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Data Visualization has long been shaped by empirical evidence of the effica-

cies of different encodings, such as length, position, or area, in conveying quantities.

Less is known, however, about what may affect comparison of multiple data series,

which generally involves extraction of higher-order values, such as means, ranges,

and correlations. In this work, we investigate such factors and the underlying vi-

sual processes that may account for them. We begin with a case study motivating

the research, in which we modify Krona, a Bioinformatics visualization system, to

support several types of comparison. Next, we empirically examine the influence of

“arrangement”—that is, whether charts are shown side-by-side, stacked vertically,

overlaid, etc.—on comparative tasks, in a series of psychophysical experiments. The

results suggest a complex interaction of factors, with different comparative arrange-

ments providing benefits for different combinations of tasks and encodings. For

example, overlaid charts make detecting differences easier but comparing means or

ranges more difficult. While these results offer some guidance to designers, the num-

ber of interactions makes it infeasible to provide broad rankings of arrangements, as



has been done previously for encodings. Our subsequent efforts thus work toward

understanding the visual processes that underlie the extraction of statistical sum-

maries needed for comparison. It has recently been proposed that simpler shortcuts,

called Perceptual Proxies, are used by the visual system to estimate these values.

We investigate proxies for bar charts in experiments using an “adversarial” frame-

work, in which the ranking of two charts along a task metric (e.g. mean) is opposite

their ranking along a proxy metric (e.g. convex hull area). The strongest evidence

we find is for use of a “centroid” proxy to estimate means in bar charts. Finally,

we attempt to use using human-guided optimization to construct charts de novo,

without assuming specific proxies. This work contributes both to perceptual psy-

chology, by offering evidence for underlying visual processes that may be involved

in the interpretation of comparative visualizations, and to data visualization, by

providing new research methods and straightforward design guidance on how best

to lay out charts to support certain tasks.
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Chapter 1: Introduction

While the visualization designer has myriad ways to represent information

graphically, experimental evaluation has shown us that not all representations are

equal [1–3]. These perceptual studies are often motivated by tasks that are typ-

ical for analyzing a single data series, e.g. averages, trends, extreme values, and

outliers [4]. When comparing more than one dataset, however, the goals of the vi-

sualization can be fundamentally different [5]. For example, instead of looking for

the largest or smallest data point, we may look for the largest delta from one set

to another [6], or for an overall level of correlation [7]. Further, we may need to

extract a summary statistic, such as the mean or range from each chart in a group

of charts in order to compare them. While many of the perceptual lessons learned

from single series no doubt extend to these tasks, introducing comparison can tax

substantially capacity-limited aspects of our visual system, such as abstract object

representations and the selection of those representations [8]. We thus posit that,

in addition to studying the influence of encoding (e.g. Cleveland & McGill [2] and

Simkin & Hastie [9] and task (e.g. Kim & Heer [10] and Amar & Stasko [11]), it will

also be valuable to consider arrangement as a third dimension of the factors that

specifically affect the efficacy of comparative visualization, as depicted in Figure 1.1.
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Figure 1.1: Visual comparison depends not on a single dimension of mark, arrange-

ment, or task, but of the interactions between them. These interactions can be rep-

resented as a cube. Our present goal is not to examine the full space of the cube, but

rather to understand how a viewer uses visual features to serve analytic task goals

depending on the marks and arrangements they see.

In the vein of prior work on elementary encodings, this work will seek to eluci-

date what makes comparative displays effective and to offer guidance for maximizing

their efficacy. We begin with a case study of visual comparison within a taxonomic

hierarchy browser, called Krona [12], based on sunburst displays [13] (Figure 1.2,

right). We then present a series of graphical perception experiments designed to

evaluate designs for visual comparison tasks.
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We choose four primitive tasks specific to the goals of comparison: (1) identifi-

cation of a maximum delta (or “biggest mover”) between data series, (2) estimation

of overall correlation between two series, (3) comparison of mean values of two data

series, and (4) comparison of ranges of two data series. These tasks are motivated

by the low-level analytic task taxonomy of Amar et al. [7] and intended to be diverse

in terms of their compositional modalities. For example, Task 1 (maximum delta, or

“biggest mover”) requires a series of pairwise difference estimates across the charts

followed by the extraction of a maximum from the resulting values (or potentially

detection of an outlier, depending on the distribution of those values). Task 2 (cor-

relation), however, is a single, primitive task in the taxonomy, and examines a pair

of charts holistically. Tasks 3 and 4 (mean and range, respectively) both require

the extraction of a single, summary value for each chart, which are then compared.

While seeking these summary values may seem contrived in themselves, both are

described by Amar et al. as building blocks for deeper tasks. For example, they cite

the mean being used to compare relative efficiencies of two categories of cars, or

ranges being used to assess whether a data series could merit further analysis.

We embed Task 1 in various stimuli (Figure 1.2, center): (a) length, repre-

sented as bar charts, (b) slope, represented as simple line graphs, and (c) angle,

represented as donut charts. We embed Task 2 in a forced-choice between two pairs

of bar charts (Figure 1.2, left). We embed Task 3 and 4 in a forced-choice between

two individual bar charts. For each embedding, we explore performance of 5 ar-

rangements: (i) ‘stacked’ small multiples with a common baseline, (ii) ‘adjacent’
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small multiples with a non-common baseline [14],1 (iii) superposition, or ‘overlaid’

charts, (iv) adjacent small multiples that are mirror symmetric, and (v) animated

transitions. The first three of these are commonly used and are associated with

intuitive—but rarely measured—differences in efficacy [17]. The last two are less

common but may leverage the visual system’s sensitivity to motion [18], and in par-

ticular common motion [19], in addition to the sensitivity of the visual system to

mirror symmetry of objects [20], making them valuable to evaluate.

Figure 1.2: Evaluation methods for visual comparison. Left: Participants were asked

to pick the most similar pair of bar charts for a variety of arrangements and de-

grees of correlation. Center: Participants were asked to find the maximum delta,

or “biggest mover,” between pairs of datasets. Additional arrangements not shown

are vertical small multiples and animated transitions. Right: Domain experts were

interviewed after trying various comparative arrangements in Krona, an interactive

sunburst display for biological data.

We find that ability to perform the tasks, as measured by the difficulty level

need to achieve 75% accuracy in forced-choice experiments, is not optimized by a

1We only examine a subset of (i) and (ii) for donut charts, as they have no inherent orientation.

However, recent work on performance assymetries between vertical vs. horizontal display layouts

[15,16] suggests that this case merits future study.
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single mark type or spatial arrangement. Instead, the precision of visual compar-

ison depends on an interaction of mark type, arrangement, and task (Figure 1.1).

The best static chart for a precise delta comparison, for example, was one that was

spatially superposed (“overlaid”), rather than juxtaposed, validating an intuitively-

motivated guideline from Gleicher et al. [21]. Surprisingly, however, in some cases

we also find significant task performance improvements when arranging small mul-

tiples in a mirror-symmetric fashion. Furthermore, counter to many prior studies

showing animation to be ineffective in encoding quantitative information [6,22,23],

we observe animation having high performance for the task of determining the da-

tum with the biggest difference across two charts (“maximum delta” or “biggest

mover”). Comparison of means and ranges, however, was most precise when the

two datasets were vertically stacked, and least precise when the datasets were su-

perposed. This pattern of which arrangements were best was strikingly different

than for the previous pattern for tasks 1 and 2.

Why is there not a single clean emerging answer, where a given arrangement

is best across various tasks? This empirical evidence for the more complex nature

of visual comparison is consistent with the idea that it requires a series of visual

actions at a variety of scales from one object (such as a single mark in a chart), to

multiple objects, to whole sets of objects, such as entire charts in a small multiples

setting [5]. Taxonomies of visual comparison describe multiple stages of perceptual

and cognitive steps [4, 5], and vary in describing one or many types of visual com-

parisons, but the visual mechanisms supporting these stages are unclear. We argue

that an empirical description of the precision of visual comparison across each com-
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bination of mark × arrangement × task would be valuable, but unlikely to scale to

have predictive value beyond its status as a lookup table. A different approach is re-

quired. Recently, the concept of perceptual proxies, which are theorized “shortcuts”

that the visual system may take instead of computing statistics, has been gaining

traction [24–26]. We propose that instead of continuing to fill out the entries of the

cube in Figure 1.1, it may be more productive to study how perceptual proxies of a

visualization are actually used to reason about a visual comparison task.

Drawing from perceptual psychology, as well as from data visualization and

geometry, we compile a diverse, though by no means comprehensive, list of can-

didate perceptual proxies. Using trial data from our experiments investigating ar-

rangement, we assess the plausibility of these proxies by comparing them to actual

human choices. This lets us narrow down to a smaller set of proxies for further

empirical study, with some representing broader classes of very similar proxies.

The fundamental problem for studying proxies empirically, however, is that, by

definition, a plausible proxy should correlate well with the value a viewer is actually

seeking. For example, if a viewer seeks the mean value of a series, a proxy with no

relation to the mean is not one the viewer realistically could be using, as we know

that people are fairly good at this task. How, then, can we ever know whether a

viewer is using a particular proxy, rather than computing the true value, or using

some other proxy?

Our solution to this apparent paradox is to try to use proxies to deceive par-

ticipants when they are performing a task. This adversarial approach to testing

proxies draws inspiration from the field of Machine Learning. It has long been
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known that statistically learned models, such as deep artificial neural networks for

computer vision, are subject to “adversarial attacks,” in which inputs can be ma-

nipulated to change classifier output despite looking very similar or identical to a

human observer [27–30]. This phenomenon arises from the fact that these models,

though somewhat analogous to our visual system, ultimately rely on very different

representations of their input data. The human vision system, in turn, does not

always process its input in the ways we might expect. This is evidenced by an

abundance of optical illusions [31], which can be thought of as adversarial examples

for that system. Just as carefully crafted illusions can be illustrative of underly-

ing visual mechanisms, we hypothesize that manipulating data visualizations along

particular axes can help reveal how they are interpreted. The perceptual proxies

we have discussed will serve as those axes. Within this conceptual framework, we

approach the problem experimentally in two complementary ways: (1) starting from

proxies as assumptions and attempting to validate them, and (2) starting without

assumptions and attempting to recover those proxies or discover new ones.

1.1 Contributions

The main contributions of this work are:

1. A case study in which we interview domain experts given various comparative

modes implemented within the same platform (Krona [12]).

2. Results from four graphical perception experiments measuring participant per-

formance across comparative arrangements for (a) a maximum delta task in
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bar, slope, and donut charts, (b) a correlation task for bar charts, (c) a maxi-

mum mean task for bar charts, and (d) a maximum range task for bar charts.

3. Data generation procedures designed specifically for graphical perception stud-

ies on visual comparison.

4. A list of candidate perceptual proxies for visual comparison in bar charts and

a cursory assessment of their plausibility using data from human subjects

experiments on comparative arrangements.

5. A framework for testing perceptual proxies using “adversarial examples” based

on those proxies, and the results of experiments using this framework for

maximum mean and maximum range tasks for bar charts.

6. A framework for creating adversarial charts de novo using human-guided opti-

mization, and the results of implementing this framework for maximum mean

and maximum range tasks for bar charts.

1.2 Publications

This document includes work from the following peer-reviewed publications:

• Brian D. Ondov, Nicole Jardine, Niklas Elmqvist, and Steven Franconeri. Face

to face: Evaluating visual comparison. IEEE Transactions on Visualization

and Computer Graphics, 25(1):861–871, 2019

• Nicole Jardine, Brian D Ondov, Niklas Elmqvist, and Steven Franconeri. The

perceptual proxies of visual comparison. IEEE transactions on visualization
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and computer graphics, 26(1):1012–1021, 2019

• Brian D Ondov, Fumeng Yang, Matthew Kay, Niklas Elmqvist, and Steven

Franconeri. Revealing perceptual proxies with adversarial examples. IEEE

Transactions on Visualization and Computer Graphics, 2020

This work was highly collaborative and credit is due to all authors of these

publications. BDO designed and implemented the experimental procedures and con-

ducted all crowdsourced experiments. NE advised and wrote on the larger impact

of the work on data visualization. SF and NJ advised and wrote on perceptual

psychology and created the initial list of proxies. NJ performed analysis for Exper-

iments 1-4, including written results and figures. MK advised on Bayesian analysis

for Experiments 5 and 6. FY performed analysis for Experiments 5 and 6, including

written results and figures.

1.3 Availability of Data and Implementations

In the interest of auditing and continued research we provide experimental

implementations, data collected (anonymized as appropriate), and analysis scripts

at https://osf.io/yhxuz/ (Experiments 1 and 2), https://osf.io/uenzd/ (Ex-

periments 3 and 4), and https://osf.io/2re7b/ (Experiments 5 and 6).
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Chapter 2: Background

It is not enough to make visualizations that are pleasing or engaging—empirical

evaluation is a crucial part of the analytical process [34]. Cleveland & McGill in-

formed decades of design by ranking basic visual channels by their quantitative accu-

racy [2]. Specific visual faculties, like the detection of outliers and salient elements,

have been also been well studied [35–38], and the widespread application of color

theory to visualization has helped designers avoid skewed interpretations [39–41].

These types of studies typically involve relationships within a single data series,

with tasks such as estimating size differences [42] or determining if points in the

series are equal [43]. Often, however, real data are not so simple, requiring more

complex comparisons across multiple series [21].

2.1 Visual Comparison

Expanding from a single data series to multiple constitutes a multivariate anal-

ysis, i.e. adding rows to a table in Bertin’s synoptic [44]. Comparative visualization

(e.g. small multiples) can be thought of as multivariate analysis in which a categor-

ical variable is used to slice the data. For example, we may want to compare time

series of the popularity of various baby names or the prices of a variety of goods in
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different countries. The goals of comparison are often different than those of single-

series analysis and can be described as compounds of more primitive tasks [45].

Gleicher et al. provide taxonomies of tasks, as well as comprehensive reviews of

techniques and best-practice guidance, specifically for comparative displays [5, 21].

While these reviews provide valuable intuition about the efficacy of various com-

parative strategies, quantitative user studies are less common in this area. Qu et

al. explore the importance of consistent scale and coloring across small multiple

displays, but not the efficacy of the arrangements themselves [46, 47]. Roberston

et al. compare animation to a relatively high number of small multiples (8 to 80)

for conveying trends in GapMinder data [6, 48]. Heer et al. compare variants of

time-series representations within the context of vertical juxtaposition [49]. Javed

et al. also evaluate various methods of displaying multiple time series and include

both juxtaposition and superposition, but with tasks similar to those of single-view

evaluations [50].

2.2 Perceptual Factors in Comparison

We consider here three themes from the perceptual psychology literature in

considering which comparison arrangements to evaluate. This is not an exhaustive

list of the factors that may be relevant, but will serve as a basis for experimentation.
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2.2.1 Co-location

Within a single region of space, visual features such as length, orientation, and

motion can rapidly convey information about stimulus deltas. Comparison between

two regions is a more difficult task for the observer, because it may require an

active process of storage of one region before being able to compare it with another

region. “Spot the difference” games, in which observers try to detect small changes

between two otherwise identical images, illustrate the difficulty of this task. Mental

storage capacity, even for basic visual features like shapes and colors, is around four

at maximum [51], and observer comparisons between mentally stored features and

currently visible features may be subject to multiple bottlenecks [52]. Detecting a

difference between two sets of data may only be possible for large change sizes, even

for small datasets (e.g., 5-10 values).

2.2.2 Symmetry

An additional consideration for multiple displays is that the human visual

system is sensitive to symmetry, and especially mirror symmetry located at the

focal point [20, 53]. Specifically, the system’s ability to detect visual differences is

more efficient between two regions that are otherwise mirror images of each other,

compared to repeated translations of each other [54, 55] and when the symmetric

information is spatially close rather than far [56]. Juxtaposed datasets (e.g. small

multiples) are typically translated horizontally, and with common axial directions

in order to reduce the cognitive burden of understanding the different polarities of
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each side of the horizontal axes [5]. But mirror symmetry is occasionally used when

comparing two data series that are similar, for example in population pyramids [57],

suggesting that designers have an implicit awareness that this arrangement may

hold benefits. We hypothesize that advantages for human symmetry detection could

convey benefits for comparisons of data in mirrored arrangements.

2.2.3 Movement

Motion is a primitive and fundamental element of vision [18]. Estimates of

velocity can originate in the retina itself [58], and at higher levels of visual processing

motion can be used to extract statistics and structure from scenes [19,59], and may

be a useful cue for statistical extraction of patterns in data visualizations [60].

But motion processing is not all-powerful. In particular, when a viewer is asked

to process multiple moving objects simultaneously, performance can fall drastically

for more than 2-4 objects [61,62]. When used to demonstrate processes in diagrams

in teaching, its use can confuse students [63], Evidence for the usefulness of motion in

visualization is early and mixed. Animation can fill a wide variety of roles and may

have similarly varied utility [64], and has shown promise in the role of maintaining

context during configurational changes [65–68]. Because the visual system encodes

motion speed and direction as a primitive and direct feature similar to orientation

or length [18], it may be especially useful for detecting changes to values, because

larger changes should co-vary with motion speed, and change direction with motion

direction. Prior studies have assigned animation questionable value in similar tasks,
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for example when conveying correlation via oscillation [22], conveying trends in

time series [6], or linking two views in a scatterplot [23]. However, these are specific

instances among a wide variety of possible tasks, graphical representations, and

layouts.

2.3 Perceptual Proxies

One way to think about human vision is that it is an information processing

system capable of extracting vital information about the world from images, but also

internally representing this information so that it can be efficiently used for decisions

and action [69]. But if the visual system is a computational system, what are its

programs? The concept of perceptual proxies [24–26] has recently been proposed as

a potential answer to this question. A perceptual proxy is a heuristic shortcut for

how the visual system extracts data from images using simple features, such as a

shape’s outline, center of mass, area, or color. The hypothesis is that, instead of

computing statistics per se, the visual system relies on proxy computations across

visual marks, when seeing trends in a line chart, finding maxima in a bar chart, or

analyzing a distribution in a pie chart.

Perceptual proxies arise out of seminal findings on “elementary perceptual pro-

cesses,” which were originally derived from a long history of empirical experiments

in perceptual psychology [9,70] and later summarized by Cleveland and McGill [2].

However, while these low-level processes can easily be applied to individual marks

or groups of marks in a visualization, more composite tasks involving multiple val-
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ues or general trends are more challenging to extract [71, 72]. In such situations,

the visual system likely constructs proxies from these perceptual building blocks in

order to support quick visual judgments.

One example is the perception of correlation in scatterplots. The perceptual

process does not appear to calculate the true mathematical correlation, and there

are instead proposals for multiple proxies that might underlie correlation percep-

tion [24, 73, 74], including the aspect ratio of the bounding box surrounding the

points [24]. This proxy can be efficient because it relies on a rapid perceptual pro-

cess of inspecting a shape boundary around the points.

Different proxies may afford not only different data patterns, but different con-

ceptual associations of what those values might mean. The same two data points

graphed as two bars or as two endpoints of a line chart can evoke different visual ac-

tions taken on visual features of the visualization. Zacks and Tversky [75] presented

simple line or bar charts to participants for open description. Participants’ descrip-

tions of bar charts overwhelmingly tended to involve discretizing words, such as “Y

is higher than Z,” and descriptions of line charts entirely used continuous relations,

such as “as X increases, Y decreases.” This bar-line message correspondence seems

to occur because the type of mark is associated with metaphors of bars being con-

tainers or groups, in contrast to lines, which are continuous entities. Yuan et al. [25]

asked participants to estimate averages in multi-value lineups of two side-by-side

bar charts. Varying the number of bars in the two charts enabled them to show that

the summed area of the bars is a likely perceptual proxy for the relative average

value between two bar graphs.
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2.4 Adversarial Visualization and Data

Central to our work is the idea to generate adversarial tasks to derive datasets,

visual representations, or visual appearances that can deceive the viewer’s percep-

tion, in order to show that the viewer is taking shortcuts. One first example of such

an approach in data visualization was the work by Wickham et al. [76] on graphical

inference in visualization. They propose both a “Rorschach” protocol, where par-

ticipants are shown essentially random data in a visualization and asked to generate

insights, as well as a lineup protocol, where multiple visualizations are shown of

different datasets and the task is to identify the one dataset drawn from real data.

Pandey et al. [77] studied deception in visualization by asking participants

in a crowdsourced study to interpret data presented using four different distortion

techniques. For each distortion type, a deceptive version, which used the technique,

and a control, which did not, was used. The dataset generation in the paper was

idiosyncratic and done by hand. In contrast, our adversarial dataset generation is

fully automated.

The notion of “adversarial” (or “black hat”) visualizations was first proposed

by Correll and Heer [78], and used the language of computer security to survey the

practice of “attacks” on data visualization. Their work is largely conceptual, and

only one component of their model—data manipulation—is directly relevant to our

study, but the overall tenor of these ideas are consistent with our methodology.

Correll et al. [79] created crowdsourced lineups where participants saw multiple

visualizations of largely “innocent” datasets with one “flawed.” They generate these
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datasets using an iterative process based on three common data quality errors—

spikes, gaps, and outliers—and at varying levels of data quality.
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Chapter 3: Case Study: Microbiome Comparison

As a motivating example, we will describe a case study of Krona [12], the

system that initially led us to investigate perceptual factors more rigorously. The

scenario is the exploration of the human microbiome, or the communities of mi-

croorganisms that live in and on us. This domain is an extremely challenging one

for visualization and an area of active development and interest. Since a commu-

nity of organisms can be described at various levels of taxonomic granularity (i.e.

genus, species, etc.), even single datasets are complex and challenging to represent.

Various hierarchical techniques have been employed for the task, including Sunburst

charts (as in Krona), Treemaps [80] (as in MetaTreeMap [81]), and Sankey/flow di-

agrams [82] (as in Pavian [83]). However, in each case, additional variables, such as

change between datasets, are difficult to introduce. For scientific data, which often

have control groups, the comparison of multiple data series is nonetheless critical to

making sense of the underlying information. The main goal in exploring this type of

data, as stated by domain experts we interviewed, is to find significant differences

in the fractions of particular organisms, especially if they are pathogenic ones. Here

we prototype several comparative strategies and present them to domain experts

for qualitative feedback. Our goal is to see whether particular modes of comparison

18



affect how users interact with data and how well (qualitatively) they perform simple,

but realistic tasks using actual domain data.

3.1 Method

We adapted the Krona system, which already supported animated transitions,

to implement two additional comparative strategies, for a total of three (Fig. 3.1).

We introduced the three techniques to two scientists studying the microbiome at

the National Human Genome Research Institute in Bethesda, MD, USA. Both had

prior experience with the tool for exploration of single datasets.

3.2 Task

The participants were presented with real data comparing human skin micro-

biomes from two time points (“M3 skin” days 0 and 1) [84]. The charts show the

relative proportion of various species within each time point as well as the aggregated

proportions of more general taxa. We asked the microbiologists to find significant

differences between the same two time points using all three arrangements (ani-

mated, adjacent, and mirrored). For example, in Figure 3.1(a), Gammaproteobac-

teria (red wedges) decreases a large amount from day 0 to day 1 (left to right),

but looking more specifically within this group, Pseudomonas actually increases.

Rather than seeking a specific set of correct answers, however, we instead gathered

more qualitative feedback about performing the task under the various conditions.
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3.3 Results

Both participants found that animation made differences particularly salient.

However, they also noted that, if the change was large, it shifted the other wedges

in a disorienting way.

It was also noted by the experts that animation could be engaging for an

audience when highlighting a specific difference, reiterating the findings of Robertson

et al. [6]. However, both participants preferred static views when performing their

own exploration or investigation. One participant preferred small multiples due to

its consistency with standard sunburst charts and the ability to represent more than

two samples. The other, however, preferred the mirrored split view due to the better

use of space and smaller eye travel distance when making direct comparisons between

constituent taxa. Additionally, the case study illuminated practical considerations

of implementing these arrangements. For example, the experts pointed out that

small multiples may be ideal for dissemination, which is often static and must reach

a wide audience that may not be familiar with the split mirrored view.

Unsurprisingly, there was a consensus that each method had strengths and

weaknesses, and would be more appropriate for specific contexts. One conclusion

could be that this platform, and others, should have the flexibility to support many

layouts, allowing the user to switch between them to aid the task at hand. More

importantly however, we have established that efficacy of visual comparison is con-

textual, and how it is carried out affects interpretation of data. This will drive our

subsequent investigations into which comparison methods work better for certain

20



tasks, and, eventually, the underlying processes that cause them to work better.
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Figure 3.1: Comparative modes implemented in Krona. Here, the skin mi-

crobiome of an individual is represented across two time points. Higher levels (i.e.

innermost rings) represent more general taxonomic categories.In (a), a single circle

is split to provide mirror symmetry, corresponding to the mirrored arrangement in

the above experiments. In (b), the standard small multiple view of the same data is

shown, corresponding to the adjacent arrangement.
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Chapter 4: User Study Framework

At the core of investigating how perceptual phenomena may impact how real

people interpret charts is the user study. Paradigms for these studies can be roughly

grouped into those used by perceptual psychologists and those used by data visual-

ization designers. Perceuptual studies typically investigate the atomic mechanisms

of vision that are “pre-attentive,” meaning they happen without conscious direction

of the mind. These studies involve simple, abstract shapes and require users to

make simple, comparative judgements. Data visualization studies may require users

to make more complex insights, seeking out multiple estimates in labeled data and

drawing conclusions. A relatively small body of work straddles these paradigms, in-

vestigating perceptual abilities within data visualizations [2,3]. These tend to have

to the simplest possible constructions that could be considered charts, containing

few data points, and usually without any labels or context other than the assertion

that they do, in fact represent data. Our work follows in this vein, and our exper-

iments will be similarly constructed. Though each experiment comes with some of

its own considerations, they share much of the platform, which we will describe in

this chapter. Additions or deviations will be described for each task in the chapters

following.
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4.1 Arrangements

Stacked Adjacent Mirrored Overlaid Animated

Figure 4.1: Comparative arrangement methods examined. The direction of the arrows

represents the orientation of the x-axis (or, in the case of donut charts, clockwise versus

counterclockwise).

Based on perceptual factors discussed above, we lay out here a set of com-

parative methods, which we will call arrangements, to probe empirically. The five

arrangements we will use in our experiments are depicted in Figure 4.1.

• Stacked: Vertically arranged small multiples (i.e. one chart is placed above

the other). Cleveland & McGill posit the aligned baselines helps judgment [2];

but this design also makes it tougher to find correspondance between paired

values from each series [15, 16]. We thus include it as an expected floor to

which performance of other arrangements can be compared.

• Adjacent: A more commonly used instance of small multiples, in which data

series are placed side-by-side, allowing each pair of items to align vertically.

This arrangement serves as a more realistic baseline than stacked.

• Mirrored: This “mirrored” variation of adjacent opposes the direction of the
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Figure 4.2: Examples of the mirrored arrangement for (left) bar charts, (middle) slope

charts, and (right) donut charts.

x-axis in each chart (Fig. 4.2). For bar charts, this simply amounts to right-

aligning the left chart and vice versa. For slope charts, the x-axis is reversed

in the left chart, essentially negating the slope. For donut charts, we restrict

each series to a semicircle. The Gestalt nature of bilateral symmetry suggests

this layout could improve performance versus standard small multiples.

• Overlaid: A combined chart depicting both data series within the same space.

Past work has claimed that overlaying values, or superposition, minimizes eye

movements and memory load, and may lead to efficient comparison [21].

This technique has proven effective in a design study setting [85], but, to our

knowledge, not directly confirmed empirically.

• Animated: In this “arrangement,”1 a single chart is transitioned, or morphed,

from one data series to another over time. As all marks transition for the same

amount of time, the maximum velocity of a given mark becomes an emergent

signal that directly encodes its delta. Movement is broadly processed as a

primitive feature in the vision system, suggesting that this signal is potentially

1Gleicher et al. [21] equate animation between data sets to juxtaposition across time.

25



beneficial for tasks in which individual items must be processed. We used cubic

interpolation to ease the transitions [86], so the maximum velocity was reached

at the midpoint of the impression time.

4.2 Timed Impressions

User studies in Information Visualization, such as those evaluating novel visu-

alization methods, typically will ask users to make a judgement about a visualization

and allow them to respond in their own time. The user may be instructed to be

both “fast” and “accurate” in performing the task. However, this leaves open the

variable of how different users may interpret this trade-off. Additionally, this would

make it difficult to see effects of preattentive visual judgements. For example, the

similarity of two charts can be determined by exhaustive comparison of elements,

but can likely be performed much faster using the visual system’s innate ability to

detect symmetry of whole shapes. In this vein, Cleveland & McGill omit tickmarks

to prevent counting and instruct their participants to be “quick” [2]. Simkin &

Hastie, however, explicitly limit displays to one second to control for this trade-

off [9]. We follow the latter protocol, with the specific length of time determined by

piloting for each experiment. After the impression, users answer as best they can

given the time they had to view the charts. This allows us to evaluate performance

based purely on correctness, without the time taken to respond as a confounding

variable.
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Figure 4.3: During titration, the titer value (stimulus signal) increases if an erroneous

response is made, and decreases if a correct response is made. Titers are calculated

independently for each arrangement, and are analyzed to determine how chart ar-

rangement affected the final staircased titer values.

4.3 Staircase Titration

A potential drawback of crowdsourcing is that many environmental variables

are introduced, e.g. monitor size, brightness, and color calibration, or the distance

and angle from which a participant is viewing the experiment. While this could

be accounted for by using within-subjects factorization, it would still be difficult

to calibrate the difficulty of the tasks such that they would be reasonable for all

participants. This is compounded by our desire to rank various comparative ar-

rangements, which requires us to observe a range of accuracies in responses, with
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none of the arrangements making the task trivially easy or impossibly difficult.

To avoid the confounding factors of crowdsourcing, and the need for tedious

piloting to calibrate difficulty, we thus borrow another technique for perceptual

psychology: titration. Under this regime, rather than fixing the difficulty of the

task and assessing the accuracy of responses, we aim for consistent accuracy (in

this case 75%) by adjusting the difficulty of the task. The final signal is then a

titer, which is a measure of how difficult the task had to be to reach this accuracy.

To target an accuracy, adjustments are made after each response, making the task

harder if the response was correct, and easier if it was incorrect. To achieve, for

example, 75% accuracy, the increase in difficulty for an incorrect response is 3 times

the magnitude of the decrease in difficulty for a correct response. This is termed a

“staircase” from the pattern it produces (Fig. 4.3).

4.4 Dynamic Data Generation

Evaluations of information visualizations often have a fixed group of visualiza-

tions that are shown to all participants. However, if we are to dynamically titrate

difficulty of tasks, it is beneficial to generate data dynamically for each trial. This

ensures lack of any bias from curation of trials, and allows fine-tuning of difficulty,

the freedom to test different numbers of trials, and the ability to easily replicated

experiments. As all data points generated during the experiments are stored, it also

provides a more diverse source for downstream analyses. Dynamic data generation,

is not without its challenges, though, chief among them being the need to ensure
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there are not emergent signals in the absence of curation. For example, if we gen-

erate data sets from distributions with two means, the one with the higher mean is

more likely to contain the largest point overall, which could allow participants to

take “shortcuts,” and this must be corrected for algorithmically. Each task comes

with its own such considerations, as will be discussed in the coming chapters.

4.5 Rendering

Charts were rendered in the participant’s web browser in real time using the

D3 [87] JavaScript library. Size of the charts, in pixels, varied by experiment. Note,

however, that the actual number of screen elements corresponding to a “pixel” can

vary with hardware configuration, due to the advent of HDPI (high dot-per-inch)

displays. Bar charts would not be affected by this variable because of their orthog-

onal nature, and we chose sufficient line thickness to mitigate the effect for slope

charts. All charts were drawn on white backgrounds, with faint gray boundaries

delimiting the chart areas. As we are investigating elementary visual operations,

similarly to prior studies [2, 3], we omit tickmarks, as they may encourage partici-

pants to count rather than judge. The web page automatically initiated full-screen

browsing mode to avoid distraction during the study, though the persistence of this

state was not enforced programmatically.
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4.6 Crowdsourcing

As is common for modern user studies, we used compensated crowdsourcing,

in this case via Amazon Mechanical Turk, which allowed dozens of participants to

participate in each experiment in a matter of days. While this method comes with

its own issues, for example heterogeneity of experimental conditions and reliability of

participants, it has been shown that perceptual results can be faithfully reproduced

in this setting, provided the proper care is taken [3].

4.6.1 Training

Before training, participants were shown examples of stimuli and the task. Be-

fore each arrangement block of trials, participants were given a time-unconstrained

version of the task, which they were required to answer correctly before proceeding.

Additionally, the first non-animated arrangement given to a participant followed

untimed training with 3 timed training trials, which were identical to the real trials

except that they always had the easiest (largest) titer. Data were regenerated on

incorrectly answered training answers to minimize answering by elimination.

4.6.2 Participant Recruitment and Payment

We recruited non-expert participants through the Amazon Mechanical Turk

Platform. We limited participation to the adults in the United States due to tax

and compensation restrictions imposed by our IRB. Only workers with a 95% ap-

proval rate on the platform were eligible. We also screened participants to ensure at
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Figure 4.4: To ensure a participant was ready and focusing, a screen like this one was

shown before each trial, followed by a countdown and then the impression.

least a working knowledge of English; this was required to follow the instructions in

our testing platform. Based on expected task completion times, participants were

compensated at a rate consistent with an hourly wage of $8/hour (the U.S. federal

minimum wage in 2020 is $7.25). Participants were asked to self-select out of the

study if they had color vision deficiencies. Worker IDs were used to ensure unique-

ness of participants across all such combinations. Based on power analyses from

initial pilots, we recruited at least 50 new participants for each experiment. A total

of 435 workers were recruited for participation in the experiments.

4.7 Procedure

Before each trial began, the screen contained a centrally placed fixation dot

and outlines of where the charts would appear (Fig. 4.4). Participants clicked a

button to start the trial. After a countdown, the visualization appeared for a short,
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fixed time. At the end of the impression, a prompt for response was provided, either

by removing one of the data series and making the remaining one clickable or by

removing all charts and providing color-coded buttons. Participants were informed if

they were correct and, if incorrect, what the correct answer was. This feedback was

provided to make the task more engaging and to reinforce the goal. Between trials,

the titer was adjusted based on the response (if incorrect, the titer was made larger

for the next trial; if correct, the titer was made smaller). Each participant completed

one experiment, each with all arrangements, which were blocked. The order of

the arrangement blocks was changed between participants by cycling through all

rotational permutations of the base sequence [stacked, adjacent, mirrored, overlaid,

animated] and all rotational permutations of the reverse of this sequence..
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Chapter 5: Experiment 1: Maximum Delta Task

In our first experiment we task participants with finding the maximum delta

for two data series. In other words, from one series to the next, which data point

changed the most? This could be an increase or decrease, defined by absolute

change, as opposed to percent change. Difficulty is increased by reducing the largest

delta while increasing distractor deltas, so the maximum is less distinguishable. A

bimodal distribution of absolute values decouples the largest delta from the largest

or smallest absolute value in any single set.

5.1 Experimental Setup

Since the choice of visual encoding channel could interact with the choice of

arrangement, for this first experiment we evaluated several encodings. To ensure

each chart type provided an appropriate range of difficulty, parameters such as the

number of data points had to be adjusted. These parameters were determined during

internal piloting, resulting in the following configurations:

• Bar charts: Standard charts in which the length corresponds to the datum.

Each series contains 7 data points.

• Slope charts: Simplified line charts with just two points in each line, (0 and
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(a) (b) (c)

Figure 5.1: Encodings used for the Maximum Delta task, shown here for the overlaid

arrangement: (a) bar, (b) slope, (c) donut.

a generated datum), reducing them to slopes. Each series contains 3 data

points.

• Donut charts: Rings in which the data are represented by angular sector. For

the purposes of experimental control, they differ from standard donut charts in

several ways: (i) gray distractors are used as buffers to allow adjacent data to

change size while remaining in the same position, (ii) overlaid arrangements,

which are non-standard for donut charts were implemented with concentric

rings, aligning the centers of corresponding colors, and (iii) mirrored arrange-

ments were implemented by limiting each chart to 180 degrees, allowing the

two series to form a complete circle. Each series had 4 data points.

Each individual chart (that is, for a single data series), had a square dimension

of 256 pixels for all trials. Subsets of the Tableau 10 [88] were chosen to maximize

(qualitatively) perceived uniqueness; 7 for bars, 3 for slopes, and 4 for donuts. For

the overlay arrangement, the saturation and luminance of each color were slightly
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Figure 5.2: The response prompt for the Maximum Delta task. One dataset was

removed, and the bars themselves (or other encodings) were used as buttons.

reduced in one dataset to distinguish adjacent elements. Other arrangements kept

the original colors consistently across pairs of data sets. Note that, since donut charts

have no explicit orientation, we omitted the stacked arrangement for this encoding

because of redundancy with adjacent. Each participant completed all arrangements

(4 for donut, 5 for others) for a single stimulus type (bar, slope, donut). There were

twenty trials for each arrangement of bars and slopes, and thirty for donuts, based

on power analysis from piloting. The impression time for both static charts and

animation was 1.5 seconds. Following the impression, one data series was removed,

leaving all colors of the second series to act as response buttons so that a participant

could simply click on any of the bars, lines, or arcs, in the remaining series (Fig. 5.2).
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5.2 Data Generation

A pair of datasets with controlled deltas was generated by varying points

of one dataset to create another. However, simply increasing or decreasing one

data point more than others—out of, say, of a normal distribution—would make

it much more likely to be the largest or smallest, circumventing the task. It was

thus necessary for proper evaluation of the task to devise a novel data generation

algorithm. Our method creates a bimodal distribution corresponding to the two

extremes of a chosen maximum delta, ensuring that these points are well masked

by other data. The magnitude of this delta, and thus the difficulty of the task, is

controlled parametrically by the titer value provided to the generation algorithm.

In addition to changing the maximum, changing the titer also changes deltas of

distractors. At the minimum (smallest difference) titer, every data point is changed

a small, equal amount (note that it is, by design, impossible to do better than chance

at this level, and in practice it is never reached). At the maximum (largest difference)

titer, there are only two possible values for the data points—the maximum uses both,

while the others stay at one and do not change at all. The data generation routine

is depicted at a high level in Algorithm 1. In summary, for a given titer value t,

the biggest mover will change by t times the chart’s range (from minimum value to

maximum value). The biggest moving distractor will change by 1−t of that, the next

biggest moving distractor 1− t of the first distractor, and so on. For example, at a

titer of 0.75, the delta of the biggest mover will cover 3/4 the full range of the chart,

the delta of the first (randomly placed) distractor will cover 0.75×0.25 = 3/16, and
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that of the next will cover 0.75× 0.25× 0.25 = 3/64. The outputs of this algorithm

were linearly transformed as appropriate for the stimuli, e.g. to add minimum width

to bars. Though higher titers should always be easier, in practice, we found that

difficulty increased above 0.75 due to alignment of bars. We thus capped the titer

at 0.75 to prevent participants from getting stuck in a valley of (ostensibly) low

difficulty. We confirmed the regularity of the data before the experiment by running

multiple iterations of the data generation routine and observing the ordinal ranking

of the answers among the distractors. While there do appear to be areas of bias,

we deem it highly unlikely that detection of these patterns would be easier for a

participant than performing the task as intended.

5.3 Hypotheses

We expect the overlaid arrangement to serve as a ceiling for performance in the

context of the this task because of the close proximity of corresponding elements.

We also expext that, among small-multiple arrangements, mirror might perform best

because it could allow the vision system’s preattentive identification of symmetry

to make the biggest mover appear as an outlier. Between horizontal juxtoposition

(“adjacent”) and vertical (“stacked”), however, expectations are less clear. Adjacent

aligns corresponding bars (of the same color) vertically, which would make it easier

to observe both. However, stacked aligns their baselines horizontally, which prior

studies have indicated facilitates quantitative comparisons.
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Algorithm 1 Max-delta data generation

1: procedure MaxDelta(c, t) . c:=cardinality, t:=titer

2: a← [], b← []

3: for i = 0 to c− 1 do

4: r ← rand() . r ∼ U, r ∈ R, 0 ≤ r ≤ 1

5: x← t ·
√

r
c−i

6: y ← x+ t(1− t)i

7: if i%2 == 1 then

8: x← 1− x

9: y ← 1− y

10: if rand() < 0.5 then

11: push a, x

12: push b, y

13: else

14: push a, y

15: push b, x

16: return a, b
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5.4 Results

To evaluate whether arrangement affected the precision with which partici-

pants could identify the maximum delta, we computed each observer’s mean titer

values from the final 5 trials for each arrangement. Titers are inversely related to

difficulty: smaller titers for a chart arrangement indicate that subtler, rather than

larger, differences were required to elicit a mixture of correct and incorrect responses.

Based on the outlier criteria described in Seciton 4.6.2, 3 participants were excluded

from experiments with bar encodings, 4 from slopes, and 2 from donuts.

5.4.1 Exp. 1A: Bar charts

Figure 5.3: Mean of final 5 titer values across participants performing the Maximum

Delta task with bar charts. Gray bars represent 95% confidence intervals.

Figure 5.3 displays the mean final 5 titer values for Experiment 1A. In bar

charts, two patterns in participant titer values were striking. First, the Animated

bars outperformed bars that were Overlaid and all other arrangements. Second,
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Figure 5.4: Mean of final 5 titer values across participants performing the Maximum

Delta task with slope charts. Gray bars represent 95% confidence intervals.

within Small Multiples, a Mirrored arrangement is better than a Horizontal or Ver-

tical one.

These observations were validated in a within-subjects ANOVA. Final titer val-

ues for bar charts were affected by arrangement, F (2.98, 137.23) = 103.23, p < .001,

η2p = 0.69, Greenhouse-Geisser corrected for violations of sphericity. Planned com-

parisons assessed pairwise differences between arrangement types. Titers for ani-

mated bars were significantly more precise than those that were overlaid, t(46) =

3.42, p = .001. Participants also achieved more precise titer values with horizon-

tally mirrored small multiples compared to non-mirrored small multiples that were

horizontally arranged, t(46) = 2.73, p = .009, and vertically arranged, t(46) = 4.82,

p < .001.
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Figure 5.5: Mean of final 5 titer values across participants performing the Maximum

Delta task with donut charts. Gray bars represent 95% confidence intervals.

5.4.2 Exp. 1A Floor Effect

For the final five trials, accuracy was low for stacked (57%), adjacent (61%),

and mirrored (64%) arrangements, with large titers near the maximum titer of 0.75

(0.68, 0.64, and 0.59, respectively). By comparison, for animated arrangements,

accuracy was 74.6% and the mean titer was 0.35. Participants reached the max-

imum titer on 28% of stacked trials and 15% of adjacent trials. By comparison,

the maximum titer was reached on 6% of mirrored trials, 5% of overlaid trials, and

0% of animated trials. The histograms in Figure 5.6 illustrate titer distributions

for all trials for each arrangement. These floor effects suggest that for stacked and

adjacent charts, subjects reached the artificial floor (max titer) and continued mak-

ing errors without subsequent adjustments to the titer value, such that their final

titer value reflects not their ability to do the task but the capped titer value. As

such, Experiment 1A is not able to quantify the true floor of performance for these

arrangements.
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Note that this floor issue is unavoidable for many tasks. One solution for future

research is a longer display time, but that could make more effective arrangements

(e.g. overlaid) too easy, resulting in a ceiling effect and preventing comparison.

Another solution is to conduct secondary tests of arrangements that are close in

performance, using combinations of titer ranges and timings that best drive apart

performance.

In summary, although this data set cannot be appropriately used to directly

compare the mean titers between stacked and adjacent arrangements, it is clear that

the MaxDelta task was highly difficult in stacked and adjacent bar charts.

There was no evidence for floor effects in subsequent experiments.

5.4.3 Exp. 1B: Slope charts

In slope charts, titer values were generally more precise and there were slightly

different observations as a function of arrangement. First, Overlaid slopes outper-

formed all other arrangements (including Animated). Second, different types of

Small Multiple arrangements did not yield differing titer values (Fig. 5.4).

These observations were validated in a within-subjects ANOVA. Final titer

values for slope charts were affected by arrangement, F (4, 180) = 101.87, p < .001,

η2p = 0.69. Titer histograms did not indicate floor effects. Planned comparisons

assessed pairwise differences between arrangement types. Titers for overlaid slopes

were significantly more precise than those that were animated, t(45) = 10.13, p <

.001. There was no evidence that participants achieved more precise titer values with
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Figure 5.6: Histograms of titers (across all trials) by arrangements from Experi-

ment 1A, for all non-excluded participants. Participants disproportionately reached

the maximum titer value (0.75) for stacked (vertical small multiple) and adjacent

(horizontal small multiple) arrangements.

horizontally mirrored small multiples compared to non-mirrored small multiples that

were horizontally arranged, t(45) = .25, p = .8, or vertically arranged, t(45) = .77,

p = .45. Accuracy exhibited similar patterns as titer values.

5.4.4 Exp. 1C: Donut charts

The mean final 5 titer values for donut charts were affected by arrangement,

F (3, 141) = 22.96, p < .001, η2p = 0.33 (Fig. 5.5). Titer histograms did not indicate
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floor effects. Animated donuts outperformed all other arrangements for the max-

delta task. There was no evidence that the split mirrored arrangement outperformed

the horizontal small-multiple donuts, t(47) = 1.26, p = .21. Accuracy exhibited

similar patterns of titer values.

5.5 Discussion

For the Maximum Delta task, animated charts consistently outperformed all

small multiple arrangements. Findings were mixed for overlaid visualizations: they

outperformed all other arrangements (including motion) for slope charts, were bet-

ter than any arrangement of multiple bar charts, and did not seem to confer strong

benefits over small multiple arrangements for donuts. Finally, mirrored small mul-

tiple arrangements marginally allowed participants to better identify the max-delta

series (compared to other horizontal arrangements) only in bar charts. Although

animated charts outperformed others for the goal of the task, and as such is useful

if an analyst’s goal is to rapidly identify individual data points with the largest

improvement or impairment, it might not be an optimal encoding for other goals of

the observer or designer. Specifically, a maximum delta task may be a special case

in which velocity information directly encodes individual data deltas but does not

directly encode the visual information that observers use to inform other judgments,

such as the overall correlation or mean. As an example of a caveat of extending the

lessons of perceptual studies to a more ecological valid environment, case study par-

ticipants noted disorientation when wedges were animated in Krona (see Sec. 3.3.
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This is because, unlike in those studies, the positioning of the wedges could not be

controlled using distractors. However, it also could suggest work to be done to take

advantage of the benefits of animation seen in these studies—for example, perhaps

wedge ordering could be optimized in animated sunburst plots to minimize offsetting

during a transition, as has been done for stability in animated Treemaps [89].
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Chapter 6: Experiment 2: Correlation task

For our second experiment, we chose a more holistic task to contrast the

individual nature of the Maximum Delta task: out of two pairs of charts, which pair

exhibits the most correlation between its two series? We base the methodology on

past studies for similar tasks [73, 74]. Difficulty of this task is adjusted by varying

the correlation of the target series pair, while leaving the control pair at a low, fixed

correlation. Since correlation may be too esoteric of a concept for crowdsourcing,

we instructed participants to choose the “most similar pair” and ensured that each

chart in a pair had comparable means and standard deviations.

6.1 Experimental Setup

For this experiment (and all subsequent experiments), in order to focus our

attention and resources, we used only bar charts, which had the most interesting

results in Experiment 1. Since in total four data series are required for the com-

parison, four charts are rendered for all arrangements except overlaid, which has

two charts, each with two data series (Fig. 6.1. Renderings with four charts used

a square dimension of 200 pixels, while renderings with two charts used a square

dimension of 141 pixels (producing equivalent total chart area). Static charts were
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(a)

(b)

Figure 6.1: Example renderings of the Correlation task, shown for (a) mirror and (b)

overlaid arrangements.

shown for 3 seconds, to account for the doubled number of charts, while animation

remained at 1.5 seconds to preserve velocity. At the end of the impression, one

data series from each pair was removed (always the leftmost or uppermost, as an

arbitrary convention) to obscure the true similarities, such that one chart each for

orange and blue colors remained as response buttons.
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6.2 Data Generation

Randomized pairs of series with given correlations were created using simulated

annealing in an algorithm inspired by Matejka and Fitzmaurice [90]. Means and

standard deviations were fixed within 10 percent of the range to ensure correlation

was analogous to “similarity”, as described in the instructions. Correlation between

the series was calculated using Pearson’s correlation coefficient and transformed

according to the optimal formula for perceptual estimation according to Rensink

& Baldridge [74]. Titers we report for this experiment thus correspond to g(r) in

Equation 7 of the latter study.

6.3 Results

Figure 6.2: Mean of final 5 titer values across participants performing the Correlation

task (with bar charts). Gray bars represent 95% confidence intervals.

The mean final 5 titer values for Experiment 2 were affected by arrangement,

F (3.22, 144.95) = 6.50, p < .001, η2p = 0.13, with no indication of floor effects
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(Fig. 6.2).

In contrast to Experiment 1, it is apparent there was no benefit of anima-

tion over other arrangements: participants struggled to use motion to extract and

compare correlations between data sets. Observer performance had resulted in stair-

casing of the mean correlation (Pearson’s R) to 0.74 for observers to reliably choose

it over the base pair correlation of 0.20.

We conducted planned comparisons to assess whether mirrored small multiples

yielded more precise titers than the other small multiple arrangements. Participants

achieved more precise titer values with mirrored compared to adjacent arrangements,

t(45) = 2.13, p = .04. They were able to perform correlation comparison when the

target correlation was 0.70 in mirrored charts, but needed a correlation of 0.75

for the same performance in adjacent chart arrangements. Adjacent bar charts

outperformed stacked ones, t(45) = 3.31, p = .002, such that for these trials the

correlation of the correct pair was 0.82 for stacked charts.

Accuracy exhibited largely similar patterns as titer values, with the exception

that there was only marginally significantly higher accuracy for mirrored compared

to adjacent charts, t(45) = 1.95, p = .057.

6.4 Summary

For the Correlation task, animation did not provide the benefits of the Maxi-

mum Delta task. Instead, mirrored bar charts outperformed all other arrangements

for detection of correlated data.
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Chapter 7: Experiment 3: Maximum Mean Task

Continuing to investigate holistic comparisons, we ask: of two sets, which had

the largest average (mean) value? Difficulty is increased by reducing the delta be-

tween the mean values, so that the difference between sets is less distinguishable.

Displays were controlled so that the largest single-item in a chart was not predictive

of that chart having the largest mean and so that charts in a trial were of approx-

imately equal variance. Within-chart variance ranged from .04 to .09. Harder dis-

criminations (smaller mean deltas) spanned the low to high variance range, whereas

easier discriminations tended to be lower variance.

7.1 Experimental Setup

In contrast to previous experiments, at the end of the impression, both sets

of data were removed from the display (in both Experiments 1 and 2, the data

from each answer spanned multiple charts, such that the data in one chart could

remain for response; this is not the case here). Participants then clicked on the

orange or blue button corresponding to the orange or blue set of bars to provide a

response (Fig. 7.1). The instruction given was to “Click on the chart that had the

biggest mean values.” Based on previous work, we predicted N = 50 would provide
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Figure 7.1: The response prompt for the Maximum Mean task. Unlike Experiments

1 and 2, both datasets were removed, and color-coded buttons were used.

sufficient statistical power to reliably detect the presence or absence of an effect of

arrangement.

7.2 Data Generation

Data generation for both this task and the following task (Maximum Range)

was based on a bounded distribution function (Alg. 2), which samples from a normal

distribution but ensures that all values lie within a given range, in addition to

the mean falling within some tolerance of a target. The procedure for generating

data for the Maximum Mean task based on bounded distributions is described in

Algorithm 3. The two extreme values that bounded data generation were directly

included in a randomly selected chart, ensuring that the highest or lowest individual

value did not correlate with the correct answer.
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Algorithm 2 Bounded distribution

1: procedure BoundedDist(µ, σ,min,max, ext = false) . ext:=include

extrema

2: τ ← 0.005 . tolerance

3: if ext then

4: a← [min,max]

5: else

6: a← []

7: while length(a) < c do

8: r ← norm(µ, σ) . r ∼ N(µ, σ)

9: if r ≥ min && r ≤ max then push a, r

10: while abs(µ− µ′) > τ do

11: ∆← rand() ∗ (µ− µ′) . rand() ∼ U(0, 1)

12: i← randInt(2, c− 1)

13: if max ≤ ai + ∆ ≤ max then

14: ai ← ai + ∆

15: µ′ ←mean(a)

16: return shuffle(a)
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Algorithm 3 MaxMean data generation

1: procedure MaxMean(c, t) . c:=cardinality, t:=titer

2: σ ← 3
8
∗ t

3: ext← randInt(0, 1) . which array to include extrema in

4: a← BoundedDist(5
8
− t ∗ 3

16
, σ, 1

4
, 1, ext == 0)

5: b← BoundedDist(5
8

+ t ∗ 3
16
, σ, 1

4
, 1, ext == 1)

6: if mean(a) > mean(b) then

7: swap(a,b) . ensure correct answer at low titers

8: return a, b

7.3 Results

We computed each observer’s mean titer values from the final 10 trials for each

arrangement. We used the final 10 trials because visual evaluation of trial-by-trial

data suggested that this was approximately when the staircase procedure stabilized

around a narrow range of titers, for most participants. Thus we analyze the final 10

titer values achieved for each of the five arrangements, for each subject. We excluded

one participant based on the criterion described in Section 4.6.2. We also adopted

a second criterion for this experiment. In a staircase procedure, the goal is to find

a converged titer value for which a participant is 75% accurate. The procedure fails

if a participant repeatedly reaches ceiling performance (a minimum titer value of

0.01) or floor performance (the maximum titer value of 1.0) because at this point the

stimuli cannot titrate difficulty beyond these floors and ceilings. Because viewers

performed tasks for 5 arrangements, we excluded participants for whom there were

53



at least 5 trials of floor or ceiling titer values. These criteria excluded 0 from

the MaxMean task, but for MaxRange there was 1 trial in which a participant

reached ceiling performance and 109 trials who repeatedly reached the floor titer

(largest delta). We excluded 7 participants for whom there were at least 5 (up to

22) trials of floor titer values (one of whom was also the participant excluded with

the standard deviation procedure), leaving N = 49 for the MaxMean task and

N = 47 for MaxRange. Figure 7.2 displays the mean final 10 delta values for this

task. Means could be discriminated when they differed by approximately 5-8% of

the chart axis, and the precision of visual comparison was affected by arrangement.

Precision was better in stacked relative to adjacent charts for the Maximum Mean

task, t(49) = 2.73, p = .009. Superposed charts resulted in the lowest precision for

this task.

Figure 7.2: Means of averaged final titer values across participants performing the

Maximum Mean task. Smaller titers correspond to more precise differences between

means (range widths). The precision was affected by chart arrangements. Gray bars

represent 95% confidence intervals.
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The goal of a staircase procedure is to titrate the task’s difficulty so diffi-

culty might change across arrangements, but that accuracy is equivalent between

arrangements. Mean accuracy in the task for each arrangement ranged from 76.4%

(stacked) to 79.9% (mirror), with no evidence that accuracy was different between

arrangements. This suggests the staircase procedure reliably converged for this task.

7.4 Summary

Since the Maximum Mean task requires judgement of entire data series, some-

what like the Correlation task, one might conjecture that it would yield a similar

pattern of arrangement-based performance. However, this is far from what we find

in our experiments. Stacked charts, which performed the worst for Correlation,

instead perform the best.
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Chapter 8: Experiment 4: Maximum Range Task

For our last experiment, we chose a task that involves individual item compar-

isons, like the Maximum Delta task, but within each data series rather than across

them: of two sets, which had the widest range between its min and max values?

Difficulty is adjusted by varying the delta value between the range widths of the two

charts. Since range may be a less widely-understood concept, we gave our partici-

pants a detailed description with a simple example, both at the start of the trials

and each time they were incorrect in training trials. Since we expected that more

participants would struggle to understand the MaxRange task, we collected data

from 54 workers for this task.

8.1 Experimental Setup

Like the Maximum Mean task, both sets of data were removed from the display

and participants then clicked on the orange or blue button corresponding to the

orange or blue set of bars to provide a response. The instruction given was to

“Click on the chart that had the widest range between min and max values.”
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8.2 Data Generation

Like the Maximum Mean task, the Maximum Range data generation procedure

is based on sampling from a bounded normal distribution (Alg. 2), except this

time constraining the bounds further to create series with particular ranges. The

procedure is described in Algorithm 4. The main concern for visual shortcuts for this

task is that series generated with wider ranges are more likely to have the smallest

or largest overall value. This is accounted for by abutting one range to the left chart

bound and one to the right, such that, when ranges are small, one chart will have

only short bars and one will have only long bars. Which one of these is the chart

with the widest range is chosen randomly, ensuring that a participant can neither

simply choose the chart with the shortest bar nor the longest bar and perform better

than chance.

8.3 Results

As for the Maximum Mean task, we used the mean of the final 10 titer values

as the signal of the precision of comparisons for a given arrangement. Figure 8.1

displays the mean final 10 delta values for the Maximum Range task. These titer

values correspond to the differences between the charts being compared. Range

widths could be discriminated when they differed by approximately 14-17%. As in

previous tasks, the precision of visual comparison was affected by arrangement.

Titer values for the present experiment were analyzed with a mixed ANOVA
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Algorithm 4 MaxRange data generation

1: procedure MaxRange(c, t) . c:=cardinality, t:=titer

2: σ ← 3
8
∗ (t+ 1)

3: t′ ← 1− t

4: flip← randBool()

5: if flip then

6: min← 1
4

+ 1
4
t′

7: max← 1− 1
2
t

8: a← BoundedDist(1
2
(min+max), σ,min,max, true)

9: b← BoundedDist(1
2
(min+ 1), σ,min, 1, true)

10: else

11: min← 1
4

+ 1
2
t

12: max← 1− 1
4
t′

13: a← BoundedDist(1
2
(min+max), σ,min,max, true)

14: b← BoundedDist(1
2
(1
4

+max), σ, 1
4
,max, true)

15: return a, b
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to test for experiment-level and arrangement-level effects.

Titer values varied between experiments, F (1, 94) = 9.06, p = .003, η2p = 0.09,

but this is likely because the titer values scale to different stimulus changes between

the two experiments. As such we avoid a meaningful comparison between differing

titer values.

Mean accuracy ranged from 75.2% (superposed) to 84.7% (stacked), and a

repeated measures ANOVA found that accuracy consistently differed between ar-

rangements, F (4, 184) = 4.34, p = .002. The staircase procedure did not reliably

converge for all arrangements in the task due to large effects of arrangements on

people’s ability to perceive range widths. Stacked charts allowed for higher accuracy

and high precision than other arrangements.

Figure 8.1: Means of averaged final titer values across participants performing the

Maximum Range task. Smaller titers correspond to more precise differences between

means (range widths). The precision of the task was affected by chart arrangements.

Gray bars represent 95% confidence intervals.
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More meaningful is that there was a significant effect of arrangement on pre-

cision, F (3.09, 290.7) = 8.17, p < .0001, η2p = 0.08, without evidence for an in-

teraction between arrangement and experiment, F (3.09, 290.7) = .34, p = .85,

η2p = 0.004, both Greenhouse-Geisser corrected. This suggests that arrangement

produces largely similar effects on the precision of visual comparisons of means and

of ranges.

Precision in stacked charts, relative to adjacent charts, was not significantly

better in the Maximum Range task, t(47) = 1.70, p = .09. Overlaid charts resulted

in the lowest precision for this tasks, as for for Maximum Mean. Note that these

patterns are strikingly different compared to prior evaluation of visual comparisons

of items, which were best supported by animated and superposed charts.

8.4 Summary

Like the Maximum Mean task, the Maximum Range task requires the extrac-

tion of a summary value for each data series. However, in this case, comparison

of individual items within each series is more important. This distinction does not

seem to drastically affect the overall ranking of arrangements. As with Maximum

Mean, stacked charts perform best, which remains surprising given their poor per-

formance in the first two tasks (Maximum Delta and Correlation). Further, this

task does not seem to share any similarity with the other item-based task (Maxi-

mum Delta), with an arrangement performance profile that is almost opposite: not

only is stacked at the top for Maximum Mean rather than the bottom, overlaid and
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animated are at the bottom, rather than the top.
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Chapter 9: Perceptual Proxies

The precision of visual comparison of Maximum Mean and Maximum Range

tasks were best supported by vertically stacked charts, and least supported by super-

imposed charts. This is in contrast to Maximum Delta, which was best supported

by animated and superimposed charts, and Correlation, which was best supported

by mirrored charts. Thus, unlike early experiments on elementary perceptual en-

codings, no clear, universal ranking emerges for comparative arrangements. This

suggests that the vision system is not simply extracting individual values from el-

ementary encodings and computing summary statistics on those values, as, if that

were the case, one would not expect arrangement to have such a large impact.

This begs the question of what the brain is actually doing, if not computing these

statistics.

A relatively new concept in vision science [25], a perceptual proxy is a visual

shortcut based on a spatial feature of a visualization that could conceivably explain

how the human perceptual system interprets a scene and extracts data from it.

Such proxies are a particularly useful reasoning tool for data visualizations, because

understanding an individual’s—and a population’s—preferred proxies may suggest

practical guidelines for how to optimize a visual representation to match these prox-
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ies. This, in turn, would enable us to minimize the perceptual error arising from

a specific visualization. Furthermore, proxies can also easily be operationalized as

small programs (or “bots”) that model that proxy, which would allow us to estimate

how effectively a given visualization should show a given pattern to a viewer.

9.1 Candidate Proxies

A visualization contains any number of visual features potentially available as

a proxy for a given task, such as the lengths of the top most items of each set, or the

perceived symmetry of each set. Different visual features might be better proxies

than others for different visual comparisons. Here we explore which visual features

appear to be most similar to participant performance (making the same decision),

when used as a proxy for Maximum Mean or Maximum Range. We developed two

broad categories of candidate features, informed by research in both visualization

and perceptual psychology.

9.1.1 Global Features

Global-level features describe properties aggregated over a visual set of items,

rather than comparing two focal items. Viewers can rapidly compute global statis-

tics such as the mean of a collection of items [59, 60, 91, 92], though from present

work it is unclear if this ability is mediated by a proxy. A list of hypothesized proxies

of this type is shown in Figure 9.1. One high-precision proxy is that the lengths of

bars in a set are genuinely averaged together and the chart with the largest ensem-
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Figure 9.1: A set of “global-level” candidate perceptual proxies that might be used

in visual comparison of means and ranges (and possibly other tasks).

ble length is chosen as the answer for the task. The mean length feature tests this

genuine averaging. Viewers might also perceptually organize the bars into a coher-

ent object, such that what they perceive is the convex hull of the bounded object

that includes the heights of the bars and the white space between bars, and then

compare the centroids or areas of these two hulls. These object boundary proxies

might be subject to perceptual biases, such as overweighting outer edges in contour

judgments [93]. Empirical research on human attention suggests that the allocation

of attention throughout visual displays is preceded by the organization of the scene

into objects and groups [94], and that the center-of-area of those objects can be

rapidly computed [95]. The hull area and hull centroid proxies test whether this vi-

sual feature is consistent with participant responses and consistent with differences
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in the data. Note that for superposed charts, the two hulls are overlapping, such

that this particular visual feature may be harder for people to see because it involves

filtering using color rather than space (as with the stacked, mirrored, and vertical

arrangements). Finally, people are highly sensitive to symmetry in displays [20]

and are biased to select symmetric over asymmetric information [96]. One possible

heuristic is that people use symmetry as a proxy for range, such that any chart that

is less symmetric is selected as the one having the bigger range.

Figure 9.2: A set of “focal” candidate perceptual proxies that might be used in visual

comparison of means and ranges (and possibly other tasks).

9.1.2 Focal Features

Focal features describe pairwise differences between two items. People can

discriminate small differences in line segment lengths [97]. Chart viewers might

be sensitive to the deltas, either between charts (Biggest Mover Pair) or within a
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chart (Neighbor Delta). In addition, focal attention can be biased to attend to the

topmost item in a collection [62], so one possible proxy is that people compare only

the lengths of the topmost items of the two sets (Biggest First Item). A list of

hypothesized proxies of this type is shown in Figure 9.2.

9.2 Testing Proxies with Retrospective Analysis

To evaluate these proxies, we simulated what would happen if each proxy

was tested on every data series combination that each observer actually saw in the

Experiments 3 (Maximum Mean) and 4 (Maximum Range). Each proxy was used

to make a decision about a visual comparison (e.g., Hull Area generated a convex

hull around each of the two charts, calculated their areas, and evaluated the pixel

difference in their areas), and provided an “answer” to the task (i.e., larger area is

used as a proxy for mean or for range).

Note that this procedure necessarily shows the proxies different stimuli de-

pending on arrangement: because the stimuli have been titrated to respond to

viewer accuracy, the charts “shown” for stacked stimuli will have different prop-

erties than the charts “shown” for superposed stimuli. Because the data in the

charts “shown” to the proxies is arrangement-specific, proxies were implemented

to be arrangement-invariant. The proxies were calculated using raw data values,

the length of each mark, and the relative location of each mark (e.g., the first da-

tum in a chart was at the “top” location), not as visual features extracted from an

image-based representation. Future work should also test proxy performance using
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image-based implementations.

9.2.1 Implementation

We implemented these global and focal perceptual proxies for all charts.

We computed two outputs for each of these proxies: which chart would the

proxy have chosen, and was this choice correct? Some visual features may be

salient [98] to human observers, but not useful for an analytic task (uncorrelated

with the answer). For example, the delta between adjacent bars (i.e., the amount

of overhang) might be a salient and useful indicator for an analytic task involving

comparing items, but if the viewer’s goal is to compare means, relying on this feature

should impair task performance.

Although we excluded some participants from Experiments 3 and 4 for low

accuracy, we included their data in the simulation to allow for the future possibility

of testing whether their poorer task performance is consistent with using different

perceptual proxies than other viewers with higher-precision visual comparison.

Proxies were implemented with Node.js, using D3 geometric libraries (though

pseudocode below refers to a contrived “geom” library for generalization). For com-

parison to human decisions, the script was given as input the full list of trial data,

containing, for each trial, the data points, the correct answer, and the answer chosen

by the participant.

Basic statistical operations (mean, range, biggest mover, skew, biggest first

item, biggest middle item, neighbor delta) are performed directly on the data, while
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Figure 9.3: For geometric computations, points defining the boundary of the chart are

enumerated in a clockwise manner. Note that the small white space between the bars

when they are shown to human participants is not considered for these computations.

Trapezoidal operations are performed using the points of only the first and last bars

(1, 2, 11, 12, 13, and 19 in this example).

geometric operations (centroid, hull centroid, hull area, trapezoid centroid, trapezoid

area) are performed on sets of points defining bar charts representing the data

(Fig. 9.3, Alg. 5).

Algorithm 6 depicts the decision process for the hull centroid proxy. Others

follow a similar paradigm; source code is available at https://osf.io/uenzd/.

Files that contain trial-by-trial data for properties of the stimuli, human re-

sponses, the pixel information used by each perceptual proxy to inform a heuristic

about a chart decision, and each proxy’s decision, for all combinations of arrange-

ment and task, are also posted at https://osf.io/uenzd/.
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Algorithm 5 Point generation

1: procedure Points(d) . d:=dataset

2: p← []

3: n← length d

4: for i in 0 to n− 1 do

5: push p, [di, i/n]

6: push p, [di, (i+ 1)/n]

7: for i in n to 1 do

8: push di−1, [0, i/n]

9: push d, [0, 0]

10: return p

Algorithm 6 Hull Centroid Proxy

1: procedure ProxyHullCentroid(da, db) . da, db := datasets

2: pa ←Points(da)

3: pb ←Points(db)

4: ca ← geom.centroid(geom.convexHull(pa))

5: cb ← geom.centroid(geom.convexHull(pb))

6: if ca > cb then

7: return “a”

8: else

9: return “b”
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9.2.2 Results

The goal of this proxy approach is to evaluate which visual features are con-

sistent with human performance, and which are actually useful for the task. As

such we evaluate the “decisions” of each proxy against two baselines. On what

proportion of trials did the proxy agree with the participant’s response? And on

what proportion of trials did the proxy agree with the true answer of the stimulus?

We treat all of the following results as initial speculations, and make no claims of

their statistical reliability. These values are depicted in Fig. 9.5. A visual feature

can be considered useful if a decision using the differences in that visual feature is

consistent with the task-dependent differences in the data. The dots in Fig. 9.5 to

the right of 50% show proxies that give above-chance performance at the task. We

highlight a few patterns.

First, the most useful proxies, in terms of finding the correct answer, depend

on comparison task. For the Maximum Mean task, visual features of the Mean

lengths (global), Bar Centroids (global), and Biggest Mover Pair (focal) were the

most predictive of the difference in the means. It was unexpected that the Biggest

Mover Pair, which computes pairwise differences between chart items, predicted

the difference of means at above-chance levels. It suggests that in the data, the

largest between-item change (neighbor delta in superposed charts, motion in ani-

mated charts) was predictive of the chart means, moreso than other global features.

For Maximum Range, the Range proxy (which computed all pairwise distances be-

tween items) was most useful, closely followed by pairwise differences only between
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Task Proxy Stacked Adjacent Mirrored Superposed Animated
MaxMean Mean*

Centroid
Biggest Mover Pair (abs)
Hull Area
Biggest Mover Pair (rel)
Hull Centroid
Trap Centroid
Trap Area
Biggest Middle Item
Biggest First Item
Slope Min to Max
Neighbor Delta
Range*
Symmetry

MaxRange Range*
Neighbor Delta
Slope Min to Max
Hull Centroid
Hull Area
Symmetry
Trap Centroid
Centroid
Trap Area
Mean*
Biggest First Item
Biggest Mover Pair (abs)
Biggest Middle Item
Biggest Mover Pair (rel)

1000 1000 10001000 1000

% prediction

1000 1000 10001000 1000

% prediction

Figure 9.4: Results of the two analyses of visual proxy performance for the Maximum

Mean task. The x-axis is the percentage of trials for which the visual proxy was

predictive, for human behavior (vertical bars), and for true answer for the comparison

(colored dots). The small dots show individual subjects, and light gray around the

black lines shows 95% confidence interval. True answer dots are color-coded to show

whether we informally coded them as a global proxy feature (blue) or focal proxy

feature (orange). The true answer dots indicates that some features are more useful

than others for a given visual comparison.

neighboring items (Neighbor Delta).

Second, people tend to make decisions consistent with using the most useful

visual features: the bars that show agreement between proxy responses and human

responses tend to follow the dots that shows the most task-relevant useful features

in Figure 9.5.

Third, we note the absence of a symmetry bias. The Symmetry proxy, which

uses stimulus symmetry as a proxy on which to make Maximum Mean and Maximum

Range decisions, was predictive neither of actual differences in means or range, nor

of human responses.
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Task Proxy Stacked Adjacent Mirrored Superposed Animated
MaxMean Mean*

Centroid
Biggest Mover Pair (abs)
Hull Area
Biggest Mover Pair (rel)
Hull Centroid
Trap Centroid
Trap Area
Biggest Middle Item
Biggest First Item
Slope Min to Max
Neighbor Delta
Range*
Symmetry

MaxRange Range*
Neighbor Delta
Slope Min to Max
Hull Centroid
Hull Area
Symmetry
Trap Centroid
Centroid
Trap Area
Mean*
Biggest First Item
Biggest Mover Pair (abs)
Biggest Middle Item
Biggest Mover Pair (rel)

1000 1000 10001000 1000

% prediction

Figure 9.5: Results of the two analyses of visual proxy performance for the Maximum

Range task. The x-axis is the percentage of trials for which the visual proxy was

predictive, for human behavior (vertical bars), and for true answer for the comparison

(colored dots). The small dots show individual subjects, and light gray around the

black lines shows 95% confidence interval. True answer dots are color-coded to show

whether we informally coded them as a global proxy feature (blue) or focal proxy

feature (orange). The true answer dots indicates that some features are more useful

than others for a given visual comparison.

Fourth, there is weak evidence of a bias for people to perform the Maximum

Range task with the global proxies of Hull Centroid and/or Area Trapezoid Centroid,

to a higher degree than is actually useful in the task: note where in Figure 9.5 the

human behavior bars are to the right of the proxy dots.

We speculate that these findings are broadly consistent with the idea that

global visual features are useful for set-level visual comparisons, and local visual

features are useful for item-level visual comparisons. Maximum Mean and Maximum

Range tasks benefit from the same chart arrangements, but use different emergent

visual features in these chart arrangements for visual comparison. Visual comparison
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is afforded by more than precision of marks and their arrangements. The “visual”

component of visual comparison may rely on a flexible suite of visual proxies that

viewers can rely on to accomplish a given task, depending on what visual features

are present. The slight bias to erroneously use global features for the Maximum

Range task raises the speculative possibility that, in some tasks and arrangements,

viewers use global shape-based proxies even when these proxies are not useful.

Figure 9.6: Proxy correlation for Maximum Mean data. In these data, many proxies

(especially centroid) correlate well with the true answer (*mean), making it difficult

for this retrospective analysis to distinguish use of these proxies from extraction of

the true mean or some other proxies that correlate with the mean.
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9.2.3 Limitations

The data analyzed here were generated to test comparative arrangements,

rather than to tease apart proxies. As a consequence, many of the proxies were

highly correlated in these data, both with each other and the true answer (Figs. 9.6

and 9.7). This makes it difficult to distinguish proxy effects.

Figure 9.7: Proxy correlation for Maximum Range data. In these data, many proxies

(especially hull area norm) correlate well with the true answer (*range), making it dif-

ficult for this retrospective analysis to distinguish use of these proxies from extraction

of the true mean or some other proxies that correlate with the range.
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Chapter 10: Revealing Proxies with Adversarial Examples

As discussed in Section 9.2.3, proxies tend to correlate with true summary

values in data that is proxy-agnostic. This is not surprising, as charts would not

be useful if the way we interpreted them had no bearing on their actual data. This

poses a conundrum, however: if proxies always correlate with the true values, how

can we determine, experimentally whether someone is using a proxy or computing

the true value?

As a remedy, we propose searching for charts that are adversarial, which we

define here as having a perceived summary statistic (i.e. proxy value) that deviates

from the true value. Since the proxy values in these adversarial charts would not

correlate with the true value, a preference for a given proxy would be a more robust

indication that the proxy is used than in our retrospective analyses of random data.

10.1 Two Approaches: Testing vs. Learning

We will approach the problem of revealing perceptual proxies with adversarial

examples in two complementary ways. (Fig. 10.1):

• Theory-driven, or “testing,” where we draw on the literature in vision science

and visualization on perceptual proxies to generate “adversarial” datasets that
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Proxy space (Ρ*) Data space (D*)

D1=<d11, d12, ...,d17>
random

data

proxy 
strengths

optimized 
dataP1 P2 P3

Visual Comparison Task

adversarial
examples

D2=<d21, d22, ...,d27>

D3=<d31, d32, ...,d37>

A B
Data-drivenTheory-driven select the larger mean/range

Figure 10.1: Conceptual diagram of two adversarial approaches. The theory-

driven approach operates in proxy space, while the data-driven approach operates in

data space.

optimize individual proxies to deceive a participant into selecting an incorrect

choice (Experiment 5); and

• Data-driven, or “learning,” where we simply start from a set of randomly

generated data series—with no preconceived notion of how they should be

generated—and let participant choice for successive lineups between series

guide a black-box optimization to find increasingly more deceptive data (Ex-

periment 6).

76



10.2 Common Methods For Adversarial Experiments

A key feature of Experiment 6 (the “data-driven”, or learning, approach) is

that all the charts needs to have the same true summary statistic. We suspected

that participants may notice how similar they seem and resort to random guessing.

It was thus important to run both experiments in parallel and in the same sessions,

i.e., with the same participants (Fig. 10.2). All of the trials belonging to specific

blocks—i.e., different proxies for Experiment 5 and different datasets being opti-

mized for Experiment 6—were interleaved randomly. This way, participants would

not know they were occasionally shown charts with the same mean or range and,

in theory, continue to try their best. We only blocked the combined study on task

type (see below), as each specific task requires specialized training.

Here we will discuss experimental aspect common to Experiments 5 and 6,

including the two tasks (MaxMean and MaxRange), visual representation, apparatus,

and procedure.

10.2.1 Visual Representation

We used a simple horizontal bar chart where each bar had a uniform color

and thickness (Fig. 1.2). The visual stimulus involved showing these bar charts in a

lineup consisting of two charts arranged side by side (i.e. the “adjacent” arrangement

from Experiments 1-4). We used two diverging colors—orange (� #ff7f0e) and blue

(� #1f77b4), respectively—for the two charts.
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Take a random walk from the initial chart and 
compare it to the initial chart.

Experiment 5 Experiment 6
Visual Comparison:

Derive a discriminability threshold to measure 
which proxy is more deceptive.

 If the participant selects the larger mean, 
strengthen the proxy, otherwise, weaken it.

A more deceptive proxy needs less strengthening 
to be selected.

Generate adversarial datasets for a given proxy. 
For example, max bar.

The last chart is the final optimized deceptive chart 
or passed to the next participant.

All proxy trials are interleaved and randomized.

Start from a random initialization or the last 
participant’s result.

If the participant selects the current chart, take a 
step opposite the random exploration.

If the participant selects the new chart, take a step 
further in the direction of the random exploration.

Update and generate the next Experiment 2 trial.

Which theory-driven proxies are deceptive? What does a deceptive chart look like?

Trials are interleaved with Experiment 1. 

The two charts have the 
same mean value.

The two charts have the 
same mean value.

The blue chart has a larger 
mean, but max bar  suggests 
the orange chart.

The orange chart has a 
larger mean, but max bar  
suggests the blue chart.

To select the larger mean
A B

Proxies

Measure how strongly the proxy overwhelms the 
chart with a larger mean. For max bar, one bar will

 be very long, but the chart has a smaller mean. 

Figure 10.2: Interleaving of the two approaches. The two experiments are run in par-

allel with the same subjects, with trials from both interleaved as illustrated here. A In

the “theory-driven” approach, we optimize charts to manipulate conjectured percep-

tual proxies, and test how powerfully they alter judgments. B In the “data-driven”

approach, we seek to discover deceptive charts de novo, using human judgments as

an objective function. The examples above present four real trials from the combined

experiment. All annotations on bar charts are for illustrating purposes only.

10.2.2 Tasks

We test proxies using the same two tasks used in Experiments 3 and 4:

• MaxMean : Determine the chart that has the larger mean value across all of its

components.

• MaxRange: Determine the chart that has the larger range from its shortest to

its longest components.

While many tasks could be investigated, these are among the most basic of the

summary statistics, yet are distinct from each other in that MaxMean is a “global”
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task, since it requires computation across bars, while MaxRange is a “focal” task,

since it requires the extraction of specific bars to compare, i.e., the min and max

(see Chapter 9). Further, both these tasks are convenient because they can be

computed on individual data series, unlike Maximum Delta (Experiment 1), which

has dependencies across the two data series, and Correlation (Experiment 2), which

requires two pairs of data series to create a forced-choice discrimination task. Note

also that we use the “adjacent” arrangement even though these tasks were best sup-

ported by the “stacked” arrangement in Experiments 3 & 4 (see §7.3 and §8.3). In

pilot experiments we found that stacked arrangements supported the tasks so well

that it was difficult to discern any differences in performance, even with the maxi-

mum differences mathematically possible between the proxies and the true values.

Thus, in this case, making the task harder (by using a sub-optimal arrangement)

allowed us to push the visual system closer to its limits.

10.2.3 Procedure

After consenting, participants were shown a sequence of instructional screens

followed by a set of practice trials. Practice trials gave feedback on whether or

not the participant’s answer was correct; this was not the case for the timed trials.

Participants were required to score three correct answers in a row to proceed past

the practice phase. The purpose was to ensure that participants had correctly

understood the task at hand.
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As in Experiments 1–4, each individual trial started with a short countdown;

then the platform showed the lineup of two data series visualized as bar charts in a

side-by-side arrangement (horizontal juxtaposition) as impressions for a short time

period. Based on extensive piloting, we chose 1000ms impressions for MaxMean and

1500ms for MaxRange. After the impression time ended, the lineup was replaced by

two colored (orange and blue) buttons to represent the bar charts had been shown.

Answering the trial meant clicking on the button representing the bar chart that the

participant had perceived as having the larger mean or range. Participants assigned

to each task typically spent between 8 and 27 minutes to complete all the sessions

(µ = 15.24, σ = 4.75).

10.2.4 Participants

For each of the two tasks, we recruited 65 participants for the combined study

from Amazon Mechanical Turk (MTurk). The MaxMean task had 22 female, 42

male, and 1 unspecified, and the MaxRange task had 31 female and 34 male.

10.2.5 Apparatus

All experiments were distributed through the participant’s web browser. Be-

cause of our crowdsourced setting, we were unable to control the specific computer

equipment that the participants used. We required a screen resolution of at least

1280× 800 pixels. During the experiment, we placed the participant’s device in full

screen mode to maximize the visibility. The testing software was implemented in
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JavaScript and D3.js [87] with a server-side Perl and CGI backend.
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Chapter 11: Experiment 5: Testing Proxies with Adversarial Charts

Experiment 5 follows a theory-driven approach: we start with a set of plausi-

ble perceptual proxies, generate datasets optimizing for them, and then test these

datasets in human judgments. This experiment has two goals: first, to find evidence

that participants could be using perceptual proxies in visual comparison tasks; sec-

ond, to understand how participants used different proxies differently.

To find evidence of proxy use without entanglement of the true value, we create

“adversarial” visualizations. These are pairs of charts for which the proxy would

suggest a different answer than the true value in a forced-choice trial. The difficulty

is controlled parametrically by a combination of the ratio of the true value (e.g.

how much bigger is the correct mean) and how adversarial the pair of charts is (e.g.

how much bigger the convex hull area is in the wrong chart). Both the values are

encapsulated by a titer value.

11.1 Selecting Specific Proxies

We aimed to identify a set of proxies in the perceptual space that are likely used by

participants and could be manifested by us to generate adversarial trials. We used

the below heuristics and followed an iterative process. We primarily considered the
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ink area

If the bar thickness is the same, the bar 
chart with a larger mean will always have 
more ink. In this example, the blue chart has 
a larger mean and more ink.
We therefore vary the thickness. This 
example shows that the blue chart with 
skinnier bars could have less or the same 
amount of ink. 

min bar 
and 

max bar

In the orange chart, if we make max bar 
longer to be deceptive (a smaller range), 
min bar has to be longer, too. The blue 
chart will always have a shorter min bar.
We span the range of the deceptive chart 
across min bar or max bar of the other 
chart and balance all the cases. In this 
example, the blue chart could have a longer 
min bar or a shorter max bar. 

Confounding Proxy Description Description

B MaxRangeA MaxMean
Confounding Proxy

ink area

If the bar thickness is the same, the bar 
chart with a larger mean will always have 
more ink. In this example, the blue chart has 
a larger mean and more ink.
We therefore vary the thickness. This 
example shows that the blue chart with 
skinnier bars could have less or the same 
amount of ink. 

min bar 
and 

max bar

In the orange chart, if we make max bar 
longer to be deceptive (a smaller range), 
min bar has to be longer, too. The blue 
chart will always have a shorter min bar.
We span the range of the deceptive chart 
across min bar or max bar of the other 
chart and balance all the cases. In this 
example, the blue chart could have a longer 
min bar or a shorter max bar. 

Confounding Proxy Description Description

B MaxRangeA MaxMean
Confounding Proxy

Figure 11.1: The confounding proxies in the MaxMean and MaxRange tasks.

proxies that best aligned with participants’ judgments in our analyses in §9.2.2.We

also considered a new proxy if it satisfies the above two constraints. Because of the

high degree of correlation of many proposed proxies, we chose, from these, proxies

that can be thought of as representatives of broader classes, based on qualitatively

identifying clusters in correlation matrices (see Figs. 9.6 and 9.7). For example,

the area of a chart’s convex hull is highly correlated with the horizontal position

of that hull’s centroid, so we choose the former to represent the family of convex

hull proxies, as it aligns slightly better with human choices in §9.2.2. Evidence for

any proxy we have chosen thus would thus imply that either that proxy or a similar

proxy is at play. As a result, we selected four proxies for the MaxMean task: hull area ,

centroid , max bar , and min bar ; we also selected four other proxies for the MaxRange
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task: hull area norm , slope, slope range, and slope neighbor . For each selected proxy, we

show the description and an example in Figure 11.2 (MaxMean) and Figure 11.3

(MaxRange).

The area of a convex hull around the 

thickness.

The centroid of the area occupied by the 
bars along just relevant x-axis

The length of the longest bar

The length of the shortest bar

hull area norm The area of a convex hull around the 
bars, cropped to the shortest bar

The largest slope from the tip of one bar 
to the tip of an adjacent bar

The slope from the tip of the minimum 
bar to the tip of the maximum bar

The slope of a regression line fit to all 
the bars

slope neighbor

slope range

slope

Description Description

B MaxRangeMaxMean

hull area

centroid

max bar

min bar

Proxy Proxy

Figure 11.2: Perceptual proxies used for MaxMean adversarial experiments.

All the example chart pairs have the same underlying datasets, and the blue chart

on the right side has a larger mean (the correct answer). In trials, the position of

the correct answer is randomized and balanced. Charts randomly have skinny bars

to decouple amount of ink from the mean (see Section 11.2).

11.2 Eliminating Confounding Proxies

Besides the selected proxies, both tasks had other proxies directly related to the

summary statistic itself. They could always indicate a correct answer (i.e., the

larger mean or the larger range), and thus we attempted to eliminate their impact

in our experiment.
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The area of a convex hull around the 

thickness.

The centroid of the area occupied by the 
bars along just relevant x-axis

The length of the longest bar

The length of the shortest bar

hull area norm The area of a convex hull around the 
bars, cropped to the shortest bar

The largest slope from the tip of one bar 
to the tip of an adjacent bar

The slope from the tip of the minimum 
bar to the tip of the maximum bar

The slope of a regression line fit to all 
the bars

slope neighbor

slope range

slope

Description Description

MaxRangeA MaxMean

hull area

centroid

max bar

min bar

Proxy Proxy

Figure 11.3: Perceptual proxies used for MaxRange adversarial experiments.

All the example chart pairs have the same underlying datasets, and the blue chart on

the right side has a larger range (the correct answer). In trials, the position of the

correct answer is randomized and balanced. Slopes are computing using bar length

as “height” and distance between the centers of the bases of the bars as “width.”

For the MaxMean task, an ink area proxy—the total “amount of ink” [34] (i.e.,

the number of colored pixels on the screen)—could be used by participants to es-

timate mean when the number of bars is different [25]. If all the bars are of the

same thickness, the ink area proxy reduces to the sum, and thus the arithmetic mean

(see Table. 11.1a). We decoupled the ink area proxy from the mean by randomly

choosing one of the two charts to have skinnier bars than the other. We chose a

fixed skinniness such that the skinny-bar chart will always have the least amount

ink, even for a large difference in mean. The ink area value thus cannot be use to

determine the correct answer.

85



Similarly, for the MaxRange task, min bar and max bar are closely related to

the range (see Table. 11.1b). Therefore, the other chart will always have a shorter

min bar . The feedback from the pilot studies also supported this speculation, as some

participants reported choosing the chart with the shortest bar as their strategy. We

therefore manipulated the range values such that the smaller range spans either

the minimum or maximum of the larger range. In this way, min bar or max bar only

corresponds to the larger range 50% of the time and therefore is no longer correlated

with the correct answer.

For each of these confounding proxies, we randomized and balanced the four

cases: if the proxy is deceiving or not and if the correct response is on left or right.

11.3 Hypotheses

With our goal of understanding proxies and participants’ usage of specific

proxies, we framed two research hypotheses for Experiment 5:

• H1 Adversarially manipulating perceptual proxies will mislead participants

to be worse at making a visual comparison.

• H2 Individuals will be affected by such manipulations differently.

11.4 Experimental Design

For our hypotheses, we performed within-subjects factorization for the two

tasks and the corresponding four proxies. We recruited different participants for

each task due to concerns about practice [99], fatigue [100], and carryover effects.
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Each participant finished all four proxy conditions and a control condition where no

specific proxy was manipulated. We designed this control condition to replicate the

results from Experiments 5 and 6 and also to provide a baseline for comparison. Each

condition consisted of 20 trials. In each trial, we collected the participant’s response,

the proxy manipulated, the two datasets presented, and the experiment parameters.

The remaining details of experimental materials, framework, recruitment, procedure,

and data collection were described above in Sections 11.5 and 10.2.

11.5 Generating Adversarial Charts with Simulated Annealing

We generate adversarial pairs of charts for a given proxy using simulated an-

nealing [101], drawing inspiration from Matejka and Fitzmaurice [90]. Our objective

is a pair of datasets with specified ratios for a proxy and a summary statistic. De-

viation from this objective is formalized in a cost function as the sum of squared

differences between the ratios in the objective and those of the dataset being con-

sidered, as in Equation 11.1. Here x(i) is a vector of the bar lengths for the chart

i = 1, 2. The functions µ(x) and p(x) represent the true statistic (e.g. mean) and

proxy function (e.g. convex hull area), respectively. In addition to bar lengths x(n),

n = 1, 2, the function takes target values for the statistic (µ′i) and proxy (p′i) in each

of the two charts (i = 1, 2).

J(x(n), µ′n, p
′
n |2n=1) =

2∑
i=1

(
µ(x(i))− µ′i

)2
+
(
p(x(i))− p′i

)2
(11.1)
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11.6 Measurement

To manifest specific proxies and quantify their effects on the MaxMean and

MaxRange tasks, we followed the methodology of Experiments 1–4. Following these,

the titer value for a pair of bar charts (left and right) is defined as follows:

titer =
max(Sleft, Sright)

min(Sleft, Sright)
− 1, S ∈ {fmean, frange} (11.2)

where S is a summary statistic for the dataset, and it could be arithmetic mean

(fmean) or range (frange). The titer value normalizes the difference of a summary

statistic for the two side-by-side bar charts and scales task difficulty in different

trials. For example, if a titer value is 0.1 in a MaxMean trial, one of the bar charts

has a mean value 10% larger than the other one in homogeneous coordinates. In

practice, a titer value of 0.5 is considered very large for participants to tell the

larger mean or range. Examples of various titer values can be seen in Figures 11.4

and 11.5.

If participants need a large titer to correctly discriminate the summary statistic

between the two bar charts (e.g., they need more differences in mean to select the

larger mean), they are more likely to be deceived by the adversarial examples towards

an incorrect answer, and therefore they likely use those proxies. Alternatively, if

participants successfully select the correct answer with a small titer , they may not

be deceived by our manipulation of proxies.

We seek a titer threshold to summarize all the trials in an experimental condi-

tion and to describe participants’ performance for that condition. The titer threshold
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Figure 11.4: Example titers for MaxMean . We show examples of bar charts for

each condition, including the control condition. Note that, for each trial, charts are

parametrically generated and will not be the same as these. In each proxy condition,

we optimize that particular proxy and make it more deceptive. The bar charts on the

left side have roughly the same mean value around 0.4. The bar charts on the right

side always have a mean value higher than 0.4, which are the correct answers. Note

that to facilitate comparison, we use the same thickness for all the bars.

describes when participants could just discriminate the difference ratio of a summary

statistic. This threshold concept is similar to the concept of discrimination thresh-

old, like a just noticeable difference (JND) [102], but we use a difference ratio rather

than absolute difference to normalize the stimuli. To measure a titer threshold, we

started with titers of 0.25 and 0.40 for the MaxMean and MaxRange tasks, respec-

tively, and approached the threshold using a staircase method [103]. The staircase

method increased the titer value for an erroneous response (making the next trial

easier) and decreased for a correct one (making the next trial more difficult) with

two stages: in the first four trials, the increment and the decrement were both 0.03
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Figure 11.5: Example titers for MaxRange. We show examples of bar charts for

each condition, including the control condition. Note that, for each trial, charts are

parametrically generated and will not be the same as these. In each proxy condition,

we optimize that particular proxy and make it more deceptive. The bar charts on

the left side have the same range 0.4. The bar charts on the right side always have a

range value larger than 0.4, which are the correct answers.

for MaxMean and 0.06 for MaxRange; in the rest of the trials, the decrement was 0.01

for MaxMean and 0.02 for MaxRange. These mechanisms ensure that we efficiently

present stimuli to participants and conceptually align with measuring 75% JND;

that is, the minimum difference (ratio) could be reliably discriminated 75% of the

time [74,102].

11.7 Prerequisites for Analysis

Data We planned to include all the participants and analyze all their data. We

made only one exception where we excluded one participant from the MaxMean task
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due to an assignment error. As such, for the MaxMean task, we based our analysis

upon 6,400 trials = 20 trials per condition × (4 + 1) conditions × 64 participants;

and for the MaxRange task, we based our analysis on 6,500 trials = 20 trials per

condition × (4 + 1) conditions × 65 participants.

Replication Our two control conditions were similar to the “adjacent” conditions

in Jardine et al. [26], and the number of participants (65) was also similar to theirs

(50). To compare our results with theirs, we followed the same analysis method to

calculate the average of titer values in the last ten trials and 95% confidence intervals

from a Student’s t-distribution. As a result, we had 0.19 [0.17,0.21] for MaxMean

and 0.46 [0.41,0.51] for MaxRange, compared to 0.21 [0.19,0.24] and 0.32 [0.30,0.33]

from Jardine et al. While our MaxMean results are similar to Jardine et al.’s, our

MaxRange task appeared to be more difficult. This may be because we mixed the

control condition with other adversarial trials and trials from Experiment 2.

Bayesian estimation For our own analyses, we followed a Bayesian estimation

approach [104, 105]. We used weakly informative priors to incorporate constraints

of the experimental design and to roughly capture theoretically possible values

within two standard deviations. We used the R packages brms [106], ggdist [107],

tidybayes [108], rstan [109], and tidyverse [110] for computing and presenting

the results.
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11.8 Analysis

Our analysis had two steps. First, we used separate Bayesian logistic regres-

sions directly on participants’ responses to estimate each participant’s titer threshold

for each proxy. From these models, we also derived the measurement error of par-

ticipants’ thresholds. Second, we used the titer thresholds and measurement errors

in a robust Bayesian mixed-effects linear regression to estimate the effects of each

proxy on participants’ perception.

This two-step analysis protocol aligns with a common approach to aggregating

repeated trials when analysing JNDs (e.g., [26,74]), but also incorporates measure-

ment error from the first models into the second to reduce variance. From the results

of the second model, we compare different perceptual proxies (H1) and infer their

various effects on different individuals (H2).

11.8.1 Step 1: Deriving Thresholds and Measurement Error

We illustrate how we derive titer thresholds and the associated measurement

error in Fig. 11.6.

Logistic regression For each proxy × participant, we built a Bayesian logistic

regression model for that participant’s 20 dichotomous responses on that proxy (1 if

the participant correctly selected the chart with the larger mean/range, 0 otherwise)

(Fig. 11.6a). The resulting logistic curves describe the relationship between titer

values and the probability of a participant making a correct response (between 1
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A

C

For each proxy × participant pair, we 
fit a separate Bayesian logistic 
regression model for the 20 responses  
(1 for correct; 0 for incorrect).
Each draw from the posterior 
distribution corresponds to a single 
logistic curve.
We use the inverse logistic function 
(logit) to find the titer threshold: the 
titer at which the participant has a 75% 
chance of selecting the correct chart 
(i.e., a larger mean/range).

As such, we have draws from the 
posterior distribution of the titer 
threshold.
We use the median of this distribution 
as the estimate of mean, and one MAD 
as the estimate of standard deviation, 
assuming normality.

D Repeating for each set of trials, we 
have a titer threshold and its 
measurement error for each proxy 
within each participant.

titer

titer threshold

median one MAD

0%

75%

100%

0.0 0.2 0.4 0.6

0.0 0.2 0.4 0.6

Figure 11.6: Deriving titer thresholds and measurement error.

and 0). We used the inverse logistic function (logit) to calculate the corresponding

titer value at which a participant has a 75% chance of getting the correct response;

this value is the titer threshold. Similar approaches are common in psychophysics

to calculate JNDs [102], and have recently been used in visualization [24,111].

Measurement error Because we use two steps to our modeling (logistic regression

to find titer thresholds followed by a linear model of thresholds), there is measure-

ment error [112] associated with the titer thresholds that should be propagated

from the first models to the second: the titer thresholds are uncertain, as they are

estimated from data. In a Bayesian context, we can propagate this measurement

error by replacing the point estimates of titer thresholds with probability distribu-

tions [113]. From the posterior distribution of each logistic regression model, we
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use robust estimates of location and scale—median and median absolute deviation

(MAD) [114]—to derive a titer threshold (µij) and the associated measurement error

(σij) for each participant i × proxy j (Fig. 11.6b). Then, in the linear regression

(described below), instead of a response variable consisting only of point estimates

(i.e., just the estimated titer thresholds, µij), our response variables are distribu-

tions: Normal(µij, σ
2
ij). This is a straightforward approach to measurement error in

a Bayesian context [113].

11.8.2 Step 2: Modeling Thresholds

Mixed-effects linear regression We used a robust Bayesian mixed-effects linear

regression to model the titer thresholds. We used a Student’s t distribution instead

of a Normal distribution as the likelihood to make the model more robust to out-

liers [115]. We followed a measurement error approach and specified our response

variables as Normal distributions corresponding to titer threshold estimates and

their measurement error (see Step 1 above). We specified proxy as a fixed effect, so

that different proxies can have different titer thresholds on average. We then used

a random intercept and random slopes for proxy dependent on participant. This

allows each participant to have their own titer thresholds within each proxy in the

model. In brms’s [106] extended Wilkinson-Rogers [116] notation, this model is:

titerThreshold|se(titerError) ∼ proxy + (proxy|participant) (11.3)

Where titerThreshold is the estimated titer threshold (µij above), titerError is the

measurement error in the titer threshold (σij above), and proxy and participant are
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categorical variables indicating the manipulated proxy and participant, respectively.

11.9 Results

We report medians, 50% and 95% quantile credible intervals (CIs; Bayesian

analogs to confidence intervals) as estimates of mean effects, and present the medians

of posterior predictive distributions to show individual differences, following the

presenting style of Fernandes et al. [117] and Hullman et al. [118].

11.9.1 The Effects of Manipulating Perceptual Proxies

We report here the mean effects for each proxy and comparisons with the

control condition (no proxy was manipulated). We found evidence to support H1:

participants are likely deceived by some of the manipulated proxies.

MaxMean (Fig. 11.7) The four proxies have posterior distributions surrounding

and similar to the control condition. When looking at the posterior distributions

of differences in titer threshold, weak evidence supports that manipulating centroid

might lead to a larger average titer threshold, suggesting that an average participant

might be deceived by the centroid proxy, and therefore might be using that proxy to

estimate MaxMean . Manipulating hull area , max bar , or min bar is less likely to have

a large effect on average, suggesting that an average participant is less likely to be

deceived by those proxies.

MaxRange (Fig. 11.8) We did not find strong evidence of an effect of either hull area norm

or slope neighbor on titer threshold. The slope neighbor proxy is most likely to lead to
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min bar

max bar

centroid

hull area

control

0.075 0.125 0.175 0.225 0.275 −0.10 −0.05 0.00 0.05 0.10

slope

slope range

slope neighbor

hull area norm

control

0.20 0.29 0.38 0.47 0.56 −0.18 −0.09 0.00 0.09 0.18

MaxMean MaxRangeBA

An average participant needs 
a larger titer to select the larger 
mean. This suggests that the 
average participant was likely to 
be deceived by the proxy, and 
therefore might use the proxy. 

When manipulating min bar, an 
average participant needs a titer 
of about 0.17 (17% difference in 
mean between the two bar 
charts) to correctly select the 
larger mean 75% of the time.

An average participant needs 
a smaller titer to select the 
larger range. This means that 
the average participant is 
likely using another proxy that 
is negatively correlated with 
this proxy (selecting against, 
see Section 6.8.2)

When manipulating slope, 
according to our data and 
model, there is a 95% chance 
that an average participant has 
a titer threshold between [0.27, 
0.39].

hull area - control =

Figure 11.7: The effects of manipulating perceptual proxies (H1) for MaxMean .

We show posterior distributions ( ), 50% and 95% CIs ( ) of expected titer

thresholds (x-axes; the titer value at which 75% accuracy is expected), and a com-

parison with the control condition. Plots to the right (colored) show the same values

as the left, but as offsets from the mean of the control conditions.

larger titer thresholds, but neither the chance of this nor the associated size of the

effect are large. We found slope and slope range are likely to yield smaller titer thresh-

olds, suggesting that an average participants is more likely to select against these

two proxies. As we explain below, this may suggest the presence of some other prox-

ies, negatively correlated with slope range and slope neighbor (proxy conflicts), which

an average participant might be using.

11.9.2 Interpreting Participants Selecting Against a Proxy

We found that slope range and slope might lead to smaller titer thresholds on

average than the control condition. When this happens, we say that participants

are selecting against a proxy. Consider two bar charts, A and B (see Figure 11.9).
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min bar

max bar

centroid

hull area

control

0.075 0.125 0.175 0.225 0.275 −0.10 −0.05 0.00 0.05 0.10

slope

slope range

slope neighbor

hull area norm

control

0.20 0.29 0.38 0.47 0.56 −0.18 −0.09 0.00 0.09 0.18

MaxMean MaxRangeBA

An average participant needs 
a larger titer to select the larger 
mean. This suggests that the 
average participant was likely to 
be deceived by the proxy, and 
therefore might use the proxy. 

When manipulating min bar, an 
average participant needs a titer 
of about 0.17 (17% difference in 
mean between the two bar 
charts) to correctly select the 
larger mean 75% of the time.

An average participant needs 
a smaller titer to select the 
larger range. This means that 
the average participant is 
likely using another proxy that 
is negatively correlated with 
this proxy (selecting against, 
see Section 6.8.2)

When manipulating slope, 
according to our data and 
model, there is a 95% chance 
that an average participant has 
a titer threshold between [0.27, 
0.39].

hull area - control =

Figure 11.8: The effects of manipulating perceptual proxies (H1) for MaxRange.

We show posterior distributions ( ), 50% and 95% CIs ( ) of expected titer

thresholds (x-axes; the titer value at which 75% accuracy is expected), and a com-

parison with the control condition. Plots to the right (colored) show the same values

as the left, but as offsets from the mean of the control conditions.

A has the larger slope (our manipulated proxy) and the smaller range of the two; B

has the smaller slope but the larger range. Say participants do not use slope, but do

use some other proxy Y that is negatively correlated with slope (e.g., slope neighbor ),

such that B has the larger value of Y . Now B has both the larger value of Y and

the larger slope, so participants using proxy Y will be more likely to correctly pick

B at a smaller titer, leading slope to have a smaller titer threshold than the control.

Thus, the smaller titer thresholds of slope range and slope suggest there may be some

other proxy (negatively correlated with slope range or slope) that participants were

using.

97



Assume we are manipulating slope. The 
orange chart appears to be deceptive: it has 
a larger slope but a smaller range.
The blue chart has a larger slope neighbor, 
and this proxy is negatively correlated with 
slope. 
If participants use slope neighbor, they would 
apprear to select against slope: they always 
choose the incorrect chart of a smaller slope 
and range.  

Two conflicting proxies Selecting against

slope 
vs.

slope neighbor

BA

Figure 11.9: An example of participants selecting against a proxy.

11.9.3 Individual Differences

To investigate individual differences, we report each participant’s median of

predicted expected titer threshold and a comparison to the control condition across

different proxies in Figs. 11.10 and 11.11, assuming no measurement error. We found

evidence supports that participants use proxies differently for our H2.

MaxMean (Fig. 11.10) We found that on average, most participants are consis-

tent with themselves across all conditions ( 3 ): participants who have larger titer

thresholds than others in the control condition are more likely to have larger titer

thresholds in other conditions and vice versa. This is reasonable: if participants are

good at selecting the larger mean between the two charts, they could have been good

at the task across different conditions, and thus result in smaller titer thresholds in

all the conditions. A large portion of participants behave similarly ( 4 ), but a small

portion of participants have larger titer thresholds than the others.

We found that most participants seem to be deceived by the adversarial trials,

suggesting that they might use the manipulated proxies or other proxies positively
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correlated with these. The exception is that in the min bar condition, participants

seem to be consistently and slightly selecting against our manipulation, indicating

that they might use other proxies negatively correlated with min bar . A handful

of participants seem not to follow any manipulation ( 6 ); their titer thresholds

are similar to those of the control condition. Different participants are likely to

be deceived by different proxies to different extents ( 7 ). While the majority of

participants seem to be deceived by centroid the most ( 8 ), centroid is also where

participants’ behavior deviate from each other the most. Last, participants are

more similar across and within min bar and max bar conditions, meaning that in

our procedure, if participants use the max bar , they are less likely to use min bar ,

consistent with our observations from Section 11.9.2.

MaxRange (Fig. 11.11) We found that most participants appear to be self-consistent

across all the proxy conditions ( 1 ), but less consistent than those participants in the

MaxMean task (they were different participants). Participants who have larger titer

thresholds than others in the control condition are more likely to have larger titer

thresholds in other conditions ( 2 ) and vice versa ( 3 ). These two groups appear to

have similar numbers of participants, and there are other participants who behave

differently across different conditions ( 4 ).

We found evidence supports that participants might use different proxies dif-

ferently across different conditions. Participants are most similar to each other in

slope neighbor ( 5 ); but they are least similar in hull area norm . Some participants

could be deceived by the manipulated proxy, while some are selecting against the

proxy, and others are likely not to follow the manipulation; most participants are

99



likely selecting against both slope and slope range. Different participants may ignore

a manipulated proxy, be deceived by a second one, but select against another one

( 6 - 8 ).

min bar

max bar

centroid

hull area

control

0.0 0.1 0.2 0.3 0.4 −0.08 −0.04 0.00 0.04 0.08
slope

slope range

slope neighbor

hull area norm

control

0.0 0.2 0.4 0.6 0.8 −0.16 −0.08 0.00 0.08 0.16

MaxMean MaxRangeBA

hull area - control

The median of a participant’s 
predicted mean of titer 
threshold across different 

The median of all participants 
across different conditions.

The cluster around the median 
of all participants suggests that 
on average, most participants 
are similar to each other; a few 
participants having larger titer 
thresholds differ from others.

The parallel lines suggest that 
on average, participants are 
generally self-consistent 
across different conditions.

1 2

1

2

3

4

4

3

6 7 8

The participant seems to 
ignore any manipulated proxy.

The participant is likely 
deceived by hull area, strongly 
by centroid, slightly by max 
bar, and slightly selecting 
against min bar.

The participant is likely 
deceived by hull area or max 
bar, slightly by centroid, and 
slightly selecting against min 
bar.

5

6

7

likely deceived

In general, participants are 
likely deceived by hull area at 
different levels,  by max bar at 
a similar level, and similarly 
slightly selecting against min 
bar. See Section 6.8.2.

8

2 4 3

1 likely selecting against 

6 7 8

5 5

On average, most participants 
are self-consistent across 
different conditions.

The participants having 
larger/smaller titer thresholds 
than others in the control 
condition are more likely to 
have larger/smaller titer 
thresholds in other conditions.

The crossing lines suggest that 
other participants could use 
different proxies differently 
across different conditions.

1

2
3

4

The participant likely ignores 
slope range, is likely deceived 
by slope neighbor, and likely 
selects against hull area norm 
and slope.

The participant is likely 
deceived by hull area norm 
more than others, less by slope 
neighbor, strongly selects 
against slope range, and less 
against slope.

The participant likely ignores 
hull area norm, is slightly 
deceived by slope neighbor or 
slope, and likely selectes 
against slope.

5

6

7

Participants are most similar 
with each other in slope 
neighbor and least in hull area 
norm.

8

Figure 11.10: The individual differences in different proxies conditions (H2).

We show posterior predicted median of titer thresholds and a comparison with the

control condition for each participant ( ).
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The median of all participants 
across different conditions.

The cluster around the median 
of all participants suggests that 
on average, most participants 
are similar to each other; a few 
participants having larger titer 
thresholds differ from others.

The parallel lines suggest that 
on average, participants are 
generally self-consistent 
across different conditions.
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The participant seems to 
ignore any manipulated proxy.

The participant is likely 
deceived by hull area, strongly 
by centroid, slightly by max 
bar, and slightly selecting 
against min bar.

The participant is likely 
deceived by hull area or max 
bar, slightly by centroid, and 
slightly selecting against min 
bar.

5

6

7

likely deceived

In general, participants are 
likely deceived by hull area at 
different levels,  by max bar at 
a similar level, and similarly 
slightly selecting against min 
bar. See Section 6.8.2.
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On average, most participants 
are self-consistent across 
different conditions.

The participants having 
larger/smaller titer thresholds 
than others in the control 
condition are more likely to 
have larger/smaller titer 
thresholds in other conditions.

The crossing lines suggest that 
other participants could use 
different proxies differently 
across different conditions.

1

2
3

4

The participant likely ignores 
slope range, is likely deceived 
by slope neighbor, and likely 
selects against hull area norm 
and slope.

The participant is likely 
deceived by hull area norm 
more than others, less by slope 
neighbor, strongly selects 
against slope range, and less 
against slope.

The participant likely ignores 
hull area norm, is slightly 
deceived by slope neighbor or 
slope, and likely selectes 
against slope.

5
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Participants are most similar 
with each other in slope 
neighbor and least in hull area 
norm.

8

Figure 11.11: The individual differences in different proxies conditions for

MaxRange (H2). We show posterior predicted median of titer thresholds and a com-

parison with the control condition for each participant ( ).
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Chapter 12: Experiment 6: Learning Adversarial Charts Interac-

tively

In Experiment 5, we started from the assumption that specific proxies may be

at play and attempted to probe their effects. While this allowed direct testing of

these hypotheses, it also, necessarily, restricted the types of data participants saw.

Further, it could not provide us with any information about the effects of other

proxies that were not tested, either because we did not deem them plausible or we

did not conceive of them when generating our initial list. In a second adversar-

ial experiment, we thus approach the question from the opposite direction, asking

instead: what kinds of datasets appear to have a larger mean or range? More specif-

ically, we consider the human perception of the summary statistic to be a black-box

function [119] that we are seeking to optimize. In other words, beginning from only

random data, we seek to use human judgments to guide the transformation of those

data into charts that are deceptive with regard to a summary statistic. We will

operate under the assumption that if a participant is asked to pick a chart with a

higher summary statistic (i.e. mean or range), but those charts actually have the

same summary statistic (unbeknownst to them), then they will pick the chart that

has the higher perceived summary statistic. We further assume that such perception
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is independent of (though likely correlated with) the actual summary statistic, due

to the use of some perceptual proxy.

We frame two hypotheses for Experiment 6:

• H1 Optimized charts will display identifiable characteristics corresponding to

the proposed proxies.

• H2 Optimized charts will be adversarial, appearing to have larger summary

statistics versus random charts with the same statistics.

12.1 Optimization Method

Since we do not have access to the hypothetical “function” that describes hu-

man perception of summary statistics (let alone derivatives), we implement Dueling

Bandit Gradient Descent (DBGD) [120], which stochastically estimates the gradi-

ent descent process using only pairwise rankings. We optimize in data, or “bar,”

space, meaning we have 7 dimensions representing the lengths of each bar, in order

from top to bottom. Our version of the algorithm is depicted in Algorithm 7. This

method requires a projection function P to map points from euclidean space to the

feasible set for a given optimization problem. In this case, the feasible set is all

charts with the same mean µ (for MaxMean task) or the same range [min, max]

(for the MaxRange task). Taking steps along random vectors, as required by the

algorithm, typical moves the query point outside of the feasible set (i.e. it changes

the mean or range of the chart), and the projection allows the algorithm to stay as

close as possible to the chosen point while satisfying the constraints. The estima-
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tion methods we use for these projections to a given mean (Pm) or range (P r) are

given in Algorithms 8 and 9, respectively. Note that the data space we explore lies

between 0 and 1 in each dimension. However, since our charts have a minimum bar

length of 0.25 times the chart width, data are mapped from [0,1] to [0.25,1] when

converting to bar space.
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Algorithm 7 The Dueling Bandit Gradient Descent algorithm. We deviate

slightly from the algorithm as originally published in the case where the new point

is not better than the current one: rather than doing nothing, we instead take a

small step opposite the random exploration vector u (line 15), both so that progress

is made faster and so that participants do not see repeats of identical charts. This

introduces a new parameter, η to denote the magnitude of this backward-step vector.

1: n := dimensions (7)

2: d0 := initial point, ∈ [0, 1]n

3: δ := exploration step size (0.5)

4: γ := forward exploitation step size (0.9)

5: η := backward exploitation step size (0.1)

6: k := iterations (20)

7: P := project to feasible set

8: procedure DBGD(d0, δ, γ, η, k)

9: for i = 1..k do

10: u← uniformRandomUnitVector()

11: d′ ←P (di−1 + δu)

12: if d′ � di−1 then

13: di ←P (di−1 + γu)

14: else

15: di ←P (di−1 − ηu)

16: return dk
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Algorithm 8 Projection to mean. This function seeks to find the vector v′

s.t. the mean of v′ is a target value and the distance of v′ to the original vector v

is minimized. Without bounds, this could simply be accomplished by distributing

the difference between the current and target means evenly among each dimension

(line 10). However, this adjustment may move some elements of v outside of the

bounds [0,1]; imposing these bounds in turn changes the mean. An iterative op-

timization is this required. The algorithm terminates when the mean is within a

tolerance or it has performed too many iterations.

1: n := dimensions (7)

2: v := point to project, ∈ Rn

3: µ∗ := target mean (0.4)

4: ε := error tolerance (1× 10−6)

5: imax := max iterations (100)

6: procedure Pm(v)

7: ∆µ ← mean(v)− µ∗

8: while |∆µ| > ε and i < imax do

9: for j = 1..n do

10: vj ← vj − 1
n
∆µ

11: vj ←max(0,min(1,vj))

12: ∆µ ← mean(v)− µ∗

13: i← i+ 1

14: return v
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Algorithm 9 Projection to range. This function simply performs linear inter-

polation to map a vector from its original range to the interval [0,1].

1: n := dimensions (7)

2: v := point to project, ∈ Rn

3: procedure P r(v)

4: vmin ← min(v)

5: vmax ← max(v)

6: for i = 1..n do

7: vi ← (vi − vmin)/(vmax − vmin)

8: return v

12.2 Experimental Design

Each of the participants (the same as those for Exp. 5) completed 20 trials for

Exp. 2, which were seamlessly interleaved with the Exp. 5 trials (see Section 10.2).

However, different from Exp. 5, the two charts in each trial had the identical sum-

mary statistic—there was no correct answer (which amounts to the titer value being

0 for all trials). To participants, these trials would seem just like very difficult trials

in the same experiment. Like Exp. 5, task-integral factors (ink area for MaxMean ;

min bar and max bar for MaxRange) were controlled and balanced between sides (see

Section 11.2).

Eight participants for each task (MaxMean , MaxRange) started from random

initializations. Each of the subsequent (35, 34) participants built on a previous re-

sult, adding an epoch of optimization, and creating threads of up to 5 epochs. From
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these (43, 42) results, we chose (20, 20) for evaluation with subsequent participants,

using the participants who performed best at Exp. 5 (lowest final control titer) as a

filtering criteria. The remaining (21, 23) participants were shown the final charts of

each of these (20, 20) participants compared to random charts. Thus each of these

(21, 23) participants saw each of the (20, 20) charts once and only once, and each

of the (20, 20) charts was evaluated (21, 23) times.

12.3 Analysis

We focus our analysis on 4 charts for each task that were optimized across

5 epochs and whose final charts were evaluated by other participants. The charts,

denoted by Mi and Rj (i, j ∈ {1, ..., 4}) for the two tasks, respectively, can be seen

next to their random initializations in Figs. 12.1 and 12.2. We performed both

quantitative analysis and qualitative visual inspection for these results. To see if

the optimized charts reflected the properties of the tested proxies in Exp. 5, we com-

puted the tested proxies from the charts and compared them to a random guessing

simulation. The simulation used the same algorithm as initialization, performed

1,000 times with 100 guessing trials (simulating 20 trials per participant × 5 partic-

ipants). We then computed median and MAD from the simulation for comparison.

We also computed the ratio that a final optimized chart was selected by a participant

for that task in the validation trials.
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Figure 12.1: The results of Experiment 6 (H1 and H2) for MaxMean . Left,

histograms (gray) show distributions of proxy values for charts produced by random

choices rather than human experiments, with proxy values for the human-optimized

charts (M1–M4) plotted below for comparison. Right, the initializations against the

final charts, with percentages indicating how often these charts were actually chosen

over random charts in subsequent validation trials.

12.4 Results

Our observations from Experiment 6 are as follows.

MaxMean (Fig. 12.1) We found that M1 and M2 are at least one MAD away from the

median of the random guessing results for centroid and hull area , and half for max bar .

In the validation trials, none of the final charts were selected by participants higher

than chance (50%). In particular, in M1 and M2, the bars have been pushed toward

the extrema. We can conjecture that the prominence of the larger bars causes them

to carry more weight, increasing the perceived mean. In M3 and M4, there are

staircase patterns, which may suggest a proxy related to slope.
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Figure 12.2: The results of Experiment 6 (H1 and H2) for MaxRange. Left,

histograms (gray) show distributions of proxy values for charts produced by random

choices rather than human experiments, with proxy values for the human-optimized

charts (R1–R4) plotted below for comparison. Right, the initializations against the

final charts, with percentages indicating how often these charts were actually chosen

over random charts in subsequent validation trials.

MaxRange (Fig. 12.2) We found that R3 and R4 seem to suggest slope range. However,

R4 is about two MADs from the median of hull area norm in the negative direction,

slightly suggesting against this hull area norm ; and R1 seems to suggest against most

of the proposed proxies. In the validation trials, R1 and R4 are well above chance

(50%), the very similar charts R2 and R3 are slightly below. This discrepancy could

be an effect of individual differences. In R3 and R4, there is an inverse of this motif:

the maximum is flanked by either the minimum or bars close to it. We expect both of

these motifs should correspond with slope range and slope neighbor . Turning to range,

R1 and R2 appear to have “notches,” in which the shortest bar is flanked by bars

near the maximum. We conjecture that this juxtaposition simplifies extraction of
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the range. This motif may not make the range appear larger, but easier to estimate,

making it more attractive in a forced-choice task.

12.5 Discussion

For MaxMean , there is an elegant symmetry to the results of the theory-driven

and approaches, in that the charts generated de novo (Experiment 6) had, in some

cases, similar appearance to the charts specifically optimized for centroids (Exper-

iment 5), and in all cases had relatively high centroid proxy values. While this is

far from conclusive evidence, the centroid proxy appears to be the most plausible of

the ones we tested for estimation of MaxMean . However, this is after controlling for

the reductive ink area proxy, which is likely the primary mode of estimation when

available.

For MaxRange, the picture is less clear for both experiments. However, the

motifs seen in data-driven MaxRange charts may offer lessons for designer further

proxies; namely that they account for large adjacent differences in bars (which would

create the notches or spikes) that are not necessarily the global minima or maxima

of the charts.

We believe this work is only scratching the surface of what is possible with

the data-driven approach. We ran relatively low numbers of iterations and initial-

izations, and thus could potentially see patterns better simply by obtaining more

data. We also perform only rudimentary analyses, leaving probabilistic evidence of

the potency of optimized charts for future study.
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Chapter 13: Discussion

Our work lies at the intersection of Data Visualization and Perceptual Psychol-

ogy, and thus will be of interest to both fields. Its implications for Data Visualization

can be further broken down into those relevant to practitioners (i.e. designers of

visualizations) and those relevant to researchers.

13.1 Implications for Data Visualization Practice

Ultimately, the goal of Data Visualization research is to improve visualizations

in the real world. Many of our earlier experiments on arrangements offer guidance

for designers of visualizations that could help to do just that. While our subsequent

study of perceptual proxies is perhaps not mature enough to directly impact visu-

alization design, it does at least suggest that the idea of adversarial visualizations

is something designers should be aware of.

13.1.1 Design Guidance

Much of this work revolved around filling out the “cube” in Figure 1.1 with

empirical study. Though tied closely to specific encodings and tasks, the results of

these experiments do provide straightforward design guidance, if limited in scope:
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• Superposition of datasets aids detection of differences. This has been

suggested previously (especially by Gleicher et al. [21]), but is now supported

by experimental evidence. When a viewer needs to extract more holistic values

(such as means or ranges) from each dataset, though, superposition can be a

hindrance.

• Symmetry has value. At least for bars, symmetry can help both to empha-

size subtle differences in highly correlated data (as seen in population pyra-

mids) and to detect the level of correlation between two datasets. An obvious

drawback of symmetry, however, is the limitation to two datasets.

• Animation can do more than direct attention. Gleicher et al. [21] sug-

gested that animation could represent a type of explicit encoding of difference,

in terms of velocity. We show that this encoding can be effective, and even

more so than static visualizations in some cases. Of course, the ephemeral

nature of animation may make this difficult to take advantage of in practice.

• The best layout of small multiples depends on the task. When making

comparisons using small multiples of bar charts, designers have a choice be-

tween aligning the baselines (stacking vertically) or aligning bar heights (side-

by-side). We show that neither is superior, but that they support different

tasks; stacking is better for comparing means and ranges, while side-by-side

is better for determining individual bar differences or overall similarity. Note

that in all cases these results assume horizontal bars, as we did not test vertical

bars.
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13.1.2 Adversarial Visualizations and Deception

Our findings may suggest that when a visualization is precisely designed and

applied for a specific task, it is possible that participants will be misled simply by

virtue of the data. In a way, this is a corollary to Anscombe’s quartet where even

a correct (even the “right”) visualization for a specific dataset can be misleading.

This hints at some of the “black hat” visualization work discussed by Correll and

Heer [78], where it is useful to start to think about visualization in the language of

computer security, and where a particular visualization can be open to unintentional

(or malicious) attacks even with the best of intentions. However, our efforts to skew

perception along these vectors for the sake of investigation have shown that, in

practice, this is quite difficult, and likely to be subtle if successful. A malicious

designer would thus have many paths of lower resistance [34].

Still, being aware of this problem is the first step towards addressing it. In the

short term, establishing the preferred perceptual proxies for not just individuals,

but also populations, may allow us to pinpoint situations where unfortunate (or

intentional) configurations of data may lead to incorrect perceptions. In the longer

term, the perceptual proxies we have investigated here may become the building

blocks for perceptual frameworks that are capable of assessing any given visual

representation and dataset, and report on the data loss inherent for different subsets

of the population.
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13.2 Implications for Data Visualization Research

In addition to the results of our experiments, we have also discussed experi-

mental frameworks that push the boundaries of how Data Visualization research is

performed. These methods will likely be of interest to other researchers.

• The Staircase Method translates to Data Visualization. This frame-

work is often used in psychophysics, which studies elementary perceptual pro-

cesses. We found it also worked well for the somewhat higher-level processes

of performing basic tasks with simple data visualizations. This could be im-

portant for Data Visualization research in the future, since crowdsourcing is

becoming an ever-more common choice for experiments—by adjusting diffi-

culty dynamically, the Staircase Method helps avoid noise from the variations

in experimental setups (e.g. display size and brightness) that are typical of

crowdsourcing.

• Adversarial visualizations can disentangle correlated phenomena.

The difficulty in studying Perceptual Proxies is that, with typical data, peo-

ple would make mostly the same choices whether they were using a proxy

or computing the real value. We showed that optimization of datasets to be

“adversarial” (in our case using simulated annealing) can help to ascribe re-

sponses to one process or another. We expect this methodology to be useful

for further study of perceptual proxies, and potentially for other types of Data

Visualization experiments.
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• Black-box optimization could help characterize perceptual functions.

While black-box optimization has been used with human judgments before,

for example to learn user preferences, here we use it to learn something about

how humans are making those judgments. By optimizing the deceptiveness of

a chart, we seek to learn how humans are deceived, and thus what processes

we may be using. Though our results from black-box optimizations are very

preliminary and largely qualitative, we think this method has much poten-

tial for learning Perceptual Proxies and potentially many other neurological

processes.

13.3 Implications for Perceptual Psychology

How the brain translates charts from images on the retina into more abstract

conceptual relationships is still largely a mystery. Frameworks such as Pinker’s

Theory of Graph Comprehension [121], however, do provide plausible mechanisms

that make testable predictions. Though in this work we use predictions of Perceptual

Psychology largely as a means to the end of creating more effective charts, our work

can also be seen as testing some of those predictions, providing valuable information

to Perceptual Psychologists in return. Here we will demonstrate this value using

Pinker’s proposed model as a framework. Note, however, that other interpretations

based on different theories of graph comprehension are possible.

Briefly, in Pinker’s model, a visualization is represented in the brain by a hi-

erarchical “scene graph,” with nodes corresponding to perceptual elements ranging
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from low levels (e.g. lengths and shapes) to higher levels (e.g. Gestalt organizations

and relationships). Observed attributes of these nodes are formalized as “predi-

cates,” which attach specific values to them (such as the length of an individual bar

or the fact that a group of bars makes a descending staircase). Perceptual Proxies

can be thought of as predicates of mid- or high-level nodes in the scene graph. Our

results have several implications for this analogy.

• Extraction of statistics can be non-compositional. If the brain always

performed computations on chart data by extracting individual values (e.g. the

length of each bar in a bar chart) and then performing calculations with them,

we would not expect the relative positioning of charts (i.e. arrangements) to

affect computations. To the contrary, our results from Experiments 1–4 show

that comparative arrangement can make significant differences in how quickly

and accurately comparisons are performed. This phenomenon in its own right

is compelling evidence that, at least in some settings, Perceptual Proxies are

used, rather than compositions of lower-level perceptual operations.

• Perceptual Proxies can correspond to Gestalt phenomena. In Ex-

periment 2 we showed that the similarity of data in two bar charts can be

more easily perceived when that similarity corresponds to the level of bilateral

symmetry in the overall scene.1 It would be hard to explain this result if not

for the visual system’s natural inclination to recognize this type of symmetry

1Since the applications for symmetry in Data Visualization practice are rather arcane, this is

an example of a result that may actually be of more value in the context of Perceptual Psychology.
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(see §2.2.2). The representation of visualizations as Gestalt elements could

also explain why superposition (or “overlaid” displays) hinders extraction of

summary statistics such as the mean or range (as seen in Experiments 3 and

4, respectively), since interspersing bars from multiple charts would interfere

with the visual system’s ability to recognize each dataset as a contiguous ob-

ject. Finally, though not a conclusive result, we show some evidence that the

centroid of bars in a bar chart can be used as a proxy to estimate their mean,

which further hints at the representation of charts at various levels in a hier-

archical scene graph, with Gestalt properties attached to nodes as predicates.

• Perceptual Proxies can be attached to abstract meanings. The at-

tachment of visual properties to nodes in a scene graph is only part of the

picture of graph comprehension—the brain still needs a bridge from values

to the more abstract concepts that a graph is representing, for example the

fact that the length of a bar corresponds to, say, the number barrels of oil

produced in a given month. In Pinker’s model, these relationships are called

“message flags,” and together with the scene graph, they form a more complete

“schema,” or mental model, that a viewer can apply when a graph is encoun-

tered. Pinker posits that these flags can also exist at higher-level nodes, for

example the prior knowledge that a bar chart with a wedge-like outline means

there is an increasing or decreasing trend. In fact, Pinker further posits that

these higher-level flags are what give visualizations much of their power for

rapid insights. To continue with the example of bilateral symmetry, we did not
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tell participants to pick the more symmetrical image, but rather to interpret

images as bar charts and choose the pair with more similar data. In order to

bring their faculties for detecting symmetry to bear within this task (which

is what the evidence suggests they were able to do), participants must have,

at some level, made the inference that this basic Gestalt perception had the

more abstract meaning of similarity in the context of the charts. This is in line

with what the existence of message flags would predict. Likewise, animation

was likely helpful for conveying subtle differences in Experiment 1 because of

the encoding of those differences as velocity, which the visual system is good

at estimating (see §2.2.3). Interestingly, in both these cases, participants were

not likely to have used these particular “message flags” before, supporting the

idea that graph comprehension schema can be acquired and modified with

experience.

13.4 Limitations

While our approaches revealed many interesting findings, they are limited in

many ways.

• Experimental context: While highly controlled experimental conditions are

crucial to empirical evaluation, they can often be at odds with the ecological

validity of the results [122]. In this case, for example, our studies show that

both mirror symmetry and animation can be beneficial in certain, specific

contexts, but do those benefits extend to applications in the real world?
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• Choice of proxies: For our theory-driven approach, though we added prox-

ies to those used in previous studies, we still cannot claim to have anything

approaching an exhaustive list, nor can we claim strong motivations for test-

ing these particular proxies. Additionally, we intentionally omit some proxies

that are either directly connected to their corresponding summary statistics

or highly correlated with chosen proxies, which would be difficult to control

independently, and thus to measure. While this necessarily limits the con-

clusions we can draw about specific proxies that lie within broader classes,

we believe probing these few representatives is a necessary first step towards

disentangling the myriad of proxies that have been proposed, and are yet to

be conceived of.

• Visual Modeling: The proxies implemented here did not use a computer

visual system to “look at” pixels of a chart’s visual features and parse those

pixels into values. We used the actual data values to generate models of these

perceptual proxies. The value of this approach is that if we can determine the

properties of the data and arrangements that lend themselves to particular

proxies for comparison, then a potential application of this approach is that

an automated visualization system would only need know the data values and

the designer’s desired comparison to construct the mark and arrangement to

support that comparison. In other words, these proxies do not directly take

into account limitations in perceptual visual acuity, or the capacity limitations

of attention and memory.
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Chapter 14: Future Work

Though this work answers some questions, it poses many as well. However,

both the results we present and the experimental methods we have developed provide

many potential avenues for extending it in the future.

14.1 Continuing to Solve the Cube

Though Experiment 1 included several encodings, our work largely focuses on

bar charts, due to their ubiquity in real visualizations, and combination of posi-

tion and length encodings. Bar charts are clearly flexible visual representations in

that they support both global and focal visual comparison, and it is clear from the

richness of our results that this limitation did not restrict the complexity of the

performance results. As we have discussed, it is likely infeasible to test every pos-

sible combination of encoding, task, arrangement, etc. to provide design guidance.

Nevertheless, it will clearly be important to continue to fill out the “cube” proposed

in Ch. 1, both to test the robustness of the cube model and to provide more data for

the enterprise of searching for candidate perceptual proxies for visualization tasks.

For example, the bar charts in the present work and that of Ondov et al. [32] were

horizontally extended, an increasingly common design [123]. Other variants even of
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bar charts might reveal the use of different proxies for comparison.

14.2 Generating New Candidate Proxies

Future work should generate more, and more sophisticated, proxies (including

combinations of proxies, and eventually, predictions for who will use which, and

when). We generated proxies with a combination of intuition and consultation with

the perceptual psychology literature, including a strong influence of the literature on

focal vs. global processing modes in vision. Our list is by no means exhaustive, and

identifying new candidates will be a creative process that, like hypothesis generation

across the rest of science, relies on engaging a diverse group of people with different

types of background knowledge across both the perception and data visualization

communities. A brute force approach would be to generate the full space of math-

ematically possible pairwise and set-wise proxies. Another route could be based on

interviews with viewers engaged in a particular task, to see which aspects of their

proxies might be consciously verbalized.

14.3 Proxies Cubed

Just as we proposed perceptual proxies as a reasoning framework to raise the

abstraction level and explain all of these phenomena in one fell swoop, must we also

endeavor to understand the relationship between different proxies for different vi-

sualizations, layouts, and tasks. Put differently, it is highly unlikely that the visual

system has developed specialized “programs” (or proxies) for every conceivable vi-
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sual representation. It is more likely that there are clear commonalities between the

proxies used for different tasks, and moreover that specific individuals have specific

affinities for various such proxies. In fact, our population analysis provides some

support for this hypothesis. This would mean that a fruitful gradient to optimize

for future work would be to try to identify and generalize perceptual proxies across

different visualizations and tasks, essentially exploring the “cube” of proxy space.

14.4 How Might Viewers Choose Proxies?

Proxies could be learned, or at least encouraged, from prior experience. For

example, scatterplots are often used to communicate a single statistic (correlation)

of a set for which precision is important. A viewer seeing a scatterplot will likely

develop the analytic goal of perceiving correlation, which should be more likely to

trigger analysis of the proxies available in the scatterplot visualization to calcu-

late correlation [121]. These kinds of contextual assumptions may be at play for

bar charts and others as well, and investigating this would be important for fully

understanding how proxies are used.

14.5 Automated Systems

Of course, one of main goals of exploring proxies is to improve actual visual-

izations. While design guidance is part of this, a potentially more impactful route

may be to take advantage of recent developments in automated visualization rec-

ommender systems [124–127]. Much of this work stems from the ideas of Mackin-
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lay’s formal composition algebra [128], which allows charts to be optimized using

definitions of expressiveness and effectiveness, the latter being largely based on the

perceptual studies of Cleveland & McGill [2]. This type of system could be naturally

extended to include rules for comparative displays that incorporate our empirical

evidence for Experiments 1-4 (and future cells of the “cube”) in their definitions of

effectiveness. Additionally, as we gain a better understanding of proxies, encodings

of effectiveness could become simple models of the vision system, effectively “seeing”

the data. This would allow them to optimize encodings and arrangements based on

the task required, or to warn designers when a chart might be deceptive.
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Chapter 15: Conclusion

We began this work with a case study illustrating the importance of compar-

ison in data visualization. Though it involved a very specific type of visualization

and a single domain, it emphasized that not all modes of visual comparison are

equal, and that the best mode may depend on the task at hand. This led us to more

thoroughly investigate the factors at play in creating effective comparative visual-

izations. Experiments 1–4 provided empirical evidence for which arrangements best

support certain tasks. However, they also showed that making recommendations

will not be as straightforward as for elementary encodings, as the visual operations

for comparison do not seem to be strictly compositional. This led to the question of

how the visual system actually does perform these comparative operations. Exper-

iments 5 and 6 approached this question from two different directions; that is, we

used both theory-driven (Experiment 5) and data-driven (Experiment 6) approaches

to seek evidence that participants might have used perceptual proxies in mean and

range tasks. Experiment 5 explored “proxy space” by carefully optimizing datasets

based on predefined proxies, whereas Experiment 6 explored “data space,” doing

away with any preconceived notions of chart characteristics to optimize charts di-

rectly by their deceptiveness. The meeting point of these two experiments is the
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evidence that participants might have used certain and the same proxies in both

experiments. For example, for the MaxMean task, both experiments suggest that

participants might have used centroid as a proxy.

As a whole, this work has many implications, but they can be broadly divided

into those that are theoretical and those that are practical. Our initial experiments

comparing visual arrangements offer some directly applicable guidance for designers

wishing to maximize the efficacy of such displays. However, they also provide some

evidence for the theory that cognition of higher-level properties of charts is not sim-

ply compositional of lower-level perceptual operations. Our adversarial experiments

with perceptual proxies take a step toward understanding what those cognitive op-

erations actually are. This, in turn, is a step toward providing guidance for the

design of comparative displays that is general enough to avoid empirical evaluation

of every combination of encoding, task, arrangement, and other potential factors.

Finally, another aspect of our work that is useful to the visualization community is

the methodological framework we have devised to test these phenomena. We hope

to see future studies in visualization use similar reactive testing frameworks such as

ours to empirically derive increasingly more complex visual phenomena.
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