
ABSTRACT

Title of dissertation: Mathematical Programming Models
for Influence Maximization
on Social Networks

Rui Zhang, Doctor of Philosophy, 2016

Dissertation directed by: Professor Subramanian Raghavan
The Robert H. Smith School of Business
and Institute for Systems Research

In this dissertation, we apply mathematical programming techniques (i.e., integer

programming and polyhedral combinatorics) to develop exact approaches for influence

maximization on social networks. We study four combinatorial optimization problems

that deal withmaximizing influence at minimum cost over a social network. To our knowl-

edge, all previous work to date involving influence maximization problems has focused

on heuristics and approximation.

We start with the following viral marketing problem that has attracted a significant

amount of interest from the computer science literature. Given a social network, find a

target set of customers to seed with a product. Then, a cascade will be caused by these

initial adopters and other people start to adopt this product due to the influence they re-

ceive from earlier adopters. The idea is to find the minimum cost that results in the entire

network adopting the product.

We first study a problem called the Weighted Target Set Selection (WTSS) Prob-

lem. In the WTSS problem, the diffusion can take place over as many time periods as

needed and a free product is given out to the individuals in the target set. Restricting the

number of time periods that the diffusion takes place over to be one, we obtain a problem

called the Positive Influence Dominating Set (PIDS) problem. Next, incorporating partial

incentives, we consider a problem called the Least Cost Influence Problem (LCIP). The

fourth problem studied is the One Time Period Least Cost Influence Problem (1TPLCIP)

which is identical to the LCIP except that we restrict the number of time periods that the

diffusion takes place over to be one.

We apply a common research paradigm to each of these four problems. First, we

work on special graphs: trees and cycles. Based on the insights we obtain from special

graphs, we develop efficient methods for general graphs. On trees, first, we propose a

polynomial time algorithm. More importantly, we present a tight and compact extended

formulation. We also project the extended formulation onto the space of the natural vari-

ables that gives the polytope on trees. Next, building upon the result for trees---we derive

the polytope on cycles for the WTSS problem; as well as a polynomial time algorithm on

cycles.

This leads to our contribution on general graphs. For the WTSS problem and the

LCIP, using the observation that the influence propagation network must be a directed

acyclic graph (DAG), the strong formulation for trees can be embedded into a formulation

on general graphs. We use this to design and implement a branch-and-cut approach for

the WTSS problem and the LCIP. In our computational study, we are able to obtain high

quality solutions for random graph instances with up to 10,000 nodes and 20,000 edges

(40,000 arcs) within a reasonable amount of time.

Mathematical Programming Models for Influence Maximization
on Social Networks

by

Rui Zhang

Dissertation submitted to the Faculty of the Graduate School of
the University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Subramanian Raghavan, Chair/Advisor
Professor Michael Ball
Professor Bruce Golden
Professor MohammadTaghi HajiAghayi (Dean's Representative)
Professor William Rand

© Copyright by
Rui Zhang
2016

Dedication

To my wife, Dr. Yang Wang (王玚)

To my mother, Xiujin Chen (陈秀⾦)

To my father, Yanding Zhang (张延丁)

For all the sacrifices that they have made and all the love that they have given to

ensure that I could focus on what I want to achieve, I am forever in their debt.

ii

Acknowledgments

First and foremost, my deepest gratitude is to my advisor, Professor Subramanian

Raghavan, for inspiring and motivating me to work on this thesis. He has always been

there and provided continuous advice and support to me on research and life in general

throughout the course of my PhD study. I would like to thank him for his patience and con-

tinuous encouragement. I have benefited from his enthusiasm and immense knowledge. I

hope one day I will become as good an advisor to my students as Professor Raghavan has

been to me.

I would also like to expressmy very sincere gratitude to Professor BruceGoldenwho

has been another source of advice whenever I need it. He has offered me opportunities to

work on interesting research topics. Moreover, I would like to thank my other committee

members, ProfessorMichel Ball, ProfessorWilliamRand and ProfessorMohammadTaghi

HajiAghayi for serving on my thesis committee, coordinating their schedules and giving

me input and feedback. It has been a great pleasure to work with and learn from these

extraordinary individuals.

The PhD program in the Smith School of Business has been a wonderful place for

me. I would like to thank Justina Blanco for her excellent job in taking care of all the

administrative details. She plays a huge role in keeping the program running smoothly.

I would also like to acknowledge and thank Weiming Zhu (朱未名) and Wenfeng Wang

(王⽂峰) for their friendship. We are comrades in arms.

Most importantly, none of this would have been possible without the love and pa-

tience of my family. My mother, Xiujin Chen (陈秀⾦), and my father, Yanding Zhang

iii

(张延丁), have been a constant source of love, concern, support and strength all these

years – both spiritually and materially. Without them, I would never have enjoyed so

many opportunities. I really appreciate what they have done for me.

I am very grateful to my wife and best friend, Yang Wang (王玚). She has always

stood by me through all the ups and downs. I am so fortunate to have her unflagging love,

encouragement and support. She has made me become a better person. Words cannot

express the gratitude I owe her.

I would also like to thank my daughter, Olivia Yuening Zhang (张玥凝). Being a

father has been my greatest source of achievement, pride and inspiration. I believe at least

one chapter of this thesis was done during those sleepless nights when she was sleeping

in my arms.

This thesis is the starting point of my journey.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Weighted Target Set Selection on Social Networks 8
2.1 Introduction . 8
2.2 Algorithm for the WTSS Problem on Trees 11
2.3 A Tight and Compact Extended Formulation on Trees 17

2.3.1 Polytope of the WTSS problem on Trees 28
2.4 The WTSS Problem on Cycles . 37
2.5 A Branch-and-Cut Approach for General Networks 41
2.6 Computational Experience . 49
2.7 Conclusions . 59

3 Generalizations of the Dominating Set Problem on Social Networks 62
3.1 Introduction . 62

3.1.1 Problem Definition . 64
3.1.2 Related Literature . 64
3.1.3 Our Contributions . 67

3.2 The TPIDS Problem . 69
3.2.1 Algorithm for the TPIDS Problem on Trees 69
3.2.2 Good Formulations for the TPIDS Problem on Trees 76

3.3 The PIDS Problem . 81
3.3.1 Algorithm for the PIDS Problem on Trees 81
3.3.2 A Tight and Compact Extended Formulation on Trees 91
3.3.3 Projection of the Dummy Node Formulation 106
3.3.4 Polyhedral Study of the PIDS Problem on General Graphs 115
3.3.5 Computational Experiments . 125

3.4 Conclusions . 129

v

4 Tailored Incentives and Least Cost Influence Maximization on Social Networks 131
4.1 Introduction . 131

4.1.1 Problem Definition . 132
4.1.2 Related Literature . 134
4.1.3 Our Contributions . 135

4.2 Problem Complexity . 137
4.2.1 Unequal Influence Factors . 142

4.3 LCIP on Trees . 144
4.3.1 Greedy Algorithm . 144
4.3.2 Dynamic Programming Algorithm. 148
4.3.3 Totally Unimodular Formulation 155
4.3.4 A Tight and Compact Extended Formulation 159
4.3.5 Polytope of the LCIP on Trees 164

4.4 From Trees to General Graphs: A Branch-and-Cut Approach 170
4.5 Computational Experiments . 182
4.6 Conclusions . 196

5 The One Time Period Least Cost Influence Problem 198
5.1 Introduction . 198

5.1.1 Problem Definition . 198
5.1.2 Our Contributions . 200

5.2 The 1TPLCIP on Trees . 201
5.2.1 Dynamic Programming Algorithm. 201
5.2.2 A Tight and Extended Formulation 208
5.2.3 Polytope of the 1TPLCIP on Trees 215

6 Conclusions and Future Work 223
6.1 Future Work . 224

6.1.1 Proportion Requirements . 224
6.1.2 Marked Targets . 225
6.1.3 Latency Constraints . 225
6.1.4 Combinatorial Games . 227

vi

List of Tables

2.1 Comparisons of LP relaxations of Ack2 and BIP2.2 for the WTSS prob-
lem, a Greedy Heuristic, and Optimal Integer Solutions for 1000-Node
Instances. 49

2.2 Comparison of Brand-and-Cut Settings for the WTSS problem on 10000-
Node Instances. 52

2.3 Analyzing the Effect of Graph Density on the Branch-and-Cut Procedure
for the WTSS problem. 55

2.4 Heuristic for the WTSS problem Fixed Budget on 200-Node Instances. . . 55
2.5 Optimality Gaps for Greedy and Shakarian Heuristic on the WTSS prob-

lem for 100% Adoption on 200-Node Instances. 58

3.1 LP Relaxations of BIPsaxena and BIPdummy with 200-node instances. 126
3.2 running time of four formulations in seconds with 200-node instances . . 127
3.3 Linear Programming Relaxation Comparison. (Rel.Imp. = zdummy−zsaxena

zsaxena
) . 128

4.1 Summary of complexity results. 137
4.2 LPRelaxation ofMIP4.7 and BIP4.6 Formulation for the LCIPwith 1000-

Node Instances. 184
4.3 Comparison of Brand-and-Cut Settings for the LCIP on 10000-Node In-

stances. 187
4.4 Analyzing the effect of graph density on the branch-and-cut procedure for

the LCIP. 189
4.5 Heuristic for the LCIP Fixed Budget on 200-Node Instances. 189
4.6 Optimality Gaps for Heuristics for 100% Adoption for the LCIP on 200-

Node Instances. 192
4.7 Advantage of Partial Incentives of the LCIP with 200-Node Instances . . 194

vii

List of Figures

1.1 Connections between Problems. 2

2.1 (a) AWTSS instance (b) The final star (c) The solution of Algorithm 1 . 17
2.2 (a) AWTSS instance (b) A fractional optimal solution 18
2.3 (a) Gt (b) A valid solution to BIP2.1 21
2.4 Illustration of Notation in Theorem 2.2 31
2.5 Illustration of the Cases for the Algorithm on Cycles 40
2.6 An example of cycle . 41
2.7 Transforming a 0-1 knapsack problem to theWTSS problemwith unequal

influence on stars . 60

3.1 A TPIDS problem instance. 71
3.2 TPIDS (a) After compress star 5, 6, 7, 8, 9 and 10. (b) The last star. . . . 72
3.3 The solution obtained by our DP algorithm for the TPIDS. 75
3.4 A PIDS problem instance. 82
3.5 (a) After compress star 1, 2 and 3. (b) The last star. 85
3.6 The solution obtained by our DP algorithm. 89
3.7 (a) A PIDS instance (b) A fractional solution returned by LPsaxena and LPbaïou 92
3.8 (a) An original edge (b) A transformed edge (c) Transformed graph of

Figure 3.7. 93
3.9 Node j is a (a) free child (b) expensive child (c) core child of node i for u

variables. 99
3.10 A PIDS problem instance for Theorem 3.4. and Dual variable values. . . 105
3.11 Theorem 3.5 necessity proof: T = ∅ and |Su|+ |Sv| > 1 example. 109
3.12 Theorem 3.5 necessity proof: |T | > 1 example. 110
3.13 Theorem 3.5 necessity proof: |T | = 1 and Sj ̸= ∅ example. 110
3.14 Theorem 3.5 necessity proof: |T | = 1 and S2 ̸= ∅ example. 111
3.15 Theorem 3.5 necessity proof: |T | = 1 and S+ ̸= ∅ example. 111
3.16 Illustration for notations in facet-defining proof of inequality (3.84). . . . 117

4.1 Illustration of the reduction from independent set 138
4.2 An Illustration of the reduction from target set selection 141

viii

4.3 Transforming a 0-1 knapsack problem to the LCIP problem with unequal
influence on stars . 143

4.4 Greedy Algorithm for LCIP on a Tree 145
4.5 The DP Algorithm for LCIP on a Tree 153
4.6 Categorization of incoming influence when and gi ≥ 2 156
4.7 Categorization of incoming influence when gi = 1 157
4.8 Illustration for Theorem 4.7 . 161
4.9 A pathological example of a cycle in influence propagation 171
4.10 Influence Direction Symmetry . 175
4.11 Influence Allocation Symmetry . 177
4.12 Illustration of Conditions 3 and 4 . 179

5.1 (a) A 1TPLCIP instance (b) A fractional optimal solution 207

6.1 Time Period Example. 226
6.2 A WTSS problem instance and its optimal solution 228

ix

Chapter 1: Introduction

Recently, the dynamic processes for the diffusion process of influence has attracted

significant interest from algorithmic researchers. Over the past ten years, the following

viral marketing problem has attracted a significant amount of interest. Assume we want to

promote a new product over a given social network and wish this product will be adopted

by most people in this network. We can initialize the diffusion process by ``targeting''

some influential people. Then, a cascade will be caused by these initial adopters and other

people start to adopt this product due to the influence they receive from earlier adopters.

But how should we select these influential people who are targeted initially? Domingos

and Richardson [2001] studied the problem in a probabilistic setting, and provided heuris-

tic solutions. Kempe et al. [2003] were the first ones to model this problem as an opti-

mization problem by using the threshold model proposed by Granovetter [1973], showed

it is NP-hard to find the optimal initial set, and developed approximation algorithms for

the problem. Subsequently, several different variants of this problem have been studied.

However, to the best of our knowledge, all previous work are from approximation al-

gorithm perspective. Chen et al. [2013]'s recent monograph nicely summarizes most of

the relevant work in the area. We want to apply mathematical programming techniques

(i.e., integer programming and polyhedral combinatorics) to develop exact approaches

1

TSS

WTSS

LCIP PIDS

Add a weight to each node.
Weighted Target Set Selection

Only one time period is allowed.
Positive Influence Dominating Set

Partial incentives are considered.
Least Cost Influence Problem

1TP
LCIP

One Time Period
Least Cost Influence Problem

Target Set Selection

Figure 1.1: Connections between Problems.

for solving these problems optimally. Our research is motivated by the desire to develop

mathematical programming approaches for these problems and a better understanding of

the underlying polytopes. The purpose is to provide meaningful benchmarks by solving

non-trivial instances. Consequently, the results can be used to evaluate the heuristics and

approximation algorithms proposed for these problems. In the event the social networks

analyzed are of smaller size our approach may be used to solve these smaller problems to

optimality.

In this thesis, we study four combinatorial optimization problems for influence max-

imization on social networks. The connections between them are shown in Figure 1.1.

First, we consider the Weighted Target Set Selection (WTSS) problem. Given a social

network, finding a target set of customers of the smallest possible size that could lead the

2

whole network to be influenced through the influence diffusion process is referred to as the

Target Set Selection (TSS) problem [Chen, 2009]. In the TSS problem, given a connected

undirected graph, each node is associated with a threshold, denoted by gi, which takes

values between 1 and the degree number of the node, denoted by deg(i). All nodes are set

as in an ``inactive'' state initially. A selected subset of nodes, the target set, is switched

to the ``active'' state. Next, the states of nodes are updated step by step with respect to

the following rule: an inactive node i becomes active if at least gi of its neighbors are

active in the previous step. The goal is to find the minimum size target set while ensuring

that all nodes are active by the end of this process. In the WTSS problem, for each node

i ∈ V , there is a weight, denoted by bi, which models the fact that different nodes require

differing levels of effort to become initial active nodes.

TheWTSS problem is closely related to two other problems that deal with influence

maximization on social networks. In the WTSS problem the diffusion process continues

until complete. However, if we restrict the number of steps/time periods that the diffusion

takes place over to be one, we obtain a weighted version of a problem called the Positive

Influence Dominating Set (PIDS) problem (proposed by Wang et al. [2009]). In the PIDS

problem, either a node is selected at a cost of bi, or it requires gi of its neighbors to be

selected.

The WTSS problem also connects to another problem called the Least Cost Influ-

ence Problem (LCIP) proposed by Günneç [2012]. The problems are similar, except that

instead of paying the full amount bi to a node that is selected in the target set we are al-

lowed to provide partial incentives/payments to incentivize a node to adopt a product. In

the LCIP, each node has a threshold bi and a neighbor j of node i exerts an influence of

3

dij on node i if j adopts the product before node i. In other words, the sum of the payment

pi given to a node i and the incoming influence from neighbors who have already adopted

this product should be greater than or equal to its threshold bi. (For the WTSS, dij = di

for all neighbors j of node i and thus gi = ⌈ bidi ⌉.)

The fourth problem is the One Time Period Least Cost Influence Problem (1TPL-

CIP) which combines the PIDS problem and the LCIP together. With assumption that all

neighbors of node i exert an same influence of dij (i.e., di = dij) on node i if they adopt

the product before node i, from the perspective of the the PIDS problem, we allows partial

incentives instead of only providing the whole product. From that of LCIP, we restrict the

number of steps/time periods to be one.

In Chapter 2, we study the WTSS problem. Motivated by the desire to build strong

formulations for the WTSS problem we first study the WTSS problem on trees. Our

contributions in this regard are three-fold. First, we propose a polynomial algorithm for

theWTSS problem on trees. The algorithm uses a dynamic programming approach. More

importantly, we present a tight and compact extended formulation for the WTSS problem

on trees. We also project it into natural nodes space and give the polytope of the WTSS

problem on trees. The projection leads to a set of valid inequalities whose separation

procedure is discussed as well.

Next, building upon the result for trees---we derive the polytope of the WTSS prob-

lem on cycles; as well as a polynomial time algorithm for the WTSS problem on cycles.

This formulation is in the space of the natural variables, and is based on lifting a set of

valid inequalities that are natural analogues in cycles to inequalities in the tree polytope.

This leads to our contribution on general graphs. Using the observation that the

4

influence propagation network must be a directed acyclic graph (DAG), the extended for-

mulation for trees can be embedded into a formulation on general graphs, where an addi-

tional exponentially sized set of constraints is added to ensure that the arcs selected form

a DAG. We show that when the underlying graph is a DAG, the extended formulation

on DAGs is a tight formulation (i.e., provides integer solutions on the target set selection

variables). We use this to design and implement a branch-and-cut approach for the WTSS

problem on general graphs. In our computational study, we are able to obtain high quality

solutions for random graph instances with up to 10,000 nodes and 20,000 edges (40,000

arcs) within a reasonable amount of time.

In Chapter 3, we study the PIDS problem. First, we show that the PIDS problem on

trees can be solved in linear time. Furthermore, we provide a tight and compact extended

formulation for the PIDS problem on trees that provides integral solutions on the natural

(node) variables. A natural question then concerns the projection of this extended formu-

lation onto the space of the natural node variables. We provide a complete description of

the projection, thus obtaining the polytope of the PIDS problem on trees. Interestingly

the formulation for trees is also valid on general graphs, and provides a strong formula-

tion for the PIDS problem. This leads to our third contribution. The projection on the

space of the natural variables gives rise to an exponential size class of valid inequalities.

We provide a polynomial time separation procedure for this class of valid inequalities.

Furthermore, we show the conditions under which this class of valid inequalities is facet

defining. Computational experience with this formulation on general graphs is discussed.

In Chapter 4, the LCIP is discussed. We first study the complexity of the LCIP. We

show that the LCIP is NP-complete. We then consider several special conditions including

5

(1) equal influence from neighbors, (2) 100% adoption, and (3) restricting the problem to

trees. Specifically, we show that the LCIP is NP-complete even on bipartite graphs, when

all neighbors exert equal influence, and we do not require 100% adoption. When we

require 100% adoption the problem remains NP-complete (and is in fact APX-hard). For

trees, when neighbors exert unequal influence and we require 100% adoption, the problem

remains NP-complete.

Then, we focus on the case when neighbors exert equal influence and 100% adop-

tion is required. We study the LCIP on trees. Our contributions in this regard are three-

fold. First, we propose two polynomial algorithms for the LCIP on trees. We describe

a greedy algorithm which has O(|V |log|V |) running time. Second, we show a dynamic

programming (DP) algorithm that has a better O(|V |) running time. The DP algorithm

decomposes a tree into several ``star'' subproblems. For each star subproblem, it finds at

most two solution candidates. After all subproblems are examined, a backtracking pro-

cedure is used to determine the final solution. More importantly, the DP algorithm also

works in the unequal influence case, although the running time is no longer polynomial

(it is dependent on that of the mixed 0-1 knapsack problem). Third, we present two strong

formulations. One is a totally unimodular (TUM) formulation for the LCIP on trees. This

TUM formulation is built on the influence propagation network, i.e., influence traveling

over arcs, and makes use of special structures about the amount of influence passing along

an arc. The other one is an extended formulation making use of the natural payment vari-

ables and the directed influence variables. For the latter one, we project it onto the natural

payment variable space and give a complete description of its polytope.

This leads to our contribution on general graphs. Using the observation that the in-

6

fluence propagation network must be a directed acyclic graph (DAG), both formulations

for trees can be embedded into a formulation on general graphs, where an additional ex-

ponentially sized set of constraints is added to ensure that the arcs selected form a DAG.

We use this to design and implement a branch-and-cut approach for the LCIP on general

graphs. In our computational study, we are able to obtain high quality solutions for ran-

dom graph instances with up to 10,000 nodes and 20,000 edges (40,000 arcs) within a

reasonable amount of time.

Chapter 5 presents the 1TPLCIP. First, we show that the 1TPLCIP on trees can be

solved in linear time. Furthermore, we provide a tight and compact extended formula-

tion for the 1TPLCIP problem on trees that provides integral solutions on the payment

variables. We are able to project this extended formulation onto the payment space and

provide a complete description of the 1TPLCIP polytope on trees. The proposed formu-

lation for trees is also valid on general graphs, and provides a strong formulation for the

1TPLCIP.

In Chapter 6, we provide concluding remarks and direction for future work.

7

Chapter 2: Weighted Target Set Selection on Social Networks

2.1 Introduction

In this chapter we focus on the Target Set Selection (TSS) problem proposed by

Chen [2009]. Given a connected undirected graph G = (V,E). For each node i ∈ V ,

there is a threshold, denoted by gi, which is between 1 and deg(i), the degree of node i. All

nodes are inactive initially. We select a subset of nodes, the target set, and they become

active. After that, in each step, we update the state of nodes by the following rule: an

inactive node i becomes active if at least gi of its neighbors are active in the previous step.

The goal is to find the minimum cardinality target set while ensuring that all nodes are

active by the end of this activation process.

Chen showed that the TSS problem is hard to approximate within a polylogarithmic

factor. He also provided a polynomial time algorithm for the TSS on trees. Chiang et al.

[2013] provided a linear-time algorithm for the TSS problem on block-cactus graphs. They

also showed that the problem is polynomially solvable on chordal graphs when gi ≤ 2

and on Hamming graphs when gi = 2. Ben-Zwi et al. [2011] showed that for a graph

with treewidth bounded by ω the TSS problem can be solved in V ω time. Ackerman

et al. [2010] provided some combinatorial bounds for the TSS problem under majority

(gi ≥ 0.5 × deg(i)) and strict majority (gi > 0.5 × deg(i)) influences. In passing they

8

also described an integer programming model for the TSS problem. Spencer and Howarth

[2015] consider a problem of providing incentives to consumers to promote ``green'' (i.e.,

environmental friendly) behavior. In that context they consider the TSS problem (although

they refer to it as the Min-Cost Complete Conversion (MCC) problem). To model the

influence propagation process they use a time-indexed integer programming formulation

with as many time periods as the number of nodes in the network. This model grows very

rapidly and is not a computationally viablemodel (in their experiments theywere only able

to solve problems with 30 nodes and 75 edges). The same time-indexed integer program

is described in Shakarian et al. [2013]. Shakarian et al. [2013] also propose a heuristic

for the TSS problem. A serious issue with the previously discussed integer programming

formulations in Ackerman et al. [2010], Spencer and Howarth [2015], and Shakarian et al.

[2013] is the fact that they are weak; and even on trees their linear programming (LP)

relaxation provides fractional solutions.

Deviating from previous literature, we consider theweighted TSS (WTSS) problem.

In theWTSS problem, for each node i ∈ V , there is a weight, denoted by bi, which models

the fact that different nodes require differing levels of effort to become initial adopters (in

practice, it is reasonable to assume different individuals require different amounts of effort

to be convinced).

We first study the WTSS problem on trees. Our contributions in this regard are

three-fold. First, we propose a polynomial algorithm for the WTSS problem on trees.

The algorithm uses a dynamic programming approach and decomposes a tree into several

``star'' subproblems. For each star subproblem, it finds at most two solution candidates.

After all subproblems are examined, a backtracking procedure is used to determine the

9

final solution. As will be evident after our description in Section 2.2, our dynamic pro-

gramming algorithm significantly differs from Chen [2009], and his algorithm can be

viewed as a special case of ours. His algorithm requires no backtracking procedure as it

takes advantage of the observation that in the non-weighted case, leaf nodes will never be

selected in the target set (this is not true in the weighted case). This allows the target set

selection to be determined in one shot without any backtracking. More importantly, we

present a tight and compact extended formulation for the WTSS problem on trees. The

key idea in this formulation is the addition of a dummy node on each edge in the graph

that cannot be selected as part of the target set and has threshold 1. We also project the

extended formulation onto the space of the natural node variables that gives the polytope

of the WTSS problem on trees. The projection leads to an exponentially sized set of valid

inequalities whose polynomial time separation is discussed. We build upon the result for

trees in two ways.

We derive the polytope of theWTSS problem on cycles; as well as a polynomial time

algorithm for the WTSS problem on cycles. This formulation is in the space of the natural

variables, and is based on lifting a set of valid inequalities that are natural analogues in

cycles to inequalities in the tree polytope.

This leads to our contribution on general graphs. Using the observation that the

influence propagation network must be a directed acyclic graph (DAG), the extended for-

mulation for trees can be embedded into a formulation on general graphs, where an addi-

tional exponentially sized set of constraints is added to ensure that the arcs selected form

a DAG. We show that when the underlying graph is a DAG, the extended formulation

on DAGs is a tight formulation (i.e., provides integer solutions on the target set selection

10

variables). We use this to design and implement a branch-and-cut approach for the WTSS

problem on general graphs. In our computational study, we are able to obtain high quality

solutions for random graph instances with up to 10,000 nodes and 20,000 edges (40,000

arcs) within a reasonable amount of time.

The rest of this chapter is organized as follows. Section 2.2 presents a polynomial-

time algorithm for the WTSS problem on trees. Section 2.3 describes our tight and com-

pact extended formulation for the WTSS problem on trees. In Section 2.3.1 we derive

the polytope of the WTSS problem on trees (i.e., the convex hull of the feasible target set

vectors on trees) by projecting the extended formulation onto the space of the natural vari-

ables. Section 2.4 derives the polytope of the WTSS problems on cycles (i.e., the convex

hull of the feasible target set vectors on cycles) and presents a polynomial-time algorithm

for the WTSS problem on cycles. In Section 2.5 we show how to apply the extended for-

mulation derived for trees to general graphs and design a branch-and-cut approach based

upon it. Section 2.6 discusses our computational experience applying the branch-and-cut

approach. Section 2.7 provides concluding remarks.

2.2 Algorithm for the WTSS Problem on Trees

We present an algorithm to solve the WTSS problem on trees. In this method, we

decompose the tree into subproblems. Each subproblem is used to find the most promising

solution candidates (at most two) and one of them will be part of the final solution of the

tree. A subproblem is defined on a star network which has a single central node and

(possibly) multiple leaf nodes. In this tree, each non-leaf node is a central node for a star

11

Algorithm 1 Algorithm for the WTSS problem on trees
1: Arbitrarily pick a node as the root node of the tree
2: Define the order of star problems based on the bottom-up traversal of the tree
3: for each star subproblem do
4: StarHandling
5: end for
6: SolutionBacktrack

network. By solving the subproblem, we have one solution candidate for the situation that

there is influence coming into the central node along the link which connects the star to the

rest of the tree (this kind of influence is referred to as external influence) and one solution

candidate for the no external influence situation. Next, the star is compressed into one

single leaf node for the next star network. This process is repeated until we are left with a

single star. The last star should have the root node of the tree as the central node. After we

exhaust all subproblems, a backtracking method is used to identify a final solution which

combines the solution candidates of those star subproblems for the tree. The pseudocode

of the proposed algorithm is shown in Algorithm 1.

For a star subproblem, we try to find the solution that makes all nodes active while

the total cost is the minimum. Observe that a leaf node only requires one active neighbor

to make itself active. Therefore, in this star network, if the central node is selected, all

nodes become active. However, there is another possibility. Denote the central node

by c and refer to this star as star c. Sort all leaf nodes in ascending order according to

their cost. Then, if the total cost of the gc smallest cost leaf nodes is less than the central

node's cost, bc, we can select the first gc leaf nodes to activate the central node. Then, the

active central node will activate the remaining leaf nodes. Moreover, because the central

node might receive influence from the rest of this tree, it is possible that we only need

12

Algorithm 2 StarHandling
Require: a star
1: if bc <

∑
l∈(sgc−1) bl then

2: Xc
I ← c and Xc

NI ← c.
3: The compressed node's cost is 0.
4: else if bc >

∑
l∈sgc

bl then
5: Xc

I ← s(gc−1) and Xc
NI ← sgc .

6: The compressed node's cost is bgc .
7: else
8: Xc

I ← s(gc−1) and Xc
NI ← c.

9: The compressed node's cost is bc −
∑

l∈(sgc−1) bl.
10: end if

to select the first (gc − 1) leaf nodes to activate the central node. Hence, we have two

solution candidates for a star subproblem. If the central node receives external influence,

the candidate solution is the one with smaller cost between the central node and the first

(gc−1) leaf nodes. Otherwise, the candidate solution is either the central node or the first

gc leaf nodes whichever has a smaller cost.

After we determine the solution candidates for the current star subproblem, it is

compressed into a single leaf node for the next star subproblem. This new single node has

its threshold set to 1. Its cost is determined as follows. There are three cases.

Case 1: If the central node's cost is smaller than the total cost of the first (gc− 1) smallest

leaf cost nodes, then, it is always cheaper to select the central node for current star. So,

this new node has cost 0 because the next star's central node could receive influence from

current star's central node in the final solution of the tree and it is free from the next star's

point of view.

Case 2: If the central node's cost is bigger than the total cost of the first gc smallest leaf

cost nodes, this new node has cost equal to the cost of the gcth smallest cost leaf node.

Case 3: If the central node's cost is not in the above two cases, this new node's cost is

13

equal to the difference between the central node's cost and the total cost of the first (gc−1)

cheapest leaf nodes.

For the latter two cases, if the current star receives external influence in the final

solution of the tree, then, the cost for the current star is the total cost of the first (gc − 1)

cheapest leaf nodes. If it does not receive external influence, the cost of the current star is

the minimum of the total cost of the first gc cheapest leaf nodes and the central node's cost.

But in both cases (external influence or no external influence), we have to at least pay a

cost equal to the total cost of the first (gc− 1) cheapest leaf nodes. Then, for the next star,

if it wants to receive influence from the current star, it must pay the incremental amount

which corresponds to the current star receiving no external influence. We summarize the

above procedure in Algorithm 2 StarHandling with the following notation: letXc
I denote

the solution candidate with external influence,Xc
NI denote the solution candidate without

external influence, sgc be the gc cheapest leaf nodes and s(gc−1) be the (gc − 1) cheapest

leaf nodes.

After we obtain the solution of the last star which has the root node as its central

node, we invoke a backtracking procedure to choose the solution from the solution can-

didates for each star subproblem and piece them together to obtain the final solution for

this tree. In the last star subproblem, we choose the smaller of the central node and the gc

cheapest leaf nodes (in the last star there is only one solution candidate because there is no

external influence) as the solution. Now, for each leaf node in this star, we know if there

is external influence coming into it or not. For instance, if the central node is selected,

then, the central node sends out influence to all its leaf nodes. If the gc cheapest leaf nodes

are selected, then, these gc cheapest leaf nodes do not receive external influence but the

14

Algorithm 3 SolutionBacktrack
Require: the last star and its solution X
1: X∗ ← X .
2: if X is r then
3: ∀l ∈ L(r) ∩NL call With-Influence(l, X∗).
4: else
5: ∀l ∈ sgr ∩NL call No-Influence(l, X∗).
6: ∀l ∈ {L(r) \ sgr} ∩NL call With-Influence(l, X∗).
7: end if
8: C∗ =

∑
i∈X∗ bi

9: return C∗, X∗.
10: functionWith-Influence(c, X)
11: X ← (X \ c) ∪Xc

I .
12: ∀l ∈ L(c) ∩Xc

I ∩NL call No-Influence(l, X).
13: ∀l ∈ L(c) \Xc

I ∩NL call With-Influence(l, X).
14: return X .
15: end function
16: function No-Influence(c, X)
17: X ← (X \ c) ∪Xc

NI .
18: ∀l ∈ L(c) ∩Xc

NI ∩NL call No-Influence(l, X).
19: ∀l ∈ L(c) \Xc

NI ∩NL call With-Influence(l, X).
20: return X .
21: end function

remaining leaf nodes do. With this information we can now proceed down the tree, in-

corporating the partial solution at a node based on whether it receives external influence

or not (which we now know). This backtracking procedure is described in Algorithm 3

SolutionBacktrack. We use V (c) for to denote the set of nodes, L(c) to denote the set of

leaf nodes in the star c, NL to denote the set of non-leaf nodes in the tree, r to denote the

root of the tree (as determined by Algorithm 1), X∗ denotes the final solution of the tree

and C∗ its cost.

In this algorithm, we have two recursive functions: With-Influence andNo-Influence.

They choose the solution for a star c and recursively choose solutions for stars whose cen-

tral nodes are leaf nodes of the star c. Although it is possible to prove the correctness of this

15

algorithm directly, we defer the proof until the next section. There we will provide a tight

and compact extended formulation for the WTSS problem, and use linear programming

duality to prove its correctness.

Proposition 2.1. The WTSS problem on trees can be solved in O(|V |) time.

Proof. Proof of Proposition 2.1. There are at most |V | stars. For each star, we need to find

gi cheapest children and it takes O(deg(i)) time. For the whole tree, this is bounded by

O(|V |) time. In the backtracking procedure, we pick the final solution for each nodewhich

takes O(|V |) time over the tree. Therefore, the running time for the dynamic algorithm is

linear with respect to the number of nodes.

In Figure 2.1(a), we have an instance of theWTSS problem. There are 11 nodes and

the numbers beside a node are its cost and threshold. The root of this tree is node 4. Stars

1, 2, and 3 correspond to Case 1, 2, and 3 respectively. Star 1 hasX1
NI = X1

I = {1}. Star

2 hasX2
NI = {7, 8, 9} andX2

I = {7, 8}. Star 3 hasX3
NI = {3} andX3

I = {10}. After we

compress these stars, we have the final star in Figure 2.1(b) and the solutionX4 = {1, 2}.

Next, we start the backtracking procedure. From star 1, we haveX∗ = {1, 2}. From star 2,

it has no external influence; so, we select the solutionX2
NI . Thus,X∗ = {1, 7, 8, 9}. From

star 3, it has external influence; so, we select the solutionX3
I . Thus,X∗ = {1, 7, 8, 9, 10}

and C∗ = 4 + 7 + 8 + 9 + 10 = 38. Figure 2.1(c) illustrates the solution obtained by

Algorithm 1, where the selected nodes are shaded grey.

16

Figure 2.1: (a) AWTSS instance (b) The final star (c) The solution of Algorithm 1

2.3 A Tight and Compact Extended Formulation on Trees

We first discuss a formulation that immediately comes to mind for the WTSS prob-

lem on trees. For each node i ∈ V , let xi be a binary decision variable denoting whether

node i is selected in the target set. For each edge {i, j} ∈ E, create two binary arc variables

hij and hji to represent the direction of influence propagation. If node i sends influence

to node j, hij is 1 and 0 otherwise. For any node i ∈ V , let a(i) denote the set of node i's

neighbors.

(Ack) Minimize
∑

i∈V bixi (2.1)

Subject to hij + hji = 1 ∀{i, j} ∈ E

∑
j∈a(i) hji + gixi ≥ gi ∀i ∈ V (2.2)

xi ∈ {0, 1} ∀i ∈ V (2.3)

hij, hji ∈ {0, 1} ∀{i, j} ∈ E. (2.4)

This formulation is first discussed in Ackerman et al. [2010]. The objective function

(2.1) minimizes the total cost. Constraint (2.2) makes sure on each edge influence is only

17

Figure 2.2: (a) A WTSS instance (b) A fractional optimal solution

propagated in one direction. Constraint (2.2) says that a node i ∈ V must be selected

or have gi or more incoming arcs. We note that this formulation is weak, and Figure 2.2

shows its LP relaxation provides fractional solutions. Figure 2.2(a) provides a WTSS

instance, and Figure 2.2(b) describes a fractional optimal solution to the LP relaxation of

Ack. It has x1 = 1, x2 = 0.5. Additionally, h12 = h13 = h14 = h25 = h26 = 1. All other

decision variables are zero.

We now present a tight and compact extended formulation for the WTSS problem

on trees. Furthermore, we prove the correctness of Algorithm 1. From the input graph G,

we create a new graph Gt by adding one dummy node to each edge in G. For each edge

{i, j} ∈ E, insert a dummy node d. Let D denotes the set of dummy nodes. Since the

dummy nodes have effectively split each edge into two in the original graph, we replace

each of the original edges {i, j} ∈ E by two edges {i, d} and {d, j} in the new graph Gt.

Let Et denote the set of edges in Gt (Gt = (V ∪ D,Et)). The dummy nodes cannot be

selected in the target set (they can be viewed as having large costs), and all have threshold

1 (thus if one of it's neighbors is activated the dummy node will become activated and

propagate the influence to the other neighbor). As before, for each node i ∈ V binary

decision variable xi denotes whether node i is selected in the target set (these are the

natural node variables). For each edge {i, d} ∈ Et, where i ∈ V and d ∈ D (notice Gt is

18

bipartite andEt only contains edges between the nodes in V andD), create two binary arc

variables yid and ydi to represent the direction of influence propagation. If node i sends

influence to node d, yid is 1 and 0 otherwise. As before, for any node i ∈ V ∪ D a(i)

denotes the set of node i's neighbors. We can now write the following compact extended

formulation for the WTSS problem on trees.

(BIP2.1) Minimize
∑

i∈V bixi (2.5)

Subject to (ud)
∑

i∈a(d) yid ≥ 1 ∀d ∈ D (2.6)

(wid) xi ≤ yid ∀i ∈ V, d ∈ a(i) (2.7)

(zid) yid + ydi = 1 ∀{i, d} ∈ Et (2.8)

(vi)
∑

d∈a(i) ydi + gixi = gi ∀i ∈ V (2.9)

xi ∈ {0, 1} ∀i ∈ V (2.10)

yid, ydi ∈ {0, 1} ∀{i, d} ∈ Et (2.11)

We refer to the above formulation as BIP2.1. Constraint (2.6) says that each dummy node

has at least one incoming arc (since dummy nodes cannot be selected and have threshold

1). Constraint (2.7) says that if a node is selected, then, it sends out influence to all its

neighbors (notice this type of constraint would not be valid in Ack, since there could

be two neighboring nodes that are in the target set). Constraint (2.8) makes sure on each

edge influence is only propagated in one direction. Constraint (2.9) says that a node i ∈ V

must be selected or have exactly gi incoming arcs. Clearly if a node is selected, then from

constraint (2.7) it has no incoming arcs and constraint (2.9) is satisfied. On the other

hand if a node i ∈ V is not selected it must have more than gi incoming arcs. Since

19

we have dummy nodes, we can reverse some of them to have exactly gi incoming arcs.

Constraints (2.10) and (2.11) are binary constraints. We now show the validity of BIP2.1.

Proposition 2.2. BIP2.1 is a valid formulation for the WTSS problem on trees.

Proof. Proof of Proposition 2.2. From the discussion above it should be clear that if (x, y)

is a feasible solution to BIP2.1, then x must be a feasible target set (one that activates all

nodes in the graph). We now show how any feasible target set vector x can be extended to

a feasible solution (x, y) to BIP2.1 proving validity. Let P be the set of nodes selected in

a feasible target set. For each p in P , we set xp as 1 and set the remaining x variables as

0. Next, all outgoing arcs of a node p in P are set to 1 and all its incoming arcs are set to

0, i.e. ypd ← 1 and ydp ← 0 ∀p ∈ P, d ∈ a(p) (this ensures constraint (2.7) is satisfied).

Next, for any dummy node d that has y values set for only one of its adjacent edges we

set the y values as follows. Without loss of generality, let node i and j be adjacent to

dummy node d and yid is set to 1 now. Then we set yjd ← 0 and ydj ← 1 to propagate

the influence. After that we check for any new nodes i ∈ V that have been activated

by incoming influence (arcs). If so, node i sends out influence to those adjacent dummy

nodes that do not send influence to it, i.e. yid ← 1 and ydi ← 0 for all d ∈ a(i) such that

yid and ydi are not set yet. We repeat this whole procedure until all nodes are active and all

x and y value are set. Observe that the procedure so far satisfies constraints (2.6), (2.7),

and (2.8). At this point, there might be a node i in V that has more than gi incoming arcs.

But we can always reverse an appropriate number of these incoming arcs to have exactly

gi incoming arcs; and thus satisfy constraint (2.9). Figure 2.3 illustrates the outcome of

the procedure described in Proposition 2.2.

20

Figure 2.3: (a) Gt (b) A valid solution to BIP2.1

The linear relaxation of BIP2.1 is the following linear programming problem:

(LP2.1) Minimize
∑

i∈V bixi (2.12)

Subject to (2.6), (2.7), (2.8), (2.9) (2.13)

xi ≥ 0 ∀i ∈ V (2.14)

yid ≥ 0 ∀i ∈ V, d ∈ a(i) (2.15)

ydi ≥ 0 ∀d ∈ D, i ∈ a(d) (2.16)

We refer to this linear programming problem as LP2.1. The dual to LP2.1 is as follows:

(DLP2.1) Maximize
∑

d∈D ud +
∑

i∈V givi +
∑

{i,d}∈Et
zid (2.17)

Subject to (yid) wid + ud + zid ≤ 0 ∀i ∈ V, d ∈ a(i) (2.18)

(ydi) vi + zid ≤ 0 ∀d ∈ D, i ∈ a(d) (2.19)

(xi) givi −
∑

d∈a(i) wid ≤ bi ∀i ∈ V (2.20)

ud ≥ 0 ∀d ∈ D (2.21)

wid ≥ 0 ∀i ∈ V, d ∈ a(i) (2.22)

We have ud, wid, zid and vi as dual variables for constraint sets (2.6), (2.7), (2.8), and

21

(2.9) respectively. We refer to the dual linear problem as DLP2.1. Let conv(X) denote

the convex hull of feasible target set vectors x, and let ETSS denote the feasible region of

LP2.1.

Theorem 2.1. Given a tree, LP2.1 has an optimal solution with x binary

and Projx(ETSS) = conv(X).

Proof. Proof of Theorem 2.1. It should be clear that the solution of Algorithm 1 (via

Proposition 2.2) provides a feasible solution to BIP2.1 and thus LP2.1. We will now

construct a dual feasible solution to DLP2.1 that satisfies the complementary slackness

(CS) conditions. The CS conditions of LP2.1 and DLP2.1 are the following:

(1−
∑

i∈a(d) yid)ud = 0 ∀d ∈ D (2.23)

(xi − yid)wid = 0 ∀i ∈ V, d ∈ a(i) (2.24)

(bi − givi +
∑

d∈a(i) wid)xi = 0 ∀i ∈ V (2.25)

(−vi − zid)ydi = 0 ∀d ∈ D, i ∈ a(d) (2.26)

(−wid − ud − zid)yid = 0 ∀i ∈ V, d ∈ a(i) (2.27)

Let L be the set of leaf nodes inGt, and let r be the root of the tree as determined by Algo-

rithm 1 (the central node in the last star in Algorithm 1). We will start from the leaf nodes

and then follow the sequence of stars that Algorithm 1 considers (the proof works with any

sequence, but for expositional reasons it is best to consider the same sequence of stars).

For the purposes of this proof we will construct a specific form of the extended solution

from Algorithm 1. Recall as we backtrack for each central node of a star encountered we

know whether it obtains external influence or not in the final solution. Thus, even prior

22

to inserting dummy nodes, we simply direct the arc from central node c's parent to it in

the case of external influence, and the arc to node c's parent in the case of no influence.

For any leaf node that is picked we direct the arc from the leaf to its parent and for leaf

nodes that are not picked we direct the arc from its parent to it. It is easy to observe (be-

fore dummy nodes are inserted and the solution extended) that in a solution obtained by

Algorithm 1 a node i that is not selected has by design exactly gi incoming arcs. We now

insert dummy nodes on each edge. If the influence on the edge propagates from i to j,

then with the dummy node d inserted in the middle of the edge the influence propagates

from i to d to j with the y values set accordingly. Now to satisfy constraints (2.7) and

(2.9) for any node i that is selected and has external influence we simply reverse the arc

from node i to the dummy node between it and it's parent. An important (and meaningful)

consequence of this construction is that if a dummy node p in this extended solution has

two incoming arcs (from nodes i and j with node i being node j 's child in Algorithm 1),

then node i must have been picked in the solution.

For each node l in L and the dummy node d adjacent to node l, we set vl = bl,

ud = bl, wld = 0 and zld = −bl. With these choices constraints (2.18), (2.19), and

(2.20) associated with l, d and edge {l, d}, are satisfied and always binding. Consequently,

regardless of the primal solution conditions (2.25), (2.26), and (2.27) are satisfied for

nodes l ∈ L and the edge {i, d} adjacent to it. Condition (2.24) is satisfied because wld

is 0. For (2.23), if 1 − yld − yid is not equal to 0 where node i is the other node adjacent

to node d, it means node l is selected when it can be activated by an incoming arc which

never happens in Algorithm 17 (otherwise that would imply in stars solely containing leaf

nodes of the original tree Algorithm 17 selects both a leaf node and its parent node at the

23

same time). Hence, we have 1 − yld − yid = 0 and (2.23) is satisfied. Therefore, the

complementary slackness conditions are satisfied for this part of the dual solution.

For the center c of the star that Algorithm 1 considers we will show how to select vc,

ud for the dummy node between node c and it's parent, wcd ∀d ∈ a(c), and zcd ∀{c, d} ∈

Et while ensuring all the associated complementary slackness conditions are satisfied.

Consider the first star that Algorithm 1 considers. The center of this star i must have

children dummy nodes that have their u variables set. Relabel these children dummy

nodes in ascending order based on their u values. Let Sgi−1 be the first (gi − 1) children

dummy nodes and Sgi be the first gi children dummy nodes. If node i is not the root node

r, let p be the parent dummy node of node i and set the value up in the following way:

We have three cases corresponding identically to the three cases in how a star is handled

and compressed in Algorithm 1. If bi <
∑

d∈Sgi−1
ud, set up = 0. If bi >

∑
d∈Sgi

ud, set

up = ugi . Otherwise, set up = bi −
∑

d∈Sgi−1
ud. We refer to these as Case 1, 2 and 3

respectively. If gi is equal to degree(i), then, there is no Sgi and we only have Case 1 and

3. By setting up in the aforementioned way for a dummy node p which is the parent of the

central node of a star encountered by Algorithm 1, (2.23) is satisfied. To show this, we

only need to worry about the value of up when the dummy node p has two incoming arcs.

Let i and j be the two adjacent nodes to this dummy node p (with i the central node of the

current star and j it's parent in Algorithm 1). As we argued above, node i must have been

selected by Algorithm 1. But then we have up = 0 because node p's value would be set

based on Case 1, thus satisfying (2.23). Now we will focus on conditions (2.24), (2.25),

(2.26) and (2.27).

Now, we consider two situations. Sort the dummy nodes adjacent to node i based

24

on their u values in ascending order. Let Fgi be the first gi dummy nodes. In situation 1,

node i is selected in the solution. So, xi = 1. Then, we set vi as the gith smallest value in

{ud : d ∈ a(i)}. LetW = givi−bi. Because node i is selected in the solution, bi is smaller

than
∑

d∈Fgi
ud andW has a positive value due to the fact that u(gi) is bigger than

bi
gi
. We

have yid = 1 for all d ∈ a(i) due to (2.7) and ydi = 0 for all d ∈ a(i) due to (2.8). So, (2.18)

and (2.20) must be binding based on condition (2.25) and condition (2.27). Meanwhile,

we need to satisfy (2.19). We set zid = −vi and wid = vi − ud for all d ∈ Fgi . Then,

zid = −ud and wid = 0 for all d ∈ {a(i) \ Fgi}. Lastly, let w = W −
∑

d∈Fgi
wid. Pick

any dummy node d̄ in a(i) \ Fgi and set wid̄ = w and zid̄ = −ud̄ − w. Here, we reset the

value ofwid̄ to distribute the excess amount ofW in order to satisfy that
∑

d∈a(i)wid = W

and ensure (2.20) is binding. For any d ∈ a(i), (2.18) is binding. Furthermore, (2.19)

is binding for any d ∈ Fgi and is satisfied as an inequality for any d ∈ a(i) \ Fgi . So,

condition (2.24) is satisfied because xi = yid = 1 and condition (2.26) is satisfied because

ydi = 0. We have (2.18) and (2.20) binding, so, condition (2.25) and condition (2.27) are

satisfied. Therefore, the CS conditions are satisfied for this part of the dual solution.

In situation 2, node i is not selected but it has exactly gi incoming arcs. We have

xi = 0 and condition (2.25) is satisfied. Let I be the set of dummy nodes that sends

influence to node i, i.e. ydi = 1 for all d in I . We set vi = ud where d = argmax{ud : d ∈

I}. Then, for all d ∈ I , we also have ydi = 1 and yid = 0 due to (2.8). So, (2.19) must

be binding due to condtion (2.26). Therefore, we set zid = −vi and wid = 0 for all d ∈ I .

Let W = givi − bi. If W has a positive value, it means (2.20) is violated. So, following

the ascending ordering of ud for all d in I, we set wid = min{vi − ud,W −
∑

j∈I wij}

to get (2.20) satisfied. Because node i is not selected, it implies that bi ≥
∑

d∈I ud. So,

25

vigi − bi ≤ vigi −
∑

d∈I ud. Therefore, we can distribute W in this way and ensure that

(2.18) holds. Then, for all d ∈ I , (2.18) is satisfied, (2.19) is binding and (2.20) is satisfied.

Condition (2.24) is satisfied because xi = yid = 0, Condition (2.26) is satisfied because

zid = −vi and condition (2.27) is satisfied because yid = 0. Next, for all d ∈ a(i) \ I ,

yid = 1 and ydi = 0 due to (2.8) and (2.9). Hence, (2.18) must be binding due to condition

(2.27). Then, we set zid = −ud and wid = 0 for all d ∈ a(i) \ I . So, for all d ∈ a(i) \ I ,

(2.18) is binding, and (2.19) is satisfied because ud ≥ u(gi). Condition (2.24) is satisfied

because wid = 0, condition (2.26) is satisfied because ydi = 0 and condition (2.27) is

satisfied because zid = −ud and wid = 0. So, the CS conditions are satisfied for this part

of the dual solution.

We repeat this procedure for each star that Algorithm 1 encounters and obtain a

dual feasible solution to DLP2.1 that satisfies the complementary slackness conditions

associated with our primal solution obtained from Algorithm 1.

We illustrate the procedure for finding the dual solution with the solution in Fig-

ure 2.3.(b). Firstly, for leaf nodes (5, 6, 7, 8, 9, 10, 11) and dummy nodes adjacent to them

(d, e, f, g, h, i, j), we have v5 = 5, v6 = 6, v7 = 7, v8 = 8, v9 = 9, v10 = 10, v11 = 11

and ud = 5, ue = 6, uf = 7, ug = 8, uh = 9, ui = 10, uj = 11. For those edges between

them, we have w5d = 0, w6e = 0, w7f = 0, w8g = 0, w9h = 0, w10i = 0, w11j = 0 and

z5d = −5, z6e = −6z7f = −7, z8g = −8, z9h = −9, z10i = −10, z11j = −11.

Then, we have nodes 1, 2 and 3 ready for the next step. We start with node 1. Then,

node 1's parent dummy node is node a and ua = 0 because node 1 is a Case 1 node.

Node 1 is in situation 1. We have v1 = 5 because g1 = 2 and the second smallest value

26

among {0, 5, 6} is 5. W = 5 ∗ 2 − 4 = 6. Hence, z1a = −5, w1a = 5 and z1d = −5,

w1a = 0 for edges (1, a) and (1, d). Then, w1e = 6− 5 = 1 and z1e = −(6 + 1) = −7.

Next, node 2's parent dummy node is node b and ub = 9 because node 2 is a Case

2 node. Node 2 is in situation 2. We have v2 = 9 because it has incoming arcs (f, 2),

(g, 2) and (h, 2) and the biggest value among {7, 8, 9} is 9. Hence, z2f = −9, z2g = −9,

z2h = −9 and w2f = 0, w2g = 0, w2h = 0. W = 27 − 30 = −3. Then, z2b = −9 and

w2b = 0.

We now look at node 3. Node 3's parent dummy node is node c and uc = 10 because

node 3 is a Case 3 node. Node 3 is in situation 2. So, v3 = 10 because it has incoming arcs

(c, 3) and (i, 2) and the biggest value among {10, 10} is 10. So, z3c = −10, z3i = −10

and w3c = 0 w3i = 0. W = 20− 20 = 0. Then, z2b = −11 and w2b = 0.

Now, node 4 is ready. It is in situation 2. So, v4 = 9 because it has incoming arcs

(a, 4) and (b, 4) and the biggest value among {0, 9} is 9. Then, z4a = −9, z4b = −9 and

w3c = 0, w3i = 0. W = 18−15 = 3. Start from node a. w4a = min{9−0, 3} = 3. Also,

z4c = −10 and w4c = 0. The sum of 2v4, z3c, z3i and z3j is−10. The dual objective value

is 38 which is exactly equal to the primal objective value.

Interestingly, we can show that any extreme point of LP2.1 with x variables binary

also has the y variables binary.

Lemma 2.1. Every extreme point of LP2.1 with x variables binary has y variables binary.

Proof. Proof of Lemma 2.1. Assume this is not true and there is an extreme point (x∗, y∗)

where y∗ is fractional. Observe when x∗
i = 1, y∗id = 1 and y∗di = 0 for all d ∈ a(i) due

to constraints (2.7) and (2.8). Since the x variables are binary, this implies fractional y

27

values must correspond to arcs adjacent to a node i which is not in the target set. Because

constraint (2.9) is an equation and gi only takes integer value, there are at least two frac-

tional incoming arcs for node i. Let (j, i) and (k, i) be these two incoming arcs. Then,

we can find a path which starts from arc (i, j) and ends at a dummy node which has one

incoming arc with value 1. All arcs in this path take fractional values. We call this path

Pj . Also, let P̄j be the reverse path of Pj . Similarly, we can also find the path Pk and

its P̄k. These two path do not contain common nodes except node i because we are given

a tree. Then, let ϵ be a very small positive value such that 0 ≤ y∗e ± ϵ ≤ 1 for all arcs

e ∈ Pj ∪ Pk ∪ P̄j ∪ P̄k. Then, we can construct two feasible solutions in the following

way: First, both of them have same values as (x∗, y∗) except these variables ye for all

e ∈ Pj ∪Pk∪ P̄j ∪ P̄k. Then, one has ye = y∗e + ϵ for all e ∈ Pj , ye = y∗e− ϵ for all e ∈ P̄j ,

ye = y∗e − ϵ for all e ∈ Pk, and ye = y∗e + ϵ for all e ∈ P̄k. The other one has ye = y∗e − ϵ

for all e ∈ Pj , ye = y∗e + ϵ for all e ∈ P̄j , ye = y∗e + ϵ for all e ∈ Pk, and ye = y∗e − ϵ for

all e ∈ P̄k. Therefore, (x∗, y∗) is not an extreme point because it is a convex combination

of these two constructed feasible solutions.

2.3.1 Polytope of the WTSS problem on Trees

In this section, we derive the polytope of the WTSS problem on trees. The extended

formulation is projected onto the space of the node (i.e., x) variables by projecting out all

arc (i.e., y) variables. Usually, there are two approaches for projecting out variables. One

approach is Fourier-Motzkin elimination (which can easily be applied to project out the x

variables). A more elegant method, proposed by Balas and Pulleyblank [1983], is based

28

upon a theorem of the alternatives. We will follow this approach.

Given the extended formulation, we first replace constraint (2.9) by its greater than

or equal to form. It is easy to check that the LP relaxation of this new form is equivalent to

that of the old one in the x variable space. Given a feasible solution (x, y) of the old form,

it is a feasible solution for the new form already because the new form is a relaxation of

the old one. Given a solution (x, y) for the LP relaxation of the new form. If a constraint

of type (2.9) for a node i is not binding, we can make it binding by reducing the total value

of
∑

d∈a(i) ydi. To do so, take an appropriate number of ydi and reduce their value to ensure

this constraint of type of (2.9) binding. This will result an increase in corresponding yid

to 1 − ydi. Now, we have a feasible solution for the old form with the constraint of type

(2.9) binding. Since there are no costs on the y variables there is no change in cost.

We first substitute out all yid variables by 1 − ydi because yid + ydi = 1. Then, we

have the following formulation and denote its feasible region as Pd.

Minimize
∑

i∈V bixi (2.28)

Subject to (ud) −
∑

i∈a(d) ydi ≥ −1 ∀d ∈ D (2.29)

(vid) −ydi − xi ≥ −1 ∀i ∈ V, d ∈ a(i) (2.30)

(wi)
∑

d∈n(i) ydi + gixi ≥ gi ∀i ∈ V (2.31)

ydi ≥ 0 ∀{i, d} ∈ Et (2.32)

0 ≤ xi ≤ 1 ∀i ∈ V (2.33)

Based on Theorem 2 in Balas and Pulleyblank [1983], the projection cone W is

described by the following linear inequalities:

29

wi − ud − vid ≤ 0 ∀i ∈ V & d ∈ a(i) (2.34)

wi ≥ 0, ud ≥ 0, vid ≥ 0 ∀i ∈ V & d ∈ a(i) (2.35)

where ud, vid and wi are dual multipliers corresponding to constraints (2.29), (2.30) and

(2.31) respectively. If Pd can be represented as {Ax + Gy ≥ b}. Then, for any feasible

vector (w,u, v) to W , it defines a valid inequality: (w, u, v)TAx ≥ (w, u, v)Tb in the

space of the node (x) variables. Furthermore, the projection of Pd is defined by the valid

inequalities defined by the extreme rays ofW .

Theorem 2.2. The vector r = (w, u, v) ∈ W is extreme if and only if there exists a positive

α such that one of the following three cases holds true:

1. ud = α for one d ∈ D. All other w, u, v are 0.

2. vid = α for one {i, d} ∈ Et. All other w, u, v are 0.

3. wi = α for all i ∈ S where S ⊆ V and S is connected in the original graph G.

Then ud = α for all d ∈ D(S) where D(S) is the set of dummy nodes belonging to

Gt(S), the induced subgraph of S in the transformed graph Gt. In addition, either

vid = α or ud = α for all d ∈ a(S)\D(S). All other w, u, v are 0.

Proof. Proof of Theorem 2.2. For ease of exposition, we use Figure 2.4 to illustrate the

notation in Case 3. Figure 2.4(a) shows the original graph G and Figure 2.4(b) shows

the transformed graph Gt. Here, w1, w2, w3 and w4 have positive values α. Thus, S

contains node 1, 2, 3 and 4. (Notice S is connected in the original graph G.) The induced

subgraph Gt(S) is shown in Figure 2.4(c). Based on Gt(S), we obtain D(S) = {a, b, c}

30

Figure 2.4: Illustration of Notation in Theorem 2.2

and a(S)\D(S) = {d, e, f, g, h, i, j}. Note, a(S) denotes the set of nodes adjacent to set

S.

Recall that a polyhedral cone C is the intersection of a finite number of half-spaces

through the origin, and a pointed cone is one in which the origin is an extreme point. A

ray of a cone C is the set R(y) of all non-negative multipliers of some y ∈ C, called the

direction (vector) ofR(y). A vector y ∈ C is extreme, if for any y1, y2 ∈ C, y = 1
2
(y1+y2)

implies y1, y2 ∈ R(y). A ray R(y) is extreme if its direction vector y is extreme.

Sufficiency. Let r ∈ W be of the form Case 1 and assume that r = 1
2
(r1 + r2) for some r1,

r2 ∈ W. Then, except u1
d and u2

d, all other directions are 0. Then, r1, r2 are in R(r). So, r

is extreme.

Case 2 is similar to Case 1.

Let r ∈ W be of the form Case 3 and assume that r = 1
2
(r1 + r2) for some r1,

r2 ∈ W. So, for any component in r with value 0, their corresponding components in r1

and r2 are also 0. Given i and d, let pkid, k = 1, 2, represent the positive component uk
d or

vkid, k = 1, 2. Then, we have w1
i +w2

i = 2α and p1id + p2id = 2α for all d ∈ a(i) and for all

i ∈ S. Then, if there is a pair d1 and d2, we have p1id1 > p1id2 if and only if p
2
id1

< p2id2 . But

31

constraint (2.34) imposes that wk
i ≤ pkid, k = 1, 2. Hence, pkid1 = pkid2 = αk, k = 1, 2, for

all d1, d2 ∈ a(i). Otherwise, either constraint (2.34) would be violated or w1
i + w2

i < 2α

because wk
i would take the smaller value between pkid1 and pkid2 , k = 1, 2. Therefore, r1,

r2 are in R(r). Therefore, r is extreme.

Necessity. Let r be an extreme vector of W. Let Cr = {S ⊆ V : wi > 0 ∀i ∈

S & S is connected in the original tree graph G and maximal}, Sd = {d ∈ D : ud > 0}

and Sid = {{i, d} ∈ Et : vid > 0} based on this r. First, we consider the situation where

Cr = ∅ and assume |Sd|+ |Sid| > 1. Let r1 contain all but one of the positive components

in r with double their values. Let r2 contain the one positive component omitted by r1 in

r with double its value. Then, r1, r2 ∈ W and r = 1
2
(r1 + r2). So, if |Sd|+ |Sid| > 1, r is

not extreme, contrary to the assumption. We conclude that ifCr = ∅, then |Sd|+ |Sid| = 1

and thus r is in the form of either Case 1 or Case 2.

Now consider the situation when Cr ̸= ∅. When |Cr| > 1, it means there is more

than one connected component. Consider any set S ∈ Cr. Then, r1 has values w1
i = 2wi

and u1
d = 2ud, v1id = 2vid for all d ∈ a(i) and all i ∈ S and 0s in other components. Then,

let r2 be 2r − r1. Hence, we have r = 1
2
(r1 + r2) and r1, r2 are different in at least one

direction. So, if |Cr| > 1, r is not extreme, contrary to the assumption.

When |Cr| = 1 (so the set of nodes with wi > 0 in the original tree G form a single

connected component) and S ∈ Cr, define S0 = {{j, d} ∈ Et : pjd > 0 & j ∈ V \ S}.

(Recall that we use pjd to generically represent either of the positive components ud or

vjd.) If S0 ̸= ∅, let r1 have w1
i = 2wi and u1

d = 2ud, v1id = 2vid for all d ∈ a(i) and all

i ∈ S and 0s in other components. Then, let r2 be 2r− r1. r2 is feasible and it has at least

one positive component because S0 is not empty and its corresponding components are

32

not in r1. Hence, we have r = 1
2
(r1 + r2) and r1, r2 are different in at least one direction.

So, if |Cr| = 1 and S0 ̸= ∅, r is not extreme, contrary to the assumption.

When |Cr| = 1, define S1 = {{i, d} ∈ Et : i ∈ S, ud > 0 ⊕ vid > 0} and S2 =

{{i, d} ∈ Et : i ∈ S, ud > 0 & vid > 0}. If S2 ̸= ∅ and let α1 = 2 × min{wi, ud, vid :

i ∈ S, (i, d) ∈ S2}, then, we make r1 have w1
i = α1 for all i ∈ S. For {i, d} ∈ S2, we

have v1id = α1. Also, for {i, d} ∈ S1, if ud > 0, we have u1
d = α1. Otherwise, we have

v1id = α1. The remaining components are 0s. Then, let r2 be 2r − r1. Hence, we have

r = 1
2
(r1 + r2) and r1, r2 are different in at least one direction because the component

which is argmin{wi, ud, vid : i ∈ S, {i, d} ∈ S2} is positive in r1 but zero in r2. Thus we

must have |S2| = ∅.

Next, if |Cr| = 1 and |S2| = ∅, consider a node i ∈ S and let wi = α. Define

S+ = {{i, d} ∈ S1 : pid > α}. When S+ ̸= ∅, consider an edge {i, d} ∈ S+ with ud > 0.

We can make r1 have u1
d = 2× (ud − α) and 0s in the other components. Then, let r2 be

2r− r1 (note that r2 is feasible). Hence, we have r = 1
2
(r1+ r2) and r1, r2 are different in

at least one direction because r1 only has one positive component and r2 has at least two

positive components. Thus, if |Cr| = 1 then S+ = ∅.

Next, define Sv = {{i, d} ∈ Gt(S) : vid > 0}. If Sv ̸= ∅, consider an edge

{i, d} ∈ Sv with j adjacent to d. We decompose S into two connected components (in the

original tree graphG) by using the edge {i, j} (removing {i, j} inG separates S into two

connected components). Let Si be the one containing node i. We make r1 havew1
i = 2wi,

u1
d = 2ud, and v1id = 2vid for all i in Si and d in a(i). Also, it has 0s in the remaining

components. Then, let r2 be 2r− r1 (which is feasible). Hence, we have r = 1
2
(r1 + r2)

and r1, r2 are different in at least one direction. Thus. if |Cr| = 1 then Sv = ∅.

33

Consider an edge {i, j} in the original graph G where both i, j ∈ S; and the edges

{i, d} and {d, j} in Gt(S) associated with {i, j}. Here only ud > 0 because Sv = ∅. So,

wi = wj = ud because S+ = ∅. Given S is a connected component, we have wi = wj for

i, j in S; and so ud = α for d ∈ D(S). This proves that if Cr ̸= ∅, then r must be in the

form of Case 3.

Applying Theorem 2 in Balas and Pulleyblank [1983]---Case 1 extreme directions

generate the valid inequality 0 ≥ −1 which is not very useful, while Case 2 extreme

directions generate −xi ≥ −1 or the trivial inequalities, xi ≤ 1 for all i ∈ V . Given a

extreme ray r of the form described in Case 3, define Vi = {d ∈ a(i) : vid > 0} for all

i ∈ S based on r. Consequently, Case 3 extreme directions generate the following valid

inequality in the original graph G:∑
i∈S

(gi − |Vi|)xi ≥
∑
i∈S

gi − |a(S)| − |S|+ 1 ∀i ∈ S ⊆ V & S is connected

& |Vi| = 0, 1, . . . , V m
i .

Here a(S) denotes the neighbors of set S in the original graph G. Noting that given a set

S, there are many extreme rays r satisfying Case 3, and giving rise to sets Vi. For a given

set S the tightest valid inequality is obtained when the coefficient of xi on the left hand

side has the smallest value. This is obtained when |Vi| = V m
i = |a(i) ∩ a(S)| (in other

words V m
i represents the number of neighbors of node i in the original graph G that are

not in the set S). After removing dominated inequalities, the projection of Pd onto the x

space is:

|a(S)|+ (|S| − 1) +
∑
i∈S

(gi − V m
i)xi ≥

∑
i∈S

gi ∀S ⊆ V & S is connected (2.36)

34

0 ≤ xi ≤ 1 ∀i ∈ V. (2.37)

Note we have rearranged inequality (2.36) to make its meaning clearer. Intuitively, given

a connected component S, its corresponding inequality (2.36) can be interpreted as fol-

lows. The first two terms are the total number of edges associated with nodes in S. They

represent the maximum amount of influence that come from the arcs (|a(S)| arcs from

outside of S and |S|−1 internal to S). The right hand side is the total amount of influence

required for this connected component S. Thus, the third term accounts for the fact that

if a node i in S is selected, its threshold (i.e., gi) is satisfied and those edges from a(S) to

node i cannot be used to satisfy the requirement of the other nodes in S \ {i}.

To illustrate inequality (2.36), we use the instance in Figure 2.2. Recall the LP

relaxation of Ack has a fractional optimal solution with x1 = 1, x2 = 0.5 and all other

xi = 0. However, applying inequality (2.36) with S = {2, 5, 6} gives 1+2+(2−1)x2+

(1 − 0)x5 + (1 − 0)x6 ≥ 2 + 1 + 1. Simplification gives x2 + x5 + x6 ≥ 1 which is

violated by the fractional optimal solution.

Proposition 2.3. The valid inequalities (2.36) can be separated in O(|V |3) time.

Proof. Proof of Proposition 2.3. When the size of S is h, the separation procedure of

inequalities (2.36) can be stated as the following optimization problem: Given a treeG =

(V,E) and an integer h ≤ |V |, each node i in V has a weight which takes value from {cij :

j = 0, 1, . . . , deg(i)} based on the number of neighbors not in the selected component,

denoted by j. The goal is to find a connected component S with h nodes whose weight∑
i∈S cij is the minimum.

35

In Blum [2007], a dynamic programming algorithm is proposed for a generalized

k-minimum spanning (k-MST) problem when the given graph is a tree. Its definition is

as follows: Given a treeGB = (VB, EB) and an integer k < |VB|, each node i in VB has a

weight wi and each edge in EB has a weight eij , the goal is to find a subtree T of k edges

whose weight
∑

i∈T wi +
∑

(i,j)∈T eij is the minimum.

Given an instance of the separation problem with the cardinality of S specified to be

h, we show that it is equivalent to the generalized k-MST problem on trees. From the input

graphG, we transform it into graphGt which was used to derive the extended formulation.

Thus, Gt = (V ∪D,Et). Recall that we have a fractional solution x and deg(i) denotes

the degree of node i. For all i in V , set its weight wi = (1 − xi)(deg(i) − gi). Then,

for all d in D, set its weight wd = 0. Lastly, for each (i, d) in Et, we have edge weight

eid = xi − 1. We also set k = 2(h − 1) as the target cardinality. For a node i ∈ V and a

given tree T , let ET
i be the number of its adjacent edges in T . The objective value of T

is:
∑

i∈T∩V (1−xi)(deg(i)− gi)+
∑

(i,d)∈T (xi− 1) =
∑

i∈T∩V (deg(i)− gi− deg(i)xi+

gixi+ET
i xi−ET

i) =
∑

i∈T∩V {(gi+ET
i −deg(i))xi−gi+(deg(i)−ET

i)}. Let T̄ denote

T ∩ V . In the original graph deg(i)− ET
i is identical to V m

i . If we consider the nodes in

T̄ ,
∑

i∈T̄ V m
i is equal to |a(T̄)|; the cardinality of the set of neighbors of T̄ in the original

graph. Thus, the objective value is equal to
∑

i∈T̄ (gi − V m
i)xi −

∑
i∈T̄ gi + |a(T̄)|. This

is exactly the constraint (2.36) with S = T̄ after we move
∑

i∈S gi to the left hand side

and move |S| − 1 to the right hand side. If the objective value is smaller than 1 − h, we

have found a violated inequality. Otherwise, there is no violated inequality for sets S with

cardinality h.

The time complexity of Blum's algorithm is O(k2|VB|). It returns the values of the

36

best l-cardinality trees in GB for all l values in the range 0 ≤ l ≤ k. Thus, we only need

to run it once by setting k = |VB| − 1 (k = |VB| is trivial). Hence, in the worst case, the

time complexity is O(|V |3) because k is bounded by |VB| and |VB| = 2|V |.

2.4 The WTSS Problem on Cycles

In this section, we study the WTSS problem on cycles. We present its polytope and

give a polynomial time algorithm to solve the problem. We work on the original graph

and provide a formulation in the space of the natural variables. Based on the idea of

inequalities (2.36), we have the following formulation for cycles:

(CIPwtss) Minimize
∑

i∈V bixi (2.38)

Subject to |V |+
∑

i∈V gixi ≥
∑

i∈V gi (2.39)

2 + (|S| − 1) +
∑

i∈S(gi − V m
i)xi ≥

∑
i∈S gi ∀S ⊂ V (2.40)

&S is connected

xi ∈ {0, 1} ∀i ∈ V (2.41)

In a cycle, a node either requires one or two neighbors. We call a node i a 1-node

if its gi value is 1. Similarly, a node is called a 2-node if its gi value is 2. Let G1 be the

set of 1-nodes and G2 be the set of 2-nodes. For the constraint (2.39), moving the first

term |V | to the right hand side, we can rewrite it as
∑

i∈G1
xi +2

∑
i∈G2

xi ≥ |G2|. Then,

increasing the coefficient of all 1-node variables from one to two obtains a valid inequality:

2
∑

i∈G1
xi + 2

∑
i∈G2

xi ≥ |G2|. Dividing both sides by two gives
∑

i∈V xi ≥ |G2|
2
.

Finally, the left hand side must be an integer, so, replacing the right hand side by its ceiling

37

value provides a lifted valid inequality:
∑

i∈V xi ≥ ⌈ |G2|
2
⌉. Furthermore, when |G2| = 0,

it is trivial to see that the optimal solution is to pick the node with the smallest cost. Thus,

we have the following valid inequality (instead of (2.39)):∑
i∈V

xi ≥ max{1, ⌈|G2|
2
⌉}. (2.42)

Next, we start removing redundant constraints in (2.40).

Case 1: When S has at most one 2-node, moving 2 + (|S| − 1) to the right hand side

makes the right hand side 0 or−1 because
∑

i∈S gi is |S|+1 or |S|. Thus, it is dominated

by the non-negativity constraints.

Case 2: In a cycle, given a set S, there are two nodes adjacent to nodes not in S. We call

these two nodes as end-nodes. Without loss of generality, let nodes j and k be end-nodes

and node j be a 1-node. Also, in S, node h is the node adjacent to j. So, based on S, we

have (gk−1)xk+ghxh+
∑

i∈S\{j,k,h} gixi ≥
∑

i∈S gi−|S|−1which is the summation of

xh ≥ 0 and the inequality based on S \{j}: (gk−1)xk+(gh−1)xh+
∑

i∈S\{j,k,h} gixi ≥∑
i∈S\{j} gi − |S| =

∑
i∈S gi − |S| − 1 because gj = 1. The latter inequality dominates

the former one. In other words, if not both these two end nodes are 2-nodes, the inequality

given by this set S is redundant.

Case 3: When S has at least three 2-nodes and the two end-nodes are 2-nodes. Let nodes

j and k be end-nodes and node h be a 2-node in between j and k. We can break S into

two segments: one contains the segment of nodes from node j to node h (denoted by Sj)

and the other one contains the nodes from node h to node k (denoted by Sk). Then, based

on S, we have xj + xk + 2xh +
∑

i∈S\{j,k,h} gixi ≥
∑

i∈S gi − |S| − 1. Also, Sj gives

xj+xh+
∑

i∈Sj\{j,h} gixi ≥
∑

i∈Sj
gi−|Sj|−1 and Sk gives xk+xh+

∑
i∈Sk\{k,h} gixi ≥

38

∑
i∈Sk

gi−|Sk|−1. Thus, the inequality based onS is redundant because it can be obtained

by the summation of the two inequalities based on Sj and Sk.

Combining the above three cases, we conclude that constraint (2.40) can be simpli-

fied as the follows: ∑
i∈S2

xi ≥ 1 ∀S2 ⊂ V (2.43)

where S2 is a segment of nodes which has exactly two 2-nodes as its end-nodes.

Theorem 2.3. Inequalities (2.42), (2.43) and 0 ≤ xi ≤ 1 ∀i ∈ V form an integral

polytope for the WTSS problem on cycles.

Proof. Proof of Theorem 2.3. As 0 ≤ xi ≤ 1 are upper and lower bound constraints,

from Proposition 2.1 in Nemhauser and Wolsey [1988, p. 540] it suffices to prove in-

equalities (2.42) and (2.43) together form a totally unimodular matrix (TUM). Notice,

however, that the constraint matrix defined by inequalities (2.42) and (2.43) form a row

interval matrix (i.e., the non-zero entries in each row are 1's that appear consecutively).

Thus, from Corollary 2.10 in Nemhauser and Wolsey [1988, p. 544] it is a TUM.

The number of sets S2 is equal to |G2|, the number of 2-nodes. Thus, the number of

constraints is 1+ |G2|+2|V | = O(|V |). Hence, we have a tight and compact formulation

for the WTSS problem on cycles.

We can make use of Algorithm 1 to solve the WTSS problem on cycles. First, we

conduct two pre-processing steps. For each S2 ⊂ V , if it contains more than one 1-node,

we can replace these 1-nodes by the one with the smallest cost among them. It is easy

to see that in an optimal solution, at most one 1-node will be selected and it should be

39

Figure 2.5: Illustration of the Cases for the Algorithm on Cycles

the one with the smallest cost. Now, each S2 contains at most one 1-node. The second

pre-processing step is that if this 1-node's cost is not the smallest one in this S2, we can

delete this 1-node and connect the 2-nodes to each other. This is because, if this 1-node is

selected, then, switching it with the 2-node with the smaller cost results in a solution no

worse than the current one. Thus, at this point, each S2 has at most one 1-node and if it

has one, this 1-node has the strictly lowest cost among these three nodes.

After pre-processing, if there are no 1-nodes left in the graph, we can arbitrarily pick

a node i. Without loss of generality, let those two nodes adjacent to node i be nodes j and

k as shown in the top left of Figure 2.5. Then, we solve two possibilities for node i. One

assumes that node i is selected and after accounting for the influence propagation from

node i requires that the tree shown in Figure 2.5(a) be solved to ascertain the solution in

this case. The other one assumes nodes j and k are selected at the same time and after

accounting for the influence propagation from nodes j and k requires that the tree shown

in Figure 2.5(b) be solved to ascertain the solution in this case.

If there are 1-nodes in the graph, we can arbitrarily pick a 1-node i. Without loss of

40

Figure 2.6: An example of cycle

generality, let those two closest 2-nodes adjacent to 1-node i be nodes j and k as shown

in the top right of Figure 2.5. Then, we consider two possibilities for node i. First, we

assume that node i is selected and after accounting for the influence propagation from

node i it requires that the tree shown in Figure 2.5(c) to be solved to ascertain the solution

in this case. If node i is not selected, then because node j and k are 2-nodes at least one

of them must be selected in the target set. Thus we first consider the case that node j is

selected when node i is not selected; and then we consider the case that node k is selected

when node i is not selected. These require the solution of the trees shown in Figures 2.5(d)

and 2.5(e) respectively.

Overall, we call Algorithm 1 at most three times and the pre-processing can be done

in O(|V |) time. Therefore, we have the following proposition:

Proposition 2.4. The WTSS problem on cycles can be solved in O(|V |) time.

2.5 A Branch-and-Cut Approach for General Networks

The extended formulation BIP2.1 (discussed in Section 2.3) can be embedded into

a larger model and applied to general graphs. The idea is based on the simple observation

that the influence propagation process can be modeled as a directed acyclic graph (DAG).

We note that BIP2.1 is not a valid formulation on any graph that contains a cycle. Fig-

41

ure 2.6 provides an example illustrating the problem caused by a cycle. In this figure, we

have a directed influence cycle of node 1, 2 and 3. Each of them has threshold 1 and has

one directed incoming arc. This means all 3 nodes become active by being influenced by

the others. However, in this cycle, nothing indicates which node is the first active one to

initialize the influence propagation process. In other words, the target set is empty. This

is not a feasible solution.

We now discuss howBIP2.1 can be embedded in a biggermodel to apply it to general

graphs. We first show that BIP2.1 is a valid formulation for a DAG (with appropriate

modifications since the original graph is a DAG) and its LP relaxation returns integral

solutions on DAGs. First, we observe that the WTSS problem can be solved trivially on

DAGs.

Proposition 2.5. The WTSS problem on a DAG can be solved in O(|V |) time.

Proof. Proof of Proposition 2.5. Given a DAG, the optimal solution of theWTSS problem

is trivial to find. For a node i, set xi = 1 if the number of its incoming arcs is smaller than

its threshold. Otherwise, set xi = 0. Notice that, the WTSS must contain these nodes (set

to xi = 1) at a minimum. We now argue that this is a feasible solution. Consider the nodes

of the DAG in the topological order. By design when we reach a node, its predecessors are

all active. Therefore, if it has more than gi incoming arcs, this node will become active.

Otherwise, it has less than gi incoming arcs, which means we have selected it in the target

set. Since we did not select any nodes other than those which are selected by necessity,

this solution is optimal. The time complexity is O(|V |) because we need to scan through

all nodes once.

42

Given a DAG, we put this data into BIP2.1 in the following way. Without loss of

generality, let node i and node j be nodes in the original graph and node d be the dummy

node inserted to edge {i, j}. If in the DAG the edge {i, j} is represented as an arc (j, i),

i.e. node j sends influence to node i, then, we set yjd = 1 and ydj = 0 (to ensure that

in BIP2.1 node j cannot receive influence from node i) and leave ydi and yid as decision

variables in the model. Notice this implies constraint (2.6) can be removed from BIP2

as it is always satisfied. Let p(i) denote the set of dummy nodes which are adjacent to

node i while considering the incoming arc (j, i) in the DAG. Then, the linear relaxation

of BIP2.1 is the following linear program that we refer to as LPDAG.

(LPDAG) Minimize
∑

i∈V bixi (2.44)

Subject to (wid) xi ≤ yid ∀i ∈ V, d ∈ p(i) (2.45)

(zid) yid + ydi = 1 ∀i ∈ V, d ∈ p(i) (2.46)

(vi)
∑

d∈p(i) ydi + gixi = gi ∀i ∈ V (2.47)

xi, yid, ydi ≥ 0 ∀i ∈ V, d ∈ p(i) (2.48)

In the dual to LPDAG (which we refer to as DLPDAG)we havewid, zid and vi as dual vari-

ables for constraint sets (2.45), (2.46), and (2.47) respectively. DLPDAG can be written

as follows:

Maximize
∑

i∈V givi +
∑

i∈V
∑

d∈p(i) zid (2.49)

Subject to (yid) wid + zid ≤ 0 ∀i ∈ V, d ∈ p(i) (2.50)

(ydi) vi + zid ≤ 0 ∀i ∈ V, d ∈ p(i) (2.51)

(xi) givi −
∑

d∈p(i)wid ≤ bi ∀i ∈ V (2.52)

43

wid ≥ 0 ∀i ∈ V, d ∈ p(i). (2.53)

Theorem 2.4. LPDAG has an optimal solution with x and y variables binary.

Proof. Proof of Theorem 2.4. Proposition 2.5 provides a optimal target set which can

be converted to a feasible solution to LPDAG (in a similar fashion to how a target set

for a tree is converted to a feasible solution to BIP2.1 in Proposition 3.3). Let S be the

set of selected nodes. We will now construct a dual feasible solution to DLPDAG that

satisfies the complementary slackness(CS) conditions. The CS conditions of LPDAG and

DLPDAG are as follows:

(xi − yid)wid = 0 ∀i ∈ V, d ∈ p(i) (2.54)

(bi − givi +
∑

d∈p(i)wid)xi = 0 ∀i ∈ V (2.55)

(−vi − zid)ydi = 0 ∀i ∈ V, d ∈ p(i) (2.56)

(−wid − zid)yid = 0 ∀i ∈ V, d ∈ p(i) (2.57)

For a node i ∈ S, xi = 1. For these nodes i ∈ S we also have yid = 1 and ydi = 0 for

all d in p(i). For yid = 1, constraint (2.50) should be binding. So, we need wid = −zid.

For ydi = 0, constraint (2.51) should be satisfied. So, vi ≤ −zid must be satisfied. Let

vi = −zid, then, we have wid = vi. Because xi = 1 and condition (2.55), constraint

(2.52) must be binding. So, we need givi −
∑

d∈p(i) wid = bi. Thus, givi −
∑

d∈p(i) vi =

bi by substituting wid by vi. Hence, we set vi = wid = bi
gi−|p(i)| and zid = − bi

gi−|p(i)| .

Furthermore, wid = bi
gi−|p(i)| has a positive value because |p(i)| is strictly smaller than gi.

Otherwise, node i would not be selected. Thus by design this choice of dual variables

44

satisfies dual feasibility and the complementary slackness conditions.

For a node i ∈ V \S, xi = 0. We set all dual variables associated with node i ∈ V \S

to zero, i.e., vi = wid = zid = 0 for all d ∈ p(i). Then, it is easy to see this choice of dual

variables are feasible. Further conditions (2.54), (2.56), and (2.57) are always satisfied

since the dual variables are zero, while condition (2.55) is satisfied since xi = 0 (or all the

complementary slackness conditions are satisfied).

Notice with this choice of dual variables, the dual objective value is

∑
i∈S

(givi +
∑
d∈p(i)

zid) =
∑
i∈S

(givi −
∑
d∈p(i)

wid) =
∑
i∈S

bi.

This proves integrality of the x variables.

We now show all extreme points of LPDAG have y variables binary. Assume this

is not true and there is an extreme point (x∗, y∗) where y∗ is fractional. Observe when

x∗
i = 1, y∗id = 1 and y∗di = 0 for all d ∈ p(i) due to constraints (2.45) and (2.46). Since the

x variables are binary, this implies fractional y values must correspond to arcs adjacent

to a node i which is not in the target set. Because constraint (2.47) is an equation and gi

only takes integer value, there are at least two fractional incoming arcs for node i. Let

(j, i) and (k, i) be these two incoming arcs and they have value y∗ji and y∗ki, respectively.

Let ϵ be a very small positive value such that 0 ≤ y∗ji ± ϵ ≤ 1 and 0 ≤ y∗ki ± ϵ ≤ 1.

Then, we can construct two feasible solutions in the following way: First, both of them

have same values as (x∗, y∗) except these four variables yij , yji, yki and yik. Then, one has

yij = y∗ij+ϵ, yji = y∗ji−ϵ, yik = y∗ik−ϵ and yki = y∗ki+ϵ. The other one has yij = y∗ij−ϵ,

yji = y∗ji + ϵ, yik = y∗ik + ϵ and yki = y∗ki − ϵ. Therefore, (x∗, y∗) is not an extreme point

45

because it is a convex combination of these two constructed feasible solutions.

Our model for general graphs will introduce additional variables and constraints to

model the fact that the influence propagation network implied by a feasible solution to

the WTSS problem should be acyclic. In this model, we introduce a new variable set, hij

and hji for all {i, j} in E (these are defined on the original graph). If hij = 1, it means

node i gives influence to node j. Otherwise, hij = 0. A new constraint set which ensures

that the directed graph formed by h, denoted byG(h), has to be a DAG is needed as well.

With this in hand, we have the following formulation that we refer to as BIP2.2:

(BIP2.2) Minimize
∑

i∈V bixi (2.58)

Subject to (2.6), (2.7), (2.8),

(2.9), (2.10), (2.11)

∑
(i,j)∈C hij ≤ |C| − 1 ∀dicycles C in G(h) (2.59)

hij + hji = 1 ∀{i, j} ∈ E (2.60)

hij ≤ yid, hji ≤ yjd ∀{i, j} ∈ E&(i, d), (j, d) ∈ Et(2.61)

hij, hji ∈ {0, 1} ∀{i, j} ∈ E. (2.62)

The objective function is the same as before. Constraint set (2.59) called k-dicycle in-

equalities say that G(h) must be a DAG. Constraint set (2.60) ensure that influence must

go in one direction between two nodes in the original graph. Because h variables are de-

fined on the original graph G and y variables are on the transformed graph Gt, we need

constraint set (2.61) to serve as linking constraints which synchronize the influence propa-

gation process between these two graphs (notice when hij = 1, yid = 1; and when hji = 1,

46

yjd = 1). Note that this is how we obtained LPDAG earlier. Constraint set (2.62) enforce

the binary constraint on h variables.

To solve the LP relaxation of BIP2.2 (which we refer to as LP2.2) it is necessary

to solve the separation problem for the exponential set of k-dicycle inequalities (2.59).

Grötschel et al. [1985] present a separation procedure for k-dicycle inequalities which

is based on the shortest path algorithm. We implement this separation procedure in our

approach. Further, we make an important observation that in BIP2.2 it suffices to define

the h variables as binary (i.e., integrality can be relaxed on the x and y variables). This

can be helpful in terms of branching.

Corollary 2.1. BIP2.2 only needs binary constraint on the h variables.

Proof. Proof of Corollary 2.1. Once theh variables are binary and satisfy constraints (2.59)

and (2.60), we have a DAG and the integrality of x and y follow as a direct consequence

of Theorem 2.4.

We take advantage of Corollary 2.1 in implementing a branching rule. In BIP2.2

we give branching priority to the h variables. We call this the H-branching rule.

We note that it is possible to derive a formulation without the h variables and work

directly with the x and y variables (i.e., a formulation that works on the transformed graph

directly). This formulation would simply add k-dicycle constraints defined on the trans-

formed graph (i.e., with the y variables) to BIP2.1. However, there are three reasons for

focusing (working with) on BIP2.2. First, in terms of its LP relaxation, it is easy to show

that any feasible solution to the LP relaxation of BIP2.2 is feasible to the LP relaxation of

this alternate model (showing that in terms of LP relaxations it is no worse than the alter-

47

nate model). Second, BIP2.2 requires fewer binary variables (which makes a significant

difference in branch-and-cut). Lastly, with the help of h variables, BIP2.2 has a much

smaller supporting graph for the separation procedure which saves significantly on time

(in fact solving the LP relaxation of BIP2.2 is 10 times faster than this alternate model).

We now discuss some additional features of the branch-and-cut procedure. In the

extended formulation BIP2.2, we use additional variables to model the influence propaga-

tion process. Thus, the MIP search process spends a significant amount of time on these

variables because of the binary requirement on these variables. However, we actually are

only interested in the target set (i.e., the natural node (x) variables). Consequently, for a

given x, we consider the integral portion of the solution (i.e., those nodes with xi = 1)

and determine the set of nodes that can be activated using this target set. We call this

process as Feasibility Lift. If all nodes are activated by these selected nodes, we have

obtained an integral feasible solution and the current node of the branch-and-bound tree

can be fathomed. Otherwise, we can continue the branch-and-cut search as usual. One ad-

vantage of Feasibility Lift is that we can focus the separation procedure on the subgraph

induced by the inactive nodes (because there must be some cycles to help them satisfy

their thresholds). We refer to this subgraph as the Inactive Induced Graph. In this way,

we have a much smaller supporting graph and can add fewer violated inequalities in the

branch-and-cut procedure.

Lastly, we realize that the separation procedure is expensive. Therefore, we modi-

fied the branch-and-cut procedure in the following way: In the root node, we do our best

to find violated inequalities in order to achieve a better dual bound, (i.e., we focus on

the cutting plane method). However, once we enter the branching phrase, the separation

48

ID OPT Ack2 Ack2/OPT LP2.1 LP2.1/OPT Greedy Greedy/OPT

1 1438 561.00 0.39 1282.50 0.89 1651 1.15
2 13171 7148.67 0.54 13022.00 0.99 17086 1.30
3 19528 11524.38 0.59 19476.00 1.00 25467 1.30
4 7598 3828.08 0.50 7429.00 0.98 9712 1.28
5 13236 7354.53 0.56 13084.50 0.99 17604 1.33
6 14591 8622.57 0.59 14454.50 0.99 20070 1.38
7 1709 569.17 0.33 1456.00 0.85 2024 1.18
8 7214 3523.25 0.49 7011.38 0.97 9263 1.28
9 7115 3761.00 0.53 6960.75 0.98 9689 1.36
10 7110 3527.25 0.50 6912.33 0.97 8917 1.25

Table 2.1: Comparisons of LP relaxations of Ack2 and BIP2.2 for the WTSS problem, a
Greedy Heuristic, and Optimal Integer Solutions for 1000-Node Instances.

procedure is only invoked when the integrality constraints are satisfied at a node.

2.6 Computational Experience

We now discuss our computational experience with the branch-and-cut approach.

We generated networks using the method proposed by Watts and Strogatz [1998] in their

pioneering work on social network analytics. As indicated in the Stanford large network

dataset collection [Leskovec, 2011], real social networks are sparse. We took this into

account as follows. For sparsity, we generated network with average degree number 4.

We chose the rewiring probability p as 0.3 (loosely, it is the probability that an edge is

reconnected to a uniformly chosen node after initializing a ring with pre-specified average

degree), because Watts and Strogatz [1998] showed this corresponds most closely to the

social networks they studied. We randomly generated node type gi from a discrete uniform

distribution between [1, |a(i)|] and cost bi from a discrete uniform distribution between

[1, 100]. We used CPLEX 12.6 with Python API and ran our tests on a machine with the

following specifications: Intel i5 3.40GHz, 24 GB ram, Ubuntu 14.04.

49

In our first set of experiments we study the strength of the LP relaxation of BIP2.2

(LP2.2). For this, ten 1000-node instances are generated. The objective value of LP2 is

compared against the LP relaxation of Ack augmented with k-dicycle inequalities (we re-

fer to this as Ack2).1 Table 2.1 shows the results. The first column provides the instance

number. ``OPT'' is the value of the optimal solution that is obtained by solving BIP2.2

(with the best setting for branch-and-cut which will be discussed later in this section). In

terms of running time, each instance only takes several seconds (no more than five) with

the best setting. ``Ack2'' shows the LP relaxation value for Ackerman et al.'s formulation.

``Ack2/Opt'' compares this value to the optimal objective value and gives the strength of

Ackerman et al.'s formulation. Similarly, ``LP2'' and ``LP2/OPT'' contain the LP relax-

ation value for BIP2.2 and compare it to the optimal objective value respectively. Notice

LP2 is a much stronger LP relaxation for the WTSS problem. On average, LP2 is able to

improve the LP relaxation's objective value by 96%. The minimum improvement and the

maximum improvement are 68% and 156%, respectively. Furthermore, the remaining gap

of LP2 (i.e., distance to optimal solution) is within 4% over these ten instances on average,

while it is 50% for the Ack2 formulation. We can make at least two key observation. One

important observation is that the bigger the remaining gap, the bigger the improvement

compared to the Ack2 formulation. Instance 1 and 7 have the biggest gap, but they also

have the biggest improvement. Another observation is that for most instances, the remain-

ing gap is very small (i.e., LP/OPT is close to 1) which can help the branch-and-cut search

significantly in general. ``Greedy'' is the objective value of the initial solution found by

a greedy heuristic which repeatedly selects the smallest cost node and adds it to the tar-
1In a slightly different fashion Ack2 is the model proposed in Ackerman et al. [2010] for general graphs.

50

get set until a solution is found. ``Greedy/OPT'' assesses the quality of this greedy initial

solution. On average, it is about 28% off the optimal objective value, although the worst

one is about 40% off. With regards to running time the LP relaxation of Ack2 needs 0.19

seconds on average while the LP relaxation of BIP2.2 takes 0.31 seconds on average. In

summary, although BIP2.2 takes a little more time than Ack2 it is able to provide a much

better dual bound.

In order to test different features of our branch-and-cut procedure and to demon-

strate the benefit of Feasibility Lift and Inactive Induced Subgraph, we conducted a set of

experiments with the branch-and-cut procedure on ten instances with 10,000 nodes and

20,000 edges (after bidirecting these edges we have 40,000 arcs). We construct an initial

feasible solution using the greedy algorithm. All runs are capped to a 5-minute time limit.

51

O
pt
im
al
ity

G
ap

(%
)

Su
m
m
ar
y

ID
B
IP
2.
2

A
ll

w
.o
.H

-B
R

B
IP
2.
2

A
ll

w
.o
.H

-B
R

1
29
.1
1

1.
42

1.
19

Av
g
G
ap

(%
)

30
.3
8

1.
98

1.
27

2
31
.4
7

2.
29

0.
91

M
ax

G
ap

(%
)

31
.8
0

3.
94

3.
51

3
31
.6
7

0.
63

0.
46

Av
g
U
se
rS

ep
.T

im
e
(S
ec
.)

22
4.
62

38
.6
1

40
.2
9

4
30
.2
5

1.
71

0.
46

M
in
U
se
rS

ep
.T

im
e
(S
ec
.)

18
4.
98

30
.7
2

29
.6
6

5
29
.4
5

1.
20

0.
96

M
ax

U
se
rS

ep
.T

im
e
(S
ec
.)

24
4.
31

59
.1
6

52
.4
2

6
30
.9
4

1.
76

1.
06

Av
g
O
bj
ec
tiv
e
Va
lu
e

76
27
9.
30

54
04
8.
60

53
64
7.
80

7
31
.8
0

3.
94

1.
13

#
of
Im
pr
ov
ed

So
lu
tio
ns

4
10

10
8

27
.4
7

1.
18

1.
58

#
of
B
es
tF
ea
si
bl
e
So
lu
tio
ns

0
1

9
9

30
.3
1

2.
00

1.
39

Av
g
D
ua
lB

ou
nd

53
09
2.
38

52
98
8.
67

52
97
5.
01

10
31
.3
4

3.
64

3.
51

B
es
tD

ua
lB

ou
nd

7
3

0

Ta
bl
e
2.
2:
C
om

pa
ris
on

of
B
ra
nd
-a
nd
-C
ut
Se
tti
ng
sf
or
th
e
W
TS

S
pr
ob
le
m
on

10
00
0-
N
od
e
In
st
an
ce
s.

52

Table 2.2 contains the results for 10000-node instances. We have three settings:

``BIP2.2'' is the straight implementation of BIP2.2 formulation with theH-branching rule

and k-dicycle separation. ``All'' adds Feasibility Lift along with the Inactive Induced

Graph separation to the ``BIP2.2'' setting. Although we can relax integrality on the x

and y variables, they are kept as binary in all settings to get a better dual bound at the

root node because we allow CPLEX to add its own cuts. In order to identify the effect

of the H-branching rule, ``w.o. H-BR'' excludes the H-branching rule from ``All''. In

the left part of this table, we give detailed information regarding the optimality gap for

these 10 instances. In the right part of this table, summary measures (averaged over the

10 instances) can be found. Although none of the instances can be solved in five minutes,

the average gap is reduced from 30.38% to 1.98% and the maximum gap is reduced from

31.80% to 3.94% with the help of Feasibility Lift and Inactive Induced Graph. Further-

more, when we remove theH-branching rule and let CPLEX make its own choices, those

two measures are reduced to 1.27% and 3.51% respectively. We observe that CPLEX oc-

casionally deviates from theH-branching rule and branches on x variables. Although, we

note that instance 8 performs better with the H-branching rule. Next, we show average,

minimum and maximum user separation time (in seconds) which is the time used for sep-

arating k-dicyle inequalities. Incorporating Inactive Induced Graph significantly reduces

the separation time from about 225 seconds to 39 seconds on average. The same story

can be found for minimum and maximum user separation time. ``Avg Objective Value''

shows the average objective function value of those best feasible solutions found in each

setting. ``# of Improved Solutions'' is the number of instances that find a better solution

compared to the initial solution. Without Feasibility Lift, only four instances can find a

53

better solution. With it, all ten instances can improve their solution. The solution quality

has been improved significantly from about 76,000 to 54,000. ``# of Best Feasible So-

lutions'' is the number of instances that find the best solution among these three settings.

The third setting (w.o. H-BR) can obtain nine out of ten best feasible solutions, while the

``All'' setting is able to find one of them. Lastly, we show the average dual bound and

the number of best dual bound in each setting. We can see that separating on the Inactive

Induced Graph only sacrifices the dual bound for a very small amount (about 0.2%), but it

saves a large amount of time in the search procedure. Based on the above experiment, we

conclude that the setting ``w.o. H-BR'' (which incorporates Feasibility Lift and Inactive

Induced Subgraph) has the best performance generally.

54

N
od
es

Av
g
D
eg
re
e

1
2

3
4

5
6

7
8

9
10

Av
g

M
ax

G
ap

(%
)

10
00
0

4
0.
04

0.
06

0.
00

0.
00

0.
00

0.
23

0.
17

0.
11

0.
05

0.
17

0.
08

0.
23

50
00

8
2.
81

10
.4
6

19
.2
5

23
.4
2

5.
71

17
.2
0

3.
52

9.
24

6.
23

25
.6
3

12
.3
5

25
.6
3

25
00

16
14
.1
4

4.
56

9.
24

8.
37

14
.7
2

42
.0
4

9.
91

32
.9
9

7.
20

14
.6
5

15
.7
8

42
.0
4

Im
p.
(%

)
10
00
0

4
30
.2
3

31
.1
5

31
.3
4

30
.0
1

31
.5
3

30
.4
6

31
.1
6

30
.1
0

30
.0
5

31
.4
5

30
.7
5

31
.5
3

50
00

8
37
.7
2

32
.7
7

27
.1
9

24
.0
7

37
.8
6

28
.4
5

37
.1
1

34
.3
1

39
.7
8

22
.1
3

32
.1
4

39
.7
8

25
00

16
39
.8
0

40
.6
0

43
.3
7

38
.5
9

40
.0
0

14
.9
0

43
.4
2

23
.0
8

46
.8
8

38
.8
6

36
.9
5

46
.8
8

Ta
bl
e
2.
3:
A
na
ly
zi
ng

th
e
Ef
fe
ct
of
G
ra
ph

D
en
si
ty
on

th
e
B
ra
nc
h-
an
d-
C
ut
Pr
oc
ed
ur
e
fo
rt
he

W
TS

S
pr
ob
le
m
.

Pe
rc
en
ta
ge

of
To
ta
lC

os
t

R
an
do
m
A
do
pt
io
n
Pe
rc
en
ta
ge

G
re
ed
y
A
do
pt
io
n
Pe
rc
en
ta
ge

Ed
ge
s

#
of
In
st
an
ce
s

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

40
0

10
10
.7
1

11
.6
7

59
.1
5

68
88
.2
5

94
60
0

10
7.
83

9.
95

58
.2
5

85
91
.6
5

94
.5

80
0

10
5.
23

7.
07

64
.2
0

82
91
.4
5

97
10
00

10
5.
12

6.
85

65
.3
0

79
90
.7
5

98
12
00

10
4.
99

7.
57

67
.1
5

84
.5

90
.1
0

95
.5

Ta
bl
e
2.
4:
H
eu
ris
tic

fo
rt
he

W
TS

S
pr
ob
le
m
Fi
xe
d
B
ud
ge
to
n
20
0-
N
od
e
In
st
an
ce
s.

55

Next, we investigate the role graph density plays in the difficulty solving a problem.

For this, in addition to the 10,000 node instances we generated for the previous experi-

ment; we generate ten instances with 5,000 nodes and average degree number 8 and ten

instances with 2,500 nodes and average degree number 16. They all have 20,000 edges

with differing levels of graph density. We give 5 minutes, 1-hour, and 2-hour time limits

to the 10,000-node, 5,000-node, and 2,500-node instances respectively (as will be evident

graph density plays a huge role in terms of the running time). We use the ``w.o. H-BR''

setting, but add 3-cycles inequalities of 3-cliques a priori (these are easy to add at the out-

set). The results are shown in Table 2.3. ``Gap'' is the optimality gap (at termination) and

``Imp.'' is the percentage improvement of the best found solution compared to the initial

greedy solution. We also show their average and maximum values in the last two columns.

The denser the graph, the bigger the gap. The average gap increases from 0.08% to 12.35%

when the number of nodes decreases from 10,000 to 5,000. Then, it increases to 15.78%

when the number of nodes becomes 2,500. However, our approach is able to improve

the solution quality compared to the initial greedy solution. On average, we can improve

the initial solution by about 30%. Given that the time limit is increased considerably,

the WTSS problem becomes much harder when the graph density increases. We should

note that Instances 6 and 8 with 2500 nodes are particularly bad for the branch-and-cut

procedure. With a different initial heuristic procedure (based on a heuristic proposed by

Shakarian et al. [2013] that we will discuss in the next set of experiments) the branch-and-

cut procedure obtains gaps of 18.39% and 24.58% respectively for these two instances.

Unfortunately, this alternate initial heuristic procedure yields significantly worse results

on all the other instances.

56

Finally, we focus on a set of experiments on 200 nodes where we evaluate the cost

of the optimal solution against differing measures. We varied graph density and created

instances where the number of edges takes values {400, 600, 800, 1000, 1200}. For each

setting, 10 instances are generated and there are 50 instances in total. These instances

are solved to optimality. Table 2.4 displays the results. First, we wanted to see what

percentage of the total cost results in 100% adoption in the WTSS problem. We compare

the optimal objective value to the sum of all node costs,
∑

i∈V bi. The results are shown

in the ``Percentage of Total Cost'' column of Table 2.4. We can see that on average, about

11% of the total cost is needed for graphs with 400 edges, and it decreases to about 5%

for graphs with 1200 edges. Next, we used two different measures to assess the quality of

the solutions obtained by the branch-and-cut approach. The first measure tries to evaluate

the benefit of optimal targeting by using the optimal objective value as a budget (upper

bound) for a heuristic target set and evaluate the fraction of the graph that is influenced by

this heuristic target set. We consider two budget constrained heuristic target sets. The first

evaluates the benefit of optimal targeting against a random solution, and the second against

a greedy solution. In both cases the budget is exceeded but the set of nodes must satisfy

the following property: if any node is removed from this set, then the budget is respected.

For the budget constrained target set that is generated randomly, we find 100 random

solutions and select the one with the highest adoption (fraction of graph influenced). In

the greedy heuristic we greedily pick the node with the smallest cost until the total weight

of selected nodes violates the bound. From the column ``Random'' in Table 2.4, we can

see that the random selection strategy does not perform well. The average adoption rate

increases from 59% to 67% when the number of edges increases from 400 to 1200. But

57

Greedy to Opt Gap Shakarian to Opt Gap

Edges # of Instances Avg (%) Max (%) Avg (%) Max (%)
400 10 46.38 52.74 13.94 27.94
600 10 49.64 60.33 33.98 105.03
800 10 55.34 100.83 39.58 73.31
1000 10 56.09 80.35 33.83 57.24
1200 10 67.35 92.02 34.28 125.85

Table 2.5: Optimality Gaps for Greedy and Shakarian Heuristic on the WTSS problem for
100% Adoption on 200-Node Instances.

even the best one among the 5,000 samples only has 85% adoption. On the other hand the

greedy strategy has much better performance. Column ``Greedy'' shows that on average

the adoption rate is around 90% with the best at 98%.

The second measure evaluates the cost of optimal targeting by comparing the opti-

mal solution against heuristic solutions that have 100% adoption. We consider two heuris-

tics. The first is our initial heuristic which is a greedy algorithm. The second is based on

a heuristic proposed by Shakarian et al. [2013] for the target set selection problem. In this

heuristic, a measure dist equal to deg(i) − gi is computed for each node i in V . At each

iteration, the heuristic picks the node with the smallest nonnegative dist and removes it.

Then, the graph and dist are updated accordingly. Once all nodes have negative dist, the

remaining nodes in the network are used as the target set. Since the heuristic does not

consider weights, to adopt it for the WTSS problem, we use the node weights to break ties

(by choosing the node with the higher cost) when picking the node with the smallest non-

negative dist. Table 2.5 summarizes the results providing the gap between the heuristic

solution and the optimal solution value (the gap is calculated as the difference between

the heuristic solution and the optimal solution divided by the value of the optimal solu-

tion). The column ``Greedy to Opt Gap'' shows that the solutions obtained by the greedy

58

strategy are about 50% greater than the cost of the optimal ones. Furthermore, this gap

increases with graph density. The column ``Shakarian to Opt Gap'' shows that on average

the Shakarian heuristic performs better, although its maximum gap values can be signif-

icantly greater than the greedy heuristic. The average gap for the Shakarian heuristic is

14% when the number of edges is 400 and is greater than 30% for the other test sets.

2.7 Conclusions

In this chapter we studied the weighted version of the TSS problem. We showed

that the WTSS problem can be solved polynomially (via dynamic programming) when

the underlying graph is a tree. Our dynamic programming algorithm generalizes Chen

[2009]'s algorithm and runs in O(|V |) time. More importantly, we present a tight and

compact extended formulation whose LP relaxation provides integral solutions for the

WTSS problem on trees. We also project this formulation onto the space of the natural

node variable space and thus find the polytope of the WTSS problem on trees. Building

upon the result for trees we first derive the polytope of the WTSS problem on cycles.

Next, by observing the influence propagation network forms a DAG we show how the

extended formulation for trees can be embedded into a formulation on general graphs,

where an additional exponentially sized set of k-dicycle constraints are added. We design

and implement a branch-and-cut approach for the WTSS problem on general graphs. Our

computational results show that our formulation improves significantly upon a previous

formulation for the problem due to Ackerman et al. [2010]. We are able to find high

quality solutions for large random graph instances within a reasonable amount of time.

59

Figure 2.7: Transforming a 0-1 knapsack problem to the WTSS problem with unequal
influence on stars

Compared to the heuristic solutions our branch-and-cut procedure provides significantly

better upper bounds.

One generalization to the WTSS problem has unequal influence from neighbors. A

natural question is whether the tree formulation and algorithm applies to this problem.

Unfortunately, as we show in Theorem 2.5, this problem is even NP-complete on stars

(i.e., a tree where all nodes are leaves other than a single central node)---contradicting a

claim by Ben-Zwi et al. [2011]. Deriving strong formulations for other closely related

influence maximization problems is an avenue of our current and future research.

Theorem 2.5. The WTSS problem with unequal influence is NP-complete on stars.

Proof. Proof of Theorem 2.5. We prove that when a node i receives unequal influence

from its neighbors, theWTSS problem isNP-complete on stars. In the propagation progress

in the unequal influence case, the incoming influence of node i is calculated as
∑

j∈s(i) dji

where dji is the amount of influence from node j and s(i) is the set of node i's active

neighbors. Furthermore, each node's threshold value gi can take a value between 1 and∑
j∈a(i) dji.

The decision version of the 0-1 knapsack problem is defined as follows: Given a set

of n items numbered from 1 up to n, each item i with a weight wi and a value vi, along

60

with a maximum weight capacity W , can we select a subset of these items such that a

value of at least V will be achieved without exceeding the weightW ?

We construct a star network from this 0-1 knapsack problem. For each item i, we

put a node i in the graph as a leaf node. After that, we add one extra node and label it as

node 0 which is the central node. All leaf nodes connect to the central node but do not

connect to each other. Thus, there are n+ 1 nodes numbered from 0 up to n in the graph.

Then, for each leaf node i, we have gi = 1, d0i = 1 and bi = wi. For the central node

0, we have g0 = V , di0 = vi for all i ∈ a(0) and b0 = W + 1. The constructed star is

shown in Figure 2.7. The decision question is: Can we select a subset of nodes without

total cost exceeding W to activate the whole network? It is easy to see that we should

never select the central node 0. So, it is equivalent to ask: Can we select a subset of leaf

nodes such that the incoming influence of the central node is at least V and the total cost

of those selected leaf nodes does not exceedW ? Therefore, if the answer is ``Yes'', those

selected leaf nodes also solve the 0-1 knapsack problem.

61

Chapter 3: Generalizations of theDominating Set Problem on Social Net-

works

3.1 Introduction

The dominating set problem is a classic NP-complete problem and is defined as fol-

lows: given a graphG = (V,E), we want to find a minimal subsetD of V such that every

node not in D is adjacent to at least one member of D. Recently, Wang et al. [2009] pro-

posed a new variation of the dominating set problem in the online social network context.

Later, Dinh et al. [2014] refined this definition and described two variants. Namely, the

Positive Influence Dominating Set (PIDS) problem which requires every node not in D

have at least ρ fraction of its neighbors inD, and the Total Positive Influence Dominating

Set (TPIDS) problem which requires every node (including nodes in D) have at least ρ

fraction of its neighbors in D.

In social networks, the PIDS and TPIDS problems can be applied in viral market-

ing, politics and can be used to deal with social problems, such as drinking, smoking and

drug related problem. Identifying those most influential people can be of great advan-

tages and lower the total cost. Wang et al. [2009] described an application of the PIDS

(TPIDS) problem in alleviating college drinking problem. Many college campuses have

62

binge drinking problems where peer pressure plays a large role in pressuring students to

binge drink. An intervention program is used to convert binge drinking students to ab-

stainers. However, it is not realistic to assume that one has enough resources for all binge

drinking students. The minimum cardinality PIDS (TPIDS) is a desired outcome in this

circumstance. Another example relates to majority on a social network. Suppose we have

two competing products and ρ is bigger than 0.5. If a PIDS of all the people has adopted

one specific product, it is more likely that this product will be adopted by the whole so-

cial network in the end because every person not in this PIDS has more than half of his/

her acquaintances who have adopted this product already. Finally, the PIDS problem can

be interpreted as a WTSS problem where only one time period is allowed for the influ-

ence diffusion precess. In Goel et al. [2015], they investigated the diffusion of nearly a

billion news stories, videos, pictures, and petitions on the microblogging service Twitter.

One important observation is that the vast majority of cascades (over 99%) are terminate

within a single time period, supporting a deeper understanding of the PIDS problem.

Although the dominating set has been studied intensively, only limited literature is

from the integer programming perspective. For the dominating set problem, Bouchak-

our et al. [2008] and Saxena [2004] independently presented its polytope for trees and

cycles. Baïou and Barahona [2014] showed an extended formulation via facility location

and proved that the projection of this formulation on the node space describes the dominat-

ing set polytope for cacti graphs. For the PIDS and TPIDS problems, researchers mainly

focused on approximability and proved that they are both APX-hard in Wang et al. [2009,

2011], Dinh et al. [2014]. There is no previous literature on mathematical programming

formulation for the PIDS and TPIDS problems.

63

3.1.1 Problem Definition

Deviating from previous literature, we study the PIDS and TPIDS problems with

two additional considerations. First, a weight is introduced to each node. This weight

models the fact that in real life it takes different effort levels to convince different people.

Second, a node can require any positive number of neighbors to be in D (as opposed to

a fixed number that is the same for all nodes in the graph). This reflects the situation

where different people require different amounts of peer influence to adopt a behavior in

practice. Formally, we define the PIDS problem as follows: given an undirected graph

G = (V,E), each node i in V has a weight, denoted by bi, and a threshold requirement,

denoted by gi, taking value between 1 and its degree number, we seek a subset D of V

such that a node i not in D is adjacent to at least gi members of D and the total weight of

the nodes in D, denoted by
∑

i∈D bi, is minimized. The TPIDS problem is similar except

we seek a subset D of V such that every node i in V is adjacent to at least gi members of

D.

3.1.2 Related Literature

The TPIDS problem with ρ = 0.5 was first introduced by Wang et al. [2009]. They

also proposed an algorithmwhich iteratively adds a dominating set until a TPIDS is found.

Wang et al. [2011] proved that the TPIDS problem is APX-hard and proposed a greedy

algorithm with O(|V |3) time complexity and an approximation ratio of H(δ) where H is

the harmonic function and δ is the maximum degree number in the given graph. Raei et al.

[2012] proposed a new greedy algorithm which improves the time complexity toO(|V |2).

64

Wang et al. [2013] also presented a self-stabilizing algorithm with time complexity of

O(|V |2). Zhang et al. [2012] studied the TPIDS problem in power-law graphs and proved

that the greedy algorithm has a constant approximate ratio.

The PIDS problem with ρ = 0.5 was first considered by Zou et al. [2009] under a

different name ''Fast Information Propagation Problem''. They proved it to be NP-hard.

Zhu et al. [2010] further showed it to be APX-hard and described a greedy approximation

algorithm with performance ratio O(ln δ).

For both the PIDS and TPIDS problems, Cicalese et al. [2011] proved that they are

APX-hard and cannot be approximated to within a factor of c ln |V | where c is a suitable

constant and can be found by construction. They also showed that a greedy strategy has

approximation ratioO(ln δ) for both problems. Furthermore, aO(|V |2) dynamic program-

ming algorithm is proposed when the given graphs are trees. Dinh et al. [2014] improved

the inapproximability results for both problems. They showed both problems are hard to

approximate within ln δ − O(ln ln δ). In power-law graphs, they showed that the greedy

method targeting the highest degree vertices has a constant factor approximation ratio.

They also presented an algorithm for trees which has time complexity with improved

O(|V |). Overall, all previous work on the PIDS and TPIDS problems has focused on their

approximability.

The dominating set problem has a long history and a tremendous amount of liter-

ature (see Haynes et al. [1998a,b]). However, there is very limited literature from the

integer programming perspective. Saxena [2004] presented the dominating set polytope

for cycles. Bouchakour et al. [2008] described the polytope for a larger class of graphs that

can be decomposed by one-cutsets into cycles. Both their formulations only use variables

65

associated with the nodes in the graph. Baïou and Barahona [2014] showed an extended

formulation via facility location (it uses both node and arc variables) and proved that the

projection of this formulation onto the node space describes the polytope for cactus graphs.

In a cactus graph, each edge is contained in at most one cycle. For instance, every tree is

a cactus graph. Cactus graphs also contain cycles and the class of graphs in Bouchakour

et al. [2008].

For the dominating set problem on trees, the following two formulations provide

integral solutions when their linear programming (LP) relaxations are solved. In other

words, these two formulations are the strongest LP formulations for the dominating set

problem on trees. First, the node variables formulation from Saxena [2004], Bouchakour

et al. [2008] is as follows:

Minimize
∑

i∈V xi (3.1)

Subject To
∑

j∈n(i) xj + xi ≥ 1 ∀i ∈ V (3.2)

xi ∈ {0, 1} ∀i ∈ V (3.3)

where n(i) denotes the neighbors of node i for a node i in V . We have decision variable

xi for a node i in V . If node i is selected in D, xi = 1. Otherwise, xi = 0. The objective

function (3.1) is to minimize the size ofD. The first constraint (3.2) says that either node

i or one of its neighbor is inD. Constraint (3.3) is the binary constraint. This formulation

is referred to as Saxena's formulation.

The extended formulation via facility location in Baïou and Barahona [2014] is

given below:

66

Minimize
∑

i∈V xi (3.4)

Subject To
∑

j∈n(i) yji + xi ≥ 1 ∀i ∈ V (3.5)

xi − yij ≥ 0 ∀i ∈ V, j ∈ n(i) (3.6)

xi ∈ {0, 1} ∀i ∈ V (3.7)

yij ∈ {0, 1} ∀i ∈ V, j ∈ n(i) (3.8)

Here, we have additional yij and yji variables for each edge {i, j} in E. If yij = 1,

it means node j is assigned to node i. Otherwise, it is 0. The objective function (3.4) is

to minimize the size of D. The first constraint (3.5) says that either node i or one of its

neighbor is in D. Constraint (3.6) means that if node i is selected, we can assign node j

to it when node j is one of node i's neighbors. Constraints (3.7) and (3.8) are the binary

constraints. We refer to formulation as Baïou's formulation. Note that both the Saxena

and Baïou formulations are valid on general graphs.

3.1.3 Our Contributions

First, we show that both the PIDS and the TPIDS problems on trees can be solved in

O(|V |) time. We use a dynamic programming approach where a tree is decomposed into

subproblems. For each subproblem, we identify the most promising solution candidates

for different situations. After all subproblems are examined, a backtracking procedure is

used to determine the final solution.

More importantly, for the TPIDS problem, we show that the natural adaptations

of these formulations in Bouchakour et al. [2008], Saxena [2004], Baïou and Barahona

67

[2014] are tight when the given graphs are trees. However, this natural adaptation does

not work for the PIDS problem (i.e., the LP relaxations give fractional solutions on trees).

For the PIDS problem on trees, a tight and compact extended formulation is presented.

The key idea is similar to that in the WTSS problem. We enforce the observation that

every node inD should only send out influence. If we enforce this observation directly, it

causes a trouble in that two adjacent nodes cannot be in D at the same time; which is not

a valid restriction. We work around this problem by applying the edge splitting idea that

is introduced in Chapter 2 with the WTSS problem.

This leads to our third contribution. We focus on the PIDS problem and study its

polytope. We project the extended formulation onto the natural node variables space and

prove that it is stronger than the natural adaptations of those formulations in Bouchakour

et al. [2008], Saxena [2004], Baïou and Barahona [2014]. From there, we derive a new set

of valid inequalities for the PIDS problem and provide polynomial time separation proce-

dure for it. Based on our computational experiment, our formulation provides much better

linear relaxation bound. Our work is a building block for developing exact approaches for

the PIDS and the TPIDS problems.

The rest of this chapter is organized as follows. Section 3.2 discusses the TPIDS

problem. We present a linear time algorithm and show that the natural adaptations of those

formulations in Bouchakour et al. [2008], Saxena [2004], Baïou and Barahona [2014] are

tight for the TPIDS problem on trees. Section 3.3 focuses on the PIDS problem. We

present a linear time algorithm and the tight and compact extended formulation for the

PIDS problem on trees. Also, we project the extended formulation for the PIDS problem

onto the natural node variable space which provides not only the complete description

68

of the polytope for the PIDS problem on trees, but also a novel formulation on general

graphs. Finally, computational results are presented on general graphs. Section 3.4 gives

some concluding remarks.

3.2 The TPIDS Problem

In this section, we present a linear time algorithm for the TPIDS problem on trees

and show that the natural adaptations of the formulations in Bouchakour et al. [2008],

Saxena [2004], Baïou and Barahona [2014] are tight for the TPIDS problem on trees.

3.2.1 Algorithm for the TPIDS Problem on Trees

We present an algorithm to solve the TPIDS problem on trees. In this method, we

decompose the tree into subproblems. A subproblem is defined on a star network which

has a central node and possibly many leaf nodes. Each subproblem is used to find the most

promising candidates (at most two) and one of them will be part of the final solution of the

tree. In this tree, each non-leaf node is a central node for a star network. By solving the

subproblem, we have one candidate for the situation that the central node's parent node is

selected and one candidate when its parent node is not selected. Next, the current star is

compressed into one single leaf node with updated cost and threshold for its parent star

network. This process is repeated until we are left with a single star. The last star should

have the root node of the tree as the central node. After we exhaust all subproblems, a

backtracking method is used to identify a final solution which combines the candidates of

those star subproblems for the tree. The pseudocode of the proposed algorithm is shown

69

Algorithm 4 Algorithm for the TPIDS and the PIDS problems on trees
1: Arbitrarily pick a node as the root node of the tree
2: Define the order of star problems based on the bottom-up traversal of the tree
3: for each star subproblem do
4: StarHandling
5: end for
6: SolutionBacktrack

in Algorithm 8.

For a star subproblem, we try to find the solution that satisfies the threshold require-

ment of the central node while the total cost is the minimum. Denote the central node by

c and refer to this star as star c. Let the set of star c's leaf nodes be L(c). Then, we can

select some of star c's leaf nodes to satisfy the threshold requirement of the central node

based on if its parent is selected or not. We define three kinds of sets among L(c): the

core set, the free set and the expensive set, denoted by C(c), F (c) and E(c) respectively.

The core set has nodes with threshold one including leaf nodes. The other two sets contain

leaf nodes with threshold zero. However, nodes have zero cost in the free set while they

have positive cost in the expensive set. Hence, nodes in F (c) are always selected. After

that, we only select nodes from E(c) and C(c) when it is necessary. Therefore, if the size

of F (c) is smaller than the threshold value of node c, we find the ascending order of the

remaining nodes in C(c) ∪ E(c) based on their cost. Then, if the parent node is selected,

the possible solution is the set of the first gc − |F (c)| − 1 nodes in C(c) ∪ E(c), denoted

by Sc
gc−1. And, if its parent node is not selected, the possible solution is consist of the the

first gc − |F (c)| nodes in C(c) ∪ E(c), denoted by Sc
gc . If |F (c)| is not smaller than the

requirement number, we have Sc
gc = Sc

gc−1 = F (c). Thus, we have two situations for a

star subproblem. One has parent node selected, one does not. For the last star, there is

70

only one situation because there is no parent node any more.

4

1
2

5 6 7

𝑏"
𝑔"

𝑖
15
2

27
3

5
2

6
1

7
1

30
230

2 3

9

9
1

8

8
1

10

11 12 17 1813 14 15 16

10
2

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

Figure 3.1: A TPIDS problem instance.

Take star 5 in the instance in Figure 3.1 as an example. The C(5) = {11, 12},

F (5) = ∅ and E(5) = ∅. We have g5 = 2 and |C(1) ∪ F (1)| = 2. Thus, S5
2 = S5

1 =

{11, 12}. It is similar for star 6, 7, 8, 9 and 10. S6
1 = S6

0 = {13}. S7
1 = S7

0 = {14}.

S8
1 = S8

0 = {15}. S9
1 = S9

0 = {16}. S10
2 = S10

1 = {17, 18}.

Once we determine the candidates for the current star subproblem, it is compressed

into a single leaf node for its parent star subproblem. Now we need to determine its

updated threshold and cost. If this central node's threshold is equal to its degree number

in the original tree, this compressed node needs one neighbor. So, the updated threshold,

g
′
c, is 1 and this node is a core child for its parent star. Otherwise, this compressed node

has the updated threshold as 0. Because if this central node's threshold is smaller than its

degree number in the original tree, it is possible to select only its children nodes in the tree

to satisfy its threshold requirement. For a node c, let node j be one of its children. Then,

among the children of node j, the one with the gjth smallest compressed cost is called its

critical grandchild and its cost is denoted as b′j(gj). The compressed node's cost is decided

in the following way: We consider two cases. If the core set is not empty (C(c) ̸= ∅),

71

the central node's compressed cost is 0. Otherwise, the compressed cost is calculated as

the difference between node c's cost and the total cost of all its critical grandchildren,

b
′
c = max{bc −mc, 0}, wheremc =

∑
j∈L(c) b

′

j(gj)
. If node j is a leaf in the tree, it has no

children. Then, we set b′j(gj) as∞. For the former case, it is required to select the central

node for those nodes in the core children set. So, this new compressed node has cost

0 because the next star's central node could receive influence from current star's central

node in the final solution of the tree and it is free from the next star's point of view. For

the latter case, if the central node is selected, then, those critical grandchildren are not

needed to be selected in the TPIDS. Then, for the next star, if it wants to receive influence

from the current star, it must pay the incremental amount caused by selecting the central

node. For each star, we have two solution candidates. One for the situation that the central

node's parent node is selected and one for the situation it is not. We summarize the above

procedure in Algorithm 5 with the following notation: Let Xc
P be the solution candidate

when the parent node is selected, and Xc
NP be the candidate when the parent node is not

selected. Let b′c be the compressed node's cost and g
′
c be its updated threshold. Initially, we

have b′c = bc and g
′
c = gc. Finally, let E1(c) and E2(c) denote the cheapest gc−|F (c)|− 1

and gc − |F (c)| nodes in C(c) ∪ E(c) respectively.

4

1
2

5 6 7

𝑏"
𝑔"

𝑖
15
2

27
3

0
0

0
0

0
0

30
230

2 3

9

0
0

8

0
0

10

0
0

4

1
2

𝑏"
𝑔"

𝑖
15
2

2
1

0
01

0 3

Figure 3.2: TPIDS (a) After compress star 5, 6, 7, 8, 9 and 10. (b) The last star.

72

Algorithm 5 StarHandling
Require: a star c
1: if |F (c)| ≥ gc then
2: Sc

gc−1 = Sc
gc ← F (c).

3: else
4: Sc

gc−1 ← F (c) ∪ E1(c) and Sc
gc ← F (c) ∪ E2(c).

5: end if
6: Let Xc

P ← Sc
gc−1 and Xc

NP ← Sc
gc

7: If gc = deg(c), g′
c = 1. Otherwise, g′

c = 0
8: If C(c) is not empty, b′c = 0. Otherwise, b′c = max{bc − mc, 0} where mc =∑

j∈L(c) b
′

j(gj)
.

Again, we use the instance in Figure 3.1 as our example. For star 5, the updated

threshold is 0 because g5 = 2 and deg(5) = 3. Also, the updated cost is 0 because at

least one of its children nodes is a leaf node. Similarly, we compress star 6, 7, 8, 9 and

10. Then, for star 1, we have C(1) = E(1) = ∅ and F (1) = {5, 6}. Then, S1
2 = {5, 6}

and S1
3 is not existed. Here, node 1's updated threshold as 1 because g1 = deg(1) = 3. Its

updated cost is 2 because 27−12−13 where 12 is the cost of the second smallest child of

node 5 and 13 is the cost of the smallest child of node 6. Then, the compressed node 1 is

node 4's core child. Similarly, for star 2, we have C(2) = E(2) = ∅ and F (2) = {7, 8}.

Then, S2
2 = {7, 8} and S2

1 = {7}. Its updated cost is 1 and updated threshold is 0. It is

node 4's expensive child. For star 3, we have C(3) = E(3) = ∅ and F (3) = {9, 10}.

Then, S3
2 = {9, 10} and S3

1 = {9}. Its updated cost is 0 and updated threshold is 0. It is

node 4's free child. After compression, we have a smaller tree in Figure 3.2.(a).

After we obtain the solution of the last star which has the root node as its central

node, we invoke a backtracking procedure to choose the solution from the candidates for

each star subproblem and piece them together to obtain the final solution for this tree. In

the last star subproblem, we first choose nodes in Sc
gc asX

r
NP . Then, if C(c) is not empty

73

or bc is smaller thanmc, we select the central node. Otherwise, we do not select it. Now,

for each leaf node in this star, we know if it is selected or not. We also know if its parent

node is selected or not. For instance, if the central node is selected, then, the central node

sends influence to all its leaf nodes. Then, all stars with central node in L(c) will pick the

candidate where the parent node is selected. Similarly, given the set Sc
gc is selected, then,

for a node l in Sc
gc , we can proceed to nodes in L(l) and pick the solution candidate where

the parent node is selected. And, for a node l in L(c) \ Sc
gc , if node r is not selected, we

can proceed to nodes in L(l) and pick the candidate where the parent node is not selected.

With this information we can now proceed down the tree, incorporating the partial solution

at a node based on the solution of its parent star. This backtracking procedure is described

in Algorithm 6 SolutionBacktrack. Let L denote the set of leaf nodes in the tree, NL

denote the set of non-leaf nodes in the tree, r denote the root of the tree (as determined by

Algorithm 6), X∗ denote the final solution of the tree and C∗ its cost.

In this algorithm, we have the recursive function: Pick-Comp. It chooses the so-

lution for a star c and recursively choose solutions for stars whose central nodes are leaf

nodes of the star c. Algorithm 7 provides a more detail descriptions of Pick-Comp. Al-

though it is possible to prove the correctness of this algorithm directly, we defer the proof

until the next section. There we will provide a tight and compact extended formulation

for the TPIDS problem, and use linear programming duality to prove its correctness.

74

Algorithm 6 SolutionBacktrack
Require: the last star r and its solution Xr

NP

1: if br ≤
∑

l∈L(r) b
′

l(gl)
then

2: X∗ ← X∗ ∪ {r}.
3: ∀l ∈ L(r) ∩NL call Pick-Comp(l, X∗, P).
4: else
5: ∀l ∈ L(r) ∩NL call Pick-Comp(l, X∗, NP).
6: end if
7: X∗ ← X∗ ∪Xr

NP .
8: for l ∈ Xr

NP do
9: ∀h ∈ L(l) ∩NL call Pick-Comp(h, X∗, P).
10: end for
11: for l ∈ Lr \Xr

NP do
12: ∀h ∈ L(l) ∩NL call Pick-Comp(h, X∗, NP).
13: end for
14: C∗ =

∑
i∈X∗ bi

15: return C∗, X∗.

4

1
2

5 6 7

𝑏"
𝑔"

𝑖

27
3

5
2

6
1

7
1

30
230

2 3

9

9
1

8

8
1

10

11 12 17 1813 14 15 16

10
2

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

15
2

Figure 3.3: The solution obtained by our DP algorithm for the TPIDS.

For star 4 in Figure 3.2.(b), we have C(4) = {1}, F (1) = {3} and E(7) = {2}.

Then, S4
2 = {1, 3} and its core children set is not empty. So, the last star picks S4

2 to

satisfy node 4's threshold. Also, node 4 is selected. From there, star 1, 2 and 3 choose

XP . Then, node 5, 6, 8 and 9 are selected. Next, star 5 and 6 pick XNP . So, node 11, 12

and 13 are selected. Also, star 7, 8, 9, and 10 pick XP . So, node 17 is selected. Lastly,

node 5, 6, 7, 8, 9, and 10 are selected to satisfy leaf nodes. Figure 3.3 shows this optimal

solution and the TPIDS is shady.

75

Algorithm 7 Recursive Functions
1: function Pick-Comp(c, X , Flag)
2: if Flag = P then
3: X

′
= Xc

P .
4: else
5: X

′
= Xc

NP .
6: end if
7: X ← X ∪X

′ .
8: for l ∈ X

′ do
9: ∀h ∈ L(l) ∩NL call Pick-Comp(h, X , P).
10: end for
11: for l ∈ L(c) \X ′ do
12: ∀h ∈ L(l) ∩NL call Pick-Comp(h, X , NP).
13: end for
14: return X .
15: end function

Proposition 3.1. The TPIDS problem on trees can be solved in O(|V |) time.

Proof. Proof of Proposition 3.1. There are at most |V | stars in a tree. For each star c, let

deg(c) denote its degree number. We need to find the gc cheapest children and it takes

time O(deg(c)) time (Finding the gcth order statistics can be done in O(deg(c)) by the

Quickselect method in Chapter 9 of Stein et al. [2009]. Then, it takes O(deg(c)) to go

through the list for collecting gc cheapest children.). For the whole tree, this is bounded

byO(|V |). In the backtracking procedure, we only pick the final solution and it takes time

O(|V |). Therefore, the running time for the dynamic algorithm is linear with respect to

the number of nodes.

3.2.2 Good Formulations for the TPIDS Problem on Trees

We present two good formulations for the TPIDS on trees. Both formulations are

directly adopted from previous formulations for the dominating set problem in the litera-

76

ture. The first one only uses decision variables in the node space. The second one is an

extended formulation which has additional decision arc variables. Both of them are tight

and compact for the TPIDS problem on trees.

The first formulation is based on the node variables formulation from Saxena [2004]

and Bouchakour et al. [2008]. For each node i, let xi be 1 if this node is in the TPIDS.

Otherwise, it is 0. Then, we have the following formulation on trees (BIP3.1):

(BIP3.1) Minimize
∑

i∈V bixi (3.9)

Subject To
∑

j∈n(i) xj ≥ gi ∀i ∈ V (3.10)

xi ∈ {0, 1} ∀i ∈ V (3.11)

The objective function (3.9) is to minimize the total cost of the TPIDS. Constraint (3.10)

says that for a node i in V , it must have at least gi neighbors in the TPIDS. Constraint

(3.11) is the binary constraint.

The LP relaxation of BIP3.1 denoted by LP3.1 and is as follows:

(LP3.1) Minimize
∑

i∈V bixi (3.12)

Subject To
∑

j∈n(i) xj ≥ gi ∀i ∈ V (3.13)

0 ≤ xi ≤ 1 ∀i ∈ V (3.14)

Theorem 3.1. Given a tree, LP1 has an optimal solution with x binary.

Proof. Proof of Theorem 3.1. The constraint matrix defined by constraint set (3.13) is the

adjacency matrix of a tree. So, it is a totally unimodular matrix (TUM). The constraint

set (3.14) forms a identity matrix. Hence, combining these two constraint sets keeps the

77

constraint matrix TUM.

The second formulation is based on the extended formulation via facility location

described in Baïou and Barahona [2014]. We adopt it as follows (BIP3.2):

(BIP3.2) Minimize
∑

i∈V bixi (3.15)

Subject To
∑

j∈n(i) yji ≥ gi ∀i ∈ V (3.16)

xi − yij ≥ 0 ∀i ∈ V, j ∈ n(i) (3.17)

xi, yij ∈ {0, 1} ∀i ∈ V, j ∈ n(i) (3.18)

Recall that we have additional yij and yji variables for each edge {i, j} in E. If yij = 1,

it means node j is assigned to node i in the facility location context. To understand it in

the TPIDS setting, we interpret it as node i sending influence to node j. Otherwise, it is

0. The objective function (3.15) is to minimize the total cost. Constraint (3.16) says that

each node i in V must have at least gi incoming arcs. Constraint (3.17) means that if node

i is selected in the TPIDS, node i can send influence to node j which is one of node i's

neighbors. Constraint (3.18) is the binary constraint.

The LP relaxation of BIP3.2 is as follows (LP3.2):

(LP3.2) Minimize
∑

i∈V bixi (3.19)

Subject To (ui)
∑

j∈n(i) yji ≥ gi ∀i ∈ V (3.20)

(vij) xi − yij ≥ 0 ∀i ∈ V, j ∈ n(i) (3.21)

(wi) −xi ≥ −1 ∀i ∈ V (3.22)

xi, yij ≥ 0 ∀i ∈ V, j ∈ n(i) (3.23)

78

To show that LP3.2 is a compact formulation, we derive the complementary slack-

ness (CS) conditions through the dual problem of LP3.2. Then, given that we already

have a primal solution that is obtained using Algorithm 8, we construct a dual feasible

solution and show that this pair of primal and dual solutions satisfies the CS conditions.

Let u, v and w be dual variables corresponding to constraint sets (3.20), (3.21) and (3.22)

respectively. The dual of LP3.2 is given below (DLP3.2):

(DLP3.2) Maximize
∑

i∈V giui − wi (3.24)

Subject To (xi)
∑

j∈n(i) vij − wi ≤ bi ∀i ∈ V (3.25)

(yij) uj − vij ≤ 0 ∀i ∈ V, j ∈ n(i) (3.26)

ui, wi, vij ≥ 0 ∀i ∈ V, j ∈ n(i) (3.27)

Thus, we obtain the following CS conditions:

(
∑

j∈n(i) yji − gi)ui = 0 ∀i ∈ V (3.28)

(xi − yij)vij = 0 ∀i ∈ V, j ∈ n(i) (3.29)

(1− xi)wi = 0 ∀i ∈ V (3.30)

(
∑

j∈n(i) vij − wi − bi)xi = 0 ∀i ∈ V (3.31)

(uj − vij)yij = 0 ∀i ∈ V, j ∈ n(i) (3.32)

Let conv(T) denote the convex hull of feasible TPIDS vectors x, and let ETPIDS

denote the feasible region of LP3.2.

Theorem 3.2. Given a tree, LP3.2 has an optimal solution with x binary

and Projx(ETPIDS) = conv(T).

79

Proof. Proof of Theorem 3.2. By Algorithm 8 in Section 3.2.1, we can obtain the value

for x. To determine y, we have the following procedure: Set yij = 1 for all j in n(i),

if xi = 1. The remaining y variables have value 0. It should be clear that we have a

feasible solution of BIP3.2 and thus LP3.2. In this proof, we want to show that we can

construct a dual feasible solution to DLP3.2 that satisfies the CS conditions above. By

now, we have a primal solution (x, y), the compressed cost b′ of all nodes, and the order

of star subproblems in this execution. Primal constraint (3.21) is always binding and CS

condition (3.29) is satisfied. Also, we always set uj = vij ∀i ∈ V, j ∈ n(i). So, dual

constraint (3.26) is always binding and CS condition (3.32) is satisfied. We will focus on

the remaining CS conditions (i.e., (3.28), (3.30) and (3.31)) in the following proof.

For a node i in V , let Ri be the set of nodes who send influence to node i (e.g.,

xj = 1 and yji = 1 for all j inRi). When node i's parent node p is inRi, we give node p a

temporary b′p which will be used in the later calculation. Let deg(i) be the degree number

of node i. If gi < deg(i), let b′p = b
′

(gi)
which is the gi smallest b

′
j in node i's child nodes.

If gi = deg(i), we use b′p = bp. Now, let bm = max{b′j : j ∈ Ri}, the largest b
′ in Ri.

Then, we set vji = bm ∀j ∈ n(i). Repeat this for every node i in V , we set all v variables.

For a node j in n(i), when xj = 1, the vji value is not smaller than its corre-

sponding cost b′j in the solution. So,
∑

k∈n(j) vjk is not smaller than bj . Then, we can

set wj =
∑

k∈n(j) vjk − bj to have this constraint binding because wj is allowed to have

any nonnegative value due to the fact that xj = 1 and primal constraint (3.22) is binding.

Then, CS conditions (3.30) and (3.31) are satisfied for this case. When xj = 0, the vji

value is not bigger than its b′j value. Otherwise, this node should be selected in our algo-

rithm. Then,
∑

k∈n(j) vjk ≤ bj and we could set wj = 0 to satisfy CS conditions (3.30)

80

because xj = 0 and primal constraint(3.22) is not binding. Therefore, CS conditions

(3.30) and (3.31) are satisfied.

For CS condition (3.28), when the primal constraint (3.20) is binding, we are good

with the above setting given that we always set uj = vij ∀i ∈ V, j ∈ n(i). When the

primal constraint (3.20) is not binding for a node i, it means node i has more than gi

neighbors selected. Then, when we follow the above procedure, bm will be 0. So, ui = 0

and CS condition (3.28) is satisfied in this setting.

3.3 The PIDS Problem

In this section, we present a linear time algorithm and the tight and compact ex-

tended formulation for the PIDS problem on trees. Also, we project the extended formu-

lation onto the natural node space which provides not only the complete description of the

polytope for the PIDS problem on trees, but also a novel formulation on general graphs.

We also study the facet-defining conditions for the valid inequalities derived from the

projection. The proposed formulation is stronger than the natural adaptations of the for-

mulations in Bouchakour et al. [2008], Saxena [2004], Baïou and Barahona [2014] to the

PIDS problem. Then, computational results are presented on general graphs.

3.3.1 Algorithm for the PIDS Problem on Trees

In this section, We present a dynamic programming (DP) algorithm to solve the

PIDS problem on trees. In this method, we decompose the tree into subproblems. A

subproblem is defined on a star network which has a central node and possibly many leaf

81

Algorithm 8 Algorithm for the PIDS problems on trees
1: Arbitrarily pick a node as the root node of the tree
2: Define the order of star problems based on the bottom-up traversal of the tree
3: for each star subproblem do
4: StarHandling
5: end for
6: SolutionBacktrack

7

6
5

1 8 2

𝑏"
𝑔"

𝑖

3
1

2
2

1
2

1
1

3
2

2
3

1
2 4

3

1
3

9 10

11 12

17

13 14 15 16

1
1

1
1

1
1

1
1 1

1
1
1

1
1

1
1

2
1

Figure 3.4: A PIDS problem instance.

nodes. Each subproblem is used to find the most promising candidates (at most two) and

one of them will be part of the final solution of the tree. In this tree, each non-leaf node

is a central node for a star network. By solving the subproblem, we have one candidate

for the situation that the central node's parent node is selected and one candidate when its

parent node is not selected. Next, the current star is compressed into one single leaf node

with updated cost and threshold for its parent star network. This process is repeated until

we are left with a single star. The last star should have the root node of the tree as the

central node. After we exhaust all subproblems, a backtracking method is used to identify

a final solution which combines the candidates of those star subproblems for the tree. The

pseudocode of the proposed algorithm is shown in Algorithm 8.

For a star subproblem, we try to find the solution that satisfies the threshold require-

82

ment while the total cost is the minimum. Denote the central node by c and refer to this star

as star c. Let the set of star c's leaf nodes be L(c). Two solution candidates are obtained

for star c. LetXc
P be the solution candidate when the parent node of star c is selected, and

Xc
NP be the candidate when the parent node of star c is not selected. We use the instance

in Figure 3.4 to illustrate the algorithm. For star 1, the central node is node 1 and its leaf

nodes are node 11 and 12 (i.e., c = 1 and L(1) = {11, 12}). Observe that each leaf node

of star 1 requires one neighbor. Therefore, in this star network, if the central node is se-

lected, all its leaf nodes have their threshold requirements satisfied. This is the situation i)

where node 1 is selected in the PIDS. However, there is another possibility. We can select

leaf nodes to satisfy the central node's threshold requirement. Also, we need to consider

if the central node's parent is included in the PIDS. Thus, the other possible solution is

to select node 11 and 12 in the PIDS no matter if node 1's parent node is include in the

PIDS. Given that the cost of node 1 is smaller than the total cost of node 11 and 12, we

have X1
P = X1

NP = {1}. It is similar to star 2 and 3. In star 2, one solution candidate is

to select node 2 and the other solution candidate is to select node 13 and 14. But now, we

have X2
P = X2

NP = {13, 14}. In star 3, only one solution candidate is to select node 3

because the threshold value is 3 and it has only two leaf nodes. But, when its parent node

is selected, it is possible to have node 15 and 16 instead of node 3 in the PIDS. Here, we

have X3
P = X3

NP = {3}.

Next, once a star's solution candidates are determined, it is compressed into a single

leaf node for its parent star subproblem. We need to decide the threshold value and the cost

of the compressed leaf node. For the threshold value of the compressed leaf node, if the

value is 1, it means the PIDS must contain either this compressed node or its parent node.

83

Node 1 has 3 neighbors and its threshold value is 2. Thus, when node 1 is not selected,

it is possible that its threshold requirement is satisfied by selecting its children node only.

Then, we set the threshold of the compressed node of star 1 as 0. For the same reason, we

set the threshold of the compressed node of star 2 as 0. However, node 3 has 3 neighbors

and its threshold value is 3. Thus, when node 3 is not selected, we must select node 4 in

the PIDS. But the cost of node 3 is smaller than the total cost of node 15 and 16. Then,

node 3 should be include in the PIDS for sure. Hence, we should have the threshold value

of the compress node based on star 3 as 0.

For the cost of the compressed leaf node, we need to compared the cost of the central

node to the cost of the solution consisting of leaf nodes. For star 1, the cost of node 1 is

1 which is smaller than 2, the cost of selecting node 11 and 12. Thus, the cost of the

compressed node of star 1 is 0 because node 1 should be included in the optimal solution

for sure. Otherwise, we would have to pay a bigger cost to cover the threshold requirement

of node 1, 11 and 12 by selecting node 11 and 12 in the PIDS. For the same reason, the

cost of the compressed node of star 3 is 0. But, in star 2, the cost of node 2 is bigger than

that of the total cost of node 13 and 14. Thus, from the perspective of node 5, if it needs

influence from node 2, it must pay the incremental cost of 1 which is calculated as the

difference between the cost of node 2 and the total cost of node 13 and 14.

After compress star 1, 2 and 3, we obtain a smaller tree in Figure 3.5(a). Star 4 is

similar to star 3. Its degree number is equal to its threshold value. But one of its leaf

nodes, node 3 has cost 0. It never hurts to include a free node in the PIDS. Hence, we

always select a zero cost node in the PIDS. The only solution candidate is to select node

4. But when its parent node is in the PIDS, it is possible to exclude node 4 but include

84

7

6
5

1 8 2

𝑏"
𝑔"

𝑖

3
1

2
2

0
0

1
1

1
0

2
3

1
2 4

3

0
0

9

2
1

10

17

1
1

1
1

7

6
5

𝑏"
𝑔"

𝑖

3
1

1
0

1
1

0
0 4 17

1
1

Figure 3.5: (a) After compress star 1, 2 and 3. (b) The last star.

node 3 and 10 in the PIDS. So, we haveX4
P = {3, 10} andX4

NP = {4}. The compressed

node of star 4 has threshold as 1 because its degree number is equal to its threshold value.

Also, the cost is 1 because the cost of node 4 is 1 unit larger than the total cost of node

3 and 10. In star 5, its threshold value is 2 and it has two leaf nodes. Note that node 2

has cost 1 but its threshold value is 0. That means when node 5 is not selected, we do not

need to select node 2. One solution candidate is to select node 5 in the PIDS. When node

5 is not selected, if node 5's parent node is in the PIDS, the solution candidate is to select

node 9. Otherwise, we need to selected node 2 and 9. Also, we have X5
P = X5

NP = {5}.

After compress star 5, the threshold is 1 and the cost is 0. For star 6, its threshold value is

2 and it has two leaf nodes. One of its leaf nodes, node 1 has 0 cost and 0 threshold value.

Thus, other than selecting node 6, no matter if the parent node is selected, the solution

candidate is to select node 1 and 8 given that we assume the zero cost node is always

included in the PIDS. Here, we have X6
P = {1} and X6

NP = {1, 8}. After compress star

6, the compressed node has cost as 1 and threshold as 0.

Now, we only have one star left. Star 7 has 4 leaf nodes. There are node 4, 5, 6 and

17. One solution is to select node 7. Although node 7 has threshold value as 1, the other

solution is to select node 4 and 17 because each of them has threshold value as 1. Node 7

85

has cost as 3 and the total cost of node 4 and 17 is 2. The optimal solution of star 7 is to

have node 4 and 17 in the PIDS.

Before discuss the backtracking procedure for identifying the final optimal solution,

we want to summarize the bottom to top procedure for solving star subproblems. So far,

we have seen three kinds of leaf nodes for a star. First, a leaf node has threshold as 1.

We call them core children, denoted by C(c). Second, a leaf node has both threshold and

cost as 0. We call them free children, denoted by F (c). Lastly, a leaf node has threshold

as 0 but it has a positive cost. We call them expensive children, denoted by E(c). For

example, in star 7, C(7) = {4, 17}, F (7) = {5} and E(7) = {6}. To solve a star, other

than situation i): selecting the central node in the PIDS. We have two more situations. We

assume nodes in F (c) are always selected. If the central node c is not selected, we must

select all nodes in C(c). After that, we only select nodes from E(c) when it is necessary.

Therefore, if the size of C(c) ∪ F (c) is smaller than the threshold number of node c, we

find the ascending order of the remaining nodes in E(c) based on their cost. Then, we

have situation ii): If node c's parent node is selected, the possible solution is the set of the

first gc − |C(c) ∪ F (c)| − 1 nodes in E(c) and C(c) ∪ F (c), denoted by Sc
gc−1. Lastly,

for situation iii): if neither the central node nor its parent node is selected, the possible

solution consists of the the first gc−|C(c)∪F (c)| nodes inE(c) andC(c)∪F (c), denoted

by Sc
gc . See star 5 and 6 in Figure 3.5)(a). If the size ofC(c)∪F (c) is greater than or equal

to the threshold number of node c, we have Sc
gc = Sc

gc−1 = C(c) ∪ F (c). See star 1 and 2

in Figure 3.4. Also, if deg(c) is equal to gc, we have Sc
gc = ∅ and S

c
gc−1 = L(c). See star

3 in Figure 3.4. Thus, we have three situations for a star subproblem. The central node is

selected in the first situation. However it is not selected in the other two situations. For

86

the last star, there are only two situations because there is no parent node any more.

Once we determine the candidates for current star subproblem, it is compressed into

a single leaf node for its parent star subproblem. For the threshold value, if this central

node's threshold is equal to its degree number in the original tree and its cost is bigger than

the total cost of nodes in Sc
gc−1, the updated threshold, g

′
c, is 1. See star 4 in Figure 3.5(a).

Otherwise, this compressed node has the updated threshold of 0 because if this central

node's threshold is smaller than its degree number in the original tree, it is possible to

select only its children nodes in the tree. If the central node's cost is not bigger than the

total cost of nodes in Sc
gc−1, it is preferred to select the central node.

Next, the updated cost of the compressed node is decided as follows: There are two

cases. If the central node's cost is no bigger than the total cost of those nodes in Sc
gc−1,

this new node has cost 0. Otherwise, this new node has cost equal to bc−
∑

l∈Sc
gc−1

b
′

l. For

the former case, it is always cheaper to select the central node for current star. So, this

new node has cost 0 because the parent star's central node could receive influence from

current star's central node in the final solution of the tree and it is free from the parent

star's point of view. For the latter case, if the central node is selected, then, the cost for the

current star is the cost of the central node. If the central node is not selected, depending

on whether its parent node is selected or not, the cost of the current star is the total cost

of those nodes in Sc
gc or that of the nodes in Sc

gc−1. But in all three cases, we have to at

least pay a cost equal to the total cost of those nodes in Sc
gc−1. Then, for the next star, if it

wants to receive influence from the current star, it must pay the incremental amount. For

each star, we have two solution candidates. One for the situation that the central node's

parent node is selected and one for not. Now, we can decide the two solution candidates

87

Algorithm 9 StarHandling
Require: a star c and let b′i = bi if node i is a leaf of the original tree.
1: if |C(c) ∪ F (c)| ≥ gc then
2: Sc

gc−1 = Sc
gc ← C(c) ∪ F (c).

3: else if deg(i) = gc then
4: Sc

gc−1 ← C(c) ∪ F (c) and Sc
gc ← ∅.

5: else
6: Sc

gc−1 ← C(c) ∪ F (c) ∪ E1(c).
7: Sc

gc ← C(c) ∪ F (c) ∪ E2(c).
8: end if
9: ΠSc

gc−1
=

∑
l∈Sc

gc−1
b
′

l and ΠSc
gc
=

∑
l∈Sc

gc
b
′

l.
10: if bc ≤ ΠSc

gc−1
then

11: Xc
P = Xc

NP ← c.
12: The compressed node's cost, b′c = 0 and the updated threshold g′

c = 0.
13: else
14: Xc

P ← Sc
gc−1. and Xc

NP ← argmin{b′c,ΠSc
gc
}.

15: The compressed node's cost, b′c = b
′
c − ΠSc

gc−1
.

16: If gc = d(c), the updated threshold g′
c = 1. Otherwise, g′

c = 0.
17: end if

based on the cost of the central node, Sc
gc and S

c
gc−1. We summarize the above procedure

in Algorithm 9 with the following notation: Let b′c be the compressed node's cost and g
′
c

be its updated threshold. Initially, we have b′c = bc and g
′
c = gc. Finally, let E1(c) and

E2(c) denote the cheapest gc−|F (c)|− |C(c)|−1 and gc−|F (c)|− |C(c)| nodes in E(c)

respectively.

After we obtain the solution of the last star which has the root node as its central

node, we invoke a backtracking procedure to choose the solution from the candidates for

each star subproblem and piece them together to obtain the final solution for this tree. In

the last star subproblem, between the central node c and those nodes in Sc
gc , we choose

the one with smaller cost as the solution. Now, for each leaf node in this star, we know

if it is selected or not and if its parent node is selected or not. For instance, if the central

node is selected, then, the central node sends influence to all its leaf nodes. Then, all stars

88

7

6
5

1 8 2

𝑏"
𝑔"

𝑖

3
1

2
2

1
2

1
1

3
2

2
3

1
2 4

3

1
3

9

2
1

10

11 12

17

13 14 15 16

1
1

1
1

1
1

1
1 1

1
1
1

1
1

1
1

Figure 3.6: The solution obtained by our DP algorithm.

with central node in L(c) will pick the candidate where the parent node is selected. If the

set Sc
gc is selected, then, for a node l in S

c
gc , we can proceed to nodes in L(l) and pick the

candidate where the parent node is selected. And, for nodes in L(c) \ Sc
gc , they will pick

the candidate where the parent node is not selected. With this information we can now

proceed down the tree, incorporating the partial solution at a node based on the solution of

its parent star. This backtracking procedure is described in Algorithm 10 and the recursive

function it uses is also there.

For star 1 in Figure 3.5(b), we have C(7) = {4, 17}, F (7) = {5} and E(7) = {6}.

Then, S7
1 = {4, 5, 17} and its cost is 2 which is smaller than node 1's cost. So, the last

star picks S7
1 as its solution. From there, star 6 choose X6

NP . Then, node 1 and node 8

are selected. Also, star 3 picks X3
P . Then, node 3 is selected. Lastly, star 2 picks X2

P ,

then, node 13 and 14 are selected. Figure 3.6 shows this optimal solution and the PIDS is

shaded.

Although it is possible to prove the correctness of this algorithm directly, we de-

fer the proof until the next section. There we will provide a tight and compact extended

89

Algorithm 10 SolutionBacktrack
Require: the last star and its solution X
1: X∗ ← X .
2: if X is r then
3: ∀l ∈ L(r) ∩NL call Pick-Comp(l, X∗, P).
4: else
5: ∀l ∈ L(r) \ Sgc call Pick-Comp(l, X∗, NP).
6: for l ∈ Sgc do
7: ∀h ∈ L(l) ∩NL call Pick-Comp(h, X∗, P).
8: end for
9: end if
10: C∗ =

∑
i∈X∗ bi

11: return C∗, X∗.
12: function Pick-Comp(c, X , Flag)
13: If Flag = P , X ′

= Xc
P . Otherwise, X

′
= Xc

NP .
14: X ← X ∪X

′ .
15: if X ′

= c then
16: ∀l ∈ L(c) ∩NL call Pick-Comp(l, X , P).
17: else
18: ∀l ∈ L(c) \X ′ call Pick-Comp(l, X , NP).
19: for l ∈ X

′ do
20: ∀h ∈ L(l) ∩NL call Pick-Comp(h, X , P).
21: end for
22: end if
23: return X .
24: end function

formulation for the PIDS problem, and use linear programming duality to prove its cor-

rectness.

Proposition 3.2. The PIDS problem on trees can be solved in O(|V |) time.

Proof. Proof of Proposition 3.2. There are at most |V | stars in a tree. For each star c, let

deg(c) denote its degree number. We need to find the gc cheapest children and it takes

time O(deg(c)) time (Finding the gcth order statistics can be done in O(deg(c)) by the

Quickselect method in Chapter 9 of Stein et al. [2009]. Then, it takes O(deg(c)) to go

through the list for collecting gc cheapest children.). For the whole tree, this is bounded

90

byO(|V |). In the backtracking procedure, we only pick the final solution and it takes time

O(|V |). Therefore, the running time for the dynamic algorithm is linear with respect to

the number of nodes.

3.3.2 A Tight and Compact Extended Formulation on Trees

In this section, we present a tight and compact extended formulation for the PIDS

problem on trees. The direct adaptations of Saxena's and Baïou's formulations are not

tight on trees as will be evident later. A novel edge splitting idea is needed to derive the

proposed formulation for the PIDS problem on trees. Furthermore, we also prove that the

DP algorithm in Section 3.3.1 gives an optimal solution for the PIDS problem on trees.

First, we present the adaptations of Saxena's and Baïou's formulations for the PIDS

problem. They are called natural form formulation (BIPsaxena) and the facility location

formulation (BIPbaïou) respectively. Here, we have the same decision variables as defined

in Section 3.1.2. Recall that if node i is selected in the PIDS, xi = 1. Otherwise, it is 0.

Also, we have yij and yji variables for each edge {i, j} in E. If node i sends influence to

node j, yij = 1. Otherwise, it is 0.

The BIPsaxena formulation is as follows:

(BIPsaxena) Minimize
∑

i∈V bixi (3.33)

Subject To
∑

j∈n(i) xj + gixi ≥ gi ∀i ∈ V (3.34)

xi ∈ {0, 1} ∀i ∈ V (3.35)

The BIPbaïou formulation is given below:

91

1

3 4

4
3

1
1

1
1

$%
&%

' 2

5

100
1

1
1

1

3 4

!" =
1
3

!& = 1 !' = 1

2

5
!(= 1

!) = 0

Figure 3.7: (a) A PIDS instance (b) A fractional solution returned by LPsaxena and LPbaïou

(BIPbaïou) Minimize
∑

i∈V bixi (3.36)

Subject To
∑

j∈n(i) yji + gixi = gi ∀i ∈ V (3.37)

xi − yij ≥ 0 ∀i ∈ V, j ∈ n(i) (3.38)

xi, yij ∈ {0, 1} ∀i ∈ V, j ∈ n(i) (3.39)

In the adaptation procedure, the main idea is changing the coefficient of xi and

the right hand side of constraint (3.2) and (3.5) in both Saxena's and Baïou's formulations,

respectively. They are changed from 1 to gi to reach constraint (3.34) and (3.37) reflecting

the fact that a node i in V can require gi neighbors instead of only 1 neighbor.

In Figure 3.7(a), we have a social network with five nodes. For each node i, its

weight and threshold value (bi and gi) are listed beside it. For node 1, b1 is 4 and g1

is 3. By relaxing the binary constraints in BIPsaxena and BIPbaïou, we have their linear

programming (LP) relaxation which are referred to as LPsaxena and LPbaïou, respectively. If

LPsaxena and LPbaïou are used to solve the instance in Figure 3.7(a), both of them return a

fractional optimal solution, x1 = 1
3
, x2 = 0, x3 = 1, x4 = 1 and x5 = 1, with objective

value 41
3
. However, given that this problem can be solved in polynomial time on trees, a

perfect integer programming formulation is desirable so that an integral optimal solution

may be obtained by solving its LP relaxation. Next, we present a perfect formulation for

92

! " ! "#

1

3 4

4
3

1
1

1
1

2

5

100
1

1
1

% & '

(

&)
*)

+

Figure 3.8: (a) An original edge (b) A transformed edge (c) Transformed graph of Fig-
ure 3.7.

the PIDS problem on trees.

To obtain the extended formulation, we first create a transformed graph based on

the given one. From the input graph G, we create a new graph Gt by adding one dummy

node to each edge inG. For each edge {i, j} ∈ E, insert a dummy node d. LetD denotes

the set of dummy nodes. Since the dummy nodes have effectively split each edge into

two, we replace each of the original edges {i, j} ∈ E by two edges {i, d} and {d, j} in

the new graph Gt. The procedure is showed in Figure 3.8(a) and Figure 3.8(b). Let Et

denote the set of edges in Gt (Gt = (V ∪ D,Et)). Figure 3.8(c) shows the transformed

graph of the one in Figure 3.7 based on this procedure. Dummy nodes are represented by

rectangles. Although the influence diffusion process is allowed for two time periods in the

transformed graph, the solution is equivalent to a solution with one time period diffusion

in the original graph given that the dummy nodes will not be selected in the PIDS.

For each node i ∈ V we define a binary decision variable xi that is 1 if node i

is selected in the PIDS and 0 otherwise (these are the node variables). For each edge

{i, d} ∈ Et, where i ∈ V and d ∈ D (notice Gt is bipartite and Et only contains edges

between the nodes in V andD), define two binary arc variables yid and ydi. They represent

the direction of influence. If node d sends influence node i, ydi is 1 and 0 otherwise.

93

For a node i ∈ V ∪ D, let a(i) denote the set of node i's neighbors in the transformed

graph Gt. Furthermore, after inserting the dummy node d into an edge {i, j}, we call the

resulting {i, d, j} as an extended edge. We can now write the following tight and compact

extended formulation for the PIDS problem and refer to it as the dummy node formulation

(BIPdummy):

(BIPdummy) Minimize
∑

i∈V bixi (3.40)

Subject To xi ≥ ydj ∀i ∈ V & {i, d, j} ∈ Et (3.41)

xi ≤ yid ∀i ∈ V, d ∈ a(i) (3.42)

−yid − ydi ≥ −1 ∀{i, d} ∈ Et (3.43)

∑
d∈a(i) ydi + gixi ≥ gi ∀i ∈ V (3.44)

xi ∈ {0, 1} ∀i ∈ V (3.45)

yid, ydi ∈ {0, 1} ∀{i, d} ∈ Et (3.46)

The objective function (3.40) is to minimize the total cost of the PIDS. The first

constraint (3.41) says that if node i is selected, then node d can send influence to node j

for an extended edge {i, d, j} in Et. Constraint (3.42) means that if node i is selected, it

sends influence to all its neighbors. Constraint (3.43) says either i sends influence to d or

d sends influence to i or neither send influence to the other. Constraint (3.44) ensures for

a node i in V , either it is selected or it has at least gi in coming arcs. Constraint (3.45) and

(3.46) are the binary constraints.

Proposition 3.3. BIPdummy is a valid formulation for the PIDS problem.

Proof. Proof of Proposition 3.3. First, given any feasible solution of the PIDS problem,

94

we can make it a solution for BIPdummy. Initially, we set all variables as 0. Based on the

feasible solution we are given, if a node i in V is selected, we set xi = 1. Then, we set

yid = 1 for all d in a(i). Also, we set ydj = 1 for all j in n(i) if node j is not selected

(i.e., xj = 0). Thus, constraints (3.41) and (3.42) are satisfied. Furthermore, constraint

(3.44) is satisfied because we are given a feasible solution. Lastly, only zero-one values

are assigned to all variables and at most one of yid and ydi is assigned as value 1 for an

edge {i, d} inEt. Therefore, constraints (3.43), (3.45) and (3.46) are respected. We obtain

a feasible solution for BIPdummy.

Second, it is easy to see that for a given feasible solution of BIPdummy, its x variable

part satisfies the definition of the PIDS problem because of constraints (3.41) and (3.44).

Next, in Theorem 3.4, we show that BIPdummy is a stronger formulation than BIPsaxena

and BIPbaïou by comparing the LP rexlation bounds of these three formulations. By relax-

ing binary constraints, the LP relaxation of BIPdummy is referred to as LPdummy and given

below:

(LPdummy) Minimize
∑

i∈V bixi (3.47)

Subject To (uij) xi − ydj ≥ 0 ∀i ∈ V & (i, d, j) ∈ Et (3.48)

(vid) yid − xi ≥ 0 ∀i ∈ V, d ∈ a(i) (3.49)

(wid) −yid − ydi ≥ −1 ∀{i, d} ∈ Et (3.50)

(zi)
∑

d∈a(i) ydi + gixi ≥ gi ∀i ∈ V (3.51)

xi ≥ 0 ∀i ∈ V (3.52)

yid, ydi ≥ 0 ∀{i, d} ∈ Et (3.53)

95

Let zdummy, zsaxena and zbaïou denote the optimal objective values of LPdummy, LPsaxena

and LPbaïou, respectively.

Theorem 3.3. In terms of the strength of LP relaxation, BIPsaxena and BIPbaïou are equiva-

lent. BIPdummy is at least as strong as those two. In other words, zdummy ≥ zsaxena = zbaïou.

Proof. Proof of Theorem 3.3. First, we show that LPsaxena and LPbaïou are equivalent.

Given any solution of LPsaxena, denoted by x∗, we set y∗ij = x∗
i for each i in V and j

in n(i). Then, because x∗ satisfies constraint (3.34) (
∑

j∈n(i) x
∗
j + gix

∗
i ≥ gi), we have∑

j∈n(i) y
∗
ji + gix

∗
i ≥ gi. Then, we can reduce the value of y∗ accordingly to make the

constraint binding. So, we have a feasible solution for LPbaïou. Furthermore, given any

feasible solution of LPbaïou, denoted by (x∗, y∗), we just need to take the x∗ part and it is

a feasible solution for LPsaxena.

Second, we show that the LPdummy is at least as strong as the LPsaxena. Given any

feasible solution of LPdummy, denoted by (x∗, y∗), we just need to take the x∗ part and it

is a feasible solution for LPsaxena. However, not all feasible solutions of LPsaxena can be

converted to a feasible solution for LPdummy. The counter example is the one shown in

Figure 3.7. As we mentioned earlier, x1 = 1
3
, x2 = 0, x3 = 1, x4 = 1 and x5 = 1 is

a feasible and optimal solution for LPsaxena with objective value 41
3
. But it is not feasible

for LPdummy. After transformation, LPdummy is applied to the instance in Figure 3.8(c). If

we want to satisfy constraint (3.51) for node 1, we must have ya1 = yb1 = 1 because

x2 = 0 and node 1 needs two incoming arcs given that x1 = 1
3
. However, y1a and y1b

should be at least 1
3
because x1 = 1

3
and constraint (3.49). Then, ya1 + y1a = 11

3
> 1

and y4b + yb4 = 11
3
> 1 which violate constraint (3.50). Solving LPdummy for the instance

96

in Figure 3.8(c), we get the integral solution x1 = 1, x2 = 0, x3 = 0, x4 = 0, x5 = 1,

y1a = 1, yab = 1, y1c = 1, yc2 = 1, ya3 = 1, ya4 = 1, y5d = 1 and the remaining y

variables are zeros with objective value 5.

More importantly, BIPdummy is the strongest formulation for the PIDS problem on

trees. It means that we can obtain an optimal integral solution by solving LPdummy instead

of BIPdummy. To prove it, the main idea is that given the primal feasible solution of LPdummy

from our DP algorithm, we construct a dual feasible solution for the dual problem of

LPdummy. Then, we show the complementary slackness (CS) conditions derived from this

pair of primal and dual formulations are satisfied by this pair of primal and dual solutions.

The dual of LPdummy is as follows:

(DLPdummy) Max
∑
i∈V

gizi −
∑

{i,d}∈Et

wid (3.54)

S.T. (xi)
∑

{i,d,j}∈Et

uij −
∑

{i,d}∈Et

vid + gizi ≤ bi ∀i ∈ V (3.55)

(yid) vid − wid ≤ 0 ∀i ∈ V, d ∈ a(i) (3.56)

(ydi) −uji − wid + zi ≤ 0 ∀d ∈ D, i ∈ a(d) (3.57)

uij ≥ 0 ∀i ∈ V & {i, d, j} ∈ Et (3.58)

vid, wid ≥ 0 ∀{i, d} ∈ Et (3.59)

zi ≥ 0 ∀i ∈ V (3.60)

We have uij , vid,wid and zi as dual variables for constraint sets (3.48), (3.49), (3.50),

and (3.51), respectively. We refer to the dual linear program as DLPdummy. Let conv(X)

denote the convex hull of feasible PIDS vectors x, and EPIDS denote the feasible region

of LPdummy.

97

Theorem 3.4. Given a tree, LPdummy has an optimal solution with x binary and

Projx(EPIDS) = conv(X).

Proof. Proof of Theorem 3.4. It should be clear that the solution of the algorithm in

Section 3.3.1 provides a feasible solution to BIPdummy and thus LPdummy. Recall that a(i)

is the set of node i's neighbors inGt and n(i) is that inG. For x variables, if a node i is in

the PIDS, x∗
i = 1. Otherwise, x∗

i = 0. To obtain y variables' values, if x∗
i = 1, set y∗id = 1

for all d in a(i). Then, for all j in n(i), if x∗
j = 0, set y∗dj = 1 where d is the dummy node

inserted in between node i and node j. For the remaining undecided edges {i, d}, we set

y∗id = 0 and y∗di = 0. Thus, we obtain a feasible solution for LPdummy based on the solution

returned by the DP algorithm. In this proof, we show that we can construct a dual feasible

solution to DLPdummy and this pair of primal and dual solutions satisfies the CS conditions

as follows:

(xi − ydj)uij = 0 ∀i ∈ V & {i, d, j} ∈ Et (3.61)

(yid − xi)vid = 0 ∀i ∈ V, d ∈ a(i) (3.62)

(1− yid − ydi)wid = 0 ∀{i, d} ∈ Et (3.63)

(gi −
∑

d∈n(i) ydi − gixi)zi = 0 ∀i ∈ V (3.64)

(bi −
∑

{i,d,j}∈Et
uji +

∑
{i,d}∈Et

vid − gizi)xi = 0 ∀i ∈ V (3.65)

(vid − wid)yid = 0 ∀i ∈ V, d ∈ a(i) (3.66)

(−uji − wid + zi)ydi = 0 ∀d ∈ D, i ∈ a(d) (3.67)

After an execution of the algorithm in Section 3.3.1, we have a primal solution

(x∗, y∗), the compressed cost b′ of non-leaf nodes (recall that for a leaf node i, it has

98

𝑖

𝑗

𝑢$% = 0

𝑢%$ = 0

𝑖

𝑗

𝑢$% = 0

𝑢%$ = 𝑏%)

𝑖

𝑗

𝑢$% = 𝑏%)

𝑢%$ = 0

Figure 3.9: Node j is a (a) free child (b) expensive child (c) core child of node i for u
variables.

b
′
i = bi), and the order of star subproblems in this execution. First of all, we always have

vid = wid for all {i, d} in Gt to satisfy the dual constraint (3.56) and CS condition (3.66).

Consequently, we can focus on the remaining CS conditions.

In DLPdummy, only u variables interact between two regular nodes. If we fix their

values first, we can isolate each regular node and assign v, w and z variables. Following

the order in the execution of the DP algorithm, we first assign value for all u variables.

Let node j be current node and node i be its parent node in the original tree G. We have

three cases as shown in Figure 3.9. First, if node j is a free child of node i, let uji = 0 and

uij = 0. Second, if node j is an expensive child of node i, uji = b
′
j and uij = 0. Third, If

node j is a core child of node i, let uji = 0 and uij = b
′
j . For the first case, CS condition

(3.61) for the extended edge {i, d, j} is satisfied because both uji and uij are zeros. But

for the latter two cases, u variables can take positive value. Hence, when it happens, the

corresponding primal constraint (3.48) for the extended edge {i, d, j} should be binding.

For the second case, we can focus on the node j because only uji could be positive by

construction. If xj = 0, then, the corresponding primal constraint (3.48) is binding. If

xj = 1, he primal constraint (3.48) is binding when the adjacent node i in the original

graph is not selected (i.e., xi = 0). Based on the DP algorithm in Section 3.3.1, if node

i is selected, we would not select any nodes from its core nor expensive children. If any

99

of its core or expensive child node are selected, node i would not be selected. Thus, we

have xi = 0 and can set ydi = 1. Then, the primal constraint (3.48) is binding. For the

last case, it is similar to the second case except that we focus on node i. Hence, when a

u variable has positive value, the corresponding primal constraint (3.48) for the extended

edge {i, d, j} is binding. Therefore, CS condition (3.61) is satisfied.

To set the remaining dual variables, we consider three cases for a node i in V . Case

1: If gi = deg(i), primal constraint (3.49), (3.50) and (3.51) are always binding. It is

because if node i is selected, yid = 1 for all d in a(i). Otherwise, ydi = 1 for all d

in a(i). Also, yid + ydi = 1 and
∑

d∈n(i) ydi + gixi = gi for both situations. So, CS

condition (3.62), (3.63) and (3.64) are satisfied and v, w and z should be nonnegative. We

set zi = max{uji : j ∈ n(i)}. For all d in a(i), wid = zi − uji. Thus, we have dual

constraints (3.57) binding and CS condition (3.67) is satisfied. Now, if this node i is a

core child for its parent (i.e. b′i > 0), the dual constraint (3.55) is binding. This is because

LHS of (3.55) is equal to:∑
j∈n(i)

(uij + uji)− deg(i)zi + deg(i)zi =
∑
j∈L(i)

b
′

j + b
′

i = bi

For the first term, what is because vid = wid = zi − uji for all d in a(i) and gi = deg(i).

From the first term to the second then to last one, follows from algebra and the way we

obtain b′i. Thus, CS condition (3.65) is satisfied. If this node i is a free child (i.e. b
′
i = 0)

for its parent node, we first calculate δ as the LHS of dual constraint (3.55) minus its RHS.

δ is a positive value from the way we defined a free child (b′i < πgi−1). Then, we pick a

dummy node k in a(i) and set wik = wik + δ. So, its corresponding dual constraint (3.57)

is satisfied. Also yki = 0 because xi = 1, yik = 1 due to the fact that a free node is always

100

selected in the DP algorithm. Dual constraint (3.55) is binding by construction because

LHS of (3.55) is equal to:∑
j∈n(i)

(uij + uji)− deg(i)zi + deg(i)zi − δ =
∑
j∈L(i)

b
′

j − δ = bi

So, CS condition (3.65) and (3.67) are satisfied. Hence, all CS conditions are satisfied.

In the remaining two cases, we have gi < deg(i). Case 2: If xi = 1, primal con-

straint (3.49), (3.50) and (3.51) are binding. So, CS condition (3.62), (3.63) and (3.64) are

satisfied and v, w and z are nonnegative. The dual constraint (3.55) needs to be binding.

For a node j in n(i), if uij > 0, it is a core child or the parent node. We first calculate

δ =
∑

j∈n(i) uij − bi and consider two situations. First, when δ ≥ 0, it means the LHS of

the dual constraint (3.55) exceeds its RHS already and we need to reduce the LHS. We

set zi = 0 and wid = 0 for all d in a(i). Then, we pick a dummy node k in a(i) and set

wik = wik + δ. In this way, dual constraint (3.57) is satisfied with yki = 0. Second, when

δ < 0, it means we need to increase the LHS of the dual constraint (3.55) and variable

zi can help here. Let zi = max{uji : j ∈ Sgi−1}. For a node j in n(i), if uji is smaller

than zi (i.e., it means j ∈ {Sgi−1 ∪ p}), we set wid = zi− uji and dual constraint (3.57) is

binding. Otherwise, wid = 0, dual constraint (3.57) is satisfied because uji ≥ zi. In both

situations based on the value of δ, dual constraint (3.55) is binding. The former situation

with δ ≥ 0 is obvious. For the latter situation with δ < 0, we have LHS of (3.55) equal

to: ∑
j∈Sgi−1∪p

(uij + uij)− gizi + gizi =
∑

j∈Sgi−1

b
′

j + b
′

i = bi

For the first term, what is because if a node j is in {Sgi−1 ∪ p}, vid = wid = zi − uji.

101

Otherwise, vid = 0. We go from the first term to the second one because uip = b
′
i, upi = 0

and vid = wid = zi. Going from the second term to the last one follows the algebra from

the way we obtain b′i. So, CS condition (3.65) and (3.67) are satisfied.

Case 3: If xi = 0, because a free child is always selected and a core child i requires

gi = deg(i), this node i is an expensive node for its parent p (b′i > 0). Let Ri be the set

of nodes who are selected and belong to n(i). Primal constraint (3.49) is binding (xi = 0

and yid = 0) and the CS condition (3.62) is satisfied. Also, vid should be nonnegative

for all d in a(i). If a node j is in Ri, primal constraint (3.50) is binding (ydi = 1) for the

{i, d} part of the extended edge {i, d, j} and wid should be nonnegative. Otherwise, it is

not binding (yid + ydi = 0) and wid must be 0. When |Ri| = gi, primal constraint (3.51)

is binding and zi must be nonnegative. When |Ri| > gi, primal constraint (3.51) is not

binding and zi must be 0. We set zi = max{uji : j ∈ Ri}. Here, because when node j

is a core child of node i, uji = 0. Also, because node i is an expensive child of node p,

upi = 0. Thus, zi takes positive value only when Ri contains expensive children. When

that happens, the size of Ri must be gi because we only select exactly the number of

necessary (i.e., gi−|C(i)|−|F (i)|) nodes from expensive children. Therefore, we have the

CS condition (3.64) fulfilled. For a node j in n(i), if uji is smaller than zi (i.e. j ∈ {Ri}),

let wid = zi − uji. Then, dual constraint (3.57) is binding. Otherwise, wid = 0 and dual

constraint (3.57) is satisfied because uji ≥ zi and ydi = 0. So, the CS conditions (3.63)

and (3.67) are satisfied.

Now we need to show that dual constraint (3.55) is satisfied given that xi = 0. We

have four situations based on Ri. For the first two situations, Ri does not contain any

expensive children. First, when p ∈ Ri and E(i) ∩Ri = ∅, LHS of (3.55) is equal to:

102

∑
j∈Ri

(uij + uji) =
∑

j∈Ri\p

b
′

j + b
′

i =
∑

j∈C(i)

b
′

j + b
′

i =
∑

j∈Sgi−1

b
′

i + b
′

i = bi

For the first term, what is because zi = 0 and vid = wid = 0 for all d in a(i). We

can go from the first term to the second term, it is due to the way we assign the values for

u variables and especially uip+upi = b
′
i. We can go from the second term to the third and

then to the fourth term, because a free child j has b′j = 0. So,
∑

j∈Sgi−1
b
′
i =

∑
j∈C(i) b

′
j =∑

j∈Ri\p b
′
j . The fourth term to the last one follows from the way we obtain b′i.

Second, when p /∈ Ri and E(i) ∩Ri = ∅, LHS of (3.55) is equal to:∑
j∈Ri

(uij + uji) =
∑
j∈Ri

b
′

j =
∑

j∈C(i)

b
′

j =
∑
j∈Sgi

b
′

i ≤ bi

For the first term, what is because zi = 0 and vid = wid = 0 for all d in a(i). We

can go from the first term to the second term, it is due to the way we assign the values for

u variables and especially uip+upi = b
′
i. We can go from the second term to the third and

then to the fourth term, because a free child j has b′j = 0. So,
∑

j∈Sgi
b
′
i =

∑
j∈C(i) b

′
j =∑

j∈Ri
b
′
j . The last inequality is due the DP algorithm otherwise. Given that xi = 0, the

CS condition (3.65) is satisfied.

For the third and fourth situations, Ri contains expensive children and |Ri| = gi.

Third, when p ∈ Ri and E(i) ∩Ri ̸= ∅, LHS of (3.55) is equal to:

∑
j∈Sgi−1∪p

uij + uij − (gi − 1)zi + gizi =
∑

j∈Sgi−1

b
′

j + b
′

i − zi + zi =
∑

j∈Sgi−1

b
′

i + b
′

i = bi

The first term follows because vid = wid = zi − uji if j ∈ {Sgi−1 ∪ p}. Otherwise, it

is 0. We can go from the first term to the second term because uip = b
′
i, upi = 0 and

103

vid = wid = zi. The second term to the third and then to the fourth term) follows from the

way we obtain b′i.

Fourth, when when p /∈ Ri and E(i) ∩Ri ̸= ∅, LHS of (3.55) is equal to:∑
j∈Sgi

(uij + uij)− gizi + gizi =
∑
j∈Sgi

b
′

j + b
′

i − zi

=
∑

j∈Sgi−1

b
′

j + b
′

(gi)
+ b

′

i − zi =
∑

j∈Sgi−1

b
′

i + b
′

i = bi

The first term follows because vid = wid = zi − uji if j ∈ {Ri ∪ p}. Otherwise, it is 0.

We can go from the first term to the second term because for the edge (i, d, p), uip = b
′
i,

upi = 0 and vid = wid = zi. We can go from the second term to the third and then to the

fourth term because zi = b
′

(gi)
= max{uji : j ∈ Sgi}. The fourth term to the last one,

follows from the way we obtain b′i. Therefore, all CS conditions are satisfied.

Finally, for the root node (which has no parent node), if it is selected, we follow

Case 2. Otherwise, it is similar to Case 3 although its dual constraint (3.55) is not binding.

104

7

6
5

1 8 2

𝑏"#

𝑖

3

1
E

0
F

1
C
1
E

1
C

0
F 4

3
0
F9

2
C 10

11 12

17

13 14 15 16

1
C

1
C

1
C

1
C

1
C

1
C

1
C

𝑛 𝑜
𝑝

𝑚

𝑔 ℎ 𝑖 𝑗 𝑘 𝑙

𝑎
1
C

𝑏 𝑐 𝑑 𝑒 𝑓

(a)

u1,11 = 1 u11,1 = 0 w1a = 1 w6h = 0 z1 = 0
u1,12 = 1 u12,1 = 0 w1b = 0 w6m = 0 z2 = 0
u1,6 = 0 u6,1 = 0 w1g = 0 w7m = 0 z3 = 0
u2,13 = 1 u13,2 = 0 w2c = 0 w7n = 0 z4 = 1
u2,14 = 1 u14,2 = 0 w2d = 0 w7o = 0 z5 = 0
u2,5 = 1 u5,2 = 0 w2i = 0 w7p = 0 z6 = 0
u3,15 = 1 u15,3 = 0 w3e = 0 w8h = 0 z7 = 0
u3,16 = 1 u16,3 = 0 w3f = 0 w9j = 0 z8 = 1
u3,4 = 0 u4,3 = 0 w3k = 0 w10l = 0 z9 = 1
u4,10 = 1 u10,4 = 0 w4k = 1 w11a = 0 z10 = 1
u4,7 = 0 u7,4 = 1 w4l = 1 w12b = 0 z11 = 1
u5,9 = 2 u9,5 = 0 w4o = 0 w13c = 0 z12 = 1
u5,7 = 0 u11,1 = 0 w5i = 1 w14d = 0 z13 = 1
u6,8 = 1 u8,6 = 0 w5j = 0 w15e = 0 z14 = 1
u6,7 = 1 u7,6 = 0 w5n = 0 w16f = 0 z15 = 1
u7,17 = 1 u17,7 = 0 w6g = 0 w17p = 0 z16 = 1

z17 = 1

(b)

Figure 3.10: A PIDS problem instance for Theorem 3.4. and Dual variable values.

In Figure 3.10(a) is the transformed graph and its solution based on the instance

in Figure 3.6. The number beside a node is its b′ value and the letter "C", "E" and "F "

represent the node is a core, expensive and free child of its parent node, respectively. On

the right part of Figure 3.10, it has the dual variables' values. Because wid = vid, we only

105

show wid here. In this instance, first of all, we set up all u variables. They are shown in

the first two columns in Figure 3.10(b).

For Case 1, we have node 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17. Following the

procedure in Theorem 3.4, for node 3, z3 = max{u4,3, u15,3, u16,3} = max{0, 0, 0} = 0.

Then, w3e = w3f = w3k = v3e = v3f = v3k = 0. Similarly, we can set up the dual

variables for the rest Case 1 nodes. For Case 2, we have node 1 and 5. Using node 1

as the example, we first calculate δ = u1,11 + u1,12 + u1,6 − b1 = 1 + 1 + 0 − 1 = 1.

Then, z1 = 0 and w1a = w1b = w1g = 0. Next, we pick the dummy node a and set

w1a = w1a + δ = 1. Thus, w1a = v1a = 1 and w1b = w1g = v1b = v1g = 0. It is similar

for node 5. For Case 3, we have node 2, 6 and 7. For node 2, its R2 = {5, 13, 14}. So,

z2 = max{u5,2, u13,2, u14,2} = max{0, 0, 0} = 0. Then, we have w2c = w2d = w2i =

v2c = v2d = v2i = 0. Similarly, we can apply the procedure to node 6 and 7. The objective

value is 9 which is exactly the same as that of the solution obtained by the DP algorithm.

3.3.3 Projection of the Dummy Node Formulation

In this section, we project the dummy node formulation onto natural node space

by projecting out arc variables. In other words, we obtain a formulation which only has

the x variables by projecting out all y variables. Usually, there are two approaches for

projecting out variables. One approach is Fourier-Motzkin elimination (which can easily

be applied to project out the x variables). A more elegant method, proposed by Balas

and Pulleyblank [1983], is based upon a theorem of the alternatives. We will follow this

approach.

106

Given the dummy node formulation, we first replace constraint (3.50) by its equality

form. It is easy to check that the LP relaxation of this new form is equivalent to that of

the old one. Given a feasible solution (x, y) of the new form, it is a feasible solution for

the old form already because the old form is a relaxation of the new one. Give a solution

(x, y) for the LP relaxation of the old form, for an edges {i, d} where yid + ydi < 1, we

can set yid = 1 − ydi to have this constraint binding. Thus, we obtain a solution for the

LP relaxation of the formulation where constraint (3.50) is in its equality form and the

objective value remains the same.

Next, we substitute out all yid variables by 1− ydi because yid + ydi = 1. Then, we

have the following formulation and denote its feasible region as Pdummy.

Minimize
∑

i∈V bixi (3.68)

Subject To (uid) −ydi + xj ≥ 0 ∀j ∈ V & (j, d, i) ∈ Et (3.69)

(vid) −ydi − xi ≥ −1 ∀i ∈ V, d ∈ a(i) (3.70)

(wi)
∑

d∈a(i) ydi + gixi ≥ gi ∀i ∈ V (3.71)

0 ≤ xi ≤ 1, ydi ≥ 0 ∀i ∈ V & d ∈ a(i) (3.72)

Based on Theorem 2 in Balas and Pulleyblank [1983], the cone W is described by

the following linear inequalities:

wi − uid − vid ≤ 0 ∀i ∈ V & d ∈ a(i) (3.73)

wi ≥ 0, uid ≥ 0, vid ≥ 0 ∀i ∈ V & d ∈ a(i) (3.74)

where u, v andw are dual multipliers corresponding to constraints (3.69), (3.70) and (3.71)

107

respectively. If Pdummy can be represented as {Ax + Gy ≥ b}. Then, for any feasible

vector (w,u, v) to W , it defines a valid inequality: (w, u, v)TAx ≥ (w, u, v)Tb in the

space of the node (x) variables. Furthermore, the projection of Pdummy is defined by the

valid inequalities defined by the extreme rays ofW .

Theorem 3.5. The vector r = (w,u, v) ∈ W is extreme if and only if there exists a positive

α such that it is in one of these three cases:

1. uid = α for one {i, d} ∈ Et. Other (w, u, v) are 0.

2. vid = α for one {i, d} ∈ Et. Other (w,u, v) are 0.

3. wi = α for one i ∈ V . Then for d ∈ a(i), either uid = α or vid = α. Other (w, u, v)

are 0.

Proof. Proof of Theorem 3.5. Recall that a polyhedral coneC is the intersection of a finite

number of half-spaces through the origin, and a pointed cone is one of which the origin

is an extreme point. A ray of a cone C is the set R(y) of all non-negative multipliers of

some y ∈ C, called the direction (vector) of R(y). A vector y ∈ C is extreme, if for any

y1, y2 ∈ C, y = 1
2
(y1 + y2) implies y1, y2 ∈ R(y). A ray R(y) is extreme if its direction

vector y is extreme.

Sufficiency. Let r ∈ W be of the form Case 1 and assume that r = 1
2(r

1 + r2) for

some r1, r2 ∈ W. Then, except u1
id and u2

id, all other directions are 0. Then, r1, r2 are in

R(r). So, r is extreme.

Case 2 is similar to Case 1.

For Case 3, let r ∈ W be of the form Case 3 and assume that r = 1
2(r

1 + r2) for

108

1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐

𝒓: 	𝑢)* = 𝛼),𝑣/0 = 𝛼/. 𝒓𝟏: 	𝑢)* = 2𝛼). 𝒓𝟐:𝑣/0 = 2𝛼/.

Figure 3.11: Theorem 3.5 necessity proof: T = ∅ and |Su|+ |Sv| > 1 example.

some r1, r2 ∈ W. So, for 0 components in r, their corresponding components in r1 and r2

are also 0. Then, we have w1
i +w2

i = 2α and p1id+p2id = 2α where pkid, k = 1, 2, represent

the positive component between uk
id and vkid, k = 1, 2, for all d ∈ a(i). Then, if there is

a pair d1 and d2, we have p1id1 > p1id2 if and only if p
2
id1

< p2id1 . But the constraint (3.73)

imposes that wk
i ≤ pkid, k = 1, 2. Hence, pkid1 = pkid2 = αk, k = 1, 2, for all d1, d2 ∈ a(i).

Otherwise, the constraint (3.73) would be violated. Therefore, r1, r2 are in R(r). So, r is

extreme.

Necessity. Let r be an extreme vector of W. Let T = {i ∈ V : wi > 0}, Su =

{{i, d} ∈ Et : uid > 0} and Sv = {{i, d} ∈ Et : vid > 0} based on this r. First, we

consider the situation where T = ∅. If |Su|+ |Sv| > 1, we can have r = 1
2(r

1 + r2). Let

r1 contain all but one positive components in r and double their values. Let r2 contains

the one positive component omitted by r1 and double its value. So, if |Su|+ |Sv| > 1, r is

not extreme, contrary to the assumption. We conclude that if T = ∅, then |Su|+ |Sv| = 1.

Thus r is either in Case 1 or in Case 2. In Figure 3.11, it shows an example for this

situation. The bold line represents the positive u and v components in a vector r and the

positive components are shown below the pictures.

Now consider the case when T ̸= ∅. When |T | > 1, without loss of generality, let

i ∈ T . Then, r1 has value w1
i = 2wi and u1

id = 2uid, v1id = 2vid for all d ∈ a(i) and 0s

109

1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐

𝒓:𝑤(= 𝛼+,𝑢(. = 𝑎/
𝑤0 = 𝛼(,𝑣02 = 𝛼0.

𝒓𝟏:	𝑤(= 2𝛼+,𝑢(. = 2𝛼/. 𝒓𝟐:𝑤0 = 2𝛼(,𝑣02 = 2𝛼0.

Figure 3.12: Theorem 3.5 necessity proof: |T | > 1 example.

1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐

𝒓:𝑤(= 𝛼+,𝑢(. = 𝑎/,𝑣+. = 𝛼(. 𝒓𝟐:= 2𝛼(.𝒓+:𝑤(= 2𝛼+,𝑢(. = 2𝑎/.

Figure 3.13: Theorem 3.5 necessity proof: |T | = 1 and Sj ̸= ∅ example.

for other components. Then, let r2 be 2r − r1. Hence, we have r = 1
2(r

1 + r2). Also, r2

does not have any positive components associated with node i. Thus, r1, r2 are different

in at least one direction. So, if |T | > 1, r is not extreme, contrary to the assumption.

In Figure 3.12, it shows an example for this situation. The shaded nodes represent the

positive w components in a vector r.

When |T | = 1 and i ∈ T , define Sj = {{j, d} ∈ Et : pjd > 0 & j ∈ V \ i}.

If Sj ̸= ∅, let r1 have w1
i = 2wi and u1

id = 2uid, v1id = 2vid for all d ∈ a(i) and 0s in

other components. Then, let r2 be 2r− r1. Hence, we have r = 1
2(r

1 + r2). Also, r2 has

the positive components in Sj but r1 does not. Thus, r1, r2 are different in at least one

direction. So, if |T | = 1 and Sj ̸= ∅, r is not extreme, contrary to the assumption. In

Figure 3.13, it shows an example for this situation and Sj = {{1, a}}.

When |T | = 1 and i ∈ T , define S1 = {{i, d} ∈ Et : uid > 0 ⊕ vid > 0}

where only one of u and v variables for an edge {i, d} is positive and S2 = {{i, d} ∈

110

1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐

𝒓:𝑤(= 𝛼+,𝑢(. = 𝑎/,𝑣(. = 𝛼(𝒓𝟏:	𝑤(= 2𝛼+,𝑢(. = 2𝛼+. 𝒓/:𝑢(. = 2𝑎/ − 2𝛼+,𝑣(. = 𝛼(− 2𝛼+.

Figure 3.14: Theorem 3.5 necessity proof: |T | = 1 and S2 ̸= ∅ example.

1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐 1

3 4

2

5

𝑎 𝑏 𝑑

𝑐

𝒓: 𝑤(= 𝛼+,𝑢(. = 𝑎+ + 𝛽. 𝒓𝟐 ≔ 2𝛽.𝒓+:𝑤(= 2𝛼+,𝑢(. = 2𝑎+.

Figure 3.15: Theorem 3.5 necessity proof: |T | = 1 and S+ ̸= ∅ example.

Et : uid > 0 & vid > 0} where both u and v variables for an edge {i, d} are positive.

Suppose S2 ̸= ∅, then, we define α1 = 2min{wi, uid, vid : {i, d} ∈ S2} and make r1 have

w1
i = α1. For {i, d} ∈ S2, we have u1

id = α1
i . Also, for {i, d} ∈ S1, if uid > 0, we have

u1
id = α1. Otherwise, we have v1id = α1. The rest components are 0s. Then, let r2 be

2r − r1. Hence, we have r = 1
2(r

1 + r2). Also, r1 does not have any edges which have

both u and v variables positive. Thus, r1, r2 are different in at least one direction. So, if

|T | = 1 and S2 ̸= ∅, r is not extreme, contrary to the assumption. Thus we must have

|S1| = deg(i) where deg(i) is node i's degree number. Otherwise the constraint (3.73)

would not be respected. In Figure 3.14, it shows an example for this situation. We have

S2 = {{3, a}} and α1 is the smallest value.

Next, if |T | = 1 and |S1| = deg(i), let wi = α and define S+ = {{i, d} : pid > α}.

When S+ ̸= ∅, without loss of generality, let {i, d} ∈ S+ and uid > 0, we can make r1

have u1
id = 2(uid − α) and 0s in other components. Then, let r2 be 2r − r1. Hence, we

have r = 1
2(r

1 + r2). Also, r1 has only one positive component which is not wi. Thus,

111

r1, r2 are different in at least one direction. So, if |T | = 1, |S1| = deg(i) and S+ ̸= ∅, r is

not extreme, contrary to the assumption. Then, we must have S+ = ∅. In Figure 3.15, it

shows an example for this situation. We have S+ = {{3, a}} and β is a positive value.

This proves that if T ̸= ∅, we must have |T | = 1, |S1| = deg(i) and S2 = Sj =

S+ = ∅,. Thus, r is in Case 3.

Applying Theorem 2 in Balas and Pulleyblank [1983], Case 1 and Case 2 extreme

directions give the trivial constraints: 0 ≤ xi ≤ 1 for all i ∈ V . Case 3 extreme directions

generate the following valid inequality in the original graph G:

(gi − k)xi +
∑
j∈S

xj ≥ gi − k ∀i ∈ V & k = 0, 1, . . . , deg(i) & S ∈ C
deg(i)−k
i .

Here, we use C
deg(i)−k
i to denote the set of all combinations with deg(i) − k elements

from node i's neighbors and S is one combination picked from C
deg(i)−k
i . For a given i,

if k ≥ gi, Case 3 extreme directions generate constraints that are redundant. Thus, the

projection of Pdummy onto the x space is the following one:

gixi +
∑

j∈n(i) xj ≥ gi ∀i ∈ V (3.75)

(gi − k)xi +
∑

j∈S xj ≥ gi − k ∀i ∈ V & k = 1, 2, . . . , gi − 1 (3.76)

& S ∈ C
deg(i)−k
i

0 ≤ xi ≤ 1 ∀i ∈ V (3.77)

Constraint (3.75) is obtained when k = 0. We list it separately to emphasize that

constraint (3.75) is same to constraint (3.34) in BIPsaxena. Also, constraint (3.76) is the

112

new one obtained from the projection. To illustrate this set of valid inequalities, using

node 1 in Figure 3.7 as an example, we have g1 = 3 and n(i) = {2, 3, 4}. So, when

k = 1, C3−1=2
1 = {{2, 3}, {2, 4}, {3, 4}}. When k = 2, C3−2=1

1 = {{2}, {3}, {4}}.

Except those lower and upper bound constraints, node 1's corresponding constraints in

the projection are as follows:

3x1 + x2 + x3 + x4 ≥ 3, 2x1 + x2 + x3 ≥ 2, 2x1 + x2 + x4 ≥ 2,

2x1 + x3 + x4 ≥ 2, x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x4 ≥ 1

Intuitively, for a node i and given the k value, the set of inequalities (3.76) can be in-

terpreted as either node i is selected or at least gi − k nodes are selected among node

i's (deg(i) − k) neighbors. We recognize that the set of valid inequalities (3.76) is ex-

ponential many. The following proposition shows that the separation problem can be

solved in polynomial time. Let δ denote the largest degree number among all nodes in V

(δ = max{deg(i) : i ∈ V }).

Proposition 3.4. The valid inequalities (3.76) can be separated in O(|V |δ log δ) time.

Proof. Proof of Proposition 3.4. Given a fractional solution x∗, a node i in V and a specific

k where k = 1, 2, . . . , gi− 1, the corresponding separation procedure of inequality (3.76)

can be formulation as the following optimization problem:

Minimize (gi − k)x∗
i +

∑
j∈n(i) x

∗
jzj (3.78)

Subject To
∑

j∈n(i) zj = deg(i)− k (3.79)

zj ∈ {0, 1} ∀j ∈ n(i) (3.80)

113

Algorithm 11 Separation algorithm for inequality set (3.76)
Require: A solution x∗ and a PIDS instance.
1: for i ∈ V do
2: Let S ← n(i).
3: for k = 1, 2, . . . , gi − 1 do
4: letmk = argmax{x∗

i : i ∈ S} and S ← S \mk.
5: if (gi − k)x∗

i +
∑

j∈S x
∗
j < gi − k then

6: Add (gi − k)x∗
i +

∑
j∈S x

∗
j ≥ gi − k.

7: else
8: Break
9: end if
10: end for
11: end for

For each node i in V , if node i is selected, the binary variable zi is 1. Otherwise, it is

0. If the objective value is smaller than gi − k, we have a violated constraint. Otherwise,

we either change the value of k or move to another node i. This optimization problem has

one constraint and can be solved by taking the deg(i) − k smallest values of x∗
j among

node i's neighbors (j ∈ n(i)). We can use Algorithm 11 to separate the whole inequality

set (3.76).

First, the solution x∗ satisfies gix∗
i +

∑
j∈S x

∗
j ≥ gi for all i in V . For the inequality

(gi − k)x∗
i +

∑
j∈S x

∗
j < gi − k, as k increases by 1, the LHS decreases by x∗

i + x∗
mk

where x∗
mk

is the kth largest value of x∗
j for all j in n(i) and the RHS decreases by 1. For

the current iteration k0, if it is first time that (gi − k0)x
∗
i +

∑
j∈S x

∗
j > gi − k0. Then,

it means x∗
i + x∗

mk0
< 1. Then, in the future iteration, we will not find any violated

constraint for this particular i because x∗
i + x∗

mk
≤ x∗

i + x∗
mk0

when k > k0. Therefore, in

Algorithm 11, we use Break in line 8. For each node, we sort its neighbors which takes

at most O(δ log δ) steps and compare value at most δ times. The process is repeat for V

nodes. So, the overall time complexity is O(|V |δ log δ).

114

3.3.4 Polyhedral Study of the PIDS Problem on General Graphs

In this section, we conduct a polyhedral study of the PIDS problem on general graphs

based on the projection in Section 3.3.3. BIPdummy is not only a perfect formulation for

tress, but also valid on general graphs as we shown in Proposition 3.3. Consequently, the

following formulation based on the projection of BIPdummy is valid on general graphs as

well.

(BIPprojection) Min
∑

i∈V bixi (3.81)

S.T. (gi − k)xi +
∑

j∈S xj ≥ gi − k ∀i ∈ V (3.82)

& k = 0, 1, . . . , gi − 1 & S ∈ C
deg(i)−k
i

xi ∈ {0, 1} ∀i ∈ V (3.83)

This formulation is referred to as BIPprojection and its LP relaxation is referred to as LPprojection.

Let Pprojection denote the feasible area of LPprojection. Also, let 1 ∈ R|V| denote the vector

that contains all 1s and ei ∈ R|V | denote the vector that has 1 in ith position but 0s in all

other positions. First of all, we show Pprojection has full dimensions.

Theorem 3.6. Pprojection is full dimensional. In other words, the dimension of Pprojection is

|V |.

Proof. Proof of Theorem 3.6. We prove this by showing that there are |V | + 1 affinely

independent points in Pprojection. The following procedure is used to find these |V | + 1

points: The first point is x0 = 1. Then, we have another |V | points: xi = 1 − ei for

all i in V . Then, we obtain |V | linearly independent points by (xi − x0) = −ei for all

115

i in V . Hence, x0 and xi for all i in V are affinely independent. Furthermore, all these

points are feasible in Pprojection. First, x0 means we pick all nodes. Thus, it is feasible.

Second, xi means we pick all nodes but node i. Then, node i's threshold requirement is

satisfied because all its neighbors are in the PIDS. Therefore, Pprojection has |V |+1 affinely

independent points and its dimension is |V |.

Knowing the dimension of Pprojection, we study facet-defining conditions of the in-

equalities for Pprojection. We start with the trivial constraints in LPprojection. We show that

xi ≤ 1 for all i in V are facet defining and xi ≥ 0 for all i in V define faces for Pprojection.

Then, we present the conditions under which xi ≥ 0 for all i in V are facet defining for

Pprojection.

Proposition 3.5. The trivial constraint xi ≤ 1 for all i in V are facet defining for Pprojection.

Proof. Proof of Proposition 3.5. Given a node i in V , when xi = 1, we can find the

following |V | affinely independent points: The first one is x0 = 1. Then, we can have |V |

more as xj = 1 − ej for all j in V \ i. From these points, we can otain |V | − 1 linearly

independent points as (xj − x0) = −ej for all j in V \ i. Hence, x0 and xj for all j in

V \i are affinely independent. They are feasible points as showed in Theorem 3.6. Hence,

xi ≤ 1 is a facet of Pprojection.

Proposition 3.6. For a node i in V, its corresponding trivial constraint xi ≥ 0 is a face

of Pprojection. Furthermore, xi ≥ 0 is facet defining for Pprojection if the following conditions

are satisfied:

1. gi ≤ deg(i)− 1.

116

𝑘" 𝑘#

𝑘$

	𝑘&

𝑘'

𝑗#

𝑗$

𝑗&

𝑗'

𝑖

1

2

3

3

2

𝑺

1

2

2

1

1

Set Member

ai 2
S {j1, j2, j3}
Nd {j3, j4}
Sd {j3}
H {k2, k3}
H+ {k2, k3, j4}

Figure 3.16: Illustration for notations in facet-defining proof of inequality (3.84).

2. For a node j in n(i), if it does not share neighbors with node i (n(j) ∩ n(i) = ∅),

we need gj ≤ deg(j)− 1. Otherwise, gj ≤ deg(j)− 2

Proof. Proof of Proposition 3.6. xi ≥ 0 is satisfied with equality because we have the

feasible point xi = 1− ei. Thus, xi ≥ 0 is a face of Pprojection. When Condition 1 and 2 of

Proposition 3.6 are satisfied, we can show xi ≥ 0 is a facet of Pprojection. Let F (i) = {j ∈

n(i) : gj ≤ deg(j)−1 if n(i)∩n(j) = ∅ & gj ≤ deg(j)−2 if n(i)∩n(j) ̸= ∅}. It is the

subset of node i's neighbors which satisfy Condition 2. Then, we can find the following

points: xi = 1 − ei. Then, xj = xi − ej for all j in F (i), and xk = xi − ek for all k in

{V \ n(i)+} where n(i)+ = n(i) ∪ i. First, if gi = deg(i), xj = xi − ej for all j in F (i)

are not feasible for Pprojection because node i needs all its neighbors. But they are feasible

when gi ≤ deg(i)− 1. Second, xi and xk for all k in {V \ n(i)+} are feasible and distinct

points in Pprojection. Therefore, we have |V | − |n(i)| − 1 + |F (i)| + 1 feasible points in

Pprojection. Then, xj−xi = −ej for all j in V \n(i)+∪F (i) are linearly independent. When

|F (i)| = |n(i)|, we have |V | affinely independent points and xi ≥ 0 is facet defining for

Pprojection.

Next, we study the valid inequality in the form of (3.82) and present the conditions

117

under which it is facet defining. Given an inequality in the form of (3.82) with the specific

values of i and k, and the setS, wewrite it in the following form for the ease of explanation:

aixi +
∑
j∈S

xj ≥ ai (3.84)

where ai = gi − k, and ai ≤ |S|. In Figure 3.16, we have one example which is used to

illustrate the notations we use. The number beside a node is its threshold value. Here, we

have ai = 2 and S = {j1, j2, j3}. In order to show when it is facet defining, we first prove

the following lemmas:

The first lemma states that if xi = 1 and the given inequality is binding, for a node

j in S, it must have at least gj neighbors which are not in S. Thus, for a node j in S,

xj = 0 is allowed for a feasible point in Pprojection. Hence, the valid inequality in the form

of (3.84) can be binding when xi = 1.

Lemma 3.1. If the given inequality (3.84) is satisfied with equality when xi = 1, we must

have the following condition: gj ≤ deg(j)− |n(j) ∩ S| for all j in S.

Proof. Proof of Lemma 3.1. For a node j in S, given that xi = 1 and the inequality is

binding, we cannot select node j. Thus, to satisfy node j 's threshold requirement, gj of

node j 's neighbors should be selected (recall that xi = 1 and node i is adjacent to node

j). So, we need to make sure that among node j 's neighbors, those not in S are enough to

satisfy node j 's threshold requirement (gj ≤ deg(j) − |n(j) ∩ S|). Otherwise, it means

node j has not enough neighbors except those in S to satisfy its threshold requirement.

Then, we must select some nodes from S to obtain a feasible point in Pprojection. Then, the

118

inequality is not binding. A contradiction is found.

Next, we consider the situation that xi = 0. The second lemma states that if xi =

0 and the given inequality is binding, among the members in S, the number of those

requiring all their neighbors is at most ai. Let Nd = {j ∈ n(i) : gj = deg(j)} and

Sd = Nd ∩Nd. In Figure 3.16, we have Nd = {j3, j4} and Sd = {j3}.

Lemma 3.2. If the given inequality is satisfied with equality by setting xi = 0, we must

have the following condition: |Sd| ≤ ai.

Proof. Proof of Lemma 3.2. If this condition is violated, then, |Sd| > ai. Thus, given that

xi = 0, we must have xj = 1 for all j in Sd. Then, aixi +
∑

j∈S xj ≥
∑

j∈Sd
xj > ai. It

is a contradiction.

In Lemma 3.3, we show that both Lemma 3.1 and 3.2 are necessary.

Lemma 3.3. If the given inequality (3.84) is facet defining, it must satisfy Lemma 3.1

and 3.2.

Proof. Proof of Lemma 3.3. First, if the given inequality violates both Lemma 3.1 and

3.2, it cannot be facet defining because it would not satisfy inequality (3.84) with equality.

Second, if it only satisfies Lemma 3.1 but not Lemma 3.2, we can only have the inequality

binding when xi = 1. Also, at most |V | − |S| affinely independent points in Pprojection can

be found because xj = 0 for all j in S. Third, if it only satisfies Lemma 3.2 but not

Lemma 3.1, we can only have the inequality binding when xi = 0. then, at least one node

in S, denoted by j, violates the condition that gj ≤ deg(j)−|n(j)∪S|. Among neighbors

of node j, the number of those not in S is less than gi. Thus, if node j is not selected, at

119

least one other nodes in S must be selected given that xi = 0 and node i is adjacent to

node j. Then, we can find at most |V | − 1 affinely independent points.

Given Lemma 3.3, we have the following two situations for a binding inequal-

ity (3.84): First, when xi = 1, we have xj = 0 for all j in S. Then, except node i,

for a node k adjacent to a node j in S, if it has more than deg(k)− gk neighbors in S, we

must select node k (i.e., xk = 1) in a feasible point in Pprojection. We useH to denote the set

of this kind of nodes. In Figure 3.16, for node k2, deg(k2)− gk2 = 1 and |n(k2)∩S| = 2.

Also, for node k3, deg(k3) − gk3 = 0 and |n(k3) ∩ S| = 1. Thus, H = {k2, k3}. Hence,

we can have T1 = |V | − |S| − |H| + 1 points in Pprojection in the following way: Let

x0 = 1−
∑

j∈S ej . Then, let xj = x0 − ej for all j in {V \ (S+ ∪H)}.

Second, when xi = 0, we have xj = 1 for all j in Nd because they require all their

neighbors but node i is not selected (recall that Nd = {j ∈ n(i) : gj = deg(j)}). Then,

we need to choose ai−|Sd| nodes from the set S \Sd to have this inequality satisfied with

equality. Let Cai−|Sd|
S\Sd

be the set of all combinations. Also, similarly toH , we define a set

H+. For a node k inH+, it is adjacent to a node in S+ but not in S+ and it has more than

deg(k)−gk neighbors in S+. Thus, nodes inH+ must be selected if we do not selected any

nodes in S+. In Figure 3.16, in addition to node k2 and k3, node j4 has deg(j4)− gk3 = 0

and |n(j3)∩S+| = 1. Thus,H+ = {k2, k3, j4}. However, some nodes inH+ do not have

to be selected in a feasible point of in Pprojection. Given aC inCai−|Sd|
S\Sd

, for a node k inH , we

know all nodes in {C∪Sd} are selected. Therefore, if this node k has less than or equal to

deg(k)−gk+|n(k)∩{C∪Sd}| neighbors inS, we do not have to select node k (i.e., xk = 1)

in a feasible point in Pprojection. We useH(C) to denote the set of this kind of nodes. Then,

120

we can have following points in Pprojection: for aC inCai−|Sd|
S\Sd

, xC0 = 1−
∑

j∈S+\{C∪Sd} ej .

Next, let xCj = xC0 − ej for all j in {H(C) ∪ V \ (S+ ∪ H+}. Then, we can find

T0 =
∑

C∈Cai−|Sd|
S\Sd

(|H(C)|+ |V | − |S+| − |H+|+ 1) points in Pprojection.

If T0 + T1 ≥ V , this given inequality (3.84) is facet defining if for (µ, µ0) = λy,

λ ̸= 0 and y has ai in the ith position, 1 in the jth position for all j in S, ai in the 0th

position and 0s in all other positions is the only solution for the following equation system

with V + 1 unknowns (µ, µ0):

µi +
∑

h∈V \S+ µh = µ0 (3.85)

µi +
∑

h∈V \S+ µh − µj = µ0 ∀j ∈ {V \ (S+ ∪H)} (3.86)

∑
k∈C∪Sd

µj +
∑

h∈V \S+ µh = µ0 ∀C ∈ C
ai−|Sd|
S\Sd

(3.87)

∑
k∈C∪Sd

µj +
∑

h∈V \S+ µh − µj = µ0 ∀C ∈ C
ai−|Sd|
S\Sd

, (3.88)

j ∈ {H(C) ∪ V \ (S+ ∪H+)}

Lemma 3.4. If the given inequality (3.84) is facet defining, we must have

1. Nd is an empty set.

2. ai ≤ |S| − 1 unless |S| = 1.

Proof. Proof of Lemma 3.4. Now, assume for y, we can have 0s for all positions in V \S+.

So, we must have Nd \ Sd = ∅. It means Nd = Sd. Then, we can simplify the equation

system of (3.85) to (3.88) as:

µi = µ0 (3.89)

∑
k∈Sd

µk +
∑

k∈C µk = µ0 ∀C ∈ C
ai−|Sd|
S\Sd

(3.90)

121

We know C
ai−|Sd|
S\Sd

be the set of all combinations for choosing ai − |Sd| nodes from

the set S \ Sd. It is easy to see that uk = µ0

ai
for all k in S is a solution for (3.89) and

(3.90). However, it is not the only solution. Depending on the value of
∑

k∈Sd
µk, we can

have infinitely many solutions by setting uk =
µ0−

∑
j∈Sd

µj

ai−|Sd|
for all k in S \Sd . In order to

obtain the desired y and ensure that it is the only solution. First, we need Sd = ∅. Thus,

the solution does not depend on the value of
∑

k∈Sd
µk anymore. Second, it must be the

only solution. Thus, when |S| ≥ 2, we need ai ≤ |S| − 1. Then, from C
ai−|Sd|
S\Sd

we can

take any two combinations which have two different positions, say k1 and k2, and minus

one to the other. We will obtain uk1 = uk2 . Repeat this process, we have uk1 = uk2 for

any two distinct k1 and k2 in S. When |S| = 1, we have uk = µ0 because ai = 1.

For a node j in H , let βj = max{0, gj − (deg(j) − |n(i) ∩ S|)}. Here, deg(j) −

|n(i)∩S| the number of node j 's neighbors not in S. Assume all these neighbors selected.

Then, βj is the least number of nodes it needs from S if node j is not selected.

Lemma 3.5. If the given inequality (3.84) is facet defining, we must satisfy this condition:

1. βj ≤ ai for each node j in H .

Consequently, we can have 0s in all positions in V \ S+.

Proof. Proof of Lemma 3.5. Based on the equation system (3.85) to (3.88), take the equa-

tion (3.85) to minus the jth equation from the equation set (3.86), we have uj = 0 for all

j in {V \ (S+ ∪H)}.

Similarly, for a given C in C
ai−|Sd|
S\Sd

, we have uj = 0 for all j in {V ∪ H(C) \

(S+ ∪H+)}. Then, compared to those 0's positions based on equations (3.85) and (3.86),

122

we have additional 0 positions based on equations (3.87) and (3.88). Those additional 0

positions are in H(C). Then, if H ⊆ ∪
C∈Cai−|Sd|

S\Sd

H(C), we can have all positions in H

are 0s. Thus, we have 0s in all positions except these positions in V \ S+. For a node j

in H , if βj > ai, it cannot be any H(C) because we can only select ai nodes from S if

xi = 0. Otherwise, there must be one combination C which covers at least βj node j 's

neighbors. Thus, if it holds for all nodes in H , we have H ⊆ ∪
C∈Cai−|Sd|

S\Sd

H(C).

Combining Lemma 3.4 and 3.5, we can have the desired vector y as the only solution

for the linear equation system. Thus, from the analysis above, the following theorem is

proposed:

Theorem 3.7. The given inequality (3.84) is facet defining if and only if the following four

conditions are satisfied:

1. gj ≤ deg(j)− |n(j) ∩ S| for all j in S (Lemma 3.1).

2. Nd is an empty set (Lemma 3.4).

3. ai ≤ S − 1 unless S = 1 (Lemma 3.4).

4. βj ≤ ai for each node j in H recall that βj = max{0, gj − (deg(j)− |n(i) ∩ S|)}

(Lemma 3.5).

Proof. Proof of Theorem 3.7. Sufficiency. First, we show that we are able to obtain |V |

feasible points and the linear equations system as (3.85) to (3.88) with these three Lemmas.

When Condition 1 and 2 (i.e., Lemma 3.1 and Condition 1 in Lemma 3.4) are satisfied,

we can find T1 = |V | − |S| − |H| + 1 feasible points by setting xi = 1 and T0 =

123

∑
C∈Cai−|Sd|

S\Sd

|H(C)|+ |Cai−|Sd|
S\Sd

|(|V |− |S+|− |H+|+1) feasible points by setting xi = 0.

Then,

T0 + T1 = |V | − |S| − |H|+ 1 +
∑

C∈Cai−|Sd|
S\Sd

|H(C)|+ |Cai−|Sd|
S\Sd

|(|V | − |S+| − |H+|+ 1)

(3.91)

≥ |V | − |S|+ |Cai−|Sd|
S\Sd

|(|V | − |S| − |H+|) (3.92)

≥ |V | − |S|+ |Cai−|Sd|
S\Sd

| = |V | − |S|+ |Cai
S | (3.93)

≥ |V | (3.94)

We can go from (3.91) to (3.92) because of Condition 3 (i.e., Condition 2 in Lemma 3.4).

Then, H ⊆ ∪
C∈Cai−|Sd|

S\Sd

H(C). Hence,
∑

C∈Cai−|Sd|
S\Sd

|H(C)| ≥ |H|. Also, |S+| = |S|+ 1.

Then, we can go from (3.92) to (3.93) due to the fact that |V | − |S| − |H+| ≥ 1 be-

cause at least node i is left. Lastly, we know C
ai−|Sd|
S\Sd

is the set of all combinations for

choosing ai nodes from the set S because of Condition 2 (i.e., Condition 1 in Lemma 3.4),

Sd = ∅. Thus, |Cai
S | ≥ |S| because we have Condition 3 (i.e., Condition 2 in Lemma 3.4),

1 ≤ ai ≤ |S| − 1 unless |S| = 1, and it holds when |S| = 1 as well.

Now, Condition 2 satisfies Lemma 3.2 as well. Also, Condition 2, 3 and 4 (i.e.,

Lemmas 3.4 and 3.5) ensure that (µ, µ0) = λy where λ ̸= 0 and y which has ai in the

ith position, 1 in the jth position for all j in S, ai in the 0th position and 0s in all other

positions is the only solution for the linear equations system as (3.85) to (3.88). Thus, the

given inequality is facet defining for Pprojection when these conditions are satisfied.

Necessity. It is already proved in Lemma 3.1, 3.3, 3.4 and 3.5.

124

3.3.5 Computational Experiments

In this section, we conduct computational experiments to show that solving the LP

relaxation of the dummy node formulation can obtain a tighter dual bound compared to

other formulations. Furthermore, we solve random generated instances to compare the

performance between BIPsaxena, BIPbaïou, BIPdummy and BIPprojection.

We generate networks using the method proposed byWatts and Strogatz [1998]. As

indicated in the Stanford large network dataset collection [Leskovec, 2011], real social

networks are sparse. We took this into account as follows: For sparsity, we generated net-

work with average degree number 8. We chose the rewiring probability p as 0.3 (loosely,

it is the probability that an edge is reconnected to a uniformly chosen node after initializ-

ing a ring with pre-specified average degree), because Watts and Strogatz [1998] showed

this corresponds most closely to the social networks they studied. We randomly generated

node type gi from a discrete uniform distribution between [1, deg(i)] and cost bi from a

discrete uniform distribution between [1, 50]. We used CPLEX 12.6 with Python API and

ran our tests on a machine with the following specifications: Intel i5 3.40GHz, 24 GB

ram, Ubuntu 14.04.

In our first set of experiments we study the strength of the LP relaxation. For this, ten

200-node instances are generated. First, we compare the strength of LP relaxations. Recall

that zdummy, zsaxena and zbaïou denote the optimal objective values for LPdummy, LPsaxena and

LPbaïou respectively. According to Theorem 3.4, zsaxena = zbaïou. Thus, we only show zsaxena

here. In Table 3.1, the first two columns are the objective values of LPsaxena and LPdummy.

The third column has the optimal value, denoted by z∗, obtained by solving the formulation

125

zsaxena zdummy z∗ zsaxena/z
∗ zdummy/z

∗

1 1913.61 2379.86 2653 72.13% 89.70%

2 1724.29 2185.48 2439 70.70% 89.61%

3 1768.73 2251.48 2558 69.14% 88.02%

4 1922.12 2410.15 2712 70.87% 88.87%

5 1599.83 2029.32 2252 71.04% 90.11%

6 1800.61 2274.33 2569 70.09% 88.53%

7 1888.10 2393.09 2663 70.90% 89.86%

8 1639.24 2140.79 2329 70.38% 91.92%

9 1699.09 2108.43 2277 74.62% 92.60%

10 1832.95 2278.45 2505 73.17% 90.96%

Table 3.1: LP Relaxations of BIPsaxena and BIPdummy with 200-node instances.

with binary constraints. The last two columns are the relative dual bounds of LPsaxena and

LPdummy. The dummy node formulation can improve the dual bound significantly. On

average, the dual bound of BIPsaxena is about 71% of the optimal value. However, LPdummy

is about 90%.

In the second experiment, we use all four formulations to solve these ten 200-node

instances. In this experiment, a five minutes time limit is imposed for each instance. Also,

the CPLEX default setting is used except that all CPLEX cuts are disabled so that the per-

formance of these four formulations can be compared directly. Table 3.2 contains running

time in seconds for all instances. If an instance hit the time limit, ``o.o.t'' is presented.

The BIPsaxena formulation cannot solve any instances to optimality within the time limit.

The BIPbaïou formulation is able to solve one instance in about 176 seconds. However,

BIPdummy and BIPprojection can solve all ten instances. In the last column, the number is in

boldface if the running time is improved. Furthermore, BIPprojection improves the running

126

BIPsaxena BIPbaïou BIPdummy BIPprojection
1 o.o.t o.o.t 140.27 32.53

2 o.o.t o.o.t 66.42 27.55

3 o.o.t o.o.t 100.67 71.74

4 o.o.t o.o.t 41.91 37.78

5 o.o.t o.o.t 12.96 15.83

6 o.o.t o.o.t 123.53 71.58

7 o.o.t 175.47 5.96 9.91

8 o.o.t o.o.t 16.37 11.36

9 o.o.t o.o.t 10.40 7.14

10 o.o.t o.o.t 17.15 9.40

Table 3.2: running time of four formulations in seconds with 200-node instances

time for 8 out of 10 instances and the average running time is reduced from 53.56 seconds

to 29.48 seconds when we switch from BIPdummy to BIPprojection. The improvement mostly

comes from those hard instances. Instance 1, 3, and 6 are reduced from 140.27, 100.67,

and 123.53 seconds to 32.53, 71.74 and 71.58 seconds respectively. Although compared

BIPdummy instance 5 and 7 need more running time when BIPprojection is used, they are easy

ones and the increment is not significant. The increment in running time is because in the

BIPprojection formulation, we need to separate and add violated inequalities dynamically

and this procedure can be relatively more expensive for these easy instances.

127

10
00

20
00

50
00

z s
ax
en
a

z d
um

m
y

R
el
.Im

p.
z s
ax
en
a

z d
um

m
y

R
el
.Im

p.
z s
ax
en
a

z d
um

m
y

R
el
.Im

p.

1
90
63
.4
1

11
30
6.
83

24
.7
5%

18
14
5.
53

22
60
8.
60

24
.6
0%

45
05
9.
02

56
32
5.
24

25
.0
0%

2
86
82
.9
5

10
81
4.
24

24
.5
5%

17
76
1.
77

22
28
7.
07

25
.4
8%

44
59
9.
94

55
48
0.
87

24
.4
0%

3
90
99
.0
6

11
35
7.
96

24
.8
3%

17
77
1.
79

22
34
9.
04

25
.7
6%

44
74
3.
56

56
22
1.
35

25
.6
5%

4
89
47
.8
0

11
15
1.
28

24
.6
3%

17
95
9.
77

22
59
0.
05

25
.7
8%

44
72
4.
15

56
27
2.
48

25
.8
2%

5
91
47
.7
9

11
38
1.
91

24
.4
2%

17
76
3.
57

22
35
5.
18

25
.8
5%

44
92
9.
47

56
09
7.
74

24
.8
6%

6
89
30
.2
8

11
23
6.
03

25
.8
2%

17
95
5.
23

22
39
6.
24

24
.7
3%

44
91
0.
13

56
29
7.
54

25
.3
6%

7
91
44
.1
9

11
39
3.
59

24
.6
0%

18
01
7.
03

22
44
3.
43

24
.5
7%

45
13
3.
55

56
47
9.
87

25
.1
4%

8
91
55
.0
3

11
48
1.
79

25
.4
2%

18
16
0.
80

22
58
2.
92

24
.3
5%

45
19
1.
27

56
51
5.
55

25
.0
6%

9
86
68
.8
3

10
89
4.
40

25
.6
7%

17
75
7.
40

22
56
5.
41

27
.0
8%

45
01
6.
29

56
48
9.
13

25
.4
9%

10
87
75
.6
8

11
11
0.
74

26
.6
1%

17
56
2.
47

22
11
4.
51

25
.9
2%

45
82
2.
99

57
35
3.
89

25
.1
6%

Ta
bl
e
3.
3:
Li
ne
ar
Pr
og
ra
m
m
in
g
R
el
ax
at
io
n
C
om

pa
ris
on
.(
R
el
.Im

p.
=

z d
um

m
y−

z s
ax
en
a

z s
ax
en
a

)

128

Lastly, in the third experiment, we test LPsaxena and LPdummy on larger instances.

The purpose of this experiment is to show that the dummy node formulation can improve

the LP relaxation significantly. We set the number of nodes to 1000, 2000 and 5000 and

generate instances by the method described above. Table 3.3 contains the results. For each

size of instances, it has three columns. The first two columns are for the LP relaxation

values. The third column is the relative improvement of LPdummy compared to LPsaxena

which is calculated as zdummy−zsaxena
zsaxena

. The improvement is stable in between 24% and 27%

in our experiment. In terms of running time, for 1000-node instances, LPsaxena takes about

0.1 seconds and LPdummy needs about 10 seconds on average. For 2000-node instances,

they increase to 0.5 seconds and 54 seconds on average, respectively. For 5000-node

instances, they further increase to 8 seconds and 380 seconds on average, respectively.

Therefore, the proposed formulation is able to improve the linear relaxation greatly but

we pay a price in running time.

3.4 Conclusions

In this chapter we studied the PIDS and TPIDS problems. We show that both prob-

lems on trees can be solved in O(|V |) time. More importantly, for the TPIDS problem,

we show that the natural adaptations of those formulations in Bouchakour et al. [2008],

Saxena [2004], Baïou and Barahona [2014] describes the polytope on trees. For the PIDS

problem on trees, a novel tight and compact extended formulation is presented. This leads

to our third contribution. We project the extended formulation onto the natural node vari-

ables space and prove that it is stronger than the natural adaptations of the formulations

129

in Bouchakour et al. [2008], Saxena [2004], Baïou and Barahona [2014]. From there, we

derive a new set of valid inequalities for the PIDS problem and provide a polynomial time

separation procedure for it. Based on our computational experiment, our formulation pro-

vides stronger linear relaxation bounds. Our work is a building block for developing exact

approaches for these two problems.

130

Chapter 4: Tailored Incentives and Least Cost Influence Maximization

on Social Networks

4.1 Introduction

The model studied by earlier researchers suffers from a significant practical short-

coming. It restricts the marketer to interventions where those selected for targeting re-

ceive the product gratis. Motivated by practical considerations we consider a version of

this viral marketing problem where an individual can be partially influenced by the use of

monetary inducements (i.e., coupons that reduce the price of a product instead of receiv-

ing the product for free). We believe this is a crucial aspect, and the use of tailored (i.e.,

partial) incentives which allows for differentiated targeting is more natural in a marketing

setting. The problem we study is in a deterministic setting, and seeks to minimize the cost

of tailored incentives provided to individuals in a social network while ensuring a given

fraction of the network is ''influenced''. We refer to this problem as the Least Cost In-

fluence Problem (LCIP). Günneç [2012] and Günneç and Raghavan [2016] first describe

the LCIP, where it arose in a product design setting that took into account social network

effects. Subsequently, and parallel to this work, there are only two other papers [Demaine

et al., 2014, Cordasco et al., 2015] in this area that discuss partial incentives in the viral

131

marketing context.

4.1.1 Problem Definition

Consider a social network represented as an undirected graph G = (V,E), where

node set V = {1, 2, . . . , n} denotes the set of people in the network and edge setE shows

the connections between people on the social network. Following a well-studied linear

threshold model on the diffusion of innovations [Granovetter, 1978], we will use the term

that a node is active if it has adopted the product and the term that a node is inactive if it has

not adopted the product. In the threshold model, each inactive node i ∈ V is influenced

by an amount dij (referred to as the influence factor) by it's neighbor node j (i.e., there is

an edge in the graph between nodes i and j) if node j is active (i.e., has already adopted

the product). For each node in the network, i ∈ V , there is a threshold, denoted by bi. This

threshold represents how easily a node can be influenced. We permit a payment pi which

is the tailored incentives for a node i ∈ V . Also, α is given as the desired penetration rate

taking values between 0 and 1 (0 ≤ α ≤ 1).

All nodes are inactive initially. Then, we decide the tailored incentives pi for each

node i ∈ V . Now, a node i becomes active immediately if pi ≥ bi (i.e., if the payment is

greater than the threshold). After that, in each step, we update the states of nodes by the

following rule: an inactive node i becomes active if the sum of the tailored incentive pi and

the total influence coming from its active neighbors is at least bi. The process continues

until there is no change in the state of the network (i.e., no additional nodes are becoming

active). The goal is to find the minimum total payment (e.g.,
∑

i∈V pi) while ensuring that

132

at least α|V | nodes are active by the end of this activation process.

Note that the assumption that all nodes are inactive is without loss of generality.

If some nodes were active at the outset we can propagate their influence and reduce the

problem to a smaller one where all nodes are inactive initially. We also note that in a

deterministic setting there is no benefit to delaying the payment of the tailored incentive.

Hence, all incentives paid to a node i may be viewed as being paid at the outset of the

process.

A simple integer programming model for the LCIP introduces the notion of time

periods t = 1, 2, ..., T when nodes can become active. This is to capture the order in

which nodes become active in the social network. Binary variable yit denotes whether

node i is active in time period t (note that in the diffusion model once a node becomes

active it remains active), and so yiT = 1 indicates node i is active at the end of the diffusion

process. Let a(i) be the neighbor set of node i. The formulation is as follows:

(MIP4.1) min
∑
i∈V

pi (4.1)

s.t. yi0 = 0 ∀i ∈ V (4.2)

pi +
∑
j∈a(i)

dijyj(t−1) ≥ biyit ∀i ∈ V, t = 1, ..., T (4.3)

∑
i∈V

yiT ≥ α|V | (4.4)

yit ∈ {0, 1}, pi ≥ 0 ∀i ∈ V, t = 1, 2, ..., T. (4.5)

Here, the objective (4.1) is to minimize the sum of the incentives given over the network.

Constraint set (4.2) models the initial condition that all nodes are inactive initially. Con-

straint set (4.3) models the diffusion process---an inactive node i becomes active if the

133

sum of the tailored incentive pi and the total influence coming from its active neighbors

is at least bi. Constraint set (4.4) ensures that the desired penetration rate is achieved at

the end of the diffusion process. Note that since there are |V | nodes, the number of time

indices required for the diffusion process to complete should be less than or equal to |V |.

However, since we do not know a priori how quickly the diffusion process terminates we

set T = |V |.

4.1.2 Related Literature

Asmentioned earlier Kempe et al. [2003] considered a budgeted version of the prob-

lem in a randomized setting that we will refer to as the Influence Maximization Prob-

lem (IMP). They make a particular assumption (for technical convenience and on which

the submodularity property their results critically depend upon) on the distribution of the

threshold values bi. Roughly, this can be interpreted as the thresholds bi being distributed

uniformly in the range [0, L] where L = maxi∈V {max{bi,
∑

j∈a(i) dij}}.1 Further, their

objective is to maximize the number of people influenced given that only k individuals

are allowed to be fully influenced (i.e., provided the product for free).

Recently, and subsequent to Günneç [2012], Demaine et al. [2014] presented a frac-

tional version of the IMP considered by Kempe et al. [2003]. In their model, identically

to the LCIP, nodes can be partially influenced via a payment, and the goal is to maximize

the number of nodes influenced for a given budget. They retain the same technical as-

sumption as Kempe et al. [2003] on the uniform distribution of thresholds and consider
1In their notation the threshold values lie between 0 and 1. The data in our setting can be converted to

theirs and vice versa by dividing or multiplying all data values by L respectively.

134

the budgeted version of the problem with a budget of kL. In theory, they showed that the

fractional version of the IMP has the same computational complexity as the IMP. That

is the submodularity property of the objective function holds (which is again due to the

particular randomized assumption on the uniform distribution of thresholds) yielding the

same (1− 1
e
)-greedy approximation algorithm for the problem. In practice, they showed

that the solutions of the two versions can be significantly different: the fractional allo-

cation can improve the influence greatly (i.e., with a budget of k, where L = 1 in their

setting, the fractional allocation model can influence a larger number of nodes).

Recently, Cordasco et al. [2015] studied a problem which corresponds to a special-

ized version of the LCIP where the influence factor is the same over the whole network

(i.e., di = dj ∀i, j ∈ V) and provide a polynomial time algorithm for complete graphs

and trees. As we will see, our results will provide a trivial algorithm for the problem on

trees (they provide a non-trivial algorithm for the problem on trees).

4.1.3 Our Contributions

We first study the complexity of the LCIP problem. We show that the LCIP is

NP-complete. We then consider several special conditions including (1) equal influence

from neighbors, (2) 100% adoption, and (3) restricting the problem to trees. Specifi-

cally, we show that the LCIP is NP-complete even on bipartite graphs, when all neighbors

exert equal influence, and we do not require 100% adoption. When we require 100%

adoption the problem remains NP-complete (and is in fact APX-hard). For trees, when

neighbors exert unequal influence and we require 100% adoption, the problem remains

135

NP-complete.

Then, we focus on the case when neighbors exert equal influence and 100% adop-

tion is required. We study the LCIP on trees. Our contributions in this regard are three-

fold. First, we propose two polynomial algorithms for the LCIP on trees. We describe

a greedy algorithm which has O(|V |log|V |) running time. Second, we show a dynamic

programming (DP) algorithm that has a better O(|V |) running time. The DP algorithm

decomposes a tree into several ``star'' subproblems. For each star subproblem, it finds at

most two solution candidates. After all subproblems are examined, a backtracking pro-

cedure is used to determine the final solution. More importantly, the DP algorithm also

works in the unequal influence case, although the running time is no longer polynomial

(it is dependent on that of the mixed 0-1 knapsack problem).

Third, we present two strong formulations. One is a totally unimodular (TUM)

formulation for the LCIP on trees. This TUM formulation is built on the influence prop-

agation network, i.e., influence traveling over arcs, and makes use of special structures

about the amount of influence passing along an arc. The other is an extended formulation

making use of the natural payment variables and the directed influence arc variables. For

the latter extended formulation, we project it onto the natural payment variable space and

give a complete description for its polytope.

This leads to our contribution on general graphs. Using the observation that the

influence propagation network must be a directed acyclic graph (DAG), the TUM formu-

lation for trees can be embedded into a formulation on general graphs, where an additional

exponentially sized set of constraints is added to ensure that the arcs selected form a DAG.

We use this to design and implement a branch-and-cut approach for the LCIP on general

136

graphs. In our computational study, we are able to obtain high quality solutions for ran-

dom graph instances with up to 10,000 nodes and 20,000 edges (40,000 arcs) within a

reasonable amount of time.

The rest of the chapter is organized as follows. In the next section, we focus on

problem complexity. Section 4.3 discusses the LCIP on trees. Section 4.4 shows how to

adapt the TUM formulation for the LCIP on trees to general graphs in a branch-and-cut

framework. Section 4.5 presents our computational experience applying the branch-and-

cut approach. Section 4.6 provides concluding remarks.

4.2 Problem Complexity

In this section we show that the LCIP is NP-complete. We then consider several

special conditions including (1) equal influence from neighbors, (2) 100% adoption, and

(3) restricting the problem to trees. Specifically, we show that the LCIP is NP-complete

even on bipartite graphs, when all neighbors exert equal influence, and we do not require

100% adoption. When we require 100% adoption the problem remains NP-complete (and

is in fact APX-hard). For trees, when neighbors exert unequal influence and we require

100% adoption the problem remains NP-complete. On the other hand, when neighbors

exert equal influence and we require 100% adoption, we will show in Section 4.3 the

0 < α < 1 α = 1

Equal Inf. Unequal Inf. Equal Inf. Unequal Inf.

General Graphs NP-hard NP-hard General Graphs APX-hard APX-hard

Bipartite Graphs NP-hard NP-hard Trees P NP-hard

Table 4.1: Summary of complexity results.

137

(a) Independent set graph (b) Constructed bipartite graph

Figure 4.1: Illustration of the reduction from independent set

problem is polynomially solvable on trees. Table 4.1 summarizes our results.

Consider the decision version of the LCIP. Given an instance of the LCIP with

(H, b,d, α, k), where H = (VH , EH) is the graph, b the threshold vector, d the influence

factor vector, k the budget, and α the desired penetration rate; does there exist a payment/

inducement vector p satisfying
∑
i∈VH

pi ≤ k that achieves the desired market penetration

(i.e., the number of nodes that are influenced is at least α|VH |)?

Theorem 4.1. The LCIP is NP-complete.

Proof. Proof of Theorem 4.1. Given a graphG = (V,E) and a number t the decision ver-

sion of the independent set problem asks if there is an independent set inG of cardinality t.

We will transform an instance of the independent set problem to an instance of the LCIP.

To do so, we construct a bipartite graph H = (S1 ∪ S2, EH) as follows. For each node

i ∈ V , we create a node in S1. Then, we create nodes in S2. For each edge (i, j) in E, we

create a node denoted by i-j in S2 and connect nodes i and j in S1 to it. For example, as

shown in Figure 4.1, for edge (1, 2) we create node 1-2 in S2 and connect it with nodes

1 and 2 in S1. For any edge (i, j) not in E (i.e., a possible edge that does not exist in the

graph), we create two nodes in S2, denoted by i-j-1 and i-j-2. We connect node i in S1

to node i-j-1 in S2 and node j in S1 to node i-j-2. In Figure 4.1(a), edge (1, 3) is not

138

present in G. We add nodes (1-3-1) and (1-3-2) to S2 and connect them to nodes 1 and 3,

respectively. The number of nodes in H is |V | + |E| + 2(|V |2−|V |
2
− |E|) = |V |2 − |E|,

and the number of edges in E is |V |(|V | − 1). Next, for each node i ∈ S1 ∪ S2 we set bi

as 1. For the influence factors, if a node i ∈ S1 we set dij = 0 ∀j ∈ a(i), and if a node

i ∈ S2 we set dij = 1 ∀j ∈ a(i). We set α = k|V |
|V |2−|E| and k = t.

We claim that there exists a payment vector p that satisfies the budget (i.e.,
∑
i∈VH

pi ≤

k) and meets the desired penetration rate (i.e., the number of nodes influenced is at least

k|V |) if and only if G has an independent set of size t. Notice, in the constructed LCIP

instance it suffices to only make payments to nodes in S1. Since all bi values are 1 and dij

values are 0 for nodes i ∈ S1 and 1 for nodes i ∈ S2, if we ever make a payment to a node

j in S2 (i.e., pj = 1) we can get (at least) the same market penetration rate by reallocating

this payment to its neighbor in S1. Hence, we can focus on solutions which only make

payments to nodes in S1. Each node in S1 has exactly |V |− 1 neighbors and two nodes in

S1 share one neighbor if and only if they are neighbors in G. So, when S ⊆ S1 is the set

of nodes receiving unit payment the number of influenced nodes in VH can be calculated

as |V ||S| − |Sc| where Sc = {{i, j} ∈ E : i, j ∈ S}. Thus, we can see that for a given

budget k, we can influence at least k|V | nodes in VH if and only if |S| = k and Sc = ∅.

Looking at the definition of Sc it implies S is an independent set of size t(= k) in G.

Corollary 4.1. The LCIP is NP-complete even when all neighbors of a node exert equal

influence (i.e., dij = di for all i ∈ V).

Proof. Proof of Corollary 4.1. Notice that in the transformation in the proof of Theo-

rem 4.1 all neighbors of a node exert equal influence.

139

Corollary 4.2. The LCIP is NP-complete on bipartite graphs.

Proof. Proof of Corollary 4.2. The proof follows from the bipartite graph instance con-

structed in Theorem 4.1.

Consider the penetration rate α = k|V |
|V |2−|E| obtained from the transformation. This

can be written as α = k
|V |−∆

2

where ∆ represents the average degree number in a graph.

It is easy to see that by varying the size of the graph, the average degree number ∆, and

k, a continuum of values strictly between 0 and 1 may be obtained for α.2 This naturally

raises questions about the complexity of the problem when we require 100% penetration.

We answer this question below.

Theorem 4.2. Unless NP ⊆ DTIME(|V |polylog(|V |)), the LCIP with α = 1 cannot be

approximated within O(2log
1−ϵ|V |) for any fixed constant ϵ > 0.

Proof. Proof of Theorem 4.2. We will prove the theorem by a reduction from the TSS

problem. Consider a TSS problem instance on an undirected graph Gt = (Vt, Et) where

each node i in Vt has threshold value gi (recall for the TSS these are the number of nodes

of a neighbor that must adopt before node i is influenced). We construct an LCIP instance

based on the given TSS instance and show that the two problem instances have optimal

solutions with identical costs. Since Chen [2009] proves that the TSS problem cannot be

approximated within a ratio of O(2log
1−ϵ|Vt|) for any fixed constant ϵ > 0, unless NP ⊆

DTIME(|Vt|polylog(|Vt|)), the same result for the LCIP follows.
2If the instance for the independent set problem has at least one edge we will never select all nodes in

S1 and thus 100 percent adoption is not feasible. It is easy to see then if α ≥ 1, it means the specific t
value is infeasible for the independent set problem. Or k ≤ |V | − ∆

2 . Or an upper bound on the size of an
independent set in the graph G is given by min{⌊|V | − ∆

2 ⌋, ⌈|V | −
∆
2 − 1⌉}.

140

1

32

1

2

!
"#

2

(a) A TSS instance

1
1

2
1

2
1

!
"#
$#

1

32

(b) V1 and E1

1

32
2
1

2
1

!
"#
$#

4

5

6 7

8

1
1

4
4 4

4
4
4

4
4

2
2

(c) V1 ∪ V2 and E1 ∪ E2

1

32

1
1

2
1

2
1

!
"#
$#

4

5

6 7

8
4
4

9

10
11

1
1

1
1

1
1

4
4

4
4

4
4

2
2

(d) V1 ∪ V2 ∪ V3 and E1 ∪
E2 ∪ E3

Figure 4.2: An Illustration of the reduction from target set selection

From Gt for the TSS instance, we construct a new graph G = (V,E) to create an

LCIP instance as follows. First, we copy the entire graphGt intoG. We denote these nodes

and edges as V1 and E1 respectively (they are identical to Vt and Et), and for each node i

in V1, set its bi = gi and di = 1. This is illustrated in Figure 4.2(b). Next, for each node i

in V1, we add gi nodes and connect all of them to node i. These new nodes and edges are

denoted by Vi2 and Ei2, respectively. For each of these nodes j ∈ Vi2 set bj = dj = 2bi.

Let V2 = ∪i∈V1Vi2 andE2 = ∪i∈V1Ei2. This is illustrated in Figure 4.2(c). Finally, for each

i in V1, one more node is added and connected to all nodes in Vi2. vi3 and Ei3 are used to

denote this new node and its associated edges. Also, let V3 = ∪i∈V1vi3 andE3 = ∪i∈V1Ei3.

For each node i in V3, set bi = 1 and di = 1. This is illustrated in Figure 4.2(d). We

consider the LCIP instance (with α = 1) on G = (V1 ∪ V2 ∪ V3, E1 ∪E2 ∪E3). Notice in

the LCIP instance created if a node in i ∈ V1 is activated, it will activate all nodes in Vi2,

which will activate vi3. Similarly, if node vi3 is activated, it will activate all nodes in Vi2

which will activate node i.

If the TSS instance (onGt) has an optimal target set S with size k, then, we can find

a payment vector with total amount k for the LCIP instance to activate the entire graph (G)

141

in the following way. For each node i in S, we find its corresponding node in V1 (continue

denoting this node as i) and pay node vi3 an amount 1. By the preceding arguments this

will activate all nodes corresponding to S in V1. But since G1 and Gt are identical all

nodes in V1 will become active as S is a feasible target set, which again by the preceding

arguments will activate the rest of the graph G.

If the LCIP instance has an optimal payment vector with total amount k, we can

find a feasible solution for the TSS instance with size k. It is easy to observe in the LCIP

instance created any non-zero payment to a node (in an optimal solution) must be at least

1. Hence, based on the preceding arguments, it suffices to focus on solutions to the LCIP

that only make non-zero payments to nodes in V3 (because any payment of 1 to a node

vi3 will activate all nodes in Vi2 which will activate node i). Consider such an optimal

solution. For each node vi3 in V3 that receives a payment (of 1) we add the corresponding

node i (in V) to the target set S. The cardinality of S is k and by the preceding arguments it

should be clear that S is a feasible target set forGt (becauseG1 andGt are identical).

4.2.1 Unequal Influence Factors

We prove that when a node i receives unequal influence from its neighbors, the

LCIP problem is NP-complete on stars. Recall that for each node i, it has a threshold

value bi. Also, we use dij to denote the influence factor which captures how much node j

influences node i if node j has become active before node i.

Theorem 4.3. The LCIP problem with unequal influence is NP-complete on stars.

142

0

1 2

$
%&

'(
) 	

'+
) 	

,

'-
) 	.……

0(0+	 0-	
'(
)

'+
)

'-
) 	……1

2&3	

Figure 4.3: Transforming a 0-1 knapsack problem to the LCIP problem with unequal
influence on stars

Proof. Proof of Theorem 4.3. Without loss of generality, we assume all input data are

positive integers. The decision version of the 0-1 knapsack problem is defined as follows:

Given a set N of n items numbered from 1 up to n, each item i with a weight wi and a

value vi, along with a maximum weight capacityW , can we select a subset of these items

such that a value of at least V will be achieved without exceeding the weightW ?

We construct a star network from this 0-1 knapsack problem. For each item i, we

put a node i in the graph as a leaf node. After that, we add one extra node and label it

as node 0 which is the central node. All leaf nodes connect to the central node but do

not connect to each other. Thus, there are n + 1 nodes numbered from 0 up to n in the

graph. Next, we find a value m = max{wi + 1 : i ∈ N}. Then, for each leaf node i,

we have bi = di0 = wi

m
. For the central node 0, we have d0i = vi for all i ∈ a(0) and

b0 = V . The constructed star is shown in Figure 4.3. The decision question is: Can we

find a payment vector without its total cost exceeding W
m
to activate the whole network?

In the constructed LCIP instance, each leaf has weight strictly less than 1 and provides an

integer amount of influence to the central node 0. Given that V is integer, it is easy to see

that we should never pay the central node 0 any incentives. So, it is equivalent to ask: Can

we select a subset of leaf nodes such that the incoming influence of the central node is at

143

least V and the total cost of those selected leaf nodes does not exceed W
m
? Therefore, if

the answer is ``Yes'', those selected leaf nodes also solve the 0-1 knapsack problem.

4.3 LCIP on Trees

From now on, for the LCIP, we assume that all neighbors of a node exert equal

influence and we require 100% adoption (α = 1). In this section, we show that the LCIP

is polynomially solvable on trees. Consequently, each node i in the network has associated

with it two parameters, bi and di, that represent the threshold and the influence factor for

that node.

Without loss of generality, we assume di ≤ bi ≤ deg(i)di. If bi ≤ diwewould either

pay node i the full amount bi to activate it, or it will become active from the influence of

a single neighbor (i.e., either pi = 0 or pi = bi). Consequently, we can simply update

di = bi in cases where bi < di. If bi > deg(i)di node i must be paid a minimum of

bi − deg(i)di. This cost can be taken care of in preprocessing and bi updated to equal

deg(i)di.

4.3.1 Greedy Algorithm

We now describe an O(|V |log|V |) greedy algorithm. In each step, from among

the inactive nodes, we select the node with the smallest value of di (ties can be broken

arbitrarily) and pay it the amount of its threshold bi. Next, we carry out the propagation

process from this newly activated node. We update the thresholds by lowering the value

of bi by the amount of (incoming) influence. After that all active nodes are removed from

144

5

1

2

4

6 7

8 9

12 13

𝒃𝒊
𝒅𝒊

𝒊
𝟏𝟓
𝟓

𝟏𝟒
𝟓

𝟑
𝟑

𝟗
𝟗

𝟐
𝟐

𝟑
𝟑

𝟗
𝟓

𝟒
𝟒

𝟏𝟏
𝟓 3

1110

𝟏
𝟏

𝟐
𝟐

𝟐
𝟐

𝟖
𝟓

(a) An LCIP instance

𝟎

5

1

2

4

6 7

8 9

12 13

𝒑𝒊
𝒊

𝟒

𝟑 𝟎

𝟐 𝟑

𝟎

𝟎

𝟏

𝟑

3

1110

𝟏 𝟐

𝟐

(b) The final solution

Step Node Selected Payment

1 10 1
2 8 2
3 11 2
4 12 2
5 6 3
6 9 3
7 2 1
8 4 3
9 1 4

Figure 4.4: Greedy Algorithm for LCIP on a Tree

the graph.

Figure 4.4 illustrates the Greedy Algorithm. Figure 4.4(a) shows the instance of the

LCIP on a tree. There are 13 nodes and the numbers next to each node show the threshold

and the influence factor for that node. Node 10 has the smallest influence factor (d10=1), so

it is selected and paid b10 = 1. Newly activated node 10 sends influence to node 3, causing

its threshold to be lowered to b3 = 4. Since, d3 > b3 now we also update d3 = b3 = 4.

Next, node 8 is selected since it has the lowest influence factor value (d8 = 2, recall ties

are broken arbitrarily) and paid b8 = 2. Its influence causes the threshold on node 2 to be

lowered to 6. Then node 11 is selected and paid b11 = 2, which causes node 3 to become

active. This propagates to node 5 and reduces its threshold to 10. After that, node 12 is

selected and paid b12 = 2, which causes the threshold and influence factor of node 4 to

be updated to 3. Then, node 6 is selected and paid b6 = 3, which causes the threshold of

145

node 1 to be updated to 9. Next, node 9 is selected and paid b9 = 3 which causes node 2's

threshold and influence factor to be updated to 1. Then, node 2 is selected and paid b2 = 1

which causes node 5's threshold to be updated to 5. Next, node 4 is selected and paid

b4 = 3 which causes nodes 5 and 13 to become active. This influence propagates from

node 5 to 1 causing node 1's threshold and influence factor to be updated to 4. Finally,

node 1 is selected and paid b1 = 4 which causes node 7 to become active resulting in all

nodes being active.

We show the correctness of the greedy algorithm by proving that there exists an

optimal solution to the LCIP on a tree where node k = argmin{di : i ∈ V } is paid its

full threshold value bk. The greedy algorithm recursively applies this property to obtain

an optimal solution.

Proposition 4.1. Given an instance of the LCIP on a tree, there exists an optimal solution

where node k = argmin{di : i ∈ V } is paid its full threshold value bk.

Proof. Proof of Proposition 4.1. In the LCIP to initialize the influence propagation process

at least one node must be paid its full threshold. Such a node will propagate influence out

(i.e., it will not receive influence). Consider an optimal solution P ∗ where node k is not

paid its full threshold value bk. That means it must receive influence from at least one of

its neighbors (say node l). This node l must either be paid its full threshold value (bl) in

P ∗ or it must receive influence from at least one of its neighbors (different from node k).

Repeating this process, we can identify a node j that is paid its full threshold value and

from whom influence propagates to node k via a directed path. Furthermore, along this

path from node j to node k all nodes other then node j are receiving payments strictly

146

less than their full threshold values. We can now change the solution as follows. We will

reverse the propagation of influence on this path from node k to node j. This means the

payment to node j decreases by an amount of dj its influence factor (and it is no longer paid

its full threshold value) and the payment to node k increases by at most dk its influence

factor. The payments for all other nodes remain the same. Since dk ≤ dj the cost of this

solution does not increase. Repeating this argument until node k no longer receives any

influence from one of its neighbors proves the claim.

Theorem 4.4. The greedy algorithm solves the LCIP on a tree optimally

in O(|V | log |V |).

Proof. Proof of Theorem 4.4. The greedy algorithm is based on repeatedly applying

Claim 4.1. In the first step the node with the smallest influence factor is paid its full

threshold value. Once influence is propagated from the node that has just received its full

payment and been removed from the graph and the solution is updated, we are left with

smaller LCIPs on separate trees. Claim 4.1 holds separately to each one of these trees, and

so in the next step the node with the smallest influence factor can be selected and paid its

full threshold value (in this updated graph). It takes O(|V | log |V |) time to initially sort

the nodes based on their di values. After that in each step updating the sorted list (when

the di value of a node changes) takesO(log |V |) time; and there are at most |E| = |V |−1

updates.

147

4.3.2 Dynamic Programming Algorithm.

We now describe a dynamic programming (DP) algorithmwith a better running time

of O(|V |). Another advantage of the DP algorithm over the greedy algorithm is the fact

that the DP algorithm can be applied when neighbors of a node have unequal influence

(the running time is dependent on that of the mixed 0-1 Knapsack problem and is no longer

polynomial) whereas the greedy algorithm is no longer an exact algorithm.

The dynamic programming algorithm decomposes the tree into subproblems. Each

subproblem is used to find the most promising solution candidates (at most two) where

one of them will be part of the final solution of the tree. A subproblem is defined on a star

network which has a single central node and (possibly) multiple leaf nodes. By solving the

subproblem, we have one solution candidate for the case where there is influence coming

into the central node along the link which connects the star to the rest of the tree and one

solution candidate for the case where influence goes out of the central node on this link (to

its parent). Next, the star is compressed into one single leaf node for the next star network.

This process is repeated until we are left with a single (last) star with its central node as

the root node of the tree. After we exhaust all subproblems, a backtracking method is used

to combine the solutions from star subproblems and obtain the final solution (set of nodes

that are paid incentives along with the incentive amounts) for the tree. The pseudocode of

the proposed algorithm is shown in Algorithm 12.

We now discuss how to solve the LCIP on a star. Let c denote the central node of

a star (all the other nodes are leaf nodes) and refer to this star as star c. To select which

nodes to give incentives to on a star, we focus on the central node c. Any leaf node i

148

Algorithm 12 DP Algorithm for the LCIP on trees
1: Arbitrarily pick a node as the root node of the tree and let Z = 0.
2: Define the order of star problems based on the bottom-up traversal of the tree.
3: for each star subproblem do
4: StarHandling
5: end for
6: SolutionBacktrack

with bi ≥ dc can be neglected (recall for all leaf nodes their thresholds are equal to their

influence factors). When bi ≥ dc, giving bi units of incentives to a leaf node i sends dc

units of influence to node c, thus the decrease in threshold is less than or equal to what

we spend (dc ≤ bi). We are no worse off giving the incentive directly to the central node

c, and never use such leaf nodes (this can also be seen by invoking the greedy algorithm

on the star). We collect the nodes with thresholds less than dc in set S and sort them in

increasing order of their thresholds. The nodes in S are candidates to provide incentives to

(in addition to the central node). Let gc = ⌈ bcdc ⌉ be the number of active neighbors required

to activate node c if no incentives are paid to it. The cost of the solution to the LCIP on a

star depends on the size of the set S. When |S| ≥ gc (i.e., there are more than enough leaf

nodes), the solution is to pay the first (gc−1) nodes in S an amount equal to their threshold

and then to compare the threshold of the gc-th leaf node in S (bgc) against the remaining

threshold (bc− (gc−1)dc) needed to activate the central node c. If bgc < (bc− (gc−1)dc)

we pay the gc-th leaf node bgc; else we pay the central node (bc− (gc− 1)dc). If |S| < gc,

then all nodes in the set S are paid incentives equal to their thresholds and the remaining

amount of the threshold of the central node (bc−|S|dc) is paid directly to the central node.

Here, we assumed there is no influence coming into the central node from its parent. For

the situation where the central node receives influence from its parent, we simply reduce

149

bc to bc − dc on the star, and accordingly update dc = min{bc, dc}, gc = ⌈ bc
dc
⌉, and and

solve the problem on the star.

After we determine the two solution candidates for the current star subproblem, the

star is compressed into a single node for the next star subproblem. If in the optimal solution

the central node c receives influence from its parent the cost of the solution is denoted by

Cc
I . If in the optimal solution the central node c sends influence to its parent the cost of

the solution on the star is denoted by Cc
NI . Thus the amount Cc

I (which is smaller) must

be incurred for the star at a minimum in the optimal solution. The incremental amount

Cc
NI−Cc

I must be paid if the star sends influence to its parent in the optimal solution. Thus,

when we compress the star into a single node for the next star subproblem the threshold

for the compressed star is Cc
NI −Cc

I . Since the compressed star is a leaf node for the next

star its influence factor is also set to Cc
NI −Cc

I . This DP calculation procedure is repeated

until we arrive at the root node of the tree. Here, since there is no possibility of external

influence to the root node there is only one solution candidate.

Algorithm 13 provides the psuedocode associated with this calculation procedure.

At its core is the function SolveStar that finds the optimal solution for a given star. The

function returnsX (set of leaf nodes that are given incentives), p (vector of partial incen-

tives given, i.e., {pi|i ∈ V }) and C (total cost of the star). In Algorithm 13 the subscripts

NI and I and superscript c (for X , p and C) represent the outputs in the cases of no in-

fluence, influence and star c, respectively. Also L(c) denotes the set of leaf nodes for

star c.

After we obtain the solution of the last star which has the root node as its central

node, we invoke a backtracking procedure to obtain the final solution for this tree (if we

150

Algorithm 13 StarHandling
Require: star c
1: (Xc

NI , pc
NI , C

c
NI)← SolveStar(star c, no-influence).

2: if star c is the last star then
3: Z = Z + Cc

NI .
4: else
5: (Xc

I ,pc
I , C

c
I)← SolveStar(star c, with-influence).

6: The compressed node's threshold is Cc
NI − Cc

I .
7: Z = Z + Cc

I .
8: end if
9: function SolveStar(a star c, flag)
10: if flag is with-influence then
11: bc = bc − dc and dc = min{bc, dc}.
12: end if
13: Let gc = ⌈ bcdc ⌉ and S = {i | bi < dc, i ∈ L(c)}.
14: if |S| ≥ gc then
15: Let Sgc and Sgc−1be the sets of the first gc and (gc−1)nodes in S, respectively.
16: if

∑
i∈Sgc

bi ≤
∑

i∈Sgc−1
bi + bc − (gc − 1)dc then

17: X ← Sgc , pi = bi for i ∈ X .
18: else
19: X ← Sgc−1, pi = bi for i ∈ X , and let pc = bc − (gc − 1)dc, X ← X ∪ c.
20: end if
21: else
22: X ← S, pi = bi for i ∈ S, and let pc = bc − |S|dc, X ← X ∪ c.
23: end if
24: C =

∑
i∈X pi.

25: return X, p, C.
26: end function

are simply interested in the cost of the optimal solution no backtracking is necessary as

global variable Z contains the cost of the optimal solution). Let r denote the root of the

tree (as determined in Algorithm 12) and NL denote the set of non-leaf nodes in the tree.

After solving the last star subproblem, we know (from Algorithm 13) that leaf nodes in

Xr
NI do not receive influence from their parent (the root) but the remaining leaf nodes

do. With this information we can proceed down the tree, incorporating partial solutions

at each node based on whether it receives influence from its parent or not. Algorithm 14

describes this backtracking procedure. It contains two recursive functions: with-influence

151

Algorithm 14 SolutionBacktrack
Require: the last star r and its solution
1: Let P ← P r

NI .
2: ∀l ∈ {L(r) ∩Xr

NI ∩NL} call No-Influence(l, P , X).
3: ∀l ∈ {L(r) \Xr

NI ∩NL} call With-Influence(l, P , X).
4: return P , X .
5: functionWith-Influence(c, P , X)
6: X ← (X \ c) ∪Xc

I , update pc = 0, and P = P + P c
I .

7: ∀l ∈ {L(c) ∩Xc
I ∩NL} call No-Influence(l, P , X).

8: ∀l ∈ {L(c) \Xc
I ∩NL} call With-Influence(l, P , X).

9: return P , X .
10: end function
11: function No-Influence(c, P , X)
12: X ← (X \ c) ∪Xc

NI , update pc = 0, and P = P + P c
NI .

13: ∀l ∈ {L(c) ∩Xc
NI ∩NL} call No-Influence(l, P , X).

14: ∀l ∈ {L(c) \Xc
NI ∩NL} call With-Influence(l, P , X).

15: return P , X .
16: end function

for the case where a central node receives influence from its parent and no-influence for

the case where a central node does not receive influence from its parent.

Figure 4.5 illustrates the DP algorithm for the instance shown in Figure 4.4(a). Fig-

ure 4.5(a) shows solutions for the star subproblems in the DP algorithm. The first row

of Figure 4.5(a) displays the solutions for the no-influence case (i.e., no influence from

parent node) and the second row displays the solutions for the with-influence case (i.e.,

influence from parent node). Figure 4.5(b), shows the final star at the root node (after all

other stars have been compressed). From Figure 4.5(a) one can see that star 1 has cost

12 and 7 for the no- and with-influence solutions, respectively. Thus, the threshold (and

influence factor) for compressed node 1 is 5 in this final star. Similarly, the thresholds

are 3, 2, and 3 for compressed node 2, 3, and 4, respectively in this final star. In Fig-

ure 4.5(c), the influence propagation directions are displayed for the optimal solution of

the final star. This identifies which stars receive influence from their parents and which

152

1

6 7

𝟏𝟒
𝟓

𝟑
𝟑

𝟗
𝟗

𝒑𝟏 = 𝟗

𝒑𝟕 = 𝟎𝒑𝟔 = 𝟑

1

6 7

𝟏𝟒
𝟓

𝟑
𝟑

𝟗
𝟗

𝒑𝟏 = 𝟒

𝒑𝟕 = 𝟎𝒑𝟔 = 𝟑

𝑪𝑵𝑰𝟏 = 𝟏𝟐

𝑪𝑰𝟏 = 𝟕

2

8 9

𝟏𝟏
𝟓

𝟐
𝟐

𝟑
𝟑

𝒑𝟐 = 𝟏

𝒑𝟗 = 𝟑𝒑𝟖 = 𝟐

2

8 9

𝟏𝟏
𝟓

𝟐
𝟐

𝟑
𝟑

𝒑𝟐 = 𝟏

𝒑𝟗 = 𝟎𝒑𝟖 = 𝟐

𝑪𝑵𝑰𝟐 = 𝟔

𝑪𝑰𝟐 = 𝟑

3

1110

𝟗
𝟓

𝟐
𝟐

𝟏
𝟏

𝒑𝟑 = 𝟎

𝒑𝟏𝟏 = 𝟐𝒑𝟏𝟎 = 𝟏

𝑪𝑵𝑰𝟑 = 𝟑

3

1110

𝟗
𝟓

𝟐
𝟐

𝟏
𝟏

𝒑𝟑 = 𝟎

𝒑𝟏𝟏 = 𝟎𝒑𝟏𝟎 = 𝟏

𝑪𝑰𝟑 = 𝟏

4

1312

𝟖
𝟓

𝟒
𝟒

𝟐
𝟐

𝒑𝟒 = 𝟑

𝒑𝟏𝟑 = 𝟎𝒑𝟏𝟐 = 𝟐

𝑪𝑵𝑰𝟒 = 𝟓

4

1312

𝟖
𝟓

𝟒
𝟒

𝟐
𝟐

𝒑𝟒 = 𝟎

𝒑𝟏𝟑 = 𝟎𝒑𝟏𝟐 = 𝟐

𝑪𝑰𝟒 = 𝟐

(a) Star subproblems for the DP algorithm

5

1

2

4

𝒃𝒊
𝒅𝒊

𝒊
𝟏𝟓
𝟓

𝟓
𝟓

𝟐
𝟐

𝟑
𝟑

𝟑
𝟑

3

(b) The final star

5

1

2

4

𝒃𝒊
𝒅𝒊

𝒊
𝟏𝟓
𝟓

𝟓
𝟓

𝟐
𝟐

𝟑
𝟑

𝟑
𝟑

3

(c) Influence in the final star

𝟎

5

1

2

4

6 7

8 9

12 13

𝒑𝒊
𝒊

𝟒

𝟑 𝟎

𝟐 𝟑

𝟎

𝟎

𝟏

𝟑

3

1110

𝟏 𝟐

𝟐

(d) The final solution

Figure 4.5: The DP Algorithm for LCIP on a Tree

ones do not. Thus, star 1 uses the with-influence solution; and stars 2, 3 and 4 use the

no-influence solution. Figure 4.5(d) provides this final solution, which is identical to the

one found by the greedy algorithm.

Theorem 4.5. The DP algorithm solves the LCIP on trees optimally in O(|V |) time.

Proof. Proof of Theorem 4.5. The bottleneck is the calculation to solve each star subprob-

lem. There are at most |V | stars in a tree. For each star, we need to find gi cheapest children

and it takesO(deg(i)) time. Finding the gith order statistics can be done inO(deg(i)) time

by the Quickselect method in Chapter 9 of [Stein et al., 2009], thus it takesO(deg(i)) time

to go through the list to collect the gi cheapest children. For the whole tree, this sum is

153

bounded by O(|V |) (since
∑

i∈V deg(i) = 2|E| = 2|V | − 2).

In addition to a better time complexity, another advantage of the DP algorithm is

the fact that it also applies for the LCIP on trees with unequal influence factors. The DP

recursion remains the same. However, as we now explain, the solution to the no-influence

and with influence cases correspond to a mixed 0-1 knapsack problem [Marchand and

Wolsey, 1999]. Given an LCIP on stars with unequal influence factors, let the central

node c have bc and dcj for all j in L(c). Each leaf node j in L(c) has bj = dj given that

it only has one neighbor. Then, finding the optimal solution for this star is equivalent to

solving the following problem:

(MixedKP) Min pc +
∑

j∈L(c) bjxj (4.6)

Subject to pc +
∑

j∈L(c) dcjxj ≥ bc (4.7)

pc ≥ 0, xj ∈ {0, 1} ∀j ∈ V, i ∈ L(c) (4.8)

where pc represent the incentive we give to node c. For a node j in L(c), binary variable

xj decides if it receives payment. Note that for a leaf node, it either receives full payment

or no payment in an optimal solution. For the with-influence solution, we update bc as

bc−dcp where dcp is the influence from node c's parent. Thus, we need to solve two mixed

0-1 knapsack problems. Although the running time is no longer polynomial, mixed 0-1

knapsack problem can be solved quite efficiently in practice.

154

4.3.3 Totally Unimodular Formulation

The MIP model in Section 4.1.1 for the LCIP tracks influence propagation by cre-

ating artificial time periods. In this section, we propose a different MIP formulation for

the LCIP on trees (recall we have equal influence and 100% adoption) that uses the di-

rected influence propagation network (i.e., the direction influence travels over edges in

the network). First, consider the following formulation (MIP4.2).

(MIP4.2) Min
∑

i∈V pi (4.9)

Subject to yij + yji = 1 ∀{i, j} ∈ E (4.10)

pi +
∑

j∈a(i) diyji ≥ bi ∀i ∈ V (4.11)

pi ≥ 0 ∀i ∈ V (4.12)

yji ∈ {0, 1} ∀j ∈ V, i ∈ a(j) (4.13)

In MIP4.2, pi is a continuous variable denoting the amount of incentive paid to a

node i and yij is a binary variable that tells us whether or not node i influences node j (it

is 1 if node i influences node j). Constraint set (4.10) says that for each edge {i, j} in the

network either node i influences node j or node j influences node i. Constraint set (4.11)

ensures that for each node i in V , the total of the incoming influence and the payment

it receives is greater than or equal to its threshold. Although this model is much smaller

than MIP4.1, its linear relaxation does not provide integral solutions on trees (nor does

MIP4.1).

We will build upon MIP4.2 to derive a TUM formulation for trees. Observe that if

constraint set (4.11) always held at equality we could replace pi by bi −
∑

j∈a(i) diyji in

155

𝑯

𝒊
𝒃𝒊 = 𝟏𝟐
𝒅𝒊 = 𝟓 𝑯

𝑳

𝒁
𝒁

5
5
2
0
0

𝑯

𝒊 𝑯
5
5

𝒑𝒊 = 𝟎 𝒑𝒊 = 𝟐 𝑯

𝒊

5𝒑𝒊 = 𝟕

𝒊

𝒑𝒊 = 𝟏𝟐

𝒊

Figure 4.6: Categorization of incoming influence when and gi ≥ 2

the objective function and eliminate the payment variables from the model. In that case

we are left with constraint set (4.10) which is TUM. Unfortunately constraint set (4.11)

does not necessarily hold at equality since a node may have gi or greater incoming arcs in

a feasible solution (i.e., it may receive influence from gi or more neighbors). Our model

will instead categorize the incoming influence to node i on an arc into three types: H with

incoming influence di, Lwith incoming influence li = bi−(gi−1)di andZ with incoming

influence 0, so that the incoming influence is exactly equal to the difference between its

threshold bi and its payment pi.

We first consider the situation where gi ≥ 2 for node i and explain this categoriza-

tion. Consider the example in Figure 4.6. Here bi = 12 and di = 5. Thus gi = 3 and

li = 2. Observe that there are gi + 1 = 4 possible scenarios. Either the node receives

no payment (i.e., pi = 0) which means it must receive incoming influence of type H on

gi − 1 = 2 arcs, and an incoming influence of type L on one arc. Any remaining incom-

ing arcs are of type Z and provide an incoming influence of 0. Or, the node receives a

payment of li + λdi (where λ = 0, . . . , gi − 1) and has exactly gi − 1− λ incoming arcs

of type H . Figure 4.6 shows these scenarios with pi = 0, 2, 7, 12 respectively.

We now consider the situation where gi = 1 for node i and explain this categoriza-

tion. In the example in Figure 4.7, bi = di = 4. Thus gi = 1 (recall without loss of

156

𝑳

𝒊
𝒃𝒊 = 𝟒
𝒅𝒊 = 𝟒 𝒁

4
0𝒊

𝒑𝒊 = 𝟎

𝒊

𝒑𝒊 = 𝟒

Figure 4.7: Categorization of incoming influence when gi = 1

generality when gi = 1, bi = di) and li = di. There are gi + 1 = 2 possible scenarios.

Either the node receives no payment which means it must receive an incoming influence

of type L on one arc. Any remaining incoming arcs are of type Z and provide an incom-

ing influence of 0. Or, the node receives a payment of pi = li and has no incoming arcs.

Figure 4.7 shows these scenarios with pi = 0, 4 respectively.

Taken together, we observe that when there is no payment to a node there are exactly

(gi − 1) arcs with incoming influence of type H and one arc with incoming influence of

type L. When there is a payment (notice the payment set is discrete) the incoming arcs

can only provide influence of type H , and there are at most (gi − 1) of them. Finally the

payment at a node is easily recovered by subtracting the sum of incoming influences from

its threshold bi.

We use these observations and develop our third formulation MIP4.3 (a pure 0-1

integer program). Essentially, the binary variable yji in MIP4.2 is decomposed into three

binary variables xH
ji , xL

ji, and xZ
ji to represent the type of incoming influence. In other

words xH
ji , xL

ji, and xZ
ji are set to 1, when node i receives incoming influence of type H ,

L, and Z respectively from node j, and is 0 otherwise.

(BIP4.3) Max
∑
i∈V

∑
j∈a(i)

∑
k∈{H,L,Z}

cki x
k
ji (4.14)

Subject to
∑

k∈{H,L,Z}

(xk
ij + xk

ji) = 1 ∀{i, j} ∈ E (4.15)

∑
j∈a(i)

xH
ji ≤ gi − 1 ∀i ∈ V (4.16)

157

∑
j∈a(i)

xL
ji ≤ 1 ∀i ∈ V (4.17)

xk
ji ∈ {0, 1} ∀i ∈ V, j ∈ a(i), k ∈ {H,L, Z} (4.18)

Constraint set (4.15) is the analog of constraint set (4.10). It specifies that for each edge

{i, j} in the network either node i influences node j or node j influences node i; and the

amount of influence may only be one of the three types. Constraint set (4.16) ensures that

a node i has no more than gi− 1 of its incoming arcs having typeH influence. Constraint

set (4.17) ensures that a node i has at most one incoming arc with type L influence. The

objective is to maximize the influence propagation on the network. The objective coef-

ficient cHi = di provides the amount of incoming influence into node i when it receives

typeH influence on an arc, cLi = li provides the amount of incoming influence into node i

when it receives type L influence on an arc, and cZi = 0 provides the amount of incoming

influence into node i when it receives type Z influence on an arc. Because our model

ensures the total sum of incoming influences never exceeds the threshold, minimizing

the sum of the payments (
∑

i∈V pi) is the same as minimizing the sum of the thresholds

minus the incoming influences at each node (
∑

i∈V (bi−
∑

j∈a(i)
∑

k∈{H,L,Z} c
k
i x

k
ji). How-

ever
∑

i∈V bi is a constant, and so minimizing the sum of the payments is equivalent to∑
j∈a(i)

∑
k∈{H,L,Z} c

k
i x

k
ji, the total incoming influence over the network.

Theorem 4.6. The constraint matrix of MIP4.3 is totally unimodular.

Proof. Proof of Theorem 4.8. Let A denote the constraint matrix of MIP4.3---composed

of constraint sets (4.15), (4.16), and (4.17)---and aij denote its elements. A is a 0 − 1

matrix that has at most two nonzero elements in each column. Observe we can partition

158

the rows of A into two subsets Q1 containing constraint set (4.15) and Q2 containing

constraint sets (4.16) and (4.17). With this columns that have two nonzero elements have

one of the nonzero coefficients in Q1 and one of the nonzero coefficients in Q2. Thus,

from Corollary 2.8 in Nemhauser and Wolsey [1988, p. 544] A is a TUM.

Since the right hand sides of the constraint sets are integer, the linear relaxation of

MIP4.3 (we will refer to this linear relaxation where constraint set (4.18) is replaced by

by nonnegativity constraints as LP3) provides integral solutions to the LCIP on trees.

4.3.4 A Tight and Compact Extended Formulation

In this section, we present another good formulation for the LCIP on trees. It has the

same variables as defined for MIP4.1 in section 4.1.1. Compared to MIP4.3, the meaning

of variables is more intuitive. This formulation is referred to asMIP4.4 and is given below:

(MIP4.4) Min
∑

i∈V pi (4.19)

Subject to yij + yji ≤ 1 ∀{i, j} ∈ E (4.20)

pi +
∑

j∈a(i) diyji ≥ bi ∀i ∈ V (4.21)

pi +
∑

j∈a(i) liyji ≥ ligi ∀i ∈ V (4.22)

pi ≥ 0 ∀i ∈ V (4.23)

yji ∈ {0, 1} ∀j ∈ V, i ∈ n(j) (4.24)

Constraint (4.22) is added to MIP4.1 to obtain this new formulation. The linear

relaxation of MIP4.4 is the following linear programming problem:

159

(LP4.4) Min
∑

i∈V pi (4.25)

Subject to (u{ij}) −yij − yji ≥ −1 ∀{i, j} ∈ E (4.26)

(vi) pi +
∑

j∈a(i) diyji ≥ bi ∀i ∈ V (4.27)

(wi) pi +
∑

j∈a(i) liyji ≥ ligi ∀i ∈ V (4.28)

pi ≥ 0 ∀i ∈ V (4.29)

yji ≥ 0 ∀j ∈ V, i ∈ n(j) (4.30)

We refer to this linear programming problem as LP4.4. The dual to LP4.4 is as follows:

(DLP4.4) Max
∑

i∈V bivi +
∑

i∈V ligiwi −
∑

{i,j}∈E u{ij} (4.31)

Subject to (yji) −u{ij} + divi + liwi ≤ 0 ∀j ∈ V, i ∈ n(j) (4.32)

(pi) vi + wi ≤ 1 ∀i ∈ V (4.33)

u{ij} ≥ 0 ∀{i, j} ∈ E (4.34)

vi, wi ≥ 0 ∀i ∈ V (4.35)

We have uij , vi, and wi as dual variables for constraint sets (4.20), (4.21), and (4.22),

respectively. We refer to the dual linear problem as DLP4.4. Let conv(P) denote the

convex hull of feasible payment vectors p, and let PLP4.4 denote the feasible region of

LP4.4.

Theorem 4.7. Given a tree, LP4.4 has optimal solutions with a valid payment vector p.

Also, and Projp(PLP4.4) = conv(P)

Proof. Proof of Theorem 4.7. The complementary slackness conditions:

160

5

1

2

4

6 7

8 9

12 13

𝒃𝒊
𝒅𝒊

𝒊
𝟏𝟓
𝟓

𝟏𝟒
𝟓

𝟑
𝟑

𝟗
𝟗

𝟐
𝟐

𝟑
𝟑

𝟗
𝟓

𝟕
𝟕

𝟏𝟏
𝟓 3

1110

𝟏
𝟏

𝟐
𝟐

𝟖
𝟓

𝟔
𝟔

(a) An LCIP instance

𝟎

5

1

2

4

6 7

8 9

12 13

𝒑𝒊
𝒊

𝟒

𝟑 𝟎

𝟐 𝟑

𝟎

𝟎

𝟏

𝟖

3

1110

𝟏 𝟐

𝟎

𝒔𝟏

𝒔𝟐 𝒔𝟑 𝒔𝟒

(b) The solution and notations for Theorem 4.7

Figure 4.8: Illustration for Theorem 4.7

(yij + yji − 1)u{ij} = 0 ∀{i, j} ∈ E (4.36)

(pi +
∑

j∈a(i) diyji − bi)vi = 0 ∀i ∈ V (4.37)

(pi +
∑

j∈a(i) liyji − ligi)wi = 0 ∀i ∈ V (4.38)

(−u{ij} + divi + liwi)yji = 0 ∀j ∈ V, i ∈ n(j) (4.39)

(vi + wi − 1)pi = 0 ∀i ∈ V (4.40)

Following the greedy algorithm, we have an optimal primal solution of the MIP4.4.

The values of the p variables are set as the payment found in the greedy algorithm. The

values of the y variables are determined by the influence propagation process discovered

in the greedy algorithm. Hence, we have a feasible primal solution for the LP4.4. Then,

based on this payment vector p, we detect connected components which are induced by

nodes with payment zeros. The whole set of connected components are denoted by SZ

and a component in it is denoted by S. For a component S, we defined a value kS which

takes value as min{li = bi− (gi− 1)di : yij = 1, i ∈ V, j ∈ S}. In Figure 4.8(a), it has an

LCIP instance and its solution found by the greedy algorithm is shown in Figure 4.8(b).

161

We has four components formed by nodes with payment zeros. S1 = {3, 5}, S2 = {7},

S3 = {12} and S4 = {13}. For S1, kS1 = {l2, l3, l4, l5, l10, l11} = {1, 4, 3, 5, 1, 2} = 1.

Similarly, kS2 = 4, kS3 = 3, and kS4 = 3

Now, we are ready to construct a dual solution and show this pair of primal and

dual solutions satisfies the complementary slackness conditions. First, we show how to

decide u{ij} variables. Let E+(S) denote the set of edges which have their head in S

from the primal solution, E+(S) = {{i, j} : yij = 1, i ∈ V, j ∈ S}. Then, for a S

in SZ , we set u{i,j} = kS for all {i, j} in E+(S). In Figure 4.8(b), We have E+(S1) =

{{2, 5}, {3, 5}, {4, 5}, {10, 3}, {11, 3}}, E+(S2) = {{1, 7}}, E+(S3) = {{4, 12}} and

E+(S4) = {{4, 13}}. So, uij = 1 for all {i, j} in E+(S1), u17 = 4, u4,12 = 3 and

u4,13 = 3.

For the remaining u{ij}, their corresponding edges become arcs whose heads are

nodes given positive payment (i.e., p > 0). We set u{ij} = min{pj, dj}yij+min{pi, di}yji.

Thus, if yij = 1, it means u{ij} = min{pj, dj}yij . Otherwise, we have yji = 1 and it means

u{ij} = min{pi, di}. Note that for a node i the only positive pi value could be smaller than

di is li. We observe that in the primal solution, constraint set (4.26) is always binding

because each edge is given an influence direction. Thus, condition (4.36) is satisfied. In

Figure 4.8(b), u61 = 4, u51 = 4, u82 = 1 and u92 = 1.

Then, we have three cases for a node i. First, if pi = 0 and i is in a S which is in

SZ , we have vi = 0 and wi = kS/li ≤ 1 because kS ≤ li. Condition (4.37) is satisfied

because vi = 0. Condition (4.38) is satisfied because constraint (4.28) is binding because

node i has exactly gi incoming arcs when pi = 0 as proved in Proposition 4.1. Next, for

condition (4.39), when both node i and j are in S, constraint (4.32) is binding. When

162

node j is not in S and yji = 1, constraint (4.32) is binding because liwi = kS = u{ij}.

Also, node j is not in S and when yji = 0, constraint (4.32) is satisfied because dj ≥ kS .

Hence, condition (4.39) is satisfied. Lastly, condition (4.40) is satisfied because pi = 0.

For node 3, 5, 7, 12 and 13 in Figure 4.8(b), v3 = 0, v5 = 0, v7 = 0, v12 = 0, v13 = 0 and

w3 =
1
4
, w5 =

1
5
, w7 =

1
9
, w12 =

1
6
, w13 =

1
7
.

Second, if pi = li, we set vi = 0 and wi = 1. Condition (4.37) is satisfied because

when vi = 0. Condition (4.38) is satisfied because constraint (4.28) is binding given

that pi = li only happens when the number of incoming arcs is gi − 1. Then, regarding

condition (4.39), when yji = 1, we have u{ij} = li and constraint (4.32) is binding. When

yji = 0, it means yij = 1, we have u{ij} ≥ li because node i is selected by the greedy

algorithm before node j and constraint (4.32) is satisfied. So, condition (4.39) is satisfied.

Lastly, condition (4.40) is satisfied because constraint (4.33) is binding. For node 1, 2, 6,

8, 9, 10, and 11 in Figure 4.8(b), v1 = 0, v2 = 0, v6 = 0, v8 = 0, v9 = 0, v10 = 0, v11 = 0

and w1 = 1, w2 = 1, w6 = 1, w8 = 1, w9 = 1, w10 = 1, w11 = 1.

Third, if pi > li, we set vi = 1 and wi = 0. Condition (4.37) is satisfied because

constraint (4.27) is binding when pi > 0. Condition (4.38) is satisfied because wi = 0.

Then, regarding condition (4.39), when yji = 1, we have u{ij} = di and constraint (4.32) is

binding. When yji = 0, it means yij = 1, we have u{ij} ≥ di because node i is selected by

the greedy algorithm before node j and constraint (4.32) is satisfied. So, condition (4.39)

is satisfied. Lastly, condition (4.40) is satisfied because constraint (4.33) is binding. For

node 4 in Figure 4.8(b), v4 = 1 and w4 = 0.

163

4.3.5 Polytope of the LCIP on Trees

In this section, we derive the polytope of the LCIP problem on trees. The extended

formulation is projected onto the space of the payment (i.e., p) variables by projecting out

all arc (i.e., y) variables. Usually, there are two approaches for projecting out variables.

One approach is Fourier-Motzkin elimination (which can easily be applied to project out

the x variables). A more elegant method, proposed by Balas and Pulleyblank [1983], is

based upon a theorem of the alternatives. We will follow this approach.

Based on Theorem 2 in Balas and Pulleyblank [1983], the projection cone W is

described by the following linear inequalities:

−u{ij} + divi + liwi ≤ 0 ∀i ∈ V (4.41)

u{ij} ≥ 0 ∀{i, j} ∈ E (4.42)

vi ≥ 0, wi ≥ 0 ∀i ∈ V (4.43)

where u{ij}, vi and wi are dual multipliers corresponding to constraints (4.26), (4.27) and

(4.28) respectively. If PLP1 can be represented as {Ap + Gy ≥ b}. Then, any feasible

vector (w, u, v) toW defines a valid inequality: (w, u, v)TAp ≥ (w,u, v)Tb in the space

of the payment (p) variables. Furthermore, the projection of PLP1 is defined by the valid

inequalities defined by the extreme rays ofW . Let S ⊆ V and S is connected in the graph

G. Also, define E+(S) as the set of edges which have at least one end in S, E+(S) =

{{i, j} ∈ E : i ∈ S or j ∈ S}.

Theorem 4.8. The vector r = (u, v,w) ∈ W is extreme if and only if there exists a positive

α such that one of the following two cases holds true:

164

1. u{ij} = α for one {i, j} ∈ E. All other u, v, w are 0.

2. Given a S ⊆ V and S is connected, u{ij} = α for all {i, j} ∈ E+(S). In addition,

either vi = α
di
or wi =

α
li
for all i ∈ S. All other u, v, w are 0.

Proof. Proof of Theorem 4.8. Recall that a polyhedral coneC is the intersection of a finite

number of half-spaces through the origin, and a pointed cone is one in which the origin

is an extreme point. A ray of a cone C is the set R(y) of all non-negative multipliers of

some y ∈ C, called the direction (vector) of R(y). A vector y ∈ C is extreme, if for any

y1, y2 ∈ C, y = 1/2(y1+y2) implies y1, y2 ∈ R(y). A rayR(y) is extreme if its direction

vector y is extreme. Also, if for two distinct direction y1 ̸= y2 ∈ C and a β ∈ [0, 1],

y = βy1 + (1− β)y2 implies y is not extreme.

Sufficiency. Let r ∈ W be of the form Case 1 and assume that r = 1
2
(r1 + r2) for some r1,

r2 ∈ W. Then, except u1
{ij} and u2

{ij}, all other directions are 0. Then, r1, r2 are in R(r).

So, r is extreme.

Let r ∈ W be of the form Case 2 and assume that r = 1
2
(r1 + r2) for some r1,

r2 ∈ W. So, for any component in r with value 0, their corresponding components in r1

and r2 are also 0. Given i, let qki , k = 1, 2, represent the positive component vki or wk
i ,

k = 1, 2. Then, we have u1
{ij} + u2

{ij} = 2α for all {i, j} ∈ E+(S) and cip1i + cip
2
i = 2α

where ci = di if vi > 0 and ci = li if wi > 0 for all i ∈ S. Then, if there is a pair i

and j, we have ciq1i > cjp
1
j if and only if cip2i < cjq

2
j . But constraint (4.41) imposes that

uk
{ij} ≥ ciq

k
i , k = 1, 2. Hence, ciqki = cjq

k
j = αk, k = 1, 2, for all i ∈ S. Otherwise,

either constraint (4.41) would be violated or u1
{ij} + u2

{ij} > 2α because uk
{ij} would take

the larger value between ciqki and cjqkj , k = 1, 2. Thus, r1, r2 are in R(r). Therefore, r is

165

extreme.

Necessity. Let r be an extreme vector of W. Based on this r, let Cr = {S ⊆ V : vi >

0 or wi > 0 ∀i ∈ S & S is connected in the tree graph G and maximal} and S{ij} =

{{i, j} ∈ E : u{ij} > 0}. First, we consider the situation where Cr = ∅ and assume

|S{ij}| > 1. Let r1 contain all but one of the positive components in r with double their

values. Let r2 contain the one positive component omitted by r1 in rwith double its value.

Then, r1, r2 ∈ W and r = 1
2
(r1 + r2). So, if |S{ij}| > 1, r is not extreme, contrary to

the assumption. We conclude that if Cr = ∅, then |S{ij}| = 1 and thus r is in the form of

Case 1.

Now consider the situation when Cr ̸= ∅. When |Cr| > 1, it means there is more

than one connected component. Consider any set S ∈ Cr. Then, r1 has values u1
{ij} =

2u{ij}, v1i = 2vi for all i ∈ S and w1
i = 2wi for all {i, j} ∈ E+(S) and 0s in other

components. Then, let r2 be 2r−r1. Hence, we have r = 1
2
(r1+r2) and r1, r2 are different

in at least one direction. So, if |Cr| > 1, r is not extreme, contrary to the assumption.

When |Cr| = 1 (so the set of nodeswith vi > 0 orwi > 0 in the original treeG form a

single connected component) and S ∈ Cr, define S1 = {{i, j} ∈ E \E+(S) : u{ij} > 0}.

If S1 ̸= ∅, let r1 have values u1
{ij} = 2u{ij}, v1i = 2vi andw1

i = 2wi for all {i, j} ∈ E+(S)

and all i ∈ S and 0s in other components. Then, let r2 be 2r−r1. r2 is feasible and it has at

least one positive component because S1 is not empty and its corresponding components

are not in r1. Hence, we have r = 1
2
(r1 + r2) and r1, r2 are different in at least one

direction. So, if |Cr| = 1 and S1 ̸= ∅, r is not extreme, contrary to the assumption.

When |Cr| = 1, define S2 = {i ∈ S : vi > 0 & wi > 0}. If S2 ̸= ∅ and let i ∈ S2,

then, we have divi + liwi ≤ u{ij} for all j ∈ a(i). We make r1 have same values as r

166

except that v1i = divi+liwi

di
and w1

i = 0. Similarly, let r2 have same values as r except that

v2i = 0 and w2
i = divi+liwi

li
. Then, r1 ̸= r2 and r = βr1 + (1− β)r2 where β = divi

divi+liwi
.

Thus we must have |S2| = ∅.

Recall that we use qi to generically represent either of the positive components vi

or wi and use ciqi for divi or liwi. Next, if |Cr| = 1, |S1| = ∅ and |S2| = ∅, consider an

edge {i, j} ∈ E+(S). Define S3 = {{i, j} ∈ E+(S) : u{ij} > ciqi & u{ij} > cjqj}.

When S3 ̸= ∅, consider an edge {i, j} ∈ S3. We can make r1 have u1
{ij} = 2 × (u{ij} −

max{ciqi, cjqj}) and 0s in the other components. Then, let r2 be 2r − r1 (note that r2 is

feasible). Hence, we have r = 1
2
(r1 + r2) and r1, r2 are different in at least one direction

because r1 only has one positive component and r2 has at least two positive components.

Thus, if |Cr| = 1 then S3 = ∅.

Now, define S4 = {{i, j} ∈ E+(S) : i ̸= j ∈ S & u{ij} > ciqi ⊕ u{ij} > cjqj}. If

S4 ̸= ∅, consider an edge {i, j} ∈ S4 such that its u{ij} has the smallest value among all

edges in S4. Without loss of generality, let u{ij} = γ = cjqj > ciqi and vi take positive

value. Note that for a edge {i, k}, ckqk is either bigger than or equal to ciqi because if it

is smaller than ciqi, u{ij} is not the smallest value among all edges in S4. We have two

situations. First, when uik > ciqi for all k in a(i), We can make r1 have the same values

as r except that v1i = vi + ϵ such that div1i ≤ uij . Then, we can make r2 have the same

values as r except that v2i = vi− ϵ. Hence, we have r = 1
2
(r1+ r2) and r1, r2 are different

in vi component.

Second, when uik = ciqi for some k in a(i), we obtain a subgraph TS in this way:

let node i be the root of the tree induced by E+(S) and keep a branch {i, k} if u{ik} =

ciqi = ckqk for all k in a(i). Then, we can make r1 and r2 in the following way: For all h

167

in TS ∩ S, if chqh ≤ ciqi, we have q1h = qh
γ

ciqi
and q2h = 0. Otherwise, we let q1h = qh and

q2h = qh. Next, for an edge {e, f} ∈ TS , if u{ef} ≤ ciqi, u1
{ef} = u{ef}

γ
ciqi

and u2
{ef} = 0.

Otherwise, u1
{ef} = u{ef} and u2

{ef} = u{ef}. Other components are the same as r. Then,

r1 ̸= r2 and r = βr1 + (1− β)r2 where β = ciqi
γ
. Thus we must have |S4| = ∅.

Consider an edge {i, j} in the graph G where both i, j ∈ S, we have u{ij} = ciqi =

cjqj because S3 = ∅ and S4 = ∅. Given S is a connected component, we have ciqi = cjqj

for i ̸= j in S; and so u{ij} = α for {i, j} ∈ E+(S). This proves that if Cr ̸= ∅, then r

must be in the form of Case 2.

Applying Theorem 2 in Balas and Pulleyblank [1983]---Case 1 extreme directions

generate the valid inequality 0 ≥ −1 which is not very useful. Case 2 extreme directions

generate the following valid inequality in the graph G:

|E+(S)|+
∑

i∈S:vi>0

pi
di

+
∑

i∈S:wi>0

pi
li
≥

∑
i∈S:vi>0

bi
di

+
∑

i∈S:wi>0

gi ∀S ⊆ V &S is connected.

Noting that given a set S, there are many extreme rays r satisfying Case 2. We can

partition S into two sets, SS
v and SS

w. They satisfy that SS
v ∩ SS

w = ∅ and SS
v ∪ SS

w = S.

Then, let PLP4.4 denote the feasible region of LP1, we can write the projection of PLP4.4

onto the p space as:

|E+(S)|+
∑

i∈SS
v

pi
di
+
∑

i∈SS
w

pi
li
≥

∑
i∈SS

v

bi
di
+
∑

i∈SS
w
gi (4.44)

∀S ⊆ V & S is connected & SS
v ∩ SS

w = ∅ & SS
v ∪ SS

w = S

pi ≥ 0 ∀i ∈ V (4.45)

Proposition 4.2. The valid inequalities (4.44) can be separated in O(|V |3) time.

168

Proof. Proof of Proposition 4.2. When the size of S is h, the separation procedure of

inequalities (4.44) can be stated as the following optimization problem: Given a treeG =

(V,E) and an integer h ≤ |V |, each node i in V has a weight which takes value from {cij :

j = 0, 1, . . . , deg(i)} based on the number of neighbors not in the selected component,

denoted by j. The goal is to find a connected component S with h nodes whose weight∑
i∈S cij is the minimum.

In Blum [2007], a dynamic programming algorithm is proposed for a generalized

k-minimum spanning (k-MST) problem when the given graph is a tree. Its definition is

as follows: Given a treeGB = (VB, EB) and an integer k < |VB|, each node i in VB has a

weight wi and each edge in EB has a weight eij , the goal is to find a subtree T of k edges

whose weight
∑

i∈T wi +
∑

(i,j)∈T eij is the minimum.

Given an instance of the separation problem with the cardinality of S specified to be

h, we show that it is equivalent to the generalized k-MST problem on trees. From the input

graphG, we transform it into graphGt by adding one dummy node to each edge in G. For

each edge {i, j} ∈ E, insert a dummy node d. Let D denotes the set of dummy nodes.

Since the dummy nodes have effectively split each edge into two in the original graph, we

replace each of the original edges {i, j} ∈ E by two edges {i, d} and {d, j} in the new

graph Gt. Let Et denote the set of edges in Gt. Thus, Gt = (V ∪D,Et). Recall that we

have a solution p. For all i in V , set its weightwi = min{pi−bi
di

, pi
li
−gi}−1. Then, for all d

inD, set its weight wd = 0. Lastly, for each (i, d) inEt, we have edge weight eid = 1. We

also set k = 2(h− 1) as the target cardinality. Let L be the number of nodes with degree

one in T . The objective value of T is:
∑

i∈T∩V (min{
pi−bi
di

, pi
li
− gi} − 1) +

∑
(i,d)∈T 1 =∑

i∈T∩V min{
pi−bi
di

, pi
li
−gi}−h+2h−1+L =

∑
i∈T∩V min{

pi−bi
di

, pi
li
−gi}+h−1+L.

169

Let T̄ denote T ∩ V . In the original graph, h − 1 + L is equal to |E+(S)|. Thus, the

objective value is equal to
∑

i∈T∩V min{
pi−bi
di

, pi
li
− gi} + |E+(S)|. This is exactly the

constraint (4.44) with S = T̄ after we move
∑

i∈SS
v

bi
di
+
∑

i∈SS
w
gi to the left hand side and

consider it as a minimization problem by selecting nodes. If the objective value is smaller

than 0, we have found a violated inequality. Otherwise, there is no violated inequality for

sets S with cardinality h.

The time complexity of Blum's algorithm is O(k2|VB|). It returns the values of the

best l-cardinality trees in GB for all l values in the range 0 ≤ l ≤ k. Thus, we only need

to run it once by setting k = |VB| − 1 (k = |VB| is trivial). Hence, in the worst case, the

time complexity is O(|V |3) because k is bounded by |VB| and |VB| = 2|V |.

4.4 From Trees to General Graphs: A Branch-and-Cut Approach

We now discuss how the TUM formulationMIP4.3 can be applied to general graphs.

The key idea is that the influence propagation process can be modeled as a directed acyclic

graph (DAG). As it stands MIP4.3 is not valid for graphs that contain cycles. Figure 4.9

explains the problem caused by a cycle. In this figure, we have a directed influence cycle

consisting of nodes 1, 2 and 3. Each of them receives influence equal to their threshold

from one incoming arc and so no payments are required to influence all 3 nodes. For

instance, node 1 receives 5 unit influence from node 3 (xL
31 = 5), node 2 receives 7 units

of influence from node 1 (xL
12 = 7), and node 3 receives 9 units of influence from node 2

(xL
23 = 9). Clearly, this is not a feasible solution. One nodemust have been paid incentives

equal to its threshold (in the optimal solution it is cheapest to pay node 1 its threshold 5)

170

to start the influence propagation process.

Figure 4.9: A pathological example of a cycle in influence propagation

Our formulation for general graphswill model the fact that the influence propagation

network in a feasible solution to the LCIP should be acyclic. For this, we bring back the

binary variables yij that tells us whether or not node i influences node j from MIP4.2. To

model the fact that the influence propogation network should be acyclic we add a set of

constraints which ensures that the directed graph formed by y, denoted byG(y), has to be

a DAG is needed as well. With this in hand, we have the following formulation that we

refer to as BIP4.6:

(BIP4.6) Max
∑
i∈V

∑
j∈a(i)

∑
k∈{H,L,Z}

cki x
k
ji (4.46)

Subject to yji =
∑

k∈{H,L,Z}

xk
ji ∀i ∈ V, j ∈ a(i) (4.47)

∑
(i,j)∈C

yij ≤ |C| − 1 ∀ dicycles C in G(y) (4.48)

yij + yji = 1 ∀(i, j) ∈ E (4.49)∑
j∈a(i)

xH
ji ≤ gi − 1 ∀i ∈ V (4.50)

∑
j∈a(i)

xL
ji ≤ 1 ∀i ∈ V (4.51)

xk
ij ∈ {0, 1} ∀i ∈ V, j ∈ a(i), k ∈ {H,L, Z} (4.52)

yij ∈ {0, 1} ∀i ∈ V, j ∈ a(i) (4.53)

171

We have three new constraint sets. Constraint set (4.47) is a linking constraint which

connects x and y variables. Constraint set (4.48), called k--dicycle inequalities, says that

the directed influence propagation network formed by yij , denoted by G(y), must be a

DAG. Constraint set (4.53) enforces the binary constraint on variable yij . The objective

function and the rest of the constraint sets are the same as BIP1. We refer to this new

formulation as BIP4.6. Similarly, we can obtain another formulation based on MIP4.4 for

general graphs. This one is referred to as MIP4.7 and is given below:

(MIP4.7) Min
∑

i∈V pi (4.54)

Subject to
∑

(i,j)∈C yij ≤ |C| − 1 ∀ dicycles C in G(y) (4.55)

yij + yji = 1 ∀{i, j} ∈ E (4.56)

pi +
∑

j∈a(i) diyji ≥ bi ∀i ∈ V (4.57)

pi +
∑

j∈a(i) liyji ≥ ligi ∀i ∈ V (4.58)

pi ≥ 0 ∀i ∈ V (4.59)

yji ∈ {0, 1} ∀j ∈ V, i ∈ a(j) (4.60)

The natural question is that which formulation is better on general graph? We answer

this question theoretically by the following theorem.

Theorem 4.9. BIP4.6 and MIP4.7 are equivalent to each other in terms of the strength of

their LP relaxations.

Proof. Proof of Theorem 4.9. Let BLP6 and MLP7 be the LP relaxations of BIP4.6 and

MIP4.7 respectively. We want to show that these two LP relaxations are equivalent. First,

given an optimal solution of BLP6, (y, x), we can construct a feasible solution (ym,pm) for

172

MLP7 with the same total payment. Set ym = y and pmi = bi −
∑

j∈a(i)
∑

k∈t(i) c
k
i x

k
ji for

all i in V . In this way, pmi ≥ 0 because
∑

j∈a(i)
∑

k∈t(i) c
k
i x

k
ji ≤ bi due to constraint (4.50)

and (4.51). Constraint (4.55) and (4.56) are satisfied because y satisfies constraint (4.48)

and (4.49). Also, Constraint (4.57) is satisfied because pmi = bi−
∑

j∈a(i)
∑

k∈t(i) c
k
i x

k
ji ≥

bi−di
∑

j∈a(i)
∑

k∈t(i) x
k
ji = bi−di

∑
j∈a(i) y

m
ji for all i in V . Lastly, for constraint (4.58),

we have three cases. If
∑

j∈a(i) y
m
ji ≥ gi, we just need pmi ≥ 0 which is already satisfied.

If
∑

j∈a(i) y
m
ji ≤ gi−1, we have pmi = bi−di

∑
j∈a(i) y

m
ji = li+di(gi−1−

∑
j∈a(i) y

m
ji) ≥

li+ li(gi−1−
∑

j∈a(i) y
m
ji) = gili−

∑
j∈a(i) liy

m
ji . If gi−1 <

∑
j∈a(i) y

m
ji < gi, we use the

fact that
∑

j∈a(i) x
H
ji = gi−1 and

∑
j∈a(i) x

L
ji =

∑
j∈a(i) y

m
ji)−

∑
j∈a(i) x

H
ji because this is a

maximization problem and increasing the value of
∑

j∈a(i) x
H
ji first improves the objective

value. Thus, pmi = bi −
∑

j∈a(i)
∑

k∈t(i) c
k
i x

k
ji = bi − di

∑
j∈a(i) x

H
ji − li

∑
j∈a(i) x

L
ji =

li − li
∑

j∈a(i) x
L
ji = li − li(

∑
j∈a(i) y

m
ji − gi + 1) = ligi −

∑
j∈a(i) liy

m
ji .

Second, given an optimal solution of MLP7, (ym,pm), a feasible solution (y, x) is

constructed for BLP6 with the same total payment. Set y = ym first. Then, for a node

i in V , based on its influence type, we set up its associated x variables in the following

way: First, if
∑

j∈a(i) yji ≥ gi, set xH
ji = gi−1∑

j∈a(i) yji
yji, xL

ji = 1∑
j∈a(i) yji

yji, and xZ
ji =

∑
j∈a(i) yji−gi∑

j∈a(i) yji
yji. Constraint (4.58) ensures that for a node i, when

∑
j∈a(i) yji ≥ gi, we

have pmi = 0. So, by construction, constraint (4.50) and (4.51) are binding. Thus, pbi

is 0. Second, if
∑

j∈a(i) yji ≤ gi − 1, set xH
ji = yji, xL

ji = 0 and xZ
ji = 0. Because

pmi = bi −
∑

j∈a(i) diyji and pi = bi −
∑

j∈a(i) dix
H
ji , thus, pmi = pi. Lastly, if gi − 1 <∑

j∈a(i) yji < gi, set xH
ji =

gi−1∑
j∈a(i) yji

yji, xL
ji =

∑
j∈a(i) yji−gi+1∑

j∈a(i) yji
yji and xZ

ji = 0. Here, we

have pmi = ligi−
∑

j∈a(i) liyji ≥ bi−
∑

j∈a(i) diyji and pi = bi−(gi−1)di−
∑

j∈a(i) lix
L
ji,

therefore, pmi = pi. Note that in the latter two cases, by construction, constraint (4.50)

173

and (4.51) are satisfied.

Although their LP relaxations are equivalent on general graphs, the TUM only has

binary variables and the coefficients are either 0 or 1. This makes it more computational

efficient in our experiments. Therefore, based on the TUM formulation, we propose a

branch-and-cut approach for solving the LCIP on general networks. The main tasks in

our branch-and-cut approach are identifying strong valid inequalities, separating these

violated valid inequalities, handling symmetry and using a specialized branching rule,

which we now discuss.

In a solution of the LCIP, by the definition of the DAG, the arc set of the directed

influence propagation network, G(y) contains no dicycles. Therefore, there are at most

|C| − 1 members of the arc set of a dicycle C in G(y). Then, for a dicycle C, referred

to as a k-dicycle inequality,
∑

(i,j)∈C yij ≤ |C| − 1, is a valid inequality for the LCIP.

We use the separation procedure described by Grötschel et al. [1985] for the k-dicycle

inequalities. For example, for the cycle in Figure 4.9, we can use y12 + y23 + y31 ≤ 2 to

cut off that cycle.

Further, we make an important observation that in BIP4.6: it suffices to define the y

variables as binary (i.e., integrality can be relaxed on the x variables). This can be helpful

in terms of branching.

Proposition 4.3. BIP4.6 needs binary constraint only on the y variables.

Proof. Proof of Proposition 4.3. Once the the y variables are fixed to either 0 or 1, the

remaining constraint matrix is totally unimodular. This is easily seen by observing that

the rows of the remaining constraints can be partitioned into two subsets Q1 containing

174

constraint set (4.47) andQ2 containing constraint sets (4.16) and (4.17). With this we have

a 0-1 constraint matrix with no more than 2 nonzero entries per column. Further, columns

that have two nonzero elements have one of the nonzero coefficients inQ1 and one of the

nonzero coefficients in Q2.

We take advantage of Proposition 4.3 in implementing a branching rule. In BIP4.6,

the y variables are given higher branching priority. It means that whenever it is possible,

the branching rule is to select the y variables first. We call this priority branching.

AnMIP is symmetric if its variables can be permuted without changing the structure

of the problem. This could cause trouble in a computational sense (i.e., the branch-and-

cut procedure can take a long time) because the search procedure wastes effort and time

on eliminating symmetric solution. In our problem, there are 2 types of symmetry which

lead to multiple optimal solutions. We use perturbations intelligently to reduce symmetry.

Figures 4.10 and 4.11 show examples of these two kinds of symmetries.

(a) An LCIP instance (b) Solution 1 (c) Solution 2

Figure 4.10: Influence Direction Symmetry

Influence direction symmetry (y perturbations): Given the LCIP problem in Fig-

ure 4.10(a), we have two solutions with the same objective value, 50, but different influ-

ence directions as shown in Figure 4.10(b) and (c). To reduce this kind of symmetry, we

175

perturb (subtract) in the amount of θij , from the cost coefficient of yij where the value of

θij should satisfy the following conditions:

1. θ is non-negative, θij ≥ 0 ∀(i, j) ∈ G(y).

2. The sum of all θ is smaller than 1,
∑

∀(i,j)∈G(y) θij < 1.

3. θij > 0 where j > i and θij = 0 otherwise.

4. θij is distinct on different yij where j > i.

Proposition 4.4. If θij satisfies conditions 1 and 2, among those optimal solutions without

the perturbation, at least one of them will remain optimal after θij is subtracted.

Proof. Proof of Proposition 4.4. Condition 1 ensures that the objective value of a solu-

tion is non-increasing after the perturbations are subtracted. Otherwise, a non-optimal

solution without the perturbation could increase its objective value after subtracting the

perturbation and outperform an optimal solution. Condition 2 ensures that the decrement

in the objective value of an optimal solution will not make the solution inferior to any

non-optimal solutions. We have the assumption that all input data are integers. So, before

we subtract the perturbation, the objective value of an optimal solution is at least 1 unit

better than that of a non-optimal solution. These two conditions together ensure those op-

timal solutions remain superior compared to non-optimal solutions. Among these optimal

solutions, the one with the smallest value of perturbations becomes an optimal solution

after θij is subtracted.

Condition 3 gives higher preference to direction from node i to node j where i > j

and eliminates the symmetry between these two directions. It also fixes the value of θij

176

to zero when i > j and allows us to focus on assigning values to the remaining θij where

j > i. However, when conditions 1, 2 and 3 are satisfied, they are still not enough to handle

the symmetry in Figure 4.10(b) and 4.10(c). If all θij , where j > i, have the same value,

these two solutions will have the same objective value after we subtract the perturbations.

Condition 4 further reduces symmetry in this case. Therefore, condition 4 is needed. For

the example in Figure 4.10, we set θ13 = 0.05, θ14 = 0.10, θ23 = 0.15, θ24 = 0.20 and

other θ = 0. Solution 1 becomes the unique optimal solution.

In order to satisfy these four conditions of y perturbations, we suggest a way to set

up the θ as follows:

Algorithm 15 Setting up θ
Require: the network G = (V,E), the number of edges |E|
Set τ = 1/|E|2, k = 0 and all θij = 0
for (i, j) ∈ E do

k = k + 1
θij = τk where i < j

end for

It is easy to see that conditions 1, 3 and 4 are satisfied. For condition 2, themaximum

decrement caused by θ in the objective value is 1
|E|2 (1 + 2+ · · ·+ |E|) = 1

|E|2
|E|(|E|+1)

2
=

|E|+1
2|E| < 1 since |E| > 1. Therefore, condition 2 is satisfied as well.

(a) Solution 1 (b) Solution 2

Figure 4.11: Influence Allocation Symmetry

177

Influence allocation symmetry (x perturbations): Figure 4.11 gives an example

with a node which allocates influences as described in Section 4.3.3. We don't pay this

node any incentives. There are multiple ways to allocate the influence to its incoming

arcs. Figure 4.11(a) and Figure 4.11(b) are two of them. We perturb (subtract) the cost

coefficient of xL
ij by ϵij and the cost coefficient of xH

ij by δij . For a node i, if it allocates

influences as described in Section 4.3.3, the value of ϵij and δij should satisfy the following

conditions:

1. These perturbations are non-negative, ϵij ≥ 0, δij ≥ 0 ∀j ∈ a(i).

2. ϵim+
∑

j∈M δij < 1/|V | wherem = argmax
j
{ϵij} is the index of the largest ϵij and

M is the set of indexes of the first (gi − 1) largest δij .

3. For a fixed j, ϵij is much bigger than δij , ϵij >> δij ∀j ∈ a(i).

4. ϵij and δij are distinct on different arcs.

Proposition 4.5. If ϵij and δij satisfy conditions 1 and 2, among those optimal solutions

without the perturbations, at least one of them will remain optimal after ϵij and δij are

subtracted.

Proof. Proof. Condition 1 is used to ensure that non-optimal solutions will not have better

objective values compared to optimal solutions after ϵij and δij are subtracted. If influ-

ences for node i are allocated as in described in Section 4.3.3, at most (gi − 1) arcs are of

type H and at most one arc is of type L. Also, we have the assumption that all input data

are integers. Therefore, condition 2 ensures that the amount of incentives paid to a node

178

will not be affected after ϵij and δij are subtracted. These two conditions together ensure

at least one optimal solution remain optimal after ϵij and δij are subtracted.

(a) Input (b) Solution

Figure 4.12: Illustration of Conditions 3 and 4

Figure 4.12(a) shows a situation where we need to allocate one H type, one L type

and one Z type influence to three arcs. Condition 4 enforces that ϵij and δij are distinct.

So, the Z type influence will go to the arc with the highest values of ϵij and δij because

this type influence does not have perturbation assigned to it. In this example, the top arc

is assigned the Z type influence. Condition 3 ensures ϵij >> δij . So, combining with

condition 4, L type influence is allocated to the one with the smallest ϵ value. In this

example, it goes to the bottom arc. Then, the H type influence goes to the middle one.

Figure 4.12(b) shows the unique optimal allocation with the objective value 6.88.

For the example in Figure 4.11, we increase the value of ϵ and δ by the counter

clockwise orientation. The specific values are from 0.1 to 0.5 for ϵ and 0.01 to 0.05 for

δ. Although these two solutions in Figure 4.11 have the same objective value without

perturbations, solution 2 in Figure 4.11(b) with objective value 11.85 is the unique optimal

solution after perturbation.

In order to satisfy these four conditions of x perturbations, using nodes that allocate

influences as in Section 4.3.3, we suggest a way to set up the ϵ and δ as follows:

179

Algorithm 16 Setting up ϵ and δ
Require: a node i, the set of neighbors a(i), the node type gi and deg(i) > gi ≥ 2
Set τ = 1/|V |(deg(i) + 1), ω = 1/10|V |deg(i)2 and k = 0
for j ∈ a(i) do

k = k + 1
ϵij = τk
δij = ωk

end for

It is easy to see that conditions 1 and 4 are satisfied. Condition 2 is satisfied because

the maximum decrement caused by l and h in the objective value is deg(i)/|V |(deg(i) +

1) + {deg(i) + (deg(i)− 1) + (deg(i)− 2) + · · ·+ (deg(i)− gi + 1)}/10|V |deg(i)2 <

deg(i)/(deg(i) + 1) + (1 + 2 + · · · + deg(i))/10|V |deg(i)2 = deg(i)/(deg(i) + 1) +

(deg(i) + 1)/20|V |deg(i) < 1/|V | because we have deg(i) > 1. For a fixed j, ϵij/δij =

10deg(i)2/(deg(i) + 1) ≈ 10deg(i). Thus, ϵij >> δij and condition 3 is satisfied. There-

fore, these 4 conditions are all satisfied.

If we want to handle these two types of symmetry simultaneously, we need to divid

all perturbation values by two.

After adding these perturbations, although it reduces the symmetry, it also intro-

duces many solutions which have small difference in the objective value especially when

the solutions are close to the optimal one. Then, the search procedure wastes time on iden-

tifying the optimal solution with perturbations even though it has found the optimal one

before the perturbations are applied. Thus, given that the total amount of the perturbations

applied to a solution is less than one, we propose the following termination rule. Let z∗

denote the incumbent objective value and u denote the current dual bound. If ⌈z∗⌉ ≥ u,

we stop and return the incumbent solution as the optimal solution.

180

The next component is called conservative separation procedure. We realize that

the separation procedure is expensive. Therefore, we modify the branch-and-cut proce-

dure in the following way. In the root node, we do our best to find violated inequalities in

order to achieve a better dual bound, (i.e., we focus on the cutting plane method). How-

ever, once we enter the branching phrase, the separation procedure is only invoked when

the integral constraints are satisfied at a node rather than at every node. The reason is that

even if the integral constraints are satisfied, the solution could still be infeasible because

it may contain a cycle.

Lastly, in the formulation BIP4.6, we use additional variables to model the influence

propagation process. Thus, the MIP search process spends a significant amount of time

on these variables because of the binary requirement on these variables. However, we

actually are only interested in the payment vector (i.e., the natural node (p) variables which

can be easily decided from x and y variables). Consequently, for a given p, we consider

the feasibility of the solution and determine the set of nodes that can be activated using this

payment vector. We call this process as Feasibility Lift. If all nodes are activated by this

payment vector, we have obtained a feasible solution and the current node of the branch-

and-bound tree can be fathomed. Otherwise, we can continue the branch-and-cut search

as usual. One advantage of Feasibility Lift is that we can focus the separation procedure

on the subgraph induced by the inactive nodes (because there must be some cycles to help

them satisfy their thresholds). We refer to this subgraph as the Inactive Induced Graph.

In this way, we have a smaller supporting graph and can add fewer violated inequalities

in the branch-and-cut procedure.

181

4.5 Computational Experiments

We now discuss our computational experience with the branch-and-cut approach.

We generated networks using the method proposed by Watts and Strogatz [1998] in their

pioneering work on social network analytics. As indicated in the Stanford large network

dataset collection [Leskovec, 2011], real social networks are sparse. We took this into

account as follows. For sparsity, we generated network with average degree number 4.

We chose the rewiring probability p as 0.3 (loosely, it is the probability that an edge is

reconnected to a uniformly chosen node after initializing a ring with pre-specified average

degree), because Watts and Strogatz [1998] showed this corresponds most closely to the

social networks they studied.

For influence factor and threshold associated with a node, we first randomly gener-

ated node type gi from a discrete uniform distribution between [1, deg(i)] and influence

factor di from a discrete uniform distribution between [1, 50]. The threshold for a node

i was calculated as bi = di(gi − 1) + s, where s is generated from a discrete uniform

distribution between [1, di]. By this method, we ensure that if all neighbors of a node are

active, this node will become active as well.

We used CPLEX 12.6, Python API, coded our separation routines in C and ran our

tests on amachinewith the following specifications: Intel i5 3.40GHz, 24GB ram, Ubuntu

14.04. In our implementation, two preprocessing steps are applied to the formulation on

general networks. The first one is that we removed the constraint yij + yji = 1 and used

only variables yij where i < j (so yji is replace by 1− yij in the model). In this way, we

reduced the size of the model by |E| constraints and |E| variables. The second one is that

182

in addition to the constraints in the formulation, we also added all 3-dicycle constraints in

the third experiment.

183

LP
4.
7

LP
4.
6

B
IP
4.
6

ID
O
bj
.V

al
ue

Ti
m
e
(S
)

LP
4.
7/
B
IP
4.
6
(%

)
O
bj
.V

al
ue

Ti
m
e
(S
)

LP
4.
6/
B
IP
4.
6
(%

)
O
bj
.V

al
ue

Ti
m
e
(S
)

1
16
24
.8
8

0.
24

54
.4
0

29
19

0.
59

97
.7
2

29
87

6.
28

2
15
97
.8
8

0.
21

55
.1
6

27
81

0.
25

96
.0
0

28
97

10
.3
6

3
15
58
.1
0

0.
33

53
.6
9

27
97

0.
81

96
.3
8

29
02

7.
92

4
12
12
.5
0

0.
31

47
.9
2

24
48

0.
63

96
.7
6

25
30

9.
54

5
14
21
.3
8

0.
23

51
.0
7

26
86

0.
59

96
.5
1

27
83

9.
97

6
18
38
.7
2

0.
20

52
.2
8

34
26

0.
26

97
.4
1

35
17

4.
84

7
15
59
.3
4

0.
22

51
.8
1

29
23

0.
64

97
.1
1

30
10

9.
48

8
17
41
.0
8

0.
31

53
.4
6

31
50

0.
62

96
.7
1

32
57

8.
40

9
20
15
.5
1

0.
20

57
.6
2

33
86

0.
66

96
.8
0

34
98

10
.6
2

10
18
45
.5
9

0.
27

58
.3
9

30
32

0.
71

95
.9
2

31
61

14
.2
0

Ta
bl
e
4.
2:
LP

R
el
ax
at
io
n
of
M
IP
4.
7
an
d
B
IP
4.
6
Fo
rm
ul
at
io
n
fo
rt
he

LC
IP

w
ith

10
00
-N
od
e
In
st
an
ce
s.

184

In our first set of experiments we study the strength of the LP relaxation of BIP4.6

(LP4.6). For this, ten instances with with 1000 nodes and 2000 edges are generated. Note

that we can obtain a valid formulation fromMIP4.7 by including k-dicycle constraints. We

refer to the resulting formulation as MIP4.7 from now on. The objective value of LP4.6

is compared against the LP relaxation of MIP4.7, denoted by LP4.7. Table 4.2 shows the

results. The first column provides the instance number. ``LP4.7'' and ``LP4.6'' have the

results for the LP4.7 and LP4.6 respectively. For each of them, we present objective value

(``Obj. Value''), running time (``Time'') and the linear relaxation bound (``LP4.7/BIP4.6''

and ``LP4.6/BIP4.6'') compared to the optimal value showed in ``BIP4.6''. The value of

the optimal solution that is obtained by solving BIP4.6 (with the best setting for branch-

and-cut which will be discussed later in this section). For LP4.7, its LP relaxation can be

solved within 0.25 seconds on average but provides a much worse LP bound than that of

the BIP4.6 formulation. The LP bound of IP7 is about 53% on average. However, LP4.6

only needs about 0.57 seconds and provides an excellent LP bound. The LP bound of

BIP4.6 is about 97%. If we look at the optimality gap which is calculated as (1- LP bound),

the optimality gap of LP4.6 is only 3 % which is less than one tenth of that obtained by

the MIP4.7. Overall, the proposed model BIP4.6 is a much better formulation. Here, we

do not include the MIP4.1. The reason is that for this formulation, we analytically show

that it is not a strong formulation. For an LCIP instance, let the graph be a complete graph

with n nodes. For each node i in V , bi is n−1 and di is 1. If we apply the LP relaxation of

the MIP4.1 to this instance, a feasible solution has pi = n−1
n
, vit = 1

n
, and yit = t

n
for all i

in V and t ∈ {1, 2, . . . , n} (note that T = n and xi = 1 for all i in V). The objective value

of this fractional solution is n− 1. For the integer optimal solution, initially a node must

185

be picked to start the influence propagation process. Then, a complete graph with (n− 1)

nodes is left with bi = n − 1 for all nodes. Therefore, we can repeat this procedure until

we only have two nodes left and we have to pick one of them with cost 1. This optimal

solution has objective value n(n−1)
2

. Then, given that we only use a feasible solution for

the LP relaxation, the LP bound is no better than 2
n
which decreases to 0 in the limit as the

size of the graph increases.

In order to demonstrate the effects of the components in our branch-and-cut pro-

cedure, we conducted a set of experiments with the branch-and-cut procedure on ten in-

stances with 10,000 nodes and 20,000 edges (after bidirecting these edges we have 40,000

arcs). We construct an initial feasible solution using a greedy heuristic. We run two algo-

rithms. One is motivated the greedy algorithm on trees which we call Tree Greedy which

calculates mi = min{bi, di} for a node i in V first and keeps selecting the node with the

smallest m value among the inactive nodes. The other one is a Cost Greedy heuristic

which repeatedly selects the node with smallest cost among those inactive ones (pays the

remaining threshold as an incentive to activate it) and applies the propagation rule until

a solution is found. For both heuristics, if there is a tie, we break it by picking the node

with the highest degree number in the remaining graph. If a tie still exists, it is broken

arbitrarily. Then, we choose the better solution from Tree Greedy and Cost Greedy as the

initial solution for the Branch-and-Cut approach. All runs are capped to a 10-minute time

limit.

Table 4.3 contains the results for 10000-node instances. We have two settings:

``BIP4.6'' is the straight implementation of BIP4.6 formulation with k-dicycle separation.

``All'' adds all other tricks to the ``BIP4.6'' setting. Although we can relax integrality on

186

Optimality Gap (%) Summary

ID BIP4.6 All BIP4.6 All
1 3.11 0.33 Avg Gap (%) 2.88 0.26
2 2.56 0.17 Max Gap (%) 3.44 0.41
3 2.77 0.32 # of Optimal Solutions 0.00 1.00
4 2.77 0.30 Avg User Sep Time 587.27 135.85
5 3.39 0.00 Min User Sep Time 583.06 115.58
6 2.22 0.41 Max User Sep Time 592.16 161.93
7 2.70 0.12 Avg # of Nodes Explored 51.50 23729.80
8 2.95 0.31 Avg Payment Value 31802.90 31279.40
9 2.89 0.29
10 3.44 0.34

Table 4.3: Comparison of Brand-and-Cut Settings for the LCIP on 10000-Node Instances.

the x variables, they are kept as binary in all settings to get a better dual bound at the root

node because we allow CPLEX to add its own cuts. In the left part of this table, we give

detailed information regarding the optimality gap for these ten instances. In the right part

of this table, summary measures (averaged over the ten instances) can be found. Although

none of the instances can be solved in ten minutes for the BIP2 setting, the average gap

is reduced from 2.88% to 0.26% and the maximum gap is reduced from 3.44% to 0.41%.

More importantly, two instances are solved to optimality after applying all tricks. Next,

we show average, minimum and maximum user separation time (in seconds) which is

the time used for separating k-dicyle inequalities. Incorporating Inactive Induced Graph

and Conservative Separation significantly reduces the separation time from about 587

seconds to 136 seconds on average. The same story can be found for minimum and max-

imum user separation time. ``Avg # of Nodes Explored'' is the average number of nodes

in the search tree. ``Avg Payment Value'' shows the average payment value (calculated

as
∑

i∈V bi −
∑

i∈V
∑

j∈a(i)
∑

k∈t(i) c
k
i x

k
ji) of those best feasible solutions found in each

setting. Based on the above experiment, we conclude that the setting ``All'' has improved

187

the performance significantly.

188

N
od
es

Av
g
D
eg
re
e

1
2

3
4

5
6

7
8

9
10

Av
g

M
ax

G
ap

(%
)

10
00
0

4
0.
33

0.
17

0.
32

0.
30

0.
00

0.
41

0.
12

0.
31

0.
29

0.
34

0.
26

0.
41

50
00

8
9.
04

9.
95

11
.0
0

9.
01

10
.9
4

10
.3
8

10
.4
2

10
.3
2

10
.4
1

8.
71

10
.0
2

11
.0
0

25
00

16
14
.5
7

15
.9
6

15
.6
8

15
.1
7

16
.1
0

15
.9
0

16
.3
3

16
.1
1

18
.9
6

18
.9
6

16
.3
7

18
.9
6

Ta
bl
e
4.
4:
A
na
ly
zi
ng

th
e
ef
fe
ct
of
gr
ap
h
de
ns
ity

on
th
e
br
an
ch
-a
nd
-c
ut
pr
oc
ed
ur
e
fo
rt
he

LC
IP
.

R
an
do
m
A
do
pt
io
n
Pe
rc
en
ta
ge

C
os
tG

re
ed
y
A
do
pt
io
n
Pe
rc
en
ta
ge

Tr
ee

G
re
ed
y
Pe
rc
en
ta
ge

Ed
ge
s

#
of
In
st
an
ce
s

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

40
0

10
48
.4
5

57
.5
0

97
.3
5

99
.0
0

98
.7
5

99
.0
0

60
0

10
35
.5
5

48
.0
0

95
.7
0

97
.0
0

97
.6
0

99
.0
0

80
0

10
36
.3
0

49
.5
0

95
.6
0

97
.5
0

97
.2
5

99
.0
0

10
00

10
41
.7
0

63
.0
0

92
.0
0

98
.0
0

96
.6
0

99
.0
0

12
00

10
34
.1
0

39
.5
0

89
.4
5

94
.0
0

95
.6
5

99
.0
0

Ta
bl
e
4.
5:
H
eu
ris
tic

fo
rt
he

LC
IP

Fi
xe
d
B
ud
ge
to
n
20
0-
N
od
e
In
st
an
ce
s.

189

Next, we investigate the role graph density plays in the difficulty solving a problem.

For this, in addition to the 10,000 node instances we generated for the previous experi-

ment; we generate ten instances with 5,000 nodes and average degree number 8 and ten

instances with 2,500 nodes and average degree number 16. They all have 20,000 edges

while different levels of graph density. We give 10-minutes time limits to all instances.

We use the ``All'' setting. The results are shown in Table 4.4. ``Gap'' is the optimal-

ity gap (at termination). We also show their average and maximum values in the last two

columns. The denser the graph, the bigger the gap. The average gap increases from 0.26%

to 10.02% when the number of nodes decreases from 10,000 to 5,000. Then, it increases

to 16.37% when the number of nodes becomes 2,500. Given that the optimality gap is

increased considerably, the LCIP problem becomes much harder when the graph density

increases.

Now, we focus on a set of experiments on 200 nodes where we evaluate the cost

of the optimal solution against differing measures. We varied graph density and created

instances where the number of edges takes values {400, 600, 800, 1000, 1200}. For each

setting, 10 instances are generated and there are 50 instances in total. These instances

are solved to optimality. Table 4.5 displays the results. In this experiment, we used two

different measures to assess the quality of the solutions obtained by the branch-and-cut

approach. The first measure tries to evaluate the benefit of optimal targeting by using

the optimal payment value as a budget (upper bound) for a heuristic payment vector and

evaluate the fraction of the graph that is influenced by this heuristic payment vector. We

consider three budget constrained heuristic payment vectors. The first one evaluates the

benefit of optimal payment vector against a random solution, the last two evaluate the

190

greedy heuristics. In all three cases, the budget is exceeded but the set of nodesmust satisfy

the following property: if any node is removed from this set, then the budget is respected.

For the budget constrained payment vector that is generated randomly, we find 100 random

solutions and select the one with the highest adoption (fraction of graph influenced). In

the greedy heuristics, we follow the tree greedy and cost greedy respectively until the total

payment violates the bound. From the column ``Random'' in Table 4.5, we can see that

the random selection strategy does not perform well. The average adoption rate increases

from 34% to 48% when the number of edges increases from 400 to 1200. But even the

best one among the 5,000 samples only has 63% adoption. On the other hand the greedy

heuristics have much better performance. Column ``Cost Greedy'' and ``Tree Greedy''

show the results for cost greedy and tree greedy respectively. For cost greedy, on average

the adoption rate is around 94% with the best at 99%. The tree greedy has the best results.

On average the adoption rate is around 97% with the best at 99%

191

TP
It
o
O
pt
G
ap

TP
I-
G
to
O
pt
G
ap

C
os
tG

re
ed
y
to
O
pt
G
ap

Tr
ee

G
re
ed
y
to
O
pt
G
ap

Ed
ge
s

#
of
In
st
an
ce
s

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

40
0

10
73
.6
8

97
.4
3

94
.6
7

18
1.
67

7.
32

11
.5
1

2.
84

6.
43

60
0

10
12
3.
41

16
9.
26

11
7.
90

14
0.
04

14
.7
7

20
.4
7

7.
22

12
.9
5

80
0

10
18
4.
58

26
0.
14

14
8.
07

21
7.
29

13
.6
9

20
.5
5

7.
64

14
.9
5

10
00

10
21
2.
30

32
8.
63

14
1.
77

19
1.
47

18
.8
3

35
.2
9

7.
38

14
.9
9

12
00

10
27
8.
72

45
0.
51

19
9.
69

23
1.
60

27
.0
3

35
.9
7

5.
99

9.
61

Ta
bl
e
4.
6:
O
pt
im
al
ity

G
ap
sf
or
H
eu
ris
tic
sf
or
10
0%

A
do
pt
io
n
fo
rt
he

LC
IP

on
20
0-
N
od
e
In
st
an
ce
s.

192

The second measure evaluates the cost of optimal payment vector by comparing

the optimal solution against heuristic solutions that have 100% adoption. We consider

four heuristics. The first two are based on the TPI algorithm in Cordasco et al. [2015].

The TPI algorithm is designed for a special case of the LCIP where for a node i, bi takes

a value between 1 and its degree number and di is 1. They remove nodes based on a

measure and make payment when they find a node's total possible incoming influence is

not enough for its threshold in the remaining graph. In the ``TPI'' version, the measure

is bi(bi+1)
deg(i)(deg(i)+1)

. In the ``TPI-G'' version, the measure is changed to gi(gi+1)
deg(i)(deg(i)+1)

. The

last two heuristics are the Tree Greedy and Cost Greedy algorithm. Table 4.6 summarizes

the results providing the gap between the heuristic solution and the optimal solution value

(the gap is calculated as the difference between the heuristic solution and the optimal

solution, then divid it by the optimal solution). The column ``Tree Greedy to Opt Gap''

shows that the solutions obtained by the Tree Greedy algorithm have the smallest gap

to the optimal ones. Furthermore, this gap increases with graph density generally. Both

active TPI algorithms perform badly in this more general LCIP setting.

193

W
TS

S
%
of
To
ta
lC

os
t

LC
IP

%
of
To
ta
lC

os
t

%
of
Sa
vi
ng

Ed
ge
s

#
of
In
st
an
ce
s

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

Av
g
(%

)
M
ax

(%
)

40
0

10
10
.7
1

11
.6
7

6.
70

7.
31

37
.3
8

41
.7
8

60
0

10
7.
83

9.
95

4.
00

5.
79

49
.4
4

57
.2
5

80
0

10
5.
23

7.
07

2.
19

2.
89

57
.9
0

68
.1
5

10
00

10
5.
35

6.
85

1.
98

3.
05

63
.6
3

71
.2
2

12
00

10
4.
99

7.
50

1.
79

2.
63

64
.4
3

77
.3
4

Ta
bl
e
4.
7:
A
dv
an
ta
ge

of
Pa
rti
al
In
ce
nt
iv
es
of
th
e
LC

IP
w
ith

20
0-
N
od
e
In
st
an
ce
s

194

In the next experiment, we show that partial incentives are able to provide significant

saving in cost. In Raghavan and Zhang [2015], a set of WTSS instances is presented and

solved to optimality. Each instance has 200 nodes. They varied graph density and created

instances where the number of edges takes values {400, 600, 800, 1000, 1200}. For

each setting, 10 instances are generated and there are 50 instances in total. We take those

instances and solve their equivalent form of the LCIP. To obtain the equivalent LCIP, for

each node i, its cost is divided by its threshold value for the influence factor, di = bi/gi.

We want to point out that the influence factor can take bigger value between bi/gi and

bi/(gi − 1) (i.e. bi/gi < di < bi/(gi − 1)) and maintain the gi value for node i. But

we use the smallest value of influence factor for the following reason: The selected value

for the influence factor is the most conservative one for evaluating the effects of partial

incentives. Choosing a bigger influence factor setting will benefit the LCIP and result in

smaller payment values because given a feasible solution under the current setting, the

underlying influence propagation is still feasible and the payment to each node could be

reduced due to the fact that it receives more influence. Therefore, we chose to set di

as bi/gi. These instances are given ten minutes to run and those best feasible solutions

found by the time limit are used for comparison here. Note that although the size of

instances is not huge, they are not trivial instances because the WTSS problem is APX-

hard. Furthermore, we need the optimal solution of the WTSS problem to show that the

LCIP setting is able to provide savings.

Table 4.7 displays the results. The first column shows the number of edges and the

number of instances for each setting. Then, in the second column ``WTSS % of Total

Cost'', it contains the average and the maximum percentage of the total cost results in

195

100% adoption in theWTSS problem. The optimal objective value of theWTSS instances

is compared to the sum of all node costs,
∑

i∈V bi. Similarly, we compare the optimal

payment value of the LCIP instances to the sum of all node costs. The results are shown

in the ``LCIP% of Total Cost'' column of Table 4.7. We can see that on average, for graphs

with 400 edges about 7% of the total cost is needed for the LCIP and 11% for the WTSS

problem, and it decreases to less than 2% for the LCIP and 5% for the WTSS problem

when the number of edges increases to 1200 edges. In the last column ``% of Saving'', we

show the average and the maximum percentage of saving by considering partial incentives

in the LCIP. The saving is calculated as (Zwtss−Zlcip)/Zwtss where Zwtss and ZLCIP are

the objective value for theWTSS problem and the payment value of the LCIP respectively.

The saving increases as the density of the graph increases. On average, the saving is about

38% for graphs with 400 edges and it increases to about 65% for graphs with 1200 edges.

The same story can be found for the maximum saving. Thus, it is safely to conclude that

partial incentives are worthing considering in the influence maximization context and are

able to reduce the cost dramatically.

4.6 Conclusions

We defined and studied the LCIP of finding the least expensive way of maximizing

influence over an entire social network. We identified a polynomially solvable case of this

NP-hard problem which is the LCIP on trees with equal influences from one's neighbors

when the spread reaches the whole network. We proposed a greedy algorithm to solves

the problem to optimality. We also showed a dynamic programming algorithm which has

196

a better time complexity and is able to handle the situation that the assumption that equal

influences come from one's neighbors is relaxed.

The cascading propagation behavior of influence in the LCIP can be modeled as

a directed network. Using this directed network of influence propagation, we provide a

stronger formulation for the LCIP. When the underlying graphs are trees, the constraint

matrix of this influence formulation is a TU matrix and an optimal integral solution can

be obtained by solving its linear relaxation.

The TUM formulation can be used as a building block for developing efficient ap-

proaches for a general network. However, one important observation is that the directed

network of influence propagation must be a directed acyclic graph. This requires addi-

tional constraints to be involved in a general network. Based on this, we design and im-

plement a branch-and-cut approach for the LCIP on general networks. Our computational

results show that we are able to find near optimal solutions for large randomly generated

networks in a reasonable amount of time.

197

Chapter 5: The One Time Period Least Cost Influence Problem

5.1 Introduction

In this Chapter, we study an influence maximization problem which is similar to

the PIDS problem but with partial incentives. The One Time Period Least Cost Influence

Problem (1TPLCIP) considers partial incentives and an unit time restriction at the same

time. In other words, the 1TPLCIP is identical to the LCIP except that we restrict the

number of time periods that the diffusion takes place over to be one.

5.1.1 Problem Definition

We define the One Time Period Least Cost Influence Problem (1TPLCIP) as fol-

lows: Consider a social network represented as an undirected graph G = (V,E), where

node set V = {1, 2, . . . , n} denotes the set of people in the network and edge setE shows

the connections between people on the social network. In the threshold model, each in-

active node i ∈ V is influenced by an amount di (referred to as the influence factor) by

it's neighbor node j (i.e., there is an edge in the graph between nodes i and j) if node j is

active (i.e., has already adopted the product). For each node in the network, i ∈ V , there

is a threshold, denoted by bi. Further, a payment pi represents the tailored incentives for

198

a node i ∈ V . All nodes are inactive initially. Then, we decide the tailored incentives

pi for each node i ∈ V . Now, a node i becomes active immediately if pi ≥ bi (i.e., if

the payment is greater than the threshold). After that, the influence diffusion process is

allowed for one time period. Then, we update the states of nodes by the following rule: an

inactive node i becomes active if the sum of the tailored incentive pi and the total influence

coming from its active neighbors is at least bi.

The goal is to find the minimum total payment (e.g.,
∑

i∈V pi) while ensuring that

all nodes are active by the end of this one time period activation process.

A simple integer programming model for the 1TPLCIP is introduced here. Binary

variable xi denotes whether node i is activated by receiving full payment (bi). Non-

negative variable pi represents the amount of incentives node i receives if it is not ac-

tivated by full payment. Let n(i) denote the set of node i's neighbors. The formulation is

as follows:

(MIP5.1) Min
∑
i∈V

pi +
∑
i∈V

bixi (5.1)

S.T. pi + bixi + di
∑
j∈n(i)

xj ≥ bi ∀i ∈ V (5.2)

xi ∈ {0, 1}, pi ≥ 0 ∀i ∈ V (5.3)

Here, the objective (5.1) is to minimize the sum of the incentives given over the network.

Constraint set (5.2) models the diffusion process---an inactive node i becomes active if it is

selected for initial activation (i.e., paid bi) or the sum of the tailored incentive (pi) and the

total influence coming from its active neighbors is at least bi. Constraint set (5.3) ensures

binary and non-negative requirements for the x and p variables, respectively. Note that

199

we do not enforce an upper bound on p variables although for a node i in V , pi is at most

bi − di. The reason is that in this minimization problem, when bi − di < pi < bi, it can

be reduced to bi − di resulting in a better solution. If pi = bi, we can construct a solution

that has xi = 1 and pi = 0. The new solution is no worse than the current one because

the neighbors of node i can also receive influence from node i given xi = 1. Hence, we

do not need an upper bound on p variables and can focus on solutions which have at most

one of xi and pi take a positive value for any node i in V .

5.1.2 Our Contributions

We first study the 1TPLCIP on trees. We propose a polynomial algorithm for the

1TPLCIP on trees. The algorithm uses a dynamic programming approach and decomposes

a tree into several ``star'' subproblems. For each star subproblem, it finds at most two

solution candidates. After all subproblems are examined, a backtracking procedure is used

to determine the final solution. More importantly, we present a tight and compact extended

formulation for the 1TPLCIP on trees. The key idea in this formulation is the addition of

a dummy node on each edge in the graph that cannot be selected for receiving payment.

Also, a dummy node's influence factor and threshold are equal to each other. Thus, if any

of its neighbors are active, this dummy node would become active. Although we allow

two time periods for the diffusion process after adding dummy nodes, the solution can be

converted back to a solution with one time period for the diffusion process on the original

graph.

200

5.2 The 1TPLCIP on Trees

5.2.1 Dynamic Programming Algorithm.

Our dynamic programming algorithm fragments the tree into star subnetworks it-

eratively, and solves the 1TPLCIP over each star. For each star, the 1TPLCIP is solved

with and without external influence (whether or not the parent node of the star is paid in

full) to determine the solution for that star. Next, the star is compressed into a single node

and becomes a leaf node for the next star. This process is repeated until we are left with

a single (last) star with its central node as the root of the original tree. After we exhaust

all subproblems, a backtracking method is used to combine the solutions from stars and

identify a final solution (set of nodes with incentives, and the incentive amounts paid to

them) for the tree. The pseudocode of the proposed algorithm is shown in Algorithm 17.

For ease of exposition, we use the same notation and do not use indices to differ-

entiate each star. The central node is represented by c and we refer to this star as star c.

Also, for each star c, it has many children nodes connected to the central node. These

children are categorized into two kinds. One is called normal children, denoted by N(c),

and it contains those children that are not leaf nodes in the original tree. So, these children

nodes are central nodes of stars before the current star c and are obtained by compression.

Algorithm 17 Algorithm for the 1TPLCIP problem on trees
1: Arbitrarily pick a node as the root node of the tree
2: Define the order of star problems based on the bottom-up traversal of the tree
3: for each star subproblem do
4: StarHandling
5: end for
6: SolutionBacktrack

201

The other kind of children are called core children, denoted by M(c), and it has those

children which are leaf nodes in the original tree. The key distinction between normal

children and core children is that if the node c is not fully paid, those core children must

be paid full incentives. This is not true for normal children because they could be covered

by the influence from their children. Furthermore, let L(c) = N(c) ∪M(c) denote the

set of all children of star c. In a star, if the central node is fully paid, all nodes become

active (since a leaf node only requires one active neighbor to adopt the product). When

the central node does not receive full payment, we can make the central node active by

giving it partial incentives or no incentives when some leaf nodes are paid in full payment

first and influence the central node. The presence of the external influence from the rest

of the tree affects which solution is cheaper.

In the StarHandling part of the dynamic programming (if the current star is not the

last star) we consider these two cases (no-influence, with-influence). Denote their cost

as Cc
NI and Cc

I , respectively. Although the solution is cheaper for the current star when

external influence is present, it might be better for the final solution to have the star send

influence to the rest of the tree (i.e. fully pay the node c and have it send influence to

its parent). The purpose of compressing the current star into a single leaf node for the

next star is to keep that possibility. The threshold for the compressed star is the difference

between the cost of the central node c and that of the solution with external influence,

bc−Cc
I , because if the current star sends influence to the rest of the tree, then, we have to

node c its full threshold value. From the parent node's point of view, there are only two

possibilities. It receives full payment or not. If the parent node does, it sends influence

to node c. However, in the other case, we must pay the difference between bc and CC
I .

202

The influence factor of this new node is set as infinity to reflect that it is a normal child

and does not need be fully paid when the central node c is not be fully paid. For the last

star, there is only one solution because there is no possibility of an external influence.

Therefore, for each star, we find solution candidates to activate the central node c and its

core children at the minimum cost.

SolveStar: This function returns X (set of leaf nodes that are given incentives), P (a

payment vector, i.e., {pi|i ∈ V }), C (total cost of the star) and B (set of nodes paid full

incentive). In Algorithm 18 the subscriptsNI and I and superscript c (forX , P ,C andB)

represent the outputs in the cases of no-influence, with-influence and star c, respectively.

Recall that N(c) is the set of normal children and M(c) is the set of core children. Let

gc = ⌈ bcdc ⌉ be the required number of adopted neighbors for node c to became active, pi be

the partial incentives given to node i (initially set to 0 ∀i ∈ V), and lc = bc − (gc − 1)dc.

First, consider the situation with no influence from the parent of node c, we compare

the central node with all its children. If the cost of the central node is not bigger than the

total cost of all its children, we pay the central node its full payment.

Next, we try to find the best solution without paying node c in full payment. First,

we have to pay all core children. Then, to select which normal children to give incentives

to, we focus on the central node c's influence factor. Any leaf node i with bi ≥ dc can be

neglected. When bi ≥ dc, giving bi units of incentives to a leaf node i sends dc influence

to node c, thus the decrease in threshold is less than what we spend. We could be better off

by giving the incentive directly to the central node, and never use such normal children.

Therefore, we collect the nodes with thresholds less than dc in set S, thus providing in-

centives to nodes in S is advantageous in terms of decreasing the threshold of the central

203

Algorithm 18 StarHandling
Require: star c
1: (Xc

NI , P
c
NI , C

c
NI , B

c
NI)← SolveStar(star c, no-influence).

2: if star c is not the last star then
3: (Xc

I , P
c
I , C

c
I , B

c
I)← SolveStar(star c, with-influence).

4: The compressed node's threshold is b′c = bc − Cc
I .

5: end if
6: function SolveStar(a star c, flag)
7: Let gc = ⌈ bcdc ⌉. Recall that N(c) is the set of normal children, M(c) is the set of

core children and L(c) = N(c) ∪M(c).
8: if bc ≤

∑
i∈L(c) bi then

9: Let pc = bc and X ← c, B ← c and C = bc.
10: else
11: if flag is with-influence then
12: gc = gc − 1.
13: end if
14: X ←M(c), B ←M(c), pi = bi for i ∈M(c).
15: if |M(c)| < gc then
16: Let S = {i | b′i < dc, i ∈ N(c)}, lc = bc−(gc−1)dc and k = gc−|M(c)|.
17: if |S| ≥ k then
18: Let Sk and Sk−1be the sets of the cheapest k and (k − 1)nodes in S,

respectively.
19: if

∑
i∈Sk

b
′
i ≤

∑
i∈Sk−1

b
′
i + lc then

20: X ← X ∪ Sk, B ← B ∪ Sk, pi = bi for i ∈ X .
21: else
22: X ← X∪Sk−1,B ← B∪Sk−1, pi = bi for i ∈ X , and let pc ← lc,

X ← X ∪ c.
23: end if
24: else
25: X ← X ∪ S, B ← B ∪ S, pi = bi for i ∈ S, and let pc = bc − |S|dc,

X ← X ∪ c.
26: end if
27: end if
28: C =

∑
i∈X pi.

29: end if
30: return X,P,C,B.
31: end function

204

Algorithm 19 SolutionBacktrack
Require: the last star and its solution X and P
1: X∗ ← X , p∗i ← pi for all i ∈ X .
2: if X is r then
3: ∀i ∈ N(r) call Piecing(i, X∗, with-influence).
4: else
5: ∀i ∈ N(r) \Br

NI call Piecing(i, X∗, no-influence).
6: for i ∈ Br

NI do
7: ∀j ∈ N(i) call Piecing(j, X∗, with-influence).
8: end for
9: end if
10: C∗ =

∑
i∈X∗ pi

11: return C∗, X∗, P ∗.

node. The cost of the solution depends on the size of the set S. Let k = gc − |M(c)|.

When |S| ≥ k (i.e., there are more than enough children nodes), the solution is to pay

the first k nodes in S if the threshold for the k-th node (b(k)) is less than or equal to lc.

Otherwise, it is less costly to pay the first (gc − 1) nodes and the remaining threshold of

the central node is covered by direct incentives to c. If |S| < k, then all nodes in the set

S are given incentives and the remaining amount of the threshold of the central node is

covered by incentives given directly to central node.

Thus, we obtain the no-influence solution. For the situation with external influence,

we reduce gc to gc − 1 accordingly. Then, we follow the same procedure as above for the

with-influence solution.

In Algorithm 18, we described how to solve 1TPLCIP on a single star. In Algo-

rithm 19, we describe how to combine these solutions with a backtracking procedure to

obtain a final solution for the tree.

SolutionBacktrack: After we obtain the solution of the last star which has the root node

as its central node, we invoke a backtracking procedure to choose the solution from the

205

Algorithm 20 Recursive Functions
1: function Piecing(c, X , Flag)
2: if Flag = with-influence then
3: X

′ ← Xc
I , P

′
= P c

I .
4: else
5: X

′ ← Xc
NI , P

′
= P c

NI .
6: end if
7: X ← X ∪X

′ .
8: if X ′

= c then
9: ∀i ∈ N(c) call Piecing(i, X , with-influence).
10: else
11: ∀i ∈ N(c) \Bc

NI call Piecing(i, X , no-influence).
12: for i ∈ Bc

NI do
13: ∀j ∈ N(i) call Piecing(j, X , with-influence).
14: end for
15: end if
16: return X , P .
17: end function

candidates for each star subproblem and piece them together to obtain the final solution for

this tree. After the last star subproblem is solved, for each child node in this star, we know

if it is fully paid or not and if its parent node is fully paid or not. For instance, if the central

node is fully paid, then, the central node sends influence to all its children. Then, all stars

with central node in N(c) will pick the candidate with influence. Otherwise, first, if a

node i inN(c) is fully paid, we can proceed to nodes in L(i) and pick the candidate where

the parent node is selected. Second, if a node i inN(c) is not fully paid, they will pick the

candidate where the parent node is not selected. With this informationwe can now proceed

down the tree, incorporating the partial solution at a node based on the solution of its parent

star. This backtracking procedure is described in Algorithm 19 SolutionBacktrack. Let r

denote the root of the tree (as determined by Algorithm 17), X∗ denote the final solution

of the tree, C∗ its cost, and P ∗ its payment vector.

In this algorithm, we have the recursive functions: Piecing. It chooses the solution

206

4

1

2

5 6

𝒃𝒊
𝒅𝒊

𝒊

𝟔𝟖
𝟑𝟑

𝟒𝟏
𝟒𝟏

𝟒𝟓
𝟒𝟓3

𝟏𝟗
𝟏𝟎

𝟏𝟔
𝟏𝟔

𝟑𝟗
𝟑𝟗

4

1

2

5 6

𝒙𝟏 = 𝟎

3

𝒙𝟐 = 𝟏

𝒙𝟑 = 𝟎. 𝟎𝟎𝟕

𝒙𝟓 = 𝟎. 𝟏𝟏𝟑

𝒙𝟔 = 𝟎. 𝟏𝟏𝟑

𝒙𝟒 = 𝟎. 𝟖𝟖𝟕

Figure 5.1: (a) A 1TPLCIP instance (b) A fractional optimal solution

for a star c and recursively choose solutions for stars whose central nodes are leaf nodes

of the star c. Algorithm 20 provides a detailed description about them. Although it is

possible to prove the correctness of this algorithm directly, we defer the proof until the

next section. There we will provide a tight and compact extended formulation for the

1TPLCIP problem, and use linear programming duality to prove its correctness.

Proposition 5.1. The 1TPLCIP problem on trees can be solved in O(|V |) time.

Proof. Proof of Proposition 5.1. There are at most |V | stars. For each star, we need to find

gi cheapest children and it takes O(deg(i)) time. Finding the gith order statistics can be

done in O(deg(i)) time by the Quickselect method in Chapter 9 of Stein et al. [2009] thus

it takes O(deg(i)) time to go through the list to collect the gi cheapest children. For the

whole tree, this is bounded by O(|V |) time. In the backtracking procedure, we pick the

final solution for each node which takesO(|V |) time over the tree. Therefore, the running

time for the dynamic algorithm is linear with respect to the number of nodes.

207

5.2.2 A Tight and Extended Formulation

Although MIP5.1 is a valid formulation for the 1TPLCIP, we note that this for-

mulation is weak and Figure 5.1 shows its linear programming (LP) relaxation provides

fractional solutions for instances on trees. Figure 5.1(a) provides the 1TPLCIP instance,

and Figure 5.1(b) describes a fractional optimal solution to the LP relaxation of MIP5.1.

It has x1 = 0, x2 = 1, x3 = 0.006849, x4 = 0.886986, x5 = 0.113014, x6 = 0.113014.

All other decision variables are zero. The objective value is 106.339041.

We now present a tight and compact extended formulation on trees. From the input

graph G, we create a new graph Gt by adding one dummy node to each edge in G. For

each edge {i, j} ∈ E, insert a dummy node d. Let D denotes the set of dummy nodes.

Since the dummy nodes have effectively split each edge into two in the original graph, we

replace each of the original edges {i, j} ∈ E by two edges {i, d} and {d, j} in the new

graphGt. LetEt denote the set of edges inGt (Gt = (V ∪D,Et)). We define an extended

edge as {i, d, j} in Gt for an edge {i, j} in G. The dummy nodes cannot be selected for

receiving payment (they can be viewed as having large costs), and all have their influence

factor equal to their threshold (thus if one of it's neighbors is activated the dummy node

will become active and propagate the influence to the other neighbor). Note that now the

propagation is allowed to have two time periods in the transformed graph Gt, but as will

become evident later, it is still a one time period propagation in the original graph G.

For each node i ∈ V , binary decision variable xi denotes whether node i receives

full payment. Also, a continuous decision variable pi denotes the amount of payment node

i receives if it is not paid in full. For each edge {i, d} ∈ Et, where i ∈ V and d ∈ D

208

(notice Gt is bipartite and Et only contains edges between the nodes in V and D), create

two binary arc variables yid and ydi to represent the direction of influence propagation. If

node i sends influence to node d, yid is 1 and 0 otherwise. For any node i ∈ V ∪D, a(i)

denotes the set of node i's neighbors in the transformedGt. Recall that for any node i ∈ V ,

we use n(i) denoting the set of node i's neighbors in the original graph G. Furthermore,

gi = ⌈ bidi ⌉ and li = bi − di(gi − 1). We can now write the following compact extended

formulation on trees:

(MIP5.2) Min
∑

i∈V pi +
∑

i∈V bixi (5.4)

Subject to yid + ydi = 1 ∀{i, d} ∈ Et (5.5)

xi ≥ ydj ∀i ∈ V, j ∈ n(i) (5.6)

xi ≤ yid ∀i ∈ V, d ∈ a(i) (5.7)

pi + bixi + di
∑

d∈a(i) ydi ≥ bi ∀i ∈ V (5.8)

pi + ligixi + li
∑

d∈a(i) ydi ≥ ligi ∀i ∈ V (5.9)

pi ≥ 0, xi ∈ {0, 1} ∀i ∈ V (5.10)

yid, ydi ∈ {0, 1} ∀{i, d} ∈ Et (5.11)

We refer to the above formulation as MIP5.2. The objective function (5.4) mini-

mizes the total cost. Constraint (5.5) makes sure on each edge influence is only propa-

gated in one direction. Constraint (5.6) says that if node i is selected, then node d can

send influence to node j for an extended edge {i, d, j} in Gt. Constraint (5.7) means that

if node i is selected, it sends influence to all its neighbors. Constraint (5.8) says for a node

i in V , the sum of the payment it receives and the influence from its neighbors is at least

209

bi. Constraint (5.9) says for a node i in V , the sum of the payment it receives and product

of the number of incoming arcs and li is at least ligi. The rest are non-negative constraint

and binary constraints. We do not enforce an upper bound on p variables for the same

reason stated earlier for MIP5.1.

The linear relaxation of MIP5.2 is the following linear programming problem:

(LP5.2) Min
∑

i∈V pi +
∑

i∈V bixi (5.12)

Subject to (sid) −yid − ydi = −1 ∀{i, d} ∈ Et (5.13)

(tij) xi − ydj ≥ 0 ∀i ∈ V, j ∈ n(i) (5.14)

(uid) yid − xi ≥ 0 ∀i ∈ V, d ∈ a(i) (5.15)

(vi) pi + bixi +
∑

d∈a(i) diydi ≥ bi ∀i ∈ V (5.16)

(wi) pi + ligixi +
∑

d∈a(i) liydi ≥ ligi ∀i ∈ V (5.17)

pi, xi ≥ 0 ∀i ∈ V (5.18)

yid, ydi ≥ 0 ∀{i, d} ∈ Et (5.19)

We refer to this linear programming problem as LP5.2. The dual to LP5.2 is as

follows:

(DLP5.2) Max
∑

i∈V bivi +
∑

i∈V ligiwi −
∑

i∈V
∑

d∈a(i) sid (5.20)

S.T. (yid) −sid + uid ≤ 0 ∀i ∈ V, d ∈ a(i) (5.21)

(ydi) −sid − tji + divi + liwi ≤ 0 ∀d ∈ D, i ∈ a(d) (5.22)

(xi)
∑

j∈n(i) tij −
∑

d∈a(i) uid + bivi + ligiwi ≤ bi ∀i ∈ V (5.23)

210

(pi) vi + wi ≤ 1 ∀i ∈ V (5.24)

sid free ∀{i, d} ∈ Et (5.25)

tij ≥ 0 ∀i ∈ V, j ∈ n(i) (5.26)

uid ≥ 0 ∀i ∈ V, d ∈ a(i) (5.27)

vi, wi ≥ 0 ∀i ∈ V (5.28)

We have sid, tij , uid, vi, and wi as dual variables for constraint sets (5.13), (5.14),

(5.15), (5.16), and (5.17) respectively. We refer to the dual linear problem as DLP5.2. Let

conv(P) denote the convex hull of payment vectors (p, x), and let E1TPLCIP denote the

feasible region of LP5.2.

Theorem 5.1. Given a tree, LP5.2 has optimal solutions with x binary

and Proj(p,x)(E1TPLCIP) = conv(P).

Proof. Proof of Theorem 5.1. First, based on this pair of primal and dual problems, we

have the complementary slackness conditions:

(yid + ydi − 1)sid = 0 ∀{i, d} ∈ Et (5.29)

(xi − ydj)tij = 0 ∀i ∈ V, j ∈ n(i) (5.30)

(yid − xi)uid = 0 ∀i ∈ V, d ∈ a(i) (5.31)

(pi + bixi +
∑

d∈a(i) diydi − bi)vi = 0 ∀i ∈ V (5.32)

(pi + ligixi +
∑

d∈a(i) liydi − ligi)wi = 0 ∀i ∈ V (5.33)

(−sid + uid)yid = 0 ∀i ∈ V, d ∈ a(i) (5.34)

(−sid − tji + divi + liwi)ydi = 0 ∀d ∈ D, i ∈ a(d) (5.35)

211

(
∑

j∈n(i) tij −
∑

d∈a(i) uid + bivi + ligiwi − bi)xi = 0 ∀i ∈ V (5.36)

(vi + wi − 1)pi = 0 ∀i ∈ V (5.37)

The payment vector p∗ obtained in the DP algorithm can be transfer into a feasible

solution for LP5.2. Given the payment vector, if a node i receives full payment, set xi = 1

and pi = 0. Then, set ydi = 0 and yid = 1 for all d in a(i). If not, set xi = 0 and pi = p∗i .

Next, based on the solution candidate selected in the backtracking procedure, we assign

values for the remaining y variables. Let S denote the set of children are selected in star

i's final solution (With or Without external influence). Then, if the ``with influence''

solution is picked, then, let S = S ∪ h where h is node i's parent node in the original

graph. Let Sd denote the set of dummy nodes adjacent to node i and nodes in S, thus,

Sd = {d ∈ a(i) : d ∈ a(j) ∀j ∈ S}. Finally, for all d ∈ Sd, set ydi = 1 and yid = 0.

For all d ∈ a(i) \ Sd, set ydi = 0 and yid = 1. Note that, each regular node has at most gi

incoming arcs unless the size of its core children set is bigger than gi.

With this primal feasible solution in hand, a dual feasible solutionwill be constructed

in the following proof and show that CS conditions are satisfied by this pair of primal and

dual solutions. Throughout the proof, we always have uid = sid. So, CS condition (5.34)

is satisfied. Then, we can focus on other CS conditions.

First, we assign values to all dual variables associated with leaf nodes. For a leaf

node l, set vl = 1, wl = 0, tli = 0, til = bi, sld = 0 and uld = 0 where i is in n(l)

and d is in a(l). For a leaf node, bi = di. Then, constraint (5.22), (5.23) and (5.24) are

always binding. Thus, CS condition (5.35), (5.36), and (5.37) are satisfied. Furthermore,

CS condition (5.29), (5.30), (5.31), (5.33) are satisfied because sld = 0, tli = 0, uld = 0

212

andwl = 0 respectively. Lastly, CS condition (5.32) is respected because constraint (5.16)

is always binding regardless of the value of xi.

Next, following the bottom-up order in the DP algorithm, for each non-leaf node, we

have three cases depending on the amount of incentives it receives in the solution obtained

by the DP algorithm. Let h denote node i's parent node in the original tree following the

DP algorithm and deg(i) be node i's degree number. Given that bottom-top order, the

dual variable t associated with node i's children are set already. So we only need to assign

value to tih and thi.

Case one: For a node i, if xi = 1, it means pi = 0, yid = 1 and ydi = 0 for all d

in a(i). Set vi = wi = 0, tih = b
′
i, thi = 0, and uid = sid = (

∑
j∈n(i) tij − bi)/deg(i).

Then, CS condition (5.29), (5.31), (5.32), (5.33) are satisfied because those corresponding

primal constraints are binding. CS condition (5.30) is satisfied as follows: when xj = 0,

xi = ydj = 1 and when xj = 1, we must have tih = b
′
i = 0. Otherwise, xi would

be zero in the DP algorithm. Constraint (5.22) and (5.24) are satisfied as inequalities.

Thus, conditions (5.35), and (5.37) are satisfied because ydi = 1 and pi = 0. Lastly,

conditions (5.36) is satisfied because constraint (5.23) is binding by construction.

Case two: For a node i, if xi = 0 and pi > 0, it means there are less than gi incoming

arcs for this node. Let Ie be the set of the dummy nodes such that Ie = {d ∈ a(i) : ydi =

1}. Also, for ease of explanation, we make Cd(i) contain those dummy nodes adjacent

to node i's core children. Set tih = 0 and thi = b
′
i. If pi = li, set vi = 0 and wi = 1.

Otherwise, set vi = 1 and wi = 0. Let ki = divi + liwi. Next, for d in Ie \ Cd(i),

set uid = sid = ki − tji where j is the other regular node adjacent to the dummy node

d. For d in Cd(i), set uid = sid = ki. Then, for d in a(i) \ Ie, set uid = sid = 0. CS

213

condition (5.29) is satisfied becausewhen d is in Ie, constraint (5.13) is binding andwhen d

is in a(i) \ Ie, sid = 0. CS condition (5.30),(5.31), (5.32) are satisfied because constraint

(5.14) (xi = ydj = 0), (5.15) (xi = yid = 0) and (5.16) are binding respectively. CS

condition (5.33) is satisfied because constraint (5.17) is binding when pi = li and wi = 0

when pi ̸= li. CS condition (5.35) is satisfied. This can be seen as follows: For d in Ie,

constraint (5.22) is binding by construction. For d in a(i)\Ie, constraint (5.22) is satisfied

(tji = b
′
j ≥ ki, Otherwise xj = 1 by the DP algorithm) and ydi = 0. CS condition (5.36)

is satisfied because constraint (5.23) is satisfied and xi = 0. Lastly, CS condition (5.37)

is satisfied because constraint (5.24) is binding.

Case three: For a node i, if xi = 0 and pi = 0, it means there are at least gi

incoming arcs for this node. Let Io be the set of the regular nodes such that Io = {j ∈

n(i) : yjd = 1, ydi = 1}. Depending on the size of Cd(i), we consider two situations.

First, if |Cd(i)| ≥ gi, set vi = wi = 0, tih = b
′
i and thi = 0. Also, uid = sid = 0 for all d

in a(i). CS condition (5.29), (5.31), (5.32), (5.33) are satisfied because sid = 0, uid = 0,

vi = 0 and wi = 0 respectively. CS condition (5.30) is satisfied because constraint (5.14)

(xi = ydj = 0) is binding. For CS condition (5.35), for d in Cd(i), constraint (5.22) is

binding by construction (tji = 0). For d in a(i) \ Cd(i), constraint (5.22) is satisfied as

an inequality (tji ≥ 0) and ydi = 0. CS condition (5.36) and (5.37) are satisfied because

constraint (5.22) and constraint (5.23) are satisfied and xi = 0 and pi = 0 respectively.

Second, if |Cd(i)| ≤ gi − 1, then, node i has exactly gi incoming arcs. We set

tih = b
′
i, thi = 0, vi = 0, wi =

b
′
m

li
wherem = argmax{bj : j ∈ Io ∪ {i} \ (C(i)∪ {h})}.

Let ki = liwi. Next, for d in Ie \ Cd(i), set uid = sid = ki − tji where j is the other

regular node adjacent to the dummy node d. For d in Cd(i), set uid = sid = ki. Then, for

214

d in a(i) \ Ie, set uid = sid = 0. CS condition (5.29) is satisfied because when d is in

Ie, constraint (5.13) is binding and when d is in a(i) \ Ie, sid = 0. CS condition (5.30)

and (5.33) are satisfied because constraint (5.14) (xi = ydj = 0) and (5.17) are binding

respectively. CS condition (5.31) is satisfied because constraint (5.15) (xi = yid = 0)

when d is in Ie and sid = 0 when d is in a(i) \ Ie. CS condition (5.32) is satisfied

because vi = 0. CS condition (5.35) is satisfied. This can be seen as follows: For d in Ie,

constraint (5.22) is binding by construction. For d in a(i)\Ie, constraint (5.22) is satisfied

(tji = b
′
j ≥ ki), Otherwise xj = 1 by the DP algorithm) and ydi = 0. CS condition (5.36)

is satisfied because constraint (5.23) is satisfied and xi = 0. Lastly, CS condition (5.37)

is satisfied because constraint (5.24) is satisfied and pi = 0.

5.2.3 Polytope of the 1TPLCIP on Trees

Next, we derive the polytope of the 1TPLCIP on trees. The extended formulation is

projected onto the space of the payment (i.e., p and x) variables by projecting out all arc

(i.e., y) variables.

We first substitute out all yid variables by 1 − ydi because yid + ydi = 1. Then, we

have the following formulation and denote its feasible region as Pd.

(LP3) Min
∑

i∈V pi +
∑

i∈V bixi (5.38)

Subject to (tdi) xj − ydi ≥ 0 ∀j ∈ V, i ∈ n(j) (5.39)

(uid) −xi − ydi ≥ −1 ∀i ∈ V, d ∈ a(i) (5.40)

(vi) pi + bixi +
∑

d∈a(i) diydi ≥ bi ∀i ∈ V (5.41)

(wi) pi + ligixi +
∑

d∈a(i) liydi ≥ ligi ∀i ∈ V (5.42)

215

pi, xi ≥ 0 ∀i ∈ V (5.43)

ydi ≥ 0 ∀{i, d} ∈ Et (5.44)

Based on Theorem 2 in Balas and Pulleyblank [1983], the projection cone W is

described by the following linear inequalities:

−tdi − uid + divi + liwi ≤ 0 ∀i ∈ V, d ∈ a(i) (5.45)

tdi, uid, vi, wi ≥ 0 ∀i ∈ V, d ∈ a(i) (5.46)

where t, u, v and w are dual multipliers corresponding to constraints (5.39), (5.40), (5.41)

and (5.42) respectively.

Theorem 5.2. The vector r = (t,w,u, v) ∈ W is extreme if and only if there exists a

positive α such that it is in one of these four cases:

1. tdi = α for one {i, d} ∈ Et. Other (t,w, u, v) are 0.

2. udi = α for one {i, d} ∈ Et. Other (t,w,u, v) are 0.

3. vi = α for one i ∈ V . Then for d ∈ a(i), either tdi = diα or uid = diα. Other

(t,w,u, v) are 0.

4. wi = α for one i ∈ V . Then for d ∈ a(i), either tdi = liα or uid = liα. Other

(t,w,u, v) are 0.

Proof. Proof of Theorem 5.2. Sufficiency. Let r ∈ W be of the form Case 1 and assume

that r = 1
2(r

1 + r2) for some r1, r2 ∈ W. Then, except t1di and t2di, all other directions are

0. Then, r1, r2 are in R(r). So, r is extreme.

216

For Case 2, it is similar to Case 1.

For Case 3, let r ∈ W be of the form Case 3 and assume that r = 1
2(r

1+r2) for some

r1, r2 ∈ W. So, for 0 components in r, their corresponding components in r1 and r2 are

also 0. Then, we have v1i + v2i = 2α and q1id + q2id = 2diα where qkid, k = 1, 2, represent

the positive component between tkid and uk
di, k = 1, 2, for all d ∈ a(i). Then, if there is

a pair d1 and d2, we have q1id1 > q1id2 if and only if q
2
id1

< q2id1 . But the constraint (5.45)

imposes that divki ≤ qkid, k = 1, 2. Hence, divki takes value as min{qkid1 , q
k
id2
} for k = 1, 2.

Thus, qkid1 = qkid2 = diαk, k = 1, 2, for all d1, d2 ∈ a(i). Otherwise, the constraint (5.45)

would be violated or we could only have v1i + v2i < 2α. Either of them are undesired.

Therefore, r1, r2 are in R(r). So, r is extreme.

For Case 4, it is similar to Case 3.

Necessity. Let r be an extreme vector of W. Let St = {{i, d} ∈ Et : tdi > 0},

Su = {{i, d} ∈ Et : vid > 0}, Sv = {i ∈ V : vi > 0}, and Sw = {i ∈ V : wi > 0} based

on this r. First, we consider the situation where Sv ∪ Sw = ∅. If |St|+ |Su| > 1, we can

have r = 1
2(r

1+ r2). Let r1 contains all but one positive components in r and double their

values. Let r2 contains the one positive component omitted by r1 and double its value.

So, if |St| + |Su| > 1, r is not extreme, contrary to the assumption. We conclude that if

Sv ∪ Sw = ∅, then |St|+ |Su| = 1. Thus r is either in Case 1 or in Case 2.

Now consider the case when Sv ∪ Sw ̸= ∅. When |Sv ∪ Sw| > 1, without loss of

generality, let i ∈ Sv∪Sw. Then, r1 have value v1i = 2vi,w1
i = 2wi, t1di = 2tdi, u1

id = 2uid

for all d ∈ a(i) and 0s for other components. Then, let r2 be 2r − r1. Hence, we have

r = 1
2(r

1 + r2) and r1, r2 are different in at least one direction. So, if |Sv ∪ Sw| > 1, r is

not extreme, contrary to the assumption.

217

Next, When |Sv∪Sw| = 1 and let i ∈ Sv∪Sw, consider the case when Sv∩Sw ̸= ∅.

It means i ∈ Sv and i ∈ Sw. Then, r1 have value v1i = 2vi, t1di = 2min{tdi, divi},

u1
id = 2(divi − t1di) for all d ∈ a(i) and 0s for other components. Then, let r2 be 2r− r1.

Hence, we have r = 1
2(r

1 + r2) and r1, r2 are different in at least one direction. So, if

|Sv ∪ Sw| = 1 and Sv ∩ Sw ̸= ∅, r is not extreme, contrary to the assumption.

When |Sv ∪ Sw| = 1, |Sv ∩ Sw| = 0, and let i ∈ Sv ∪ Sw, define Sq = {{j, d} ∈

Et : qjd > 0 & j ∈ V \ i}. If Sq ̸= ∅, let r1 have v1i = 2vi, w1
i = 2wi and t1di = 2tdi,

u1
id = 2uid for all d ∈ a(i) and 0s in other components. Then, let r2 be 2r− r1. Hence, we

have r = 1
2(r

1 + r2) and r1, r2 are different in at least one direction. So, if |Sv ∪ Sw| = 1,

|Sv ∩ Sw| = 0, and Sq ̸= ∅, r is not extreme, contrary to the assumption.

When |Sv ∪ Sw| = 1 and |Sv ∩ Sw| = 0, without loss of generality, let i ∈ Sv

and Sw = ∅, define S1 = {{i, d} ∈ Et : tdi > 0 ⊕ uid > 0} (exactly one of tdi and uid

takes positive value) and S2 = {{i, d} ∈ Et : tdi > 0 & uid > 0} (both tdi and uid take

positive values). If S2 ̸= ∅ and let {i, d} ∈ S2, then, we define α1 = 2min{vi, tdidi ,
uid

di
:

{i, d} ∈ S2} and make r1 have v1i = α1. For {i, d} ∈ S2, we have t1di = diα
1
i . Also, for

{i, d} ∈ S1, if tdi > 0, we have t1di = diα
1. Otherwise, we have u1

id = diα
1. The rest

components are 0s. Then, let r2 be 2r− r1. Hence, we have r = 1
2(r

1 + r2) and r1, r2 are

different in at least one direction. So, if |Sv ∪ Sw| = 1, |Sv ∩ Sw| = 0 and S2 ̸= ∅, r is

not extreme, contrary to the assumption. Thus we must have |S1| = deg(i) where deg(i)

is node i's degree number otherwise the constraint (5.45) would not be respected.

Next, if |Sv ∪Sw| = 1, |Sv ∩Sw| = 0 and |S1| = deg(i), without loss of generality,

let i ∈ Sv and Sw = ∅, let vi = α and define S+ = {{i, d} : qid > diα}. When

S+ ̸= ∅, without loss of generality, let {i, d} ∈ S+ and tdi > 0, we can make r1 have

218

u1
di = 2(udi − diα) and 0s in other components. Then, let r2 be 2r− r1. Hence, we have

r = 1
2(r

1 + r2) and r1, r2 are different in at least one direction. So, if |Sv ∪ Sw| = 1,

|Sv ∩ Sw| = 0, |S1| = deg(i) and S+ ̸= ∅, r is not extreme, contrary to the assumption.

Then, wemust have S+ = ∅. This proves that if Sv∪Sw ̸= ∅, wemust have |Sv∪Sw| = 1,

|Sv ∩ Sw| = 0, |S1| = deg(i) and S2 = Sq = S+ = ∅,. Thus, r is either in Case 3 or in

Case 4.

Applying Theorem 2 in Balas and Pulleyblank [1983], Case 1 and Case 2 extreme

directions give the trivial constraints: 0 ≤ xi ≤ 1 for all i ∈ V . For an extreme direction

of the form Case 3, recall that St = {{i, d} ∈ Et : tdi > 0}, Su = {{i, d} ∈ Et : vid > 0}

based on this extreme direction. Let V t = {j ∈ V : {i, d, j} ∈ Et & {i, d} ∈ St}. It

generates the following valid inequality in the original graph G:

pi + (bi − |Su|di)xi + di
∑
j∈V t

xj ≥ bi − |Su|di.

Similarly, an extreme direction of the form Case 4 generates the following valid inequality

in the original graph G:

pi + (ligi − |Su|li)xi + li
∑
j∈V t

xj ≥ ligi − |Su|li.

Here, we useCdeg(i)−k
i to denote the set of all combinations with deg(i)−k elements

from node i's neighbors and S is one combination picked from C
deg(i)−k
i . For a given i, if

k ≥ gi, Case 3 and Case 4 extreme directions generated constraints are redundant. Thus,

the projection of Pd onto (p, x) space is the following one:

219

pi + bixi + di
∑

j∈n(i) xj ≥ bi ∀i ∈ V (5.47)

pi + (bi − kdi)xi + di
∑

j∈S xj ≥ bi − kdi ∀i ∈ V & k = 1, 2, . . . , gi − 1 (5.48)

& S ∈ C
deg(i)−k
i

pi + ligixi + li
∑

j∈n(i) xj ≥ ligi ∀i ∈ V (5.49)

pi + (ligi − kli)xi + li
∑

j∈S xj ≥ ligi − kli ∀i ∈ V & k = 1, 2, . . . , gi − 1 (5.50)

& S ∈ C
deg(i)−k
i

1 ≥ xi ≥ 0, pi ≥ 0 ∀i ∈ V (5.51)

Proposition 5.2. The valid inequalities (5.48) and (5.50) can be separated inO(|V |δ log δ)

where δ is the maximum degree number among all nodes (δ = max{deg(i) : i ∈ V }).

Proof. Proof of Proposition 5.2. Given a fractional solution (p∗, x∗), a node i in V and a

specific k where k = 1, 2, . . . , gi−1, the corresponding separation procedure of inequality

(5.48) can be formulation as the following optimization problem:

Minimize p∗i + (bi − kdi)x
∗
i + di

∑
j∈n(i) x

∗
jzj (5.52)

Subject To
∑

j∈n(i) zj = deg(i)− k (5.53)

zj ∈ {0, 1} ∀j ∈ n(i) (5.54)

For each node i in V , the binary variable zi is 1 if node i is selected. Otherwise, it is

0. If the objective value is smaller than bi−kdi, we have a violated constraint. Otherwise,

we either change the value of k or move to another node i. This optimization problem has

one constraint and can be solved by taking the deg(i) − k smallest values of x∗
j among

node i's neighbors (j ∈ n(i)). We can use the following algorithm to separate the whole

220

inequality set (5.48):

Algorithm 21 Separation algorithm for inequality set (5.48)
Require: A solution x∗ and a 1TPLCIP instance.
1: for i ∈ V do
2: Let S ← n(i).
3: for k = 1, 2, . . . , gi − 1 do
4: letmk = argmax{x∗

i : i ∈ S} and S ← S \mk.
5: if p∗i + (bi − kdi)x

∗
i) + di

∑
j∈S x

∗
j < bi − kdi then

6: Add p∗i + (bi − kdi)x
∗
i) + di

∑
j∈S x

∗
j ≥ bi − kdi.

7: else
8: Break
9: end if
10: end for
11: end for

First, the solution x∗ satisfied pi + bix
∗
i + di

∑
j∈S x

∗
j ≥ bi for all i in V . For the

inequality pi+(bi−kdi)xi+di
∑

j∈S xj ≥ bi−kdi, as k increases by 1, the LHS decreases

by di(x∗
i + x∗

mk
) and the RHS decreases by di. For the current iteration k0, if it is the first

time that pi+(bi−k0di)xi+di
∑

j∈S xj ≥ bi−k0di. Then, it means x∗
i +x∗

mk0
< 1. Then,

in the future iteration, we will not find any violated constraint for this particular i because

x∗
i + x∗

mk
≤ x∗

i + x∗
mk0

when k > k0. Therefore, in Algorithm 21, we use Break in line 8.

Let δ denote the largest degree number among all nodes in V (δ = max{deg(i) : i ∈ V }).

For each node, we sort its neighbors which takes at most O(δ log δ) steps and compare

value at most δ times. The process is repeat for V nodes. So, the overall time complexity

is O(|V |δ log δ). It is similar to separate inequalities (5.50). The difference is that the

objective function of the optimization problem should be

Minimize p∗i + (ligi − kli)x
∗
i + li

∑
j∈n(i) x

∗
jzj. (5.55)

If the objective value is smaller than ligi − kli, we have a violated constraint.

221

For the instance in Figure 5.1, the fractional solution in Figure 5.1(b) violates the

constraint p3 + 18x3 + 9(x4 + x2) ≥ 18 because 0 + 18 ∗ 0.007 + 9 ∗ (0.887 + 1) < 18

given p3 = 0, x3 = 1, x3 = 0.007 and x4 = 0.887. Adding this constraint, resolving

the LP relaxation of MIP5.1 gives an optimal solution with x2 = 1 and x4 = 1. Other

variables are zeros. The objective value is 107.

222

Chapter 6: Conclusions and Future Work

With the widespread use of online social networks there is significant interest in

solving problems dealing with viral marketing and influence maximization on social net-

works. There has been a flurry of activity by researchers in the computer science commu-

nity on algorithmic aspects of problems in this arena. However, there seems to be little in

terms of mathematical programming models on these important research problems. Our

research is motivated by the desire to rectify this deficiency.

In this thesis, we study influence maximization problems on social networks from a

mathematical programming perspective. Specifically, we study four combinatorial opti-

mization problems. First we consider theWeighted Target Set Selection (WTSS) problem.

Then, we study a problem called the Positive Influence Dominating Set (PIDS) problem

which can be considered as the WTSS problem with a one time period restriction for in-

fluence diffusion process. After that, we incorporate partial incentives to obtain another

problem called the Least Cost Influence Problem (LCIP). Lastly, the fourth problem called

the One Time Period Least Cost Influence Problem is identical to the LCIP but only one

time period is allowed for the diffusion process to take place.

Although almost all previous work involving influence maximization problems has

focused on approximation algorithm and heuristics, our research demonstrates that mathe-

223

matical programming approaches are able to provide a better understanding of these prob-

lems. Our work fills in the gap for exact methods for influence maximization problems.

We are able to find good quality solutions for random graphs with the size of 10,000 nodes

and 20,000 edges within a reasonable amount of time. Our results can be used as mean-

ingful benchmarks to evaluate the heuristics and approximation algorithms proposed for

these problems. In the event the social networks analyzed are of smaller size our approach

may be used to solve these smaller problems to optimality.

6.1 Future Work

In this section, we discuss four extensions to our current work. They consider pro-

portion requirements, marked targets, latency constraints and combinatorial games.

6.1.1 Proportion Requirements

The first extension is to consider a less than 100% adoption of our problems. This

has been mentioned in the general setting of the LCIP in Section 4.1.1. Instead of having

α = 1, now, α can take any value between 0 and 1. This generalization increases the

difficulty level of our problems. Even for trees, we suspect that they are NP-hard. They

are similar to the relationship between the Minimum Spanning Tree (MST) problem and

the k-Minimum Spanning Tree (k-MST) problem. Given a graph with weighted edges,

the MST problem looks for a spanning tree with weight less than or equal to the weight

of every other spanning tree. The k-MST problem is given an additional input integer k.

Then, it wants to find a minimum weighted tree with k nodes. It is well known that the

224

MST problem can be solved polynomially. But the k-MST problem is NP-hard (see Ravi

et al. [1996]). This less than 100% adoption version is worth considering in real-world

because it might be difficult to persuade all people to adopt a product or technique. After

we solve these problem with α = 1, it may turn out that we do not have enough money

to spend. Then, it is natural to ask that how much money do we need if we want to cover

90% of the network? In terms of modeling, if we incorporate this requirement, those two

good formulations for the LCIP and those extended formulations for the WTSS problem,

the PIDS problem and the 1TPLCIP are no longer valid and needed to be modified.

6.1.2 Marked Targets

In this extension, in the input data, we have a group of special nodes. They are

called ``Marked Targets''. We must have them activated in our solution. Following the

argument in Section 6.1.1, it is possible to ask how much money do we need if we want

these specific nodes activated? In terms of hardness, we think it is harder than the α = 1

version which serves as a special case where all nodes are marked targets. But it should be

easier than the one in Section 6.1.1. Again, if we incorporate this requirement, those two

good formulations for the LCIP and those extended formulations for the WTSS problem,

the PIDS problem and the 1TPLCIP are no longer valid and needed to be modified.

6.1.3 Latency Constraints

In previous models, we do not include time factor in the diffusion process for the

LCIP and the WTSS problem. It is implicitly assumed the we can have as many time

225

periods as it needs, although the maximum number of time periods is bounded by the

number of nodes in the graph. However, for a graph with n nodes, it is possible that a

solution with minimum cost could take n time periods to have all nodes adopted.

Figure 6.1: Time Period Example.

An example based on the WTSS problem is shown in Figure 6.1. The input graph

is a line and has n nodes. For simplicity, each node has threshold gi = 1. Node 1 has

cost 1 and all other nodes have cost 2. The optimal solution is to pay node 1 at cost

1. Then, all nodes will become active at the end of the diffusion process. However, the

whole process takes n − 1 time periods. In practice, this process may not be desirable

when time plays a critical role. For instance, in Cicalese et al. [2014], in viral marketing,

the speed of information spreading is important. Also, humans tend to make decisions

based on recent events and information. Furthermore, decision makers prefer knowing

the estimated maximum amount of adoption that can be achieved within a prefixed time

periods over simply knowing that eventually (but may take a long time) the whole market

might be covered.

Another interesting observation is that if time periods are considered, the PIDS prob-

lem can be seen as the problem where the diffusion takes place and all nodes should be-

come adopters in one time period. Also, theWTSS problem is a case where n time periods

are allowed. Similarly, the 1TPLCIP can be considered as a special case of the LCIP. Fur-

226

thermore, a generalized case can be as follows. We require one additional input integer k

and study the problem that all nodes must become active within only k time periods.

6.1.4 Combinatorial Games

Although these diffusion models are considered in viral marketing setting, they can

also be applied in the epidemiological setting (see Günneç [2012]). We have a social

network where each person has a risk to be affected by a kind of disease. For a person i,

let ri be the safe risk level for it. Suppose that eji denotes the risk factors of an untreated

neighbor j on node i (e.g., if δji denotes the probability of node i getting infected by an

untreated neighbor j, then eji = − log(1 − δji)). Let fi denote the reduction of the risk

on node i if one of its neighbor j is treated so that its risk level is less than or equal to

a threshold risk level rj . We would like to ensure that the sum of all eji − fi for node i

minus the intervention or treatment strategy zi reduces the overall risk of node i below the

threshold risk level ri. This may be equivalently modeled by the LCIP in the marketing

setting with bi =
∑

j∈N(i) eji−ri and di = fi, with a discrete set intervention or treatment

strategy choices at each node (e.g. zi = pi).

There is a key difference between themarketing setting and the epidemiological one.

In the marketing setting, there is a centralizer (a company) who want to promote a new

product. Hence, they are willing to pay the extra incentives to each potential customer.

The cost can be considered as a marketing campaign cost. In the epidemiological setting,

each person wants to reduce his/her risk level. Then, the cost is afforded by the person

who receives the treatment. However, there are many free riders.

227

1

32

40
2

40
2

10
1

𝒊
𝒃𝒊
𝒈𝒊 1

32

40
2

Figure 6.2: A WTSS problem instance and its optimal solution

For instance, in Figure 6.2, person 1 and person 3 are free riders in the small exam-

ple because they have not received any treatment but their risk level are reduced due the

fact that only person 2 receives treatment. In the small example, the cost is 40. Hence,

naturally, this leads to the question that how should we allocate the cost? Is it fair that only

person 2 pays the cost? To answer above questions, we would like to combine cooperative

game theory with these diffusionmodels. Cooperative game theory is concerned with situ-

ations in which at least two decisionmakers can benefit by cooperation (see Nisan [2007]).

We would like to ask these questions: How can we apply cooperative game theory to our

model in the epidemiological setting?

228

Bibliography

E. Ackerman, O. Ben-Zwi, and G. Wolfovitz. Combinatorial model and bounds for target
set selection. Theoretical Computer Science, 411(44):4017--4022, 2010.

M. Baïou and F. Barahona. The dominating set polytope via facility location. In Combi-
natorial Optimization, pages 38--49. Springer, 2014.

E. Balas and W. Pulleyblank. The perfectly matchable subgraph polytope of a bipartite
graph. Networks, 13(4):495--516, 1983.

O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman. Treewidth governs the com-
plexity of target set selection. Discrete Optimization, 8(1):87--96, 2011.

C. Blum. Revisiting dynamic programming for finding optimal subtrees in trees. European
Journal of Operational Research, 177(1):102--115, 2007.

M. Bouchakour, T. Contenza, C. Lee, and A. R.Mahjoub. On the dominating set polytope.
European Journal of Combinatorics, 29(3):652--661, 2008.

N. Chen. On the approximability of influence in social networks. SIAM Journal on Dis-
crete Mathematics, 23(3):1400--1415, 2009.

W. Chen, C. Castillo, and L. V. Lakshmanan. Information and Influence Propagation in
Social Networks. Morgan & Claypool Publishers, 2013.

C. Chiang, L. Huang, B. Li, J. Wu, and H. Yeh. Some results on the target set selection
problem. Journal of Combinatorial Optimization, 25(4):702--715, 2013.

F. Cicalese, M. Milanič, and U. Vaccaro. Hardness, approximability, and exact algorithms
for vector domination and total vector domination in graphs. In Fundamentals of Com-
putation Theory, pages 288--297. Springer, 2011.

F. Cicalese, G. Cordasco, L. Gargano, M. Milanič, and U. Vaccaro. Latency-bounded
target set selection in social networks. Theoretical Computer Science, 535:1--15, 2014.

G. Cordasco, L. Gargano, A. A. Rescigno, and U. Vaccaro. Optimizing spread of influence
in social networks via partial incentives. In Structural Information and Communication
Complexity, pages 119--134. Springer, 2015.

229

E. D. Demaine, M. Hajiaghayi, H. Mahini, D. L. Malec, S. Raghavan, A. Sawant, and
M. Zadimoghadam. How to influence people with partial incentives. In Proceedings
of the 23rd international conference on World wide web, pages 937--948. International
World Wide Web Conferences Steering Committee, 2014.

T. N. Dinh, Y. Shen, D. T. Nguyen, and M. T. Thai. On the approximability of positive
influence dominating set in social networks. Journal of Combinatorial Optimization,
27(3):487--503, 2014.

P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings
of the seventh ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 57--66. ACM, 2001.

S. Goel, A. Anderson, J. Hofman, and D. J. Watts. The structural virality of online diffu-
sion. Management Science, 62(1):180--196, 2015.

M. Granovetter. Threshold models of collective behavior. American Journal of Sociology,
83(6):1420--1443, 1978.

M. S. Granovetter. The strength of weak ties. American Journal of Sociology, 78(6):
1360--1380, 1973.

M. Grötschel, M. Jünger, and G. Reinelt. On the acyclic subgraph polytope. Mathematical
Programming, 33(1):28--42, 1985.

D. Günneç. Integrating social network effects in product design. Dissertation, 2012.

D. Günneç and S. Raghavan. Integrating social network effects in the share-of-choice
problem. Decision Science, 2016.

T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of domination in graphs. CRC
Press, 1998a.

T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in graphs: advanced topics.
Marcel Dekker, 1998b.

D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a
social network. In Proceedings of the ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 137--146, 2003.

J. Leskovec. Stanford large network dataset collection. URL http://snap. stanford. edu/
data/index. html, 2011.

H. Marchand and L.Wolsey. The 0-1 knapsack problemwith a single continuous variable.
Mathematical Programming, 85(1):15--33, 1999.

G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization, volume 18.
Wiley New York, 1988.

N. Nisan. Algorithmic game theory. Cambridge University Press, 2007.

230

H. Raei, N. Yazdani, and M. Asadpour. A new algorithm for positive influence domi-
nating set in social networks. In Proceedings of the 2012 International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2012), pages 253--257.
IEEE Computer Society, 2012.

S. Raghavan and R. Zhang. Weighted target set selection on social networks. Working
paper, University of Maryland, 2015.

R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees-
short or small. SIAM Journal on Discrete Mathematics, 9(2):178--200, 1996.

A. Saxena. On the dominating set polytope of a cycle. Working Paper, 2004.

P. Shakarian, S. Eyre, and D. Paulo. A scalable heuristic for viral marketing under the
tipping model. Social Network Analysis and Mining, 3(4):1225--1248, 2013.

G. Spencer and R. Howarth. Maximizing the spread of stable influence: Leveraging norm-
driven moral-motivation for green behavior change in networks. Working paper, 2015.

C. Stein, T. Cormen, R. Rivest, and C. Leiserson. Introduction to algorithms. MIT Press
Cambridge, MA, 2009.

F. Wang, E. Camacho, and K. Xu. Positive influence dominating set in online social
networks. In Combinatorial Optimization and Applications, pages 313--321. Springer,
2009.

F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, and S. Shan. On positive influence
dominating sets in social networks. Theoretical Computer Science, 412(3):265--269,
2011.

G. Wang, H. Wang, X. Tao, and J. Zhang. A self-stabilizing algorithm for finding a mini-
mal positive influence dominating set in social networks. In Proceedings of the Twenty-
Fourth Australasian Database Conference-Volume 137, pages 93--99. Australian Com-
puter Society, Inc., 2013.

D. Watts and S. Strogatz. Collective dynamics of �small-world�networks. Nature, 393
(6684):440--442, 1998.

W. Zhang, W. Wu, F. Wang, and K. Xu. Positive influence dominating sets in power-law
graphs. Social Network Analysis and Mining, 2(1):31--37, 2012.

X. Zhu, J. Yu, W. Lee, D. Kim, S. Shan, and D.-Z. Du. New dominating sets in social
networks. Journal of Global Optimization, 48(4):633--642, 2010.

F. Zou, Z. Zhang, and W. Wu. Latency-bounded minimum influential node selection in
social networks. In Wireless Algorithms, Systems, and Applications, pages 519--526.
Springer, 2009.

231

	List of Tables
	List of Figures
	Introduction
	Weighted Target Set Selection on Social Networks
	Introduction
	Algorithm for the WTSS Problem on Trees
	A Tight and Compact Extended Formulation on Trees
	Polytope of the WTSS problem on Trees

	The WTSS Problem on Cycles
	A Branch-and-Cut Approach for General Networks
	Computational Experience
	Conclusions

	Generalizations of the Dominating Set Problem on Social Networks
	Introduction
	Problem Definition
	Related Literature
	Our Contributions

	The TPIDS Problem
	Algorithm for the TPIDS Problem on Trees
	Good Formulations for the TPIDS Problem on Trees

	The PIDS Problem
	Algorithm for the PIDS Problem on Trees
	A Tight and Compact Extended Formulation on Trees
	Projection of the Dummy Node Formulation
	Polyhedral Study of the PIDS Problem on General Graphs
	Computational Experiments

	Conclusions

	Tailored Incentives and Least Cost Influence Maximization on Social Networks
	Introduction
	Problem Definition
	Related Literature
	Our Contributions

	Problem Complexity
	Unequal Influence Factors

	LCIP on Trees
	Greedy Algorithm
	Dynamic Programming Algorithm.
	Totally Unimodular Formulation
	A Tight and Compact Extended Formulation
	Polytope of the LCIP on Trees

	From Trees to General Graphs: A Branch-and-Cut Approach
	Computational Experiments
	Conclusions

	The One Time Period Least Cost Influence Problem
	Introduction
	Problem Definition
	Our Contributions

	The 1TPLCIP on Trees
	Dynamic Programming Algorithm.
	A Tight and Extended Formulation
	Polytope of the 1TPLCIP on Trees

	Conclusions and Future Work
	Future Work
	Proportion Requirements
	Marked Targets
	Latency Constraints
	Combinatorial Games

