + 20¢c(h +

n
~ 1 . . .
D, log(2n + 2))]D, where 0 =1 + Z Do and w is the constant associated to the size as
: j=1"7
in Lemma 5.2. Let s; be the valuation in uy,...,u, of the polynomial Q;, and write

Qi(w)= ) uf - urau(uo) + Qi (u),

[t]=81

where 51 contains all the monomial terms whose degrees in the last n variables exceed
81. Clearly, we can do the same for the other variables z;,j > 1. The polynomial Q; we
construct will satisfy the following estimates (taking ¢ < n + 1)

(5.17) { deg(Q;) < 3w(n+1)D

L 1<j53<n.
t(Q;) < 3cw(n + 1)D(h + ¢’ Dy log(2n + 2))
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Similarly, for any 1 < j < n, we can rewrite the polynomials Q; as

Qi(w)= Y uf---ulrau(uo) + Qj(u), j=1,...,n.

“|=8j
For any o € A™, one has
(5.18) Qj(ug, ant,...,ant) = t* (R;j(ug, a) — tS;(up, a,t)), j=1,...,n.

where
Rj(up,a) = Z a’a_,-z(uo) ,Ji=1,...,n.

{t=s;

Moreover, as we have seen in Section 3, we can rewrite (5.16) as
n
Qj(zj, ) = Qj(zj,w' —p' +p) =D Qulz;,p' v )(p1 ~ w)
=1

where p := (p1,...,pn), ¥’ := (u1,...,u,). We will denote as A(z,p’, u') the determinant
of the matrix [Q;i] 1555

One can also apply Lemma 5.2 with ¢ = Pj»J=m+1,...,n. For any such j, there
exists a polynomial Q; in Afug,us,...,u,] which contains at least two monomials with
distinct powers of ug and is such that

(519) Qj(pj,pl,“',pn)zoa j=n+1,~"am°
The total degree of Qj, n+1 < j < m, is at most w(20; + 1)DD; and its size is at
n
most @ (1+ 20 c(h+c¢'D;log(2n+2)))D; - - - D, D;, where g := Di +Y Dl Moreover,
b =t

we can assume (if not, divide (5.19) by a power of p;), that Q;(0,u1,...,u,) # 0. The
estimates we will use later for these polynomials are

deg(Q;) < 3w(n +1)D,,D :
5.20 J x +1<j<m.
(5.20) { t(Q;) < 3cw(n+1)DpD(h+ Dy log(@n+2)) I =T
Let s, j = n+1,...,m be the valuation (in u,, ..., u,) of the polynomial Q;(0,u,,...,u,)

and define the polynomials T; of n + 1 variables by
(5.21) Qj (O,Qlt, .o ,a,,t) = t’jTj (a, t) .

Let @ € A" be such that the polynomial Tj(a,0) # 0. This condition is generic. For
n+1<j3j<m,let

d,—1
Qj(u) = Z gji(ug, .. .,un)ugj-l - Q;(0,uy,...,u,).
=0
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For such a generic a, the corresponding polynomials in the n + 1 variables t,Z1,..., Ty,

defined by
d,—1

t”T’J'(a, t) - z sz(alt, ceey a,,t)pj(x)dj—’ ,
1=0

are in the ideal generated by p1(z) — ait, ..., pn(z) — ant in Alt, z).
For o € A™ generic, we can assume also that the polynomial in u,

H Rj(a, uo)
J=1

is not identically zero. The left hand side of (5.15) can be rewritten, using Proposition 3.6
and Remark 3.3, as

(5.22)
n
:c"thdx/( H p;-c’“)
Res j=m+1
tlk '+1ap1 (:L') - at,... ,pn(x) — ant
m d,~1 d;—i—1
I (at)p.: kj+1
o [T (Bmlmlets ey, o,
=Res | 2.0, Tj(a,t)
t*t1,p1(x) — ast, ..., pn(z) — ont
m oyl gi(at)pP T ke B
J ’ i=0 q]! pJ 3 lj
z'A(z,p, at) ( ) S7(zj,a,t)dt Adx
- 3 e [ 20700 TL (S50 [t
s et IH =l Ry (21, )1, ..., Ry(Tp, )i t!

where &' := (51,...,8n), K := |k'|+227L, 1, 8i(k; +1), and &’ := |k’| +|s’|. Formula (5.22)
leads to computations in one variable, which are easy to perform thanks to formula (2.10).
These computations show that for a generic

T k41
e | FUra/(TT #5%) | _ Ruw@
[k'{+1 =m R2,J,k(a) ’
tH T pi(z) —eat, ..., pa(T) — ant

where R; jx and R s are in Afoy,...,ay,) and they are totally explicit. Later on, we
shall give estimates for their sizes. From formula (5.15), we have

m
7 kj+1
R z d:v/( H p; ) 1 _ Risk(a)
> Res j=n+1 * = Rk(e)
NN 1"
Il|e=|k’l pl(x)’1+1,' --,pn(x)l"+1
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Let r be a common denominator for all the residue symbols

oaz/( I] #5%)

Res j=n+1 » ) =K'

n (m)ll+11 see apﬂ(z)l"+1

We have
Ry gx(a) _ Ryi(a)
5.23 L =
(5:23) Ry () 2
where m
z'dz poitt
Rjyi(a) := Z roRes /(,-=I,L g ) o' € Alo].
|"|€=b|‘:" p1($)11+1,...,pn($)’"+1

We can rewrite (5.23) as the polynomial identity

r2R1,0k(a) = Ryx(a)Rz,sx(c)

in the factorial ring Afa]. Since one can assume that Rj /7 is in reduced form, r, divides
Ry 5 in Ala]. Therefore, one has

(5.24) t(r2) < t(Rz,yk)-

This implies that R;x divides Ry, j,x, which gives t(R;x) < t(Ry,s%). From the condition
T4 (inequality (5.2)), one has

:z:"d:r/( ﬁ pf"“)

t | 72Res j=n+1 < C”t(Rl,J,k) + cllk,' log(n + 1) .

pl(x)kl+17 v ,pn(x)k"+1

As a consequence of this inequality and (5.24), we get

zldz p’f"“
Res /(,-=111’ ) =0
r2
P1(Z)M ¥, L pa ()R HE
with
(5.25) max(t(r1), t(rz)) < max(t(Rz,k), "t(Ry,5)) + ¢'|k'| log(n + 1).
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It remains to give estimates for the sizes of the polynomials R; jx and R jx, which we
will do by now. Note that one can use the same denominator r; for all the residue symbols

e | =%/ (L 57)

Jj=n+1
pi(x)1 . pa(z)

with |I| = |K|.
The final estimates for R; jix and R; j are done using formula (5.22). We need to
compute explicitly a residue symbol of the form

Res[l] : =

m 4=l (at)p? k1 n
! Az, p', at) H (2'=° ;f-’((a Z)p’ ) ’ HS;’(a:j,a,t)thdw
j=n+1 VT

grt1+ls’l=1 R'1‘+1(.'L'1, @),...,Rr*(z,, @)

where I; < |k'|+]s’|, 1 < j < n. We will keep ! fixed for the moment. Let us estimate first
the degrees in the variables z and ¢, of the polynomial

(5.26) = Res j=1

i 41 di—i—1 kij+1 n 1
T(a,z,t) =z’ Az, 7, ot) H ( Z gji(at)p;? " ) H 87 (zj,a,t).
j=n+1  i=0 j=1

In terms of d := max(deg Q;), the degree of T in any z; is at most
n m n
JJI+D1) (di =)+ Y diDj(ki+1)+ Y Ud; < |J| +nd? + dDp (k| +m).
j=1 j=n+1 j=1
Since d < @(2n + 3)D,, D by Lemma 5.2, we obtain
(5.27) deg,, T < |J| + Cow*n®D2D(|k| + D +m).
Similarly,
n m n
deg, T <D (di-1)+ Y di(kj+1)+ > _(dj — 85 — 1)l; < d(|k| + m) + nd?.
=1 Jj=n+1 j=1
Therefore,
(5.28) deg, T < Cow?n* Dy D(DpD + |k| + m).
li+1

We need now to estimate the size of the polynomial, in o, z;, R} " (zj,a). If the a;; are

the coefficients in the expansion of R; as a polynomial in @, then, it follows from property
(5.2) of the size that we have

(5.29) t(aji(z;)) < t(Qy) + ¢'d; log(n + 1),
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so that using property (5.1) we obtain

t(R;) < cma.x(t(a,n) + c'd;log2) + ' log (s’: n)
3

< c®t(Q;) + cc'djlog(2n + 2) + c'nlog(s; +1).

Therefore, from the estimate (5.17) we conclude that

t(RY ™) < (K] +n max (d.) + 1)(c*(Q;) + cc'd; log(2n + 2) + ¢'nlog(s; + 1))

< (k| + nd + 1) (cw(2n + 3)D(c*h + c*¢' D, log(2n + 2))+
+ cc’ Dlog(2n + 2) + c'nlog[w(2n + 3)5])
< Cow*n3cD([k| + D) (h + ¢' Dy log(2n + 2))

(5.30)

Similar size estimates hold for the polynomials S’;-" (as polynomials in a, z;,t, that is this
time in z; and n + 1 additional variables, of total degree 2d;). Namely

(5.31) t(SJl-" ) € Cow?c*n3D(|k| + D) [h + ¢' D, log(2n + 2)].

We can do the same for the sizes of the polynomials Tj, n +1 < j < m. Suppose first
that forn+1<j3<m,

Q,(0, u)—z Ul udn
From the definition (5.21) and property (5.2) of the size we have
t(bj;) < ct(Q;) + c'djlog(n + 2),
so that using (5.2) we obtain

t(T;) < cmax(t(bji) + ¢'log2) + ¢’ log (2dj 2, 1)
]

2d;
< c*t(Q;) + cc'd;log(2n + 2) + ' (n + 1) log(2d; + 1).

Therefore, recalling (5.20), we conclude that, forn+1 < j < m,

t(T:f"'H) < (kj + 1)(t(Q;) + cc'djlog(2n + 2) + ¢ (n + 1) log(2d; + 1))
(5.32) < Cown(k; + 1)C3Dj5(h + ¢’ Dy log(2n + 2)) .
For n+1 < j <m, let us write Tj(a,t) = vjo(a) + tf}-(a, t). Let us define the polynomial
T; by
(vs0(@) = Ty(e )" = 1" (@) ~ Ty(e, ) Tj(e1).
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Hence, .
1= Tj(a,t)f_i(lgl’i + tn-l-ls l'%f?ll—t)—
Yo () ()
for a convenient polynomial T;. Using the definition (2.22) of the residue symbol fof a

rational function, one can replace in formula (5.26) the product [T}_, Tj(,t)~%~! by the
product

Jj=n+1 j=n+1 j=n+1

We will also need later an estimate for the size of f} This estimate can be obtained easily
using (5.1) once we note that

T (e, t)T5(en2) = v () = (vjo(@) — Ty e, £+
and that T; and vjo — T; have similar size estimates. The size of vjo is at most ¢'t(T}) +
c/djlog2, so that using (5.20) we have
t(T5) < (ks + |s'|) (¢(T;) + 2¢'d; log(2n + 2)) + ¢’ log 2
(5.33) < Cow?c®n?(|k| + m)D2, D*(h + ¢' D, log(2n + 2)) .

Now we are able to estimate the polynomial Ry ;. Let

GJ
8i—i .
Rj(z5,0) = pis(e)ef ™, j=1,..,m.

1=0

Then z,+1 L+l oy 85t +1) 85 (1+1)-1
(zj,0) = Pjo (a ) + p1,5,1 (a) +-oe

For1<j<m, the (1; +1)d; x (I; +1)é; companion matrix of the multiplication operator
by z; in A(e)[z;]/R7 ! is

0 0 0
[1 0 0 \
1 0

- O

. 1

I ¥,
pio ()

co 0 0 10 —pja(e) )
\o - - - 0 1 -pjia)
By (2.10), the residue symbol



is one of the coefficients of the matrix I‘;.’ / p;{,“. (Namely, the last coefficient in the first
column.) On the other hand, we have

tiodt _[lifig=k+|s|—|l
Res [t"+1+|""'”] =10 if not. =

If we use these auxiliary computations in formula (5.26), we see that the residue symbol
is an element of A(a) with denominator

L4l deg,; T+1 , m il
(H”f’o (“)) ( I1 vz'o(a)""+l) ‘
i=1

j=n+1

A common denominator valid for all indices I such that I; < &', 1 < j < n, will therefore

b
¢ n (n'+1)(deg,j T+1) m K+|s'|
Fa,1x(@) = ( L ow(@)) (IT waa) .

Jj=1 j=n+l

Since k + |§'| < d(|k] + m) < @w3(n + 1)Dm D(|k| + m) and also (see (5.2))

t(pl) < ct(RY*) + (1 + 1)d;log2, 1<j<n,
t(v;'céﬂ) < ct(T;‘J'*'l) +c'(kj +1)djlog2, n+1<j<m,
we obtain the final estimate for the size of r;, since using (5.30) and (5.32) one finds that

(5.34) t(Ra,7x) < Cow*n’c* D(|k|+D+m)(|J|+D2 D(|k|+D+m))(h+¢ Dy, log(2n+2)) .

By (5.23) we have that t(r2) < t(Rg2 ), so that the estimate (5.34) is also valid for t(r2).
Note here that the R j we found does not depend on ! and is a common denominator for
all residue symbols Res[l]. Moreover, we can use the same denominator when we replace
J by any multiindex J’ such that |J'| < |J].

In order to estimate the size of a numerator for Res[l], we need first to estimate the
coeflicients involved in any of the matrices I‘;-’ , where 1 < 4,...,4, < max; degzj Y. More

precisely, let us write
s 1 LIPS
9 = (4r—) 7.
J ;41 J
Pio (@)
l_,‘-l—l

If we define the size of a matrix as the maximum size of its coefficients, then, as p;" (@)
divides Rz, jx(c), we obtain

n’ n
t (Rz,J,k II 1‘;") < t(Razx) +t ( [IT; ) :
Jj=1 j=1

so that our first objective will be to estimate the size of any element in a matrix of the
form I‘;.j » 1 <14 < deg,, T. The contribution of the residue symbol corresponding to the
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multiindex (i1, ...,%,) in the development of R; ;\ is precisely a particular element of this
matrix. The size of the matrix I'; is estimated by

t(T;) < ct(R ) + (I + 1)d;log 2 < ct(RYTY) + ¢/ (s + |5/ + 1)d; log 2.

Since by (5.1), t(3F_, £.) < max(t(f.) +d(£.) log(m(f.) +1)) + ¢ log p, we have, since the
matrix I‘ involves only 2(l; + 1)d; — 1 non zero coefficients,

t(f;") < (ct(R;-"'H) + (I + 1)d; log(2n + 2)) deg,, T + ¢’ log (2djzj(il.j + 1))
J

< (ct(R7*") + ' (IK| + |s'| + 1)d;log(2n + 2)) deg,,, T + 2¢'i;d;(l; + 1) log 2

< (ct(R7™) + 3 (|K'| + 18| + 1)d; Jog(2n + 2)) deg,, T

< Cow*n®c*D(|k| + D)(|J| + D2, D(|k| + D + m))(h + ¢’ Dy, log(2n + 2)) .

We need also to estimate the size of the polynomial T’ in z, o, t defined as
m
T'(z,0,t) = T(a,z,t) [ 177" (at).
j=n+l

In the factorization of this polynomial, the factors we still need to estimate are A(z,p', at)

and all the terms of the form Z:’iol gji(at)p; 4~41 for n+1 < j < m. In both cases we

need estimates for the maximum size of the coefﬁc1ents of the polynomials Q;,1 < j < m,
and to simplify the notation, we will denote them by t;. Using (5.2) we have

(5.36) t; < Ct(QJ) + C’dj log(n + 2).
Then, forn+ 1< j <m,0<i<dj, we have

2d; +n+1

<ctj+c(n+1)log(2d; +1).
2d,

t(gji) < ctj + c'log (

Using now (5.1) and (5.36), we obtain an estimate for the second type of terms:

t( Z 95iD; PP < cmax (t(gji) + djh + ¢ (Dmd; + 2d;) log(2n + 2)) + ¢’ log d;
1=0

< &t +cdj(h+ ¢ (D + 2) log(2n + 2)) + ¢/(c(n + 1) + 1) log(2d; + 1)
(5.37) < Cownc* Dy D(h + ¢'Dry log(2n + 2)).

We turn now to the estimation of A. Recall that
n
Qj(zj at) =D (P — a;jt)Qji(zj,pliot), 1<j<n,

49



and A = det[Q;i].
From Lemma 5.1 we know that we can chose the Q;; so that

(5.38) max t(Qs) < c* (ct(Q;) + 7c'djlog(2n + 2)) .
Expanding each Qj; as a polynomial in v’ = (uy,...,u,) and v = (vy,...,v,), we get, for
1<14,5<n,

KK
Qji(u,v) = Z q‘;' 1 2)(uo)u'K1‘UK2,
K11K3

with the size estimates (from (5.2))

t(q,‘f“ ’Kz)) < ct(Qji) +c'd;log(2n + 1).

Therefore, the size (as a polynomial in uo, o, t) of each term gj; K1.Ka (uo )t“'“'p’K1 a2 is at
most ct(Qji) + ¢'d;log(2n + 1) + |K;|h, that is at most ct(Q,,) +d;(h + ' log(2n + 1)).
We conclude (usmg (5.1) again) that

(5.39)

t(Q;i(z;,p, at)) < c*t(Q;i)+cdj(h++2c Dy log(2n+2)+c log(2n+1))+2c'd; log(2n+2) .

We then have, combining (5.38) and (5.39), that for any 1 < 4,7 < n,
(5.40) t(Qji(z;, P at)) < c"t(Q;) + cd;(h + 10c'c® Dy log(2n + 2)) + 2¢'d; log(2n + 2) .

We get immediately from that the final estimate for the size of A(z,p’,at), that is, if
d’' = maxigj<n dj,

t(A(z,p',at)) < nc® mJaxt(Qj) + nc?d’ (h + 10c'c’ D log(2n + 2))+

+ 2nc'd’ log(2n + 2) + 2¢c' D1 d’ log(2n + 2) + ¢ log n!
< nc® max t(Q;) + nc?d' (h + 15¢'c® D, log(2n + 2))
j

(5.41) < Cown®c®D(h + ¢' Dy log(2n + 2)) .

In order to summarize the estimates for the size of the polynomial T’/ we need to put
together the estimates (5.31), (5.33), (5.37), and (5.41). If we add the sizes of all factors,
we get

(5.42) t(T') < Cow®n®c® D2 D?(|k| + m)(|k| + D + m)(h + ¢' D, log(2n + 2)).

The total degree of T' as a polynomial in @, ¢,z can be estimated from (5.27), (5.28), and
the estimate of the degrees of the TJ,

deg, ¢(T5) < 2d;(k +|s'|) < Cow®DZ,D2(|k| + m).
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We have then
(5.43) deg(T") < |J| + Cow?n* D2, D*(|k| + m).
Let

Y'(z,a,t) := Z 'I‘},(oz)t’b:z:"1 coegin,
iENn+H

We get, by (5.2),
maxt(T}) < ct(Y’) + ¢’ deg(T’) log(n + 2)
< Cow?n3c'®D2 D?(|k| + m)(|k| + D + m)(h + ' D log(2n + 2)).

As we have pointed it before (see formula (2.10)), one can write

Ras@Restl(@) = 3 To@Res [ L1 |, sa(@),

i€ENn+1

where & 4, .....i,. () is one of the coefficients of the matrix Rg,J,kf’f e f‘:," The size estimate
of any coefficient of Rz jx(a)Res[l](c) is almost the same as the size of r9, namely,

Cow?n " D(|k| + D + m)(|J| + D2, D(lk| + D + m))(h + ¢' D log(2n + 2)) .

Therefore, the size of the polynomial Rz jx(c)Res[l](c) can be also estimated by the last
expression. We now conclude the proof of Lemma 5.3 using the expression

Rl,J,k = Z Rz’_],kReS[l]
o<l <[k | +18']

and the fact that the degrees in o of the polynomials Rz sxRes(l] are at most

k' |+l8'|+1 ’
max deg(R; ) deg(X’) + deg(R2,s,x)
< Cow?n3D?(|J| + wn* D2, D?(|k| + m)) .

A final application of (5.1) leads to
(5.43)

t(Ry1) < Com*n?c®D(|k| + D + m)(|J| + D% D(|k| + D + m))(h + ¢' D log(2n + 2)).

The conclusion of the lemma follows from (5.25), (5.34) and (5.43).

We will use in the next section a variant of this lemma.
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Lemma 5.4. Let p1,...,Pn,Pn+1,--.,Pm be m polynomials in A[zx] with size at most
h and degree at most D, such that p,...,pn is a quasi regular sequence and the ideal
(Pry--1Pn, [Ty pi) is Alz]. Assume that h > ¢log(n + 2) and there is an n x n
matrix A = [1 aji) 1Sign with coefficients in A, of size at most a, which is invertible in

M, (K), and such that the polynomials

n
yJ :=Zaﬂﬁl’ j=1,...,n,
=1

have respective degrees D;,...,D,,. Then, for any multiindices J € N™ and k € N™ we
have

vae/( 1 7)) .

(5.42) Res j=nt1 = n=n(lk),rz=r()k)eA.
2

~k +1 ~k 1
2% Pt

Moreover,
max t(r;) < Cow*n’c*D(|k| + D +m)(|J|+ D*D(|k| + D+ m))(h+a+¢'D log(2n +2)),

where Cy is an absolute constant (independent of n and of the size), D = D,---D,.
Furthermore, we can use the same denominator ry if one replaces ki, . . . , ky, by any n— uplet
(l1,...,1,) of integers such that |l| < |k| and J by any multiindex J' such that |J'| < |J|.

Proof. Since the matrix A is invertible in My (K), the polynomials ps, ..., p, satisfy the
conditions of Lemma 5.2. From (5.1) one has

(5.45) t(p;) <cla+h+c'Dlog(n+1))+c'logn.

We rewrite the residue symbol (5.44) using Proposition 2.4. Let § be the determinant of
the matrix A. Then

(5.46)
i m
/ H Dpj - : dex/ H P
Reo | © /5™ =6 3 TT(%) (IT a)mes | © 7 20
13’“+l gl =l T s Pt plin L,

where we recall from Proposition 2.3 the following notation for the matrix of indices gij €
N

3 = (91552 n3)s ;= (G, 1 Tin) K = |gi;|

(Ni) - ;!
qi; g gin!
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It follows from Lemma 5.3 that each residue symbol that appears in the right hand side of
(5.46) is of the form r14/r2, where ry4, 72 € A, ry # 0 and

t(r1,9) < Cow*n"c' 2 D(|k| + D + m)({J| + D2D(|k| + D + m))(h + a + ¢ D log(2n + 2))
and
t(r2) < Cow*n"c*D(|k| + D + m)(|J| + D*D(|k| + D + m))(h + a + ¢'Dlog(2n + 2)),

(We use here that r2 can be chosen to be independent of g.) The number of terms (taking
into account repetitions) involved in the sum in (5.46) is at most

n
tk| n+kj—1 Ik| n-1
2 ,1:11( noq ) S 2Ha+ R

Therefore, the size of the element

= lq 2 nl ((1.,) (11:]:" ag,’)nq

9jl=k; i=
1<j<n b

is at most
t(r1) < t(0) + c(max(t(r1y)) + [kla) + c'(|k|log2 + (n — 1) log(1 + |k[))

<an-+ c(m?.x(t(rlq)) + |kla) + ¢'(|k|log2 + (n — 1) log(1 + |k|)) + logn!.

The conclusion of the lemma immediately follows from the size estimates for the Tig- W

We will use extensively in the next section the following simple consequence of the
last result.

Lemma 5.5. Let py,...,Pn,Pn+1,-..,Pm be m polynomials in Alz] as in Lemma 5.4.
Let f € Al&,...,€L,21,...,2,) of degree d and size t. Then, for any multiindex k =
(k1,---,km) one has

(5.47) "
2)d i
Res f& z) x/(j!;[“!’a ) _n@ =r1(f,k) € A[€], ry = ro(k) € A
PRt et ”
with
(5.48)

max t(r;) < c*t+Cow*n’c** D(|k|+ D+m)(d+D*D(|k|+ D+m))(h+a+c Dlog(2n+2)).

F=>_ fs(&)a?
B

33

Proof. Let



Using (5.2) we have
mg.xt(fg) <ct+cdlog(n+1).

Let r, = ra(k) be the common denominator for all residue symbols of the form (5.44) with
|J| £ d. We know from Lemma 5.4 that

(5.49) t(r2) < Cow*n’c*D(|k|+ D+m)(d+D*D(|k|+ D+m))(h+a+c Dlog(2n+2)).

Let now 71 g be the numerator of the residue symbol (5.47) when f is replaced by =
and we same denominator ry = r3(k). Then, we can write

= Zfﬂ(ﬁ)"l,ﬁ,
B

where the estimates for the sizes of r, g are also given by (5.49). Therefore, to estimate
t(r1) we can use (5.1) and get exactly the statement of the lemma, modulo a change of
the value of Cg. -

Remark 5.5. It is possible to separate the degrees d, and d; in the statement of the
preceding lemma. In this case, the estimates for the size of the numerator and denominator
of f are

¢t + Cow*n’c*D(|k| + D + m)(d, + D*D(|k| + D + m))(h + a + ¢’ Dlog(2n + 2))
+ cc'd¢ log(L + 1) + c'nlogd, .

6. Effective Nullstellensatz.

We provide now the solution of the Bézout identity with good degree and size esti-
mates.

Theorem 6.1. Let py,...,pm € Alzy,...,z,] and A be an integral domain with infinite
quotient field K. The ring A is assumed to be a factorial regular ring with Krull dimension
« and equipped with a size t (with corresponding c,c’,d .) The degrees D; = deg(p;) are
assumed to be in decreasing order and h := max(t(p;),c' log(n+2)). If p,...,ppm have no

common zero in some algebraic closure K of K, there existsro € A, and qy,...,qN € Alz),
such that
M
To = E 4;D; »
=1

with the estimates
deg(p;g;) < n(n+1)3B(Dy,...,Dp) +n(Dy - 1)
t(p;q;) < Cow*2"n"c1®B4D2 (h + 9[(70D1)"} + ¢’ log M + ¢ Dy log(2n + 2))
t(ro) < Cow*2"n"c®B*D?(h + 9[(voD1)"] + ¢ log M + ¢ D, log(2n + 2))
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where vy, Cp are absolute integral constants, B = B(D,...,D,) is defined by (4.1), and
w is the constant depending on n, k and on the size t that appears in Lemma 5.2.

Remark 6.1. The case A = Z has been studied in [BY1] using analytic methods and we
obtained there a similar result with slightly worse estimates (for the values of ¢,¢/, w in
this case, we refer to our previous Remark 5.3.)

Our main example will be A = Fp[r,..., 7). In this case, ¢ = 1, ¢ = 0 and

= 2n + ¢ + 1, as seen in Remark 5.3. The function ¥ in this case (see Example 5.3) is

t9(k) ~ (log k/ log p) .
Proof. We may repeat the same polynomial several times in the sequence p;,...,pa, so
that one can always assume that M > n. First, we use the pigeonhole principle to find an
n x M triangular matrix (a;;) with coefficients in A, a;; = 1 and a;; = 0 for i > j, such
that the polynomials F; defined by P; = 3 a;;p; form a quasiregular sequence. We start
with P; = p;. Then, since P; has at most D; irreducible distinct factors in K[z] and the
field K is infinite, there are elements a3; € A, j = 3,..., M such that t(a;) < 9(D; + 1)
and, if P, :=py + Z =3 02;Pj then (Py, P;) defines a quasuegular sequence (even regular
whenever the ideal (P1, P,) is proper.) In order to see t that, let P; be the set of distinct
irreducible components of the variety {P; = 0} in K ; for each v € Py, we choose a
point a,, € < of and consider the non zero homogeneous polynomial in N — 2 variables

W3,...,WpM M
Ti(w) = [] (ijpj(a»,)).

Y€EPL =3

This polynomial has total degree at most D; and we can find, from the definition of 9, a
point w® € AM=2 such that T3 (w®) # 0, with max(t(w3)) < 9(D + 1); we take ag; = w;’,
j=3,...,M. Then, once P; is constructed, we go on and use the same idea to construct P,
considering this time the set of irreducible components in {P; = P, = 0} (whose cardinal
is at most Dy D, by Bézout theorem since the sequence (P, P;) is regular whenever the

ideal is proper.) The new coefficients a3; have their sizes estimated by 9(D;D; + 1). In

the same way, we obtain a quasiregular sequence P,,..., P, . The maximal size of the P;
is at most ‘
(6.1) t(P) <c(h+9(D)+c'Dilogin+1))+c'logM, i=1,...,n

In the second step, consider the polynomials ® and & of 2n? + n variables associated
to Py,..., P, by Proposition 4.2 and Remark 4.3. Choose (U,V) € K"*("+1) ¢ M,,(R)
such that ®(U, V)®(U, V)S(V) # 0, where £(V) is the product of all minors of the matrix
[Uj[]:é{g:. The degree of T is at most n2%", so that the total degree of the polynomial

®PT is at most 220+ (n + 1)4D? < (voD1)™, where 7o is an absolute constant. Because

of the definition of the function ¥ ant the comment attached to this definition, one can
find (U, V) such that

{ ®U,V)®(U,V)EU, V) #0
(6.2)

max(t(u;i), t(v;i)) < 9[(v0D1)"]
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For N = (n + 1)3 the condition

B+D, __ 1
NB+D; " n(n+1)?

bolds, and so, by Proposition 4.2, the following polynomial identity holds in K|z;,...,z,]
Anupv(z,y)dziA---Adzy
1 = Res

(Uz)NB < VL, P>,...,(Uz)NB <V™, P>

(6.3)

From now on, we assume that the variables U, V have been fixed and so we will drop them,
as well as N, from the notation, when convenient. In particular, we will denote by 6,(z) =
(Ui(z))NB < VI, P(z) >, j = 1,...,n. Correspondingly, we let A(z,y) = Anuv(z,y),
and 4;; the entries of the corresponding matrix. We can choose the entries of the matrix
A in accordance to Lemma 5.1, so that they have good size estimates. We have

max(t(< V7, P >) < ¢( max(t(P;)) + 9[(v0D1)"] + ¢’Dy log(n + 1)) + ¢’ logn
K} 13
<c? (h + 2¢'(Dy log(n + 1) + 9[(v0D1)"] + log M)) .
At this point, we have the following size estimates for the polynomials ©;, 1 < j < n,

t(©;) < (h + 2¢' (D1 log(n + 1) + 9[(vD1)"] + log M))
+ ¢(n + 1)*B(I[(voD1)"] + ¢ log(n + 1))

<c? (h + B(n + 1)*(9[(10D1)"] + 7oc’ log(n + 1)) + 2’ log M) ,  (6.4)
so that the entries of A satisfy the estimates
(6.5) n‘;a}x(t(é,-,j)) <c (h + (n+1)*B(9[(70D1)"] + Yoc’ log(2n + 1)) + 2¢’ log M) ,

as shown in Lemma 5.1.
Using exactly the same argument we used at the beginning of the proof, we find

coefficients @p41,1,- - ., @nt1,m Of size smaller than 9[(79D;)"] such that
. M
- q= Zan+1,jpj
=1

does not vanish on the algebraic variety defined by the polynomials ©;. We have the
following estimates for t(g),

(6.6) t(q) < c(h + 9[(v0D1)"] + ¢' D1 log(n + 1)) + ¢'log M .
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One can now rewrite the identity (6.3) by decomposing it into a sum of residues of
rational functions. This can be done here because the ideal generated by ©,,...,6,,,¢
is K[z]. In order to do this we introduce the Hefer divisors gn1; for g, that is, the
polynomials in 2n variables defined by the successive divided differences,

q(z'1,. vy Tj—1,Tj5, Y541, - - 'ayn) - Q(-'L'l,. c oy Tj—1yYjy .- ')yﬂ)
3

1 =1,...,n.
Py i=1,...,

gn+1,j(ma y) =

We rewrite the determinant A(z,y) as

511 s 6175 gn+1,1(z,y)

1 P . .

(6.7) m . .
On1 cor Onn gn+1,n($, y)

©1(y) ~61(z) - - - On(y) - Ou(z) q(y)

We can develop the (n + 1) x (n + 1) determinant in (6.7) along the last row and
obtain

69 2o =((TOw-0,e8iE0) +awaen).

q(z) \\ 1

Since the residue symbol is annhilated by the ideal, we can rewrite (6.7) as a Bézout
identity

Aj(z,y)dz/q(z)

(6.9) 1=) Res
Z 91(13),--.,9"(10)

j=1

©,(y) + Res

A(z,y)dz/q(x) ]
q(y) .-
©1(z),...,0,(z)

(in order to unify our notations, we used Ao(z,y) := A(z,y).) It is clear that (6.9) is an
identity of the form

M
1= pi(¥)a;(¥),
i=1

where the g; are in K[z]. This is going to be the formula that solves the effective Nullstel-
lensatz with good estimates. Note that, up to this point, we already have the estimates
for the degrees.

Let us now consider the problem of size estimates. The size of the polynomials A,

J=0,...,n, can be obtained immediately from the estimates (6.5) and Lemma 5.1 applied
to gn+1,5, 3 =1,...,n. We have
(6.10)

t(A;(z,y)) < nc® (h+B(n+1)3(t9[('yoD1)"]+'yOc' log(2n+1))+2c"logM) ,j=0,...,n.
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We now introduce
Pjs(z) :=< VI, P(z) >, P;js(z) = (U(2))¥B, j=1,...,n,
and apply Lemma 2.3 in order to express differently the residue symbols
Aj(z,y)dz/q(z)
Res ,3=0,...,n.
6:1(z),...,0n(z),

The hypotheses of the lemma are fullfilled since ®(U, V)®(U, V) # 0. Then, we have, for
any0<j<n,

(45629 fa@) T Ps)az

(6.11)  Res [Afgi’ y)dzé‘I("’)] = Y Res 15
vreTyEm 1<51,0000in <2
=t Pijis...,Poj,
Any of the residue symbols in the right hand side of (6.11) can be computed using Lemma
5.5. More precisely, for s fixed in 0, ...,n, consider the residue symbol
(as@,9) /a(@) ] Py)de
Res St
PijiyeeosPaj,

Up to sign, one can rewrite it as

<Vi,p(xz) >,...,< Vi, p(z) >, (Ui (z))NB, .. | (UIn-n(z))NB

bl

where T = {iy,...,4,} and J = {j1,...,jn—u} define a partition of {1,... ,n}.

We use now an argument due to M. Elkadi (see [El}, [BGVY, p. 125-126]). For any
subset Z C {1,...,n} of cardinal u, one can find, since £(V) # 0, p linear combinations
92,1s-+-,97,5 Of <V P> ... < Vi, P>, of the form

n
qz,; = sz,,-,sz, i=1,...,u.,
I=j

with the pz,;; all different from zero. Moreover, the coeficients involved in such linear
combinations gz ; are product of at most u minors of the matrix ['Ujl] 1<j<n . SO the maximal
1<i<n

size a of such coefficients is at most
en? max(t(v;r)) + ¢'nlog(n!) < en®(9[(voD1)"] + log(n + 1)).
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Therefore, we can apply Lemma 5.5 with m = 2n + 1, fi(z) =< Vi, P(z) > ifi € T and
pi(z) = U*(z) if not, and pp41,...,P2n+1 are the polynomials

<V, P(z)>,i¢I; Ulzx)i€Tq.

We let k£ be the multiindex corresponding to the exponents of these polynomials as they
appear in the residue symbol (6.12). We have |k| < 2n(n + 1)3B. As a consequence of
Lemma 5.5, the residue symbol (6.12) can be written as rz1/rz 2, where rz; € Aly],
rz,2 € A, with size estimates

max t(rr) <c° (h + (n+1)]B(9[(70D1)"] + 7oc’ log(2n + 1)) + 2c' log M )
+ Cow?nl®c® B4 D? (h + 9[(voD1)"] + ¢’ log M + a + ¢’ D; log(2n + 2))
(6.13) < Cow?*nl’c®BiD? (h + 9[(70D1)"] + ¢’ log M + ¢/ Dy log(2n + 2))

Note that the denominator rz 2 does not depend on the index s € {0,...,n} chosen earlier.
We take now as rg the product of all rz2, T C {1,...,n} and obtain our final estimates
thanks to (5.1). m
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