
ABSTRACT

Title of Dissertation: MOLECULAR AND FUNCTIONAL 
CHARACTERIZATION OF A 15 KDA GALECTIN 
FROM STRIPED BASS (MORONE SAXATILIS)

Davin Eric Henrikson, Doctor of Philosophy, 2004

Dissertation directed by: Professor Gerardo R. Vasta, Center of Marine 
Biotechnology, University of Maryland Biotechnology 
Institute

I have employed biochemical and molecular techniques to investigate the role of 

galectin during bacterial challenge in teleost fish, using striped bass as an experimental 

model. Striped bass (Morone saxatilis) possesses a 15 kiloDalton β-galactoside binding 

protein, here after called MS15. It is a single polypeptide with an experimental mass of 

15,000 Daltons. In vivo, MS15 exists as a non-covalently linked dimer, with two 

identical carbohydrate binding sites per protein. The organization of the gene coding for 

MS15 was the same as other vertebrate proto type galectins, with four exons the same 

size between organisms and three introns varying greatly in length.  These 

investigations have shown that galectin is localized to the dermis and lamina propia 

(loose connective tissue) throughout the body, to smooth vascular muscle (veins, 

arteries), to large circulatory cells (heterophils, monocytes), to peripheral leukocytes 

(tissue resident macrophages, heterophils), to rodlet cells (possible immune cell in 

alimentary canal), and to leukocytes throughout the gills but not to mucus-producing 

cells. This is similar to what is found in mammals, but differs greatly from what has 

been observed in other teleosts. This finding led to the hypothesis that proto type 



galectin in striped bass was involved in innate immunity. To test this hypothesis, 

galectin was characterized based on stability, carbohydrate binding specificity, and 

native structure. Interactions between galectin and mucus, and galectin and bacteria 

were then tested. Results revealed galectin binds skin mucus and agglutinates selected 

bacteria. Striped bass were challenged with bacteria by intradermal and intramuscular 

injections. Results suggest an increase in the number of galectin-positive leukocytes 

observed in injection sites, independent of the presence of bacteria. Also, a novel 

observation was the strong galectin-positive nature of rodlet cells in the esophagus, 

stomach, and pyloric caeca of the striped bass. The function of rodlet cells is disputed, 

but in striped bass, galectin was detected most strongly in rodlet cells and both 

circulatory and peripheral leukocytes. Collectively, these data provide the foundation 

for three models to explain the biochemical events involved in bacterial clearance 

and/or wound healing in teleost fish, with potential relevance to innate immunity in 

other organisms.
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CHAPTER I. GENERAL INTRODUCTION

The purpose of this project is to examine the 15 kDa galectin present in the skin 

and mucus of the striped bass, Morone saxatilis. Specifically, the main interest is to 

understand possible interactions between the galectin, mucus, and bacteria, and to gain 

insight into potential role(s) of the galectin in innate immunity and wound healing. The 

following text describes adaptive and innate immunity in fish, focusing on constituents 

of mucus. It summarizes the status of knowledge about biochemical, molecular and 

biological aspects of galectins and their proposed roles in animals, with particular focus

on fish.  It will also give background in the species selected for the proposed studies, 

the striped bass (Morone saxatilis), and will conclude with an outline of the 

organization of this project.

Background in galectins

Lectins- Lectin has been defined as carbohydrate-binding proteins, other than 

enzymes and antibodies, which agglutinate cells and /or precipitate glycoconjugates 

(Sharon and Lis, 1972; Barondes, 1988). Based on amino acid sequence similarities in 

the carbohydrate binding domain, and other properties such as divalent cation 

dependence lectin “families” are grouped as C-type (calcium-dependent; includes 

selectins, collectins, Sastry and Ezekowitz, 1993); P-type (recognize phosphorylated 

mannose residues) and I-type (subset of the immunoglobulin superfamily) as reviewed 

in Rini and Lobsanov, 1999; F-type (fucose-binding; Bianchet, et al., 2002), pentraxins 
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(C-reactive protein, serum amyloid protein; Osmand, et al., 1977) and galectins ( β-

galactoside binding; Drickamer and Taylor, 1993; Barondes, et al., 1994). Lectins 

isolated and characterized in fish have been found in mucus, eggs, serum, skin, and 

macrophages; some types are ubiquitous in the animal, others are very tissue- and/ 

developmental stage specific. Most known animal lectins are found to exist internally, 

but some are also found in the skin mucus of several animal species, especially in fish. 

However, knowledge concerning the structure and functioning of such molecules 

remains limited. Purification of skin mucus lectins has been performed for many 

species of fish, including the windowpane flounder Lophopsetta maculata (Kamiya and 

Shimizu,1980), the Arabian Gulf catfish Arius thalassinus (Al-Hassan, et al., 1986), the 

conger eel Conger myriaster (Kamiya, et al., 1988; Shiomi, et al.,1989), the loach 

Misgurnus anguillicaudatus (Goto-Nance, et al., 1995), and the kingklip Genypterus 

capensis (Toda, et al., 1996).

Biological roles of lectins- The roles of lectins include pattern recognition, such 

as carbohydrate patterns of self and pathogen-associated molecular patterns.  Following 

the binding of its carbohydrate ligand, lectin-carbohydrate interaction can lead to 

pathogen recognition (mannose-binding lectins; Sastry and Ezekowitz 1993), immune 

cell trafficking (P-selectins, E-selectins; Austrup, et al.,1997), and immune cell 

activation (C-type, galectins; reviewed in Vasta, et al. 1999). Lectin-carbohydrate 

interactions are in different processes, but immune regulation is probably a primary role 

(Rabinovich, et al., 2002; Weis, et al., 19 98).

Galectins- Galectins have two essential biochemical properties: one, 

characteristic amino acid homologous sequences; and two, affinity for β-galactoside 
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sugars, i.e. a carbohydrate binding domain. Galectins require a reducing environment 

but do not require divalent cations for their binding activity (Barondes, et al., 1994).

Their locations are intracellular (Sanford, et al., 1982; Vyakarnam,  et al., 1998) and 

extracellular, and all known galectins lack a signal peptide, and are secreted as soluble 

proteins by a nonclassical secretory pathway (reviewed in Hughes, 1999).  These 

galectins exhibit considerable similarities in primary structure and exhibit an invariant 

residue pattern in the carbohydrate recognition domain (Hirabiyashi and Kasai, 1993). 

Resolution of galectins co-precipitated with their ligands has helped to identify the 

amino acid residues that interact with the ligand and those that participate in 

maintaining the architecture of the binding site (Lobsanov, et al., 1993; Liao, et al., 

1994; Varela, et al., 1999; Seetharaman, et al., 1998; Shirai, et al., 2002). The three 

structural types of galectins were described in Hirabiyashi and Kasai, 1993 (Figure 1.1 

A). Galectins have been isolated in many different species of animals, from insects to 

mammals. In particular, galectins have been isolated and characterized from several 

teleost (Ahmed, et al., 2004; Kamiya, et al., 1988; Shiomi, et al.,1989; Tasumi, et al., 

2004).

Among fish lectins, the primary structures for mucus galectins were determined 

in the conger eel, Conger myriaster, congerins I and II (Muramoto and Kamiya, 1992; 

Muramoto et al., 1999), Japanese eel, Anguilla japonica, AJL-1 (Tasumi, et al., 2004). 

The structural sequences for skin mucus lectins in animal groups other than fish are 

also limited and have been reported in only two species, the land slug Incilaria 

fruhstorferi (Yuasa, et al., 1998) and the African clawed frog Xenopus laevis

(Marschal, et al., 1992). Galectin repertoire in fish appears reduced as compared to 
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mammals. To date, protein and /or genomic sequence have been found for one chimera 

galectin and multiple proto and tandem repeat galectins in mammals. To the contrary, 

fish to date may have several prototypes, one chimera, and one tandem repeat. The 

recent completion of several genome projects reveal several putative galectins, but still 

the complexity of the fish galectin repertoire does not compare with mammalian 

galectins.

Biological roles of galectins- The biological role(s) of galectins remain unclear 

but experimental evidence suggests that they mediate cell-cell and cell-extracellular 

matrix interactions that occur in tissue development (Oda and Kasai, 1983; Levi and 

Teichberg, 1984; Ahmed, et al., 2004), inflammation (Rabinovich, et al., 1999), 

apoptosis (Perillo, et al., 1995), and tumor metastasis (Raz et al., 1989).  The several 

potential mechanisms used to effect interactions involve crosslinking of ligands (Figure 

1.1, B-D). Galectin may facilitate colonization of bacteria, and defense against parasites 

in fish mucus (Kamiya et al., 1988; Tasumi et al., 2002). Teleost skin and mucus 

contains putative ligands for galectins, in particular glycosaminoglycans in the form of 

mucins and laminin. In addition, bacteria may possess ligands for galectins in their cell 

walls. Galectin-1 and -3 trigger oxidative burst in neutrophils, leading to release of 

reactive oxygen intermediates that potentially kill invading pathogens (Almkvist et al., 

2002) and galectin-3 activates neutrophils primed by extravasation (Karlsson et al., 

1998). Cytokine production is also modulated or triggered by galectins (Allione et al., 

1998). For example, by inhibiting Th1 cytokines such as TNF-, IL-2, IL-12, and 

interferon, galectin-1 appears to bias immune responses towards Th2 responses, which 

preferentially induce humoral immunity. When galectin lattices are present on 



5

leukocyte surfaces, the lattices appear to suppress T-cell receptor-mediating immune 

responses (Demetriou et al., 2001). Another major role for galectins is the homeostatic 

regulation of cells, particularly immune cells (Hsu and Liu, 2004).

At the beginning of an immune responses or inflammation, macrophage and 

heterophils are mobilized to the affected regions. These leukocytes phagocytose 

invading or dead cells, and secrete several factors such as microbicidal factors and 

cytokines. During or after infection/inflammation, the wound healing process and 

angiogenesis are promoted partly to restore the affected regions (Pettet et al., 1996)

Recent works have demonstrated that galectin-3 and -7 accelerate re-epithelialization in 

the wound healing process (Cao et al., 2002).  Galectin -3 could stimulate capillary tube 

formation, which could induce angiogenesis (Nangia-Makker et al., 2000). Galectins 

are implicated in leukocyte homeostasis through induction of cell death by apoptosis. 

For example, extracellular galectin-1 induces apoptosis in subsets of T-cell populations 

(such as immature thymocytes or activated T-cells; Perillo et al., 1995), and B -cells as 

well as macrophages, while galectin-9 induces apoptosis of eosinophils and some T-

cell lineages. Therefore, immune responses and the subsequent healing processes could 

involve galectins. 



6

Galectins 1, 
2, 11, 13, 14

(proto)

Galectins 4, 6, 8, 9, 
12

(tandem repeat)
Galectin 3
(chimera)

Galectins 5, 7, 10
(proto)

B C

A

D

Figure 1.1. Galectin structure and ligand cross-linking: A) There are four quaternary 
structures of galectin identified in mammalian galectins. Proto type galectins are single 
polypeptide strands possessing a single carbohydrate-binding domain, found as monomers 
or non-covalent dimers. Tandem repeat galectins are a single polypeptide strand possessing 
two distinct carbohydrate-binding domains attached through a linker peptide. Chimera 
galectin, of which galectin-3 is the only member, is a single polypeptide strand having a 
carbohydrate binding domain and a collagen tail. The proposed mechanisms of interactions 
of galectins are B) cell-cell interactions; C) signal transduction by crosslinking of receptors; 
or D) lipid rafts, where several receptors of the same or different types can form large 
membrane complexes leading to signal transduction, or stabilization of the cell membrane.
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Background in immunity

Immunity in Fish- Bacteria are not unchallenged in their colonization of fish 

mucus and skin. As with all animals, fish possess a wide array of defense mechanisms 

to protect themselves against disease-causing organisms and parasites. To combat these 

organisms, jawed vertebrates including teleosts possess two general processes in their 

immune response, the innate and the adaptive immune response. The adaptive immune 

response may take days or weeks after an initial infection to have an effect. However, 

fish are under constant assault from pathogens, such as viruses, bacteria, fungi, water 

molds, and dinoflagellates, which must be kept in check by the faster-acting innate 

immune response. Innate immunity fights pathogens using defenses that are quickly 

mobilized and triggered by receptors that recognize a broad spectrum of pathogens 

(Watts et al., 2001). Plants and many lower animals do not possess an adaptive immune 

response and instead rely on innate immunity. 

The immunology of teleosts has been extensively studied due to the economic 

importance of many species, and has been found to be very similar to mammals in 

many respects. As previously mentioned, microbial pathogenesis involves numerous 

cellular and molecular interactions between microbes and their host organisms. 

Animals have developed various defense mechanisms against pathogens and, 

conversely, pathogenic microorganisms have evolved strategies to overcome these 

barriers to the infection process. For example, epithelial cells in mammalian digestive 

tracts are covered with a protective mucus layer, which plays a crucial role in protecting 

these cells (Forstner et al., 1994). This function of the mucosal layer relies on a major 
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component that is a heavily glycoprotein, known as mucin (Strous and Dekker, 1992). 

Mucins are reported to play an active role in preventing bacterial, viral, and other 

pathogens from interacting with vertebrate intestinal epithelia (Drumm et al., 1988; 

Mantle et al., 1989). Investigation into the immune systems of teleosts suggests that 

though they possess an adaptive immune response, the innate immune response in 

much more developed. This is particularly true for cold-water fish because the rate of 

development of specific immune responses is temperature dependent (Bly and Clem, 

1991). Both systems use cellular and humoral mechanisms to provide protection against 

infection.

Adaptive immunity in fish-The adaptive immune response in fish is induced 

by an initial interaction between antigen (foreign substance from the environment such 

as chemicals, bacteria, viruses, or pollen) and the T and B lymphocytes, which bear 

unique receptors, and circulate throughout the body in search of antigens. Differing 

from the innate immunity found in all multicellular organisms, this response is 

“specific, selective, remembered, and regulated” (Laird et al., 2000). B cell receptors, 

called immunoglobulins (Ig), recognize intact macromolecular complexes on the 

invaders; the cell progeny of B cells secrete massive amounts of the specific Igs, known 

as antibodies, which permeate the intercellular milieu (Janeway et al., 2001). 

Antibodies (specific cellular response) are molecules specifically formed to fight 

invading proteins or organisms. By contrast, T cell receptors (TCRs) recognize small 

pieces of antigen presented in the major histocompatibility complex (MHC) receptor 

found on nearly every cell in the body (Laird et al., 2000). TCR and Ig are encoded by 

V, D, and J genes that are combinatorially rearranged during lymphocyte development 
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(Janeway et al., 2001); rearrangement is initiated by a unique DNA splicing enzyme 

complex, the recombinase activating genes (RAGs). This results in an initial 

production of antibodies against the antigen and the development of a memory 

response. The memory response enables a rapid secondary antibody response upon re-

exposure to the antigen. The first time the fish is exposed to an invader, antibodies are 

formed which will protect the fish from future infection by the same organism. 

Exposure to sublethal concentrations of pathogens is extremely important for a fish to 

develop a competent immune system. An animal raised in a sterile environment will 

have little protection from disease. Young animals do not have an immune response 

that works as efficiently as the immune response in older animals and therefore, may be 

susceptible to disease. The rate and duration of the adaptive immune response in fish 

may be determined by the point of exposure, whether systemic or mucosal (skin or gut) 

(dos Santos et al., 2001). This adaptive immune system, with MHC and recombinant 

antigen receptors (Ig, TCR) has been found in all jawed bony fish and sharks (reviewed 

in Flajnik, 1996), but not in jawless fish (hagfish, lamprey, etc.) Recently, though, a 

new system of variable lymphocyte receptors has been identified in these fishes (Pancer 

et al., 2004), so there may be much more than the “classical” adaptive immune system 

to be discovered.  

Innate immunity in fish- The innate immune system is a universal and ancient 

form of host defense against infection (Janeway and Medzhitov, 2002). The innate 

immune response in teleost can be characterized in three main components- non-

specific humoral defense mechanisms, non-specific cellular defense mechanisms, and 
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physical barriers. The non-specific humoral defense mechanisms in fish are numerous 

and include lysozyme, trypsin, complement, C-reactive protein, lectins, transferrin, 

interferons, hemolysin, proteinases, α2-macroglobulin, chitinase, α-precipitins, and 

defensins (Ellis, 2001). Some of these mechanisms bridge the adaptive and innate 

immunity (Sunyer et al., 2003). The non-specific cellular defense mechanisms include 

inflammation and phagocytosis by macrophages and heterophils.  Inflammation is a 

cellular response characterized by pain, swelling, redness, heat, and loss of function. 

Inflammation is a protective response and is an attempt by the body to wall off and 

destroy an invader. Phagocytosis is a defense mechanism against infection common to 

all metazoans, including invertebrates. The phagocytic system consists of resident 

macrophages or macrophage-like cells present throughout the body and plays a very 

important role in the initial stages of infections, as they are the first phagocytes to 

encounter the invading microorganisms. Recent results show that in Dicentrarchus 

labrax fish species, in addition to macrophages, heterophils (neutrophils) are important 

phagocytic cells that are quickly mobilized to infected territories and have a high 

capacity of phagocytosis (do Vale et al.,  2002).  In that study, resident macrophages 

were the first to begin to phagocytose bacteria, due to proximity to the infection. 

Heterophils, however, were rapidly attracted to the infected area by microbial products 

and chemotactic substances produced by immune cells. Heterophils, as compared to the 

macrophages, are armed with more potent antimicrobial molecules, and are present 

under normal conditions in reserve pools in the haemopoietic organs and blood, but in 

much lower numbers in the tissues and body cavities. That is, while macrophages are 

important in the initial steps of infectious processes, heterophils are called into play 
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later, when extracellular growth or shedding from infected macrophages produce high 

numbers of extracellular bacteria. 

The physical barriers include the epithelial layer and the mucus layer. 

The epithelial layer, including the integument and the surface of the gut, of all 

vertebrate animals is made up of two main layers: a relatively thin outer layer, the 

epidermis; and a thicker, tougher inner layer, the dermis. The skin of teleosts consists of 

these distinct layers of tissue covered externally by a mucus layer. The innermost layer 

is the dermis, a fibrous connective tissue consisting of regular collagen layers at 45 

degree angles to body axis. The arrangement of the dermis resists forces that deform 

skin, and may aid in locomotion. The dermis is composed of connective tissues in 

which are nerve endings, muscle cells, and blood vessels, and it provides nourishment 

for the epidermis. Arising from the dermis in most modern teleosts are the scales, 

which are thin acellular, fibrous bone covering the body but absent or nearly absent in 

some fish. The primary function of scales appears to be protection. The closely packed 

cells of the epidermis provide a barrier against desiccation, microbes, radiation (Ahmed 

and Setlow, 1993), and chemicals. The epidermis of fish is of two or more layers 

(Hawkes, 1974). The deepest is the close-packed germinal layer called the stratum 

germinativum. The outer cell layer is formed by its daughter cells. There is much 

variation in the outer cells, dependent on the group of fishes. Body mucus is the product 

of the daughter cells and their degradation products and, as such, is continually 

replaced. The old materials are sloughed off and replaced by those underneath. Fish, 

while possessing keratinocytes, do not have a keratin layer over the epidermis (Baden 

and Kubilus, 1983).
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Except for the Chondrichthyes, all known living fishes have skin with mucus, 

released from dispersed glandular cells in the epidermis. The mucus of the fish usually 

consists of two layers. One layer, called the cuticle, is made up of neutral and sulphated 

mucosubstances and is associated with the cell membranes of the epidermis (Saxena 

and Kulshrestha, 1981). The second layer, the mucus, contains sulpho- and 

sialomucins, as well as immunoglobulins (Fletcher and Grant, 1969), complement 

(Sunyer and Lambris, 1998), carbonic anhydrase (Lacy, 1983), lectins (Shiomi, et al., 

1988, Nakamura, et al., 2001), crinotoxins (Cameron et al., 1981), C- reactive protein 

(Jones, 2001), antimicrobial peptides (Cho, et al., 2002), proteolytic enzymes (Aranishi 

and Nakane, 1997), and free amino acids (Saglio and Fauconneau, 1985), all substances 

with biostatic or biocidal activity. A single goblet cell contained either neutral or acid 

glycoproteins alone or in combination, and at each site in the skin, the goblet cell 

population can be mixed, with cells producing each type of glycoprotein (Fletcher et 

al., 1976).  Mucus, once secreted, becomes a hydrated gel network of 

mucopolysaccharides and mucins that coats the lumenal surfaces of epithelia 

throughout the body. Mucins are the “structural” component of mucus. Mucins are a 

complex family of high molecular weight glycosylated proteins. They can be soluble 

(Perez-Vilar and Hill, 1999) or membrane-bound (Lan et al., 1990) and their most 

characteristic feature is the presence of tandemly repeated peptide domains rich in 

serine and/or threonine and proline (Figure 1.2). Typically, more than 60% of their 

mass is accounted for by carbohydrate, predominantly O-linked oligosaccharides with 

some N-linked oligosaccharides. Membrane anchored mucins may have additional 

roles concerned with protein interactions at the cell surface. 
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Mucus serves four main general functions for all fishes: osmoregulation, 

external protection, reducing turbulence (Videler, 1995), and defense from parasitism. 

In osmoregulation, mucus provides a selective interface to maintain internal - external 

ionic balance. As external protection, the mucus protects by covering over a wound 

caused by infection or mechanical injury. Besides species-specific uses such as skin 

toxin (Fusetani and Hashimoto, 1987), cocoon formation in lungfish; food source 

(Bremer and Walter, 1986), and alarm substance (Wisenden, 2000) a fourth function of 

mucus on fish skin is defense from disease causing organisms and parasites. These 

parasites include cestodes, nematodes, fungi, dinoflagellates, bacteria, and viruses. One 

route of entry for parasites is to colonize and invade fish through the mucus of the fish 

skin. However, mucus as a physical barrier makes it energetically unfavorable to a 

parasite to penetrate to the skin, which is also sloughing off. It has been demonstrated 

that there is a significantly negative correlation between the density of mucous cells and 

that of monogeneans on the surface of rainbow trout (Oncorhynchus mykiss) 

(Buchmann and Bresciani, 1998). They also play a role in the regeneration of epithelial 

layers that have been damaged by toxins, ulceration, inflammation or mechanical 

trauma. In malignant tumors, mucins can sometimes protect tumor cells from host 

immune killer cells, with the consequence that metastases are favored. 
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Background in teleost model striped bass and disease-

Fish- Fish are a diverse group of vertebrate organisms that have adapted to 

complex and highly variable aquatic environments. There are about 29,000 species of 

fishes described that live in marine, estuarine and freshwater environments all over the 

world, with 200-300 new species being described each year. Fishes are divided into 

three Classes: Agnatha (jawless fish), Chondricthyes (cartilaginous fish), and 

Osteoichthyes (bony fish). Ninety percent of known fish belong to the Class 

Gel-
forming 
mucins

Membrane
-bound 
mucins

= cell nucleus
= mucin
= carbohydrate
= cysteine-rich domains

= cell cytoplasm

Figure 1.2. Soluble and Membrane-bound Mucins: Gel forming mucins 
expand when hydrated freely coat the epithelial surface. Membrane-bound 
mucins remain attached to the cell that produced them, and create a “cuticle” to 
protect epithelium.
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Osteoichthyes, and almost all of them are in the Order Teleostei, or the teleosts.

One species of teleost of environmental and economic importance is Morone 

saxatilis (Walbaum 1792), also known as the striped bass or rockfish (Figure 1.3). M. 

saxatilis is the largest member of the family Percichthydae, order Perciformes. M. 

saxatilis is an anadramous, euryhaline fish, found marine environments as adults and  

rivers and estuaries as juveniles or as migrating adults. M. saxatilis is distributed from 

the St. Lawrence River to northern Florida and western Florida (northern Gulf of 

Mexico) to Louisiana. M. saxatilis has also been introduced to the Pacific Coast of the 

United States M. saxatilis has been an important resource along the Atlantic coast of the 

United States since colonial times, and continues to be one of the most sought-after

commercial and recreational finfish in the Chesapeake Bay. M. saxatilis can be bred in 

captivity for the purpose of aquaculture. The recurring problem of disease in 

Chesapeake Bay and in aquaculture has serious impact on quantity and quality of fish.

Environment- In the Chesapeake Bay on the east coast of the United States, 

there is an ecosystem that is rapidly changing due to man’s impact on the marine 

Figure 1.3. The striped bass, Morone saxatilis  (from Atlantic Fishes of Canada, W.B. 
Scott and M.G. Scott)
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environment (Llanso et al., 2003). Non-point-source and point-source pollution is an 

increasing source of stress to aquatic, estuarine, and marine ecosystems (Mason et al, 

2000; Preston, 2002). In addition, the average temperature of the bay has increased 

during the 1990’s, and the bay has been experiencing record levels of hypoxia.  These 

stressors have lead to not only increase bacterial loads, but to sick fish. The problem 

extends beyond the diseased organism. Increased bacterial loads can be passed on to 

humans that consume fish from the bay. Currently, 37% of all food borne illness in the 

United States is caused by seafood borne disease (Diaz, 2004). Many types of bacteria 

can live in and on the fish, but are non-pathogenic to fish or humans.  However, 

increased stress in the fish may lead to conditions where bacteria may cause disease 

(Noga et al., 1998). The host (fish) must be in a susceptible state, and certain 

environmental conditions must be present for a disease outbreak to occur. This state 

and these conditions are prevalent in the Chesapeake Bay, and are common in 

aquaculture (Noga et al., 1998). 

Several diseases in fish are initially observed as sores on the fish’s skin. The 

appearance of sores on wild fish is not uncommon (May and Sindermann, 1999), and 

may be increasing. Striped bass of the Wicomico River (western tributary of the 

Potomac) of Maryland exhibiting sores in the mid 1990’s, revealed isolates of 

Edwardsiella tarda (Baya et al., 1997). This bacterium had never been linked to 

diseases in wild fish and the Baya et al., 1997 report was the first to suggest that E. 

tarda could affect wild populations. By later summer through fall of 1997, 10% of 

striped bass sampled in the Chesapeake Bay had lesions and nearly 13% through 

October 1998 (Overton et al., 2003). Prior to 1997, varieties of other gram-negative 
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enteric bacteria were isolated including Aeromonas, Pseudomonas, and Vibrio sp. 

(MDNR, 1997; 1998). Since 1997, most of bacterial isolates identified from 

symptomatic striped bass have been Mycobacterium sp.  It is believed that 

Mycobacterium was responsible for many of the sores identified in the striped bass 

taken from the Potomac in 1997 and 1998 (Vogelbien unpublished). In aquaculture, 

examples of bacterial diseases that are most frequently encountered are bacterial 

Vibriosis, caused by various Vibrio species, and motile Aeromonas septicemia, caused 

by Aeromonas hydrophila. V. anguillarum typically causes a hemorrhagic septicemia. 

It appears that most infections with V. anguillarum begin with the colonization of the 

fish gastrointestinal tract. The bacteria are strongly attracted to intestinal mucus 

(Ascencio et al. 1998). 

Bacterial Adhesion- Bacterial adhesion to host cells and tissues is a 

prerequisite for colonization by both pathogenic and commensal bacteria (Carpetier and 

Cerf, 1993). It begins by reversible attachment of the bacterium to the eukaryotic 

surface, called “docking”, followed by nonreversible permanent attachment of the 

microorganism to the surface involving permanent formation of many specific bonds 

between complementary molecules on each cell surface, called “anchoring” (An et al, 

2000).

Docking reactions include hydrophobic interactions, electrostatic attractions, 

atomic and molecular vibrations resulting from fluctuating dipoles of similar 

frequencies, Brownian movement, and recruitment and trapping by biofilm polymers 

interacting with the bacterial glycocalyx (capsule) (Carpentier and Cerf 1993; An et al, 

2000). Anchoring involves specific ligand-receptor interactions that mediate adhesion 
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(An et al, 2000). Complementary receptor and adhesin molecules must be accessible 

and arranged in such a way that many bonds form over the area of contact between the 

two cells. Once the bonds are formed, attachment under physiological conditions 

becomes virtually irreversible. Many bonds are protein-carbohydrate interactions, 

examples of which are a cell-bound protein on Streptococcus pneumoniae and N-

acetylhexosamine-galactose disaccharide (Beuth et al., 1987), cell-bound protein on 

Staphylococcus aureus and amino terminus of fibronectin (Sinha et al., 2000), N-

methylphenylalanine pili of Neisseria gonorrhoeae and glucosamine-galactose 

carbohydrate (Merz  and So, 2000), fimbriae ("filamentous hemagglutinin") of 

Bordetella pertussis and galactose on sulfated glycolipids (Bassinet et al., 2000), N-

methylphenylalanine pili of Vibrio cholerae fucose and mannose carbohydrate (Jonson 

et al., 1991),  and a membrane protein on Mycoplasma and sialic acid (Chandler, 1982).

Specific aims of research- The specific aims of this research consisted of the 

testing of a series of hypotheses on the interactions of striped bass galectin with striped 

bass mucus and environmentally relevant bacteria. Hypothesis 1 is that a β-galactoside 

binding protein purified from the skin and mucus of M. saxatilis has a role in 

interactions of the mucus and bacteria. Hypothesis 2 is that when skin and/or muscle 

are damaged, galectin present in the wound can interact with bacteria and with various 

components to help reduce infection and facilitate repair.  A literature review 

established that, at the time, nothing was known about the function of galectins in fish. 

While preparing this dissertation, some studies have been completed which support 

hypotheses in which galectins play roles in teleost development and possibly defense 

(Ahmed et al, 2004; Kamiya et al., 1988; Tasumi et al., 2002). The significance of this 
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study would be to help elucidate some possible function(s) of galectin in fish. The study 

of pathogen/host interactions is important in commercially significant animals such as 

the striped bass. Galectins have been implicated in innate and acquired immunity, and 

since fish appear to have a less complex repertoire of galectins as compared with 

mammals, studies about immune function of galectin(s) may be simplified using fish as 

the experimental model. To test these hypotheses, galectin from striped bass will first 

be biochemically and molecularly characterized. Next, interactions with mucus and 

bacteria will be investigated, and followed by localization of endogenous galectin in 

striped bass. Finally, several models will be proposed based on the data collected to 

date.



20

CHAPTER II: BIOCHEMICAL CHARACTERIZATION OF THE STRIPED BASS 

(MORONE SAXATILIS) 15 KDA GALECTIN

II.A. Introduction

Morone saxatilis (Walbaum 1792), commonly known as “striped bass” or 

“rockfish”, is a teleost fish of considerable environmental and economic importance in 

the Chesapeake Bay.  M. saxatilis is the largest member of the family Percichthydae, 

order Perciformes and are an anadramous, euryhaline fish, which are usually found in 

rivers and bays as juvenile and young adult, and in coastal waters as mature adults, 

except during migrations. M. saxatilis is distributed from the St. Lawrence River to 

northern Florida and western Florida (northern Gulf of Mexico) to Louisiana. M. 

saxatilis has also been introduced to the Pacific Coast of the United States, and due to 

both intentional and non-intentional stocking, there are some landlocked populations. 

M. saxatilis has been an important resource along the Atlantic coast of the United States 

since colonial times, and continues to be one of the most sought-after commercial and 

recreational finfish in the Chesapeake Bay. As most fish, striped bass must defend 

against the constant pressure of parasitic and commensal organisms that can potentially 

cause disease. This defense begins with the environmental interface of the fish, which 

are the epidermal layers and the mucus coating these layers produce. Numerous defense 

molecules have been isolated from the mucus, with one type being carbohydrate-

binding proteins, called lectins. To date, lectins isolated from fish mucus include 

congerins (Muramoto, et al., 1992), Anguilla japonica lectins 1 and 2 (Tasumi, et al., 

2002), pufflectins (Tsutsui, et al., 2003), kingklip mucus lectin (Toda, et al., 1996), 
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Genypterus sp. lectin (Oda, et al., 1984). It was the possibility of lectins performing a 

function in defense that led to the investigation of galectins in fish. Galectins have been 

biochemically characterized in many animals (zebrafish, Ahmed, et al., 2004; African 

clawed frog, Shoji et al.,. 2003; fruit fly, Pace, et al., 2002; marine toad, Ahmed, et al., 

1996; cow, Ahmed et al., 1996; human, Sharma et al., 1990; Ackerman, et al., 1992; 

sheep, Dunphy, et al., 2002) and these established techniques were used to purify and 

characterize galectin from striped bass. This family of proteins possesses characteristics 

such as a single-stranded polypeptide, affinity to lactose, small globular structure, 

acidic pI, and ubiquitous presence in animals. 

This chapter describes the purification and biochemical characterization of a 

lactose-binding protein present in the skin and muscle of striped bass M. saxatilis.  

Biochemical characterization of M. saxatilis 15 kDa galectin began by using  the  

parameters determined in other galectins as a starting point for purification and 

analysis. Ascertaining these biochemical properties has helped determine that this 

protein is similar to previously described galectins in other animals, gave insight into 

the possible physiological conditions in which the protein would be functional, and 

determined parameters for future experiments using this protein. Determining primary 

through tertiary protein structure was essential for functional and phylogenetic 

comparisons, and biochemical analysis may help understand observed intra- and 

intercellular interactions. The first step in biochemical characterization was the 

purification and analysis of the protein’s molecular weight. This was followed by 

partial determination of primary structure, determination of protein pI and detection of 

isoforms, analysis of protein stability, and ligand (carbohydrate) specificity. 
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II.B. Materials and Methods

Animals source and sample collection: Five adult striped bass ranging from 4 

to 7 kg were obtained from the Aquaculture Research Center (ARC) located in Fells 

Point, Baltimore, Maryland, and ARC II, located at the Center of Marine 

Biotechnology, University of Maryland in Baltimore, Maryland. Animals were 

anesthetized by adding 0.079 ppt phenoxyethanol to small holding tank containing tank 

water, and euthanized by severing the spinal cord posterior to the gill slits. Tissues and 

organs were dissected, immediately frozen in liquid nitrogen, and stored at –80oC until 

processing.     

Protein purification: Galectin was extracted and purified from striped bass 

muscle, skin and mucus, using an improved protocol as reported by Ahmed, et al. 

(1996). Tissues were homogenized in 1:10 phosphate buffered saline (PBS) containing 

β-mercaptoethanol (β-ME), 0.1 M lactose, with 1 mM phenylmethylsulfonyl fluoride

(PMSF) and 2 mM ethylenediaminetetraacetic acid (EDTA) as protease inhibitors. The 

homogenate was clarified by centrifugation, and the supernatant was fractionated by 

ion exchange chromatography as follows: first, the supernatant was absorbed on 

diethylaminoethyl (DEAE)-Sepharose by mixing with DEAE -Sepharose equilibrated in 

β-ME, [PBS/10]. After overnight incubation at 4oC, mixture was poured into a sintered 

glass funnel and the flow through was saved. DEAE-Sepharose was washed with 10 

bed volumes of β-ME, [PBS/10] with low vacuum. The bound protein was eluted with 

4-bed volumes β-ME, PBS, 0.5 M NaCl. The flow through was subjected to extraction 

a total of three times. All three high salt eluates were pooled, and used in affinity 

chromatography. 
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Affinity chromatography: Affinity column consisting of lactosyl-Sepharose 

was prepared by cross-linking lactose to Sepharose CL-6B activated by divinyl 

sulphone (Gabius, 1990), and the column was washed extensively with β-ME/PBS/0.5 

M NaCl. The pooled eluate from ion exchange chromatography was absorbed on 

lactosyl-Sepharose in a 100 mm x120 mm column. The column was washed with β-

ME/PBS/0.5 M NaCl, and equilibrated with β-ME/ [PBS/10]. Galectin was eluted with 

at least 2 bed volumes β-ME/ [PBS/10] /0.1 M lactose. Protein concentrations were 

measured and homogeneity was analyzed on sodium dodecyl sulphate polyacrylamide 

gel electrophoresis (SDS-PAGE), where a single reproducible band represented a 

sample with little or no contamination by other proteins.  Protein was stored absorbed 

to DEAE-Sepharose in 1:1 β-ME/ [PBS/10]: glycerol at -20.0oC.

Protein Concentration Determination: Protein concentrations were determined 

on 96-well flat bottom plates with the Bio-Rad Protein Assay following a modification 

of the manufacturer's protocols, using bovine serum albumin (BSA) as standard.  To 

100 µl of 5-40 µg/ml protein standard solutions and samples, 100 µl of Coomassie blue 

dye reagent pre-diluted 2.5 fold with water was added.  After 5 min, the reactions were 

read in a Molecular Devices Plate Reader at 595 nm and the data were analyzed 

through the Softmax program.

Hemagglutination assay: Erythrocytes from human (Referencells, Immunocor, 

Norcos, GA), horse, goat, sheep, and rabbit were screened for use in agglutination tests. 

All erythrocytes except human were fixed in glutaraldehyde by mixing 10:1 whole 

blood to cold 0.05% glutaraldehyde, PBS for 10 minutes at room temperature. 

Following incubation, cells were washed in PBS three times and stored in PBS. All 
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cells except human were treated with pronase by incubating one volume fixed cells 

with 4 volumes 5 mg/ml pronase for 1 hour at 37oC. Following treatment, cells were 

washed 3 times with PBS and stored in PBS. Human type O RBC’s were chosen for 

agglutination tests based on reproducibility of agglutination and availability of quality 

cells. Agglutination tests were carried out in 96 well Terisaki plates (Robbins 

Scientific, Mountain View, CA) coated with bovine serum albumin (BSA) (Vasta et al., 

1986). An equal volume of a 0.5% suspension of human type O RBC’s was added to 5 

µl of two-fold dilutions of MS15 in β-ME, PBS (pH 7.5). Plates are gently vortexed and 

incubated at room temperature for one hour. Agglutination was read under a 

microscope (200X) and scored from 0 (no agglutination) to four. The reciprocal of the 

highest dilution of MS15 showing an agglutination of one was recorded as the titer. The 

specific activity of MS15 was defined as the titer/milligram of protein/milliliter. 

Controls were carried out by adding β-ME, PBS buffer instead of galectin.

Relative molecular mass analysis

SDS-PAGE: Analytical polyacrylamide slab gel electrophoresis in the presence 

of sodium dodecylsulphate (2%) was carried out on 15% (w/v) acrylamide gels under 

reducing conditions using loading buffer consisting of 4% SDS, 0.1 M Tris pH 8.9, 2 

mM EDTA, 0.1% bromophenol blue, 20% glycerol, and 2 mM DTT.  

Gel permeation chromatography: Gel permeation chromatography of the 

purified protein was carried out in a Pharmacia Superose 6 (1 x 30 cm) column 

equilibrated with β-ME, PBS, 0.25 M NaCl, 0.01 M lactose (pH 7.5) in a high 

performance liquid chromatography (HPLC) system that consists of a Beckman- 116 
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pump and a Beckman programmable detector module- 166 (280 nm), at a flow rate of 

0.4 ml/min.  Gel permeation chromatography of the horseradish peroxidase (HRP)-

conjugated galectin was carried out with PBS (no azide), 0.25 M NaCl, 0.01 M lactose 

(pH 7.5) in the same system and conditions as described above.  BSA (66 kDa), 

ovalbumin (43 kDa), carbonic anhydrase (29 kDa), and ribonuclease A (13.7 kDa) were 

run as standards.  

Western Blot analysis: Samples were separated by SDS-PAGE as described 

before in duplicate and electrotransferred to polyvinylidene fluoride (PVDF). Blots 

were blocked for 1 hour at room temperature in 5% BSA, PBS pH 7.4. One blot was 

probed with rabbit anti-striped bass muscle galectin antiserum, as reported earlier 

(Ahmed, et al., 2004) and the other with pre-immune serum from the same rabbit as a 

negative control. The anti-striped bass muscle antiserum (Ahmed, unpublished) was 

prepared in New Zealand white rabbits at Duncroft (Lovetsville, FL) by multiple 

subcutaneous and intramuscular injections of affinity-purified striped bass muscle 

galectin (100 µg/ injection), and the antibody titer was determined by enzyme-linked 

immunosorbant assay (ELISA) as previously described (Vasta et al., 1986). Each blot 

was probed with a 1:1000 serum dilution in antibody incubation buffer (1% BSA, 0.3% 

Tween-20, PBS pH 7.4) for 2 hours at room temperature. Blots were washed twice in 

100 ml PBST (PBS, 0.1% Tween-20, 10 minutes, room temperature) and once in PBS 

(10 minutes, room temperature) prior to probing for 2 hours at room temperature with a 

1:3000 dilution of HRP-conjugated goat anti-rabbit IgG (A6154, Sigma, St. Louis, MO) 

in antibody incubation buffer. Blots were washed as before and developed with 3,3,5,5 

tetramethylbenzidine (TMB, Pierce, Rockford, Illinois) and allowed to develop for 20 
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minutes. Apparent molecular masses of antiserum-reactive proteins were determined by 

comparing their migration distances to molecular weight vs. migration distance for 

molecular weight standards between 14.4 and 94 -kDa (LMW, 17-0446-01, Amersham 

Pharmacia, Piscataway, New Jersey) run concurrently on the same gel.

Peptide Sequencing and Amino Acid Analysis: The purified galectin was 

partially sequenced by automated Edman degradation (Hewick, et al.1981) by Dr. Jan 

Pohl, at the Winship Cancer Center’s Microchemical Facility at Emory University 

School of Medicine. For this purpose, 50 γ of affinity-purified 15 kDa lactose-binding 

protein was subjected to SDS-PAGE in a 15% gel (reducing conditions), and in-gel 

digested with trypsin in 0.05 M Tris-HCl (pH 8.5), 1 M guanidine. The peptides were 

separated with a PE-Biosystems 140B/1000S/783A microbore/capillary HPLC system 

(Foster City, CA, USA), fractionated on an Applied Biosystems Aquapore ODS-300 C-

18 silica column, with the flow through manually collected and stored at -20oC prior to 

further analysis.  Fractionated peptides were sequenced on an Applied Biosystems 

model pulsed-liquid 477A/120A sequencing system (Foster City, CA, USA). 

Isoelectric focusing and two-dimensional (2-D) gel electrophoresis: 

Analytical isoelectric focusing of the purified galectin was carried out on a thin (1 mm) 

layer 5% polyacrylamide Ampholine PAGplate (Pharmacia, pH range 3-10) in an EC 

100I electrophoresis unit (EC Apparatus Corporation). Ten µg of purified galectin in 

100mM lactose, PBS pH 7.4 was loaded onto the gel using wicks placed at the halfway 

point of the gel.  The gel was fixed with 4% sulfosalicylic acid, 12.5 %trichloroacetic 

acid in H2O, stained with 0.1% Coomassie Brilliant Blue R-250 in 40% ethanol, 10% 

acetic acid, H2O, and destained with 40% ethanol, 10% acetic acid, H2O.  The 
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isoelectric point (pI) was determined from a plot of pIs of markers vs. distance from the 

cathode of pI standard markers.  The pI markers (Sigma Chemical Co.) used were 

glucose oxidase (pI 4.2), trypsin inhibitor (pI 4.6), β-lactoglobulin A (pI 5.1), and 

carbonic anhydrase II (pIs 5.4, 5.9). For 2-D electrophoresis, IEF was first performed 

using the Protean IEF System with immobilized pH gradient (IPG) strips (BioRAD) as 

follows: 100 µg MS15 was loaded onto rehydrated IPG strip, pH 3-10, and focused for 

30,000 V-hours. Strips were equilibrated in dithiothreitol (DTT) equilibration buffer 

(2% w/v DTT, 6 M urea, 2%SDS, 20% glycerol, 0.05 M Tris-HCl, pH 8.8) followed by 

iodoacetamide equilibration buffer (2.5% w/v iodoacetamide, 6 M urea, 2%SDS, 20% 

glycerol, 0.05 M Tris-HCl, pH 8.8) and transfer to a precast gel (Criterion, BioRAD) 

for second dimension. The separated protein was transferred to a PVDF membrane, and 

protein as detected by Ponceau Red staining followed by western blot using the 

previously described protocol.

Stability studies

Thermostability: The temperature stability of the striped bass galectin was 

determined by incubating 100 µl (3 µg/ml) in β-ME/PBS at various temperatures for 30 

min, cooling samples on wet ice and titrating them with human type-O RBC (Vasta and 

Marchalonis, 1986).

Stability in a Non-Reducing Environment: The striped bass galectin (100 µg) 

was absorbed on 1 ml lactosyl-Sepharose, and the matrix thoroughly washed with 

aerated PBS (20 ml/ml matrix). Bound galectin was stored at room temperature. 

Control matrices contained the same amount of striped bass galectin in β-ME/PBS.  
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After 8 days, the lactosyl-Sepharose column was eluted with 2 ml of β-ME/PBS/ 0.1 M 

lactose and the eluate dialyzed with β-ME/PBS in the presence of 2 mg of BSA.  The 

hemagglutinating activity was measured with human type-O RBC.  

Carbohydrate Specificity

Alkylation of galectin: The purified striped bass galectin was carboxamido-

methylated with iodoacetamide on a solid phase under mild conditions in the presence 

of excess ligand (Allen et al., 1990), yielding carboxamidomethylated galectin (CAMa-

galectin). This was done by washing a DEAE-Sepharose column (0.5 ml bed volume) 

containing purified striped bass galectin with PBS [1:10] pH 7.4 (PBS/10) and 

immediately overlaying the column with 1 ml of 0.1M iodoacetamide-containing 0.1M 

lactose.  After incubation at 4oC for 1 hour in the dark, the column was washed with 

PBS/10 (no azide) to remove excess reagent and lactose and the CAMa-galectin was 

eluted with 0.5 M NaCl/PBS pH 7.4 (no azide).

HRP conjugation: The CAMa-MS15 was conjugated to HRP through 

glutaraldehyde coupling as described in Ahmed et al. (1994a): to a mixture of CAMa-

MS15 (0.7 mg) and HRP (2.0 mg) in 1.3 ml of 0.5 M NaCl, 0.1 M lactose, PBS pH 7.4 

(no azide), 160 µl of 1% glutaraldehyde was added.  After overnight incubation at 4oC, 

the conjugation mixture was diluted 40-fold with cold water and adsorbed onto DEAE-

Sepharose (0.5 ml) preequilibrated with PBS/10 (no azide). The column was washed 

with PBS/10 (no azide) to remove lactose and the conjugate was eluted with 2 ml of l.0 

M NaCl, PBS pH 7.4 (no azide) and purified by affinity chromatography on lactosyl-

Sepharose as described before. Finally, the conjugate was separated from the unreacted 
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striped bass galectin by gel permeation chromatography on a Superose 6 column as 

described above.  The purified MS15-HRP conjugate was stored in 1% BSA, 50% 

glycerol at -20oC.

Solid phase binding-inhibition assay: Binding of striped bass galectin to 

asialofetuin (ASF) and its inhibition by sugars was determined in 96-wells polystyrene 

plates (Dynatech Laboratories).  First, ASF (0.5 µg/ l00 µl/ well) in 0.1 M Na2CO3, 

0.02% NaN3 (pH 9.6) was adsorbed in wells of polystyrene plates and incubated at 

37oC for 3 hours. After aspirating the residual ASF solution, fixation was carried out 

with 2% formaldehyde in PBS at 37oC for 30 minutes.  The plates were washed three 

times with PBS pH 7.4 (no azide), 0.05% Tween 20 (polyoxyethylene (20) sorbitan 

monolaurate) and incubated with the galectin-HRP conjugate (for binding assays) or 

with pre-incubated mixture of conjugate and test ligands (for binding-inhibition assays).  

To determine the optimal pH for striped bass galectin binding, 200 ng/ml galectin-HRP 

conjugate in water containing 0.1% Tween 20, was mixed with equal volume of various 

buffers (0.2 M) and 100 µl of this mix was used in triplicate in the binding assay as 

described above. The buffers used were citrate-phosphate, pH 4.0-6.0; phosphate, pH 

6.5-8.0; and carbonate-phosphate, pH 8.5-9.5. The optimal ionic strength for MS15 

plate assays was determined by mixing 200 ng/ml with an equal volume of various 

saline buffers and 100 µl of this mix was used in triplicate in the binding assay as 

described above. The buffers used were 10 mM phosphate buffer, 0.05% Tween 20, 

with NaCl at the following concentrations: 100 mM, 200 mM, 300 mM, 500 mM, and 

1000 mM. 

Pre-incubation of the galectin-HRP conjugate [200 ng/ml in PBS pH 7.4 (no 
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azide), 0.05% Tween 20] for binding-inhibition assays was carried out by mixing equal 

volumes conjugate and the test ligand at varying concentrations.  After 1 hour at 4oC, 

the conjugate-ligand mixture (100 µl) was added to the wells in duplicate and the plates 

were incubated for 1 hour at 4oC.  The plates were washed with ice-cold PBS pH 7.4 

(no azide), 0.05% Tween 20 and the bound peroxidase activity was assayed with TMB.  

To quantitate the amount of galectin-HRP conjugate that bound to ASF, at the time the 

plates were developed; equal volumes containing increasing amounts of galectin-HRP 

conjugate were added to uncoated wells and developed with TMB under identical 

conditions (time and temperature) to the binding assay. A standard curve was drawn 

from the absorbance value of each point.

II.C.Results

Animal source: Although all animals chosen appeared outwardly healthy, upon 

dissection, some exhibited signs of mycobacteriosis in the form of granuloma formation 

in the liver. Samples from these were preserved for possible further analysis, but were 

not used in the extractions for galectin.

Protein purification: Purification a striped bass galectin was performed with a 

protocol based on Ahmed, et al., 1994b, used successfully for galectins with an acidic 

pI. The flowchart in Figure 2.1 outlines the steps followed. Of the various samples 

homogenized for extraction, only skin presented any difficulty. Skin samples had to be 

cut in less than 3 cm x 3 cm pieces, to prevent “clogging” the homogenizer. Following 

centrifugation, homogenized samples separated into three distinct layers: an upper lipid 

layer, a pink supernatant and pelleted solids. It was the pinkish supernatant, containing 
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soluble proteins, that was used for galectin extraction by affinity chromatography. Flow 

through from the affinity column had no detectable hemagglutination activity, 

suggesting either galectins had been captured on column or inactivated during 

extraction. Elution with 0.1 M lactose, PBS/10 pH 7.4 revealed a peak of protein 

Figure 2.1. Purification strategy for galectins- Based on Ahmed, et al., 1994b, 
purification of MS15 assumes striped bass galectin is a soluble, acidic, lactose-binding 
protein. This purification scheme allows for buffer exchange while protein is bound to 
matrix and monitoring of activity and yield after each step. Purification performed at 
4oC.

Wash with high/low salt buffer

whole animal or organ

Extract by homogenizing + 
lactose

supernatant

Ion Exchange

Affinity 
Chromatography

Elute with high salt buffer

Elute with lactose buffer

Mix with matrix

Wash with low salt buffer

Purified galectin
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between the first and second bed volumes of eluate (Figure 2.2). Remainder of eluted 

protein was collected and stored on DEAE-Sepharose at -20oC, with 50% glycerol to 

prevent freezing of protein sample. SDS-PAGE of samples collected from each stage of 

purification revealed a progressive reduction in the overall amount of protein and the 

complexity of the mixture (Figure 2.3). Samples collected at each step of purification 

were dialyzed to remove lactose, and tested for hemagglutination with human type O 

blood. The results were used to generate a purification table for both skin and muscle 

extractions, summarized on Table 2.1. Striped bass galectin was purified 6,000 –

11,000-fold, and the yield of active galectin per gram sample was 77 µg/kg skin, and 15 

µg/kg from muscle. The final stage revealed a single band eluting from lactosyl-

Sepharose in a competitive ligand-dependent manner. The single band had a relative 

molecular mass of 15 kDa, as compared with molecular mass standards run in adjacent 

lanes, and the protein was designated MS15.

Figure 2.2.  Elution profile of MS15 from 
lactosyl-sepharose.  Flowthrough of 
lactosyl-Sepharose was monitored by 
absorbance at Å277 during equilibration with 
β-ME/[PBS/10], following addition of β-
ME/[PBS/10]/0.1 M lactose. Peak was 
observed as second bed volume of elution 
buffer passed through column. 
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Sample
Muscle

Protein 
conc 

(mg/ml)

Titer Vol 
(ml)

Total 
protein 

(mg)

Specific 
Activity

Total 
Activity

Recovery
(%)

Puri. fold

Crude 130.4 8 500 65200 0.061 4000 100 1
High salt 1 3.8 8 370 1406 2.1 2953 74 34.4
High salt 2 3.0 4 400 1200 1.34 1608 40 21.9

High salt 3 2.3 2 450 1035 0.87 900 22 14.3
High salt 
filtrate

- 0 - - 0 0 - -

Lactose elute .041 16 20 .82 390 320 80 6393
Sample 

Skin
Protein 

conc 
(mg/ml)

Titer Vol 
(ml)

Total 
protein 

(mg)

Specific 
Activity

Total 
Activity

Recovery 
(%)

Puri. fold

Crude 12.1 512 107
0

12895 42.3 541.5 100 1

High salt 1 5.6 128 200 1120 22.8 25.8 4.76 0.54
High salt 2 2.1 32 200 420 15.2 6.3 1.16 0.35
High salt 3 3.0 8 200 60 2.6 1.8 0.33 0.07

High salt 
filtrate

- 0 - - 0 8 - -

Lactose 
elute

0.27 128 4 1.08 474 512 94.6 11000

Figure 2.3. SDS-PAGE of protein 
purification. Protein sample mixed with 2x 
loading buffer, heated for 1 minute prior to 
loading. Gel was 15% acrylamide. Lane 1, 
striped bass crude extract; lane 2, high salt 
eluate from DEAE-sepharose (ion exchange);
lane 3, lactose eluate from lactosyl-sepharose 
(affinity chromatography).

Table 2.1. Purification tables for striped bass muscle and skin galectin-
“Crude” is homogenized sample in lactose/PBS. The “high salt” steps are the 
eluate from DEAE-Sepharose, repeated three time with flow through. The “lactose 
elute” is elute from lactosyl-Sepharose.  Recovery of total activity from the crude 
sample was high (80-95%), and the purification fold was on the order of 104.
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Transfer of electrophoresed samples to a PVDF membrane was completed in 

approximately 1 hour. Following development of membrane with TMB, a single band 

was visualized, at ~15 kDa. No signal was visible on membranes probed with rabbit 

pre-immune serum. Occasionally, extracts from striped bass muscle revealed a doublet, 

with the upper band at 15 kDa, and the lower band at ~ 14 kDa. This doublet appeared 

only in muscle extracts (Figure 2.4) and the lower band was subjected to peptide 

sequencing by separating the protein using a long format 20% tricine gel.

Following electrotransfer to a PVDF membrane and Coomasie staining, the bands were 

sufficiently separated to be excised and N-terminally sequenced, with results shown in 

Figure 2.6. Nineteen residues were read, revealing the N-terminus was not blocked. It 

overlapped and aligned with eight residues determined in peptide sequencing, and 

aligned (5 positions out of 19) with the N-terminus of human galectin-1. This evidence 

suggests the 14 kDa galectin band from muscle may be the same protein as the 15 kDa, 

possessing natural or artifactual modifications, or the 14 kDa galectin is closely related 

protein, such as the congerins found in conger eel.  

Figure 2.4 . Tricine gel separation 
of M. saxatilis muscle galectin(s).
The two proto type galectins of 
muscle co-purified, and were 
separated by long format 20% 
tricine gel for N-terminal 
sequencing. Lane 1- mucus 
galectin; Lane 2-skin galectin; Lane 
3-muscle galectin
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The gel permeation elution profile in Figure 2.5, compiled by overlying the 

molecular mass standards elution profile with the MS15 elution profile, reveals a 

protein of approximately 30 -kDa. This was interpreted as a non-covalently linked 

homodimer of MS15. Multiple runs at different dilutions did not reveal a concentration 

at which there was a dimer: monomer equilibrium shift.

Peptide sequencing: Trypsin cleavage of MS15 prior to sequencing was performed for 

two reasons. First, many cytosolic proteins of eukaryotes are N-terminally blocked to 

Edman degradation.  Second, the efficiency of Edman degradation only allows at most 

25-30 residues to be determined accurately. With MS15 being approximately 136 

amino acids in length, 5 or 6 peptides would have to be ideally read to span the whole 

polypeptide. The peptides isolated and sequenced are shown in Figure 2.6. Of an 

estimated length of 136 residues, (15 -kDa / 110 Da / amino acid) 86 were revealed in 

the peptide sequences. Sequencing reads ran between 13 and 24 residues long.  The 

peptides were aligned with the primary structure of human galectin-1, as shown in 

Figure 2.6. All peptides could be aligned with the human prototype galectin, and the 

ends of the peptides were at conserved arginines and lysines, which is as expected 

Figure 2.5. Gel permeation 
chromatography of MS15 with 
Superose 6 column.
Arrow a, the peak retention time for 
bovine serum albumin (molecular 
weight, 66,200); arrow b, the MS15 
dimer (molecular weight, 30,180); 
arrow c, ribonuclease A (molecular 
weight, 13,700).
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considering the specificity of trypsin.

When aligned with human galectin-1, the aligned peptides range from 30% to 

59% identical. When aligned with the only fish galectin that had been fully sequenced 

at that time, electrolectin from Electrophorus electricus, the identity was 40% in the N-

terminal peptides and 59% through the C-terminal peptide and in the highly conserved 

carbohydrate-binding site. As previously mentioned, one peptide aligned with no 

differences with N-terminally sequenced protein from muscle, bringing the total 

number of residues sequenced to 97. 

IEF/2-Dimensional Gel Electrophoresis: Analysis of the purified MS15 by 

IEF showed some heterodispersion in spite of the apparent subunit size homogeneity 

Human MACGLVASNLNLKPGECLRVRGEVAPDAKSFVLNLGKDSNNLCLHF 
M.U.  ~~~~~~~~~~~~~VGQTMTVVGVAKPDASDFAVNVGPDEK~~~~~~ 
M.L.  ~~DGLLIKNMSFKVGQTMTVV~~~~~~~~~~~~~~~~~~~~~~~~~ 

Human NPRFNAHGDANTIVCNSKDGGAWGTEQ REAVFPFQPGSVAEVCITF
M.U.  ~~~FNAXGDENVVVXNSYQGGKWEEEH REGGFPFQQGEEFKITIEF
M.L.  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Human  DQANLTVKLPDGYEFKFPNRLNLEAINYMAADGDFKIKCVAFD
M.U.   TPTEFLVTLSDGSTIHFPN~~~~~~YSFINFVGDVRIK~~~~
M.L.   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 2.6. Alignment of sequenced peptides from muscle “doublet” with 
human galectin-1- Results from peptide digestion and microsequencing (M.U.-
muscle, upper band) were aligned with human galectin-1 primary structure.  
Results from N-terminal sequencing (M.L.-muscle, lower band) were aligned to 
the first two. X’s in sequence were blanks in sequencing reaction, which often 
occurs with unmodified Cys in Edman degradation. M.L. was not N-terminally 
blocked.  M.U. possessed an N-terminal “D” in place of “FN”, possibly by 
deamidation.
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observed by SDS-PAGE. The four major protein species resolved at pI 4.8, 4.9, 5.1, 

and 5.2 (Figure 2.7c). When 2-D electrophoresis was performed on skin and muscle 

crude extract, the first dimension (pI) revealed proteins dispersed across the entire pH 3 

to pH 10 range. The second dimension (MW, SDS-PAGE) revealed proteins ranging in 

size from 7 -kDa to 200 -kDa.  Following western blot analysis of skin extract with 

anti-MS15, three spots were resolved at ~15 -kDa, and ranging from pI 4.8 to 5.1 

(Figure 2.7 A,C).  Western blot analysis of muscle extract did not resolve as clearly but 

the protein detected was similar in MW and pI as in the skin extract (Figure 2.7 B,D). 

Galectins in other organisms have resolved as several charged isotypes, but the 

structural basis for this observation has not been fully understood. Until the entire 

galectin polypeptide sequence is elucidated, this question will remain unanswered. 

Thermal Stability: The stability of native striped bass skin and muscle galectin 

varied with temperature, as measured by hemagglutination activity (Figure 2.8A). From 

30oC to 60oC there is a steady decline in activity with no activity observed above 60oC 

for either skin or muscle galectin. MS15 was inactivated by exposure to an oxidative 

environment, but could be protected from oxidative inactivation by either the presence 

of excess ligand, or by alkylation when performed in the presence of ligand (Figure 

2.8B). Peptide sequencing revealed no cysteines (Figure 2.6), but there were two 

positions at which sequencing failed to identify any amino acid residues, possibly due 

to the presence of cysteines. Peptide sequencing could not confirm the presence of 

cysteines, but the conserved tryptophan of prototype galectins was observed in the most 

probable peptide sequence alignment.
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A

C

B

D

Figure 2.7. IEF and 2-D electrophoresis of MS15: skin and muscle- MS15 purified 
from striped bass skin (A, C) or striped bass muscle (B, D), was separated in 2 
dimensions based on pI and molecular weight. A, Skin extract was separated and 
stained with Ponceau Red, revealing a wide range of protein sizes and charges. B,
Muscle extract was separated and stained the same way. C, Destained skin extract blot 
was probed α-striped bass galectin, with α-rabbit:HRP as secondary antibody. Bound 
Ab was detected with DAB. D, Destained muscle extract blot was probed and detected 
the same way. Below C results from IEF, aligned with the pH scale of the 2-D gel, 
revealing same pattern of charge isotypes in skin extract.
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Figure 2.8. Stability studies with MS15. a) Thermal stability study was performed on 
skin MS15, muscle MS15, and recombinant MS15. Temperature range was 0oC to 
100oC. b) Oxidative stability study was performed with MS15 from skin as outlined in 
“Material and Methods”
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Carbohydrate specificity: The carbohydrate specificity of MS15 was 

determined using selected saccharides in a solid phase binding-inhibition assay. 

Preparation for the binding-inhibition studies included the optimization of the assay 

conditions (Figure 2.9). The optimal pH for binding was pH 8.0, with a test range of pH 

4.0 to 9.0 (Figure 2.9 A). Optimal ionic strength for binding was 150 mM NaCl, with a 

test range of 50 mM to 1000 mM NaCl, final concentration (Figure 2.9 B).  For each 

saccharide, the molar concentration giving 50% inhibition (I 50) was determined from 

the inhibition curves derived from the assays. These I50 values were normalized with 

respect to lactose standard on each assay plate. Table 2.2 shows the results of binding-

inhibition assays, comparing the relative binding of MS15 to the bovine spleen 

galectin-1 (Ahmed, et al., 1996a), the 14.5 kDa galectin from Bufo arenarum Hensel 

(Ahmed, et al., 1996b), and Drgal1-L2, a proto type galectin from Danio rerio (Ahmed, 

et al., 2004). The poorest inhibitors of agglutination (<< lactose) were the 

monosaccharides galactose, Gal β-OMe, and Gal-α-OMe. The poorest inhibitors among 

the disaccharides were Galβ1,3GalNac, Galβ1,6GlcNac and Galα1,6Glc. The only 

trisaccharide tested, Fucα1,2Galβ1,4Glc, was also a relatively poor inhibitor of 

agglutination. The medium inhibitors of agglutination (~ lactose) were all 

disaccharides: Galβ1,4Fruf, Galβ1,4Glcβ(1-0)Me, and Galβ1,4Man. The best inhibitors 

of agglutination (>> lactose) among the saccharides tested were the disaccharides 

Galβ1,3Ara, Galβ1,3GlcNac, Galβ1-3GlcNacβ-OPhNO2, Galβ1,4Glcβ-OPhNH2, 

Galβ1,4GlcNac, MeO-2Galβ1,4Glc and Galβ1S1βGal.  
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A

B

Figure 2.9-Optimization of carbohydrate inhibition assay conditions. a) 
pH-dependent binding of MS15-HRP conjugate to asialofetuin. In A, the 
binding of MS15-HRP conjugate to ASF was carried out at various pH as 
described under " Materials and Methods." b) pH-dependent binding of MS15-
HRP conjugate to asialofetuin. In B, the binding of MS15-HRP conjugate to 
ASF was carried out at various salt concentrations as described under 
"Materials and Methods." 
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Table 2.2. Relative carbohydrate inhibition of MS15, compared with 
other proto type galectins: Carbohydrate inhibition assay was used to determine 
carbohydrate specificity of M15, and to compare these results with galectins from toad 
(Bufo arenarum), domestic cow (Bos taurus), and zebrafish (Danio rerio). 

        Relative inhibitory  activity
Saccharide Bufo 

arenarum
Morone 
saxatilis

Bos 
taurus

Danio 
rerio

Galβ1,3GlcNac 4.45 2.8 ----- 1.4
Galβ1,3GalNac <0.06 <0.02 <0.02 0.007
Gal 0.005 0.007 0.0079 0.004
Galβ1,3Ara 1.28 3.9 2.56 2.1
Galβ1,4Fruf 1.0 1.9 0 1.0
Galβ1,4Man 2.5 1.70 2.34 1.5
Galβ1,4Glc 1.0 1.0 1.0 1.0
Galβ1,4GlcNac 3.75 3.0 5.54 7.9
Galβ1,4Glcβ(1-0)Me 2.14 1.8 1.33 2.9
Galβ1,4Glcβ-OPhNH2 (p) 1.71 2 1.48 1.4
Galβ1-3GlcNacβ-OPhNO2 (p) 1.78 6.5 4.5 2.3
Galα1,6Glc 0.0075 0.02 0.0053 0.004
Galβ1,6GlcNac 0.83 0.21 0.12 0.03
Galβ1S1βGal 3.9 10.0 9.0 12.2

Galα-OMe 0.03 0.03 0.01 0.006
Galβ-OMe 0.006 0.008 0.0044 0.004
Fucα1,2Galβ1,4Glc 0.17 0.29 0.36 0.35
MeO-2Galβ1,4Glc 2.5 3.0 4.08 2.9

The mammalian, amphibian, and two teleost prototype galectins revealed same basic 

pattern of specificity relative to lactose. Comparison of relative specificity with other 

teleosts could be informative with regards to changes in primary structure relating to 

tertiary structure and binding affinity.  Drgal-L2 shares high similarity/identity with 

MS15 and this is reflected in carbohydrate specificity. Relative specificity of congerins, 

which are more similar to mammalian galectin-2, could provide a useful contrast to 

MS15 and Drgal1-L2 structures. Unfortunately, though congerins have been 

extensively characterized, only limited carbohydrate specificity has been determined. 
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II.D. Discussion

The isolation and biochemical characterization of a 15 kDa lectin belonging to 

the subfamily of galectins and designated MS15, was carried out from selected tissues 

of the striped bass M. saxatilis. Similar lectins had been previously purified from M. 

saxatilis and the hybrid striped bass (M. saxatilis x M. chrysops), although these were 

not characterized in detail (Ahmed, Fink, and Vasta, unpublished). The biochemical 

analysis of MS15 presented here revealed a protein that could be classified within the 

galectin family. Using an established purification protocol (Ahmed, et. al, 1996a) that 

was developed to isolate acidic lactose binding proteins in a reducing environment, 

MS15 was purified from most M. saxatilis organs or tissues, with the procedure 

resulting in a single protein band on SDS-PAGE with an apparent molecular weight of 

15 kDa. Peptide sequencing performed on the purified MS15 digested with trypsin led 

to the identification of 85 amino acids, which upon alignment with human galectin-1 

(prototype galectin) supported the identification of this protein as a galectin. MS15 

agglutinated red blood cells from several mammalian species, including human type-O, 

which became the RBC of choice for use in hemagglutination assays. Results from 

relative mobility in SDS-PAGE and size exclusion chromatography suggested that 

MS15 is a 30 kDa dimer composed by two identical 15 kDa subunits.  MS15 is acidic 

protein, with a similar theoretical and experimental isoelectric point. There is, though, 

microheterogeneity observed in the native protein subjected to IEF and 2-D gel 

analysis. Possible causes for this microheterogeneity have been considered, with most 

being rejected due to improbable biochemistry. The experimental pI’s of these different 

charged species could be accounted for theoretically by a combination of acetylated and 
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non-acetylated N-termini, and deamidation of asparagine 3. Resistance to direct N-

terminal sequencing of MS15 suggests blocking by some form of post-translational 

modification. N-acetylation is a modification, which blocks sequencing direct 

sequencing of proteins, and is common to other galectins. N-acetylation is commonly 

encountered in cytosolic proteins of eukaryotes. Over 50% of the soluble proteins from 

mammalian cells are acetylated (Brown, 1979). In intracellular proteins (Jolly and 

Taketa, 1979; Strauss, et al., 1974; Kecskes, et al., 1976), and also in certain secreted 

proteins such as ovalbumin (Wilson and Dintzis, 1970), the addition of the acetyl group 

to the amino terminal residue occurs cotranslationally when the polypeptide chain 

reaches a length of approximately 40-45 residues. However, in secreted or membrane-

associated proteins, N-acetylation is a posttranslational event (Woodford and Dixon,

1979). According to tabulations of protein sequences, serine, alanine, and methionine 

account for the great majority of the N-terminally acetylated residues (Tsunasawa, et 

al., 1985; Boissel, et al., 1985). These modifications are known as degradation signals. 

Degradation signals of proteins, called degrons, are protein features that confer 

metabolic instability (Varshavsky, 1991). The essential component of one degradation 

signal, termed the N-degron, is a destabilizing N-terminal residue of a protein 

(Bachmair, et al., 1986). This has led to an N-end rule, whose pathway has been found 

in all species examined, including the eubacterium Escherichia coli (Tobias, 1991), the 

yeast Saccharomyces cerevisiae (Bachmair and Varshavsky, 1989) and mammalian 

cells (Gonda, et al., 1987; Lévy,, et al., 1996). This enzymatic pathway leads to binding 

of ubiquitin, and possible protein degradation. A well-characterized modification that 

creates an N-degron is the cotranslational cleavage of the initiator methionine. 
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According to N-terminal rule, though, if the second residue has a radius of gyration, 

also called root mean squared distance, greater than 1.29 Å, cleavage of the initiator 

methionine is fully inhibited (Boissel, et al., 1988). cDNA sequencing, described in the 

Chapter III, revealed the N-terminal sequence of MS15 is Met-Phe-Asn-Gly. If 

acetylated, MS15 must have an acetylated uncleaved initator methionine (iMET), based 

on the N-end rule. Phenylalanine has a radius of gyration of 1.90 Å, which is 

significantly greater than 1.29 Å. Therefore, native MS15 should retain its iMET and 

that Met may or may not be acetylated. A third modification of interest at the N-

terminus is deamidation. Striped bass muscle extraction revealed an additional 14 kDa 

band, which co-purified with MS15. Successful N-terminal sequencing of this protein 

revealed it a possible cleavage and deamidated product of MS15. Deamidation converts 

an amide-containing residue into an acid-containing residue (effectively, N->D) with 

two observable effects. First, the apparent pI of the protein can be lowered, and 

secondly, the mass of peptides/ proteins will increase by and average of 0.985 Da per 

deamidation (Wei and Koh, 1978; Rosen  et al, 1996). Deamidation of Asn to Asp 

would lead to an increase of only 0.985 Da. The sensitivity of SDS-PAGE and 2-D 

PAGE would not permit resolution of such a small change.

  The deamidation of Asn3 to Asp3 was deduced from N-terminal protein 

sequencing of what is thought to be a truncated mature MS15. Deamidation can occur 

non-enzymatically, changing asparagine to isoaspartate or aspartate. The proposed 

mechanism for deamidation of asparaginyl-glycine is shown in Figure 2.10. This post-

translational modification may provide signal for protein degradation, or alter the 

interactions of proteins. Sequence derived from cDNA (Chapter III) revealed “FNGLL” 
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as first five residues of mature MS15. Direct sequencing revealed “DGLLI” as first five 

residues. Since isoaspartate blocks Edman degradation reactions, the “DGLLI” peptide 

may have been the only sequence recorded. The characteristics of a potential 

deamidation site are solvent accessibility and local conformational flexibility, with a 

preference for (N + 1) being Asn-Gly. The N-terminus of MS15 appears to meet all of 

these criteria. Deamidation may have occurred while protein was being extracted, but 

the conditions that can accelerate the rate of reactivity (slightly alkaline buffer, <pH ~ 

8, and/or elevated temperature (i.e. 37oC) was well outside the parameters of the 

protocol used.

Figure 2.10. Deamidation of 
N-terminal asparagines in 
MS15-  Step 1 The peptide 
bond nitrogen (reactive anion) 
of the N + 1 amino acid 
attacks the carbonyl carbon of 
the asparagine or aspartate 
side chain forming a five-
membered ring structure 
referred to as a succinimide or 
cyclic imide. Step 2The 
succinimide is rapidly 
hydrolyzed at either the alpha 
or beta carbonyl group to 
yield iso-aspartate (beta-
aspartate) and aspartate in a 
ratio of approximately 3:1. 
From “Deamidation in 
Proteins and Peptides” Glen 
Teshima, 2000
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Deamidation may be influenced by the degree to which the protein is dimerized. The 

galectin as a monomer would have greater exposure of the N-terminus.  In addition, the 

net charge of the protein would be little changed, and the molecular weight would only 

increase by one Dalton. The loss of the hydrophobic phenylalanine and the change in 

charge of asparagine to aspartate (negative), though, could have important effects in the 

dimerization of MS15. 

Biochemical characterization of M. saxatilis tissue extracts suggested that in 

addition to a proto type galectin, other lactose-binding proteins, possibly other galectins 

are present (Figure 2.11). Antiserum produced in rabbits against MS15 from M. 

saxatilis muscle specifically bound MS15 in M. saxatilis whole body extract, and 

enabled the tissue/organ-specific detection of MS15 in brain, eyes, liver, spleen, 

stomach, intestines, heart, gills, skin, mucus, and gonads.

Figure 2.11. Affinity 
purification and Western 
blot of MS-15 from 
various tissues. 
Lane1, gill; lane 2, heart;
lane 3,intestine; lane 
4,muscle; lane 5, ovary;
lane6, skin; lane 7, spleen;
lane 8, stomach. Blot was 
performed using rabbit anti-
striped bass galectin 
polyclonal serum, and goat 
anti-rabbit Ig-HRP. MW= 
kDa
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Furthermore, the antiserum cross-reacted with proto type galectins from bovine (Bos 

taurus), toad (Bufo arenarum), zebrafish (Danio rerio), and a tunicate (Clavelina 

picta).  When galectin(s) were purified directly by affinity chromatography, without 

prior ion exchange chromatography to select for acidic proteins, bands of 33 kDa, 17 

kDa, and 15 kDa were detected by Coomassie staining (Figure 2.12). Because tandem 

repeat and chimera galectins have already been identified in zebrafish (Ahmed, et al., 

2004) and possibly in the pufferfish, due to its molecular weight, binding to lactose, and 

being a neutral→basic protein, the 33 kDa was tentatively identified as one of these 

types of galectins. N-terminal sequencing, however, determined it to be the fucose-

binding protein FBP32, identified and characterized by Odom and Vasta, 2004. The 17 

kDa component was neutral→basic, bound lactose, and was present in most adult 

tissues, as revealed in western blots. No further work was done to characterize this 

protein.  Proto type galectins of approximately 17 kDa, are present in several 

mammalian species, and include human galectin-10 (Ackerman, et al., 1993) and rat 

galectin-5 (Gitt, et al., 1995).

The thermal stability of MS15 revealed that the activity of MS15 does not 

decrease in the range of temperatures that striped bass thrive. Striped bass eggs and

larvae cannot survive outside the range of 10oC and 26oC (Doroshev 1970), and 

juveniles experience zero growth outside the range of 10oC and 33oC (Cox and Coutant, 

1981).  There is no reported lethal temperature for striped bass, but there is a downward 

shift in optimal temperature as the fish age (Coutant 1985). Within these temperature 

ranges, MS15 retains almost all its activity. The thermostability profile of Bufo 

arenarum galectin (Ahmed, et al., 1996b) has a similar pattern, but the activity of toad 
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galectin does not reach zero till ~84oC. The thermostability of the congerins (I and II) is 

much greater, remaining fully active until 50oC and 45oC, respectively, and having total 

loss of activity at 70oC and 60oC, respectively. Structural comparisons between B. 

marinus, M. saxatilis, and C. myriaster galectins may help explain these differences.

Oxidative instability has been attributed to the presence of cysteines (creating 

disulphide bonds) or tryptophan in the binding site (unoccupied by ligand when 

oxidized).The mammalian galectins possess six conserved cysteines, but drgal1-L2 

(Danio rerio) possesses 3 cysteines and congerin I and II and electrolectin 

(Electrophorus electricus), possess no cysteines. 

MsaLBP33 YNYKNVALRGKATQSAR
MsaFBP32 YNYKNVAVRGKATQSARYLHTHGAAY…

Figure 2.12. N-terminus alignment of ~33 kDa lactose-binding protein 
from M. saxatilis: ~33 kDa protein was separated by SDS-PAGE, transferred 
to a PVDF membrane, and N-terminally sequenced without prior digestion on 
a Beckman LG3000 Sequencer. Results were 17 amino acids, which had 100% 
identity to N-terminus of Morone saxatilis FBP32, a fucose-binding lectin 
characterized by Odom, et al.. Lane 1-lactose elute from lactosyl-Sepharose, 
with DEAE-Sepharose + EDTA flow through as starting material. Lane 2- 
lactose elute from lactosyl-Sepharose, with DEAE-Sepharose + Ca+2 flow 
through as starting material.  Lane 3- lactose elute from lactosyl-Sepharose, 
with DEAE-Sepharose high salt elute as starting material. 
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The relative carbohydrate specificity of MS15 is similar to proto type galectins 

in other Classes of jawed vertebrates namely mammalian galectin-1 (Bos taurus), 

amphibian prototype galectin (Bufo arenarum), and teleost prototype galectin (Danio 

rerio).  Though other fish galectins have been identified and characterized, these 

characterizations did not include carbohydrate specificity with sufficient range of 

compounds that could be contrasted with M. saxatilis carbohydrate specificity results.  

Based on similarities in carbohydrate-binding patterns, and other biochemical 

properties, the carbohydrate recognition domain (CRD) of MS15 is predicted to be 

more similar to mammalian galectin-1 than to other mammalian proto type galectins 

(-2, -5, -7, -10, -13, -14, -15), chimera type galectin-3, or the mucus galectins of conger 

eels. The relative inhibitory efficiencies of four key oligosaccharide structures in the 

order N-acetyllactosamine> lactose> human blood group A-tetrasaccharide> Gal

1,3GalNAc have been suggested as a way to group galectins as ‘Type I’ (conserved) or 

‘Type II’ (variable) in reference to the primary structure of the CRD (Ahmed and 

Vasta, 1994). MS15 was not tested with human blood group A-tetrasaccharide, but it 

was tested with blood group A-trisaccharide [(Fucα1,2)Galβ1,4Glc], and human blood 

type A was agglutinated by MS15 (data not shown). The effectiveness of N-

acetyllactosamine was 3-fold higher than lactose, with A-trisaccharide 3-fold less 

effective than lactose, and the effect of Gal 1,3GalNAc negligible. Thus, MS15 can be 

grouped with the galectins that have the ‘Type I’ CRD. 

Mammal, toad and fish galectins exhibited similar specificity profiles, with 

slight variation in the actual inhibitory concentrations. MS15 shares this pattern, further 

supporting its inclusion in the galectin family. Comparison of relative specificity with 
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other teleosts could be informative with regards to changes in primary structure relating 

to tertiary structure and binding affinity. Drgal-L2 shares high similarity/identity with 

MS15 and this is reflected in carbohydrate specificity. The relative specificity of 

congerins, which are more similar to mammalian galectin-2, could provide a useful 

contrast to MS15 and Drgal1-L2 structures. Unfortunately, though congerins have been 

extensively characterized, their carbohydrate specificity has been determined only to a 

limited extent. It will be interesting to see if the results from the determination of the 

complete MS15 primary structure support this conclusion.   

When characterizing galectins, it may be difficult to determine whether 

orthologous or paralogous genes are being compared. The hypothesized gene 

duplication events that have occurred in teleosts is one such complication. Extending 

the similarity of specificity from mammalian galectin-1 and MS15 to possible functions 

within these organisms is a big leap. Galectins appear to vary their function from tissue 

to tissue, from cell to cell and from time point to time point. This is probably due to the 

temporal and spatial variations in galectin ligand expression. Of the posited ligands for 

prototype galectins, the two major ligands appear to be poly-N- acetyllactosamine-

enriched glycoconjugates found ubiquitously expressed by many cells, and poly-N-

acetyllactosamine extensions on mucin-like O-glycans (Wilkins, et al., 1996), both of 

great interest. Besides the canonical residues of the binding site, it has been proposed 

that there is an extended binding site, which allows for finer specificity and greater 

affinity for oligosaccharides longer than the disaccharides Galβ1,4Glc or 

Galβ1,4GlcNac (Seetharaman, et al., 1998). There are differences seen between human 

galectin-3 structure and bovine galectin-1 structure that, coupled with carbohydrate 
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specificity studies, suggest an extended binding site. Substitutions of amino acids that 

align in primary structure and in tertiary structure (human galectin-3, 1A3K, 

Seetharaman, et al., 1998; bovine galectin-1, ISLT, Liao, et al., 1994) favor 

carbohydrate moieties attached to the 3-OH of galactose for galectin-3. MS15 shares 

substitutions with galectin-3 at the sites attributed to an extended binding site. Previous 

analysis of carbohydrate specificity of striped bass muscle galectin, which is now 

known as MS15, revealed very weak binding for 3-OH substituted galactosides. This 

suggests that though the substitutions in primary structure exist, MS15 maintains a fine 

specificity more similar to mammalian galectin-1 than galectin-3. 

II.E. SUMMARY

A 15 kDa β-galactoside binding protein was purified from striped bass, and 

subsequent biochemical characterization supports the identification of this protein, 

designated MS15,  as a proto type galectin. It can be purified from almost any tissue or 

organ, but with variable yield. Its subunit mass is 15 kDa, and its native mass is 30 kDa, 

suggesting a tertiary structure consisting of a non-covalently linked homodimer. 

Antibodies to MS15 cross-reacted with proto type galectins of from other vertebrate 

and protochordate species. Partial peptide sequences aligned well with other proto type 

galectins from teleost, amphibians, birds, and mammals. Carbohydrate specificity was 

similar to that of bovine galectin-1, toad 14.5 kDa galectin, and a zebrafish proto type 

galectin. Though it appears to be a proto type galectin, final classification must wait 

until entire primary structure is determined.
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CHAPTER III: CHARACTERIZATION OF CDNA AND GENE ENCODING THE 

15 KDA GALECTIN OF THE STRIPED BASS (MORONE SAXATILIS)

III.A. Introduction

     MS15 is biochemically related to animal galectins, in particular, the prototype 

galectins. Determining the molecular biology of this protein-its cDNA, gene 

organization, control of gene expression, redundancy, and phylogeny – are essential for 

confirming that this protein is a member of the galectin family, and to place this protein 

in a functional as well as an evolutionary context. Sequences for proto type galectins 

have been determined in insects, nematodes, sponges, tunicates, fishes, amphibians, 

birds, and mammals. With the rapid pace of genome projects, entire genes are available 

for analysis, and putative galectins are being identified in these databases at an 

astounding rate. EST databases also allow for cDNA matched with a bona fide protein 

to be compared to cell-specific transcripts from various species. With these data 

coupled to rapid computer-based analyses, sequence data from MS15 and its 

corresponding gene can be compared to other galectins in a variety of ways.  To begin 

this analysis, the strategy outlined in Figure 3.1 was followed. To start, peptide 

sequence was used to identify and amplify the cDNA and entire gene coding for MS15.  

This was accomplished by designing primers based on alignment of partial peptide 

sequences with known galectins, and using various PCR protocols and DNA 

sequencing to determine the coding sequence for MS15. The complete coding sequence 

was aligned with known galectin genes, and primers were designed to determine 

upstream, downstream, and introns of the gene coding for MS15. The translation of the 
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coding region for MS15 allowed for primary structure analysis, including pI and 

molecular weight analysis, prediction of post-translational modifications, sequence 

alignment and phylogenic analysis, and homology modeling of the protein to galectins 

with crystallographic structures. Complete gene sequence was used to analyze 

conserved transcriptional control elements, conserved intron/exon boundaries, and 

conserved galectin gene organization. Finally, sequence data allowed for the creation of 

a functional recombinant MS15, using directional ligation independent cloning 

technology in bacteria. This recombinant MS15 allowed for further biochemical 

analysis without sacrificing any more animals.

III.B. Materials and Methods

Isolation and Characterization of cDNA Encoding MS-15: Elucidating the 

nucleic acid sequence for striped bass galectin was begun by acquiring fresh sample 

material (spleen, muscle, and skin) from fresh-killed fish and immediately freezing 

samples in liquid nitrogen. Isolation and quantitation of total RNA from the tissue was 

performed using an adapted protocol from Sambrook, et al., 1989, as follows: 5.0 mL 

guanidinium thiocyanate (GTC)/ buffer/β-ME was mixed with 500 mg homogenized 

tissue (mortar and pestle, tissue in liquid nitrogen), and separated into 500 µl aliquots. 

To each was added 50 µl 3 M NaOAc pH 5.2, 500 µl phenol, and 100 µl CHCl3. This 

was chilled, centrifuged, and the aqueous layer was removed. RNA was precipitated 

with 1 volume isopropanol (1:1 final) at -80.0oC for 30 minutes. RNA was redissolved 

in 500 µl Tris/EDTA, and the phenol/ chloroform extraction repeated. Lastly, RNA was 

precipitated overnight in ethanol at -80.0oC. RNA was checked for quality and quantity 
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by Shimadzu UV-VIS spectrophotometer by 260 nm: 280 nm, and by electrophoretic 

analysis of RNA using a 1% agarose/ formaldehyde gel (Sambrook et al., 1989). 

Figure 3.1. Strategy for determining sequence of full-length cDNA of Msgal1-
Protein was purified based on properties of proto-type galectin. Protein was digested 
with trypsin, and resulting peptides sequenced. Peptides were aligned with  prototype 
galectin of known sequence, and degenerate primers were created to amplify most 
conserved region. Sequencing results from degenerate primer amplicon was used to 
design gene-specific primer’s (gsp’s). 5’ end and 3’ end of cDNA were separately 
amplified and sequenced and the results were compiled into the complete coding region 
for M. saxatilis galectin.
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Preparation of E. coli competent cells-A single colony of strain DH5α was 

grown in 10 ml LB broth at 37oC with shaking. 500 ml LB broth medium was 

inoculated with 5 ml of the overnight culture, and grown at 37oC with shaking (250 

rpm) to early log phase (0.20 OD600 , 3 hours). The culture was centrifuged at 5oC at 

5000 rpm for 10 minutes and the pellet was resuspended in 50 ml ice-cold 100 mM 

CaCl2 solution, placed on ice for 30 min, and centrifuged again at 5000 rpm for 10 min. 

This pellet was again resuspended in 5 ml ice-cold 100 mM CaCl2 with 10% of 

glycerol. 200 µl of the cells was transferred into microcentrifuge tubes and frozen at -

80oC until later use.

Primer design: Primers were designed from the peptide alignment described in 

II.B.6. Degenerate primers were generated using Primer3 CyberGene AB Primer design 

utility software at www.cybergene.se/primer.html. One forward primer and three 

reverse primers were generated based on the peptide alignment with human galectin-1: 

forward primer (peptide 1); reverse primer 1 (peptide 2); reverse primer 2 (peptide 3); 

and reverse primer 3 (peptide 4).  

Degenerate PCR for galectin cDNA - Using a PCR protocol known as 

“touchdown PCR” (Table 3.1), degenerate primers designed above were used to 

amplify cDNA coding for galectin, in the presence of both positive (universal actin 

primers) and negative (no template) PCR controls. PCR products were purified by 

separating PCR products in a 1% agarose gel prepared in 89 mM Tris, 89 mM boric 

acid, 2 mM EDTA (TBE) buffer, coring major bands, and extracting the DNA from the 

gel using QIAquick Gel Extraction Kit (QIAGEN, Valencia, CA). Briefly, the gel slice 

was dissolved in 3 volumes of chaotropic agent at 50oC for 10 minutes, applying the 
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solution to a spin-column and spinning for 1 minute (the DNA remains in the column), 

washing the column by passing 70% ethanol through (the DNA remains in the column, 

salt and impurities are washed out), and finally eluting the DNA in a small volume 

(30ml) of DNase-free water by spinning to collect flow through. 

Table 3.1. Thermocyling programs used for striped bass DNA analysis

touchdown PCR sequencing RACE standard
94oC for 1 minute
92oC 20 seconds
70oC for 20 seconds
     minus 0.5oC per
     cycle
72oC for 30 seconds
go to step 2 for 19 
cycles
92oC for 20 seconds
65oC 30 seconds
72oC for 30 seconds
go to step 6 for 14 more 
cycles
4oC hold

96°C for 30 seconds 
rapid ramp to 50°C
50°C for 10 seconds
rapid ramp to 60°C
60°C for 4 minutes
go to step 2 for 24 more 
cycles 
rapid ramp to 4°C hold 

94oC for 1 minute
94oC for 30 seconds
68oC for 30 seconds
go to step 2 for 14 
cycles
72oC for 10 minutes
4oC hold

94oC for 2 minute
94oC for 20 seconds
(variable)oC for 20 
seconds
70oC for 30 seconds 
go to step 2 for 24 
cycles
70oC for 10 minutes
4oC hold

Suppression PCR
5 cycles:
94°C 25 sec
72°C 4 min
• 18–22 cycles:
94°C 25 sec
67°C 4 min
• 67°C for an 
additional 4 min after 
the final cycle.

Utilizing the fact that Taq DNA Polymerase preferentially adds a single 3´ 

adenine to double-stranded DNA fragments by a non-template-dependent extension 

reaction, purified PCR products were ligated to pGEM-T vector plasmid (Promega), 

and constructs were used to transform competent DH5α E.coli (Sambrook and Russell, 

1989), as follows: E. coli DH5α was transformed by thawing one vial (about 200 µl) of 
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competent cells on ice. DNA was added into the vial and gently mixed with the cells by 

stirring with pipette tip. The cells were allowed to stay on ice for 30 minutes and heat-

shocked at 42oC for 2 minutes in a water bath, followed by chilling on ice for another 2 

minutes. 1 ml of fresh SOC broth (0.5% Yeast extract, 2.0% tryptone, 10mM NaCl, 

2.5mM KCl, 10mM MgCl2 , 10mM MgSO4) was added and the cells were incubated at 

37oC with shaking for 1 hour. 50 µl of the cells were plated on a LB agar plate with 

appropriate antibiotic(s) for selection. For vectors that contains the DNA sequence 

lacZ', coding for the amino terminal portion of β-galactosidase, 25 µl isopropyl-beta-D-

thiogalactopyranoside (IPTG) (25 mg/ml) and 50 µl 5-bromo-4-chloro-3-indolyl-b-D-

galactoside (X-gal) (25 mg/ml) were spread on the plate 1 hour prior to the plating of 

the transformants. Clones harboring plasmid with insert form white colonies while 

those harboring plasmid without insert form blue colonies. After sufficient growth in 

the presence of selective antibiotic (ampicillin), colonies were selected for 5 ml batch 

culture grown overnight at 37oC with shaking. Plasmids were extracted from this 

culture and electrophoretically analyzed for insert size. Plasmids with inserts were used 

for sequencing the inserts utilizing SP6 and T7 promoter sites for bi-directional 

sequencing (Table 3.2.), using the “sequencing” protocol in Table 3.1. Sequencing was 

performed at the Center of Marine Biotechnology’s BioAnalytical Services Laboratory 

(BASLab), using an ABI 377 DNA sequencer with PE Biosystems 310 capillary 

sequencer. Sequence output file was analyzed using CHROMAS v. 2.24 software. 

Rapid Amplification of cDNA Ends (RACE): Following the manufacturer’s 

protocol, Marathon cDNA Amplification Kit (Clontech) was used with gene-specific 

primers to amplify complete cDNA of striped bass galectin. 3’- and 5’- gene-specific 



59

primers were generated using the previously described Primer3 utility. For 3’- RACE, 

forward and reverse primers (Table 3.2) were used. For 5’- RACE, forward and reverse 

primers (Table 3.2) were used. Starting with striped bass poly A+ RNA, first and second 

strand cDNA synthesis was performed and Marathon cDNA Adapter was blunt-end 

ligated to double stranded (ds) cDNA. From this library of ds-cDNA with adapters, 

PCR were performed, using designed primers and adaptor primers. Products were 

characterized by agarose gel electrophoresis, cloning of amplicons, and DNA 

sequencing. 

Amplification and sequencing of full-length cDNA of galectin:  Gene specific 

primers were generated (Genosys) and amplify the entire coding region of MS-15 from 

striped bass cDNA library, based on results of RACE amplifications and analysis. Full-

length cDNA forward primer and reverse primer (Table 3.2) were design to straddle the 

start codon and stop codons, respectively. Following amplification, the single amplicon 

was cloned into pGEM-T vector and sequenced as previously described. 

Analysis of complete cDNA coding for MS15: The gene coding for MS15 

(hereafter Msgal1) was analyzed in silico, and predicted values were compared to the 

experimentally derived values. Calculations were made with and without N-terminal 

methionine, and with and without N-terminal cleavage and deamidation. Molecular 

weight, pI, Grand average of hydropathicity (GRAVY), and estimated half-life were 

calculated using Protparam tool at The ExPASy (Expert Protein Analysis System) 

proteomics server of the Swiss Institute of Bioinformatics. Other tools used on this 

server were NetPhos, for prediction of serine, threonine and tyrosine phosphorylation 

sites in eukaryotic proteins; NetOGlyc, for prediction of O-GalNAc (mucin type) 
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glycosylation sites; NetNGlyc, for prediction of N-glycosylation sites; and Signal P, for 

prediction of signal peptide cleavage sites. For theoretical support of homology 

modeling results, full length MS15 (translation) and bovine galectin-1 (model template) 

was submitted to Protscale (Expasy server) for Kyte-Doolittle hydropathy mapping and 

Chou-Fasman beta sheet prediction. 

Homology modeling of MS15: Secondary and tertiary structure was modeled 

using the Swiss-MODEL Server (Schwede T, Kopp J, Guex N, and Peitsch MC 

(2003)). Primary structure of MS15 was submitted via Internet to 

http://www.expasy.org/swissmod/SWISS-MODEL.html. First, BLASTP2 (Altschul 

and Lipman, 1990) was used to find all similarities of target sequence with sequences 

of known structure in the ExNRL-3D sequence database, reflecting the protein 

sequences of ExPDB. The residues with structural modifications (HYP, PCA, SEP, 

MSE etc.) are replaced by their genetic precursors (i.e. PRO, GLU, SER, MET etc.).  

Next, SIM (Huang, et al., 1990) selected all templates with sequence identities above 

25% and projected model size larger than 20 residues. Furthermore, this step detected 

domains, which can be modeled based on unrelated templates. Next, Swiss-Model used 

ProModII to generate a model by alignment, framework, lacking loops, backbone 

correction. The reliability of the model is determined by the degree of sequence identity 

and alignment. Gromos96 (GROningen MOlecular Simulation) generates energy 

minimization of the models. The results were sent back to the submitter via e-mail .
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Table 3.2. Primers for Msgal1

Target FORWARD (5’>3’) REVERSE (5’>3’)
full length GCACATATGTTTAATGGTTTGCTCATA GGTGGATCCTTATTTGATCTCAAGG

Upstream GTAATACGACTCACTATAGGGC (AP1) GCAAACCATTAAACATGATTGCAGATG

Intron I TCTCACTTCTCCTCAGCTGTACTTGAC ATGGTCTGCCCGACCTTGAAGGAC

Intron II TTCA AGGTCGGGCAGACCATGACC GACCACCACATTCTCG TCTCC

Intron III GAGGCTTTCCTTTCCAACAGGG ATCCCCAACAAAGTTGATGAAGGAGTAC

Downstream GAGGCTTTCCTTTCCAACAGGG GTAATACGACTCACTATAGGGC (AP1)

cDNA for 
LIC

GACGACGACAAGATGTTTAATGG TTGC 
TC

GAGGAGAAGCCCGGTTCCTTAT TTGATC 
TC

3’ RACE-1 
-2 

ACCAGACGCCTCGCGGCACTCCC
TGGTGTGAGGAGCACCGTGAGGGAGG

5’ RACE –1 
-2 

ATCCCCAACAAAGTTGATGAAGGAGTAC
AAGTTGCAGGTTTATTGATCTCA

Isolation and Characterization of Msgal1: High molecular weight genomic 

DNA was extracted from striped bass blood (RBC’s of striped bass are nucleated) using 

the GenomicPrep Kit (Amersham Biosciences, Piscataway, New Jersey). Samples were 

collected from striped bass by tail venipuncture. Blood was collected in EDTA to 

prevent clotting and reduce degradation, and placed on wet ice until DNA extraction. 

Following manufacture’s protocol for extraction from nucleated blood cells, 40 µl of 

striped bass blood was added to 6 mL cell lysis solution. After 1-hour incubation at 

room temperature, sample was RNAse treated. Protein was precipitated using kit’s 

Precipitation Solution, and the supernatant was transferred to a 15 mL tube containing 6 

mL 100% isopropanol. Sample was mixed gently by inverting until DNA began to 

precipitate. Precipitate was pelleted by centrifugation, and pellet was washed twice with 

70% ethanol. Wash was decanted, and pellet was allowed to dry at room temperature. 

DNA was rehydrated using 500 µl DNA Hydration Solution (Amersham Biosciences), 

and stored at 4oC.
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Southern blot with genomic DNA: Genomic DNA was digested with BamHI, 

XbaI and SspI by incubating 5 ug DNA with 1 µl enzyme for 3 hours at 37oC. Enzymes 

were chosen following restriction mapping of complete Msgal1 cDNA sequence. DNA 

digests were gel electrophoresed overnight, (25 V, constant voltage) and transferred to 

a Nytran SuPerCharge Nylon membrane  (Schleicher &Schuell, Keene, New 

Hampshire) using the TurboBlotter System (Schleicher &Schuell) and following 

manufacturer’s protocol. DNA was covalently cross-linked to damp membrane using a 

UV Stratalinker 2400 (Stratagene, La Jolla, California) by exposing blot to total dose of 

120 mJ/cm2. Detection was performed using DIG-labeled probe described previously, 

and reagents from DIG High Prime DNA Labeling and Detection Starter Kit II (Roche 

Applied Science, Indianapolis, Indiana). Southern blot was performed using protocols 

from DIG High Prime DNA Labeling and Detection Starter Kit II (Roche Applied 

Science). Genomic DNA was prepared, digested with restriction enzyme(s) as 

described above, and electrophoresed onto an agarose gel for DNA fragment 

separation. DNA probes were labeled with the non-radioactive digoxigenin (DIG)-

based Genius kit (Roche Applied Science) following the instructions provided by the 

vendor. After electrophoresis, the gel was treated with 0.25 M HCl with shaking for no 

longer than 10 min (depurination), denatured by alkaline solution (0.5 N NaOH, 1.5 M

NaCl) for 1 hour and neutralized with neutralization solution (1.0 M Tris-HCl, pH 8.0, 

1.5 M NaCl) for 1 hour. The DNA was transferred onto nylon membrane (MSI) in 3M 

sodium chloride, 0.3M sodium citrate, pH 7.0 (20X SSC) by capillary action, overnight. 

The fragmented DNA-bearing
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Figure 3.2. Strategy for determining gene organization of Msgal1- The results from the 
complete cDNA sequence of M. saxatilis 15-kDa galectin were aligned with the genomic 
sequence of human 14.5 ka galectin. M. saxatilis genomic DNA was restriction digested 
and blunt-end ligated with an AP1 adaptor. Gene-specific primers were designed and used 
with AP1-specific primers to amplify regions between putative exons and upstream and 
downstream of gene. Following amplification, amplicons were sequenced by cloning into 
pGEM-T and determining insert sequence, or by direct sequencing of amplicons. Results of 
sequencing were aligned with each other to yield complete gene structure.

nylon membranes were treated with UV crosslinker to fix the DNAs on the membrane. 

The membranes were prehybridized with the prehybridization solution, containing 5X 

SSC, 0.1% of N-lauroylsarcosine, 0.02% of SDS, 2% of blocking reagent, and 50% of 

formamide (Roche) for 2 hours and hybridized with the DNA probe overnight. Both 

prehybridization and hybridization were performed at 42 o C in a water bath with 
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shaking under high stringency conditions. Before detection, the membranes were 

washed with 2X SSC (containing 0.1% SDS) twice and 0.5X SSC (containing 0.1% 

SDS) twice at room temperature, were blocked with buffer 2 (0.15 M NaCl, 0.1 M Tris-

HCl, pH 7.5, 2% blocking reagent) for 0.5 hr, and incubated with anti-DIG-alkaline 

phosphatase (1:5,000-1:10,000, v/v, in buffer 2) for 0.5 hr. The membrane was washed 

twice with buffer 1 (0.15M NaCl, 0.1 M Tris-HCl, pH 7.5). NBT (1:1000, v/v, in buffer 

3: 0.1 M Tris-HCl, pH 9.5, 0.1 M NaCl, 0.05 M MgCl2) was used as the substrate for 

alkaline phosphatase. Development time was approximately 20 minutes at room 

temperature. 

Gene Primer Design: Using the sequence information from the completed full-

length Msgal1 cDNA aligned with the known gene organization of galectin-1 in mouse 

and humans, primers were designed to bracket the predicted introns, and to amplify 5’-

upstream and 3’- downstream. Primers are listed in Table 3.2. Following amplification, 

the products were either directly sequenced, or sequenced after cloning into pGEM-T 

vector. 

Amplification of 5’ upstream region, 3’ downstream region, and introns of 

Msgal1: Clontech’s “Gene Walker” DNA Walking Kit was used to amplify and 

sequence unknown regions of Msgal1. Starting with M. saxatilis genomic DNA 

previously extracted, five genomic libraries were created, each one the result of 

digestion with a different restriction enzyme. The restriction enzymes used were PvuII, 

ScaI, EcoRV, StuI, and DraI, selected based on results restriction mapping. Each of 

these libraries was ligated with the Genome Walker Adapter using T4 DNA ligase in a 

blunt-end ligation reaction. With gene specific primer (GSP, Table 3.2) and adapter-
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specific primer (AP-1), suppression PCR (Table 3.1) was used to amplify the 

intervening region. When products consisted of “smear” nested adapter primer (AP-2) 

and GSP were used in amplification reaction. Following sequencing (BASLab, Center 

of Marine Biotechnology), which averaged 400 to 600 bp, new gene specific primers 

were designed 100 bp from end of previous sequencing results, and sequencing was 

continued, thus “walking” up and down restricted genomic DNA. 

Analysis of Msgal1 transcribed and non-transcribed regions: Analysis of 

Msgal1 was performed using Transcription Element Search Software (TESS) at 

http://www.cbil.upenn.edu/tess, BLAST searches at the Fugu Genomics Project at 

http://fugu.hgmp.mrc.ac.uk/Analysis , CLUSTALW: Multiple Sequence Alignment at 

http://clustalw.genome.jp, 

Preparation of expression vector/insert: Novagen’s pET30 Ek/LIC System 

was used to create expression construct, following the manufacturer’s protocols. First, 

primers were designed that are specific for the 5’-end (including start codon) and the 

3’-end (including stop codon) of Msgal1, to incorporate Ligation Independent Cloning 

site specific-sequence. The forward primer (sblicf1) the reverse primer (sblicr1) is 

shown on Table 3.2. Following PCR (“standard”, Table 3.1) the full-length amplicon 

was purified as previously described, and annealed to the pET30 Ek/LIC vector using 

manufacturer’s protocol. After transformation and growth, recombinant plasmid was 

extracted and purified by Wizard Mini-prep Kit (Promega).  Purified plasmid was used 

as a template, and two nested insert-specific primers EX2F1 and EX4R1 were used to 

confirm insert, while vector-specific primers T7 and T7 terminus were used to confirm 

insert size.  Plasmid preps that were positive for galectin insert and possessing 
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predicted size insert were introduced into E. coli BL21 (DE3) cells by transformation as 

described above.

Characterization of expression construct: DH5α containing recombinant 

plasmids were grown on LB agar with 50 ug/mL kanamycin overnight at 37oC. 

Colonies were picked and applied to both labeled master plates and to 50 µl dH2O in 

microcentrifuge tubes. Bacteria samples in water were boiled at 100oC for 10 minutes, 

and centrifuged. Supernatant was used as template for PCR, using plasmid-specific 

primers flanking insert site (T7 and T7 terminus), and nested primers for galectin. 

Colonies positive for insert of the predicted size were found, corresponding colonies on 

master plate were used to prepare sufficient plasmid for sequencing to confirm 

presence, orientation, and reading frame of construct.    The DNA sequence of the 

product was confirmed by automated DNA sequencing as previously described 

(BASLAb, Center of Marine Biotechnology).

Expression of recombinant galectin: The recombinant MS15 (rMS15) was 

expressed in E. coli BL21 (DE3) by induction of an actively growing culture with 1 

mM IPTG at an O.D. A600 of 0.6. For negative control, a duplicate culture was grown, 

but not induced with IPTG. Cells from 1 L of culture were harvested after an additional 

six hours of growth by centrifugation and resuspended in 10 mL β-ME/PBS pH 7.4. 

Rapid freeze-thaw using dry ice/ethanol bath was used to lyse cells, and sample was 

sonicated briefly to shear DNA, and cleared by centrifugation at 15,000 rpm, 20 min, 

and 4°C in a Sorvall SS-34 rotor. The cleared lysates were mixed with 5 mL (bed 

volume) lactosyl-sepharose pre-equilibrated in β-ME/PBS and mixed gently at 4oC for 

2 hours. Each batch of slurry was loaded into a separate column and washed once with 
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50 ml β-ME/PBS and twice with 50 ml each β-ME/ [PBS/10]. The bound protein was 

eluted with β-ME/[PBS/10]/0.1 M lactose. To cleave His-tag from protein, rMS15 was 

loaded on 10 mL DEAE-sepharose and washed with 100 mL β-ME/[PBS/10] to 

remove the lactose, and eluted with 20 mL β-ME/PBS/0.5 M NaCl. The eluted protein 

was mixed with 5 mL pre-equilibrated lactosyl-Sepharose, and incubated for one hour. 

Enterokinase (rEK, Invitrogen) was added incubated with slurry, with mixing. Fractions 

at different time points were removed to monitor cleavage. At 16 hours, the slurry was 

loaded in a column and the matrix was washed with 50 mL β-ME/PBS followed by 50 

mL β-ME/ [PBS/10]. The bound protein was eluted with 10 mL β-ME/[PBS/10]/0.1 

lactose and stored on DEAE-sepharose in 1:1 β-ME/[PBS/10]/0.1 M lactose: glycerol 

at -20oC. In later purifications, cleavage with rEK began immediately following first 

step of purification, during initial affinity chromatography step. 

Characterization of expressed galectin: Characterization of rMS-15 began with 

SDS-PAGE to monitor purification steps and cleavage of His-Tag with rEK. 

Purification steps were characterized with 15% SDS-PAGE gels stained with 

Coomassie-R250, and used to locate the purified protein in the unstained portion of 

each gel. Protein was further characterized by western blot and thermal stability.

Sources for sequence data sources for galectins used in analysis: Accession 

numbers for galectin sequences used for analysis of Msgal1 and MS15 are human 

galectin-1, BC020675; chicken 16, NM206905; lizard galectin, P82447; toad galectin, 

P56217; flounder galectin, AF220550; electric eel galectin, P08520; nematode 16, 

NM064814; congerin I and II, AB010276 and AB010277; Japanese eel, BAC67210; 
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catfish, CF261531; killifish, CN983392; Haplochromis (cichlid, BJ702281; Atlantic 

salmon, CK880684 and zebrafish , AW174841, AY421704, and BM182089. Sequences 

for Takifugu and Tetraodon were retrieved from International Fugu Genome 

Consortium, www.fugu-sg.org/project/info.  Tilapia and Atlantic salmon sequences 

were from The Institute for Genome Research, (TIGR) www.tigr.org. 

III.C. Results

Isolation and Characterization of cDNA encoding MS15: cDNA solution 

libraries were created from spleen, skin, and muscle RNA. Primers for actin used to 

confirm quality of libraries. When degenerate primers for Msgal1 were used, one set 

revealed a single band at ~190 bp. Upon sequencing, a 183 bp insert translated to a 61 

amino acid peptide that included sequence from the peptides used to design primers and 

an intervening 47 amino acids. The nucleic acid sequence and its translated amino acid 

sequence aligned with the highly conserved exon III region and protein (respectively) 

of prototype galectins from mammal, bird, and fish. It is this nucleic acid sequence that 

was used for RACE primer design (Table 3.2). 

RACE: The primers originally designed for RACE gave mixed results. The 

primers designed as nested primers gave better and more consistent results (Figure 3.3).  

These nested primers eventually were used to amplify 5’ and 3’ cDNA ends. 5’ RACE 

revealed a 66 bp 5’-UTR, in which the first ATG codon aligns with the first (start) 

methionine of MS15. 3’-RACE revealed a long 500 bp 3’UTR, that ended with a 

predicted polyadenylation site, and at least 16 adenines. The 150 bp overlap of 5’-

RACE and 3’-RACE revealed no mismatches, so the entire cDNA for MS15 was 992 
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bp long, with an open reading frame (ORF) 405 bp in the coding region. 405 bp 

translates to 135 aa with molecular weight of 14,983 Daltons, which is close to the 

predicted size of MS15 based on protein analysis. The continuity of 5’- and 3’- RACE 

was confirmed by sequencing the amplicon generated with the primers

sbfullf1 and sbfullr1. PCR with sbfullf1->sbfullr1 primers yielded a single amplicon 

(Figure 3.4 ) The 426 bp sequence that coded for all the peptide sequences from protein 

analysis, and was 100% match to the aligned RACE products described in III.C.

Translation of full-length cDNA revealed 135 amino acid protein that aligned with 

previously described prototype galectins of animals (Figure 3.5).

Figure 3.3. Amplicons from 3’-RACE 
reactions- RACE6 and AP1 primers were 
used to amplify predicted 3’ end of striped 
bass galectin. Template was AP1-adapted 
striped bass muscle cDNA library. RACE3, a 
downstream (nested) primer, amplifies 
product at predicted size (~45 bp < RACE6-
AP1)   
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predicted experimental

MW (no N-ter 
Met) 14,931.9

15,000 Denatured

30,000 native

pI 5.15 4.7, 4.9, 5.1

Table 3.3. Theoretically Predicted vs experimental values for pI and sub-unit 
molecular weight- Using full-length cDNA translation, MW and pI were theoretically 
predicted using the ProtParam tool at kr.expasy.org. Experimental values were obtained 
from SDS-PAGE, gel permeation chromatography, IEF, and 2-D electrophoresis.

Figure 3.4. Full-length coding region 
amplified from M. saxatilis cDNA libraries.
cDNA libraries were created using oligo-dT 
primers, with RNA from skin, muscle, and 
spleen used as template. Amplicons were ~425 
bp, with 423 bp predicted length. Sequencing of 
amplicons confirmed alignment from RACE 
amplification. Translation yielded 134 aa protein 
that contained all residues from peptide 
sequence.   
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                                                         *   *   * *      
SBGAL 15     MFNGLLIKNMSFKVGQTMTVVGVAKPDASDFAVNVGPDEKDITMHINARFNACGDENVVV
H L-14-I     MAC..VAS.LNL.P.ECLR.R.EVA...KS.VL.L.K.SNNLCL.F.P....H..A.TI.
C-16         MEQ..VVTQLDVQP.ECVK.K.KILS..KG.S....K.SSTLML.F.P..DCH..V.T..
LG-14        --P.ITXTSLHVAP.ARLA.K.DIPAG.KSWVI.L.KG.N..ML.F....D.H..IRTI.
BUFO-I       ASA.VAVT.LNL.P.HCVEIK.SIP..CKG.A..L.E.ASNFLL.F....DLH..V.KI.
PARA         MMKNMM.............II..P....TN..L.I..TDQ..V....P....H....A..
Electro      SM..VVDER....A..NL..K..PSI.STN..I...NSAE.LAL...P..D.H..QQA..
Nema 16   ...PQTPVN.PVQG.SN.ARLRLVLLPTSAD.R.HI.LRTPD-..VL.F....----..GA..
Sponge I  ...V.GD.KLTVP.LT....IE.LY.NP.TGA-LSI.LVTADD.VAL.F.P.Y--SSTGGYL.

              *      *  * *
SBGAL 15     CNSYQGGKWCEEHREGGFPFQQGEEFK---ITIEFTPTEFLVTLSDGSTIHFPNRM--GA
H L-14-1     ...KD..A.GT.Q..AV....P.SVAE---VC.T.DQANLT.K.P..YEFK....L--NL
C-16         ...KED.T.G..D..AD......DKVE---.C.S.DAAEVK.KVPEVEFE ....L--.M
LG-14        ------------------------------------------------------------
BUFO-1       ...KEADA.GS.Q..EV......A.VM---VCF.YQTQKIIIKF.S.DQFS..V.K—-VL
PARA         ....I.RQ....L........L.....---.V.....Q..........I......I--..
Electro      V..F...N.GT.Q.......K...D..---.Q.T.NSE..RII.P...E.....N-----
Nema 16      N..TS..G.QS.D.HAN-....NKIYT---LEFVSNGGIISIFVNGAHFAD.VE.T-—PS
Sponge I     L.TLLN.N.QT.VHPT....PANNVKTRVLVS.TVQEKD..LQVNGIDITT.SY.PGLSY

                                                   % Identity
SBGAL 15     EKYSFINFVGDVRIKSLEIK    --
H L-14-1     .AINYMAAD..FK..CVAFD                      41
C-16         YLAVE..FKV.AIKFS                          39
LG-14        ----------------                          31*
BUFO-1       PSIPFLSLE.LQF-..ITTE                      36
PARA         .....MS.E.EA..R.F...                      74
Electro      ---RYMH.E.EA..Y.I...                      52
Nema 16      HGVHL.EIE.GVHVHSAHVSH                     24
Sponge I     D.VRHITCK.LEHAVL...                       22

Figure 3.5. Complete amino acid sequence from MS-15 . Amino acid sequences 
of other galectins are presented for comparison. These include human galectin-1 (H 
L-14-I), chicken 16 kilodalton galectin (C-16), partial sequence for Podarcis 
hispanica lizard galectin (LG-14), Bufo arenarum toad galectin (Bufo-1), 
Paralichthys olivaceus flounder galectin (Para), Electrophorus electricus
electrolectin (Electro). Identical residues to MS-15 are shown by dots.  Asterisk by 
% identity for LG-14 because calculation is based on partial sequence.
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Table 3.4. Percent identity and similarity to striped bass MS15- The full-length 
coding sequence for MS15 (405 bp) was used for comparison. Some sequences below 
are “predicted’ proto type galectins from genome sequencing projects.

Genus/ 
species

T. r. T. n. M s. P. o. D. r. 
L2

D. r. 
L1

E. e. O.m. S. s. D. r. 
L3

G. a. O. l. C. m
I

C. m 
II

A. j.

Takifugu 
rubripes

100 76
86

73
82

68
82

50 
71

47
65

47
64

42
60

40
60

44
60

44
64

33
44

28
50

30
52

29
50

Tetraodon 
nigroviridis

--
--

100 72
85

65
82

54
75

51
71

48
67

43
62

42
62

44
63

45
63

30
44

29
54

35
58

30
53

Morone 
saxatilis

--
--

--
--

100 74
86

58
77

55
74

51
68

44
61

42
61

46
63

43
60

31
42

32
51

36
58

30
53

Paralichthys 
olivaceus

--
--

--
--

--
--

100 61
77

57
76

54
69

45
63

42
64

45
60

43
60

31
42

28
49

32
55

27
53

Danio rerio
L2

--
--

--
--

--
--

--
--

100 76
87

60
75

45
66

42
65

48
66

47
66

32
45

30
52

34
54

33
54

Danio rerio
L1

--
--

--
--

--
--

--
--

--
--

100 58
73

43
65

42
62

44
62

45
62

29
42

27
51

33
56

32
54

E. electricus --
--

--
--

--
--

--
--

--
--

--
--

100 40
60

39
60

43
62

45
63

30
42

29
51

33
55

28
49

O. mykiss --
--

--
--

--
--

--
--

--
--

--
--

--
--

100 93
97

59
69

56
72

42
49

25
47

30
50

28
49

Salmo salar --
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

100 60
70

54
72

42
50

25
47

31
50

29
47

Danio rerio 
L3

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

100 50
70

39
47

28
54

36
55

30
52

Gasterosteus 
aculeatus

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

100 48
58

29
50

30
53

31
50

Oryzias 
latipes

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

100 23
39

23
39

23
35

Conger 
myriaster I

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

100 45
71

29
52

Conger 
myriaster II

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

100 38
55

Anguilla 
japonica

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-- 
--

--
--

100
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Analysis of Msgal1 cDNA: Table shows the results of calculations for molecular 

weight, pI, grand average of hydropathicity (GRAVY), and estimated half-life with and 

without N-terminal methionine, and with and without N-terminal cleavage and 

deamidation. Signal P detected no signal peptide cleavage sites (Figure 3.6). 

Predictions for phosphorylation revealed by NetPhos were four sites in the C-terminus 

of the protein. All four sites had confidence scores over 0.800, on a scale from 0.000 to 

1.000 (Figure 3.7). NetOGlyc and NetNGlyc, for prediction of O-GalNAc (mucin type) 

and N-glycosylation sites, detected no sites with sufficiently high levels of confidence 

(Figure 3.8, 3.9). This, combined with no signal sequence, and no differences between 

calculated and experimental molecular weight, supports the idea that this galectin is not 

glycosylated. 

Figure 3.6. Analysis for signal sequence, using SignalP 3.0 Server at Expasy.org:
The prediction was that MS15 is a non-secretory protein, with a probability of having a 
signal peptide at 0.002.
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Serine predictions
Name                      Pos       Context         Score   Pred
_________________________v_________________
Sequence        11   IKNMSFKVG  0.487    .
Sequence        29   KPDASDFAV  0.015    .
Sequence        63   VVCNSYQGG  0.044    .
Sequence       102   LVTLSDGST  0.408    .
Sequence       105   LSDGSTIHF  0.823  *S*
Sequence       119   AEKYSFINF  0.206    .
Sequence       131   VRIKSLEIK  0.827  *S*
_________________________^_________________

Threonine predictions
Name                      Pos        Context        Score    Pred
_________________________v_________________
Sequence        17   KVGQTMTVV  0.280    .
Sequence        19   GQTMTVVGV  0.514  *T*
Sequence        43   EKDITMHIN  0.012    .
Sequence        89   EFKITIEFT  0.064    .
Sequence        93   TIEFTPTEF  0.841  *T*
Sequence        95   EFTPTEFLV  0.253    .
Sequence       100   EFLVTLSDG  0.100    .
Sequence       106   SDGSTIHFP  0.026    .
_________________________^_________________

Tyrosine predictions
Name                     Pos        Context         Score    Pred
_________________________v_________________
Sequence        64   VCNSYQGGK  0.101    .
Sequence       118   GAEKYSFIN  0.859  *Y*
_________________________^_________________

Figure 3.7. Prediction of MS15 phosphorylation- Using the Net-Phos program at 
the EXPASY server, potential sites of phosphorylation were identified in the primary 
structure of MS15. Scores over 0.500 represented strong potential for phosphorylation.
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Figure 3.8. Predicted N-glycosylation sites in MS15- Site of N-glycosylation is 
predicted at position 8 (NMSF) of MS15, though if secreted in non-classical manner, 
MS15 would not be exposed to N-glycosylation machinery. There are no predicted O-
glycosylation sites (NetOGlyc 3.1 Server and YingOYang 1.2 Prediction Server, 
expasy.org)

Figure 3.9. Predicted O-glycosylation sites in MS15- Graphical output of scoring O-
glycosylation shows many potential sites, but both general prediction scores and 
isolated site scores are well below 0.500 confidence level. There are no predicted O-
glycosylation sites in MS15, (NetOGlyc 3.1 Server and YingOYang 1.2 Prediction 
Server, expasy.org).
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Additional evidence is found in the peptide sequencing of this gene product. 

Residues modified by glycosylation and phosphorylation will give a “blank” cycle 

during sequencing. All predicted sites of glycosylation and phosphorylation were 

within the sequenced peptides, except for serine 130 near the C-terminus. Therefore, 

they could not have been modified. Comparisons were made between bovine galectin-1 

and MS15 to see if there was theoretical support for results in homology modeling. 

Hydropathy plots (Figure 3.10) show how similar the hydrophobic and     

A

B

hydrophilic regions are  for both proteins, even with the difference in primary structure. 

beta sheet prediction results (Figure 3.11) show a  very similar pattern. The crystal 

Figure 3.10. Hydrophobicity 
plot for MS15 vs. bovine 
galectin-1: Bovine galectin-1 
(A) and MS15 (B) were 
submitted to Protparam at the 
Expasy server for 
hydrophobicity analysis of 
their primary structure, using 
the Kyte& Doolittle 
algorithm. Position 50-80 
approximates the amino acids 
involved in the carbohydrate-
binding cleft. Both proteins 
are similar in this region. 
MS15 has regions of greater 
hydrophobicity (N- and C-
termini, F3 strand) and less 
hydrophobicity (F2 and F4 
strands). Interestingly, these 
strands are on the opposite 
side of the binding site, and 
have been implicated in non-
carbohydrate dependent 
activities. 
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structure of bovine galectin-1 (Liao, et al., 1994) confirmed the secondary structure 

predictions of the Chou-Fasman equations, at least for that protein. These two 

predictors of structure, coupled with what is known about the structure of bovine 

galectin-1, gives support to the use of this mammalian galectin as a template for 

homology modeling. 

A

B

Homology modeling of MS15: Using previously describe galectins that have 

had their structure solved by diffraction, a model for MS15 was obtained from the

SWISS-Model server. Probabilities of modeling accuracy were considered (Table 3.5), 

and bovine galectin-1, congerin II, and chicken 16 galectin were used because of 

Figure 3.11. Prediction of 
beta sheet plot for MS15 
vs. bovine galectin-1- 
Bovine galectin-1 (A) and 
MS15 (B) were submitted to 
Protparam at the Expasy 
server for beta sheet 
prediction based on primary 
structure, using the Chou & 
Fasman algorithm. Though 
there are regions of stronger 
prediction for beta sheets in 
one protein or the other, 
both appear to have the 
same number and location 
of predicted sheets. 
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similarity of primary structure, and because these represent mammal, bird, and fish 

galectins.  Bovine galectin-1 generated the model that was most correct and accurate 

(Figure 3.14, 3.15). The theoretical model of MS15 was analyzed for correctness (bond 

angles/lengths, non-covalent contacts, surface hydrophobic residues) and accuracy 

(how well it fits the template), and the model was examined for how well it supported 

the biochemical data collected to date. 

Table 3.5. Probabilities of SWISS-MODEL accuracy for target-template identity 
classes

Percent 
sequence 
identitya

Total 
number of 
modelsb

Percentc

models 
with 
rmsd 
lower 

than 1 Å

Percent 
models 

with rmsd 
lower than 

2 Å

Percent 
models 

with rmsd 
lower than 

3 Å

Percent 
models 

with rmsd 
lower than 

4 Å

Percent 
models 

with rmsd 
lower than 

5 Å

Percent 
models 

with rmsd 
higher 

than 5 Å

25-29 125 0 10 30 46 67 33

30-39 222 0 18 45 66 77 23

40-49 156 9 44 63 78 91 9

50-59 155 18 55 79 86 91 9

60-69 145 38 72 85 91 92 8

70-79 137 42 71 82 85 88 12

80-89 173 45 79 86 94 95 5

90-95 88 59 78 83 86 91 9

a: Range of sequence identity between target and template sequence.
b: Total number of models in any given class of sequence identity. The table summarises 1201 model –
control structure pairs.
c: Probability in percent that a model, sharing X% sequence identity with its template, deviates by 1 Å or 
less from the corresponding experimental control structure. The following columns provide these 
probabilities for other rms deviations.                     Table courtesy of “swissmodel.expasy.org”



79

Isolation and characterization of genomic DNA containing Msgal1:

Southern blot with genomic DNA:  Southern blot analysis of striped bass genomic 

DNA following restriction digest reveals a single copy gene detected by a 200 bp 

probe directed at Exon III of Msgal1, which encodes the conserved residues of the 

carbohydrate binding site of proto type galectins (Figure 3.12). The stringency chosen 

for this blot should have detected other galectin genes that were within 40% identity.

Figure 3.12. Genomic 
Southern blot of 
Msgal1.  M. saxatilis
genomic DNA was cut 
as follows: lane 1, 
BamHI cut; lane 2, XbaI 
cut; lane 3, SspI cut. The 
probe used is 190 bp M. 
saxatilis galectin exon 
III PCR product . 
Migration of DNA size 
markers is noted.
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Amplification of 5’ upstream region, 3’ downstream region, and introns of 

Msgal1: The gene organization of MS15 is similar to that elucidated in human, mouse, 

and chicken prototype galectins (Figure 3). There are 4 exons and three introns, all with 

canonical exon/intron boundaries of (GT/AC). The sizes of the exons are 9 bp, 81 bp, 

171 bp, and 147 bp for exons I-IV, respectively. The sizes of the introns are 2000 bp, 

871 bp, and 425 bp for introns I-III, respectively. Not shown is the genomic amplicon 

from start of exon I to predicted stop codon in

Figure 3.13. Genomic organization of Msgal1 compared to other prototype 
galectins- 1600 bp upstream sequence not included for M. saxatilis, to simplify 
comparison. Human and chicken galectins were sequenced as known genes. Zebrafish 
was sequenced as a known gene, confirmed in the zebrafish genome project. The two 
pufferfish galectins were retrieved from recent genomic databases for these organisms. 
Exons and introns are not to scale.
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Figure 3.14. Analysis of protein surface, charge and cysteines conservation 
with homology model- 15-kDa galectin modeled to Bos taurus galectin-1. A. B.taurus 
galectin-1 was crystallized with N-acetyllactosomine. B. taurus galectin is green, M. 
saxatilis is yellow. Side chains relevant to carbohydrate binding and conserved 
throughout galectins are seen in binding cleft. B. Relative positions of 6 conserved 
cysteines in mammalian galectin (green) vs. 3 cysteines in MS15 (yellow) C. 
Electrostatic potential map of MS15, forming a characteristic anisotropic electric field 
protruding into the surrounding solvent. Molecular view is rotated 90o around x-axis to 
see “back” of molecule. D. Electrostatic potential map of MS15 computed at molecular 
surface and viewed into the carbohydrate-binding site. Blue and red indicate positive 
and negative electrostatic potentials respectively. The bound LacNAc moiety is shown 
in stick representation in violet.

A B

C D
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Figure 3.15. Canonical galectin-1 side chains, involved in ligand 
interactions and CRD architecture. Red arrow points to only difference 
between MS-15 and bovine galectin-1 conserved residues. MS-15 possesses 
Asp at position 29, similar to mammalian galectin-3. GAL and NAG label the 
galactose and N-acetylglucosamine moieties of the bound LacNAc from the 
bovine galectin-1 resolved structure. 
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Figure 3.16. Homology models of 
M. saxatilis 15 kDa galectin using 
Bos taurus galectin-1- Following 
elucidation of MS15 primary 
structure, sequence was submitted to 
SWISS-Model with bovinegalectin-1 
structure as a template. MS15 is 
shown in yellow, bovine galectin-1 in 
blue, and N-acetyllactosamine in 
green. .A, model shows N-and C-
termini (dimer interface) to the right, 
and the binding cleft running left to 
right across subunit. B, looking down 
binding cleft, with N- and C-termini 
at far end. Note beta sheet folding in 
the structure, and loops at binding site 
extend to create pocket. C,  180o

rotation from A, the three loops seen 
at top of  “back” of some galectins 
are being implicated in non-
carbohydrate binding activities. The 
four beta strands forming this sheet 
exhibit the greatest differences in 
primary structure, charge, and 
hydrophobicity, between mammalian 
galectin-1 and MS15.
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Exon IV, which yielded a product of about 3,700 bp, which matched the predicted gene 

size. This amplicon also yielded products of predicted sizes with nested primers. 

     Analysis performed on upstream regions of Msgal1 by automated searches for 

transcription factors (TFAC) identified numerous potential control elements. The same 

search performed on the introns suggested the presence of control elements in Intron I 

regions. The sequence downstream of the predicted stop codon, both transcribed (500 

bp) and non-transcribed (500bp genomic beyond poly A signal) revealed a predicted 

polyadenylation signal and a weak T/GT-rich region.

Expression and characterization of rMS15: Sequencing of the pET30: MS15 

construct showed that Msgal1 was in frame with the start codon of the vector, and that 

the stop codon of Msgal1 was present and in frame. Active rMS15 was expressed in E. 

coli using an IPTG-induced construct. No protein was recovered in the supernatant of 

the culture broth, the periplasm of the bacteria, or in inclusion bodies, or in the control 

culture (no induction). The need of MS15 for a reducing environment appears to be met 

in the reducing interior of the bacteria. Following induction and lyses, active MS15 was 

purified in one step by affinity chromatography with lactosyl-Sepharose (Figure 3.17). 

Cleavage of protein tags introduced by the vector was accomplished by incubating 

lactosyl-Sepharose bound rMS15 with rEK for 16 hours, washing to remove enzyme 

and cleaved tags, and eluting rMS15 with lactose. SDS-PAGE revealed a highly 

expressed protein in the cytoplasm of E. coli transformed with the pET30: MS15 

construct and induced with IPTG. This protein was about 19.5 kDa, which matched the 

predicted size of MS15 with an N-terminal S- and His-tag.
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Following cleavage with enterokinase, rMS15 migrated the same as native MS15 in a 

15 % SDS-PAGE gel.

Western blot with anti-striped bass muscle galectin detected rMS15 and native 

MS15 suggest maintenance of epitopes (primary through tertiary structure) during 

production of recombinant. Thermostability of rMS15 was the same as MS15 from both 

striped bass muscle and striped bass skin. This also supports the conclusion that this 

recombinant protein folded properly following expression in bacteria.   

Figure 3.17. Enterokinase treatment of rMS15-Supernatant of lysed bacterial 
culture (IPTG-induced) containing recombinant galectin was mixed with 
lactosyl-Sepharose, washed, and enterokinase was added to bound protein: 
matrix. Cleavage was monitored at various time points by SDS-PAGE, until no 
19 kDa protein was detected. Bound protein was washed to remove enzyme and 
unbound cleavage products, and eluted with PBS/lactose.
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III.D. DISCUSSION

Results of degenerate PCR and RACE using material from striped bass revealed 

a complete coding region for a prototype galectin. Sequence similarity between the 

translated nucleotide sequence and known prototype galectins strongly support the 

conclusions founded on the biochemical characterization of MS15. Sequences for fish 

prototype galectins have been determined in electric eel, Electrophorus electricus

(Paroutaud et al., 1987); Japanese eel Anguilla japonica (Tasumi, et al., 2004); Conger 

eel Conger myriaster (Ogawa and Ishii, 1999; Muramoto and Kamiya, 1992); bastard 

flounder Paralichthys olivaceus (Lee, et al., unpublished); zebrafish Danio rerio

(Ahmed, et al., 2004); cichlid Haplochromis sp. (Watanabe, et al., unpublished) and 

can be found in the databases of various genome sequencing projects, such as catfish 

Ictalurus punctatus, medaka Oryzias latipes and rainbow trout Oncorrhynchus mykiss

(The Institute for Genome Research, www.tigr.org);  Japanese pufferfish Takifugu 

rubripes and the green spotted pufferfish Tetraodon nigroviridis, (International Fugu 

Genome Consortium, www.fugu-sg.org/project/info; Center for Genome Research, 

genome.jgi-psf.org/fugu), zebrafish Danio rerio (Sanger Institute, Strausberg); and the 

stickleback Gasterosteus aculeatus (Stanford Genome Evolution Center). All of these 

were used in the analysis of MS15.  

Primary structure for galectins have been determined in species other than fish 

and mammals, including chicken C16 (Sakakura, et al., 1990), chicken galectin-3 

(Nurminskaya and Linsenmayer, unpublished), toad galectin (Ahmed, et al.,, 1996b) 

frog Xgalectins (Marshal, et al., 1992; Shoji, et al., 2003), tunicate galectin (Oleary, 

2003); nematode galectins (Hirabayashi et al., 1992, 1996; Klion and Donelson, 1994), 
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marine sponge galectins (Pfeifer et al., 1993), and fungus galectins (Cooper et al., 

1997). The cDNA sequence (Figure 3.5) and genomic organization (Figure 3.13) of 

striped bass 15 -kDa galectin, called Msgal1, is similar to the proto type galectins 

mentioned above. The percent identity/ similarity is quite high for some other teleosts 

(bastard flounder, 74%/86%; pufferfish, 73%/82%). The resulting translation showed 

no coding for a leader sequence, and there was no evidence for alternative splicing 

events. The amino acid translation aligns with all the peptides previously sequenced 

from trypsin digested MS15, and with the results of N-terminal sequencing of the 

truncated MS15 from striped bass muscle. The only conflicting data was seen in the 

peptide that began with WEE, which translated from repeated nucleic acid sequencing 

as WCE. The coding region for these amino acids has been bidirectionally sequenced 

several times, and always the results code for WCE.  Comparison with other prototype 

galectins from teleosts P. olivaceus, F. rupribes, and D. rerio showed all share WCE, 

and T. nigroviridis has WCG. In teleosts, to date, only congerin I from C. myriaster has 

a glutamic acid following this tryptophan (WET). Technically, Cys must be modified 

prior to sequencing, and modified Cys may co-elute with other residues, giving an 

inaccurate molecular weight during sequencing.  Considering these points, WCE is 

being accepted as the true native primary structure. The other unusual result was found, 

coincidently, in another cysteines. Mammalian galectin-1 has a histidine at position 52, 

and many proto type galectins in other organisms share this conserved amino acid. This 

includes most of the teleost galectins. Substitution or deletion of this His has been 

attributed to variations in fine carbohydrate specificity (Ahmed, et al., 1994, 1996a). 

MS15 has a cysteine substituting the histidine at this position. From a DNA point of 
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view (mutation), this represents a major change- CAC/T to TGC/T. From a protein 

point of view (functional), cysteines and histidines are frequently found in active and 

metal-binding sites, often substituting for each other (Betts and Russell, 2003). 

Mutational studies involving cysteine and histidine have shown little change in activity 

of proteins (Golinelli, et al., 1999; Núria, et al., 1999). The difference lies in cysteines 

present in intra- vs. extracellular proteins. Intracellularly cysteines behave as a small, 

neutral residue. Extracellularly, cysteines are frequently involved with disulphide 

bonds.  Regarding galectins, instability without bound ligand in an oxidizing 

environment has been attributed to intramolecular disulphide bonds (Tracey, et al., 

1992) and tryptophan oxidation (Levi and Teichburg, 1981). With the overall relative 

specificity of MS15 being quite similar to mammalian galectin-1 (Chapter II), perhaps 

cysteine 52 represents a modification to control extracellular activity rather than 

specificity. 

In part to address these differences, homology modeling was employed. 

Homology modeling provided a 3-D structure that, due to conservation of the protein, 

permitted high confidence in the model. There are two criteria to determine quality of a 

“theoretical” protein model. First, the correctness of a model is essentially dictated by 

the quality of the sequence alignment used to guide the modeling process. Second, the 

accuracy of a model is essentially limited by the deviation of the used template 

structure(s), which deviate 0.5 to 1.5 Å from different structures of the same protein. 

Once modeled, residues that are thought to contribute to an extended binding site in 

galectin-3 are similar and/or identical to those of MS15. For modeling MS15 on bovine 

galectin-1, the software performed the sequence alignment, and MS15 was threaded 
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onto the template. Following energy minimization 

It has been proposed that the entire CRD of galectins are involved establishing 

the carbohydrate binding site (Abbott and Feizi, 1991). More recent analysis, using 

mutagenesis, suggests that loss of function due to substitutions or deletions of N- and/or 

C-termini (Cho and Cummings, 1996) is due to weaker binding by monomer vs. dimer 

(avidity), and not due to altered conformation of the carbohydrate-binding site. 

Therefore, conservation of primary structure of binding site may relate to conserved 

function, while divergence in the N- and C-termini may represent less evolutionary 

pressure in these regions of the protein. What are obvious in the N- and C-termini are 

the highly conserved phenylalanines and glycines that contribute to the beta-sheet and 

beta–turns of galectins.  An exception to this is seen in Conger eel galectins congerin I 

and II, where the exons coding for the N- and C-termini appear to have diverged 

rapidly under positive pressure to create an extended binding site and strand swapping 

potential at the dimer interface, setting it apart from other fish galectins (Shirai, et al., 

1999). With this in mind, comparisons were made between translations of Msgal1exon 

III, which codes for the carbohydrate binding site, and complete primary structure of 

prototype galectins. Using BLAST to search through the Fugu genomic database, nine 

predicted proteins were retrieved, with six being ~130 amino acids and three being 

~300 amino acids. Of the six ~130 aa proteins from Fugu, percent identities for 

translated exon III and complete coding sequences range from 33/27% to 82/77%, 

respectively.  Of the three Danio proto type galectins identified to date, percent 

identities are 48/63%, 56/56%, and 54/60%, respectively. With the Fugu sequences, 

percent identity of exon III’s correlated with percent identities of the complete coding 
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region. This was not the case with Danio, where an inverse relationship was noted. It 

has been suggested that with multiple prototype galectins present, some genes may 

evolve at an accelerated rate due to removal of functional constraints (Ahmed, et al., 

1996). With only one prototype galectin known to date in striped bass, comparisons of 

rates of gene mutations is impossible. The genomic sequencing of Takifugu, Tetraodon,

Danio, and other fish, coupled with the presence of multiple galectin genes in each 

organism, will be more useful as models for this type of analysis. 

Though some other species appear to have alternatively spliced transcript 

variants (Wada and Kanwar, 1997; Moisan, et al., 2002), and others possess paralogous 

galectins, no other galectin sequences were revealed in the selected cDNA libraries, in 

the southern blot analysis, or in the genomic sequencing results. This does not mean 

they do not exist, but merely that paralogous prototype galectins in striped bass may be 

expressed in a spatially and/ or temporally controlled manner, and have not been 

revealed under the conditions used to date. 

Table 3.6. Conservation of start, intron/exon boundaries, and stop site in Msgal1

start exon/intron intron/exon lariat stop
consensus C/TATGG/

A
(C/A)AG*GT(G/A)A

GT
C/T-AG*G YNYYRACY9N AG* TA/GA/G

Start  CATGTT ------------ ----------- -------------- --------

intron I --------
-

AAT*GTAAGT TTCTCCACAG*G CGCTACCCCCTCTC
CTN14AG*

--------

intron II --------
-

AGA*GTAAAT TGTTCCGCAG*T CAATAACGTGCTGT
TTCN28AG*

--------

intron III --------
-

AAG*GTGAGA TACAATCAAG*A TGCATATTCTTCCC
CTN35 AG*

--------

stop --------
-

------------ ------------ -------------- AATAAACC

The majority of eukaryotic mRNAs are polyadenylated. There are three cis-acting 

elements that involved in this process: the polyadenylation signal, with a the consensus 
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sequence of AATAAA, which lies 6-30 bp upstream of the polyadenylation site 

(Fitzgerald and Shenk, 1981; Proudfoot and Brownlee, 1976); the poly A+ addition 

site, which is usually occupied by an adenosine and often follows a cytosine (Moore et 

al., 1986; Sheets et al., 1987 ); and a downstream U or GU-rich region (Fitzgerald and 

Shenk, 1981;  Gil and Proudfoot, 1984; Sadofsky et al., 1985) . The 5’-UTR of 

eukaryotes possesses a short sequence called Kozak sequence (GCC) GCCRCCATGG 

(Table 3.7), where R is a purine and which includes the ATG start site (Kozak, 1987). 

Analysis of Msgal1 reveals a 43 bp long 5’-UTR, with (TCT)GCAATCATGT) present 

in place of the Kozak sequence. The underlined bases match the consensus sequence. 

The single most important residue in this sequence is the A at -3 (Kozak, 1986), and 

this is found in the Msgal1 5’-UTR. A BLAST search with UTR revealed hits with up 

to 28 bp at 100%, but these were from partially annotated BAC clones and genomic 

fragments, and no UTR’s of galectins. On the other end, the 3’-UTR, from the end of 

the stop codon to the poly A+ tail, is 502 bp. The poly A+ site of Msgal1 has a weak 

similarity to the “canonical” site of vertebrates. The polyadenylation signal is 

ATTAAA vs., AATAAA, but ATTAAA has been found to be only slightly less 

efficient as a signal. Approximately 30 bp downstream of the polyadenylation signal 

there is an increase in G and T, but no strong GT dinucleotide pattern. In the 3’ UTR 

there are extended stretches that match well with Paralychthys galectin 3’ UTR, but no 

other galectin analyzed to date. Phylogenetic analysis of MS15 was performed using 

ClustalW software, and included representative prototype galectins from mammals, 

birds, fish, and tunicates. Analysis was also done with MS15 vs. all available fish 

galectin 
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Table 3.7. Conservation of Kozak and polyadenylation sites- the consensus 
sequence for translation initiation is GCCACCATGG, where the A in the bold ATG 
start codon is coordinate 1 and the A at position –3 (italicized) could also be a G 
(Kozak, 1987a). Functional studies on preproinsulin and alpha-globin translation in 
cells indicated that a purine (usually A) in position -3 is crucial for efficient initiation of 
translation, and in its absence, a G at position +4 is essential (Kozak, 1989). 

galectin cDNA sequence Kozak poly A site
consensus CCAGCCATG(G) AATAAA

Msgal1 (fish) GCAATCATGTTT ATTAAA
Lgals1 (human) TCAATCATGGCT AATAAA
Lgals1 (mouse) TCAATCATGGCC AATAAA
Lgals1 (cow) CCAATCATGGCT AATAAA

C-16 (chicken) GGCATCATGGAG AATAAA
Pogal1 (fish) GCAAAAATGATG ATTAAA
AJL-1 (fish) GCCAAGATGGAT AATAAA
pCon I (fish) GCCAAGATGAGT AATAAA
pCon II (fish) GCCAAGATGAGT AATAAA
Trgal1 (fish) CCATAGATGATT ATTAAA
Trgal2 (fish) ******ATGACC ATTAAA

sequences. The sequences used for comparison are from genome sequences and cDNA 

sequences found deposited in GenBank and at genome databases of TIGR and HGMP 

Resource Centre (Fugu Genomics Group). The phylogenetic trees were generated using 

the ClustalW program. The program uses the NJ (Neighbor Joining) method of Saitou 

and Nei (1987). First, distances are calculated (percent divergence) between all pairs of 

sequence from a multiple alignment; the NJ method is applied to the distance matrix. 

The phylogenetic tree (Figure 3.18) shows that although there is a close relationship 

among all of the galectins, the teleost galectins are removed from the tight group 

formed by mammals, birds, and amphibians, and MS15 clusters with teleosts.

Specifically, MS15 cluster closely with bastard flounder, green-spotted pufferfish, and 
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the Japanese pufferfish.  Slightly more distant is electric eel and two of three zebrafish 

prototype galectins. The galectins of salmonids, stickleback fish, and the anguillids are 

as distant as the mammalian and bird proto type galectins. Phylogenetic analyses of 

prototype galectins of teleosts match current taxonomy to the level of order in most of 

the species analyzed. The Order Anguilliformes group together, as do the Superorder 

Percomorpha and the Order Salmoniformes. The exceptions are the galectins of 

medaka, stickleback (both Percomorpha) and Drgal1-L3 from zebrafish 

(Cypriniformes) groups with the Order Salmoniformes. With the proposed genomic 

duplication events in teleosts, it is possible that these species possessed multiple

prototype galectins, and it is the products of extant paralogous galectin genes that are 

being analyzed, rather than orthologues. Evolutionary relatedness must be confirmed 

either by experimental evidence for evolutionary history or experimental establishment 

of similar function. 

Southern blot analysis with several restriction enzymes and a probe that directed 

to the highly conserved exon III of proto type galectins revealed only one copy of the 

Msgal1. The formula for determining the Tm of the probe fragment is: 

Tm = 69.3°C + 0.41[%(G+C)] - 650/l, where l = the length (in nucleotides) of the 

probe. Therefore, Tm for the Exon III probe is 69.3 +0.41 (50)-650/186=69.3+20.5-

3.5=86.3. High stringency conditions would therefore consist of hybridization 

temperatures above 74.5oC. Though many factors contribute to hybridization, probe: 

target identity as low as 40% should theoretically hybridize. This degree of identity is 

well within the range of paralogous galectin genes in other organisms. Therefore, this 
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Figure 3.18. Phylogenetic Analysis: MS15 vs. proto, chimera and tandem 
repeat galectins- ClustalW (1.81)  multiple sequence alignment tool was 
used to generate an amino acid alignment and Neighbor Joining method to 
generate a rooted phylogeny tree.  135 amino acids were used from MS15. 
M. saxatilis is outlined in gray. Proto type, chimera, and tandem repeat fall 
into distinct groups, with MS15 grouping with other proto type galectins. 
Bootstrap values are not provided by ClustalW server.
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C.myriaster I -MSGGLQVKNFDFTVGKFLTVGGFINNSPQRFSVNVGESMNSLSLHLDHRFNYGADQNTI
C.myriaster II -MSDRAEVRNIPFKLGMYLTVGGVVNSNATRFSINVGESTDSIAMHMDHRFSYGADQNVL
A.japonica      --MDFVEVKNLIMKSGMELKVNGVFNANPERFSINVGHSTEEIAVHVDVRFSYLSDKRQL
O.mykiss I --MSGVVVKNMSFKVGQTLTITGIPNSEATHFVINVGNSEDDLALHMNPRFDAHGDTRAV
O.nerca         --MSGVVVKNMSFKVGQTLTITGIPNSEATHFVINVGNSEDDLALHMNPRFDAHGDTRAV
S.salar I --MSGVVVKNMSFKLGQTLTITGIPNSEATHFVINVGNSEDDIALHMNPRFDAHGDTRAV
D.rerio L2 --MAGVLIQNMSFKVGQALTITGVPKPDSTNFAINIGHSPEDIALHMNPRFDAHGDQCTI
D.rerio L1 -MHETVLIQNMAFKAGQTLTLTGVPKSESSEFKINIGNSSEDIALHINPRFDAHGDQCII
E.electricus         MSMNGVVDERMSFKAGQNLTVKGVPSIDSTNFAINVGNSAEDLALHINPRFDAHGDQQAV
T.rubripes           MIKSGMSIKNMSFKVGQTMTIVGVTTPNPSDFAVNVCQNEQEITMHLNARFNAHGDENKV
T.nigroviridis  -MIQGLIVKNMSFKVGQTMTIVGVPSPDASKFAINICQNEQEITMHFNARFNAHGDENKV
M.saxatilis     -MFNGLLIKNMSFKVGQTMTVVGVAKPDASDFAVNVGPDEKDITMHINARFNACGDENVV
F.heteroclitus  -MMKGMIIKNMSFKVGQTLTIIGVAKPDATDFAVNIGPDEQDITLHVNPRFNAHGDENVV
P.olivaceus     -MMKNMMIKNMSFKVGQTMTIIGVPKPDATNFALNIGPTDQDIVMHINPRFNAHGDENAV
Haplochromis sp -MNNGMFVKNMSFKVGQTLTVVGVAKPEAGDFAVNIGPGEDTIAFHLNPRFNAHGDSNII
I.punctatus I ---MVFTVKDMTFKAGQELTISGPPKSGCSLFSINIGHDADNIALHFNPRFNYKSDSNII
D.rerio L3 ---MVFTIKDMSFKAGMEMKISGKVKPGCDAFSINIGHDDDAIALHFNPRFNAHGDSNTI
O.mykiss II ---MTFRVENMSFKQGQEMTFTGKTKSGASNFTINIGHDSDNYALHFNPRFSHG----HI
S.salar II ---MPFRVEEMSFKQGQEMTFTGKTKSGASSFSINIGHDSDNYALHFNPRFSHG----QI
G.aculeatus     -------VKNMTFKEGQEFKVRIRPQDSCSSFAINIGHDSENVAMHFNARFDCQGDTNTI
I.punctatus II ---------------GKNISIQGVVYPHASRFSINLRHRN-GIAFHYNPRFDEN----LV

                    *  :..          * :*:        .* : **.       :

C.myriaster I VMNSTLKGDNGWETEQRSTNFTLSAGQYFEITLSYDINKFYIDILDGPNLEFPNRYSKE-
C.myriaster II VLN-SLVHNVGWQQEERSKKFPFTKGDHFQTTITFDTHTFYIQLSNGETVEFPNRNKDA-
A.japonica           IIN--HKTGDAWQEEQRDARFPFTAGQAFQVSVVFNFDTFDIYLPDGQVAHFTNHLGAQ-
O.mykiss I VCN--SYHGGKWCEEHREGGFPFNQGEEFKINITFTKEQFLVSFPDGSEIHFPNRQGDE-
O.nerca              VCN--SYHGGKWCEEHREGGFPFNQGEEFKINITFTKEQFLVSFPDGSEIHFPNRQGDE-
S.salar I VCN--SYHGGKWCEEHREGGFPFNQGEEFKINITFTKEQFLVSLPDGSEIHFPNRQGDE-
D.rerio L2 VCN--SFQSGSWCEEHRDDNFPFIQDKEFQIKITFTNEEFLVTLPDGSEIHFPNRQGSE-
D.rerio L1 VCN--TFQNDCWCEEHRETNFPFVQGEEFQIKITFTNEEFLVTLPDDSEIHFPNRQGSE-
E.electricus    VVN--SFQGGNWGTEQREGGFPFKQGEDFKIQITFNSEEFRIILPDGSEIHFPNN-----
T.rubripes           VCN--SYLGGKWCEEVREGGFPFQQGEEFKMVIEFTPAEFLVKLSDGSVIRFPNRMAAE-
T.nigroviridis       VCN--SYQGGNWCGEVREGGFPFRQGEEFQMTIEFTPAEFFVKLSDGSVIHFPNRVGAE-
M.saxatilis          VCN--SYQGGKWCEEHREGGFPFQQGEEFKITIEFTPTEFLVTLSDGSTIHFPNRMGAE-
F.heteroclitus       VCN--SYEGGNWCEEVREGGFPFQQGQEFKITIEFTPAEFVVTLSDGSTIHFANRLGAE-
P.olivaceus          VCN--SYIGRQWCEELREGGFPFQLGEEFKIVIEFTPQEFLVTLSDGSIIHFPNRIGAE-
Haplochromis sp      VCN--SFEGGNWCQEQREQSFPFSLGQEFKTSIEFTPSEFVVTLQDGSTFRFPNRVGAE-
I.punctatus I ICN--SNQGG-WGQEQREHSFPPDQDESFKVVFTFNNDQFYIKLPNGTMLSFPNRFGDD-
D.rerio L3 VCN--SKQGG-WGSEHREHCFPFQQGEEFKLSITFNNETFYIKLPEGTMMSFPNRFGDD-
O.mykiss II VCN--SLSGGSWGDELKEGHFPFQDGEQFKLVLNFTNEQFYIKLPDGHMMDFPNRLGDC-
S.salar II VCN--SLSGGSWGDEFKEGHFPFQDGEQFKLVLNFTNEQFYIKLPDGHMMDFPNRLGDC-
G.aculeatus          VFN--SLSGGSWGDELREGNFPFVRGEECKFHINFNNEQFYIKLPDGSMLNFPNRLGDV-
I.punctatus II VRN--TQTVENWGSEERSGGMPFQKGQNFQIIISCNPHHYNVFVNGNQVHTYNHRFTRLN

     : *        *  * :.  :.   ..  :  .      : : .  .    : :.     

C.myriaster I      FLPFLSLAGDARLTLVKE---------
C.myriaster II      AFNLIYLAGDARLTFVRLE--------
A.japonica           EYKYIFFVGDATVKNISVNVADKPTKR
O.mykiss I     KYKYMHFEGDVRIQGVEIK--------
O.nerca      KYKYMHFEGDVRIQGFEIK--------
S.salar I      KYKYMHFEGDVRIQGVEIK--------
D.rerio L2      KYKYMYFEGEVRIQGVEIK--------
D.rerio L1      KYKYMHFEGQARIQGIEVK--------
E.electricus    --RYMHFEGEARIYSIEIK--------
T.rubripes           KYAFFSFDGDLRIKSIGIK--------
T.nigroviridis       KYALLNFDGDVRIKGIRI---------
M.saxatilis          KYSFINFVGDVRIKSLEIK--------
F.heteroclitus       KYSVISFDGESRIQTVEIK--------
P.olivaceus     KYSFMSFEGEARIRSFEIK--------
Haplochromis sp      KYSARNFDGDARIRSIDIK--------
I.punctatus I      GFKHIDVQGDVKVQGIKIK--------
D.rerio L3      AFTHVHVKGDVKIISVKAK--------
O.mykiss II      KYKHIMVDGDVKVISFKIK--------
S.salar II      KYNHIMVDGDVKVISFKVK--------
G.aculeatus          KYQYFDVSGEARIVGIKIK--------
I.punctatus II      EIDILELSGDLNLTAV-----------

           . *:  :  .           

Figure 3.19. Phylogenetic Analysis: 
MS15 vs. fish prototype galectins -
CLUSTAL W (1.81) multiple sequence 
alignment tool was used to generate an 
amino acid alignment using sequences 
from both published and unpublished 
sources. Dark gray bars mark the 
conserved residues involved in 
carbohydrate specificity most similar to 
mammalian galectin-1. The light gray 
is conserved residues involved in 
tertiary structure. Note residues 
involved in protein folding are more 
conserved than those involve with 
carbohydrate binding. See Fig. # for 
phylogenetic tree based on these data. 
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Figure 3.20. Trends in cysteines of prototype galectins: Cysteines are conserved in 
phylogenetically close species, but cysteine in highly conserved carbohydrate-binding 
site appears across many classes (mammals, birds, amphibians, fishes) Cysteines are 
in black. Grey bars highlight species with no cysteines. Species common names are 
given prior to Chapter I.
Source:
1 skin,1 placenta,skin,spleen, 1 skin, mucus, 4 electric organ, 5 genomic DNA, 6 genomic DNA, 7

genomic DNA, 8 whole body cDNA, genomic DNA, 9 genomic DNA, 10 skin, muscle, spleen, 11 muscle 
cDNA, 12 genomic DNA, 13 kidney cDNA, 14 ovary

--MEQGLVVTQLDVQPGECVKVKGKILSDAKGFSVNVGKDSSTLMLHFNPRFDCHGDVNTVVCN--SKEDGT
--MACGLVASNLNLKPGECLRVRGEVAPDAKSFVLNLGKDSNNLCLHFNPRFNAHGDANTIVCN--SKDGGA
---SGGLQVKNFDFTVGKFLTVGGFINNSPQRFSVNVGESMNSLSLHLDHRFNYGADQNTIVMNSTLKGDNG
--MSDRAEVRNIPFKLGMYLTVGGVVNSNATRFSINVGESTDSIAMHMDHRFSYGADQNVLVLN-SLVHNVG
---MDFVEVKNLIMKSGMELKVNGVFNANPERFSINVGHSTEEIAVHVDVRFSYLSDKRQLIIN--HKTGDA
--SMNGVVDERMSFKAGQNLTVKGVPSIDSTNFAINVGNSAEDLALHINPRFDAHGDQQAVVVN--SFQGGN
----MTFRVENMSFKQGQEMTFTGKTKSGASNFTINIGHDSDNYALHFNPRFSHG----HIVCN--SLSGGS
----MPFRVEEMSFKQGQEMTFTGKTKSGASSFSINIGHDSDNYALHFNPRFSHG----QIVCN--SLSGGS
--------VKNMTFKEGQEFKVRIRPQDSCSSFAINIGHDSENVAMHFNARFDCQGDTNTIVFN--SLSGGS
----MVFTIKDMSFKAGMEMKISGKVKPGCDAFSINIGHDDDAIALHFNPRFNAHGDSNTIVCN--SKQGG-
---MAGVLIQNMSFKVGQTLTITGVPKPDSTNFAINIGHSPEDIALHMNPRFDAHGDQCTIVCN--SFQSGS
--MHETVLIQNMAFKAGQTLTLTGVPKSESSEFKINIGNSSEDIALHINPRFDAHGDQCIIVCN--TFQNDC
------MTIKNMSFKVGQTMTIVGVPTPNPSNFAVNVCQNEQEITMHLNARFNAHGDENKVVCN--SYLGGK
--MFNGLLIKNMSFKVGQTMTVVGVAKPDASDFAVNVGPDEKDITMHINARFNACGDENVVVCN--SYQGGK
--MMKNMMIKNMSFKVGQTMTIIGVPKPDATNFALNIGPTDQDIVMHINPRFNAHGDENAVVCN--SYIGRQ
---------------------------------------MLTTLHCTLNPRFDSGSDVNTIVCN--SKSGGS
--MSAGMVMSNFSLKQGHCLELKGIIPKDAKSFAINLGKDSSNYVIHFNPRFDHHGDTNKIICN--SKEENH
--MAAGMVMNNFSLKQGHCLELKGFIPKDAKSFAINLGKDSSNYVIHFNPRFDHEGDTNKIICN--SKEENS
--ASAGVAVTNLNLKPGHCVEIKGSIPPDCKGFAVNLGEDASNFLLHFNARFDLHGDVNKIVCN--SKEADA
MDMEPDVRITNLNLHKGHRVEVRGRIAKGTNRFAVDLGTDSRNLICHCNPRFEYSVDKNTIVLN--SKQNDV
MDMQPDVKITNLNLHKGHRVEVRGHISKDSSRFAVDLGTDCNNLICHCNPRFEFSEDKNTIIFN--SKENDV

WGEEDRKADFPFQQGDKVEICISFDAAEVKVKVP-EVEFEFPNRLGMEKIQYLAVEGDFKVKAIKFS--
WGTEQREAVFPFQPGSVAEVCITFDQANLTVKLPDGYEFKFPNRLNLEAINYMAADGDFKIKCVAFD--
WETEQRSTNFTLSAGQYFEITLSYDINKFYIDILDGPNLEFPNRYSKEFLPFLSLAGDARLTLVKE---
WQQEERSKKFPFTKGDHFQTTITFDTHTFYIQLSNGETVEFPNRNKDAAFNLIYLAGDARLTFVRLE--
WQEEQRDARFPFTAGQAFQVSVVFNFDTFDIYLPDGQVAHFTNHLGAQEYKYIFFVGDATVKNISVN……
WGTEQREGGFPFKQGEDFKIQITFNSEEFRIILPDGSEIHFPNN------RYMHFEGEARIYSIEIK--
WGDELKEGHFPFQDGEQFKLVLNFTNEQFYIKLPDGHMMDFPNRLGDCKYKHIMVDGDVKVISFKIK--
WGDEFKEGHFPFQDGEQFKLVLNFTNEQFYIKLPDGHMMDFPNRLGDCKYNHIMVDGDVKVISFKVK--
WGDELREGNFPFVRGEECKFHINFNNEQFYIKLPDGSMLNFPNRLGDVKYQYFDVSGEARIVGIKIK--
WGSEHREHCFPFQQGEEFKLSITFNNETFYIKLPEGTMMSFPNRFGDDAFTHVHVKGDVKIISVKAK--
WCEEHRDNNFPFIQDKEFQIKITFTNEEFLVTLPDGSEIHFPNRQGSEKYKYMHFEGEVRIQGVEIK-- 
WCEEHRETNFPFVQGEEFQIKITFTNEEFLVTLPDDSEIHFPNRQGSEKYKYMHFEGQARIQGIEVK--
WCEEVREGGFPFQQGEEFKMVIEFTPAEVLGKLSDGSVIRFPNRM-AEKYAFFNFDGDLRIKSIEIK--
WCEEHREGGFPFQQGEEFKITIEFTPTEFLVTLSDGSTIHFPNRMGAEKYSFINFVGDVRIKSLEIK--
WCEELREGGFPFQLGEEFKIVIEFTPQEFLVTLSDGSIIHFPNRIGAEKYSFMSFEGEARIRSFEIK--
WGEEQREGHFPFARGEESKFYINFTMDQFYIKLPDGRMMDFPNRLGDVKYDYFEVKGDAVFHGVKIK--
WGKEQRENAFPFQQGAETTICFEYQADHLKVKLSDGKEFNFPIRMPLDTITFLTMDGIELKSFSLH---
WGTEQRENVFPFQQGAETSICFEYQADHLKVKLSDGQEFNFPIRMPLDTITFLSMDGIELKAISLH---
WGSEQREEVFPFQQGAEVMVCFEYQTQKIIIKFSSGDQFSFPVRKVLPSIPFLSLEGLAFKSITTE---
WDIEKKETAFPFKSGSETMLIFDFE-DCITVHLPDGKEIPFTCRFPIEVINYLALNNIELISISVH---
WGTEQKEVAFPFKAGSQTMLIFEFG-DCINVHLPDGTDIPFACRFPIQVINYLALYNLQLISISVH---
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level of stringency should detect both multiple copies and paralogous genes in the 

striped bass genome.

All genes for prototype galectins determined to date (mammalian galectin-1 and -

2, chicken 14 kDa galectin), the galectin domain of the chimera-type galectin (mouse 

galectin-3), and gene sequence derived from genome project databases (Takifugu, 

Tetraodon, Danio) possess three conserved introns. The coding region of these 

galectins consists of four exons, the sizes being:  exon I (6-9 bp), exon II (80-83 bp), 

exon III (160-172 bp), and exon IV (144-150 bp). Exon III encodes the largest, most 

conserved region, and includes the amino acids considered being important in forming 

hydrogen bonds or in van der Waals interaction with sugar ligand. This familial gene 

organization was used to determine the organization of striped bass proto type galectin. 

The coding region of MS15 was aligned with the human galectin-1 gene to help 

determine possible exon/ introns boundaries, and primers were designed to amplify the 

intervening regions (putative introns).  

Sequencing results from the “introns” and “exons” were aligned and merged to 

create a single contiguous sequence.  This construct revealed a gene that when aligned 

with the cDNA sequence of MS15 derived from mRNA, has four exons and three 

introns, with exon/introns boundaries following the GT/AG rule. The genomic 

sequence matches the cDNA sequence perfectly. The intron-exon organization of the 

MS15 galectin gene is identical to that of previously described galectin genes. The 

complete gene is organized the same as chicken-14 (Ohyama and Kasai, 1988), human 

galectin-1 (Gitt and Barondes, 1991), mouse galectin-1 (Chiariotti, et al, 1991), and C. 
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picta 14-kDa galectin (Oleary, 2003). The major difference between organisms is the 

intron sizes (Figure 3.13 ).  This leads to the speculation that some control elements 

(enhancers) for expression may be located in the introns. An enhancer can activate a 

promoter when it is positioned in either orientation relative to the promoter, and when 

positioned upstream or downstream of the transcribed region, or within an intervening 

sequence (intron), which is eventually removed from the RNA by splicing. With this in 

mind, analysis of the 1800 bp upstream non-coding region of Msgal1 was performed. 

Both the 5’-upstream region and Intron I possesses numerous potential transcription 

factor binding sites. Bias may lead one to focus on some more than others, due to their 

prevalence in cell types relevant to hypothesized role of protein (immune effector cells, 

for instance), and their relevance during different stages of development. A comparison 

with other proto type galectin sequences may suggest conserved factors, with the caveat 

that mammalian galectins have diversified in numbers, and possibly function. What are 

less common are pairs, or modules, of transcription factors in a particular 

orientation/spacing, such that they can interact with each other and the transcriptional 

machinery. Several of these were identified in Msgal1. In the 5’ upstream region, there 

were three modules with strong identity in their core sequence. Intron I had 5 modules, 

most notable being two modules identical to the 5’-region. Intron II and III each had 

one, and the downstream 3’- region had 7. Modules containing c-EBP binding sites 

were in every region except Intron III. The NFAT/ Ap1 module is identified with 

regulation of IL-4 expression specifically, and generally involved in upregulating 

numerous cytokines and present in immune effector cells. Interestingly, no modules 

were identified in the exons of this gene. Functional characterization of galectin-3 
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revealed that it has genomic fragments encompassing -836 to +141 nt (relative to start 

of exon I) that have significant promoter activity when linked to the luciferase reporter 

gene (Kadrofske et al., 1998). Interestingly, human galectin-3 is bicistronic, coding for 

galectin-3 and for galig, a protein from a different reading frame (Guittaut et al., 2001). 

Analysis of methylation patterns in mammalian galectin-1 revealed that density of 

methylation in the promoter region determined whether the gene was expressed 

(Salvatore et al., 1998), and that these CpG-rich islands were located both upstream (to 

–116 nt) and downstream (to +53) of transcription initiation. In these studies, 

hypomethylation led to increased expression, supporting the idea that methylation 

sensitive transcription factors were involved with expression. SP1 sites have also been 

implicated in basal transcription of galectin-1 in mammals, but SP1 bound by antibody 

did not abolish basal transcription (Kondoh et al., 2003) No functional characterization 

has been performed in fish. 

Submission of the 1775 bp upstream of the start site for BLAST analysis 

revealed no significant similarity or identity to known non-coding regions or proteins, 

though similar range of galectin upstream sequence has been deposited from human, 

mouse, zebrafish, and pufferfish genomic sequencing projects. BLAST analysis of the 

large 2000+ bp Intron I reveal no significant regions of identity. There are some 

stretches of up to 25 bp with 100% identities, but never more that one stretch per 

nucleic acid sequence, and none of the stretches occur in known galectin gene 

sequence. In silico prediction of transcription factor binding sites in Intron I of Msgal1 

reveals many putative sites that may be relevant to the hypothesized function(s) of 

MS15.  Using TRANSFAC v4.0, each sequence has a Log-likelihood score (La) 
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calculated, and from that other scores are calculated (La / Length, La / L_M, where 

L_M is the maximum La possible for the site model). Among the best scores are the 

following factors: NFκB, a key regulator of genes involved in responses to infection, 

inflammation, stress (Baeuerle and Henkel, 1994); MEF-2 , which involved in 

myogenesis and induces MyoD (Kaushal et al., 1994); C/EBPbeta, involved in 

inflammation and haematopoiesis, master regulator of the acute-phase response, 

induced by IL-1, IL-6, LPS (Akira et al., 1990); HNF-4α1, a transcriptional activator 

(Malik and Karathanasis, 1996); E12, an activator, that may be involved in tissue-

specific gene regulation of muscle, lymphoid, or neural cells (Peverali et al., 1994); and 

AP-1,  which is down-modulated by glucocorticoids through direct interaction with 

glucocorticoid receptor (Jonat et al., 1990). Confirming that these factors/ sites are 

functional involves two approaches: 1) using the upstream region and Intron I to drive 

expression of a reporter gene, and 2) providing evidence that the factor in question is in 

the cells/ tissues in question, though competitive binding and microarray assays. 

Recombinant MS15 was created to provide sufficient material for biochemical 

analysis, to simplify and improve purification, and to eliminate potential isoforms that 

may co- purify with MS15. Once rMS15 was found to be active, single step purification 

could be performed using affinity chromatography. The original recombinant design 

included an N-terminal His-Tag, to facilitate purification, but this proved unnecessary, 

leading to incorporating the tag cleavage step with the affinity purification step. The 

recombinant galectin had an equivalent mobility in SDS-PAGE, which closely 

approximated the predicted molecular weight of MS15. This suggested that rMS15 and 

native MS15 experienced similar (or no) post-translational modifications. 
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Thermostability of rMS15 was the same as native MS15, as well as the relative 

carbohydrate specificity for all sugars tested with rMS15. The yield of active rMS15 

was substantial- 50-60 mg/L. There was some loss while cleaving tag from 

recombinant, though. Since active galectin could be expressed well in this system,

consideration was given to a construct with out a His tag, but was thought unnecessary 

because yield was sufficient. This system would also work well for expressing MS15 

mutants, such as N- and C-termini alterations to investigate monomer only effects in 

fish. 

Summary:  The determination of the full-length coding sequence for MS15 

confirms that this protein is a proto type galectin, and of the 14-15 mammalian 

galectins identified to date, MS15 is most similar to mammalian galectin-1. 

Comparison of MS15 to galectin primary structures from fly, sponge worm, fish, 

amphibian, reptile, bird and mammal shows that MS15 is most similar to other fish 

proto type galectins, with relationship to other animal galectins being relative to 

evolutionary distance. The gene coding for MS15, Msgal1, is single copy per genome, 

and has the same intron/exon organization as mammal, bird, and fish galectins. Msgal1 

possesses canonical signals for start, intron/exon boundaries, stop, and polyadenylation, 

but control elements vary from those of other galectins. Homology models of the 

protein, based on bovine galectin-1 (template), shows conserved residues of the 

carbohydrate binding site aligning well crystallographic data. No residues created 

conflicts with the template, and the predicted electrostatic potential revealed positive 

charge in the binding cleft, and mixed charges at the predicted dimer interface. This 

conforms to the hypothesized model of how MS15 subunits interact with each other and 
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the environment. Lastly, a recombinant MS15 was expressed in bacteria with high 

yield, and subsequent biochemical characterization confirmed that it functioned the 

same as native MS15, providing confidence in its use in future experiments. 
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CHAPTER IV: LOCALIZATION OF MS15 IN M. SAXATILIS

IV.A. Introduction

Understanding the function(s) of a galectin in an animal involves not only 

knowing its biochemical properties and genetic control of its expression, but also what 

cells, tissues, and organs it is expressed, and at what stage of the organism’s 

development the galectin is expressed. The complex expression patterns of galectins 

can be correlated with the rapid and dynamic redistribution of carbohydrates during 

embryogenesis (Thorpe et al., 1987, Colnot et al., 1997).  However, there is also a non-

uniform distribution of different galectins in adult animals. The repertoire of proto type 

galectins in a mammal may share similar carbohydrate specificities, but when and 

where they are expressed in part determines their function. Comparing location and 

proposed function of various animal proto type galectins can show this. Galectin-1 has 

been localized in mouse muscle tissues (Poirier and Robertson 1993; Cooper et al.1991; 

Wasano et al.1990), in neurons that interact with peripheral tissue (Regan et al.. 1986; 

Hynes et al.1990), and in cultured fibroblasts (Roff and Wang 1983). Mucins of the 

gastrointestinal tract have been shown to bind galectin-1, but though externalized into 

extracellular matrix (ECM) (Barondes et al., 1994), galectin-1 is confined to the 

subepithelial connective tissue of the gastrointestinal tract and therefore appears not to 

directly interact with lumenal mucin or epithelial cell surface glycocalyses (ECSG) 

(Wasano et al., 1997). Galectin-1 has been localized to smooth muscle layer of large 

vessels such as arteries and veins, where it is able to modulate SMC attachment, 

spreading and migration via interactions with ECM proteins and integrin (Moiseeva et 
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al., 1999). CG14 is found in intestine (Beyer and Barondes, 1982), and CG16 is found 

in adult chicken retina and intestine (Maldonado et al.1999). Though expression is high 

in the mouse mesodermal cell types (most organs), it was undetectable in endodermal 

(epithelial) cells (Colnot et al., 1997). Immunohistochemical studies in adult mammals 

showed that galectin-1 is expressed profusely at sites of immune privilege (Maldonado

et al., 1999; Phillips et al., 1996; Wollina et al., 1999). Galectin-5 is found in 

erythrocytes, with a possible role in erythroblast maturation, and localization in other 

tissues is attributed to presence of blood (Gitt et al., 1995). Galectin-7 is primarily 

distributed in stratified epithelial cells of the epidermis (Magnaldo et al., 1995; Madsen 

et al., 1995; Sato et al., 2002). This complex expression pattern observed in animals 

with multiple prototype galectins can hinder determining a function for a particular 

galectin. It is possible that in animals with a simpler galectin repertoire, narrowing the 

function(s) for galectin may be simplified. As previously mentioned, galectins appear to 

associate with the cell surface of the cell that produced them, or remain in the ECM 

surrounding that cell (Barondes et al,.1994). Therefore, cells and tissues that provided 

the source RNA and DNA for molecular biology should have detectable levels of 

expressed galectin by immunocytochemistry, as well as the extracellular spaces 

immediately surrounding the cells and tissues. This is the justification for investigating 

tissues and organs throughout the striped bass adult. This concept cannot be extended to 

mucosal surfaces, though, where galectins can migrate with flowing mucus. This is 

important when considering MS15 in fish skin mucus. With regards to fish, galectins of 

Conger eel, Conger myriaster have been localized to the club cells of the skin, and in 

the mucosal epithelial lining preceding the stomach and in the gills (Nakamura et al., 
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2001). Galectin has been found in the skin mucus of Japanese eel, Anguilla japonica

(Tasumi et al., 2002). MS15 has been purified from mucus and skin of striped bass, M. 

saxatilis, but the source of galectin in striped bass mucus is unclear. It is assumed that 

galectins are released to the surface of the animal from epidermal glands. Another study 

revealed one of three prototype galectins in zebrafish Danio rerio localizing to the 

developing notochord (Ahmed et al., 2004). MS15 has been purified from almost every 

tissue and organ investigated, but only in juvenile and adult fish. This will be the first 

investigation into the localization of galectin in striped bass using immunocytochemical 

methods. Understanding where MS15 is located may help determine why it is present, 

and perhaps will help understand some of the observations in other fish. 

In this chapter, conventional histochemical stains help identify cell and tissue 

types, including circulatory cells, as well as extracellular components. With an 

understanding of the structure and possible constituents of striped bass tissues and 

organs, localization of MS15 in adult striped bass is determined using 

immunocytochemistry and electron microscopy using the immunogold technique. The 

relationship of galectin location to putative function can be explored. 

IV.B. Methods

Preparation and Characterization of Morphology of Circulatory Blood 

Cells: Blood was collected from euthanized striped bass from the caudal fin vein, and 

used to create blood smears to help identify cells in immunohistochemistry. Fifty µl of 

whole blood was placed on slide, smeared by dragging one slide over the other, and left 

to air dry. Replicate slides were subjected to staining with Diff-quick (Dade 
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Diagnostics, Aguada, Puerto Rico).

Preparation of Samples for Histological Staining and Immunocyto-

chemistry: Adult and juvenile striped bass were euthanized by overdose with 

phenoxyethanol, 0.079 parts per thousand (ppt), and dissected immediately. Samples of 

skin, lips, tongue, buccal cavity, gills, esophagus, stomach, pyloric caeca, intestine, 

muscle, liver, spleen, testis, were fixed by placing in neutral buffered formalin (NBF) 

(100.0 ml formalin, 6.5 g sodium phosphate dibasic (anhydrous) / 4.0 g sodium 

phosphate monobasic / 900 ml distilled water; from "A Manual of Histotechniques" 3rd 

ed. Ann Preece, 1972) for up to 12 hours. For mounting of samples, Superfrost slides 

(Fisherbrand) were immersed in a freshly prepared 2% solution for 3-

aminopropyltriethoxysilane (APES) in dry acetone for 5 minutes, washed briefly in 

distilled water twice. The slides were dried overnight at room temperature and stored at 

room temperature till use. 

The fixed tissues were placed in labeled polypropylene Histoprep tissue 

capsules (Fisherbrand), and processed using a Leica TP1010 Tissue Processor with 

each step set to one hour; fixed samples were dehydrated through an ethanol series 

(50% to 100%) and passed through two xylene baths. Finally, tissue was infiltrated with 

paraffin in the final two baths. These samples were embedded in paraffin using a Leica 

EG 1160 Tissue Histoembedder, with 24 mm X 24 mm X 5 mm embedding rings 

(VWR) and disposable polypropylene base molds (VWR). Embedded tissue was 

sectioned using a Microm HM 340, with Leica 819 low profile microtome blades, at 

12o and 4 microns. Tissue sections were placed in a 40oC water bath to flatten and 

orient the sections, and mounted on previously described APES slides. 
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Histological staining of striped bass mucus, tissues and organs: Sections 

were stained by three methods. Hematoxylin and eosin (H&E) were used as differential 

stains to determine quality of section preparation, and to identify cell types. Periodic 

acid-Schiff (PAS) staining was performed to detect glycogen, glycoproteins (such as 

mucus), and basement membranes. Since PAS stains predominantly neutral mucins, 

Alcian Blue (AB) staining was also done, to detect sulfated and carboxylated acid 

mucopolysaccharides and sulfated and carboxylated sialomucins (glycoproteins). All 

three techniques began by rehydrating the section to water through an ethanol series 

(100%, 95%, 75%, 50 %, water). For H&E, sections were rinsed in deionized water and 

submerged in hematoxylin for 3 minutes. The sections were washed in deionized water, 

followed by 'Bluing' sections in Scott's tap water. Sections were decolorized by quickly 

dipping sections in 1% hydrochloric acid in ethanol (acid alcohol) 4 to 8 times. 

Following another wash in tap water, sections were submerged in eosin for 1 minute, 

and rapidly dehydrated in 95% ethanol (5 minutes) and 100% ethanol (5 minutes), the 

cleared in xylene (5 minutes).  Mounting sections was done with Permount and glass

coverslips. For PAS staining, rehydrated sections were treated with 1% periodic acid 

for 5 minutes, and washed in tap water for five minutes. Sections were treated with 

Schiff’s reagent for 30 minutes. To counter stain (nuclei), sections were submerged in

hematoxylin for 3 minutes, destained with acid alcohol, and blued in Scott’s tap water. 

The sections were dehydrated and mounted as described previously. For AB staining, 

rehydrated sections were submerged in AB solution, pH 2.5 (1g AB in 100ml with 3% 

acetic acid) for 5 minutes, and washed well in water. Hematoxylin was used to 

counterstain nuclei of cells, as previously described. Crude mucus was scraped from 
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live striped bass using a plastic spatula. This mucus was homogenized by pipetting up 

and down several times, and a drop was placed on an APES treated slide and smeared 

using another slide. Smears were allowed to air-dry. The dried mucus smears were 

fixed in NBF for five minutes, and stained with H&E and AB/PAS.

Immunocytochemistry of striped bass mucus, tissues and organs: Serial 

sections at 4 µm thickness mounted on APES coated slides were incubated with 

methanol containing 0.3% H2O2 for 30 minutes at room temperature to inactivate 

endogenous peroxidase and washed twice in PBS. The sections were blocked with 2% 

(w/v) BSA for 1 hour at room temperature. Endogenous biotin and avidin activity were 

blocked using the Avidin/Biotin Blocking Kit (Vector Laboratories), by incubating 

sections with Avidin D solution for 15 minutes, rinsing briefly with PBS, followed by 

15 minute incubation with the biotin solution. For probing with primary antibody, the 

sections were incubated with protein A-purified IgG from MS15 polyclonal antiserum 

(from Dr. Hafiz Ahmed) at 1:1,000 dilution for 1 hour at room temperature and treated 

with biotin-conjugated goat anti-rabbit IgG (VECTASTAIN® Elite ABC Kits, Vector 

Laboratories) for 30 minutes at room temperature. Negative controls were purified 

polyclonal IgG from rabbit pre-immune serum and blocking buffer only (no primary 

antibody). The bound antibody:enzyme was visualized using Stable DAB (3, 3’-

diaminobenzidine tetrahydrochloride, 0.0045% H2O2 in 50 mM Tris-HCl pH 7.5) 

(Invitrogen). To elucidate source of galectin in mucus, crude mucus was spread on 

glass slides and allowed to dry. Slides were hydrogen peroxide treated, avidin and 

biotin blocked, and probed with anti-MS15, as described previously. Bound 

antibody:enzyme was detected with Stable DAB, with 3-5 minutes reaction time, and 



109

reaction was stopped by washing in tap water.  Controls include non-immune serum 

and no primary antibody.

IV.C. Results

Identification of Peripheral Blood Cells: Stained blood smears provided a 

basis for cell identification in tissue and organ sections. Morphology of the cells was 

important for identification, but differential staining with the modified Giemsa stain 

allowed for differentiation based on nuclear and cytoplasmic staining (Figure 4.1). The 

nomenclature of the leucocytes is based on the morphological criteria described in 

several previous papers (Weinreb, 1963; Ferguson, 1976; Ellis, 1976, 1977; Cannon et 

al., 1980; Savage, 1983).  Red blood cells, which are nucleated in fish, stained pale blue 

in the cytoplasm and dark blue in their nuclei.  Immature RBC’s stained the same way, 

but was up to 50% larger than mature RBC’s. The thrombocyte (Figure 4.1 B.) is a 

small spindle-shaped cell with a large nucleus, which occupied most of the cell. The 

nucleus contained dense chromatin and was often indented. The lymphocyte (Figure 4.1 

C.) was a small round cell and sometimes possessed pseudopodia on its surface. The 

round to slightly irregular nucleus contained heavily clumped chromatin and was 

surrounded by a small area of cytoplasm. The heterophil (Figure 4.1 D), equivalent to 

the mammalian neutrophil, is large and sometimes irregular in outline. The nucleus is 

ovoid to horseshoe-shaped and often more varied in shape than that of the monocyte.

A
B C

red blood cells

mature

immature

thrombocyte monocyte

heterophil
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Chromatin was moderately condensed on the nuclear membrane and clumped inside the 

nucleus. The monocyte (Figure 4.1 E.) is a large cell with cytoplasmic pseudopodia 

varying in number and size. The nucleus was ovoid or kidney-shaped and often 

positioned off-center due to the abundant cytoplasmic organelles. Condensed chromatin 

is less prominent.

Histochemistry of striped bass mucus, tissues and organs: Sectioning was 

successful to 4-5 µm, with tissues from all samples losing integrity when cut thinner 

than 4 µm. Sections over 7 µm gave indistinct morphology, due to overlapping 

subcellular structures. In addition, the quality of the sections was often dependent on 

the consistency of the starting tissue, i.e., collagen filled skin with a layer of 

mineralized scales was more difficult to section than spleen or brain. Many cell and 

tissue types could be identified by hematoxylin, which stained nuclei pale blue, and 

Figure 4. 1. Peripheral blood cells of striped bass: Blood smears were 
stained with a modified Giemsa stain, and results were compared to blood cells 
of other teleosts. 
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eosin staining, which stained cytoplasm pink. PAS, which stains basement membranes, 

mucosubstances secreted from the epithelia of various organs, and glycogen present in 

skin, liver, and parathyroid glands and skeletal and cardiac muscle, was used to 

highlight these structures and substances with a deep magenta. AB staining was 

performed with PAS, permitting the differentiation of acidic mucins (blue) from neutral 

ones (pink). DAB staining resulted in light to dark brown coloration in sections that 

contained MS15.

Hematoxylin and eosin staining: Results of H&E staining were consistent 

with results of other animals. Nuclei stained a deep blue, and cytoplasm stained various 

shades of pink. The nuclear stain was the most useful, helping to differentiate tissue 

layers and overall quality of sample preparation and processing.

Periodic acid-Schiff and hematoxylin staining: PAS/H staining revealed the 

relationship of cell and tissue types to some of the putative endogenous ligands of 

MS15. The basal lamina (BL) is a distinct layer dividing the epidermis and the dermis, 

consisting of glycan-rich molecules such as laminin, collagens, fibronectin, vitronectin, 

and glycoaminoglycans and stains strongly with PAS. The loose connective tissue 

between the skin and the muscle, containing many of the same proteoglycans as the BL, 

also stains strongly. Mucins present in goblet and mucous cells throughout the body 

stain strongly with PAS (Figure 4.7). In the esophagus, stomach, pyloric caeca, and 

intestine the ECM bordering the lamina propria stains strongly with PAS. Lastly, blood 

vessel walls stained strongly with PAS. All of these PAS positive substances/structures 

are known to stain in other animals. The location of these PAS positive areas will be 

important to colocalizing MS15 to putative endogenous ligands.
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Alcian Blue/periodic acid-Schiff staining: With AB/ PAS, goblet cells stained 

either blue or deep pink, respectively. AB is used to stain a section first, because PAS 

will competitively stain the same structures, but not vice versa. AB positive areas were 

the goblet cells throughout the body (Figure 4.2), and in cell layer surrounding the deep 

crypt lumen of esophagus (Figure 4.2.B) and stomach (Figure 4.2.C). Some of the AB 

positive cells also have hematoxylin positive cytoplasm, which can be found in the 

acidophilic parietal cells of the stomach (Figure 4.2.C). The PAS positive sub-dermal 

connective tissue, basal lamina, and lamina propria exhibit no AB staining (Figure 4.2). 

Detection in External Surfaces of Striped bass: Detection of MS15 in the 

A

B

Figure 4.2. Alcian 
Blue/ PAS staining of 
mucins: A) Mucous  
glands of gills contain 
mostly acid mucins. B) 
Esophagus reveals 
complexity of 
developing lumenal 
spaces, with acid 
mucins present in 
deepest portion of 
lumen. C ) Stomach 
resembles esophagus in 
organization, with 
parietal cells 
discernable (stars) D) 
Lamina propria 
contains loose 
connective tissue 
(collagens); gobet cells 
of intestine contain acid 
mucins similar to gills.

C

D

*

*
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external surfaces, i.e., the skin, lips, tongue, buccal cavity, mucus and the gills was 

complicated by the presence of mineralized scales covering the surface of the skin. 

Focusing on the skin of the forehead of striped bass solved this problem. Here, the 

scales are reduced or even absent. The thickness of the epidermal layer is greater, 

though. The lips, tongue, buccal cavity and gills were simpler to dissect and process, 

but conversely were more complex, with sensory cells (taste buds), mucous cells and 

neuromasts. Analysis of cell debris in mucus revealed MS15(+) cells, but little staining 

in the background mucus (Figure 4.3)

Detection in Mouth, Pharynx and Alimentary Canal: Most epithelial 

A

B

C

Figure 4.3. Striped bass 
mucus has MS15(+) cells:
a) HE stain of cellular 
debris from striped bass 
mucus scraping. Arrow-
basophilic cells (possibly 
monocytes or macrophage) 
b) Detection using purified 
Ig from rabbit pre-immune 
serum. Little background is 
detected. c) Detection with  
purified anti-MS15 Ig 
reveals galectin (+) cells in 
mucus (arrows). These cells 
have large nuclei, and are 
about 1.5X larger than other 
cells present (epithelial 
cells)



114

layers revealed epidermis of various numbers of cell layers, with squamous epidermal 

cells on the surface and cuboidal epidermal cells proximal to the fusiform layer (Figure 

4.6).  Samples from the alimentary canal included esophagus, stomach, pyloric caeca, 

and proximal intestine. MS15 colocalized with PAS staining in almost every sample 

studied, except in the goblet cells, where there was no MS15 detected (Figure 4.6). 

Rather, MS15 was detected in two strongly staining, distinct cell types. The first type’s 

location and morphology suggest leukocytes (monocyte/ tissue macrophage, Figure 

4.6).  The second type is a cell type found only in fish and birds, and is called a rodlet 

cell (Figure 4.4). There is tissue-specific staining also, namely the smooth muscle 

surrounding arteries and veins (Figure 4.7). Where MS15 is not detected is in the 

epithelial layer of any given section, which is similar to the localization of galectin-1 in 

mammals. There is signal from some goblet cells of the skin, but this signal is of equal 

intensity in the pre-immune and the “no primary Ab” sections. With peroxidase activity 

blocked with H2O2 treatment, and avidin and biotin blocked, the source of this signal 

remains a question.

Detection in other organs: The muscle, liver, spleen, testes, and brain were 

investigated for endogenous MS15.  Muscle was positive for MS15 throughout its 

fascia (epi-, peri- and endomysium), and lightly distributed in the muscle fibers. It is of 

interest that the first galectin identified from an animal was electrolectin, from the 

electric organ of E. electricus, which is a modified fish muscle. In the liver, the only 

distinct staining was in the blood vessel walls (Figure 4.7) In the spleen, there were 

numerous cells staining positive for MS15. These were distributed throughout
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the spleen. The staining appears cell-specific, rather than ECM-specific. One source of 

Figure 4. 4. Detection of 
striped bass rodlet cells 
with anti-MS15 in striped 
bass -
4 um section of striped bass 
corpus ventriculi, (A), 
stained with alcian blue and 
PAS, reveals distinct areas 
of neutral glycoproteins 
(pink) and sulpho- and/or 
sialomucins (blue). DAB+ 
tissues (B) in the presence 
of anti-MS15 are found in 
the connective tissue as well 
as strongly staining rodlet 
cells. No DAB is visible in 
pre-immune control (C). 
Close-up of blue box in B 
(D) reveals staining of 
rodlet cells and surrounding 
connective tissue. Close-up 
of yellow box in A (E), 
reveals AB+ cells and PAS+ 
connective tissue. Figure 4.5. Distribution 

of rodlet cells:  Rodlet 
cells were identified in the 
esophagus, stomach, 
pyloric caeca, and 
proximal intestine of 
striped bass. None were 
clearly identified 
(morphology) in the skin, 
and gills, *= MS15+ 
rodlet cells
? = not observed, though 
in literature

****
*

*
*

??
*
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background signal in the spleen was the melanomacrophage centers, which are seen as 

brownish-blackish collections of cells. These are seen in PAS stained, and in the 

preimmune serum controls. This background is independent of the MS15 staining in 

other areas of the spleen. MS15 detection in the testes gave positive signals in the 

tunica albuginea surrounding the testis (Figure 4.7), and in the connective tissue 

creating the sperm ducts, but no signal is seen in sperm at any stage of development. 

The brain revealed what appeared to be a large MS15-positive structure, which turned 

out to be a transverse section of a blood vessel running between the medulla oblongata 

and the tegmentum. There were three areas that were positive for MS15, but the cell 

types in these areas are unknown (Figure 4.7). The source of MS15 would probably be 

cells localized in the same areas.   

Figure 4.6. MS15 
(+) macrophage in 
the pyloric caeca:
Cross section of 
pyloric caecum 
reveals goblet 
cells(G), lamina 
propria (LP) , and 
resident tissue 
macrophage 
(arrows). Note no 
MS15(+)  mucus or 
epithelial cells.

G

G

G

G

L
P
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Figure 4.7. Detection of MS15 in striped bass: Various tissues and organs reveal 
distribution of MS15 in striped bass. Note that not all PAS(+) tissues are MS15(+). 
Most MS15 detected in loose connective tissue (dermis, lamina propria), rodlet cells of 
alimentary canal, fibroblast of skin, and peripheral leukocytes. (Con next page)

PAS/H preimmune anti-MS15

head skin

dermis

lip

gill

esophagus

stomach

intestine
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Figure 4.7. (con) Detection of MS15 in striped bass: Various tissues and organs 
reveal distribution of MS15 in striped bass. Note that not all PAS(+) tissues are 
MS15(+). Most MS15 detected in loose connective tissue (dermis, lamina propria), 
rodlet cells of alimentary canal, fibroblast of skin, and peripheral leukocytes.

PAS/H preimmune anti-MS15

pyloric 
caeca

liver

spleen

muscle

brain

testis
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IV.D. Discussion

Approximately 450 million years of evolutionary divergence separate mammals 

and bony fish (teleosts, including striped bass), providing considerable time for 

divergence in the molecular and cellular features of myeloid lineages, not only between 

different species of teleosts themselves, but also between teleosts and mammals 

(Rowley et al., 1988). Like mammals, teleosts possess red blood cells, several types of 

granulocytes and a separate macrophage lineage. Instead of platelets, though, teleosts 

have nucleated cells called thrombocytes. Descriptive studies are available for a wide 

range of fish species (reviewed in Rowley et al., 1988 and Secombes, 1996), and 

indicate that even between major teleost groups, for example, salmonids and cyprinids 

(zebrafish), there are significant morphological differences (Bielek, 1981). Caution 

must be exercised in inferring the function or identity of a cell merely from its 

appearance. Comparison of cells between different species must be based on functional 

and molecular studies as well as morphology. The evidence reviewed here indicates 

that at least morphologically, striped bass possess blood cells with features in common 

with other teleost, though functional comparisons have not been reported. Though each 

cell type exhibits a range of sizes, the staining of their respective subcellular 

components is not altered. Another factor in describing the peripheral blood cells of 

striped bass are the relative amounts of each cell type, which is not presented here, but 

has been found to change as the fish ages (Hrubec et al., 2001).

Erythrocytes are the most abundant cell type found in the peripheral blood. 

They are oval in shape and have round to oval, centrally located nuclei, with densely 

packed chromatin. In the adult striped bass, they average 11 µm X 7 µm. The function 



120

of red blood cells is to transport oxygen to and carbon dioxide from the tissues 

(Satchell, 1971). Their consistent appearance in sections containing blood vessels 

allowed for a constant scale between various tissue sections, helping to make 

comparisons between other peripheral blood cells. Immature erythrocytes, called 

reticulocytes, are also found in the peripheral blood, and are slightly larger than mature 

red blood cells. The nuclei of reticulocytes are more irregular and have less-condensed 

chromatin than mature red blood cells.  

The striped bass thrombocytes are the second most common cells in the 

peripheral blood. They are oval in shape, and sometimes spiked at one end, and their 

nuclei are oval or dumbbell-shaped and centrally located. The heterochromatin stains 

dark blue/ purple, and their cytoplasm hardly stains at all, appearing light gray. 

Thrombocytes are small, about 4 µm to 7 µm in diameter, and can appear similar to 

striped bass lymphocytes (described below). Their primary function is clotting, but they 

release inflammatory mediators at wound sites, and there are some reports of teleost 

thrombocytes having phagocytic activity.  

In teleost, three types of granulocytes- heterophils, eosinophils, and basophils, 

have been reported (Ellis, 1977; Rowley et al, 1988; Hine, 1992; Ainsworth, 1992). In 

striped bass, heterophils, called neutrophils in mammals, are the largest leukocytes in 

the peripheral blood. They are round, and range from 7 µm to 18 µm in diameter. 

Heterophils often contain small blue-gray cytoplasmic granules and have indented or 

multi-lobed (2-3) nuclei. The function(s) of heterophils have yet to be established, but 

heterophils stain strongly for myeloperoxidase, and this is certainly related to the 

known efficient bactericidal system (H2O2- myeloperoxidase -halide system) used as a 
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defensive mechanism similar to that one observed in mammals (Badwey and 

Karnovsky, 1981). No basophils or eosinophils were positively identified in this work. 

There are no conclusive data in the literature about the possible functions of eosinophils 

and basophils in fish blood. In some fish, eosinophils appear to be phagocytotic (Hine 

and Wane, 1989; Suzuki, 1986) and accumulate in parasitic infections and in 

inflammation (Lester and Desser, 1975). It is in eosinophilic granulocytes that the 

antimicrobial peptide piscidin was localized in hybrid striped bass, M. saxatilis X M. 

chrysops (Silphaduang and Noga, 2001). During studies on the distribution of mast 

cells/eosinophilic granule cells (Reite, 2001) in species representing 5-12 genera from 

each of the teleost families Salmonidae, Cyprinidae, Gadidae, Labridae and 

Pleuronectidae, a characteristic distribution pattern common to species of the same 

genus and great similarities also between the different genera of a family were found. 

Furthermore, the studies showed that persistent inflammatory reactions, e.g. those 

caused by helminths in tissues of the viscera, induced local recruitment of mast 

cells/eosinophilic granule cells, except in gadids, where this cell type was not found in 

any tissue. In all families, rodlet cells (discussed below) were recruited when cestodes 

or trematodes affected epithelial tissues. 

There is enormous variation within the teleosts in both relative abundance and 

staining reaction of the granulocytes. For example, in the carp, Cyprinus carpio, all 

three types of granulocytes are found in the blood (Rowley, 1988). Among them, the 

heterophils and basophils are the least numerous. In salmonids, heterophilic 

granulocytes predominate with eosinophils and basophils either absent or present in low 

numbers (Rowley, 1998). In plaice, Pleuronectes platessa (Ellis, 1976) and the eel 
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(Kusuda and Ikeda, 1987), only one type of granulocyte has been reported. In the 

gilthead sea bream, Sparus auratus (Meseguer et al. 1994) acid phosphatase activity is 

evaluated as a cytochemical marker to differentiate the eosinophils from the 

heterophils. Eosinophils of the loach, Misgurunus anquillicaudus, have a unique 

feature, the presence of one large eosinophilic granule (Ishizeki et al, 1984).

The spherical lymphocytes ranged from 5 µm to 9 µm in diameter, with little 

basophilic cytoplasm and frequently showed cytoplasmic blebs, and some eosinophilic 

granules. The nucleus was spherical, dark blue and filled most of the cell.

In this work, no differentiation was made between basophilic phagocytes into 

categories of "monocyte" and "macrophage", because it is generally understood that 

“monocytes” are circulating macrophage, and “macrophage” are tissue resident cells. 

Monocytes in adult striped bass averaged 8.5 µm in diameter, have large irregularly 

shaped nuclei, and a highly vacuolated cytoplasm. Their nucleus is large and 

eosinophilic. These cells are negative for peroxidase activity. This is an advantage 

when using DAB detection, for although the hydrogen peroxide blocking of peroxidase 

activity appears to be complete (based on controls), no endogenous peroxidase is 

present to complicate interpretation of results. Functionally, the macrophage is a 

resident phagocytic cell, present before, during and after inflammation. 

Morphological identification of monocytes may be helped by the fact that these 

cells are very similar in appearance in some species of fish. For example, the 

ultrastructure of the medaka monocyte is similar to that of plaice (Ferguson, 1976) and 

channel catfish (Cannon et al., 1980). The last cell type is the mast cell equivalent- the 

eosinophilic granular cells. These were not clearly identified in this work.
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MS15 was found to be ubiquitous throughout samples of adult striped bass. All 

loose and irregular dense connective tissue contained MS15, as observed in the gills, 

spleen, intestine, stomach, esophagus, muscle and skin of striped bass. MS15 

colocalized with PAS staining in these tissues, which suggests the connective tissue 

possesses endogenous ligand(s) for MS15. The most probable ligands are laminin and 

cell-surface integrin receptors, based on carbohydrate specificity and results for other 

proto type galectins in other animals (Gu et al., 1994; Akimoto et al., 1995; Seyrek et 

al., 2000; Hielmann et al., 2000; Uehara et al., 2001; Ahmed et al., 2004).  Another 

common site for MS15 was vascular smooth muscle of the arteries, veins, and 

throughout the digestive tract. This was observed in the brain, liver, spleen, intestine, 

stomach, esophagus, muscle and skin of striped bass. This is similar to what is seen 

with human galectin-1 in vascular smooth muscle (Lotan et al,. 1994; Moiseeva et al., 

2002).  In the digestive tract, there was one cell type, the rodlet cells, which produced 

both nuclear and cell surface signal for MS15. Though the alimentary canal in nearly 

indistinguishable at the microscopic level from other vertebrates, rodlet cells are an 

enigmatic cell type detected in fish and birds, and not yet in other vertebrates. There has 

been debate over the last 30 years as to their origin and function; it is now generally 

believed that they are involved in immune functions, either by releasing antibiotics into 

lumenal spaces, or by playing a role in inflammation. If rodlet cells secrete an antibiotic 

substance, perhaps their secretion into a wide spectrum of tissue compartments has 

been selected for in ancestral species with a particular life style, for instance, one that 

exposed them to large numbers and varieties of parasites.
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EPITHELIAL ONLY EPI- & MESOTHELIAL EPI-, MESO- & 
ENDOTHELIAL

Percidae

Yellow perch, Perca flavescens

Walleye, Stizostedion vitreum

Darter, Etheostoma nigrum

Centrarchidae

Smallmouth bass, Micropterus 
dolomieu

Rock bass, Ambloplites rupestris

Bluegill, Lepomis macrochirus

Cyprinidae

Fathead minnow, Pimephales 
promelas

Golden shiner, Notemigonus 
crysoleucas

Redfin shiner, Notropsis 
umbratitis

Gadidae

Burbot, Lota lota

Cod, Gadus morhua (1)

Umbridae

Mud minnow, Umbra limi

Catastomidae

White Sucker, Catastomus 
commersoni

Poeciliidae

Swordtail, Xiphopherus helleri
from  Morrison & Odense, J. Fish Res. Bd. Can. 35:101-116 (1978)

Table 4.1. Rodlet cell distribution vs. phylogeny: The data in the table demonstrate 
that closely related species are in the same rodlet cell distribution category, and that, as 
illustrated in category 3, this grouping may include related families (Cyprinidae, 
Catastomidae, Poeciliidae). The reason for the different distribution of rodlet cells in 
individual species is not understood. 

Conversely, perhaps other host defenses such as leukocytes, complement, and antibody 

production take the place of rodlet cell functions in certain tissues of many species, 

particularly in the cardiovascular system. Rodlet cells are a common histological 

finding in almost all freshwater, brackish, and marine species of fish. However, their 

exact origin and function are presently unknown. Though described in at least 114 

species of fish, they have not been described in M. saxatilis, and never has galectin 

been localized to rodlet cells. There is a distinct signal for MS15 in the ECM 

immediately surrounding the rodlet cells, and this signal disappears a short distance 
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from the MS15+ rodlet cells. This supports the conclusions of Barondes, et al.1994, 

where galectin stay in and around the cells that produce it.  

In the testes, MS15 localized to the connective tissue that created the sperm 

ducts, and the membrane surrounding the testis, but none was observed in the 

spermatozoa. This contrasts sharply with the presence of galectin-1 in and on the 

spermatozoa rat in rat testes (Dentin, et al. 2003).

In the blood vessels, several morphotypes of cells are MS15+. These findings 

are what motivated the cataloging of different peripheral blood cells. The MS15+ cells 

are spherical, 1.5X to 2X the size of mature erythrocyte, and some have a discernable 

nucleus through the intense DAB staining. The only circulatory cells that match this 

description are the heterophils and monocytes (Figure 4.1, 4.9).  

Figure 4.8. Striped 
bass blood has 
MS15(+) cells: a)
Striped bass blood 
smears reveal red 
blood cells and 
leukocytes in Geimsa 
stain. b) Detection 
using purified Ig from 
rabbit pre-immune 
serum. c) Detection 
with  purified anti-
MS15 Ig reveals 
galectin (+) cells. 
These cells have large 
nuclei, and are 
probably heterophils or 
monocytes found in 
circulation. 

A

B

C
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They appear in different tissues in cross sections of blood vessels, and they are 

numerous in the gills, which are a vascular tissue. In gills, spleen, lips, tongue, skin, 

stomach, pyloric caeca, and intestine, MS15+ cells about the size and shape of the 

heterophils and monocytes are observed in the loose connective tissue, appearing to 

squeeze their way though the different cell layers. The only cell type that matches this 

description is the tissue resident macrophage. In mammals, galectin-1 has been 

localized to activated macrophage, and has a proposed role in signaling T-cell death 

(Rabinovich et al., 1999) and promotes phagocytosis of activated neutrophils by 

activated macrophage. (Dias-Baruffi et al., 2003).  

In the dermis, a lightly staining cell morphologically and spatially matches the 

description of dermal fibroblasts. In humans, galectin-1 has been localized to the 

nucleus and cytoplasm of skin (dermal) fibroblasts (Akimoto et al., 1995). Recently, 

mouse dermal fibroblasts, when placed in muscle and exposed to galectin-1, 

differentiated into myoblast and created new myofibrils (Goldring et al., 2002). These 

cell types and tissue will be closely observed for changes in dermal bacterial challenge 

or wounding experiments. Galectin purified from the mucus of striped bass, M. 

saxatilis, though, does not appear to come from goblet or club cells in the skin. It has 

been localized to cells that appear to be leukocytes, most probably macrophage, 

because heterophils are thought to migrate into areas of inflammation, and the sections 

are of healthy tissue. 

In the brain, there were areas of distinct MS15+ cells and tissue. The first was 

dismissed as a fortuitous sagittal sectioning a blood vessel, but within the blood vessel 

are red blood cells and several MS15+ cells morphologically resembling monocytes. 
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Two other areas that were MS15+ reveal several MS15+ cells surrounded by diffuse 

staining. It cannot be determined if these cells are brain cells or if they are migratory 

leukocytes. In some fish, the macrophage and lymphocytes outnumber the 

oligodedroglia in the spinal cord and in parts of the brain (Dowding and Scholes, 1993), 

but this appears to not be the case with striped bass. The other major area is a grouping 

of nerve bundle traveling laterally across the striped bass brain. These were first 

thought to be Purkinje cells based on their shape and location, but they are too large to 

be single cells. The identity of these nerves is not known, and they were the only ones 

to stain in the striped bass brain. In the mammalian nervous system, galectin-1 has been 

localized in neuroglial cells and astrocytomas (Camby et al., 2001), Schwann cells 

(Horie et al., 2004), and primary sensory neurons and motoneurons in the spinal cord 

and brain stem (Hynes et al., 1990). Teleost possess these cell types also, but no 

staining in the brain could be directly attributed to these types of cells.   

Finally, the overall staining pattern skin of striped bass was little in the mucus, 

none in the mucus producing cells or other epidermal tissue, and strong staining in the 

dermis/hypodermis. The detection of galectin in mucus is difficult with paraffin-

embedded tissues, since this technique does not consistently preserve the soluble 

surface mucus. Mucus present in goblet or mucous cells is well preserved, and no 

galectin is seen anywhere on the skin, a result repeated in mucus-producing cells 

through out the animal. The epithelial cells, ranging from 3 or 4 cells to 20+ cells thick, 

are MS15 negative, but individual cells in the epidermis that are morphologically 

similar to tissue resident macrophage stain MS15+. Loose connective tissue of the 

dermis and hypodermis stains strongly for MS15, as do individual cells that are 
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morphologically similar to either macrophages or fibroblasts. Smooth vascular tissue of 

the arteries and veins stains positive for MS15, but the erythrocytes contained within do 

not. This staining pattern is most similar to what is observed in mouse when looking at 

galectin-1 distribution (Colnot et al., 1997). Mammals possess a proto-type galectin, 

galectin-7, that localizes to the epithelial cells of the skin, in particular, keratinocytes 

(Magnaldo et al., 1995). Though teleosts produce epidermal keratin, they do not 

keratinize their epidermis as do reptiles, birds and mammals. Perhaps the differences in 

galectin localization and skin cell function(s) in mammal and fish skin may be related. 

The structural sequences for skin mucus lectins in animal groups other than fish are 

limited and have been reported in two species, the land slug Incilaria fruhstorferi

(Yuasa et al.,1998) and the African clawed frog Xenopus laevis (Marschal et al., 1992). 

Though lectin activities have been found in the mucus of several fish species, the only 

structural sequences known are for conger eel mucus galectins (Muramoto and Kamiya, 

1992; Muramoto et al., 1999) and Japanese eel mucus galectin (Tasumi et al., 2004). 

From conger eel mucus and skin, two galectins called congerin I and congerin II have 

been localized (Nakamura et al., 2001) to the skin and mucus, but not observed in any 

other tissues. It was demonstrated that Japanese eel mucus galectin, called AJL-1, was 

synthesized in the skin, and secreted into mucus. AJL-1 gene expression was found in 

skin, but not in other tissues, i.e., gill, intestine, spleen, kidney and liver, by Northern 

blot analysis (Tasumi et al., 2004). This is in strong contrast to MS15 in striped bass, 

localized in tissues throughout the body except for the epidermis and mucus. The 

question remains as to the source of MS15 purified from mucus. One possibility is that 

MS15 is from cells present in the mucus, either from sloughing off or from leukocytes 
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present on surface of skin. Striped bass skin mucus does not stain for MS15, but 

individual cells in mucus debris do stain MS15+. What type of cells these are has not 

been determined, but it does suggest that active MS15 can be in the mucus without 

having been produced by mucus-producing cells, which is different from the two eel 

species. Scaleless fish have been shown to possess different populations of mucous 

cells, containing different types of mucus (Saxena and Kulshrestha, 1981). There is a 

distinct difference between striped bass skin and eel skin, and that is the presence of 

scales in striped bass vs. no scales in eels. As with the differences in teleost skin and 

mammals, perhaps differences in fish mucus galectin localization are due to structural 

and functional requirements of scales vs. no scales.    

IV.E. SUMMARY

Striped bass cells and tissues reacted to conventional cytological stains (H&E, 

PAS, AB, and Giemsa) the same as other animals. With these tools, the tissue and 

organ organization of striped bass was investigated, and major structures and cell types 

were identified. Among these were the peripheral blood cells, the goblet and mucous 

cells of the skin and alimentary canal, smooth vascular tissue, basal lamina and lamina 

propria, epidermal and dermal components, spleen, liver, brain, gills, and components 

of the alimentary canal. Stain used to detect anti-MS15 bound to endogenous MS15 

revealed a distribution pattern most similar to mammalian galectin-1, which is 

ubiquitous in the dermis and loose connective tissues, smooth vascular tissue, muscle, 

fibroblasts, myeloid cells (tissue resident macrophage, monocytes, and heterophils, but 

not observed in the epidermis, mucus-producing cells, serum or red blood cells, or liver. 
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This contrasts sharply with galectin in eel skin and mucus, which is found only in 

mucus-producing cells in the skin and epithelial layer of the esophagus to the stomach, 

but not in the connective tissues or myeloid cells. The source of striped bass skin mucus 

galectin (MS15) appears to be from cells present in the mucus.   
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CHAPTER V: INTERACTIONS OF 15 -KDA GALECTIN WITH MUCUS AND 

BACTERIA ON THE STRIPED BASS (MORONE SAXATILIS)

V.A. Introduction

A recurring problem in aquaculture and in wild populations of striped bass is 

disease (Baya et al., 1992; Toranzo et al., 1983; Snieszko, 1964; Eldar et al., 1995). 

Three major types of stresses that effect fish health in the Chesapeake Bay and in 

aquaculture are chemical stress, biological stress, and physical stress. Chemical 

stressors, such as low dissolved oxygen (Wannamaker and Rice, 2000), improper pH, 

pollution, diet composition, and nitrogenous and other metabolic wastes (Francis-

Floyd, 2002) may lead to changes in growth, disease resistance, and behavior (Barton, 

2002) Stress and injury initially trigger an alarm reaction (fight or flight response), 

which results in a series of changes within the fish. A blood sugar increase occurs in 

response to hormone secretion from the adrenal gland as liver glycogen is metabolized 

(Nolan et al., 2003; Vijayan et al., 2003). This produces a burst of energy, which 

prepares the animal for an emergency. In addition, hormones released from the adrenal 

gland suppress the inflammatory response, a defense used by fish against invading 

disease organisms. Water balance in the fish (osmoregulation) is disrupted due to 

changes in the metabolism of minerals (Wendelaar Bonga et al. 1997).  Under these 

circumstances, freshwater fish absorb excessive amounts of water from the 

environment (over-hydrate); salt-water fish lose water to the environment (dehydrate), 

this disruption increases energy requirements for osmoregulation. Respiration 

increases, blood pressure increases, and reserve red blood cells are released into the 
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blood stream. Biological stressors, such as crowding and presence of other species of 

fish leads to aggression, territoriality, and lateral swimming space requirements which 

all induce changes in hormone levels, such as cortisol, that if maintained over a period 

of time, having adverse effects on fish. Pathogenic and nonpathogenic microorganisms, 

and internal and external parasites can survive and multiply more easily on fish that 

have their innate immune system weakened (compromised skin/gill integrity, inhibited 

inflammation response). 

Physical stressors, such as temperature, light, sounds, and dissolved gases, 

influence to immune system of the fish. Though low temperature has been shown to 

negatively affect specific immune responses in teleosts (Avtalion, 1969; Avtalion et 

al.,1970), nonspecific defenses in teleost fish tend to offset specific immune 

suppression at low environmental temperatures until the specific immune system adapts 

(Yano et al., 1984; Hayman et al., 1992; Collazos et al., 1994). Although the species 

studied comprise a small and non-representative sample of the over 29,000 known 

teleost species, there are many indications that the stress response is variable and 

flexible in fish, in line with the great diversity of adaptations that enable these animals 

to live in a large variety of aquatic habitats.

The innate immune system includes mechanical barriers to infection. The 

surface of the striped bass is covered with a mucus coating- from the exterior skin 

through the mouth and alimentary canal. This layer has evolved to allow gas and 

nutrient exchange, improve locomotion, and relevant to immunity, provide a matrix to 

surround the animal with antibacterial peptides, antibodies, toxins, and lectins.   

Bacteria colonize and invade fish through the mucus of the skin, mouth, gills, and 
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alimentary canal, having co-evolved to evade fish defenses and adhere to the mucus 

and /or epithelial layers. Two ways that bacteria adhere are with proteins specific for 

host glycolipids and glycoproteins, and through surface charge or hydrophobicity 

(Absolom, 1988). Utilizing specific proteins, bacteria adhere to mucus and epithelial 

cells using pili (or fimbriae), tipped with adhesins that recognize receptors on the host 

cell.  Bacterial surface hydrophobicity (surface tension) plays a role in determining the 

extent of adhesion to host cells and phagocytic ingestion. Bacterial surface 

hydrophobicity can be altered significantly through exposure to sub-inhibitory 

concentrations of antibiotics, surfactants, lectins, etc. Lectins, such as galectins, present 

in the mucus and specific for bacterial surface glycans (Shiomi et al., 1990; Tasumi et 

al., 2004) may have role in opsonization, but also in altering the bacteria’s ability to 

adhere and invade. Finally, interactions between galectins and mucins may stabilize the 

mucus matrix, or bind bacteria to mucus until mucus is washed away.

Galectin has been isolated from striped bass skin and mucus (Chapter II). 

Galectins are proteins that may have many roles, including defense in mucus. Fish 

mucus galectins have been shown to agglutinate a marine pathogenic bacterium, 

including Vibrio anguillarum (Shiomi et al., 1990) and Streptococcus difficile (Tasumi 

et al., 2004). Galectin may recognize moieties on the surface of bacteria (agglutination) 

and may recognize N- and O-linked glycans on mucins and epithelial cells (Lindstedt et 

al.,1993; Sparrow et al., 1987). There is evidence that galectins externalized by the GI 

tract epithelia into the lumen may participate in crosslinking mucin to mucin and mucin 

to epithelial cell surface glycocalyses (ECSG) (Wasano and Hirakawa, 1997). Such 

crosslinking may efficiently prevent the loss of mucin into the lumen and protect the 
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epithelial surface from the attack of lumenal acid, digestive enzymes, and/or 

microorganisms. The presence of such a system has been documented in chicken 

intestine (Barondes, 1984; Beyer and Barondes, 1980). Chicken intestine goblet cells 

secrete a galectin called CL-16 into the intestinal lumen, along with mucin. This protein 

has high affinity for both intestinal mucin and ECSG and is thought to play a role in 

crosslinking these two glycoconjugates. 

Interactions with mucus and/or bacteria may be part of the function(s) of MS15 

in striped bass. To address the possible interactions of MS15 with mucus and bacteria, 

striped bass mucus was collected from the animal’s skin, tested for containing 

detectable levels of MS15, and tested for interactions with MS15.  A variety of 

bacterial strains (pathogens vs. non-pathogens, Gram (-) vs. Gram (+)) were tested for 

interactions with MS15 by agglutination assays. Two bacterial strains were chosen to 

be used in bacterial challenges (injection) in skin and muscle of striped bass, followed 

by immunocytochemistry of challenged areas. 

V.B. Materials

Mucus Collection and Processing: The mucus was collected from anesthetized 

healthy adult striped bass, by carefully scraping from head to tail the body mucus of the 

fish. Crude mucus was centrifuged in a Beckman J2-MC 20 centrifuge (JA 20 rotor, 

17,000 revolutions/minute, 4°C, and 45 minutes) and the three visible fractions 

generated from multiple centrifugations were separated and corresponding layers were 

pooled. 

Enzymatic treatment of MS15: Each pooled fraction of mucus was treated 
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separately with O-Glycosidase (O-Glycopeptide endo-D-galactosyl-N-acetyl-α-

galactosamino hydrolase, Roche), N-glycosidase F (peptide-N4-(acetyl-β-

glucosaminyl) asparagine amidase), or Endoglycosidase H, and with all three enzymes 

combined. O-Glycosidase treatment was as follows: 100 µL of mucus sample was 

added to 0.05 M sodium phosphate buffer (pH 6.0) containing 15 milliunits/ml O-

glycosidase at 37°C for 4 hours. N-Glycosidase F treatment was as follows: 100 µL of 

mucus sample was added to 0.05 M sodium phosphate buffer (pH 6.0) containing 15 

milliunits/ml N-Glycosidase F at 37°C for 4 hours. Endoglycosidase H treatment was 

as follows: 100 µL of mucus sample was added to  0.05 M sodium phosphate buffer 

(pH 6.0) containing 10 milliunits/ml enzyme at 37oC for 4 hours. 

Mucus blots: Mucus was transferred to PVDF using the Bio-Dot 

Microfiltration Apparatus (Biorad), in which clarified mucus was blotted by vacuum in 

replicate wells at 100 µl/well, with controls present in each column. Blotted membrane 

was cut into replicate lanes for different detection methods.  Mucus was analyzed in 

three ways: by PAS staining to detect carbohydrates, Coomassie Blue to detect total 

protein and rMS15 to detect endogenous ligand. PAS was performed by washing 

membranes in three changes of water (1 ml/cm2) and transferred to freshly prepared 

solution of 1% (v/v) periodic acid in 3% (v/v) acetic acid (1 ml/cm2) for 30 minutes at 

room temperature.  Membranes were rinsed twice in deionized water. Membranes were 

transferred to Schiff’s reagent (Sigma) for 30 minutes (0.5 mL/cm2). The membranes 

were washed three times for 2 minutes each in deionized water and air-dried.  Total 

amount of protein was detected by transferring membranes in Coomassie Blue R-

250/10% acetic acid/ 40% methanol in water for 30 minutes. Membranes were 
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destained in 10% acetic acid/ 40% methanol until background was gone. 

Lectinochemistry consisted of blocking membranes in 5% BSA/PBS followed by 

probing with rMS15: HRP. Bound galectin was detected with Stable-DAB (Invitrogen).

Bacterial Strains: The bacterial strains used in this study are listed in Table 

5.1. The liquid medium used for growing bacteria was Leurer Broth (LB) broth (Difco). 

The agar medium was LB with 1.5% agar. The bacteria were grown at 30oC or room 

temperature (20-25oC). Bacterial strains were kept in liquid medium at –70oC. 

Escherichia coli strains were grown in LB broth or agar medium, and stored in LB 

liquid medium with 20% glycerol at –70oC. Bacterial strains of Aeromonas hydrophila, 

A. veronii, A. trota, Bacillus subtilis, Carnobacterium piscicola, Edwardsiella tarda, 

Photobacterium damselae, Plesiomonas shigelloides, Pseudomonas aeruginosa, 

Staphylococcus aureus, Streptococcus faecalis, Vibrio anguillarum, V. cholerae, V. 

mimicus, V. parahemolytica, and V. vulnificus were obtained from collections of Dr. R. 

Colwell and Dr. G. Vasta of the University of Maryland. Bacteria were cultured on 

defined media, as described at the DSMZ - Deutsche Sammlung von Mikroorganismen 

und Zellkulturen GmbH (German Collection of Microorganisms and Cell Cultures), 

supplemented with mucin, as described in Jonsson, et al., 2001. 

Preparation of Whole Cells: Log-phase bacteria were harvested from agar 

spread plates plates in PBS, pH 7.4. After centrifugation, first at 300 rotations per 

minute (RPM) for 10 minutes and at 4500 RPM for 15 minutes, the bacterial cells were 

resuspended in PBS to 0.5 OD550 before reactions with MS15. Alternatively, 1.5 mL of 

each strain at 0.5 OD550 of was incubated overnight with 0.05% formalin to gently fix 

cells.
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Lectin Agglutination Assay: Bacterial suspensions (40 µl) were mixed with 10 

µl of  100 µg/ml MS15 in PBS in U-shaped microtitration wells for 5 seconds or with 

10 µl of PBS (negative control) and allowed to settle, undisturbed overnight at 20oC 

(Hynes et al., 1999). Results were read by visual inspection. A positive result was 

indicated by a carpet of aggregated cellular material on the bottom of the wells, 

whereas a negative result was indicated by a dot of cellular material in the center of the 

well. Negative results were confirmed by tilting wells at 45o angle and observing 

movement of cellular material. Auto-agglutination was confirmed by observing positive 

result in negative control well. As positive controls, MS15 were shown to agglutinate a 

0.5% v/v solution of human type O erythrocytes after incubation at 4oC for overnight. 

To test M. saxatilis skin mucus (filter-sterilized and galectin-depleted) as competitor, 

MS15 was incubated with mucus for one hour at 4oC, and used in previously described 

agglutination assay. 

Bacterial Challenge of M. saxatilis skin and muscle: Based on results of 

bacterial agglutination and galectin absorption tests, two species of bacteria were 

chosen for challenge experiments. Vibrio anguillarum and V. parahemolyticus grown 

as previously described in broth to 0.5  OD600 of. An aliquot of this culture was serially 

diluted and plated on duplicate LB agar plates, grown at 30oC for 24 hours. Colony 

forming units (CFU’s) were counted, averaged between duplicate plates, and multiplied 

by the dilution factors to determine CFU/ml of original culture. By this method, a 

dilution was made to have 1.0 X 106 CFU/ml. The final injected amount of bacteria was 

~1.0 X 105 bacteria/ injection site. Striped bass were injected into the dermis of the 

head skin and into the muscle just posterior to the dorsal fin. One side of the fish was 
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used for bacterial challenge, and the other side was used for the control “sham” 

injection of PBS only.  Following four days of no further handling, fish were sacrificed 

as previously described, and sites of injection were recovered with a scalpel. Samples 

were immediately placed in neutral buffered formalin and following 8 hours of fixation, 

were dehydrated and paraffin-embedded as described in Chapter IV. Finally, samples 

were sectioned and mounted on APES-treated slides for histochemical and 

immunocytochemical staining. H&E and PAS/H staining were performed as previously 

described, and endogenous MS15 was detected as described in Chapter IV. 

V.C. Results

Interactions with mucus: Mucus collection yielded approximately 20 ml 

mucus/fish. It is difficult to control how much tank water associated with the fish was 

included with the mucus removed from the surface of the animal. After centrifugation, 

mucus had separated into three distinct layers: a “clarified”, slightly viscous top layer, a 

cloudy, extremely viscous middle layer, and a brown pellet, approximately 5% w/v, 

which microscopically appeared to be food debris, sloughed cells, and bacteria. The 

“clarified” mucus showed no discernable suspended particles when analyzed 

microscopically, and the cloudy layer had some debris in it. When blotted to PVDF and 

probed with MS15:HRP, the cloudy mucus strongly bound galectin, and the clarified 

mucus bound comparatively much less galectin (Figure 5.1). This interaction was 

dependent on the presence of lactose, the competitive inhibitory sugar for this protein,

suggesting MS15 and mucus interactions are protein-carbohydrate interactions. 



139

Enzymatic cleavage of carbohydrate in clarified mucus increased the amount of 

galectin bound, but the same treatment in the cloudy mucus sharply decreased the 

amount of galectin bound. Pre-incubation of MS15 with lactose mostly/completely 

prevented binding to mucus fractions. Coomasie staining revealed equal amounts of 

mucus in each blot, and PAS staining revealed that the clarified mucus had much less 

carbohydrate that the cloudy mucus per blot. PAS staining also revealed a decrease in 

the carbohydrate content of cloudy mucus with each enzymatic treatment. 

Interactions with bacteria: Lectin Agglutination Assay- Interpretation of this 

lectin agglutination assay was unambiguous (Figure 5.2). “Negative” agglutination 

observed as an even lawn of bacteria spread across the bottom of the wells. “Positive” 

controls
Fraction 1    

(clear)
Fraction 2 
(opaque)

ASF

o/n

BSA

u n o e n/o/e u n o e n/o/e

(+) lactose

(-) lactose

PAS
Coomasie

Figure 5.1. MS15 binds striped bass skin mucus: Crude mucus was 
fractionated by centrifugation. Each fraction was enzymatically treated 
to remove glycans. Treated samples of each fraction were blotted to 
PVDF, and probed with MS15 with or without lactose as competitor. 
PAS and Coomasie show relative amount carbohydrate and total protein 
per dot. ASF and BSA are glycosylated and non-glycosylated controls. 
u= untreated; n=N-glycosidase; o=O-glycosidase; e= EndoH. 
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agglutination was a tight clump of cells at the bottom of the wells. Some bacteria 

species auto- or self-agglutinate, giving a potential false positive. Bacteria that were 

chosen for these studies included both gram negative and gram positive, and were 

known pathogens and non-pathogens for striped bass. There was no pattern for 

autoagglutination based on gram stain or pathogenicity in striped bass. There was no 

pattern of agglutination with MS15 based on gram stain or pathogenicity in striped 

bass. Bacteria that autoagglutinated under these conditions were Photobacterium 

damselae, Staphylococcus aureus, Vibrio cholerae, and Aeromonas hydrophila.

Bacteria that agglutinated with MS15 under these conditions were Carnobacterium 

piscicola, Edwardsiella tarda, Plesiomonas shigelloides, Streptococcus faecalis, Vibrio 

anguillarum, V. cholerae, V. mimicus, V. parahemolytica, V. vulnificus.  Bacteria that 

neither agglutinated with MS15 or autoagglutinated under these conditions were A. 

veronii, A. trota, Bacillus subtilis, and Pseudomonas aeruginosa (Table 5.1).

Immunohistochemistry of skin challenge: Injection of striped bass head skin

with either bacteria or PBS (mock) revealed that skin reacted similarly to injections 

with either species of bacteria, and with or without bacteria. The reaction appeared to 

be that of wound healing, and no bacteria could be localized in the bacteria-challenged 

skin. There was a slight increase in MS15 observed in the ECM around fibroblasts in 

the dermis, but no increase in mucus-producing cells or epithelial cells (Figure 5.2). 
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     Bacterial strain                              agglutination   self-agglutination  

Aeromonas hydrophila     + +                                        
A. veronii             - -
A. trota                   - -
Carnobacterium piscicola     + -
Edwardsiella tarda                   + -
Vibrio anguillarum    + -
V. mimicus    + -

Photobacterium damselae +  +

Bacillus subtilis - -
Pseudomonas aeruginosa  - -
Plesiomonas shigelloides + -
Staphylococcus aureus +  + 
Streptococcus faecalis +  -
V. cholerae +  + 
V. parahemolytica +  -
V. vulnificus + -

Table 5.1. MS15 agglutination of bacteria: MS15 agglutinated bacteria that 
are known striped bass pathogens (first seven) and non-pathogens (last eight). 
P. damselae is fish pathogen not yet associated with striped bass. Some 
bacteria auto (self) agglutinate, but positive self-agglutination does rule out 
binding of MS15. V. anguillarum and V. parahemolytica were chosen for 
bacterial challenges.
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Immunohistochemistry of muscle challenge: Injection of striped bass muscle 

with either bacteria or PBS (mock) revealed that muscle with different treatments 

reacted similarly. The reaction appeared to be that of wound healing, and no bacteria 

could be localized in the bacteria-challenged muscle. There was an increase in MS15+ 

cells in the wound site (Figure 5.3), in necrotic muscle fibers (Figure 5.3), and in the 

ECM immediately surrounding the MS15+ cells. The morphology of the MS15+ cells 

in the wound site (mostly peripheral blood cells) suggests that they are monocytes and/ 

or heterophils. The MS15+ cells in the necrotic muscle tissue morphologically and 

functionally appears to be macrophages or fibroblasts. There was no false positive with 

pre-immune serum controls, and PAS/H staining was comparable to the control (no 

PBS 
injected

Bacteria 
injected

control

PAS preimmune anti-MS15

Figure 5.2. Bacterial challenge of striped bass skin: V. parahemolyticus 
injected, 4 days post-injection. There is an increase in MS15 in and around 
wound, but no apparent bacteria. As compared to muscle challenge, specific 
cells staining for MS15 appear to be fibroblasts. An increase in MS15 also 
appears in the dermis. Sham vs. bacteria revealed no significant difference.
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handling) fish staining. 

PBS 
injected

Bacteria 
injected

control

PAS preimmune anti-MS15

PBS 
injected

Bacteria 
injected

control

PAS preimmune anti-MS15A

B

Figure 5.3. Bacterial challenge of striped bass muscle: A) V. anguillarum 
injected, 4 days post-injection B) V. parahemolyticus injected, 4 days post-
injection. Both reveal an increase in MS15 in and around wound, but no 
apparent bacteria. Specific cells staining for MS15 appear to be heterophils and/ 
or monocytes, and macrophage in necrotic muscle fibers. An increase in MS15 
also appears in ECM immediately surrounding wound/ infection site.
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V.D. Discussion

Some mammalian mucins possess N-linked and O-linked glycans, and some of 

these mucins have been demonstrated to be counter receptors for galectin-1 

(Seelenmeyer et al., 2003 ) and galectin-3 (Bresalier et al., 1996). The structure of these 

mucins is considered to be similar to fish mucins. The enzymes used to treat mucus

were PNGase F, which releases virtually all known N-linked oligosaccharide structures, 

O-Glycosidase, which releases the disaccharide Galβ(1–3)GalNAc from O-glycans 

attached to serine or threonine; and Endo H, which  show considerable specificity for 

N-linked structures such as oligomannosyl ("high mannose") and "hybrid"-type 

oligosaccharides. Some glycopeptides are refractory to one or more of these enzymes. 

For example, PNGase F cannot cleave oligosaccharides from amino- or carboxy-

terminal asparagine residues. It had been previously noted that skin mucus from striped 

bass fractionated into two distinct layers following centrifugation. The upper layer was 

slightly viscous and clear. The lower layer was highly viscous, and opaque white. 

These layers were about 50/50, but the amount of water collected with mucus may have 

an effect on the proportions. There was also a small brown pellet beneath the lower 

layer, and analysis by light microscopy suggested that it consisted of particulates 

suspended in the mucus, i.e., food, bacteria, and cellular debris. The pattern of MS15 

binding to treated mucus revealed that the upper layer had low carbohydrate content, 

but binding of MS15 improved slightly with O-glycosidase and Endo H treatment. The 

lower layer, though, possessed a relatively much greater amount of carbohydrate. MS15 

bound both untreated and neuraminidase-treated lower fraction strongly, but further 

deglycosylation prevented binding of MS15 to mucus. All binding of MS15 was 
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dependent on the presence of lactose, which blocked MS15 binding. These data suggest 

that mucus possesses ligands for MS15, and that these ligands are not equally 

distributed in mucus, but rather, are associated with distinct substituents of mucus. In 

addition, MS15- mucin interactions are not protein-protein, but rather protein-

carbohydrate in nature.  

Bacterial association with host mucosal surfaces involves several stages. 

Successful negotiation of each of these requires -- or is at least facilitated by -- the 

development of a distinct set of characteristics (virulence factors) by the bacterium 

(Freter, 1981). The major stages include: (a) chemotactic attraction of motile bacteria to 

the surface of the mucus, (b) penetration of and trapping within the mucus (passive or 

active by bacterial motility and chemotaxis), (c) adhesion to receptors in the mucus or 

to mucus-associated layers of the indigenous microflora, (d) adhesion to epithelial cell 

surfaces, and (e) multiplication of the mucus-associated bacteria. Each reaction is 

further modified-or reversed-by substan et al., 1999), inhibitors of adhesion, 

competitive bacterial species (McEldowney and Fletcher, 1987) and substrates for 

bacterial growth that are present in the mucosal microenvironment. Association with 

the mucus is often important for bacterial colonization but can also lead to more 

effective elimination of the bacterium by the host. This is where galectins, present in 

mucus and able to interact with bacteria, may play an important role. Whether this is 

through competition for binding sites, agglutination of bacteria and/or mucus, altering 

bacterial surface characteristics (hydrophobicity, Absolom et al., 1983), or another 

mechanism is not known. 

There are many species of bacteria associated with striped bass in their natural 
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environment and in an aquaculture tank. Not all interact with teleost skin, gut and 

mucus, and of the ones that do, not all cause disease in striped bass. This investigation 

focused on these bacterial-mucosal-skin interactions from the perspective of 

colonization, but not on whether the interactions led to a disease state. Bacterial 

challenge by injection of live bacteria was used to introduce bacteria in a controlled 

manner to a particular tissue, followed by recovery of the challenged tissue for analysis. 

The bacterial challenges in striped bass did not lead to discernable infection or disease, 

but it did produced changes in the distribution of galectin in the injection site. 

Peripheral blood cells filling the wound site included MS15+ cells that morphologically 

appeared to be heterophils and/ or monocytes. The ECM surrounding the wound site 

had a greater level of MS15 than did ECM away from the wound, but in similar tissue. 

Controls revealed no background staining present to complicate interpretation of 

results.  The epidermis has mucus, and functions in wound healing and covering 

(osmotic barrier), the dermis has scales, pigments, and binds the epidermis, and the 

hypodermis has fat and holds the dermis to muscle. In fish, it has been shown that 

wound healing begins with a rapid closure of the wound by movement of the epidermal 

cells surrounding the wound into the wound cavity. This was done with the cells 

remaining in blocks, and maintaining their desmosomal contacts (Iger and Abraham, 

1990).  After wounding in mammals, the wound space fills with a fibrin clot, consisting 

of matrix components including fibronectin (Clark et al., 1981; Yamada and Clark, 

1996). This forms a scaffold for the inward migration of the cells involved in early 

wound repair (Clark, 1996, Clark, 1997) The importance of fibronectin in early wound 

repair may lie in is ability to bind both cells and the extracellular matrix proteins 
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simultaneously (Engvall et al., 1978, Yamada and Clark, 1996). Interactions between 

human galectin-1 and laminin have been demonstrated, with galectin competing for 

fibronectin binding sites. MS15, sharing similar localization and carbohydrate 

specificity as mammalian galectin-1, may be involved in skin repair/remodeling by 

modulating migration of fibroblasts and cells of the wound edges into the wound. 

V.E. SUMMARY

MS15 binds striped bass mucus and some species of bacteria in a carbohydrate-

dependent manner. MS15 is localized in loose connective tissue of the skin (dermis), in 

macrophage and heterophils throughout the body, and in rodlet cells. This localization 

coupled with the interactions with bacteria and mucus suggests that MS15 plays a role 

in innate defense. The increase in the local concentrations of MS15 and MS15(+) cells 

following bacterial challenge and wounding of striped bass skin and muscle further 

supports a role in innate defense and possibly in wound healing.
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CHAPTER VI: GENERAL DISCUSSION AND FUTURE DIRECTIONS

Striped bass, Morone saxatilis, possesses a 15 kDa β-galactoside binding 

protein that can be grouped with the galectin family of proteins, based on biochemical 

characteristics such as carbohydrate specificity and primary structure, and on molecular 

characteristics such as gene organization. Striped bass galectin, called MS15, can be 

modeled to structures of other prototype galectins with few predicted conformational 

conflicts. The purified protein and its recombinant form agglutinate some species of 

bacteria, and bind to components in mucus. The protein localizes to the dermis and 

lamina propia (loose connective tissue) throughout the body, to smooth vascular muscle 

(veins, arteries), to large circulatory cells (heterophils, monocytes), to peripheral 

leukocytes (tissue resident macrophages, heterophils), to rodlet cells (possible immune 

cell in alimentary canal), and to leukocytes throughout the gills. These are all tissues 

and cells that protect the animal from invasion and infection by bacteria.

The data collected to date has been used to generate three models of function for 

MS15. There were many possible interactions to consider for these models. These 

include wound repair (stabilizing mucus to exposed dermis), complement (recognizing 

bacteria), heterophil-endothelium-ECM interactions (extravasation), macrophage-ECM 

interactions (migration), heterophil-macrophage interactions (phagocytosis of activated 

heterophils), macrophage-T cell interactions (apoptosis of activated T-cells), and tissue 

remodeling (macrophage, fibroblast migration). During bacterial infection or aseptic 

inflammatory processes, galectins are produced and released by e.g. infected 

epithelium, activated tissue-resident macrophages and endothelial cells. These 



149

extracellular galectins may facilitate binding of heterophils to the endothelium by cross-

linking carbohydrates on the respective cells. Further, the galectins improve binding of 

the neutrophil to the extracellular matrix proteins laminin and fibronectin, and are 

potential chemotactic factors, inducing migration through the extracellular matrix 

towards the inflammatory focus (Matsushita et al., 2000; Sano et al., 2000). In 

mammals, both galectin-1 and galectin-3 have the capacity to induce a respiratory burst 

in neutrophils, if the cells have been primed by degranulation and receptor 

upregulation. The reactive oxygen species produced may be destructive to the invading 

micro-organisms as well as to the surrounding host tissue, pointing out the possible role 

of galectins, not only in defense toward infection, but also in inflammatory-induced 

tissue destruction (Almkvist and Karlsson, 2004). In trout, results show that the 

macrophages are the resident phagocytes of the peritoneal cavity, while heterophils are 

present in that body cavity in significant numbers only in situations of inflammation 

and only as long as the inflammation persists (Afonso et al., 1998) 

Model I: Macrophage in epithelial mucus- Macrophages that reside in skin 

can be found on surface of epithelium. In this model, macrophage release MS15 upon 

contact/ activation by bacteria (close range); bacteria are agglutinated and/or 

crosslinked with mucins, slowing or preventing binding to the epithelium. Bacteria are 

cleared as mucus is naturally discarded, or phagocytized by macrophage. (Fig 6.1)

The experimental evidence found to support this model is: Resident macrophage 

of skin can be found on epithelial surfaces, in the skin mucus; macrophage have 

cytoplasmic MS15; MS15 binds mucus and bacteria in carbohydrate-dependent 

manner; and MS15 is sensitive to oxidation, therefore can be inactivated when 
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extracellular and unbound to ligand, so probably does not exist extracellularly in 

mucus.

epidermis

Goblet or 
mucous 
cells

mucus

dermis

epidermis

A

mucus

dermis MS15

agglutinated bacteria
BB

Figure 6.1. Model I-Intact skin defense: a) Galectin in mucus released by 
macrophage,and b)agglutinates bacteria by crosslinking bacteria with mucus 
or other bacteria, or opsonizes bacteria for macrophage phagocytosis.

A
macrophage
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Model II- MS15 in shallow wound defense: MS15 in skin helps in defense 

and healing by stabilizing mucus to MS15-rich dermis. As the epidermis is removed by 

mechanical (abrasion) or biological (infection) means, mucus flowing across skin is 

stabilized to exposed dermis, creating mucus “bandage”. This would help in 

homeostasis (osmotic balance) and in defense. 

Experimental evidence found to support this model is: MS15 is abundant in 

dermis, not epithelial cells; MS15 binds some components of crude mucus (Fig 6.2).

      Figure 6.2. Model II- Shallow wound defense: a) Damage to the epidermis 
exposes the dermis, which is rich in MS15. b) Mucus flowing over wound is 
stabilized by crosslinking of mucins of mucus and loose connective tissue of 
dermis. 

A

B

epidermis 
damaged
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mucus

epidermis
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Model III- MS15 in deep tissue wound/ infection: MS15 in deep tissues helps 

in wound defense by agglutinating bacteria, which improves phagocytosis by creating 

larger particle sizes (Fig 6.3). MS15 may have additional role in healing, influencing 

fibroblast migration and tissue remodeling.

Experimental evidence found to support this model is:  agglutination of bacteria 

by MS15; MS15 found in dermis, loose connective tissue throughout body; 

macrophage and fibroblast express MS15 in challenged and unchallenged striped bass; 

and MS15(+) macrophage collect in wounded/ challenged muscle fibers. 

The three models proposed are not mutually exclusive, and could be occurring 

concurrently at any given time. Function of MS15 localized to other tissues and organs, 

such as the liver, spleen, and brain, and in non-mammalian cell types, such as rodlet 

cells, remains to be investigated but no doubt will prove interesting on how a small 

globular protein can fill so many roles.

Future Directions: The strongest data collected was the presence of a proto 

type galectin in cells with immune function, such as leukocytes and rodlet cells, and the 

location of these galectin positive cells in the dermis, gills, alimentary canal, and in 

wound/ infection sites. These cells and tissues should be further characterized to better 

understand the role of galectin found there. Though this teleost galectin was 

characterized in striped bass, further elucidation of function should take place in a 

teleost that is a well established model organism, one possessing established molecular 

tools and that is better characterized. The teleost zebrafish, Danio rerio, possesses 

many desirable traits. There exist cell lines and markers, including those for myeloid 

cells. There are mutants that can be studied, as well as the genome project that has 
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revealed several putative galectins. Three types of galectins have been identified, 

isolated, and partially characterized (Ahmed, et al., 2004) in zebrafish, and the role of 

these proteins in zebrafish embryonic development is already being studied. The 

possibility of diverse roles of prototype galectins in fish must be considered, due to the 

early origins of this protein family, the vast number of extant fish species, the genomic 

duplication(s) that have occurred in fish, and the varied environmental conditions of 

fish (salt vs. fresh, temperature, pathogens). The teleost Ictalurus punctatus, the 

channel catfish, would serve well to further investigate the role of galectins in 

leukocyte functions. Possessing cell lines and cell markers, and with putative galectins 

identified in their genome, catfish may help to identify what type of leukocytes are 

producing galectin throughout the body as well as in wound sites and sites of infection. 

These models should be used for studying roles of galectin in immunity, but also in 

development and wound repair.  
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      Figure 6.3. Model III-Deep wound defense: a) Damage to dermis and 
epidermis allows bacteria to bypass mucus and dermal layer. b) MS15 present in 
dermis and muscle agglutinates bacteria in deep wound, which c) improves 
phagocytosis by increasing particle size. This may work in conjunction with 
physiological processes proposed in Model I and Model II.    
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