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Given an integrable dynamical system with one degree of freedom, “painting” the integral over
phase space proves to be a powerful technique for uncovering both global and local
behavior.This graphical technique avoids numerical integration, employing instead a nonlinear
method of assigning contrasting colors to the energy values to distinguish subtle details of the

flow.

INTRODUCTION

In this paper, we develop a graphical method of visualizing
the global phase flow in certain Hamiltonian dynamics
problems. We illustrate this method with the problem of an
earth-orbiting satellite without drag.’ In the zonal har-
monic model of this problem, the earth’s gravitational field
is expanded as a sum of Legendre polynomials P, with
small coefficients J, and thus contains no longitudinal ef-
fects. The resultant Hamiltonian has two degrees of free-
dom: the radius vector to the satellite », the polar angle 6,
and their conjugate momenta R and @,
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The latitude is given by y; the parameters x4 and a are,
respectively, the Keplerian constant and the equatorial ra-
dius of the earth.

In order to extract the long-term dynamics, we must
put the Hamiltonian in normal form.? This removes short
period terms on the time scale of one orbital revolution,
yielding a Hamiltonian accounting for long period effects.
In the zonal problem of artificial satellite theory, the nor-
malization reduces the dynamical system to one degree of
freedom—the canonical variables being the argument of
perigee g and its conjugate momentum G, the norm of the
angular momentum. Topologically, the phase space is a
sphere.® Points at the north pole of the phase sphere repre-
sent circular orbits for satellites; the south pole corre-
sponds to satellites in equatorial orbit around the earth.
The angle g and the momentum G form a system of cylin-
drical coordinates on the phase sphere.

The normalization proceeds order by order in the
small quantities J, by means of a Lie transformation.*
Such a computation involves an exceptionally large
amount of algebra which, by necessity, is performed with
specialized computer algebra packages.” Although often
quite lengthy, the final result is far more compact than the

intermediate formulas. In the so-called main problem
where we retain only the lowest zonal harmonic J,, we pro-
duced the normalized Hamiltonian:
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For the meaning of the intermediate quantities n, a, p, 5, 7,
and s, the reader is referred to Deprit.6 These Hamilto-
nians are often too complicated to extract analytically in-
formation about the global dynamics of the system. Thus
we must resort to other methods.

I. EXPLORING PHASE SPACE

Foremost among the features we want to uncover in phase
space are the equilibria (in the problem at hand, these rep-
resent satellites traveling on fixed orbits) and the flow in
their neighborhoods. At a deeper level, we want to know
about the stability of critical points and, consequently,
about the structure of the global phase flow. Finally, we
want to understand how the phase space varies with the
parameters of the system, such as an integral of the motion.
When parameters vary, equilibria may bifurcate or co-
alesce, change position, or change stability.

One obvious approach to gaining this understanding
is numerical integration of the equations of motion
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Numerical integration provides the information we are
looking for, but at a cost. It is slow, particularly near equili-
bria, but these are precisely the points in which we are
interested. Furthermore, as the normalized Hamiltonian
grows more complex than Eq. (2) with the inclusion of
higher zonal harmonics, the corresponding differential
equations grow increasingly difficult to integrate, both in
terms of time and precision.

Even more crucial in the use of numerical integration
is the selection of initial conditions. Picking initial condi-
tions that will reveal essential features of the phase space is
quite difficult for, in a sense, it begs the question. Figure 1
shows a numerical integration for the main problem of sat-
ellite theory. Notice how the plot locates three stable equili-
bria at the center of the closed orbits, but leaves out much
detail in detecting the two unstable equilibria above and
below the central oval. Only the closed orbits surrounding
the stable points lead us to conjecture the existence of un-
stable equilibria. This crude diagram required several min-
utes on a workstation-class machine for the integration,
and several hours of experimentation to pick an optimal set
of initial conditions.

Needless to say, searching for parametric bifurcation
by numerical integration is an almost insufferable task.
How can we rapidly obtain enough flow diagrams like Fig.
1 to make a movie revealing the system’s evolution with
changing parameters?

Il. PAINTING

As an alternative to numerical integration, we propose to
“paint” the phase space. Since J7* is integrable with one
degree of freedom, the level curves represent the orbits. We
take advantage of this fact to sketch phase flows.

In essence, painting reduces to the following chain of
mappings:

FIG. 1. Numerical integration of the northern hemisphere of phase space
for the main problem of artificial satellite theory.
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The inverse projection & maps p screen points S into a
subset of the phase space D. For instance, we might pick a
view that covers all of the northern hemisphere for the
spherical space in the satellite problem. The mapping &
then takes all points in a circular disk on the screen to
points on the hemisphere by an inverse orthographic pro-
jection, as shown in Fig. 2. This method simplifies the
graphics algorithm by ensuring a one-to-one mapping of
pixels to points on the hemisphere. This provides a simple
way of rendering each pixel p in S—we do not need to
interpolate between energy values to color any pixels.

The Hamiltonian 7#"* maps points from phase space
D toenergy values in the range R. Having found the energy
values, we must then assign colors to the points of phase
space. The grading function & then maps these function
values into G = [0,n) where n is the number of grades. A
grading function & is required to discretize the valuesin R
for display by the finite number of colors available on a
graphics device; typical hardware provides 2% or 2*
grades. The palette function ¢ maps values from the
grades G into colors C.

By contrast with numerical integration, we do not
compute the level curves of the Hamiltonian. In paintings
of the phase space, level curves of 5#* appear as lines of
contiguous pixels with the same hue. The eye, not the pro-
cessor, then connects the dots to reveal the orbits of the
system. Obviously, finding detail in the image depends cri-
tically on how we choose the grading function & and the
color palette % . Sections III and IV offer choices that we
found to be propitious.

Ili. MAPPING VALUES INTO GRADES

In the problems we have examined, the critical points in
phase space generally occur in wide plateaus—areas of low
gradient. Since we are interested in locating critical points
rather than in producing a topographic map of the terrain,
areas of high gradient contain little information and should
be deemphasized.

FIG. 2. Inverse orthographic projection from the screen to a spherical
phase space.




The naive choice for the grading function ¥ is the one
adopted by cartographers for producing topographic
maps. In such charts, elevations (values of 77°*) map into
evenly spaced intervals so as to ensure the following two
properties:
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This simple linear grading scheme, however, ends up high-
lighting zones of high gradient while washing out areas
containing equilibria.

Equidistributed grading’ or histogram flattening,® a
known image enhancement technique, proves especially ef-
fective for making visible the areas of low gradient. This
choice for ¥ constitutes a mapping of R into grades of
nearly equal population:

YupveR u<v=9 (u)<9 (v),

Vp,geG |card[¥ ~'(p)] —card[¥ ~'(g)]|<].
(6)

The more points in a given energy band, the finer the detail
accentuated by this nonlinear partitioning of the range R.

As expected, this scheme works best when the distri-
bution of points in D is independent of the gradient. Fur-
thermore, an equidistributed grading function proves very
expensive to compute, since it requires a complete ranking
of the values in R. For diagrams containing hundreds of
thousands of points, this becomes a sizeable computation.
Linear grading, on the other hand, requires only the maxi-
mum and minimum values of 5#*, an altogether simpler
computation.
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Figure 3 contrasts the two schemes for mapping val-
ues of Z7* into grades in preparation for display. For pur-
poses of illustration, we graph a one-dimensional quartic
having critical points at 1/4, 1/2, and 3/4, and we assume
that only four grades are available (a two-bit color sys-
tem). As evidenced in the left frame of Fig. 3, the linear
grading scheme obscures the local maxima at 1/4 and 3/4.
In contrast, the equidistributed grading in the right frame
highlights the features of the plateau while ignoring the
steep slopes of the function.

IV. COLOR PALETTES

Taking advantage of the eye’s ability to finely distinguish
hues, we select colors for the grades by keeping the intensi-
ty and saturation constant and mapping % (g) to a hue in
the interval C = [0,1). To increase contrast, we map G
onto m > 1 spectra. Thus the palette function becomes

% (g) = (gm/n)mod 1. (7)

Taking the same quartic function as before, Fig. 4
demonstrates that increasing m yields finer detail. The left
frame shows the grades mapped onto a single spectrum,
with resulting loss of detail around the local minimum at
1/2; the right frame shows the same function with m = 4.
Observe the very dense striping around the steep slopes of
the function and also the new detail appearing in the basin
between 1/4 and 3/4. Too high a value for m, however,
would have produced an indecipherable striping. Follow-
ing the ordering of colors indicates the direction of the gra-
dient, and the density of color changes shows the magni-
tude of the derivative. Note that this coloring scheme
assumes no a priori knowledge of the functions; the palette
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FIG. 3. Two different gradings & that affect the visibility of equilibria for a simple one-dimensional function.
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Single spectrum

Multiple spectra

FIG. 4. Increasing the number of spectra in the color palette %" improves contrast for the same function illustrated in Fig. 3.

function ¥ is precomputed to generate the desired strip-
ing.

With Fig. 5, we demonstrate the combined effects of
demographic grading and color striping. Frame (a) shows
the northern hemisphere of phase space for the main prob-
lem of satellite theory with linear grading and a single spec-
trum color map. Switching & to equidistributed grading in
frame (b) hints at additional features around the pole. Sim-
ilarly, increasing m from 1 to 8 in frame (c) also suggests a
more complex structure around that pole. Frame (d)
shows the combined effects and reveals the greatest detail.
We can now easily follow the flow lines in the phase space
and identify a configuration of three stable (at the center,
g =0, 7) and two unstable equilibria (at g = 7/2, 37/2).
We can even recognize the four separatrices connecting the
unstable equilibria—finding these curves lies beyond the
grasp of numerical integration.

V. COMPUTATION

Our goal being the interactive exploration of phase space
dynamics, speed of computation for both function evalua-
tion and image rendering proves critical. The task of evalu-
ating #°* should not be taken too lightly. Indeed, the func-
tion has to be evaluated at hundreds of thousands of points.
As noted in the Introduction, the expressions to be evaluat-
ed result from extensive algebraic manipulation. A second
phase of symbolic algebra is required to condition the ex-
pressions for optimal evaluation and to translate them into
a form digestible by the graphics routines. Image rendering
is also costly; computing the equidistributed grading re-
quires sorting a large population of function values.
Building the equidistributed grading function on a
serial machine requires computing time proportional to
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p log p, where p is the number of points. As an alternative
to sorting all the function values, one may approximate the
grading function & by sampling points at regular intervals,
say one of every ten, sorting them, and then counting off »
partitions to establish the grade boundaries. Incidentally,
sampling R may cause the grades to vary significantly in
population. Once the grade boundaries have been set, dis-
tributing the remaining points of R among B is a trivial
operation. Even with 10% sampling, computing an image
such as Fig. 5(d) at a resolution of 512 X 512 takes many
minutes on a serial workstation.

Rapid production of phase space diagrams obviously
calls for a supercomputer. Evaluating 7#°* at hundreds of
thousands, even millions, of points and translating these
values into colors seems a natural match for a data-parallel
processor, such as the Connection Machine (CM).° The
CM is a SIMD (single instruction multiple data) machine
consisting of one-bit processors arranged in a 12-dimen-
sional hypercube. Each processor executes the same in-
struction stream; the flow of computation is controlled by
deselecting processors and rearranging the data through
interprocessor communication. Although the CM-2 con-
tains a maximum of 64K processors, the machine may be
conveniently sized to handle much larger problems. Each
physical processor may be instructed to emulate any num-
ber of virtual processors, up to the limit of memory in each
Pprocessor.

Our painting algorithm matches nicely the capabili-
ties of the CM. The machine is dimensioned to have one
virtual processor for every point in phase space. Since the
energy function is the same at each point in D, the CM
evaluates 5##* all at once. Since the evaluation at any point
is independent of its neighbors, no interprocessor commu-
nication is required—a relatively time consuming oper-
ation on the CM. Of course on the connection machine, we
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FIG. 5. The northern hemisphere of phase space rendered with four combinations of gradings and color palettes.

do not need sampling to establish the equidistributed grad-
ing function, because we can afford to sort all the energies
and to enumerate them by unique values. After completing
the ranking, we assign approximately equal numbers of
unique values to each grade in ascending order. The CM
software ranks values by mapping a binary tree onto the
hypercube network, and the sorting of R for the equidistri-
buted grading becomes an & (log p) operation. For the
main problem of artificial satellite theory, producing im-
ages such as Fig. 5(d) ona 16K connection machine takes
about one second, with most of the time spent in the grad-
ing algorithm rather than in the Hamiltonian evaluation.

VI. FUTURE

Our future work on this technique will proceed in three
directions: improvements to the current method, develop-
ment of algorithms to automate the search for equilibria,
and application to Hamiltonian systems of higher dimen-
sions.

We would like to make the image rendering sophisti-
cated. This could be accomplished by using the CM simply
as a computational engine to evaluate a large set of points in
phase space, rather than using the inverse projection & to
determine the points at which to compute. The dataset
would then be rendered on a graphics workstation
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equipped with the rendering tools currently lacking on the
Connection Machine. For instance, the pictures in Fig. 5
show a view of the northern hemisphere of phase space.
The radius of the sphere is dependent on the integral H, the
polar component of angular momentum. As we change H,
we can see a pattern of flows changing, with bifurcations
and coalescing of equilibria. With some kind of three-di-
mensional rendering, a series of images could be arranged
into a single frame, for example by nesting translucent
spheres corresponding to various parameter values.

More ambitious would be the task of automatically
exploring the phase space. This could be arranged by or-
ganizing qualitative and quantitative methods into a
“smart” component to guide the massive evaluations per-
formed on the CM. We should be able to program the com-
puter to direct us automatically to the field of view and the
density of points more apt to reveal interesting features. In
particular, painting techniques in conjunction with nu-
merical techniques ought to precisely locate and classify
equilibria and bifurcation points without the user’s inter-
vention.

The most challenging task involves the application of
“painting” to Hamiltonians of higher degree. If there are n
known integrals of an n degree of freedom system, the flows
can be identified as the intersections of the level surfaces of
each of the integrals.'® In that direction, one could envision
a multiple masking of colors and projection that would
render a view of phase flows in some subset of the phase
space.
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