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I report measurements of two different types of superconducting devices il-

luminated by 780 nm light, one of the wavelengths needed in a proposed atom-

superconductor hybrid quantum system.

I illuminated a thin-film Al lumped-element resonator and observed the res-

onator quality factor and resonance frequency as a function of illumination intensity,

microwave power, and temperature. The resonator was mounted in a 3d aluminum

cavity. The variation in optically-induced loss due to microwave power was similar

to the behavior expected for loss from a distribution of two-level systems. Although

this behavior may suggest the presence of optically activated two-level systems, I

found that the loss is better explained by the presence of nonequilibrium quasiparti-

cles generated by the illumination and excited by the microwave drive. I described a

model of the system where optical absorption creates an effective source of phonons

and solved the coupled quasiparticle-phonon rate equations. I found good agreement

between the simulation and the measured resonator quality factor and frequency

shift as a function of temperature, microwave power, and optical illumination.



I fabricated a transmon qubit and studied the qubit transition frequency and

relaxation time as a function of illumination intensity and temperature. The qubit

was mounted in a 3d aluminum cavity and coupled to the cavity forming a Jaynes-

Cummings system. Qubit relaxation showed non-exponential behavior that I fit

to a quasiparticle fluctuation model with two characteristic times. The transition

frequency and both characteristic times decreased with increasing illumination in-

tensity. For comparison, I described a nonequilibrium quasiparticle model for the

expected frequency shift and relaxation time due to quasiparticle tunneling through

the Josephson junction. While the quasiparticle simulation predicted the general

qualitative behavior of the frequency shift and relaxation time, there were some

significant discrepancies with the data. This suggests the model needs to be ex-

tended, for example by including a different gap in the two superconductor layers

forming the junction, and by taking into account other possible sources of loss and

decoherence.
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Chapter 1: Introduction

1.1 Quantum Computers

Feynman was the first to propose using quantum states for computation [1].

Specifically, he proposed using a quantum computer to simulate other quantum

mechanical systems because classical computers are very inefficient for simulating

large quantum systems. Several years later, Deutsch and Josza found that, due to

the nature of quantum entanglement, there are classes of problems that could be

solved much faster using a quantum computer than classical computers [2, 3].

Since then, several distinct quantum algorithms have been proposed that are

theoretically capable of solving certain problems significantly faster than classical

computers. Two of the most famous quantum algorithms are Grover’s algorithm

and Shor’s algorithm. Grover’s algorithm is used to search elements of a large

unstructured database [4]. Shor’s algorithm can be used to find the prime factor of

very large numbers [5]. This is of particular importance because the current standard

for cryptography, RSA encryption, uses the fact that it takes a classical computer

a time that grows exponentially as the number of digits to factorize large numbers

[6]. Since Shor’s algorithm factors prime numbers in a time that is polynomial in

the number of digits [5], a quantum computer could break RSA encryption.
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Figure 1.1: Bloch sphere representation of a pure quantum state of a
qubit. A qubit state |ψ〉 can be any point in the surface of the sphere
(black dot) given by the angles θ and φ

Information in a classical computer is stored in bits, each of which can have

values 0 or 1. Information in a quantum computer will be stored in many quantum

bits (qubits). A qubit has two quantum eigenstates. The lower energy state is called

the ground state and typically represented by |0〉 or |g〉 in ket notation. The higher

energy state is the excited state and represented by |1〉 or |e〉. A pure quantum

state of a qubit can be represented as a point in the Bloch sphere (see Fig. 1.1).

The Bloch sphere has a radius of 1 and |g〉 is located on the north pole of the sphere

and |e〉 is on the south pole.

Any pure quantum state |ψ〉 of a qubit can be written as a superposition of

|g〉 and |e〉 of the form

|ψ〉 = cos(θ/2)|g〉 + eiφ sin(θ/2)|e〉, (1.1)
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Figure 1.2: (a) Simple picture of a Josephson junction, in which two su-
perconductors are separated by a thin insulator or normal metal. (b) Cir-
cuit symbol of a Josephson junction. In both images, V is the voltage
across the junction and I is the current passing through the junction.

where θ is the polar angle and φ is the azimuthal angle on the Bloch sphere. The

probability Pg to find the qubit in the ground state and the probability Pe to find

the qubit in the excited state are given by

Pg = |〈ψ|g〉|2 = cos2(θ/2) (1.2)

Pe = |〈ψ|e〉|2 = sin2(θ/2). (1.3)

Experimentally, many different quantum systems have been proposed for use

as a qubit. These include photons [7], trapped ions [8, 9], trapped atoms [10],

quantum dots [11], nuclear spins [12], impurities in solids [13], and a wide range of

electrical devices Some of the most promising candidates for a qubit are made from

superconducting devices [14], as discussed below in Section 1.3.

1.2 Josephson Effect

All superconducting qubits use one or more Josephson junctions to provide

anharmonicity or nonlinearity in a quantum system. Anharmonicity is essential
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because it allows isolation of two of the states which can then be used as a qubit. As

shown in Fig. 1.2(a), a Josephson junction consists of two superconductors separated

by a weak link, which can be an insulator, a normal metal, or a constriction in a

superconducting connection [15]. The current I through the junction and voltage

drop V across the junction obey the Josephson relations [16]

I = I0 sin γ, (1.4)

V =
Φ0

2π

dγ

dt
. (1.5)

where I0 is the critical current of the junction, Φ0 = h/2e is the flux quantum, and

γ is the gauge-invariant phase difference across the junction. For currents I larger

than I0, the junction switches to a state where the phase evolves with time. For

fixed current I < I0, the phase can be constant in time, and one finds V = 0 from

Eq. 1.5. Thus current can flow with no voltage drop, up to a maximum value given

by I0. Josephson was awarded the Nobel Prize in physics in 1973 for his prediction

of the Josephson effect.

Equations 1.4 and 1.5 can be used to show that

V =
Φ0

2π I0 cos γ

dI

dt
≡ LJ

dI

dt
, (1.6)

where LJ = Φ0/2πI0 cos γ is caled the Josephson inductance. Equation 1.6 implies

that a Josephson junction can be represented as an inductor with inductance LJ that

depends on γ and hence depends on current I. This current dependent inductance

shows that Josephson junctions are nonlinear inductors, and from Eq. 1.6 it can be

readily shown that the inductance can be positive, negative or infinite.
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1.3 Superconducting Qubits

Nakamura et al. reported the first coherent operation of a superconducting

qubit in 1999 [17]. Since then, many other groups have researched different aspects

of many types of superconducting qubits.

One of the main benchmarks for performance of any superconducting qubit

is the coherence time T2, which is the timescale on which the qubit loses quantum

coherence. The definition of the coherence time T2 in qubits follows the definition

used in nuclear magnetic resonance (NMR) [18]. The coherence time T2 arises from

two different time scales: the relaxation time T1, which is the characteristic time for

a qubit to decay from the excited state to the ground state, and the dephasing time

Tφ, which is the characteristic time for a qubit to lose its phase coherence. The time

scales are related by [18]

1

T2

=
1

2T1

+
1

Tφ
. (1.7)

The sources of decoherence may be from coupling to other systems, for example

two-level systems (TLS) [19] or quasiparticles [20, 21], or from noise coming from

external lines or the environment.

For quantum computation, one needs T2 to be much larger than the typical

time τg required to do a gate operation on the qubit. For superconducting qubits,

this gate operation time can be as short as about 10 ns and is typically in the range

of 10-100 ns. While the first superconducting qubit T1 and T2 values were of order

nanoseconds [17], the characteristic times increased rapidly over the years. Currently

the highest T2 values for superconducting qubits exceed ∼ 150 microseconds [22] and
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the highest T1 values are of a few milliseconds [23].

In addition to the characteristic times T1, Tφ, T2 and τg, superconducting

qubits also have characteristic energies that determine much of the behavior of the

qubit. These characteristic energies are the Josephson energy EJ and the charging

energy EC where

EJ =
Φ0I0

2π
, (1.8)

EC =
e2

2CΣ

. (1.9)

Here CΣ is the total capacitance of the qubit, which includes the capacitance of the

junction and the effective capacitance of all other capacitors shunting the junction.

EC is the electrostatic energy in the capacitor when a single electron is stored in the

capacitor.

Over the years, many different superconducting qubit designs have been de-

veloped [14]. Each type of superconducting qubit is distinguished by the quantum

states used and the ratio EJ/EC . Charge qubits or Cooper-pair boxes (CPBs) have

EJ/EC . 1 and use the number of Cooper pairs stored in the junction capacitor as

their qubit states, which is sharply defined except at certain biases that are used

for the actual qubit states [17, 24]. Flux qubits or persistent-current qubits have

EJ/EC > 1 and the supercurrent flowing around a superconducting loop is sharply

defined for most bias conditions[25, 26]. Phase qubits have EJ/EC � 1 and use the

fact that the effective potential energy of the system has local minima as a function

of phase γ, and use the lowest states within a well as the qubit states [27–29].

The first work on phase qubits began in 1999 at Maryland. The group later
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focused on a variant of phase qubits called the dc SQUID phase qubit, and attempted

to understand and recuce sources of decoherence in this design [30, 31]. Typically

for charge qubits, charge noise limits the decoherence, for flux and qubits, flux

noise limits the decoherence, and for phase qubits the relaxation (T1) limits the

decoherence.

More recent qubit designs aim to reduce decoherence by a combination of

techniques including adding additional low-loss circuit elements, isolating the device

from the environment, using better materials, removing non-essential materials, and

removing bias lines. Transmon qubits attempted to reduce charge noise in charge

qubit by adding a shunt capacitance. To maintain anharmonicity the capacitance

needed to be chosen such that 50 . EJ/EC . 200 [32], resulting in a device that was

very similar to phase qubits except with no bias. Similar methods were implemented

for flux qubits [33] and phase qubits [19]. On the other hand, fluxonium qubits

attempted to reduce both charge and flux noise by adding a large effective shunt

inductance to a charge qubit. The effective inductance was made from an array of

dozens of Josephson junctions [34]. More recently, UCSB started using Xmon qubits

which can be though of as variants of tunable transmon qubits [35].

I note here that superconducting resonators, which are not qubits, have turned

out to be important components in some superconducting quantum computer ar-

chitectures. In particular, resonators are used in circuit quantum-electrodynamics

(CQED) based qubit state readout [36] or for coupling and state transfer between

multiple qubits [37]. Studies of resonators by themselves have also proven to be

useful in understanding sources of internal loss and have led to improvements in the
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materials, fabrication, and design of qubits and resonators [38, 39].

Extensive research has revealed that two-level systems (TLS) in dielectric re-

gions [19, 40, 41] and quasiparticles in the superconductor [42–48] can be major

sources of internal loss in superconducting resonators and qubits. Recent approaches

to reducing TLS loss include better cleaning of the substrate and improved film

deposition techniques, for example by using molecular beam epitaxy (MBE) [39].

Stray light was identified as a major source of quasiparticles, and improvements

in shielding the device from stray light have resulted in reduced quasiparticle loss

[45, 46]. Embedding qubits inside a superconducting or normal metal 3D resonant

microwave cavity resulted in major improvements in the coherence time [49]. The

use of a cavity allowed a reduction in dielectric volume, introduced an additional

radiation shield, and led to better isolation of the qubit from the microwave environ-

ment. In fact, the longest qubit coherence times I mentioned above were achieved

by transmon qubits [22] and fluxonium qubits [23] embedded inside 3D cavities. In

these “3D qubits”, the cavity was also used for qubit readout.

1.4 Hybrid Quantum Systems

The coherence times of superconducting qubits have improved by several or-

ders of magnitude in the last 15 years, but they are still relatively short compared to

some other types of qubits. Examples of other solid-state qubits include nitrogen-

vacancy (NV) centers in diamond, which have coherence times of order 1 s [50], and

phosphorus donors in silicon, which have been shown recently to have coherence
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times of about 3 minutes [51]. Examples of atomic qubits include trapped neutral

Rb, where the longest coherence time that has been reported is about 3 s [52], and

trapped ions, with the longest coherence times of order 10 minutes [9].

Superconducting qubits also have several advantages over many other types of

qubits. First, the coherence time is not really a good figure of merit for a quantum

computer. What is important is that the gate operation time τg is much smaller than

the coherence time T2. This is critical because only for τg � T2 can many quantum

operations be performed before the quantum computer loses coherence. The gate

operation time of superconducting qubits can be as short as ∼ 10 ns, faster than

many other qubits, and much less than T2 in the best devices. Furthermore, short

τg also results in faster computation times and this is a significant advantage. For

example, trapped atoms appear to have gate operation time of order 1 µs [53] or

100 times slower. The fast gate time of superonducting qubits is due to the strong

coupling between the qubit and the qubit drive line. Finally, superconducting qubits

can be typically fabricated using standard micro- and nano-fabrication techniques,

and this offers the potential for a technology that can be scaled up to very large

numbers of qubits.

The relation between coherence time and gate operation time in superconduct-

ing qubits suggests one of the motivations for building a hybrid quantum system in

which a superconducting qubit is coupled to another type of quantum system. In a

hybrid quantum system, one hopes to harness the advantages of both systems: use

the fast gate operation times in superconducting qubits for fast computation and

use the long coherence times in another type of qubit for the storage of quantum
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infomation. Compared to classical computers, the superconducting qubits act as

quantum processor while the other qubits act as a quantum memory.

The coupling between a superconducting qubit and another type of qubit can

be achieved directly, using electric (capacitive) coupling or magnetic (inductive)

coupling, or indirectly, for example using a resonator or a tuned coupling element,

i.e the coupler acts as a quantum bus. There have been several different proposals

for hybrid quantum systems where superconducting resonators or qubits are coupled

to different quantum systems, including trapped ions [54, 55], neutral atoms [56, 57],

Rydberg atoms [58, 59], molecules [60, 61], and quantum dots [62]. Some of these

proposals are summarized in the review article by Xiang et al. [63] and I describe

several examples below where the system have been experimentally realized.

NV centers are promising candidates for building a hybrid quantum system

[50, 64]. A single NV center consists of a nitrogen atom replacing a carbon atom

in a site in a diamond lattice that is next to a vacancy . NV centers occur natu-

rally in diamond and they can also be artificially implanted. An NV center has a

ground-to-excited state transition frequency of 2.87 GHz, which is in the microwave

regime. It is somewhat lower than the typical superconducting resonator and qubit

frequencies, but appears to be usable. The main advantages are the resonance fre-

quency, long coherence time, and the ability to access the system optically and the

relative ease to couple to superconducting circuits. Potential disadvantages include

optical sensitivity of the superconducting qubit and weak coupling.

Based on a proposal by Marcos et al. [65], Zhu et al. managed to directly

magnetically couple a flux qubit to NV centers in a diamond substrate that was
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glued on top of the qubit [66]. A different approach was taken by the Esteve group

in France. They magnetically coupled NV centers to a tunable coplanar waveguide

superconducting resonator, which in turn was electrically coupled to a transmon

[67–70].

In addition to NV centers, coupling between other spin ensembles in solids and

a superconducting resonator have been experimentally realized. Schuster et al. have

coupled Cr3+ defects in ruby and P1 defects in diamond to a coplanar waveguide

resonator [71] and Bushev et al. have coupled Er3+ defects in Y2SiO5 crystals to a

coplanar waveguide resonator [72, 73].

Soykal and Flatté proposed a hybrid system where a cavity is coupled to fer-

romagnetic magnon modes [74, 75]. Since then magnetic coupling between magnon

modes in a yttrium iron garnet (YIG) crystal and coplanar waveguide resonators [76]

or microwave 3D cavities [77–79] have been experimentally realized. More recently,

Tabuchi et al. have reported indirect coherent coupling between magnon modes in

a YIG crystal and a transmon qubit, mediated by a 3D cavity [80].

I note here that most of the experimental realizations of hybrid systems so far

were between a superconducting resonator or qubit and another solid state system.

While there are significant complications and challenges in building such hybrid sys-

tems, additional complications arise in hybrid systems in which a superconducting

quantum circuit is coupled to a truly atomic non-solid state system, as I discuss in

the following sections.
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1.5 Proposed Hybrid System

The hybrid quantum system that our group at the University of Maryland

(Wellstood/Lobb/Orozco/Rolston Group) is working on is a superconducting quan-

tum circuit coupled to trapped neutral atoms. Specifically, the hyperfine ground

states of 87Rb atoms between |5S1/2, F = 1〉 and |5S1/2, F = 2〉 has a transition

frequency at fRb = 6.835 GHz when no magnetic field is applied. The initial pro-

posal was to directly magnetically couple the Rb atoms to a flux qubit [81]. For

atoms trapped about 5 µm from the qubit, the coupling between a single 87Rb atom

an a flux qubit is estimated to be around gRb/2π ≈ 40 Hz, and the total effective

coupling is geff = gRb

√
NRb where NRb is the total number of trapped atoms [81].

As a proof-of-principle experiment, we decided to try to magnetically couple

trapped 87Rb atoms to a superconducting resonator [83] (see Fig. 1.3). One advan-

tage resonators have is they are larger than flux qubits (∼ 1 mm vs ∼ 10 µm), which

means it is possible to couple to more atoms, resulting in larger effective coupling

geff. Using a resonator, it may also be possible to indirectly couple a superconducting

qubit to trapped atoms. In particular, we plan to capacitively couple a transmon

qubit to a resonator which in turn is inductively coupled to trapped atoms (see

Fig. 1.4).

Our proposed hybrid system has some serious challenges that will need to be

overcome. Many of the techniques used to trap neutral atoms, including several

proposed for hybrid systems [57, 84], require a strong magnetic field or relatively

large optical power. Having a strong magnetic field near a resonator can introduce
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Figure 1.3: Schematic of proposed prototype for a hybrid system where
a superconducting resonator is coupled to neutral Rb atoms trapped on
a tapered optical nanofiber. The Rb atoms are initially loaded at the
nanofiber trap using a grating magneto-optical trap (GMOT) and then
transferred using an optical conveyor belt to within 10 µm from the
resonator. Figure from Ref. [82].
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Figure 1.4: Circuit schematic of proposed hybrid system where a trans-
mon is capacitively coupled to a resonator which in turn is inductively
coupled to trapped atoms.
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magnetic vortices in the film which adds to the loss and can cause dephasing [85].

Similarly, optical illumination of a resonator will create quasiparticles which also

increases loss in the resonator [42, 45, 46]. Additionally, the hybrid system will be

located at the mixing chamber stage of a dilution refrigerator which has a limited

cooling power. For example, the refrigerator that we are currently using is an Oxford

Cryofree Triton 200 refrigerator with a cooling power of 200 µW at 100 mK and a

base temperature of about 10 mK [86]. Applying high optical power at the mixing

chamber (∼ mW) would add too much heat load to the refrigerator, resulting in a

refrigerator base temperature that is too high for superconducting qubits. Hence,

we will need to minimize the optical illumination of the resonator.

The plan is to use an optical dipole trap around an optical fiber with a diameter

smaller than the wavelength of the light passing through the fiber [87–90]. Coupling

light through such a ”nanofiber” creates an evanescent wave that rides on the outside

of the fiber. The square of the electric field is proportional to the potential energy

of an atom located outside the fiber. Red detuned light from the D2 transition of

Rb (780 nm) creates an attractive potential [87], while blue detuned light creates

a repulsive potential. By coupling both red and blue detuned lights of the correct

intensity, a potential well can be created around the fiber where the atoms can be

trapped [88]. The distance of the trapping well from the surface of the fiber depends

on detuning and the optical power. Applying red detuned light from both sides of

the fiber creates a standing wave, forming a 1D optical lattice along the fiber.

One possibility is to use a grating magneto-optical trap (GMOT) to initially

trap Rb atoms which then need to be loaded onto the fiber trap [91, 92]. To reduce
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the heat load to the refrigerator, the GMOT will be anchored to one of the higher

temperature stages of the refrigerator, for example to the second pulse tube stage at

3.5 K, which has a much higher cooling power. This means the atoms will be located

some distance away, of order 10 cm or more from the resonator. We will need to use

an optical conveyor belt scheme [93] to move the atoms along the fiber to within a

few µm from the resonator. To initially load the atoms, we are planning to use a

2D magneto-optical trap (MOT) [94] to create a beam of Rb atoms directed at the

GMOT. This 2D MOT will be located at room temperature outside the refrigerator,

attached to one of the window ports of the refrigerator.

1.6 Challenges in Building the Proposed Hybrid System

There are many constraints and challenges in building our proposed hybrid

quantum system. On the atomic side, we want the nanofiber to have as high of a

transmission as possible since scattering of light from the fiber will lead to heating

and quasiparticle induced loss in exposed superconducting films. One of the sources

of light loss is Rayleigh scattering from surface defects, impurities, and inhomo-

geneities. Jon Hoffman and Sylvain Ravets have developed a procedure to clean

and fabricate a nanofiber using a heat-and-pull process [95]. They have found they

can produce 500 nm diameter tapered nanofibers with up to 99.95% transmission,

which is the highest transmission reported for a tapered optical nanofiber [82, 95–

97]. Jeff Grover and Pablo Solano have used one of the fibers to trap in ∼ 1 mK

deep trap several hundred laser cooled Rb using a room temperature apparatus and
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studied the properties of the trapped atoms [98, 99]. The trapping setup would

need to be miniaturized to allow us to put it inside the dilution refrigerator. The

main problem appears not to be the fiber trap but rather the MOT that is used as a

source of cold Rb atoms. The atomic side of the collaboration has built prototypes

of 2D MOT for atom source and GMOT for atom loading, but these still need to

be tested in the cryogenic environment.

On the superconducting side, ideally we want the linewidth of the resonator

resonance to be smaller than the effective coupling geff. The linewidth of the reso-

nance is given by δωr = ω/Q where ωr is the resonance frequency and Q the quality

factor of the resonance. I note here that if we include Nrf, which is the number of

rf photons in the resonator, the effective coupling is modified to geff = gRb

√
NrfNRb.

For a proof-of-principle experiment, it should be possible to put the resonator in

a Fock state with Nrf � 1 and hence increase the coupling geff. For a more con-

ventional qubit coupling experiment we would typically operate the resonator and

qubit at low cavity drive powers Nrf ≈ 1. For Nrf = 1, NRb ≈ 1000 Rb atoms, and

gRb ≈ 40 Hz, we have geff ≈ 2π × 1 kHz. This suggests we need Q to be in the

order of several million. As shown in this dissertation, we have fabricated resonators

with Q reliably in the 105 range at low rf drive powers, and up to 2 × 106 at high

drive powers with Nrf ≈ 108. This means we should be able to observe the coupling

between the resonator and the atoms in the proof-of-principle experiment, although

we need to improve Q in the long term for the qubit coupling experiment. I note also

that Sarabi et al. have observed spectroscopic TLS features that are much sharper

than the resonator linewidth [100, 101]. This suggests it may not be necessary to
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Figure 1.5: False color photograph of Rayleigh scattering of 780 nm
light travelling down 500 nm tapered nanofiber. Picture taken by Jon
Hoffman [82].

achieve such high Q’s in the hybrid system.

Additionally, it will be desirable for the resonator frequency to be tunable to

the Rb transition frequency fRb = 6.835 GHz to allow us to see the splitting in

the resonance as direct evidence of the coupling strength. Typical schemes to tune

resonators use Josephson junctions [102]. However, as I discussed above, Josephson

junctions will introduce nonlinearity into the system. Additionally, the junctions

may introduce additional loss [19] which can result in reduced Q. As an alternative

approach, Zaeill Kim used a movable superconducting pin to tune a resonator. The

pin was mounted on an Attocube piezoelectric stage [103] and changed the effective

inductance of the resonator, which in turn changed the resonance frequency. Zaeill

showed that he could shift the resonance by about 36 MHz with this tuning scheme

[104].

Although the transmission of the best tapered fibers is high, there is still some

light scattered from the fiber, as shown in Fig. 1.5. Jon Hoffman measured the

Rayleigh scattering from a 500 nm diameter fiber at room temperature to be several

nW per mm for a 10 mW transmitted power [82]. For a resonator located 10 µm
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away from the fiber, some of this scattered light will be incident on the resonator

and cause an increase in loss due to the generation of quasiparticles.

As discussed in the following chapters, my research was focused on under-

standing the effect of incident light on the loss in resonators and transmons, as well

as finding ways to reduce incident light or otherwise limit the increase in loss. As

I also discuss, my results have some implications for our hybrid design as well as

implications for quasiparticle loss in other superconducting qubits and the design of

microwave kinetic-inductance detectors (MKIDs) [105, 106].

1.7 Overview of Dissertation

The structure of the dissertation is as follows. In Chapter 2 I discuss the theory

of microwave resonators. I describe the circuit representation of a lumped-element

LC resonator and then show how loss affects the resonance frequency and quality

factor of the resonator. I describe two sources of loss: the two-level systems (TLSs)

and quasiparticles. The distribution of quasiparticles is affected by, among other

things, rf drive and optical illumination. I model the optical illumination using

a variation of the Parker heating model [107] where the illumination creates hot

nonequilibrium phonons that are parameterized by an effective temperature Teff. I

discuss how I simulated the nonequilibrium distribution from these effects and find

the frequency and quality factor change due to this distribution.

Chapter 3 focuses on the experimental detail of the resonator measurements.

Zaeill Kim originally designed and fabricated the resonator, and I discuss how we

19



modified the resonator to use in our experiment. The resonator was embedded inside

a 3d cavity, I discuss the design and fabrication process of the cavity. In this chapter,

I also discuss the microwave setup for the resonator transmission measurement, as

well as the optical fiber setup that was used to illuminate the resonator.

I separate the results of the resonator measurements into two chapters. In

Chapter 4 I discuss the results when no optical power is applied. At base tem-

perature and for low rf powers, the behavior of the quality factor and frequency

suggested strong coupling to a single or a few TLSs. At high rf powers, the behavior

of the quality factor and frequency as a function of rf power and temperature can be

explained by effects from having a nonequilibrium distribution of quasiparticles. At

base temperature, I had to include an effective temperature Teff ≈ 236 mK, which

was most likely due to the presence of a 4 K hot finger near the cavity in the same

cooldown.

In Chapter 5 I discuss the results of measurements on the resonator under

illumination. The quality factor under illumination appeared to show a TLS-like

rf power dependence, suggesting the presence of optically activated TLS. However,

this behavior, as well as the frequency, can be explained well by the nonequilibrium

quasiparticle behavior. I also discuss several additional measurements I performed.

These include a comparison of response between two optical fibers with different

orientation, the response to polarized light, and the time-dependent response of the

resonance frequency to an optical pulse.

In Chapter 6 I discuss the theory of the transmon. I present the Hamiltonian

of the transmon and the Circuit QED system where the transmon is coupled to a
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harmonic cavity. I then describe the sources of decoherence and how they affect the

relaxation time T1 and dephasing time Tφ of the qubit. Similar to the sources of

loss in a resonator, the sources of decoherence in a transmon also include TLSs and

quasiparticles. The complete picture of nonequilibrium quasiparticle in a transmon

is complicated. I discuss how I simplified this picture and how the nonequilibrium

distribution of quasiparticles from this simplified picture affects relaxation time and

transition frequency.

Chapter 7 focuses on the experimental detail of the transmon experiments. I

will discuss in detail how I designed and fabricated the transmon. This is followed by

a lengthy detail on the microwave setup for the qubit drive and readout, including the

timing sequences for the different measurements I performed. I also briefly discuss

the 3d cavities and the optical illumination setup, but they are largely identical to

the setup in the resonator measurements of Chapter 3.

In Chapter 8 I present my results and preliminary analysis of the illuminated

transmon measurements. The spectrum of the qubit suggested a significant probabil-

ity of the qubit being in the excited state, suggesting the qubit was quite hot, either

due to background radiation or poor thermalization. Both Rabi oscillations and

qubit relaxation did not follow typical qubit behavior. In particular, the relaxation

showed a nonexponential decay that may be explained by quasiparticle fluctuations

or nonequilibrium quasiparticle effects. I discuss how the transition frequency and

relaxation time was affected by increased temperature and optical illumination, and

compare my results to the simple nonequilibrium quasiparticle picture of Chapter 6.

While the picture captured the general behavior, the agreement with the data is
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relatively poor. This suggests the simple picture has left out some essential physics.

Finally, in Chapter 9 I summarize my results and discuss possible extensions

to the model and experiments.
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Chapter 2: Theory of Loss in Superconducting Microwave Resonators

In this chapter, I discuss the theory of superconducting resonators, with a

particular focus on lumped-element LC resonators. I define the two main parameters

that we measure in the resonator experiments, the quality factorQ and the resonance

frequency fr of a resonator. I then discuss the sources of loss in resonators, and how

they affect the Q and fr of a resonator, but focus on the two main sources, two level

systems (TLS) and quasiparticles. I describe in some detail the nonequilibrium

distribution of quasiparticles, how I simulate them, how this distribution affects Q

and fr, and how to incorporate optical illumination into the simulation. Finally, I

briefly describe other sources of loss in the resonator, which include trapped vortices

and losses to other microwave lines and modes.

2.1 Superconducting LC Resonators

2.1.1 Circuit Representation and Resonance Frequency

The resonator I used in my experiments is discussed in detail in the next three

chapters. Here it is sufficient to note that it is a superconducting lumped-element

planar LC resonator. This type of resonator consists of a well-defined inductor L
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(a) (b)

Figure 2.1: (a) Photograph of an LC resonator used in the experiments.
(b) Simplified circuit diagram of an LC resonator.

and a separate well-defined capacitor C. Fig. 2.1(a) shows a photograph of the

lumped-element resonator I used. I will discuss why we chose the lumped-element

design for our experiments in Section 3.1.

Figure 2.1(b) shows a simplified circuit representation of a lumped-element

resonator. Let q = CV be the charge stored in the capacitor, where V is the voltage

across the capacitor. From Kirchhoff’s laws we can write the equations of motion

as

q

C
+ L

dI

dt
= 0

q̈ +
q

LC
= 0, (2.1)

where I = q̇ is the current flowing through the inductor. Eq. 2.1 is the equation of

motion for a simple harmonic oscillator with a resonance frequency

fr =
ωr
2π

=
1

2π
√
LC

. (2.2)
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Figure 2.2: Circuit schematic of an S21 measurement of an LC resonator.

In the quantum regime, the energy eigenstates of a harmonic oscillator are

En = ~ωr
(
n+

1

2

)
, (2.3)

where n = 0, 1, 2, . . .. The energy levels are all separated by ~ωr. One implication

is that one can’t just isolate two levels to use as a qubit. Hence a superconduct-

ing resonator on its own can’t be used as a qubit. Nevertheless, superconducting

resonators are widely used in superconducting qubit architecture, for coupling mi-

crowave pulses to qubits, for coupling multiple qubits together, and for state readout

of qubits [36, 37].

2.1.2 Quality Factors and Resonance Shape

The effects of coupling a resonator to external lines and internal losses can

be understood by modeling the system. Figure 2.2 shows the circuit schematic of

my setup for measuring the resonator. The impedances of the input and output
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(a)

(b)

Figure 2.3: (a) Circuit schematic of an S21 measurement including the
voltage source. (b) Thévenin equivalent circuit of the schematic in (a).

lines are Z0. The resonator is capacitively coupled to the input line with input

capacitance Cin and to the output line with output capacitance Cout. I assume

very weak couplings, such that ωCin, ωCout � 1/Z0. Typically there is also an even

weaker direct capacitive coupling between the input and output with capacitance

C12, but here I will ignore them. The resistance R represents all of the internal

losses in the resonator.
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In some of my experiments, I measure the transmission S21 ≡ Vout/Vin as a

function of rf drive frequency f . To find an expression for S21, I need to include a

representative voltage source, as shown in Fig. 2.3(a). Note that the voltage supplied

by this source is 2Vin [108]. This is because when there is no device to test and the

input and output ports are shorted, the circuit can be represented by Fig. 2.3(b)

with ZTh = Z0 and the total impedance is 2Z0. Since for such a setup S21 = 1 or

Vout = Vin, the voltage source needs to be defined as 2Vin.

The green dashed square in Fig. 2.3(a) represents the LC resonator. The

impedance ZLC and the admittance YLC inside this square are found from

YLC =
1

ZLC
= i

(
ωC − 1

ωL

)
+

1

R
. (2.4)

The impedance Zin and admittance Yin inside the blue dashed square in Fig. 2.3(a)

is

Zin =
1

Yin

= Z0 +
1

iωCin

. (2.5)

Following Schuster [109], I define xin ≡ ωCinZ0. Since ωCin � 1/Z0, xin � 1. I can

then rewrite Eq. 2.5 to get

Yin =
iωCin + x2

in/Z0

1 + x2
in

≈ iωCin + x2
in/Z0. (2.6)

Figure 2.3(b) show the Thévenin equivalent circuit of Fig. 2.3(a) with equiv-

alent voltage VTh and equivalent impedance ZTh [110]. Using Thévenin’s theorem I

can calculate VTh and ZTh

VTh =
ZLC

Zin + ZLC
2Vin

=
Yin

Yin + YLC
2Vin (2.7)
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ZTh =
1

iωCout

+

(
1

Zin

+
1

ZLC

)−1

=
1

iωCout

+ (Yin + YLC)−1 . (2.8)

I can then calculate Vout

Vout =
Z0

Z0 + ZTh

VTh

=

(
Z0

Z0 + 1/iωCout + (Yin + YLC)−1

) (
Yin

Yin + YLC

)
2Vin. (2.9)

Using a definition similar to Eq. 2.5 I can define Zout and Yout

Zout =
1

Yout

= Z0 +
1

iωCout

. (2.10)

And similarly, by defining xout ≡ ωCoutZ0 � 1, I can write

Yout =
iωCout + x2

out/Z0

1 + x2
out

≈ iωCout + x2
out/Z0. (2.11)

From Eq. 2.9 I can write

S21 =
2Z0YinYout

Yin + Yout + YLC

=
2Z0(iωCin + x2

in/Z0)(iωCout + x2
out/Z0)

1/R + x2
in/Z0 + x2

out/Z0 + i [ω(C + Cin + Cout)− 1/ωL]
(2.12)

The imaginary component of the denominator is zero when

ω = ω0 ≡
1√

L(C + Cin + Cout)
. (2.13)

ω0 is the coupled resonance frequency of the resonator, shifted down from the un-

coupled resonance frequency 1/
√
LC. Typically we expect this shift to be small

since Cin, Cout � C. Also, I typically just focus on the S21 in a region very near the
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resonance. I can define ω = ω0 + δω with |δω| � ω0, and the imaginary component

of the denominator can then be written as[
ω(C + Cin + Cout)−

1

ωL

]
≈
[
(ω0 + δω)(C + Cin + Cout)−

1

ω0L

(
1− δω

ω0

)]
=

2δω

ω2
0L
. (2.14)

Since xin, xout � 1, I can approximate the numerator on the right hand side of

Eq. 2.12 as −2Z0ω
2
0CinCout.

I define the internal quality factor Qi, the input coupling quality factor Qin,

and the output coupling quality factor Qout by

1

Qi

≡ ω0L

R
(2.15)

1

Qin

≡ ω0Lx
2
in

Z0

≈ ω3
0C

2
inLZ0 (2.16)

1

Qout

≡ ω0Lx
2
out

Z0

≈ ω3
0C

2
outLZ0. (2.17)

I can then define the total external quality factor Qe and overall quality factor Q

1

Qe

≡ 1

Qin

+
1

Qout

(2.18)

1

Q
≡ 1

Qi

+
1

Qe

=
1

Qi

+
1

Qin

+
1

Qout

. (2.19)

I note here that the internal quality factor Qi includes all internal loss sources.

In particlular, this includes two-level systems and quasiparticles. In general, I can

write

1

Qi

=
1

QTLS

+
1

Qqp

+
1

Q0

(2.20)

where QTLS is the quality factor from two-level systems, Qqp is the quality factor

from quasiparticles, and Q0 is the quality factor from all other internal sources of
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loss. Using these definitions, S21 can then be written as

S21(ω) = − 2Q/
√
QinQout

1 + 2iQ(ω − ω0)/ω0

. (2.21)

This is the complex expression for S21 that I used to fit to measured resonance

peaks, as I discuss in Chapter 3.

One way to visualize S21 is by plotting |S21|2 = |Vout/Vin|2 = Pout/Pin, the

ratio between transmitted power Pout and input power Pin. The powers are defined

as

Pout =
|Vout|2

Z0

(2.22)

Pin =
|Vin|2

Z0

(2.23)

The expression for |S21(ω)|2 can be written as

|S21|2(ω) =
4Q2/QinQout

1 + [2Q(ω − ω0)/ω0]2
. (2.24)

I note that this expression yields a Lorentzian shaped peak with a full width at

half maximum of ω0/Q. The height of the peak at resonance is 4Q2/QinQout. If

Qin = Qout, then Qe = 1
2

√
QinQout = Qin/2 = Qout/2. If Qin = Qout and 1/Qi = 0,

the height of the peak at resonance is 1, which means all of the power is transmitted

from the input port (1) to the output port (2).

Fig. 2.4(a) shows a simulated |S21|2 as a function of ω with arbitrarily chosen

dimensionless parameters: C = 1, L = 1, Z0 = 1, Cin = 0.001, Cout = 0.005,

and R = 0.001. The resonance frequency is ω0 = 1/
√
L(C + Cin + Cout) ≈ 0.997.

Using Eq. 2.15 to 2.19, the inverse quality factors are 1/Qi ≈ 9.97× 10−4, 1/Qin ≈

9.91× 10−7, 1/Qout ≈ 2.48× 10−5, and 1/Q ≈ 1.02× 10−3. The width of the peak
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Figure 2.4: Plot of resonance peak in different S21 representations.
(a) Lorentzian peak in |S21|2 vs ω. (b) Circle in S21 complex plane.
Parameters used for both plots are in the text.
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can be calculated to be ω0/Q ≈ 1.02 × 10−3 and the height of the peak can be

calculated to be 4Q2/QinQout ≈ 9.39 × 10−5. The calculated values are consistent

with Fig. 2.4(a).

Another way to visualize the response of the LCR circuit is by plotting S21 in

the complex plane, that is, to parametrically plot Im(S21) vs Re(S21). One finds a

circle with diameter 2Q/
√
QinQout centered at (−Q/

√
QinQout, 0). Fig. 2.4(b) shows

a simulated parametric plot of Im(S21) vs Re(S21) with the same parameters as in

Fig. 2.4(a).

From Fig. 2.3(a), I find that the voltage across the LC resonator can be written

as

VLC(ω) =
Z0 + 1/iωCout

Z0 + ZTh

VTh =
2Yin

Yint + Yout + YLC

2Vin

≈ −i2ω2LCin

1/Q+ 2i(ω − ω0)/ω0

Vin (2.25)

The magnitude of the voltage across the LC resonator at the resonance frequency

ω = ω0 can be written as

|VLC(ω0)| =
2ω0LCin

1/Q
|Vin|

= 2Q

(
Pin

Qin

)1/2(
L

C + Cin + Cout

)1/4

. (2.26)

using the definitions of 1/Qin, ω0, and Pin. From this, the power absorbed by the

resistance R in the circuit diagram can then be written as

PR =
|VLC(ω0)|2

R
=

4Q2Pin

QinR

√
L

C + Cin + Cout

=
4Q2

QiQin

Pin. (2.27)
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Note that PR is the power absorbed by all internal sources of loss in the resonator.

If 〈n〉 is the average number of photons in the resonator, the average total

energy stored in the resonator can be written as

〈n〉~ω0 =

〈
1

2
(C + Cin + Cout)|VLC(ω0)|2

〉
+

〈
1

2
L|IL(ω0)|2

〉
, (2.28)

where IL is the current at inductor L and I now have to include the overall ca-

pacitance. Here I have ignored the zero-point energy. The first term on the right

hand side is the average energy stored in the capacitors and the second term is the

average energy stored in the inductor. From the Virial theorem, the two terms are

equal. Eq. 2.28 can then be rewritten as

〈n〉~ω0 =
〈
(C + Cin + Cout)|VLC(ω0)|2

〉
. (2.29)

Using the definition of ω0 and Eq. 2.26, I find

〈n〉 =
4Q2Pin

Qin~ω2
0

. (2.30)

2.2 Two-Level Systems

2.2.1 TLS Overview

Two-level systems (TLSs) are a major source of loss for superconducting qubits

and resonators, especially at low drive powers. TLSs effects in dielectrics were

observed as far back as the 1950’s. In the 1970’s Zeller and Pohl, for example,

described how TLSs in various glasses caused the thermal conductivity and specific

heat to deviate from the standard Debye model [111]. A common type of TLS is
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Figure 2.5: A TLS is modeled as a particle in an asymmetric double well
potential.

thought to be a dangling OH− ion in or on the surface of a dielectric [19, 112]. A key

signature of TLS behavior is the saturation of loss under a sufficiently large driving

field. In my experiment the driving field was a microwave electric field, but similar

situation of loss can be observed under acoustic fields [113].

In superconducting resonators and qubits, TLSs can be located in surface

oxides that grow on the superconductor, at the substrate-metal boundaries, at

substrate-air boundaries, in the Josephson junction oxides, and in the dielectric

in any parallel plate capacitors [19, 41, 114]. In recent years, major reductions in

TLS loss in resonators and qubits have been achieved by using better dielectrics

[19], removing unnecessary dielectrics [114, 115], using better and cleaner fabrica-

tion techniques [39, 116], and by using architectures such as 3d cavities [49] and

whispering gallery mode resonators [117, 118] that minimize surface effects.

Phillips [119–121] and Anderson et al. [122] developed the now-standard theo-
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retical model for describing TLS behavior. In the standard model, a TLS is treated

as a particle that is trapped in an asymmetric double-well potential (Fig. 2.5). I

now consider just the lowest lying state in each well |φl〉 for the left well and |φr〉 for

the right well. In this picture ∆ is the asymmetry of the well, which is the energy

difference between the two basis states. The tunneling rate between the two sites is

∆0. In this basis, the Hamiltonian can be written as

HTLS,0 =
1

2

−∆ ∆0

∆0 ∆

 . (2.31)

The eigenvalues E± and eigenstates |ψ±〉 of the Hamiltonian can be found by

diagonalizing Eq. 2.31. The eigenvalues are given by

E± = ±1

2

√
∆2 + ∆2

0 = ±1

2
E , (2.32)

where E ≡ E+ − E− =
√

∆2 + ∆2
0. The eigenstates are given by

|ψ+〉 = sinα|φl〉 + cosα|φr〉 (2.33)

|ψ−〉 = cosα|φl〉 − sinα|φr〉, (2.34)

where tan(2α) = ∆0/∆. In the eigenstate |ψ±〉 basis, the Hamiltonian can then be

written as

HTLS,0 =
1

2
σzE , (2.35)

where σz is one of the Pauli matrices, which are given by

σx =

0 1

1 0

 , σy =

 0 i

−i 0

 , σz =

1 0

0 −1

 . (2.36)
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Figure 2.6: Illustration of a TLS with dipole moment ~p under electric
field E, with angle θ between ~p and ~E.

2.2.2 Effects of Individual TLS

Figure 2.6 shows a TLS under an electric field ~E. In the figure ~p is the electric

dipole moment of the TLS, and θ is the angle between ~E and ~p. If the TLS is an

ion with charge q that is displaced by ~l when it changes from state |φl〉 to |φr〉 then

~p = q~l/2. Reported values of |~p| in dielectric materials used in superconducting

resonators, for example Si3N4, are around 5-10 Debye [19, 113, 123]. Debye is a

non-SI unit and I note that 1 Debye ≈ 0.21 eÅ. A charged TLS interacts with the

electric field and as a result the Hamiltonian of the TLS is perturbed an interaction

Hamiltonian by δHint and HTLS = HTLS,0 + δHint. In the |φl〉, |φr〉 basis, δHint can

be written as

δHint =
1

2

−δ∆ δ∆0

δ∆0 δ∆

 . (2.37)

The interaction with external field is mainly thought to be changing the asymmetry

∆, and any effect on ∆0 is typically ignored [124, 125]. Accordingly I will take
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δ∆0 = 0. The change in ∆ is then given by

δ∆ = 2~p · ~E. (2.38)

In the eigenstate basis, it can be shown that the interaction Hamiltonian can

then be written as [121]

δHint =
1

E

 ∆ −∆0

−∆0 −∆

 (
~p · ~E

)
(2.39)

=
∆

E
σz

(
~p · ~E

)
− ∆0

E
σx

(
~p · ~E

)
. (2.40)

The overall Hamiltonian of a driven TLS in the eigenstate basis can then be written

as

H =
1

2
σzE +

∆

E
σz

(
~p · ~E

)
− ∆0

E
σx

(
~p · ~E

)
. (2.41)

It has been noted [126] that the Hamiltonian given by Eq. 2.41 is analogous

to the Hamiltonian of a spin-1/2 particle under a magnetic field [18]

H = ~γ ~B · ~S = ~γ
(
~B0 + ~B′

)
· ~S. (2.42)

where γ is the gyromagnetic factor, ~B0 is the static magnetic field, ~B′ the (time-

dependent) perturbation magnetic field, and ~S = ~σ2 the spin. Comparing Eqs. 2.41

and 2.42, I can identify

~γ ~B0 = (0, 0, E) (2.43)

~γ ~B′ =

(
2

∆0

E
~p · ~E, 0, 2

∆

E
~p · ~E

)
. (2.44)

If there is no dephasing and the spin has infinitely long lifetime, the spin is known

to follow the equation of motion [18]

d

dt
~S(t) = γ ~S × ~B. (2.45)
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When loss and spin lifetime are taken into account, the averaged spin 〈~S〉 of

an ensemble of spin-1/2 particles follow a set of equation called Bloch’s equations.

Bloch’s equations were developed by Felix Bloch in 1946 to describe nuclear magnetic

resonance (NMR) [127]. Bloch’s equations are

d

dt
〈Sx(t)〉 = γ

(
〈~S〉 × ~B

)
x
− 〈Sx〉

T2

(2.46)

d

dt
〈Sy(t)〉 = γ

(
〈~S〉 × ~B

)
y
− 〈Sy〉

T2

(2.47)

d

dt
〈Sz(t)〉 = γ

(
〈~S〉 × ~B

)
z
− 〈Sz〉 − Sz,eq[Bz(t)]

T1

, (2.48)

Here Sz,eq[Bz(t)] is the instantaneous value of 〈Sz〉 in thermal equilibrium

Sz,eq[Bz(t)] =
1

2
tanh

(
~γBz(t)

2kT

)
, (2.49)

where T is the TLS temperature, T1 is the TLS relaxation time, and T2 is the TLS

coherence time. The two characteristic times are related by

1

T2

=
1

2T1

+
1

Tφ
, (2.50)

where Tφ is the dephasing time.

One can use Bloch’s equations and the analog between the TLS Hamiltonian

and spin Hamiltonian to calculate the loss due to TLS that is being driven by an

oscillating electric field. For the loss from a single TLS, one can use specific values

of ∆, ∆0, θ, T1, and T2. Assuming T = 0, the quality factor from a single TLS as a

function of rms electric field drive strength 〈E〉, is given by [121, 128]

1

QTLS,s

(〈E〉) =
T2

~εV

(
p∆

2E

)2
1

[1 + (〈E〉/Ec,s)2]
, (2.51)
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Figure 2.7: Normalized inverse quality factor Q−1
TLS,s/Q

−1
TLS,s(〈E〉 = 0)

from a single TLS plotted as a function of normalized electric field
strength 〈E〉/Ec,s showing the TLS saturation behavior.

where ε is the dielectric permittivity, V is the resonator mode volume, and the

critical electric field Ec,s is given by

Ec,s =
2~E

p cos θ∆0

√
T1T2

. (2.52)

Figure 2.7 shows the behavior of 1/QTLS,s as a function of scaled electric field

〈E〉/Ec. For fields below 〈E〉/Ec � 1, 1/QTLS,s approaches

1

QTLS,s

(〈E〉 = 0) =
T2

~εV

(
p∆

2E

)2

. (2.53)

At around 〈E〉 ≈ Ec, 1/QTLS,s starts decreasing rapidly. This is due to ”saturation”,

which means that at high powers the TLS is equally likely to be in the ground state

or excited state and therefore cannot absorb energy on average.

39



Bloch’s equations are classical equations and do not provide a complete or

completely accurate description of TLS behavior. It is well-known that a TLS

coupled to a resonator forms a Jaynes-Cummings system [129]. Bhattacharya et

al. developed a quantum theory to explain the behavior of a TLS that is strongly

coupled to a resonator in the quantum regime [128]. They found that the loss

follows closely the classical Bloch’s equations in the weak coupling regime. In the

strong coupling regime 1/QTLS,s follows the general electric field 〈E〉 dependence of

Eq. 2.51. However at low power 1/QTLS,s from quantum theory is smaller compared

to that found from the classical theory using Bloch’s equations.

One signature of a Jaynes-Cummings system in the strong coupling regime

with very small detuning is the ”vacuum Rabi splitting” in the energy spectrum,

where the energy eigenstates of the system showed increased separation compared to

the uncoupled energies due to the strong coupling. For example, Walraff et al. ob-

served vacuum Rabi splitting of the qubit in circuit QED systems by [36]. Recently

Sarabi et al. reported observations of vacuum Rabi splitting in a TLS-resonator

system [100, 101], which confirms that the quantum mechanical model can be used

to explain the behavior of TLS. For weaker coupling or larger detuning, vacuum

Rabi splitting might not appear, but one can expect to see a shift in the resonator

resonance frequency due to coupling to a TLS. In the case of superconducting qubits,

avoided level crossings have been observed when the qubit energy is tuned close to a

TLS energy [19]. The TLSs in this case are thought to be located in the aluminum

oxide of the Josephson junction.
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2.2.3 Effects of an Ensemble of TLSs

In a macroscopic dielectric region, one should expect there can be many TLSs

with different values of θ, ∆, ∆0, T1, T2 and p. To simplify things, the characteristic

times T1 and T2, as well as the magnitude of the electric dipole moment p of the

TLS ensemble are often assumed to be constant. In the standard model of TLS

loss [130], the orientation of the TLS is assumed to be uniformly distributed. Also

the distribution of asymmetry energy ∆ is assumed to be uniform in ∆, while the

distribution of tunneling rate ∆0 is assumed to be uniform in log ∆0 [121]. The

resulting standard distribution yields the number d2P of dipoles with asymmetry

energy between ∆ and ∆ +d∆, tunneling energy between ∆0 and ∆ +d∆0 given by

d2P =
P0

∆0

d∆ d∆0. (2.54)

P0 has been reported to be of order 1044 /J m3 [121, 123].

From the distribution d2P/d∆ d∆0 one can calculate the quality factor from

an ensemble of TLS as a function of rms electric field strength 〈E〉 one finds[19, 121]

1

QTLS,e

(E) =
tan(δ) tanh(~ω/2kBT )√

1 + (〈E〉/Ec,d)2
. (2.55)

where ω is the microwave drive frequency and the loss tangent tan(δ) is

tan(δ) ≡ πP0p
2

3ε
, (2.56)

and the characteristic field Ec,d is given by

Ec,d =
~
√

3

2p
√
T1T2

. (2.57)
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At low electric fields and low temperatures, 1/QTLS,e goes to tan δ, saturation starts

around 〈E〉 ≈ Ec,d and kBT ∼ ~ω.

I note that the electric field dependence of the saturation in Eq. 2.55 is slower

compared to that in Eq. 2.53 due to a single TLS. In Fig. 2.8 I compare the nor-

malized 1/QTLS from a single TLS and from an ensemble of TLSs as a function of

normalized field 〈E〉/Ec. The slower saturation for TLS ensemble case is evident. I

note here that the value of Ec depends on the microscopic parameters of the TLSs

and the material. Even though the average microwave photon occupation number

〈n〉 doesn’t appear explicitly in the expression for quality factor, it is proportional

to rf drive power, and hence to 〈E〉2. Equivalently, I can define the critical photon

occupation number nc where saturation starts to occur. The value of nc has typ-

ically been reported to be around 1-1000 for a range of materials and designs [39,

114, 131–133].

The hyperbolic tangent factor in Eq. 2.51 describes the dependence of TLS loss

on temperature. The result is that 1/QTLS,e decreases with increasing temperature,

due to saturation of TLSs from thermal excitation.

The interaction between a resonator and a distribution of TLSs also causes

a shift in the resonance frequency of the resonator. Similar to the loss, the shift

in resonance frequency depends on temperature and electric field strength. As dis-

cussed by Gao, the expression for the electric field dependence is complicated but

relatively weak [126]. At weak electric field strength, the fractional frequency shift
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Figure 2.8: Comparison between normalized TLS inverse quality factor
Q−1

TLS/Q
−1
TLS(〈E〉 = 0) between a single TLS (dashed blue curve) and the

standard TLS ensemble (solid red curve) as a function of normalized
electric field 〈E〉/Ec, showing slower saturation behavior for the case of
an ensemble of TLSs.
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Figure 2.9: Fractional frequency shift δωr/ω0 from a standard TLS en-
semble (with fill factor F = 1) as a function of temperature T for a
resonator with ω/2π = 5 GHz.

is [41, 121]

δωr
ω0

=
tan δ

π

{
Re

[
Ψ

(
1

2
+

~ω
2πikBT

)]
− ln

(
~ω
kBT

)}
, (2.58)

where ω0 is the resonance frequency when there is no TLS effect and Ψ is the

complex digamma function [134]. Figure 2.9 shows the fractional shift as a function

of temperature for ω/2π = 5 GHz. The frequency initially decreases with increasing

temperature at very low temperatures, then increases with increasing temperature

at higher temperatures.

The above results have implicitly assumed that the electric field is completely

confined inside the dielectric and is uniform. This is only true for resonators with

parallel plate capacitors filled with dielectric. However for lumped-element res-

onators I used, there is a significant field in vacuum outside the dielectric, and the
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field is non-uniform inside and outside the dielectric. This changes the expressions

for the quality factor and frequency shift due to the TLSs. The key insight is to

define the filling factor F as the ratio of the electrical energy stored in the dielectric

compared to the total stored electrical energy. The expression for F is [41]

F =

∫
Vd
εd(~r)| ~E(~r)|2 d3~r∫

Vall
ε(~r)| ~E(~r)|2 d3~r

, (2.59)

where the numerator is integrated over the volume of the dielectric Vd and the

denominator is integrated over the entire volume Vall. Electric field simulations

of coplanar waveguide resonators have shown that the largest contributor to the

fill factor comes from the metal-substrate interface, followed by the air-substrate

interface, while the contribution from the metal-air interface is about an order of

magnitude lower than the previous two [116, 135]. This assumes an equal density

of dipoles at these different interfaces, which may not be true in real devices.

Thus for my resonators, the frequency shift due to TLS becomes [41]

δωr
ω0

=
F tan δ

π

{
Re

[
Ψ

(
1

2
+

~ω
2πikBT

)]
− ln

(
~ω
kBT

)}
, (2.60)

and the quality factor becomes [136]

1

QTLS,e

(V ) =
F tan δ tanh(~ω/2kBT )√

1 + (〈V 〉/Vc)β
. (2.61)

I note in Eq. 2.61 that because of the non-uniform nature of the electric field in

my resonators, the relevant experimental parameter is the rms voltage across the

capacitor 〈V 〉 instead of 〈E〉. Consequently, the characteristic scaling factor is the

characteristic voltage Vc instead of Ec. Depending on the geometry of the resonator,

the saturation behavior may also change somewhat, represented by the exponent
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β with β = 2 for the uniform field case. For coplanar waveguides, Wang et al.

calculated β ≈ 1.6 using simple approximations of electric field strength [136].

In contrast, Macha et al. [137] and Khalil et al.[138] have measured much

lower β values, as low as 0.03-0.4, in coplanar waveguide and lumped-element res-

onators on bare substrate. In an attempt to explain this behavior, Faoro and Ioffe

developed a model that they call interacting TLSs [139, 140]. In this model, the

energy distribution of the TLS is modified to

d2P

d∆ d∆0

=


(1 + µ)

(
∆

∆max

)µ
P0

∆0

, for ∆ ≤ ∆max

0, otherwise.

(2.62)

with µ ≈ 0.3. The interacting TLS model is consistent with the observations of

weaker saturation behavior. However, as I discuss in Section 2.3, non-equilibrium

distribution of quasiparticles can create rf drive power dependent loss and may also

be able to explain such behavior, especially at higher drive powers.

2.3 Quasiparticles

2.3.1 Quasiparticles Overview

The BCS theory of superconductivity [141, 142] revealed that superconduc-

tivity is caused by the creation of bound n pairs of electrons at low temperatures,

commonly known as Cooper pairs [143]. Breaking Cooper pairs requires at least 2∆

of energy, where ∆ is the superconducting gap. For a superconductor in the weak

coupling BCS limit, the superconducting critical temperature Tc is related to the

gap by ∆ = 1.76kBTc, where kB is the Boltzmann constant. Pair breaking can be

46



E/∆
0 1 2 3 4 5

ρ
(E
)

0

1

2

3

4

5

Figure 2.10: The solid blue curve is the normalized quasiparticle density
of states ρ(E) as a function of normalized quasiparticle energy E/∆.
The vertical dotted line shows ρ(E) diverged to +∞ at E = ∆ and
the horizontal dotted line shows the asymptotic value of ρ(E) → 1 for
E → +∞.

caused by many factors, including thermal fluctuations, a strong microwave drive,

or optical illumination, which I describe in the following sections. A broken Cooper

pair leaves two excitations known as Bogoliubov quasiparticles, which I will call

simply quasiparticles.

When a Cooper pair breaks into quasiparticles, the energy is split between the

two quasiparticles and the minimum energy of each quasiparticle E is at least ∆.

I define f(E) as the energy distribution of quasiparticles, i.e. it is the probability

that a quasiparticle state of energy E is occupied. Another important quasiparticle

function from BCS theory is the normalized density of states of quasiparticles, given
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by [144]

ρ(E) =


0, for E < ∆

E√
E2 −∆2

, for E > ∆.

(2.63)

Figure 2.10 shows the density of states ρ(E) as a function of E/∆. The value of

ρ(E) diverges at E = ∆, then decreases rapidly and approaches 1 for E → ∞.

From the distribution and the density of states, one can calculate the total density

of quasiparticles nqp using the expression

nqp = 4N0V

∫ ∞
∆

f(E) ρ(E) dE, (2.64)

where N0 is the single spin density of states at the Fermi surface. I note here that

the superconducting gap ∆ is not a constant, but depends on the quasiparticle

distribution and is determined by the self-consistency equation [142]

1

N0VBCS

=

∫ ∞
∆

ρ(E)

E
[1− 2f(E)] dE, (2.65)

where VBCS is the BCS interaction parameter. However, for sufficiently low temper-

atures, low rf powers, and low optical intensities, one finds f(E)� 1 and Eq. 2.65

gives ∆ independent of temperature to a high order.

In 1958 Mattis and Bardeen derived an expression for the complex conduc-

tivity σ = σ1 − iσ2 of a superconducting film that was subjected to an oscillating

electromagnetic field with frequency ω [145]. I typically use an rf drive frequency

f = ω/2π that is in the 4-8 GHz range. This is smaller than 2∆/h of my super-

conducting aluminum, which is around 40 GHz. In this limit, the relevant Mattis-
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Bardeen expression is

σ1(ω)

σn
=

2

~ω

∫ ∞
∆

dE [f(E)− f(E + ~ω)]h+(E,E + ~ω) ρ(E) (2.66)

σ2(ω)

σn
=

1

~ω

∫ ∆

∆−~ω
dE [1− 2f(E + ~ω)]h+(E,E + ~ω)

E√
∆2 − E2

, (2.67)

where σn is the normal state conductivity and the coherence factors are

h±(E,E ′) =

(
1± ∆2

EE ′

)
ρ(E ′). (2.68)

The quality factor and frequency shift of a thin film resonator from quasipar-

ticles can then be calculated from σ1 and σ2. One finds [42, 126]

1

QTLS

= α
σ1

σ2

(2.69)

δω

ω0

= − α

2

δσ2

σ2

. (2.70)

In the above expression ω0 is the resonance frequency assuming no quasiparticle

effect, δσ2 = σ2 − σ2,0, and σ2,0 is the imaginary component of σ2 assuming zero

temperature, no rf drive, and no optical illumination. Here I also have defined the

kinetic inductance ratio αk as

αk =
Lk

Lk + L
(2.71)

where Lk is the kinetic inductance due to Cooper pairs and L is the geometric

inductance of the resonator.

2.3.2 Thermal Quasiparticles

Quasiparticles are fermions, hence when the resonator is in thermal equilibrium

at temperature T the distribution of the quasiparticles f(E) follows the Fermi-Dirac
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distribution [142]

f(E) =
1

eE/kBT + 1
, (2.72)

where E is measured from the Fermi level. Using this distribution, the quasipar-

ticle density nqp, the superconducting gap ∆, and the complex conductivities σ1

and σ2 can be numerically calculated using Eqs. 2.64, 2.65, 2.66, and 2.67, respec-

tively. However when kBT � ∆ and ~ω � ∆, the following approximate analytical

expressions can be found [42]

nqp = 2N0

√
2πkBT∆0 e

− ∆0
kBT (2.73)

σ1

σn
=

4∆0

~ω
e
− ∆0

kBT sinh

(
~ω

2kBT

)
K0

(
~ω

2kBT

)
(2.74)

σ2

σn
=
π∆0

~ω

[
1−

√
2πkBT

∆0

e
− ∆0

kBT − 2e
−∆0+(~ω/2)

kBT I0

(
~ω

2kBT

)]
(2.75)

where ∆0 is the superconducting gap at zero temperature, In and Kn are nth order

modified Bessel function of the first and second kind, respectively. Most of my data

was taken in the limit where these equations are good approximations.

Figure 2.11 shows the normalized complex conductivities σ1/σn and σ2/σn

as a function of temperature T using the analytical approximations Eqs. 2.74 and

2.75. The parameters I used in these plots are for typical aluminum resonators with

ω/2π = 5 GHz and ∆0 = 180 µeV, which gives a critical temperature Tc ≈ 1.19K.

σ1/σn is zero at zero temperature, but increases rapidly to 1 as the temperature

increases toward Tc. The imaginary part σ2/σn is π∆0/~ω at zero temperature, and

decreases with increasing temperature. Note that because I use the approximation,

the plotted result should be expected to deviate from the actual conductivities at

temperatures approaching Tc. From these results, it is straightforward to conclude
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Figure 2.11: (a) Real conductivity σ1/σn vs temperature T using
Eq. 2.74. (b) Imaginary conductivity σ2/σn vs temperature T using
Eq. 2.75. The parameters are ω/2π = 5 GHz and ∆0 = 180 µeV.
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that quasiparticles should cause the inverse quality factor 1/Q to increase with

increasing temperature and the resonance frequency ωr to decrease with increasing

temperature.

2.3.3 Non-Equilibrium Distribution of Quasiparticles

To understand the effect of rf drive and optical illumination on quality factor

and frequency shift, I need to take into account how they influence σ1 and σ2. In 1967

Rothwarf and Taylor developed a set of equations that describes the behavior of the

quasiparticle density nqp under external injection of quasiparticles [146]. However

as can be seen in the expressions for nqp and σ, nqp by itself is not sufficient to

calculate σ. What is needed is the quasiparticle distribution f(E).

In 1977 Chang and Scalapino derived a set of kinetic equations that can be

used to calculate f(E) [147, 148]. In the kinetic equations, the quasiparticle can

be injected or driven by an external source, scatter due to absorption/emission of

a phonon, recombine into Cooper pairs, and Cooper pairs can break to generate

quasiparticles. In the BCS theory, Cooper pairs are caused by an electron-phonon

interaction [143]. As a result, most of the mechanisms above will involve the phonon

distribution n(Ω), where Ω is the phonon energy. In the kinetic model, the phonons

can interact with quasiparticles during scattering, pair breaking, and recombination.

Additionally, an injection source can inject phonons and phonons can escape to a

thermal bath.

All these processes can be summarized in the block diagram shown in Fig. 2.12.
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Figure 2.12: Block diagram showing the processes included in the Chang
& Scalapino kinetic equations.

When integrated over the energies E and Ω, the Chang and Scalapino kinetic equa-

tions results in the Rothwarf-Taylor equations [147]. It is also possible to work out

equations to handle the situations where the distributions f(E) and n(Ω) depend

on position. These will be needed if quasiparticle and phonon diffusion needs to be

taken into account. Here I have assumed uniform distributions and ignore diffusion.

The quasiparticles distribution f(E) obeys the kinetic equation [147, 149]

df(E)

dt
=Gqp(E) − 1

τ0(kBTc)3

{∫ ∞
0

dΩ Ω2 h−(E,E + Ω)

×
(
f(E)[1− f(E + Ω)]n(Ω)− [1− f(E)]f(E + Ω)[n(Ω) + 1]

)
+

∫ E−∆

0

dΩ Ω2 h−(E,E − Ω)

×
(
f(E)[1− f(E − Ω)][n(Ω) + 1]− [1− f(E)]f(E − Ω)n(Ω)

)
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+

∫ ∞
E+∆

dΩ Ω2 h+(E,Ω− E)

×
(
f(E)f(Ω− E)[n(Ω) + 1]− [1− f(E)][1− f(Ω− E)]n(Ω)

)}
(2.76)

Here Gqp is a term that represents quasiparticle ”injection”, which may include ex-

ternal microwave drive (Section 2.3.4) as well as direct injection through tunneling

processes. τ0 is the characteristic time constant for quasiparticle-phonon scattering

[150]. The first two integral terms represents quasiparticle scattering due to absorp-

tion and emission of a phonon. The third integral term represents recombination

and pair breaking processes.

The phonon distribution n(Ω) obeys the kinetic equation [147, 149]

dn(Ω)

dt
=Gφ(Ω)− 1

πτφ∆

{
2

∫ ∞
∆

dE ρ(E)h−(E,E + Ω)

×
(
f(E)[1− f(E + Ω)]n(Ω)− [1− f(E)]f(E + Ω)[n(Ω) + 1]

)
+

∫ Ω−∆

∆

dE ρ(E)h+(E,Ω− E)

×
(

[1− f(E)][1− f(Ω− E)]n(Ω)− f(E)f(Ω− E)[n(Ω) + 1]
)}

+
nb(Ω, Tb)− n(Ω)

τe
(2.77)

Here Gφ(Ω) represents phonon injection, which may include optical illumination

(Section 2.3.5) as well as direct injection from a heater. τφ is the characteristic

phonon-quasiparticle scattering time [150] and τe is the escape time for phonons to

leave the superconductor and go into the substrate [151]. The first integral term

represents quasiparticle scattering due to both absorption and emission of a phonon.

The second integral term represents recombination and pair breaking processes. The

final term on the right hand side represents phonon escape to a thermal bath, where
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the phonon distribution of the thermal bath nb(Ω, Tb) at bath temperature Tb is

given by the Bose-Einstein distribution

nb(Ω, Tb) =
1

eΩ/kBTb − 1
. (2.78)

Within the kinetic model, power balance needs to be satisfied. Power can be

absorbed by the system and flows from the quasiparticle to the phonon. The power

flow from the quasiparticles at energy E to E+ dE to the phonons is given by [149]

dPqp−φ(E) =
4N0Eρ(E)V

τ0(kBTc)3

{∫ ∞
0

dΩ Ω2 h−(E,E + Ω)

×
(
f(E)[1− f(E + Ω)]n(Ω)− [1− f(E)]f(E + Ω)[n(Ω) + 1]

)
+

∫ E−∆

0

dΩ Ω2 h−(E,E − Ω)

×
(
f(E)[1− f(E − Ω)][n(Ω) + 1]− [1− f(E)]f(E − Ω)n(Ω)

)
+

∫ ∞
E+∆

dΩ Ω2 h+(E,Ω− E)

×
(
f(E)f(Ω− E)[n(Ω) + 1]− [1− f(E)][1− f(Ω− E)]n(Ω)

)}
dE,

(2.79)

where V is the total superconductor volume of the resonator and a positive value

means power flows from the quasiparticles to the phonons for that value of E. The

total power flowing between quasiparticles and phonons is then given by

Pqp−φ =

∫ ∞
∆

dPqp−φ(E)

dE
dE. (2.80)

The power flow between the phonons and the bath at energy Ω is given by

[149]

dPφ−b(Ω) = D(Ω) ΩV
nb(Ω, Tb)− n(Ω)

τe
dΩ, (2.81)

55



where D(Ω) is the phonon density of states. Using the Debye model, I can write

D(Ω) =
9NiΩ

2

Ω3
D

, (2.82)

where Ni is the atomic density of the superconductor and ΩD is the Debye energy.

A positive value in Eq. 2.81 means that power is flowing from the phonons to the

thermal bath. The total power flowing between the phonons and the thermal bath

is then given by

Pφ−b =

∫ ΩD

0

dPφ−b(Ω)

dΩ
dΩ. (2.83)

I note that the parameters τ0 and τφ appearing in the kinetic equations above are

not independent parameters, but satisfy the relation [149]

2πN0τφ∆0Ω3
D

9Niτ0(kBTc)3
= 1. (2.84)

If interaction between the quasiparticles and phonons is sufficiently strong,

the superconducting gap ∆ may become complex and dependent on quasiparticle

energy E. In this case the quasiparticle density of states ρ(E) of Eq. 2.63 becomes

[144, 152]

ρ(E) = Re

(
E√

E2 − [∆(E)]2

)
. (2.85)

This reduces to Eq. 2.63 if ∆ is real and independent of E. Eq. 2.85 typically

causes discontinuity in ρ(E) at E = ∆ to smear out and ρ(E) becomes a continuous

function with small nonzero values of ρ(E) for E < ∆. This effect was first observed

by Giaever et al. in Pb [153] and theoretically described by Schrieffer et al. [152].

For simplicity I assumed ∆ to be independent of E but retained a small imag-

inary component [149] to prevent divergence at E = ∆. In this case ρ(E) can be
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Figure 2.13: Modified quasiparticle density of states ρ(E) of Eq. 2.86
as a function of normalized quasiparticle energy E/∆ for several values
of ξ: ξ = 0.003 (purple curve), ξ = 0.03 (red curve), ξ = 0.003 (green
curve).

written as

ρ(E) = Re

(
E√

E2 −∆2(1 + iξ)2

)
, (2.86)

where ∆ is a real constant and ξ is a small dimensionless parameter. Figure 2.13

shows ρ(E) of Eq. 2.86 as a function of E/∆ for several values of ξ between 0.003

and 0.3. All the curves show smearing of the peak and nonzero values of ρ(E) for

E < ∆, as expected. The largest deviation compared to the original expression for

ρ(E) of Eq. 2.63 occurs for the largest value of ξm also as as expected. Typically

in the model I used ξ = 0.001 to prevent divergences at E = ∆ and used E = ∆ as

lower limit of integration for quasiparticle distribution.

It is not immediately obvious that the kinetic equations of Eqs. 2.76 and

2.77 will result in a Fermi-Dirac distribution at temperature Tb for the quasiparticle

57



(a)

E/∆
1 2 3 4 5 6

f(E
)

10-60

10-40

10-20

100

(b)

Ω/∆
0 1 2 3 4 5

f(Ω
)

10-40

10-20

100

Figure 2.14: (a) Plot of f(E) vs E/∆ and (b) n(Ω) vs Ω/∆. Solid curves
are from numerical simulations and dashed curves are from using the
analytical expression for the thermal distribution. The temperatures are
50 mK (blue and light blue curves), 100 mK (red and magenta curves),
and 150 mK (green and light green curves), and the superconducting
gap was set to ∆ = 180 µeV.
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distribution f(E) when the bath temperature is at Tb and there are no contributions

from the quasiparticle or phonon injection terms. Due to the direct connection

between the phonons and the thermal bath, it is easier to see that the phonon

distribution n(Ω) will be equal to the bath distribution nb(Ω, Tb). To verify the

behavior of the equations, I performed a numerical simulation to find the steady

state equilibrium f(E) and n(Ω) for a range of temperature values and no drive

terms. I used a modified version of the simulation method I will describe in detail

in the next section. For these tests, I set ∆ = 180 µeV. I found that the f(E) and

n(Ω) obtained from the simulations were practically indistinguishable from thermal

distributions. Figures 2.14 show a comparison between f(E) and n(Ω) from the

simulation and the thermal distributions. This result was also a useful check on the

routine I used to solve the kinetic equations.

2.3.4 Non-Equilibrium Distribution from rf Drive

According to Chang and Scalapino’s kinetic model, applying a microwave drive

to a superconductor creates an effective quasiparticle injection or excitation [147].

They defined an injection term Gqp(E) that gives the rate at which quasiparticles

with energy E are changing occupancy due to the rf drive. For a drive frequency

ωr, Gqp(E) is given by [147]

Gqp(E,ωr) = 2B
{
h+(E,E + ~ωr) [f(E + ~ωr)− f(E)]

− h+(E,E − ~ωr) [f(E)− f(E − ~ωr)]
}
. (2.87)
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Figure 2.15: Block diagram showing the power flow in the quasiparticle-
phonon system under rf drive.

The coefficient B is expected to be proportional to the absorbed rf drive power Prf,ab

[147, 149], which will be defined below.

Figure 2.15 shows a block diagram for the power flows in the system when

an rf drive is applied. From the kinetic equations, the total power absorbed by the

quasiparticles is given by [149]

Prf,ab = 4N0V

∫ ∞
∆

dE Gqp(E, fr)E ρ(E). (2.88)

The power Prf,ab absorbed by the quasiparticles is not in general the same as

the applied rf power Prf, which is defined as the power at the input port. To find

how Prf,ab and Prf are related, note that Eq. 2.27 is an expression for PR, which is the

power absorbed by all internal sources. To take into account the power absorbed by

quasiparticles only, I need to find the fraction of the total internal loss that is due
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to quasiparticles. For simplicity, I will assume equal or balanced input and output

coupling so that Qin = 2Qe. Finally, I have defined Prf = Pin as the total applied

power. With these assumptions, the power absorbed by the quasiparticles from the

rf drive is

Prf,ab = PR
1/Qqp

1/Qi

=
2PrfQ

2

QiQe

Qi

Qqp

=
2PrfQ

2

QqpQe

. (2.89)

To calculate the nonequilibrium distributions f(E) and n(Ω), as well as the

complex conductivities σ1 and σ2, I follow the numerical procedure described by

Goldie and Withington [149] and solve Eqs. 2.76, 2.77, and 2.88 for f(E), n(Ω),

and B for the steady state condition df(E)/dt = 0 and dn(Ω)/dt = 0. Also from

Eq. 2.88, I defined a ‘power error’ term δPrf,ab as

δPrf,ab = 4N0V

∫ ∞
∆

dE Gqp(E, fr)E ρ(E) − Prf,ab, (2.90)

with δPrf,ab = 0 for the correct set of solutions. I then discretize the problem so as

to evaluate f(E) on N = 1000 points from E = ∆ to ∆ + (N − 1) µeV in steps of

1 µeV and n(Ω) on N = 1000 points from Ω = 1 µeV to N µeV in steps of 1 µeV.

For typical values of ∆ for Al resonators, the upper limit of E evaluated was about

7∆ and the upper limit of Ω evaluated was about 6∆. Eqs. 2.76, 2.77 and 2.90 yield

2N + 1 = 2001 simultaneous equations which we then solve using Newton-Raphson

method [154], which will be described below. Since the energies are discrete I confine

the values of ∆ and ~ω to be integer multiples of grid size 1 µeV. As I discussed

previously, ∆ depends on f(E), due to Eq. 2.65. However, I found that for the range

of parameters I was interested in, ∆ changed by much less than the grid size. Hence

confining ∆ only to integer multiple values was acceptable.
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In the numerical simulation, I define fj = f(∆ + (j − 1) µeV) and nj =

n(j µeV) with j = 1, . . . , N . For the lth iteration of the simulation, I define the

solution vector γl and the error vector ζl

γl =



f1

...

fN

B

n1

...

nN


, ζl =



df1/dt
...

dfN/dt

δPrf,ab

dn1/dt
...

dnN/dt


. (2.91)

The Newton-Raphson method, or Newton’s method, is a numerical iteration method

used to find zeros of an equation or a set of equations [154]. For the initial condi-

tion, I usually chose thermal distributions with temperature 2Tb for fj and nj. For

the initial guess for B, I chose a value of B that satisfied Eq. 2.88 for the initial

distribution. For each iteration, I evaluated

γl+1 = γl − χ [J(γl)]
−1ζl. (2.92)

Here 0 ≤ χ ≤ 1 is the convergence parameter. I typically used χ = 1. J(γl) is the

(2N + 1)× (2N + 1) Jacobian matrix

J(αl) =



∂(df1/dt)
∂f1

· · · ∂(df1/dt)
∂fN

∂(df1/dt)
∂B

∂(df1/dt)
∂n1

· · · ∂(df1/dt)
∂nN

...
. . .

...
...

...
. . .

...

∂(dfN/dt)
∂f1

· · · ∂(dfN/dt)
∂fN

∂(dfN/dt)
∂B

∂(dfN/dt)
∂n1

· · · ∂(dfN/dt)
∂nN

∂δPrf,ab

∂f1
· · · ∂δPrf,ab

∂fN

∂δPrf,ab

∂B

∂δPrf,ab

∂n1
· · · ∂δPrf,ab

∂nN

∂(dn1/dt)
∂f1

· · · ∂(dn1/dt)
∂fN

∂(dn1/dt)
∂B

∂(dn1/dt)
∂n1

· · · ∂(dn1/dt)
∂nN

...
. . .

...
...

...
. . .

...

∂(dnN/dt)
∂f1

· · · ∂(dnN/dt)
∂fN

∂(dnN/dt)
∂B

∂(dnN/dt)
∂n1

· · · ∂(dnN/dt)
∂nN


. (2.93)
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Table 2.1: Parameters used by de Visser et al. in their nonequilibrium simulations
[48]. I used these values to test my simulation routine.

Symbol Parameter Value

∆ superconducting gap 177 µeV

~ωr rf photon energy in simulation 23 µeV

V resonator Al volume 1770 µm3

Qe external quality factor 20100

1/QTLS TLS loss component 0

1/Qqp quasiparticle loss component varies

1/Q0 power-independent loss component 0

N0 single spin density of states at Fermi level 1.74× 1010 /eV µm3

τ0 quasiparticle-phonon time 438 ns

τφ characteristic phonon time 0.26 ns

τe phonon escape time 0.17 ns

The expression for each element of the Jacobian can be derived by taking par-

tial derivatives of Eq. 2.90 and discretized versions of Eqs. 2.76 and 2.77 (see Ap-

pendix A). Typically I needed about 20 to 30 iterations to converge to a solution

for γ.

To check the simulation and understand what the kinetic model predicts for

the behavior of 1/Q and ωr under rf drive, I checked against the published results.

The behavior I describe below was first reported by de Visser et al. in Al resonators

[48]. The parameters I used in the simulation are listed in Table 2.1 and are the

parameters de Visser et al. et al. reported for their simulations on their resonators.

The Qi values used in these simulations were the measured Qi, which varied with

temperature Tb and rf drive powers Prf. The range of Prf corresponded to photon
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occupation numbers between approximately 104 and 108, much higher photon num-

bers than the TLS critical photon numbers, sp that the TLS loss should be small in

this regime.

Figures 2.16 show some examples of f(E) and n(Ω) from the simulations. Here

I set Tb = 120 mK and chose three drive powers. The corresponding distributions for

Tb = 320 are shown in Fig. 2.17. Both f(E) and n(Ω) show striking deviations from

thermal distributions (dashed curves), with stronger drive powers showing larger

deviations. In particular, peaks appear every ~ω due to the microwave drive term

at frequency ω ≈ ∆/8~. For T = 120 mK, there are significant jumps in n(Ω) at

Ω = 2∆ and smaller jumps in f(E) at E = 3∆ for lower Prf. This is caused by the

pair breaking and recombination term.

In experiments below about 200 mK, de Visser et al. reported that the loss

1/Q increased with increasing drive power, while ωr decreased with increasing drive.

The reason for this behavior can be seen in the plot for f(E) shown in Fig. 2.16(a).

Notice that f(E) increases with increasing rf drive power for all values of E; the

drive increases the number of quasiparticles. The effect of increasing drive power on

f(E) in this regime is similar to an increase in Tb (see Fig. 2.14). From Eq. 2.64, I

can also show that quasiparticles are created with increasing drive in this regime.

On the other hand, at temperatures above around 200 mK, they reported

that 1/Q decreased with increasing drive, while ωr increased with increasing drive.

The distribution f(E), as shown in Fig. 2.17(a) and (c) increases with increasing

drive only for E > ∆ + ~ω, while it actually decreases for ∆ < E < ∆ + ~ω. By

applying Eq. 2.64, one can show that no quasiparticles are created by the drive
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Figure 2.16: (a) Simulated quasiparticle distribution f(E) vs normalized
energy E/∆ and (b) simulated phonon distribution n(Ω) vs normalized
energy Ω/∆, both for bath temperature Tb = 120 mK and for rf drive
powers Prf of -100 dBm (blue curve), -80 dBm (red curve), and -72 dBm
(green curve). Other parameters are shown in Table 2.1. The black
dashed curve was found assuming a thermal distribution with Tb = 120
mK.
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Figure 2.17: (a) Simulated quasiparticle distribution f(E) vs normalized
energy E/∆ and (b) simulated phonon distribution n(Ω) vs normalized
energy Ω/∆, both for bath temperature Tb = 320 mK and for rf drive
powers Prf of -100 dBm (blue curve), -80 dBm (red curve), and -72 dBm
(green curve). Other parameters are shown in Table 2.1. The black
dashed curve was found assuming a thermal distribution with Tb = 320
mK. (c) Linear plot of f(E) between E = ∆ and E = 2∆.
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in this range. Instead, the rf drive just redistributes the quasiparticles from lower

energies to higher energies. According to Eq. 2.66, σ1 depends on the difference

factor f(E)− f(E + ~ω). The redistribution of quasiparticles causes this factor to

decrease with increasing drive, which in turn causes σ1 to decrease with increasing

drive. From Eq. 2.67, σ2 depends on 1 − 2f(E + ~ω), however the limits of the

integration ensure that only f(E) values for ∆ < E < ∆ + ~ω are included in the

integration. Since f(E) decreases with increasing drive for this range of E, the

factor, and in turn σ2 increases with increasing drive.

For an Al resonator, de Visser et al. reported that the boundary between

the two regimes was around Tb ≈ 220 mK [48]. This behavior can also be seen in

my simulations in the plots of σ1/σn and σ2/σn shown in Figs. 2.18. I note that

when I used even higher powers in the simulation than the powers reported, f(E)

in the higher temperature regime starts to show behavior similar to the lower tem-

perature behavior, i.e. an increase in loss due to the rf-drive generating additional

quasiparticles. Of course, this is what one should expect at sufficiently high power.

2.3.5 Non-Equilibrium Distribution from Optical Illumination

Guruswamy, Goldie and Withington also extended their approach to include

effects of pair breaking due to photons with energies up to about 10∆ [155, 156].

Unfortunately, in my experiments I used optical photons of energy ≈ 1.6 eV, which is

approximately 9000∆. For such energetic photons the effects on the superconductor

are similar to adding a source of heating [42, 107, 156–158]. Accordingly, here I used
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Figure 2.18: (a) Scaled real component of conductivity σ1/σn vs bath
temperature Tb and (b) scaled imaginary component of conductivity
σ2/σn vs bath temperature Tb, both for rf drive powers Prf of -100 dBm
(blue curve), -80 dBm (red curve), and -72 dBm (green curve). Other
parameters are shown in Table 2.1. The black dashed curve was found
by assuming a thermal distribution at temperature Tb for f(E).
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a modification of the Parker heating model [107] that accounts for optical radiation

by introducing a phonon generating term with an effective temperature determined

by the optical power (see Fig. 2.19).

To proceed, I define a phonon generation term due to photons

Gφ(Ω) =
nopt(Ω, Teff)

τe
. (2.94)

Here nopt(Ω, Teff) is an effective source of hot phonons with effective temperature

Teff that is determined by the optical intensity. I used a variation on Parker’s model

and set [107]

nopt(Ω, Teff) =


0, for Ω < 2∆

1

eΩ/kBTeff − 1
for Ω > 2∆.

(2.95)

Although nopt takes the form of a Bose-Einstein thermal distribution for Ω > 2∆ it

is not a thermal distribution since nopt = 0 for Ω < 2∆.

Fig. 2.19 shows the block diagram for the power flows in the superconductor

when there are an applied rf drive and optical illumination. Assuming the light is

normally incident on the superconductor, the optical power absorbed by the system

is

Popt = εIoptA, (2.96)

where ε is the emissivity of the aluminum film, Iopt is the incident optical intensity,

and A is the illuminated area of the resonator. In the steady state, this optical

power must equal the power transferred to the phonon distribution n(Ω) by nopt,
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Figure 2.19: Block diagram showing the power flow in the quasiparticle-
phonon system under rf drive and optical illumination.

which is given by

Popt(Teff) = V

∫ ∞
0

dΩD(Ω) Ω
nopt(Ω, Teff)

τe
. (2.97)

With the addition of the phonon generating term, the numerical simulation

proceeded as detailed in the previous section to find f(E), n(Ω), σ1 and σ2. I

typically choose a starting f(E) distribution that was thermal with a temperature

Tb and Teff. For n(Ω), I choose nb(Ω, Tb) + nopt(Ω, Teff) as an initial distribution.

Figure 2.20 shows f(E) and n(Ω) using the parameters listed in Table 2.1, and

temperatures Tb = 50 mK and Teff = 280 mK. Examination of Fig. 2.20 reveals a

jump in n(Ω) at Ω = 2∆ and a jump in f(E) at E = 3∆. The nonequilibrium

n(Ω) distributions appear to follow the thermal distribution with T = Teff closely

for energies Ω > 2∆, especially for lower Prf. A similar behavior is seen for f(E)
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Figure 2.20: (a) Simulated quasiparticle distribution f(E) vs normalized
energy E/∆ and (b) simulated phonon distribution n(Ω) vs normalized
energy Ω/∆ using the illumination model with bath temperature Tb = 50
mK, effective temperature Teff = 280 mK, and rf drive powers Prf of -
100 dBm (blue curve), -80 dBm (red curve), and -72 dBm (green curve).
Other parameters are shown in Table 2.1. The yellow dashed curve is the
thermal distribution for T = 50 mK and the black dashed curve is the
thermal distribution for T = 280 mK. (c) Linear plot of f(E) between
E = ∆ and E = 2∆.
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for E > 3∆. Comparison with Figs. 2.16 and 2.17 supports the conclusion that the

jumps are mainly due to the discontinuity in nopt at Ω = 2∆, while pair breaking

and recombination contribute to a lesser extent, as discussed previously for the no

illumination case.

2.3.6 Using Simulation to Fit Data

It turns out some additional complications arise when the nonequilibrium

model with rf drive and illumination is used to fit data. To fit to real data, I first

need to assume initial values for all of the model parameters. In the simulations,

Prf,ab is calculated using Eq. 2.20 and 2.89. However to complete this calculation I

need Qi, but Qi is what I am trying to find in the simulation. To proceed, I used the

measured values of Prf, Q, Qi, and Qe, while Q0 (see Eq. 2.20) was a fit parameter

and I assumed 1/QTLS = 0. I performed the simulation for a range of Prf, T , and

Iopt, and then compared the results to the measured value of 1/Q and δfr/fr. In

general, the input Qi and output Qi will differ unless all the parameters are chosen

correctly. I then adjusted one or more of the parameters and repeated the entire

process to fit the model to the data.

For the range of optical intensities Iopt and rf powers Prf I used (see Chapters 4

and 5), the effective temperature Teff and inverse quality factor 1/Q increased with

increasing Iopt, while the resonance frequency ωr decreased with increasing Iopt. For

the same Iopt, 1/Q decreases with increasing Prf. I discussed the reason for this

decrease, but the detailed behavior of the distributions and 1/Q are different. I will
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discuss them in my discussion of my data in more detail in Chapter 5.

I note here that my model for optical illumination is still relatively simple in

its treatment of optical effects. I believe this picture can be improved using a more

complete model that includes, among other things, the optical photon energies and

the time dynamics of quasiparticles and phonons after photon absorption. However,

as I will show in Chapters 4 and 5, this model appears to explain our results very

well.

2.4 Other Sources of Loss

In addition to TLSs and quasiparticles, there are other sources of loss in su-

perconducting resonators and qubits. I briefly discuss some of the sources below.

2.4.1 Other Microwave Lines

A resonator may couple to input/output lines, bias line, or other external

lines, whether those lines are added intentionally (e.g. flux or other bias lines) or

unintentionally. If the line is known to be present, it should be included in the

external quality, i.e.

1

Qe

=
1

Qin

+
1

Qout

+
1

Qline

, (2.98)

where Qline is the coupling quality factor to this external line. If the resonator is

capacitively coupled to this line with capacitance Cline, I can use a similar definition

to the definition of Qin and Qout (Eqs. 2.16 and 2.17) and write

1

Qline

≡ ω3
0C

2
lineLZ0. (2.99)
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If the line is not explicitly included in Qe, the additional loss it causes may be

attributed to an unknown internal loss mechanism.

2.4.2 Other Microwave Modes

A resonator or qubit may also couple to additional microwave resonance modes

in the system. For example, in my system the resonator is embedded inside a 3d

cavity which has many microwave modes. All of these modes of the 3d cavity can

couple to the resonator. I can define g as the coupling strength between the two

modes, ωr as the frequency of the resonator, ωc as the frequency of the cavity mode,

and ∆ω = ωc − ωr as the detuning between the two modes. When the coupling

between the modes is strong, that is g > |∆ω|, the two modes cannot be considered

independent. In this case, the measured frequencies would be the eigenmodes of

the coupled system. By making a two-level approximation, the eigenvalues can be

found by diagonalizing the matrixωr g

g ωc

 =

(
ωr + ωc

2

)
I +

−∆ω/2 g

g ∆ω/2

 , (2.100)

where I is the 2× 2 identity matrix. The eigenmodes ω± are then given by

ω± =

(
ωr + ωc

2

)
±
√

(∆ω/2)2 + g2. (2.101)

To calculate the quality factor of the coupled modes, a similar calculation can be

done with the loss components. The quality factor of each eigenmode then is found

to depend on both the quality factor of the cavity and resonator.

When the coupling is weak, g � |∆ω|, the modes can be considered indepen-

dent with a small correction factor. The modified resonator frequency ω′r and the
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modified cavity frequency ω′c are then given by

ω′r = ωr −
g2

∆ω
(2.102)

ω′c = ωc +
g2

∆ω
. (2.103)

In this regime, loss from the cavity contributes an additional component to the

resonator loss. This is called the Purcell effect and was discovered by Purcell in

spontaneous emission rates [159]. If γcavity is the decay rate of the cavity then the

Purcell decay rate γPurcell is given by [160]

γPurcell =
( g

∆ω

)2

γcavity. (2.104)

Since γ = ω/Q, then if Qcavity is the quality factor of the cavity, the Purcell quality

factor QPurcell is given by

1

QPurcell

=
( g

∆ω

)2 ωc
ωr

1

Qcavity

. (2.105)

The experiments I describe in Chapters 4 and 5 were in the weak coupling

regime g � |∆ω|. Also, I found that the quality factor of the fundamental mode my

3d cavities was independent of rf drive power for applied rf power Prf in the range

of about -110 dBm to -50 dBm. Hence in my system, I typically assumed the cavity

mode contribution to resonator or transmon loss was rf power independent and

relatively weak. Of course, there are many cavity modes, not just the fundamental

mode, and they can contribute to resonator or transmon loss as well.
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2.4.3 Trapped Vortices

Magnetic flux vortices trapped in a superconducting film can magnetically

couple to the resonator and cause additional loss and frequency shift [85]. Vortices

can be trapped in the superconducting film of the resonator if it is cooled below Tc

in an ambient magnetic field, or if a strong enough magnetic field is applied to the

resonator even for a brief amount of time. Several well-known methods has been

used to mitigate vortex loss. These methods include introducing narrow slots [161]

or holes [162, 163] in the superconducting films which in effect trap the vortices,

and better magnetic shielding of devices to reduce the number of trapped vortices.

More recently, Nsanzineza and Plourde managed to trap a single vortex at

the current antinode of a coplanar waveguide resonator [164] and found that the

vortex did not induce an additional loss because the coupling between the vortex

and the resonator was very weak. In fact, they reported a reduction in loss which

they attributed to the vortex acting as a quasiparticle trap that produced a net

decrease in the quasiparticle density near the vortex.

2.5 Summary

In this chapter, I discussed the circuit representation of an LC resonator. Us-

ing circuit analysis, I derived the transmission S21 as a function of frequency. I also

defined the internal and external quality factors in terms of the circuit model param-

eters. I then described sources of loss in superconducting resonators, and focused on

the two main loss sources: TLSs and quasiparticles. I described the physical model
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of a TLS, and how a single TLS and an ensemble of TLSs contribute to loss. I then

discussed loss due to quasiparticles, including how an rf drive and optical illumina-

tion affects quasiparticles. I introduced a nonequilibrium quasiparticle model and

described how to simulate the effects of rf drive and illumination. Finally, I briefly

described other sources of loss in resonators, including trapped vortices and loss due

to coupling to microwave lines and other microwave modes.
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Chapter 3: Experimental Details: Resonator

In this chapter, I describe the experimental details for experiments in which I

applied optical illumination to a thin-film superconducting microwave resonator. I

discuss the design choices and fabrication steps for building the resonator, the design

choices and machining steps for the 3d cavity in which the resonator is mounted, and

the wiring setup for the microwave lines and the optical illumination line. Finally, I

discuss how I subtract the background from the raw data and how I fit the resonance

to extract the resonance parameters.

3.1 Resonator Design Considerations

As discussed in Chapter 1, to achieve strong coupling between trapped atoms

and a resonator we need a resonator with a high quality factorQ and strong magnetic

field to couple to the magnetic moment of the atoms. A strong magnetic field can be

achieved by having a small magnetic mode volume of the resonance. Additionally,

we also would like the resonant frequency to be near the 6.83 GHz Rb resonance,

although this is more essential for a proof of principle experiment.

There are many different physical arrangements to make a superconducting

resonator, but not all of them are viable candidates for use in the proposed hybrid
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system. For example, superconducting and normal metal 3d cavities recently became

popular due to long coherence times achieved by superconducting qubits mounted

inside 3d cavities [49, 165]. 3d cavities made from aluminum can reach internal

quality factor Qi > 106 at base temperature [49, 166]. However, due to the large

volume of the cavity (∼ 5000 mm3) and the fact that the electric and magnetic

fields are spread out over the cavity volume, the magnetic field is too small to

achieve strong coupling. As discussed in Section 3.3, we will still use a 3d cavity

in the experiment, but this is not the resonator for a hybrid system. Instead, the

resonators for a hybrid system will be mounted inside a 3d cavity.

Another commonly used resonator design for superconducting qubits is a

coplanar waveguide (CPW) resonator [36]. A CPW resonator typically consists of a

single superconducting strip, surrounded by ground plane and coupled to microwave

drive typically by capacitive coupling. The resonant frequency is determined by the

length of the line. CPW resonators have both electric and magnetic field spread

over the entire length of the resonator, with the fields confined between the center

strip and ground plane. A 7 GHz λ/2 CPW resonator has a typical mode volume of

∼ 10−3 mm3, which is about 106 times smaller than the mode volume of a 3d cavity

with a 7 GHz TE101 mode frequency.

We chose to use lumped-element LC resonators, described in Ch. 2. Multiple

groups have studied the loss characteristics of lumped-element resonators [132, 138],

and Ben Palmer’s group at LPS have used lumped-element resonators in supercon-

ducting qubit readout [167]. Lumped-element resonators have well defined inductors

and capacitors, the magnetic field is concentrated in the inductor and the electric
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field is concentrated in the capacitor. The inductor may have some self-capacitance,

and the capacitor may have some self-inductance, but as shown by de Visser et al.

they constitute only small percentage of the total capacitance and inductance [132].

The resonators used in some of my measurements were originally designed by

Zaeill Kim for the resonator tuning experiment [104]. Zaeill designed the resonators

to have a resonance frequency fr = ωr/2π ≈ 6.7 GHz, so that he could tune it

up to the 87Rb hyperfine splitting frequency of 6.83 GHz using the tuning pin. He

also found the expected resonant frequency from Microwave Office simulations [168].

The initial design was a conventional lumped-element planar resonator, embedded

inside a ground plane and coupled to microwave drive by transmission line (Fig. 3.1).

The interdigitated capacitor had 40 fingers, with a 5 µm finger width and gap, and

a finger length of 50 µm. The meandering inductor had a line width 5 µm and a

total line length of about 4 mm. The resonators were fabricated with several design

variations. By varying the length of the last finger, the resonant frequency was

varied slightly. All the resonators in the mask were coded MWX-Y, where X was a

number representing the variant of the resonator and Y was a number representing

the position in the mask. A separate mask was also made for the gold alignment

marker.

3.2 Resonator Fabrication

Zaeill performed the initial fabrication steps [130], which were as follows. 215

nm Al was deposited on a 3-inch sapphire wafer using the thermal evaporator at
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Figure 3.1: Photograph of LC resonator MW2-14 as fabricated by Zaeill
Kim before ground plane etching. The light area is Al, the dark area is
sapphire substrate. This resonator was used in the experiments described
in Chapters 4 and 5.
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LPS, followed by depositions of Ti (for adhesion layer for Au) and Au (for alignment

marker). After spinning and patterning layer a of photoresist using photolithogra-

phy, the metal was wet etched away. After spinning a protective photoresist layer,

the wafer was then diced into 5 mm × 5 mm chips and stored for safe keeping.

Starting with a single resonator chip, I needed to remove all the metal except

the resonator itself. Jared Hertzberg, Kristen Voigt, and I developed the process

and the three of us alternately performed the fabrication described below in the

Fablab clean room in the Kim Engineering Building.

First, we removed the protective resist on the chosen chip by placing it in

a beaker of remover PG [169] heated to 95◦C for 15 minutes. We then rinsed

with isopropyl alcohol (IPA), then with DI water, and finally dried the chip using

N2. To ensure that there was no water remaining on the surface of the chip, the

chip was then pre-baked on a hot plate at 130◦C for 10 minutes. After baking,

we set the chip on the spinner, and made sure the chip was centered. If the chip

is slightly off center it can cause the chip to detach while spinning. We applied

HMDS (hexamethyldisilazane) on the chip and spun at 4000 rpm for 60 s. The

purpose of the HMDS layer was to improve adhesion between the substrate surface

and photoresist. We then applied Shipley S1813 photoresist, and spun at 4000

rpm for another 60 s. Since the chip was small and square shaped, beads of thicker

photoresist tend to form on the corners of the chip. We used a razor blade to remove

the corner beads. We then soft baked the chip on a hot plate at 95◦C for 5 minutes.

To hold the chip during patterning, we taped the chip on a microscope slide.

We initially used white clean room tape, however we observed that the chip could
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(a)

(b)

(c)

Figure 3.2: Photograph of LC resonator MW2-14 at different fabrication
steps: (a) Before resist spin and exposure. The two blue rectangles
are approximate position of rectangular structure in photomask during
exposure. The resist will remain in the overlap region between the two
rectangles (shaded red area). (b) After metal etching. The rectangle
around the resonator is the photoresist. (c) After removing photoresist
layer.

83



still move during alignment and exposure, resulting in generally poor alignment.

We found that double sided Cu tape fixed the alignment issue, although more work

was needed to clean the chip’s back surface. We repurposed an older photomask

(DS10 nitrite 10/12/2010) from previous phase qubit experiments [31, 170] in the

photolithography process. Before putting the mask on the mask aligner, we cleaned

the mask with acetone, methanol, IPA, followed by DI water, and then dried the

mask with N2.

To pattern, we mounted the chip and the mask on a Karl Suss MJB-3 Mask

Aligner that let us align the resonator structure to a dark rectangular pattern on the

mask (see Fig. 3.2(a)). The structure has dimensions of 1000 µm × 600 µm, which

is larger than the size of the resonator. As a result, we aligned twice and exposed

twice for 10 s, with the alignment as shown in Fig. 3.2(a), so that all regions except

the resonator was exposed to light.

We developed the resist using Shipley 352 developer for 45 s, then rinsed it

using DI water, and finally dried with N2. We next examined the chip under an

optical microscope to check the alignment. We wanted the resonator to still be

completely covered by photoresist and no resist layer above the ground planes. If

the alignment was not good, we removed the photoresist using acetone and DI water

and started over. If there were no issues, we proceeded to etch the metal.

For the etching step, we first prepared two large beakers by filling them with

DI water for rinsing. We started by etching the Al layer using Transene Al Etchant

Type A [171]. We kept the chip in the etchant until all the exposed Al was etched

away; this usually took about 9 minutes. We then quickly put the chip in the first
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water beaker. After 3 minutes, we transferred the chip to the second beaker, keeping

it there for another 3 minutes, after which we dried the chip using N2. This was

followed by etching Au layer using Transene TFA Etchant [171] for 60 s, and then

etching Ti layer using Transene TFT Etchant [171] for 15 s. After each etch, we

rinsed the chip with DI water using the process described above. We then removed

the remaining photoresist layer by putting the chip in Remover PG heated to 95◦C

for 7 minutes, followed by our standard rinsing and drying process.

Finally, we cleaned the adhesive from the back of the chip using acetone applied

on swabs, followed by the standard rinsing process. If acetone did not completely

remove the adhesive, we put the chip in Remover PG heated to 95◦C for about 10

minutes, followed by another rinsing. Once this was done, the chip was stored for

safe-keeping in a dry box until it was ready to be put in the cavity.

The chip used in the experiment described in Chapters 4 and 5 was device

MW2-14. It was first built in 2011, the ground plane was removed in July 2013,

and it was stored for several days before being put into the cavity.

3.3 3D Cavity

Similar to the setup used by 3d transmons [49], we mounted the resonator

inside a 3d cavity. A cavity and transmon can couple strongly and create a Circuit

QED system [36, 172], with an approximate Jaynes-Cummings Hamiltonian [129].

For the experiments in Chapters 4 and 5, we used the cavity to couple microwave

input and output lines to the resonator. Due to the resonator’s small size compared
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Figure 3.3: Illustration of a 3d cavity with the dimensions labeled a, b,
and d following Pozar [173]. The dashed rectangle represent where the
cavity separates into two halves.

to a typical transmon size, the coupling was expected to be very weak and we could

treat the cavity and resonator as effectively independent modes.

In the following discussion of the modes of a 3d cavity, I follow Pozar [173]

closely. I define the inner dimensions of the cavity as a along the x-axis, b along the

y-axis, and d along the z-axis, with b < a < d (as shown in Fig. 3.3). The resonant

modes of the electric field ~E and magnetic field ~B reside inside the cavity are de-

termined by solving the Maxwell’s equations and imposing boundary conditions for

the fields for all cavity surfaces, which result in standing wave behavior of the fields.

The modes inside the cavity include the TEmnl and TMmnl modes, where m, n, and
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l indicate the indices in x-, y-, and z-axes respectively. The TE (transverse electric)

modes have no electric field component along the z-axis, i.e Ez = 0. Similarly the

TM (transverse magnetic) modes have Bz = 0. The frequency of the TEmnl and

TMmnl modes are given by [173]

fmnl =
c

2
√
µrεr

√(m
a

)2

+
(n
b

)2

+

(
l

d

)2

, (3.1)

where c is the speed of light, and µr and εr are the relative permittivity and per-

meability of the dielectric inside the cavity, respectively. My cavity was filled with

vacuum or air, and thus µr = 1 and εr = 1. The actual cavities usually had rounded

edges instead of sharp edges, but this has only a small effect on the mode frequen-

cies. The lowest mode of the cavity, and the mode that we mainly care about is the

TE101 mode, and using Eq. 3.1 the frequency of this mode is given by

f101 =
c

2

√
(1/a)2 + (1/d)2. (3.2)

When a chip is put in the middle of the cavity, due to the higher εr of the substrate

(sapphire has εr ≈ 10) the frequency will be shifted down by a small amount ∆f101,

∆f101 ≈ 2f101(εr − 1)
Vchip

Vcav

(3.3)

where Vchip is the volume of the chip and Vcav ≡ abd is the volume of the cavity. This

correction can be estimated using cavity perturbation theory [173] or finite element

field solvers.

The 3d cavity I used in the experiment is described in Chapters 4 and 5 was

Cavity SI-1 “Space Invaders”, due to the similar appearance to the aliens in the

video game with that name [174]), and it was made from Al-6061 alloy. I initially
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(a)

(b)

Figure 3.4: Cavity SI-1 at different steps during machining. (a) Milling
of the cavity space. (b) After milling of the upper and lower halved of
the cavity. The SMA terminal connectors are attached on the upper half
of the cavity.
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designed the cavity to have the dimensions a = 1.0 inch = 25.4 mm, b = 5 mm,

and d = 1.4 inch = 35.6 mm, which gave the expected TE101 mode frequency of

f101 = 7.25 GHz. Cody Ballard machined the cavity in the Physics Student Machine

Shop. Unfortunately b = 5 mm was slightly too large to hold a resonator chip in

the standard orientation, where two of the sides of the chip sit between the two

sides of the cavity. Instead, I rotated the chip by 45 degrees so that two corners

were on the two sides of the cavity and Cody milled a slot for the chip for this

orientation (see Fig. 3.6). The center of the chip was located roughly at center of

the cavity, where the electric field is strongest and there is no magnetic field for the

lowest mode. Finally, Cody also drilled holes for mounting the input and output

pins that couple the cavity to the microwave lines. Once this was done, Cody and

I cleaned the cavity by first washing it with water and soap, followed by a bath of

acetone with sonication for several minutes. We considered cleaning it further using

an electropolish, but decided not to.

I connected the cavity to input and microwaves line by attaching SMA ter-

minal connectors (typically from Pasternack [175]) to the outside of the cavity (see

Fig. 3.4(b)). Each connector has a pin that extended inside the cavity, coupling

the line to the cavity. The coupling strength is determined by the position and

the length of the pins. The connectors were attached to the surface parallel to the

x − z plane, roughly at x = a/2 and z = d/4 for the first pin and at x = a/2 and

z = 3d/4 for the second pin (see Fig. 3.3). Both pin locations are in between the

node and antinode of the TE101 mode, at the antinode of the TE102 mode, and at

the node of the TE201 mode, where the electric field is zero. This should result in
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Figure 3.5: |S21|2 vs applied frequency f of cavity SI-1 (before shaving
part of lip) at room temperature. Several of the lowest modes are labeled.
The TE201 mode, which is expected to be at 12.5 GHz is not seen.

relatively strong coupling to the TE102 mode, almost no coupling to the TE201 mode,

and moderate coupling to the TE101 mode, which is the lowest frequency mode. I

adjusted the input and output coupling by adjusting the length of pins, with longer

pins give stronger coupling. I tried using several different connector models, with

different pin lengths and diameters. All of the connectors came with the pins par-

tially surrounded by teflon, I usually removed the teflon, as it is a lossy dielectric,

using a razor blade. For smaller pin diameters, fine adjustments could be done by

cutting the pin length using a wire cutter, or increasing the length by soldering a

small wire to the pin.

Figure 3.5 shows a log plot of |S21|2 = Pout/Pin versus frequency for cavity SI-1

from 6 GHz to 20 GHz. This trace was taken at room temperature using an Agilent
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35.6 mm

5 mm

Figure 3.6: Lower half of cavity SI-1 with test chip mounted upside down
in the cavity. At the center of the chip the resonator can be seen. To the
lower left of the chip one of the optical fibers used in the illumination
measurements can be seen.

E5071C vector network analyzer (VNA), discussed in detail in the next section. For

this measurement, no chip was inside the cavity. Several of the modes are labeled.

The TE101 mode was located at 7.18 GHz, close to the expected value. We also

saw a strong peak for the TE102 mode at 10.3 GHz, but we didn’t see a peak at the

expected TE201 peak at 12.5 GHz. This was consistent with the expected coupling

strengths to the different modes, as discussed in the previous paragraph.

Putting a 5 mm × 5 mm × 0.5 mm sapphire chip inside the cavity typically

brings the TE101 mode frequency down by about 200 MHz to about 7.0 GHz, in

addition to some reduction in quality factor. Since the 7.0 GHz shifted frequency

could have ended up very close to the expected resonator frequency of 6.7 GHz, we

decided to increase the TE101 mode frequency by reducing the cavity volume. To

do this, Cody shaved 0.1 inch of aluminum from the lip where the two halves of the

cavity connect, resulting in a = 0.9 inch and the expected TE101 mode frequency of

about 7.8 GHz without a chip, and 7.6 GHz with a chip. This change also resulted
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in the chip being slightly off-center.

For the experiment described in Chapter 4 and 5, I chose the pins such

that the cavity TE101 mode had approximately balanced input and output cou-

pling, Qin,cav ≈ Qout,cav ≈ 2.6 × 105 so the external quality factor was Qe,cav =

(1/Qin,cav + 1/Qout,cav)−1 ≈ 1.3× 105. To accommodate optical fibers, Cody drilled

some additional holes through the cavity walls (see Section 3.5). I observed no major

effect on the mode frequencies and quality factors with the addition of the holes.

To mount a chip in the cavity, I placed the chip on the slot and secured

the corners with chunks of indium wire (see Fig. 3.6). The chip was mounted

upside down such that the chip was directly illuminated from one of the fibers (see

Section 3.5) instead of through the sapphire substrate. I then placed a ring of

indium wire on the base of the inner lip, to act as an rf-tight gasket and reduce gaps

between the two halves. Finally, I attached the two halves of the cavity and secure

them tightly.

3.4 Microwave Setup

Microwave wiring for the experiments described in Chapters 4 and 5 is shown in

upper part of Fig. 3.7. Zaeill Kim installed many of the components at the beginning

of the project, especially the ones inside the dilution refrigerator. The refrigerator

is an Oxford Triton 200 cryogen-free refrigerator with a cooling power of 200 µW at

100 mK [176]. Jared Hertzberg, Kristen Voigt, Liam Fowl, and I made subsequent

additions and modifications over time as needed for different experiments.
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Figure 3.7: Diagram of microwave wiring (upper part) and optical wiring
(lower part) wiring used in the optical illumination experiments.

Microwave signals were supplied by an Agilent E5071C Vector Network Ana-

lyzer (VNA) [177], with the range of possible frequencies between 300 kHz and 20

GHz and the range of possible powers between -85 and 10 dBm. The drive came out

of port 1 of the VNA. In some experiments we wanted to supply higher powers to

the resonator, and we connected the output of port 1 to an rf amplifier for this pur-

pose. One we used was a Mini-Circuits ZX60-14012-L+ amplifier [178], with a wide

bandwidth (300 kHz - 14 GHz), about 11-12 dB gain, and a 1 dB compression point

of about 11 dBm. For even higher powers, we used a Mini-Circuits ZRON-8G+ am-

plifiers [178] with 2-8 GHz bandwidth, 20 dBm gain, and a 1 dB compression point

of 20 dBm. From the VNA or amplifier output, the signal then goes to a flexible

SMA coaxial cable to a SMA feedthrough port at the screen room wall. Inside the

screen room the feedthrough connects to a long SMA coaxial cable to the top of the

refrigerator, where it went to another feedthrough inside the refrigerator.
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Figure 3.8: Picture of dilution refrigerator, with different temperature
stages labeled. First pulse tube stage, at 45 K, is located just out of
frame. A ’hot finger’, anchored to 4K stage, was used for some separate
heat load experiments, is placed under the mixing chamber.
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The microwave line inside the fridge was separated into short segments between

each temperature stage. Each segment consisted of a ∼ 0.2 m length of UT-85

SS/SS coaxial cable, with a stainless steel inner and outer conductors. This cable

was chosen to reduce thermal links between stages because stainless steel has a

relatively low thermal conductivity. Midwest Microwave cryogenic attenuators [179]

were added between some of the segments, thermally anchored to the stages, to

reduce Johnson-Nyquist noise. Specifically, 10 dB was located at the second pulse

tube plate (at 4-5 K), 10 dB at the still stage (typically around 700 mK), and 30 dB

total at the mixing chamber stage (at base temperature at 10-20 mK) (see Fig. 3.8).

From the last attenuators we used a UT-85 Flexi coaxial cable, with silver-plated

copper inner and outer conductors, to connect to a Pamtech CTH1365KS cryogenic

isolator [180] mounted on the mixing chamber stage. In some cool downs we added

a isolator because we were concerned about the presence of cable self-resonances

from impedance mismatches in the lines. The isolator had a frequency range of 4-8

GHz and about 18 dB of isolation within this range. The output port of the isolator

was connected directly to the input port of the 3d cavity, mounted on the mixing

chamber stage. The total attenuation on the input line from the VNA to the cavity,

not including the rf amplifiers, was about 65 dB around 6-7 GHz (see Fig. 3.9).

The output port of the cavity was connected to another set of cryogenic iso-

lators at the mixing chamber by a segment of UT-85 Flexi coaxial cable. Here we

used Pamtech CTH1409KS isolators [180] with a 4-8 GHz range and 18 dB isolation.

The role of these circulators was to reduce noise and other stray microwaves coming

down the output lines, without attenuating the output signal from the cavity. At 4
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K stage, a high-electron-mobility transistor (HEMT) amplifier amplified the rf out-

put from the cavity. The amplifier was a CITCRYO4-12A amplifier, made by the

Weinreb group at Caltech [181], with frequency range 4-12 GHz, less than 5 K noise

temperature, and maximum gain of about 32 dBm. Zaeill found that the HEMT

tended to show self-oscillation behavior due to mismatched impedance outside of

the circulator band width. To prevent self-oscillation, Zaeill added a 3 dB cryogenic

attenuator at the input of the HEMT [130].

We used a Miteq AMF-3F-04000800-07-10P room temperature low-noise am-

plifier [182], located just on top of the fridge, to amplifiy the output signal from of

the cavity. The amplifier has a 4-8 GHz frequency range and about 30 dB gain. The

output signal then passed through a similar coax setup as the input line to reach the

outside of the screen room. A Mini Circuits ZX60-14012L+ [178] provided the final

11 dB amplification before the signal went into port 2 of the VNA. The VNA then

typically measures the complex transmission S21 = V2/V1 as a function of frequency.

The VNA was connected to a Stanford FS725 Rb Frequency Standard [183] at

its 10 MHz input port to provide an accurate frequency calibration. A GPIB cable

connected the VNA to a Dell Windows PC that has a National Instruments PCI-

GPIB card [184]. This allows us to automate the data taking process (VNA setup

and S21 readout) using either LabVIEW or Matlab. I mainly used a Matlab control

program E5071C multiplepowertraces singlespan header.m, which will be discussed

in Section 3.6.
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Figure 3.9: |S21|2 vs applied frequency f of microwave lines at room
temperature. The value will differ somewhat when the refrigerator is in
operation. No rf amplifier was used in the input line and the HEMT,
Miteq, and Mini Circuits amplifiers were used on the output line.

3.5 Optical Illumination Setup

The lower part of Fig. 3.7 shows a simplified diagram for the optical illumi-

nation setup. Most of the setup outside the refrigerator was done by the people

working on the atomic side of the Atoms on SQUIDs project, Jeff Grover, Pablo

Solano, and Jon Hoffman.

We used a diode laser to supply light with 780 nm wavelength, one of the

wavelengths needed for our 87Rb atom trapping experiment [81, 83]. This light

reflected off several mirrors mounted on an optical table and then passed through

an acousto-optic modulator (AOM). The AOM allowed us to pulse the light (see

Section 5.3.3 for example). To prevent thermal drifts, we set the AOM to a duty
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Figure 3.10: Photograph of part of the illumination line on the optical
table. Red dotted line shows the path of the photons.

cycle that was about 90 % on. This required some adjustment in measurement

timing. The pulse timing was controlled by a TTL signal from a Stanford DG535

pulse generator [183]. After the AOM, the light passed through a half-wave plate.

We rotated the wave plate to adjust the intensity of the light passing through.

For some experiments where we changed the polarization of the light (see Sec-

tion 5.3.2 for example), we added a quarter-wave plate followed by a half-wave plate.

This arrangement allowed us to adjust the polarization by rotating both wave plates.

These two wave plates were not used otherwise. I note that the optical fibers used

(see below) did not preserve the polarization and thus I expected the polarization

of light hitting the resonator to be slightly different from the polarization set by the

wave plates.

Because the total power at the output of the laser was high (∼ 5 mW), we

sent the light through an ND filter to reduce the power. We varied the ND filter

98



depending on the attenuation needed. The light then passed through a lens which

couples the light to a single-mode optical fiber (see Fig. 3.10).

A Thorlabs FC 780-50P-APC fiber splitter [185] then divided the power from

the laser to two branches. One branch went to a Thorlabs S140C power meter [185]

which we used to measure the optical power Popt, the other branch continued to

the fridge. The splitting ratio η ≡ Prefrigerator/Pmeter of the splitter was not exactly

unity, and drifted slowly over time, with a typical value of around 0.9−0.95. At the

beginning of cool downs, we measured the splitting ratio by comparing the power

passing through both branches for several optical powers. The branch that goes to

the refrigerator then went to a connector on the screen room wall.

For some experiments, I used two illumination lines in the refrigerator. Each

line can be connected at the screen room wall to the single line outside the screen

room. For experiments where we compared the effects produced by illumination

from one or the other of the two lines (Sections 5.3.1 and 5.3.2), we swapped the

connections at the screen room wall. However, we found that disconnecting and

reconnecting the lines could introduce additional loss, likely from variations in the

connection or dust getting on the connectors. To avoid such variations, for most of

the measurements we avoided disconnecting the connections. To get to the inside

of the refrigerator vacuum space, the two lines go through vacuum feedthroughs on

the refrigerator top plate.

Inside the refrigerator, we spliced the fiber from the feedthrough to another

section of the fiber that was connected to the cavity using a fusion splicer. We taped

the splice point, as well as additional fiber lengths, on the 4 K stage using Kapton
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tape. To prevent light in the jacket from reaching the cavity, we wrapped the fiber

around a ∼ 1 inch diameter post at least 20 times. at the 4 K stage. Finally, the

fibers entered the cavity at the mixing chamber through holes drilled in the cavity.

We secured the fibers using Stycast 2850 epoxy, one of them directly to the cavity,

the other to an Al mounting bracket attached to the cavity (see Figs. 3.11).

The two lines were used to illuminate the cavity differently, one line was ori-

ented perpendicular to the surface of the chip, and the other roughly parallel to the

surface (see Fig. 3.11). Light came out of the end of the fiber and formed a cone

with opening angle of approximately 10◦. For the perpendicular fiber, the end of

the fiber was located about 8 mm from the chip surface. This resulted in a spot

of light with a diameter of approximately dspot = 1.4 mm. The resonator, about

0.4 mm in size, was significantly smaller than the spot size and located roughly at

the center of the spot. As a result we expected that the resonator was exposed to

uniform light of intensity

Iopt ≈
4ηPopt

πd2
spot

. (3.4)

For the parallel fiber, the end of the fiber was about 2 mm from the edge of the chip

and the LC resonator was located a further 2 mm away (see Fig. 3.6 for example).

The edge of part of the inductor line saw the fiber. For a perfect alignment of the

fiber and chip, only this edge was illuminated. Of course, we can expect slight error

in the alignment.
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(a) (b)

(c) (d)

Figure 3.11: Pictures of chip illumination lines in the 3d cavity. (a) Par-
allel line. (b) Parallel line illuminating a test chip. (c) The epoxy point of
perpendicular line on a mounting bracket attached to the cavity (d) Per-
pendicular line illuminating a test chip. For the test illuminations, we
used visible red laser diode instead of the actual 780 nm laser.
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Figure 3.12: |S21|2 vs frequency f near resonance peak (located inside
dashed ellipse), showing the presence of cable resonances with line widths
> 1 MHz.

3.6 Background Subtraction and Peak Fitting

As I discussed in Section 3.4, I automated the data taking process using Mat-

lab. The routine that I mainly used is the E5071C multiplepowertraces singlespan-

header.m, which set most of the typical S21 measurement parameters for its input

parameters and allowed me to take multiple rf powers in sequence. The trace was

then saved in a tab-delimited file format with 3 columns and the number of rows

is the number of points in the trace (typically 1601, which was the maximum value

allowed by the VNA). The first column was the frequency, the second column was

the |S21|2 in dB, and the third column was phase of the complex S21. We could then

calculate the real and imaginary components of S21.

As discussed, we attempted to reduce the effects of cable self-resonance, in-
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Figure 3.13: Real and imaginary components S21 vs frequency f of a
sample background trace, showing the polynomial fit for background
subtraction. Blue dots are part of real component data used in fit, cyan
dots are part of real component data not used in fit. Red dots are
part of imaginary component data used in fit, magenta dots are part of
imaginary component data not used in fit. The two black lines are the
results of the polynomial fit.

cluding by adding an additional isolator in the input of the cavity. However, we still

observed self-resonances with line widths 1 MHz or above, including near the LC

resonance of 6.720 GHz (See Fig. 3.12). This resulted in the resonance located on a

non-flat background which needed to be subtracted.

To subtract the background, I took an S21 trace with ≈2 MHz span around

the resonance with a relatively high rf power to reduce noise. This span was much

larger than the line width of the resonance, which ranges between 3 kHz to 60

kHz depending on the parameters used. I ignored the middle ∼900 kHz where

the resonance was located, and fit the real and imaginary components of S21 to
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a 4th order polynomial using a Matlab script peakBGfitter.m. This script gave 8

fit parameters that defined the functional form of the background components of

Re(S21) and Im(S21) as a function of frequency f ,

Re[S21(f)]bg = ARe +BRef + CRef
2 +DRef

3, (3.5)

Im[S21(f)]bg = AIm +BImf + CImf
2 +DImf

3. (3.6)

Here A, B, C, and D are the fit parameters, with the subscript determining whether

it is the real or imaginary component. I then subtracted the real and imaginary com-

ponent of the background from the S21 trace. The background level didn’t drift much

over time, but I typically took the background trace every several hours. When I

added microwave components (e.g room temperature amplifiers), changed tempera-

ture (including temperature cycling), or applied optical light, the background level

would jump to a different value, which means I needed to take a new background

trace.

I fit the subtracted S21 to the Lorentzian of Eq. 2.21. However, I needed to

take into account the loss in the input line and the gain in the output line, phase the

signal can gain in propagation, as well as possible remaining offsets. The expression

for the complex S21 becomes

S21(f) = |S21,in| |S21,out|

(
eiφ

2Q/
√
QinQout

1 + 2iQ (f−fr)
fr

+ C0

)
, (3.7)

where |S21,in| is the transmission of the input line, |S21,out| is the transmission of

the output line, φ is the phase, Q is the quality factor, Qin is the input coupling

quality factor, Qout is the output coupling quality factor, and C0 is a complex offset.
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Figure 3.14: Lorentzian fit of resonance peak. Blue dots are the data, red
line is the fit of the data to Eq. 3.7 (a) Re(S21) vs frequency. (b) Im(S21)
vs frequency. (c) |S21|2 vs frequency. (d) Im(S21) vs Re(S21). The
resonance peak forms a circle in the complex plane of S21
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I calculated |S21,in| from the loss in the input line and |S21,out| from the gain in the

output line. C0 should be negligible after background subtraction. I then fit two

curves simultaneously, the real and imaginary components of S21 (see Figs. 3.14(a)

and (b)), to obtain six fitting parameters: φ, Q, 1
2

√
QinQout, fr, and the real and

imaginary components of C0. As I discussed in Section 2.1.2, plotting the S21 in

the complex plane results in a circle, as shown in Fig. 3.14(d). The diameter of the

circle is

dp = |S21,in||S21,out|2Q/
√
QinQout. (3.8)

We have Qin ≈ Qout, hence the external quality factor 1/Qe = 1/Qin + 1/Qout ≈

2/Qin, and 1
2

√
QinQout ≈ 1

2
Qin ≈ Qe.

At higher drive powers, we found that the shape of the peak deviated from

Lorentzian, and the peak circle in complex S21 became elongated (see Fig. 3.15).

Because of the very weak coupling between the microwave line and the resonator,

Qe � Qi, which meant that the total Q was limited by the internal quality factor

Qi. While Qe was expected to be constant, Qi depended strongly with drive power,

or rf photon occupation, as we will discuss in detail in Chapters 4 and 5. The rf

photon occupation inside the resonator when the rf drive was detuned from reso-

nance would be less compared to when it was driven at resonance. For the range

of our measurements we had Qi increasing with increasing drive power, or photon

occupation. Hence we had a frequency dependent-Qi, where the Qi was highest at

resonance, and getting lower with increasing detuning δf ≡ f−fr. This dependence

would result in the elongated shape of the peak as we saw.
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Figure 3.15: Im(S21) vs Re(S21), showing the failure of Lorentzian fit at
high rf powers, and the 3-point fitting method. The peak is elongated in
the complex S21 plane. Blue dots are the data. The red dotted circle is
an attempt to fit the data to Eq. 3.7. The green dots are the data points
used in the 3-point fit method, the three red points are there resulting
averaged points. The solid red circle is the circle where the three points
are located, obtained from Eq. 3.9.
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Figure 3.16: Illustration for the 3-point fitting scheme. The three red
dots are the three averaged points, the two wings (1 and 2), and the peak
(p), located at ~r1, ~r2, and ~rp, respectively. The distance between points
1 and 2 is 2w, and the distance between p and the midpoint between the
two wings is h. The diameter of the circle is dp/2.

One way to improve the fitting of the peak in this regime is by introducing

the frequency dependence, Qi(f), in the fit formula of Eq. 3.7 then solve for this

dependence, probably using some iterative method. However, the method that I

actually employed used the fact that at fr, the Qi is the highest in the curve and

also the main Qi value that we actually care about. I found that the unmodified fit

routine to fit to Eq. 3.7 gave the correct value of fr. I chose several points around

the peak in the trace then average their location in the S21 complex plane. I wanted

to have enough points to average so I could get the accurate peak position, but not

too many such that points that were too far away from the peak were included.

Additionally, I also averaged the location of several points at or near the beginning

of the trace, as well as several points at or near the end of the trace (the “wings”). I
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wanted the detuning from fr of these two averaged points to be the same. All three

averaged points should be on the perimeter of the circle with the diameter dp of

Eq. 3.8 with Q ≈ Qi(fr), as shown in Fig. 3.16. The definitions shown in Fig. 3.16

are as follows: ~r1 and ~r2 are the position of the wings in the complex plane, ~rp is the

position of the peak, 2w = |~r1−~r2| the distance between the wings, ~rm = (~r1 +~r2)/2

the position of the midpoint between the two wings located w distance away, and

h = |~rp−~rm| the distance between the midpoint and the peak. I can then calculate

dp by

(dp/2)2 = w2 + (h− dp/2)2

dp =
w2 + h2

h
. (3.9)

Jared wrote a Matlab script LorzReIm3Pt.m that automated this process, requiring

a S21 trace array and resonance frequency obtained from standard fit, and calculated

the diameter of the circle. From the diameter, I calculated the Q ≈ Qi by using

Eq. 3.8 and the averaged value of 1
2

√
QinQout from Lorentzian fit.

3.7 Summary

In this chapter, I discussed the design and fabrication of the thin-film res-

onators and 3d cavity. I then discussed the experimental setup, which includes the

microwave drive and readout lines, and the optical illumination lines. Finally, I

described the standard process of the data analysis, which includes the background

subtraction, fitting of data to Lorentzian, and the 3-point fit method for higher rf

power data.
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Chapter 4: Resonator Results: Without Optical Illumination

In this chapter, I present and discuss my results from measurements on res-

onator MW2-14 when no optical illumination was applied. At base temperature and

low drive powers, the resonance showed signs of strong coupling to a single TLS.

At higher drive powers, quasiparticle effects dominated. For temperatures between

25 and 300 mK, the results at high powers can be fit well to the nonequilibrium

quasiparticle model discussed in Chapter 2. I discuss the parameters from the fit

and how they compare to the expected physical and design parameters. Finally, I

discuss the behavior of the 3d cavity during the measurements.

4.1 Properties of Resonator at Base Temperature

4.1.1 Measurement Details

Jared Hertzberg and I measured resonator MW2-14 inside the dilution refrig-

erator between late July and late November 2013. The base temperature of 20-25

mK was slightly higher than the typical base temperature of the refrigerator, which

was about 10-15 mK. The reason for this was likely because in the same cooldown

Jared mounted a hot finger, which was anchored at 4 K, and extended inside the
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Figure 4.1: Photograph of the hot finger anchored at 4 K next to the 3d
cavity, under the mixing chamber plate.

inner shield of the refrigerator to within a few inches of the cavity (see Fig. 4.1).

This hot finger had a resistor attached to it, and was used to perform heat load ex-

periments in preparation for mounting the magneto-optical trap (MOT) inside the

refrigerator. Slight touches between the hot finger and lower temperature stages,

as well as blackbody radiation coming from the hot finger, may have caused the

increase in the refrigerator temperature. In fact, during the first attempt to cool

down the resonator, the refrigerator only reached about 150 mK because of a touch

between the hot finger and one of the coaxial lines. The hot finger may also have

introduced some additional complications, as I discuss in Section 4.2.3.

During the cooldown over an interval of 4 months, the refrigerator was cycled

3 times above the critical temperature of Al (≈ 1.2 K). The resulting data from

the cooldown can thus be separated into 4 sessions. For example, Figs. 4.2 and 4.3

show the inverse quality factor 1/Q and resonance frequency fr of the resonator,
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Figure 4.2: Inverse quality factor 1/Q vs rf drive power Prf for base
temperature for the entire cooldown. Different sessions are in different
colors: blue for the first session, red for the second session, orange for
the third session, and purple for the fourth session.
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Figure 4.3: Resonance frequency fr vs rf drive power Prf for base temper-
ature for the entire cooldown. Different sessions are in different colors:
blue for the first session, red for the second session, orange for the third
session, and purple for the fourth session.
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obtained from fits described in Section 3.6, as a function of rf power reaching the

input port of the cavity Prf at base temperature, with each session shown with

different color. Within the same session we sometimes measured the same values of

Prf multiple times, several days apart. We found that 1/Q and fr for higher powers

(Prf & −70 dBm) varied by a small percentage during any one session. For lower

powers (Prf . −70 dBm), we saw multiple branches in 1/Q and fr even during the

same session, which I will discuss in Section 4.1.2.

The blue open circles are the results from the first session. At high powers fr ≈

6.720263 GHz. The first temperature cycling happened in September 10, 2013. For

this cycle we set the refrigerator mixing chamber to 1.5 K, then put a µ-metal shield

around the refrigerator and cooled it back down to base temperature. The red open

circles are the result from the second session, i.e. after the first cycle. Compared

to the first session, the 1/Q for the second session was basically unchanged, while

fr at high power shifted up by about 1 kHz to about fr ≈ 6.720264 GHz. The

second temperature cycling happened in October 21, 2013, when the house chilled

water that supplied our refrigerator failed overnight, bringing the mixing chamber

temperature to about 80 K. We brought the refrigerator back to base temperature

after the chilled water system was fixed during the day. The orange open circles

are the result from the third session, i.e. after the second cycle. Compared to the

second session, the 1/Q for the third session was again unchanged, however fr at

high power actually shifted down by about 50 kHz to about fr ≈ 6.720214 GHz.

The third temperature cycling happened three days after the second, due to another

chilled water failure. The refrigerator again warmed to about 80 K for several hours.
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Figure 4.4: Transmission |S21| vs frequency f for traces with very high
Prf, showing the onset of distortion in |S21|. Black curves has Prf =
−48.8 dBm, where there are no noticeable distortion. Blue curves has
Prf = −45.3 dBm, where distortions started to appear for f < fr. Red
curves has Prf = −42.3 dBm, where there is a significant jump in S21 at
f ≈ 6.720212 GHz.

The purple open circles are the result from the fourth session, i.e. after the third

cycle. In this session, the variations in 1/Q and fr for the same Prf seemed to be

somewhat larger compared to the previous sessions, up to about ±8% in 1/Q. In

the previous sessions, the variations were at most about ±2% in 1/Q. Compared

to the third session, 1/Q for the fourth session were typically slightly higher, while

fr was unchanged. Examination of all of the 1/Q data in Fig. 4.2 gives about 8%

uncertainty in 1/Q due to session-to-session variation.

The range of Prf in the measurements was between -95 dBm to -45 dBm.

This corresponds to 〈n〉, which is the rms number of microwave photons inside the
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resonator, between about 20 and 2× 108. The lower limit of Prf was limited by the

averaging time to get a reasonable signal. S21 traces with Prf = −95 dBm required

an averaging time of several hours, and attempting to measure even lower powers

would require even longer averaging time. Above Prf ≈ −45 dBm, distortions in the

resonance shape started to appear, and this sets the upper limit of the measurement.

Figure 4.4 shows several |S21|2 vs f traces for Prf > −45 dBm with the distortion

visible in the resonance. These distortions appear to be due to the onset of nonlinear

effects, which may come from heating, nonlinearity of the kinetic inductance, or

possibly nonequilibrium quasiparticle effects [186, 187].

4.1.2 Low Power Regime: Effects of TLS

As I mentioned in the previous subsection, the curves for fr vs Prf and 1/Q

vs Prf seemed to have multiple branches for lower Prf. The branches were especially

apparent in fr of the first two time sessions (blue and red open circles), as can be

seen in Fig. 4.3. For the first session (blue open circles) the branches in fr could be

seen appearing below Prf ≈ −70 dBm, and for the second session (red open circles)

the branches in fr could be seen appearing below Prf ≈ −80 dBm. fr differed by

up to 20 kHz between branches for Prf values about 10 dB lower than where the

branches start to appear. For the third session (orange open circles), while it may

appear that fr started to shift below about Prf ≈ −60 dBm, we didn’t see a second

branch. For the fourth session, branches seemed to appear below Prf ≈ −65 dBm,

however fr were only separated by about 5 kHz by Prf ≈ −85 dBm. In contrast,
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Figure 4.5: Comparison of two |S21|2 vs f plots traces taken four days
apart: blue curve was taken on 8/6/13, red curve was taken on 8/10/13.
Prf = −85.3 dBm for both traces, and other measurement parameters
were identical. The traces shown are raw traces from VNA, before back-
ground subtraction. The resonant frequencies fr extracted from fit of
the two traces were 6.7202506 GHz and 6.7202664 GHz, indicating a
shift of 15.8 kHz.

the resonant frequency fr seemed to be fairly independent of Prf for higher powers,

and we did not see multiple branches.

We found that fr typically followed one branch for multiple measurements in

the same day, but would jump to a different branch efter several days. For example,

Fig. 4.5 shows two |S21|2 vs f traces taken at Prf = −85.3 dBm using the VNA.

All other measurement settings were identical but the two traces were taken 4 days

apart (08/06/13 and 08/10/13). The resonant frequencies fr extracted from fit of

the two traces differed by 16 kHz. This was fairly typical for the shifts we saw.

For comparison, the 1/Q vs Prf plot appears to show two distinct branches in

the first session below Prf ≈ −75 dBm (see Fig. 4.2). The lower branch followed the
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trend of the Prf dependence from higher powers, while for the upper branch the loss

1/Q increased rapidly with decreasing Prf below -80 dBm. For the second session,

1/Q vs Prf seemed to follow the first session’s upper branch, although the 1/Q

values at the lowest values of Prf were about ≈ 40% lower than the corresponding

1/Q values from the upper branch. For the next two sessions, we did not measure

Q at low enough Prf to be certain if there were multiple branches or which branch

was present.

To check whether each branch in 1/Q corresponded to a specific branch in fr,

I plotted 1/Q and fr vs Prf for the first session (see Fig. 4.6). The blue closed circles

represent points taken when 1/Q vs Prf followed the upper branch, while the black

open circles represent points taken when 1/Q vs Prf followed the lower branch. It

seems that the lower (black) branch in 1/Q showed a smaller frequency shift δfr

at lower Prf compared to higher values of Prf. However, while the largest shifts δfr

came from the upper branch, many points in the upper branch had a shift that was

comparable to the points in the lower branch. Hence it was hard to conclude that

the branches in 1/Q correspond to branches in fr.

I note that the regime where we saw multiple branches corresponded to the

regime with relatively low microwave photon numbers 〈n〉 ≈ 20 − 2000. The fact

that in this regime we generally found 1/Q to decrease rapidly with increasing Prf

suggests that this behavior was due to two-level systems (TLSs). In Section 2.2, I

discussed the effects of both a single TLS and an ensemble of TLSs. Since fr jumped

between branches every few days, this suggests it was not caused by an ensemble of

TLSs, as it would require the entire TLS ensemble to reorganize at the same time
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Figure 4.6: (a) Inverse quality factor 1/Q vs rf drive power Prf. (b) Res-
onance frequency fr vs rf drive power Prf. Both data sets were taken for
the first session at the base temperature of 25 mK. Closed blue circles
represent measurements taken when 1/Q appeared to follow the upper
branch, open black circles represent measurements taken when 1/Q ap-
peared to follow the lower branch.
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every few days. On the other hand, it is entirely plausible that a single TLS could

change its energy or orientation every few days due to some microscopic change in

the dielectric local environment. It is also possible that the resonator coupled to a

different TLS when branch jumping occured. Hence it is reasonable to assume that

the presence of branches was caused by coupling to a single TLS, or at most a few

TLSs.

If the branches effects were caused by coupling/decoupling to a single TLS, it

would be reasonable to fit 1/Q vs Prf to Eq. 2.51 for loss due to a single TLS. Since

the electric field in the capacitor is not uniform, the expression should be modified

slightly to depend on voltage instead of the electric field, i.e.

1

QTLS,s

(〈V 〉) =
T2

~εV

(
p∆

2E

)2
1

[1 + (〈V 〉/Vc,s)2]
, (4.1)

where 〈V 〉 is the rms voltage across the interdigitated capacitor and Vc,s is the

characteristic voltage. Equations 2.52 and 2.53 show that the low power inverse

quality factor value 1/QTLS,s(〈E〉 = 0) and characteristic electric field Ec,s depend

on the individual TLS parameters. These include the well asymmetry ∆, tunneling

rate ∆0, TLS energy E =
√

∆2 + ∆2
0, TLS orientation angle θ, dipole moment p,

relaxation time T1, and coherence time T2. All of these parameters can differ between

TLSs, and hence each branch would need to be separately fitted. Additionally, it

doesn’t appear that we applied low enough Prf such that 1/Q reached the regime

where it is flat. This makes it difficult to fit to Eq. 4.1 and extract accurate physical

parameters.

Recently, Sarabi et al. reported observations of strong coupling between a
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superconducting resonator and a single TLS located in silicon nitride dielectric used

in the parallel plate capacitor of a resonator [100, 101]. I noticed several similarities

between their results and the low power behavior in the resonator we measured. For

example, in both devices the resonance frequency fr was independent of rf drive

power at strong drive, and fr could shift at weak drive. fr at low power also seemed

to drift around and ocassionally would jump to a new value. These similarities again

suggest that the effects that we saw were caused by coupling to a single TLS.

In some of their resonators, Sarabi et al. could apply a dc voltage bias to

their resonators. Applying dc bias changes the well asymmetry ∆ of the TLSs, and

subsequently the TLS energy E . Using this they could adjust the detuning between

the resonator and each TLSs, and control which TLS couples to the resonator [101].

Our setup lacked the capability to apply a dc bias to the capacitor, but we

looked at several possible methods to bias or excite the TLSs, or otherwise cause

fr or 1/Q to jump to a different branch. First, we found that applying high optical

intensity (Iopt ≈ 0.2 pW/µm2) for several minutes may have caused fr to jump to a

different branch. This was probably equivalent to heating the TLSs. However, the

optical intensity was so high (250 times higher than the highest intensity we applied

in Chapter 5) that we could not observe the resonance during illumination because

the quality factor of the resonator degraded so much or the frequency decreased too

much. We also attempted a two-tone experiment in which we drove the TLSs using

an rf tone supplied by an Agilent 83731B signal generator with frequencies near

the resonator resonance frequency fr ≈ 6.72026 GHz, while continuously probing

the resonance with the VNA. While initial scans suggested a jump in fr when the
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second tone was driven around 6.68 GHz, subsequent repeated measurements failed

to recreate the jump. This suggests that the jump we saw was not caused by the

second rf tone, but was instead a random jump, similar in nature to the ones that

occured every several days.

To check whether it was reasonable for our resonator to be coupled to a single

TLS, I used the expression derived by Sarabi for the number of TLSs NTLS with

energies within the bandwidth of the resonator, given by [101]

NTLS = P0hBV ln (sec ηm + tan ηm) , (4.2)

where P0 is the TLS density of states, B = fr/Q is the resonator bandwidth, V is

the dielectric volume, and ηm ≈ 0.9π/2. For this estimate, I assumed the typical

number P0 ≈ 1044 / J m3 and used 1/Q ≈ 5×10−6, which is the inverse quality factor

values at the lowest powers we applied. In Section 2.2.3, I noted that for coplanar

waveguide resonators, the fill factor F is largest at the metal-substrate interface and

at the air-substrate interface, while the contribution from the metal-air interface is

much smaller. I performed a finite element simulation using COMSOL [188] to find

the approximate electric fields in an interdigitated capacitor and found that this

is the case as well for interdigitated capacitors. This suggests the TLS loss may

be dominated by dielectric at the metal-substrate interface and the air-substrate

interface. Hence for volume V in Eq. 4.2, I tried using the estimated total volume

of dielectric in the metal-substrate interface and the air-substrate interface, but did

not include the dielectric volume at the metal-air interface. The total aluminum

film area for the interdigitated capacitor was ≈ 2 × 104 µm2. As the gap between
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capacitor fingers was the same as the finger width, the total area of the substrate

between the fingers was comparable to the capacitor Al film area ≈ 2 × 104 µm2.

I assumed a typical thickness of the interface of 5 nm. This gives V ≈ 200 µm3.

Using all these numbers, I find NTLS ≈ 1.3. Note that I used approximate values for

many of the parameters in Eq. 4.2 and hence this calculation is at best an order of

magnitude estimate for NTLS. Nevertheless, this result confirms that the resonator

should be expected to be coupled to a single or a few TLSs.

4.1.3 High Power Regime: Effects of Quasiparticles

I now focus on the Prf & −70 dBm range where multiple branches did not

seem to appear. I often took multiple measurements with the same Prf, and for the

following data analysis I averaged the 1/Q values from those measurements for use in

subsequent fits. Between -70 dBm and -45 dBm, 1/Q decreased with increasing Prf.

In principle, this could be due to TLS effects, nonequilibrium quasiparticle or both.

If I assumed this behavior to be caused by an ensemble of TLSs, I could extract a

characteristic microwave photon number nc ≈ 106 where the loss saturated. This was

many orders of magnitude larger than the typically reported values of nc ≈ 1− 100

[39, 131, 136]. This suggests that this behavior was unlikely to be caused by TLSs.

Assuming the behavior was caused by nonequilibrium quasiparticles, I could

obtain good fits to 1/Q vs Prf with reasonable fit parameters. Figure 4.7 shows ex-

amples of such fit. The colored open circles represent the individual measurements,

with different colors represent different sessions, as described in Section 4.1.1. The
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Figure 4.7: Inverse quality factor 1/Q vs rf drive power Prf for a base
temperature of 25 mK and no optical power. The colored open circles
represent different time sessions: blue for first session, red for second
session, orange for third session, and purple for fourth session. The black
closed circles are the averaged 1/Q values for multiple measurements
with the same Prf. The black dashed curve is the fit to nonequilibrium
quasiparticle model.
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black dots are the averaged value of 1/Q while the black dashed curve is the fit to

the nonequilibrium quasiparticle model. To extract the complete set of fit parame-

ters, I needed to fit 1/Q and fr vs Prf curves at higher temperatures as well as under

optical power, and I will discuss the fitting method and the fit parameters in detail

in Subsections 4.2.2 and 4.2.3.

4.2 Properties of the Resonator at Higher Temperatures

4.2.1 Measurement Details

To set the mixing chamber temperature of the refrigerator above its base

temperature of 25 mK, we input the desired temperature into the PID (Proportional

/ Integral / Derivative) temperature control at the refrigerator control computer.

The refrigerator applied power to heater resistors located at the mixing chamber

plate and adjusted the power to keep the temperature at the desired temperature.

Oxford claims that the temperature stability is ±1 mK for temperatures below 1

K [86]. We typically waited at least 30 minutes after the refrigerator reached the

desired temperature before performing measurements, to make sure the temperature

had stabilized inside the cavity.

We performed transmission measurements of the resonance at higher temper-

atures in two sessions. The first session was in early October 2013, at the same time

as the second session of base temperature measurements (red open circles in Fig. 4.2

and 4.3). Here the highest temperature was 320 mK, with the Prf range between

-70 and -50 dBm.
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The second session was in early November 2013, at the same time as the fourth

session of base temperature measurements (purple open circles in Fig. 4.2 and 4.3).

In this session the highest temperature was 300 mK. Originally we intended to

increase the range of Prf at each temperature to be comparable to the range of Prf

at base temperature. We found that the resonance drifted when driven strongly

(Prf & −55 dBm) for temperatures above 230 mK, with the frequency shift and loss

increasing with the length of time the power was applied. For Prf ≈ −55 dBm this

drift was relatively slow, with fr shifting comparable to 10− 15% of the resonance

linewidth after 10 minutes. However at much higher powers the drift is much more

rapid, with fr shifting by up to 2 times the resonance linewidth in less than 5 minutes

when driven at Prf ≈ −47 dBm.

The drifts suggest that the resonator heated up when driven strongly. As a

result, we set the limit of Prf in our measurements to be between -65 dBm and -55

dBm for temperatures above 230 mK and we tried to keep the averaging time short.

I note that the mixing chamber stage temperature did not seem to increase when

we applied strong drive at these high temperatures. This suggests that the heating

effect was localized near the resonator. While we did not notice this self heating

behavior during the first high temperature session, it was possible the effect was

present in the measured S21 traces. Because of this, the results from the first session

may not be reliable and I will focus on the results from the second session only.
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4.2.2 Fit to Nonequilibrium QP Model

From the discussion in Chapter 2, I expected the TLS loss to decrease with

increasing temperature and the quasiparticle loss to increase with increasing tem-

perature. The range of Prf in our measurements at higher temperatures was about

10 to 20 dB higher than where we expected TLS effects to dominate, as discussed

in Section 4.1.2. Hence one should expect TLS effects to be negligible or small in

this power range and quasiparticle effects to dominate.

Figures 4.8 and 4.9 show 1/Q and fr vs Prf for several temperatures between

25 mK and 300 mK. For the 25 mK data, the 1/Q plot showed the averaged 1/Q

for each Prf from all four base temperature sessions and fr plot showed the averaged

1/Q for each Prf from the fourth base temperature session only. We found that both

1/Q and fr did not appear to depend on temperature from base temperature up to

about 230 mK. Above 230 mK, 1/Q increased with increasing temperature and fr

decreased with increasing temperature, as expected from quasiparticle loss. I note

that the self-heating effects discussed in the previous subsection seem to appear

above 230 mK as well.

To figure out if this behavior was due to quasiparticles, I needed to fit the

nonequilibrium quasiparticle model discussed in Section 2.3 to my 1/Q and fr data.

As the nonequilibrium model does not provide an analytical expression for Qqp or

the fractional frequency shift δfr/fr, and there are multiple physical parameters

to fit, attempting to do standard least-squares fitting would be computationally

time-consuming and technically challenging. Instead I assumed initial values for all
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Figure 4.8: Inverse quality factor 1/Q vs rf drive powers Prf for differ-
ent temperatures and no applied optical power. Solid circles are data.
Dashed curves are fit to nonequilibrium quasiparticle model with back-
ground illumination represented by an effective temperature Teff,0 = 236
mK.
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Figure 4.9: Resonance frequency fr vs rf drive powers Prf for differ-
ent temperatures and no applied optical power. Solid circles are data.
Dashed curves are fit to nonequilibrium quasiparticle model with back-
ground illumination represented by an effective temperature Teff,0 = 236
mK.
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of the model parameters (see Table 4.1), then used the Newton-Raphson method

discussed in Chapter 2 to find the solutions for quasiparticle distribution f(E),

phonon distribution n(Ω), and rf drive proportionality factor B. From f(E), I

calculated the conductivities σ1 and σ2 using Eq. 2.66 and 2.67. I repeated the

process for a range of rf drive powers Prf and refrigerator temperature Tb. Here I

assumed the phonon bath temperature equals the refrigerator temperature. I then

compared the simulation results to our measured value of 1/Q and δfr/fr vs Prf. I

adjusted the parameters (see Table 4.1) and repeated the entire process to find a

reasonable fit of the model to the data.

In the simulations, the rf power absorbed by quasiparticles Prf,ab was calculated

using Eq. 2.89. For this step I used the measured values of rf drive power Prf, overall

quality factor Q, internal quality factor Qi and external quality factor Qe. Of course,

Qi was what I was trying to simulate, so this procedure was potentially circular. I

discuss this issue in Chapter 2. Here I also assumed no TLS loss, i.e. 1/QTLS = 0,

while the inverse quality factor from other sources 1/Q0 was a fit parameter. The

superconducting gap ∆ was a fit parameter and single-valued, as I expected the

change in ∆ to be much smaller than the grid size 1 µeV. In the simulations I

used ~ωr = 28 µeV = h× 6.77 GHz, which is the closest integer multiple of 1 µeV

from ~ωr values for rf drive frequencies ≈ 6.72 GHz. I used a quasiparticle-phonon

scattering time of τ0 = 438 ns, which is the τ0 for aluminum in Ref. [150] and

phonon-quasiparticle scattering time of τφ = 0.26 ns which is the τφ for aluminum

in Ref. [149]. I treated the phonon escape time τe as a fit parameter, and I actually

needed to fit to also optical illumination results in Chapter 5 to obtain a value for
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Table 4.1: Parameters used in nonequilibrium simulations for resonator MW2-14

.

Symbol Parameter Value Source

∆ superconducting gap 167 µeV fit parameter

~ωr rf photon energy in simulation 28 µeV closest 1 µeV multiple

(h× 6.77 GHz) to measured frequencies

A resonator Al surface area 4.18× 104 µm2 design parameter

V resonator Al volume 8.99× 103 µm3 design parameter

Qe external quality factor 4.9× 109 fit to S21

N0 single spin density of states 1.74× 1010 eV−1µm−3 Ref. [149]

at Fermi level

Ni/Ω
3
D atomic density/(Debye frequency)3 1.41× 1015 (eV µm)−3 Eq. 2.84

τ0 quasiparticle-phonon time 438 ns Ref. [150]

τφ phonon-quasiparticle time 0.26 ns Ref. [149]

τe phonon escape time 8.96 ns fit parameter (Ch. 5)

ε Al absorption coefficient ≈ 15% nominal

1/QTLS TLS loss component 0 nominal

1/Q0 power independent loss component 2.5× 10−7 fit parameter

α1 1/Q scaling factor 0.61% fit parameter

α2 δfr/fr scaling factor 0.88% fit parameter

f0 baseline LC resonator frequency 6.720225 GHz fit parameter

Teff,0 effective temperature 236 mK fit parameter

of background radiation

τe. The resonator surface area was A = 4.18× 104 µm2, and the thickness of the Al

film was measured using a profilometer to be (215±5) nm. This gives the resonator

volume V = 8.99 µm3. Finally, I used an approximate nominal value for the Al

emissivity of ε ≈ 15%.

All the parameters used in the simulation are shown in Table 4.1. The dashed

curves in Figs. 4.8 and 4.9 show best fit results for 1/Q and fr from the nonequilib-

rium model using these parameters. To get fits that were this good, I found that I
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had to include the effect of a background illumination with Teff,0 = 236 mK. Overall

the simulation does a very good job of capturing the behavior of 1/Q and fr with

changing rf drive and temperature well. There are small discrepancies between the

simulation and data, in particular in the 240 − 260 mK range, which may be due

to the approximate nature of the nopt model which I used to include a background

illumination.

4.2.3 Discussions: Fit Parameters

Finding the uncertainties of each of the fit parameters in Table 4.1 would re-

quire simultaneously varying all the fit parameters and then performing the nonequi-

librium simulations for all rf powers, temperatures, and optical intensities for each

set of parameters. In Section 5.2.3 I discuss my attempt to estimate the uncertainty

of ∆, however finding the uncertainties for all of the fit parameters would be very

time-consuming.

I can make some remarks about the values of some of the fit parameters shown

in Table 4.1. The superconducting gap ∆ = 167 µeV is close to the 170 µeV expected

value of the superconducting gap in Al. Goldie and Withington [149] and de Visser

et al. [48] assumed phonon escape time τe ≈ τφ for 100 nm thick Al films. τe is

proportional to film thickness [151], and the Al thickness of our resonator is 215 nm.

As a result I initially expected τe ≈ 2.2τφ. However I found τe = 8.96 ns ≈ 34τφ

was needed to maintain power balance for the absorbed optical power for ε ≈ 15%

(Chapter 5). This value is about an order of magnitude larger than the expected
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value, however it is within the reasonable range of values of τe for Al on sapphire

substrate, as discussed by Kaplan [151]. I found that relatively large changes in τe

only resulted in small changes in σ1 and σ2.

I found that both the scaling factors α1 and the frequency scaling factor α2

were slightly less than 1%. In Section 2.3 I stated that α1 and α2 were expected to

be equal to the kinetic inductance ratio αk. I estimated the kinetic inductance for

our resonator using the expression derived by Gao to estimate the kinetic inductance

of coplanar waveguide resonators [126],

Lk =
µ0λeffl

4a(1− k2)K2(k)

{
(1 + k)

[
π − log

(
1 + k

1− k

)]
+ log

(
4πa

t

)
+ k log

(
4πb

t

)}
. (4.3)

Here 2a is the width of the center strip, 2b is the separation between the two ground

planes, k = a/b, t is the film thickness, l is the length of the strip, λeff is the effective

penetration depth, and K(k) is the complete elliptic integral of the first kind given

by

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

. (4.4)

Equation 4.3 is supposed to be valid for t � a. For our lumped-element resonator

without ground planes, I used 2a = 5 µm, 2b =∞, k = 0, t = 215 nm, and l ≈ 3.5

mm. I also used Gao’s calculated values of λeff for t ≈ 200 nm, which is λeff ≈ 60

nm [126], as well as the estimate of the geometric inductance of the resonator L ≈

5 nH. This gives an estimate of the kinetic inductance ratio of αk ≈ 1.7%. I note

that this is a very rough estimate, and hence the scaling factor values α1 = 0.61%

and α2 = 0.88% were actually quite reasonable. What is unexpected is that α1 and
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α2 differs somewhat, with α1 ≈ 0.7α2. Gao also discussed that for thicker films (t

comparable to the mean free path), the scaling factors can deviate by up to a factor

of 2/3 [126]. It is possible that the onset of the deviation in α1 is slightly different

than in α2.

In the model I found that I had to include a rf power-independent inverse

quality factor term 1/Q0 = 2.5 × 10−7 to get a good fit to the data. I note here

that I have plotted 1/Q instead of 1/Qi. However since 1/Qe = 2.0 × 10−10 it

was clear that I could not assign this power-independent 1/Q0 to the input and

output lines. It was also unlikely there were additional external lines with such

strong coupling to the resonator. As shown by the base temperature results, this

power-independent loss 1/Q0 was not affected by temperature cycling and addition

of a µ-metal shield, which meant it was unlikely it was due to trapped vortices.

However it was possible the small increase and slight drift in 1/Q after the final

temperature cycling was caused by trapped vortices. In the following section I report

the cavity inverse quality factor 1/Qcavity ≈ 1.1×10−5. Unfortunately I did not make

a precise independent calculation of the coupling between the cavity and resonator

g. Typically a 1 mm long 3d transmons mounted in the center of a 3d cavity has

g/2π ≈ 120−150 MHz [49, 189]. Since the scaling should scale with the length of the

device, I can estimate for our 0.4 mm resonator g/2π < 60 MHz. Using Eq. 2.105,

I can calculate the Purcell contribution for loss as 1/QPurcell . 7 × 10−8. This is

only about 30% of 1/Q0 and suggests there are additional loss sources contributing

to the power-independent loss.

To get a reasonable fit to the data, I also had to include a constant background
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illumination, as represented by the optically generated effective temperature Teff,0 =

236 mK. As shown by the model curves in Figs. 4.8 and 4.9, this was needed to

account for why 1/Q and fr did not change much between base temperature and

230 mK. I also note that for my fits f0 = 6.720225 GHz was the resonance frequency

assuming zero temperature, no rf drive, and no illumination. This value was 11 kHz

higher than the measured fr values at base temperature.

Given Teff, I can use Eqs. 2.96 and 2.97 to find Popt(Teff) and evaluate

Popt(Teff,0) = εIopt,0A (4.5)

to find the background optical intensity Iopt,0. An effective temperature of Teff,0 =

236 mK gives Iopt,0 = 22 aW/µm2. While it was possible broadband light with

this intensity was coupled to the cladding at the fiber input on the optical table, a

significant fraction of the light should be attenuated by the mandrel wrap located

at 4 K. It is more likely that there is a different source of this illumination. In

Section 4.1.1 I noted the presence of a hot finger which was anchored at 4 K and

extended inside the inner shield of the refrigerator to within a few inches of the

cavity (see Fig. 4.1). I expected the temperature of the hot finger to be at or near

4 K. Using the Stefan-Boltzmann law, the intensity of black-body radiation from

a black 4 K source is Ibb ≈ 15 aW/µm2, which is comparable to Iopt,0. However,

the resonator was not directly exposed to the hot finger, but instead was embedded

inside the 3d aluminum cavity.

I can approximate the effect of a 4 K source on the cavity using the Parker

heating model. I assume the phonon ballistic limit, where τe is proportional to
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Figure 4.10: Illustration of possible sources (red arrows) of background
illumination inside the dilution refrigerator. Illustration not to scale.

thickness [151], and also assume that the volume of Al forming the cavity is propor-

tional to the illuminated area. With these assumptions, Eq. 2.97 yields an effective

temperature that is independent of the cavity dimensions. Using Iopt = 15 aW/µm2

for black-body radiation from the 4 K hot finger I find the effective temperature

in the Parker model to be Teff,c ≈ 231 mK which is remarkably close to the value

from the fit to the data especially considering the simplicity of the assumptions.

This suggests the hot finger caused a nonequilibrium distribution of phonons in the

cavity and resonator, even though the resonator was not directly exposed to the 4

K radiation.

Additionally, this suggested that we need to consider other possible sources

of radiation, as shown by the red arrows in Fig. 4.10. These include black-body

radiations from the 700 mK shield or from higher temperature stages passing through
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gaps or holes in the mixing chamber plate. However, the hot finger was the hottest

radiation source close to the resonator, and hence it was most likely the dominant

source of background radiation.

4.2.4 Discussions: Nonequilibrium Distributions f(E) and n(Ω)

In this section, I discuss the quasiparticle distribution f(E) and phonon dis-

tribution n(Ω) in several interesting temperature regimes. The first regime is when

the bath temperature Tb is much less than the optically generated phonon effective

temperature Teff. The solid curves in Figs. 4.11 show simulated results f(E) and

n(Ω) as a function of normalized energy for Tb = 25 mK and Teff,0 = 236 mK for

several values of Prf. These are clearly nonequilibrium distributions with peaks ap-

pearing every hfr/∆ due to the microwave drive term. We also see jumps in f(E) at

E = 3∆ and in n(Ω) at Ω = 2∆. These jumps come from the discontinuity in nopt

(see Eq. 2.95) as well as pair breaking and recombination. f(E) generally increases

with increasing Prf, except in parts between E = ∆ and E = ∆ + hfr where it

decreases instead. As discussed previously, this behavior causes 1/Qqp to decrease

with increasing rf drive power Prf. However I note here for E slightly less than

∆ + hfr, f(E) appears to increase with increasing Prf, unlike the no illumination

case.

For comparison, the purple dashed curves in Figs. 4.11 show f(E) and n(Ω)

for a thermal distribution with T = Tb = 25 mK and the yellow dashed curves

show f(E) and n(Ω) for a thermal distribution with T = Teff,0 = 236 mK. The
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Figure 4.11: (a) Simulated quasiparticle distribution f(E) vs normalized
energy E/∆ and (b) Simulated phonon distribution n(Ω) vs normalized
energy Ω/∆, both for illumination model with bath temperature Tb = 25
mK and effective optical illumination background temperature Teff,0 =
236 mK and several rf drive powers Prf: -65 dBm (blue curve), -55 dBm
(red curve), and -45 dBm (green curve). Other parameters are shown
in Table 4.1. The purple dashed curve is the thermal distribution for
Tb = 25 mK and the yellow dashed curve is the thermal distribution for
Teff,0 = 236 mK. (c) Linear plot of f(E) between E = ∆ and E = 2∆.
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purple curve is located outside the figure limits for the quasiparticle distribution

f(E). For Ω near 0, n(Ω) follows the Tb thermal distribution very closely for up

to Ω ≈ hfr before deviating significantly for all Prf. Although this is a very coarse

log scale, the nonequilibrium n(Ω) distributions appear to follow the Teff,0 thermal

distribution for Ω > 2∆, as would be expected due to the nopt source term. f(E)

distributions appear to roughly follow Teff,0 thermal distribution for E > 3∆ as well.

This behavior was not obvious in the kinetic equations.

The second regime of interest is when Tb is comparable to Teff. The solid curves

in Figs. 4.12 show f(E) and n(Ω) as a function of normalized energy for Tb = 230

mK and Teff,0 = 236 mK for several values of Prf. The difference in f(E) between

different Prf values is much less compared to the difference for Tb = 25 mK for the

same Prf values. The jumps in n(Ω) at Ω = 2∆ is still visible, although the height

of the jump appears to be much less than the jumps for Tb = 25 mK. Similarly, if

there is a jump in f(E) at E = 3∆ it is so small it is not visible.

For comparison, the purple dashed curves in Figs. 4.12(a) and 4.12(b) show

f(E) and n(Ω) for a thermal distribution with T = Tb = 230 mK and the yellow

dashed curves show f(E) and n(Ω) for a thermal distribution with T = Teff,0 = 236

mK. f(E) at the lower Prf values appears to follow closely the effective temperature

Teff distribution. For all Prf values, n(Ω) follows the bath temperature distribution

Tb up to the jump at Ω = 2∆. For lower Prf values, n(Ω) closely follows the effective

temperature Teff distribution above the jump at Ω = 2∆.

The last regime of interest is when Tb is significantly larger than Teff. The solid

red curves in Figs. 4.13 show f(E) and n(Ω) as a function of normalized energy for
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Figure 4.12: (a) Simulated quasiparticle distribution f(E) vs normal-
ized energy E/∆ and (b) Simulated phonon distribution n(Ω) vs nor-
malized energy Ω/∆, both for illumination model with bath temperature
Tb = 230 mK and effective optical illumination background temperature
Teff,0 = 236 mK and several rf drive powers Prf: -65 dBm (blue curve),
-55 dBm (red curve), and -45 dBm (green curve). Other parameters are
shown in Table 4.1. The purple dashed curve is the thermal distribution
for Tb = 230 mK and the yellow dashed curve is the thermal distribution
for Teff,0 = 236 mK. (c) Linear plot of f(E) between E = ∆ and E = 2∆.

140



(a)

E/∆
1 2 3 4 5 6

f(E
)

10-25

10-20

10-15

10-10

10-5

100

(b)

Ω/∆
0 1 2 3 4 5

n(
Ω
)

10-20

10-15

10-10

10-5

100

105

Figure 4.13: (a) Simulated quasiparticle distribution f(E) vs normal-
ized energy E/∆ and (b) Simulated phonon distribution n(Ω) vs nor-
malized energy Ω/∆, both for illumination model with bath temperature
Tb = 300 mK and effective optical illumination background temperature
Teff,0 = 236 mK and Prf = −55 (red curve). Other parameters are shown
in Table 4.1. The purple dashed curve is the thermal distribution for
Tb = 300 mK and the yellow dashed curve is the thermal distribution
for Teff,0 = 236 mK.

141



Tb = 300 mK and Teff,0 = 236 mK for Prf = −55 dBm. I only plotted one Prf because

between the range of measured Prf values (-65 to -55 dBm) the distributions at other

Prf values were almost indistinguishable. This independence from Prf is also seen as

a flat 1/Q vs Prf curve, as shown by the 300 mK (dark green) data and curve in

Fig. 4.8. For comparison, the purple dashed curves in Figs. 4.13(a) and 4.13(b) show

f(E) and n(Ω) for a thermal distribution with T = Tb = 300 mK and the yellow

dashed curves show f(E) and n(Ω) for a thermal distribution with T = Teff,0 = 236

mK. Here both f(E) and n(Ω) appear to follow the bath temperature Tb thermal

distribution for the entire range of energies.

4.3 Properties of the 3D Aluminum Cavity

While the properties of the 3d cavity were not the focus of my measurements,

we did take some S21 traces around the cavity resonance frequency using the VNA.

At the 25 mK base temperature the 3d cavity has a resonance frequency fc = 7.501

GHz and a quality factor Q ≈ 9.1 × 104. By fitting to S21 at 300 K, we found

the cavity to have 1
2

√
QinQout ≈ 1.3 × 105. We chose the input and output pins to

have an approximately balanced coupling, i.e. Qin ≈ Qout and from the relations

between the Q values, I found an internal quality factor Qi ≈ 3 × 105. This value

was relatively low for a typical Al 3d cavity used in transmon experiments. A more

typical value would be Qi & 106. However this lower value was not unreasonable

since we did not perform extensive cleaning of the cavity (see Section 3.3). During

this cooldown we did not perform Prf dependent studies of the 3d cavity, however
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Figure 4.14: Transmission |S21|2 vs frequency f of cavity TE101 mode
at base temperature 25 mK, showing apparent periodic jitter.

in other cooldowns we observed that the Qi of the cavity was independent of Prf for

several orders of magnitude range in Prf, between about -110 dBm and -50 dBm.

One problem we found was that the cavity resonance showed jitter, for example

in the S21 vs f plot (see Fig. 4.14). From Fig. 4.14 it is apparent that the jitter was

periodic. In Fig. 4.15, I plot S21 value as a function of time at the peak frequency,

as well as both 70 kHz and 370 kHz above and below the peak. In Figs. 4.15(b) and

4.15(c), red is below resonance, and blue is above resonance. We found that the

jitter occurred every 14 ms (or 70 Hz), although it does not always happen and the

apparent strength varied. The effect of the jitter appeared to be strongest about

70 kHz above the resonance, and got significantly weaker further away. I Note that

these plots were not taken at the same time, hence the jitter occurrence times did

not exactly align with each other.

The nature, low-frequency, and the periodicity of the jitter suggested mechan-
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Figure 4.15: Transmission |S21|2 vs time t of cavity TE101 mode at
different frequencies: (a) at resonance of frequency of 7.500670 GHz,
(b) 70 kHz above and below resonance, and (c) 370 kHz above and
below resonance. For (b) and (c), red is below resonance, and blue is
above resonance. The periodic jitter can be seen.
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ical movement inside the cavity. One of the component in the cavity that could

move were the optical fibers. Each fiber had one point where it was secured with

Stycast epoxy to the cavity or the bracket. For the perpendicular fiber, the end

of the fiber was located about 1 cm from this point, while for the parallel fiber it

was approximately 1 mm. These fibers could act as a cantilever beam and vibrate.

The fiber dielectric would then interact with the electric field inside the cavity and

perturb the TE101 mode frequency of the cavity. One end of the perpendicular

fiber was located where the TE101 mode electric field strength was a minimum and

should have produced only very small effect on the TE101 mode. On the other

hand, the perpendicular fiber was in a location where there was a significant electric

field gradient. The parallel fiber was located closer to the field strength maximum,

but with much shorter length, the effect should be very small and we would expect

a much higher frequency.

I can estimate the natural frequencies of vibration of these fiber by using the

expression for the n-th mode frequency fn of a cantilever beam, which is given by

[190]

fn =
(βnl)

2

2πl2

√
EI

ρA
, (4.6)

where here E is the Young’s modulus, ρ is the mass density, I is the second moment

of area, A is the cross-sectional area of the beam, l is the length of the beam, and

(βnl) is a solution for the equation of motion of the beam. For n = 1, the equations

of motion give the solution (β1l)
2 ≈ 3.52. For a cylindrical beam with a diameter

d, A = πd2/4 and I = πd4/64. This lowest mode frequency of a cylindrical beam is
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then given by

f1 ≈
3.52

2π

√
Ed2

16ρL4
. (4.7)

For our optical fibers, I have d = 125 µm, and used the parameters for fused silica,

where ρ = 2200 kg/m3 and E = 72 GPa. For the 1 mm long parallel fiber, the lowest

mode frequency is f1 ≈ 100 kHz, while for the 1 cm long perpendicular fiber, f1 ≈ 1

kHz. The frequency of the perpendicular fiber was only one order of magnitude

larger than the jitter frequency.

In Fig. 4.16(a), I have plotted another measurement of |S21|2 vs time t, this

time with a better time resolution so that one can better see the behavior during a

jitter. Between 2 and 5 ms there appeared to be a damped oscillation with a fre-

quency ≈ 4 kHz. Figure. 4.16(b) shows a spectrogram representation of Fig. 4.16(a)

found using a code written by Jonathan Hoffman [82]. A spectrogram is a represen-

tation of the spectrum of a signal as they vary with time. The signal was binned into

multiple overlapping time windows and a Fast Fourier Transform (FFT) was per-

formed to obtain the spectrum within these windows. In the spectrogram, brighter

means stronger signal at that frequency. From the spectrogram, I can also see that

|S21|2 had an oscillation with a 4 kHz frequency from 2 up to 10 ms, and there may

be oscillations at 8 kHz. It is possible that these frequencies come from the fiber

vibrations discussed above and suggests that the jitter is actually due to an external

kick that causes the fibers to vibrate. However, the shape of the signal varies a good

deal and does not exactly follow this behavior.

A possible source of kick or vibrations in the refrigerator would be the turbo
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Figure 4.16: (a) Transmission |S21|2 vs time t of cavity TE101 mode at
frequency 7.500670 GHz. (b) Associated spectrogram representation of
(a). Brighter means stronger signal.
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Figure 4.17: Transmission |S21|2 vs frequency f of cavity TE101 mode
at several temperatures: 25 mK (black curve), 240 mK (blue curve), 260
mK (red cuve), 280 mK (green curve), 300 mK (yellow curve).

pump and the pulse tube running the refrigerator. We turned off both and this

caused the refrigerator temperature to drift up to about 400 mK over 30 minutes.

This appeared to reduce the jitter greatly, however the 70 Hz jitter frequency ap-

peared to be unchanged. We also tried tapping the frame of the refrigerator, which

caused the jitter to become stronger again, with the same 70 Hz frequency. This

suggests that the source of the jitter was not completely removed with the pumps

turned off, although the vibration of the pumps may have amplified them. However

the ultimate source of the jitter was unclear.

When we turned off the pumps and the refrigerator temperature drifted up to

400 mK, the resonance frequency fr and internal quality factor Qi did not seem to

change much. We also performed measurements of the cavity when the refrigerator
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was set at elevated temperatures, as discussed in Section 4.2. Fig. 4.17 shows several

|S21|2 vs f traces of the cavity TE101 mode at several temperatures. The shape of

the resonance did not seem to change much with temperature, and there did not

seem to be any trend in S21 with increasing temperature. Here the turbo pump

and the pulse tube were running and jitter effects appear in the entire range of

temperature. Again, this made detailed study of the cavity difficult. Fortunately,

the jitter did not seem to occur in the LC resonance, which was our main quantity

of interest.

4.4 Summary

In this chapter, I discussed measurement results on resonator MW2-14 when

no optical illumination was applied. First, I discussed the behavior of the inverse

quality factor 1/Q and resonance frequency fr at the base temperature of about 25

mK. At low rf drive powers Prf, we saw multiple branches in both 1/Q and fr, as

well as a substantial decrease in 1/Q with increasing power. I argued that many of

the behavior at low powers can be explained by coupling between the resonator and

a single TLS.

At higher Prf, we also saw a decrease in 1/Q with increasing Prf. The behavior

in this regime can be explained by nonequilibrium quasiparticles, although I had

to include background radiation represented by an effective temperature Teff,0 =

236 mK. By fitting the base temperature and the higher temperature results to

the nonequilibrium quasiparticle model, I extracted the physical parameters of the
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resonator. The parameters were generally close to their expected values. I discussed

the possible sources of background radiation, which most likely came from black-

body radiation from a hot finger creating nonequilibrium distribution of phonons

in the cavity and the resonator. Finally, I discussed the shape of the quasiparticle

distribution f(E) and phonon distribution n(Ω) at several temperature regimes.

Finally, I discussed the jitter we observed in the 3d cavity resonance. I dis-

cussed the possible sources of the jitter, which seemed to be enhanced by the oper-

ation of the pumps and was possibly caused by the vibration of the perpendicular

fiber within the cavity.
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Chapter 5: Resonator Results: Optical Illumination of Resonator

In this chapter, I discuss my results on measurements of resonator MW2-14 at

base temperature under optical illumination. The behavior of the quality factor as

a function of rf drive powers under continuous illumination appeared very similarly

to what I expected for TLS loss, however the TLS loss increased under illumination.

This was not what I expected as I discuss below. In contrast I was eventually able

to show that the quality factor and resonance frequency could be fit well to the

nonequilibrium quasiparticle model discussed in Chapter 2. This made more sense

and also required fewer ad hoc assumptions. I also compare the effect of illumination

between the perpendicular fiber and parallel fiber, and the effect of light polarization

on the response. Finally, I discuss the effect of applying pulsed light on the response.

5.1 Expected Result of Illumination

In Section 2.3.5 I discussed how optical illumination of a superconductor gener-

ates quasiparticles. In my nonequilibrium quasiparticle model, optical illumination

effectively acts as a source of nonequilibrium phonons with energy greater than 2∆,

parameterized by an effective temperature Teff. Increasing illumination intensity

Iopt increases Teff. Since phonons with energy greater than 2∆ can break pairs and
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generate quasiparticles, the quasiparticle density increases due to illumination. This

causes the loss factor 1/Qqp to increase and the resonance frequency fr to decrease

with increasing Iopt. Of course, the effect of the rf drive is also important in the

nonequilibrium model. This will introduce an rf power Prf dependence in 1/Qqp

and fr. In fact, as I discussed in Chapter 4, I had to include a contribution from

background illumination to understand the response of the resonator to rf power.

This illumination was likely caused by background blackbody radiation from the

4 K hot finger. At base temperature with this background illumination, we found

1/Qqp decreased with increasing Prf.

On the other hand, the loss from TLS, as discussed in Section 2.2, doesn’t

appear to have an explicit Iopt dependence. However, one might expect that optical

illumination would increase the temperature of the TLS ensemble. This would

decrease the loss factor 1/QTLS,e due to the tanh(~ω/2kBT ) factor in Eq. 2.55.

For typical resonator parameters, increasing TLS temperature would also generally

increase fr except at the lowest temperatures, as shown in Fig. 2.9. In fact, this

frequency increase has been reported by Wang et al. in Nb resonators on Si substrate

under 635 nm optical illumination [191]. They were able to observe this increase

in frequency in Nb because Nb has a critical temperature Tc ≈ 9 K, and typically

thermal quasiparticle effects only become significant for temperatures above about

10% Tc. As a result, one can observe an increase in fr with increasing temperature

due to TLS below 1 K in Nb without the effect being hidden by quasiparticles [41].

Al on the other hand has Tc ≈ 1.2 K. Below about 150 mK, the TLS actually causes

fr to decrease with increasing temperature as shown in Fig. 2.9, and above that
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changes from the loss in quasiparticles tend to dominate. In addition, the presence

of background radiation must be taken into account. As a result I expected it to be

difficult in my aluminum resonators to see a clear signature of the frequency increase

due to TLS under illumination in our resonator.

As I discussed in Section 4.1.2, our resonator was likely coupled to only a few

TLSs within the bandwidth of the resonator. One might also expect that photoab-

sorption by a TLS could activate a TLS that was otherwise not contributing to the

loss. However, photoabsorption could also remove TLSs from the bandwidth of the

resonator, leading to reduced loss. Since the distribution of TLS asymmetry energy

is expected to be uniform [121], we would not expect photoabsorption to produce a

net change in the number of active TLSs in the bandwidth of the resonator. Taking

the above considerations into account, I thus concluded that loss from TLSs should

decrease or show no change with optical illumination.

5.2 Resonator Properties Under Continuous Illumination

5.2.1 Measurement Details

Jared Hertzberg and I performed the resonator illumination measurements. I

described the optical illumination setup in Section 3.5. We used a range of optical

illumination powers from 0.1 to 4.0 µW at 780 nm, as measured at the power meter

when no ND filter was applied. For this experiment, we used a Thorlabs NE60A

neutral density filter [185], with a measured transmission of 0.034% for 780 nm

light. Taking into account the splitting ratio of the fiber splitter, and the distance
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between the resonator and the end of the fiber (see Section 3.5), this range of optical

power corresponds to a range of optical intensities Iopt between 20 and 812 aW/µm2

incident at the chip surface. This corresponds to roughly 80 to 3200 optical photons

per second per µm2 striking the Al surface of the LC resonator. Of course not all

of these would be absorbed as aluminum is quite reflective.

The power from the laser tended to drift, typically by a small amount. After

passing the ND filter the powers were smaller than, or of order of the 1nW resolu-

tion of the power meter. This made continuous measurement of the optical power

difficult. Instead, at the beginning of a set of measurements, we measured the initial

optical power without the ND filter. After about 1 hour of measurement, we mea-

sured the power again without the ND filter. If the power drifted by more than 5%,

we retook the measurements. In practice, this happened very rarely. This process

was repeated every hour that we took data.

We performed transmission measurements of the resonance under illumination

in two sessions. In both sessions, the temperature of the refrigerator was kept at

base of about 25 mK. The first session was between October 2, 2013 and October

19, 2013, between the first and second temperature cycles. During this session, we

focused on lower and intermediate rf drive power Prf regime.

The closed circles in Figs. 5.1 and 5.2 show the inverse quality factor 1/Q and

resonance frequency fr as a function of Prf for all applied optical intensities from the

first session, with different color representing different intensities. In both plots, the

black closed circles represent the measurements when no optical illumination was

applied taken during the same session.
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Figure 5.1: Inverse quality factor 1/Q vs rf drive powers Prf at base
temperature 25 mK under 780 nm optical illumination for intensities
Iopt as indicated with units of aW/µm2. The closed circles were taken
during the first illumination session, the open circles were taken during
the second session.
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Figure 5.2: Resonance frequency fr vs rf drive powers Prf at base tem-
perature 25 mK under 780 nm optical illumination for intensities Iopt

as indicated with units of aW/µm2. The closed circles were taken dur-
ing the first illumination session, the open circles were taken during the
second session.
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The second session was between Novermber 7, 2013 and November 9, 2013,

after the third temperature cycle. As I discussed in Section 4.1.1, the resonance

frequency at base temperature during this session was shifted down by about 50

kHz compared to the early October session. The second session was performed after

we added the Mini-Circuits ZRON-8G+ high power amplifier at the input line, and

we focused our measurements on higher values of Prf. At lower optical intensities,

the maximum Prf value was limited by the onset of distortion, similar to the ones

we observed at base temperature and discussed in Section 4.1.1. The Prf values

where the distortion started to appear increased with increasing Iopt. At higher

optical intensities, the maximum Prf value was around -40 dBm, limited by the

compression point of the amplifiers.

The open circles in Figs. 5.1 and 5.2 show the inverse quality factor 1/Q and

resonance frequency fr as a function of Prf for all applied optical intensities from the

second session, with different color representing different intensities. In both plots,

the black open circles represent the measurements when no optical illumination was

applied taken during the same session. As can be seen in Fig. 5.1, the 1/Q values

from the two sessions overlap well for the same Iopt. On the other hand, for the

same Iopt, fr values for the second session was shifted down from fr values for the

first session by exactly 50 kHz as would be expected, as can be seen in Fig. 5.2.
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5.2.2 Initial Interpretation of Results

Examination of Fig. 5.1 reveals that the loss 1/Q increases with increasing

Iopt and decreases with increasing Prf. Above a a certain power level, 1/Q starts

decreasing faster with increasing Prf. This point depends on Iopt and increases with

increasing Iopt. Figure 5.2 shows that fr decreases with increasing Iopt. For the

highest values of Prf taken during the second session, fr appears to slightly increase

with increasing Prf. For intermediate values of Prf, fr seems to be independent of

Prf.

At low Prf values the resonance frequencies fr appeared to shift from the values

at intermediate powers. This occurred at all optical powers, but is most obvious

in Fig. 5.2 at Iopt = 0 (black filled circles). Additionally, there appeared to be a

jump between branches for Iopt = 71 aW/µm2 (see dark blue filled circles). This

suggests that the coupling between the resonator and a few TLS, as discussed in

Section 4.1.2, is still significant at low rf drive powers under illumination. However,

the low Prf values where fr started to shift appeared to increase with increasing Iopt.

Generally loss from a distribution of TLSs depends on the electric field in

the dielectric, the rms voltage across the capacitor VLC , or the average rf photon

number 〈n〉, which is related to VLC by Eq. 2.29. Here I plotted both 1/Q and fr

vs rf drive power Prf at the input of the cavity . VLC is related to Pin by Eq. 2.26,

and 〈n〉 is related to Pin by Eq. 2.30. I note that 〈n〉 only depends on directly

measured parameters, while VLC requires assumptions on values of input and output

158



capacitances Cin and Cout. For Qin = Qout = 2Qe, Eq. 2.30 can be rewritten as

〈n〉 =
2Q2Pin

Qe~ω2
0

=
Q2Pin

πQehf 2
r

. (5.1)

As I’ve discussed, Qe is constant while Qi varies with Prf. fr also varies, however in

my resonators δfr/fr � 1. For many resonators used in circuit QED, Qe � Qi and

Q ≈ Qe, hence 〈n〉 is

〈n〉typ ≈
QePin

πhf 2
r

∝ Pin. (5.2)

Hence 〈n〉 increases with increasing Prf, and all measurements with the same Prf has

the same 〈n〉. However, in the resonator I used, I have Qi � Qe and Q ≈ Qi, and

one finds

〈n〉us ≈
Q2
iPin

πQehf 2
r

∝ Q2
iPin. (5.3)

Thus 〈n〉 depends strongly on Qi in my device. For the same Prf, Qi decreases with

increasing bath temperature Tb or optical intensity Iopt. This means for the same

Prf, 〈n〉 decreases with increasing bath temperature Tb or optical intensity Iopt.

Figures 5.3(a) and 5.3(b) show measured values for 1/Q and fr as a function of

〈n〉. For Fig. 5.3(b), I only show fr from the first illumination session. The dashed

vertical line in Fig. 5.3(b) at 〈n〉 = 2 × 103 shows the estimated upper limit of the

multiple branch behavior under no illumination. While we did not take too many

measurements at low power, it seems under illumination the branching behavior also

appeared at roughly the same 〈n〉 value of a few thousand. This is consistent with

the branching due to coupling to TLS, as described earlier.

The shape of the measured 1/Q vs 〈n〉 curves in Fig. 5.3(a) appear very simi-

larly to what one expects for 1/Q from an ensemble of TLSs (Eq. 2.55), which may
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Figure 5.3: (a) Inverse quality factor 1/Q and (b) resonance frequency
fr, both vs average rf photon numbers 〈n〉 at base temperature 25 mK
under 780 nm optical illumination for intensities Iopt shown in Figure
with units of aW/µm2. The vertical dashed line in (a) was 〈n〉 = 2×106

where 1/Q start decreasing more rapidly with increasing 〈n〉, and the
vertical dashed line in (b) was 〈n〉 = 2 × 103, which was an estimated
upper limit of multiple branch behavior in fr.
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lead one to think that the significant loss component was due to TLSs in this regime.

I note however that the point where 1/Q starts decreasing more rapidly with in-

creasing 〈n〉 appears to be about the same for all Iopt and is at 〈n〉 = 2× 106. This

is represented by the dashed vertical line in Fig. 5.3(a). Given that the observed

1/Q increases with increasing Iopt, one may conclude that illumination is creating

an increase in TLS loss.

In fact, this was our initial conclusion from these results, even though there

were no previously known mechanisms for an increase in TLS loss under illumina-

tion, and we actually expected a decrease in TLS loss instead. I note however that

the characteristic 〈n〉 value for the rapid 1/Q decrease is much larger than the typi-

cal values for Al resonators with comparable size and frequency, which were around

1-100 [39, 131, 136]. Furthermore, examination of the data revealed that 1/Q in-

creased with illumination as approximately I
1/2
opt . An I

1/2
opt dependence is similar to

that expected for the number of quasiparticles generated by pair breaking radiation

in the steady state [146], which suggests that the increased loss is due to quasi-

particles rather than TLSs. As I show in the next ssection, the power dependent

behavior of 1/Q in this regime can in fact be completely explained by nonequilibrium

quasiparticles.

5.2.3 Fit to Nonequilibrium QP Model

The closed circles in Fig. 5.4 show measured values for 1/Q vs Prf for several

optical intensities Iopt. For the case of no illumination (black dots), I averaged 1/Q
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Figure 5.4: Inverse quality factor 1/Q vs rf drive powers Prf at 25 mK
under optical illumination for intensities Iopt as listed. The closed circles
are data, the dashed curves were found from the nonequilibrium simu-
lation with Tb = 25 mK using the parameters given in Table 5.1. For
each optical intensity, the effective temperature Teff was varied in the
simulation to find the best fit.
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Table 5.1: Parameters used in nonequilibrium simulations for resonator MW2-14.

Symbol Parameter Value

∆ superconducting gap 167 µeV

~ωr rf photon energy in simulation 28 µeV

A resonator Al surface area 4.18× 104 µm2

V resonator Al volume 8.99× 103 µm3

Qe external quality factor 4.9× 109

N0 single spin density of states at Fermi level 1.74× 1010 eV−1µm−3

Ni/Ω
3
D atomic density/(Debye frequency)3 1.41× 1015 (eV µm)−3

τ0 quasiparticle-phonon time 438 ns

τφ characteristic phonon time 0.26 ns

τe phonon escape time 8.96 ns

ε Al absorption coefficient ≈ 15%

1/QTLS TLS loss component 0

1/Q0 power independent loss component 2.5× 10−7

α1 1/Q scaling factor 0.61%

α2 δfr/fr scaling factor 0.88%

f0,1 baseline resonance frequency (1st session) 6.720275 GHz

f0,2 baseline resonance frequency (2nd session) 6.720225 GHz

Teff,0 effective temperature of background radiation 236 mK

from multiple measurements with the same Prf, similar to the analysis in Chapter 4.

The dashed curves in Fig. 5.4 show best fit results to the nonequilibrium quasipar-

ticle model of Section 2.3. For these curves, I fixed Tb = 25 mK and only varied Teff.

The range of Teff I obtained was between 236 mK and 297 mK. Other parameters are

identical to the parameters used to fit higher temperature results listed in Table 4.1,

and I include them here in Table 5.1 for completeness.

Illumination also causes a shift in the resonance frequency of the resonator.

163



Prf (dBm)
-70 -65 -60 -55 -50 -45 -40 -35

-δ
f r/f r

10-6

10-5

Iopt = 812 aW/µm2

Teff = 297 mK
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Iopt = 71 aW/µm2

Teff = 259 mK

Iopt = 20 aW/µm2

Teff = 248 mK

Iopt = 0 aW/µm2

Teff = 236 mK

Figure 5.5: Fractional frequency shift −δfr/fr vs rf drive powers Prf

at 25 mK under optical illumination for intensities Iopt as listed. The
closed circles are data from the first session, the open circles are data
from the second session, and the dashed curves were found from the
nonequilibrium simulation with Tb = 25 mK. For each optical intensity,
the effective temperature Teff was varied in the simulation to fit the 1/Q
data (Fig. 5.4)
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In Fig. 5.5, I compare the measured δfr/fr values (circles) with the values from the

nonequilibrium simulation (dashed curves). The closed circles are data from the first

session, and the open circles are data from the second session. For the simulation, I

used a fixed value of Tb = 25 mK and used the corresponding values for Teff that I

obtained from fitting 1/Q in Fig. 5.4. I note that this fit required only one additional

parameter, the baseline resonance frequency for the first illumination session f0,1 =

6.720275 GHz. For the baseline frequency for the second session f0,2, I used the same

value as the baseline frequency value found in the higher temperature measurements

f0 (Table 5.1) because the two measurements were done at overlapping times. The

data and simulation agree well at the higher Iopt values. For lower Iopt values,

the simulation predicted slightly lower shifts than what were measured. For the

no illumination case, the difference between the measured frequency and expected

frequency from simulations was about 2-3 kHz. This discrepancy was also seen seen

in Fig. 4.9. In Fig. 4.9, I used the same base temperature data and simulations

(black in Fig. 4.9) as the Iopt = 0 aW/µm2 second session data and simulations

(black) in Fig. 5.5. I note here that I have in effect used the resonator 1/Q to

predict fr using the nonequilibrium quasiparticles model. This is strong support for

the loss being from nonequilibrium quasiparticles.

It is interesting to note that the nonequilibrium simulations actually predicted

that −δfr/fr varies slightly with rf drive power Prf. At the lowest powers, −δfr/fr

slowly increases with increasing Prf, before turning around and decreasing with

increasing Prf. At Iopt = 0 and 20 aW/µm2, there are signs that the curve turns

around for a second time, and starts to increase with increasing Prf. However, the
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change in −δfr/fr with Prf were much less than the change in 1/Q with Prf. It is also

comparable to the magnitude of variations in measured −δfr/fr, especially at lower

Prf values. As a result it is hard to observe the Prf dependence of −δfr/fr at very low

microwave power. Also, as I previously noted, fr appeared to increase (or −δfr/fr

decreased) with increasing Prf at the highest Prf values. These aligned well to where

the simulations predicted −δfr/fr to decrease with increasing Prf. Although the

response is weak, the data is consistent and this suggests that the fr dependence on

Prf at the highest powers was caused by nonequilibrium quasiparticles.

In Section 4.2.3 I discussed that finding the uncertainties for all of the model

fit parameters would be very time-consuming because this would require simul-

taneously varying all the fit parameters and then performing the nonequilibrium

simulations for all rf powers, temperatures, and optical intensities for each set of

parameters. Instead, I estimated the uncertainty in just the superconducting gap ∆

by performing nonequilibrium simulations for several ∆ values near 167 µeV, while

keeping the other parameters fixed at the values shown in Table 5.1. From the re-

sulting f(E) distribution, I calculated 1/Q values for each Prf, Tb, and Iopt. I then

calculated χ2 using

χ2 =
∑
i

(
(1/Q)model,i − (1/Q)data,i

σ1/Q,i

)2

. (5.4)

Here (1/Q)model,i is the i-th 1/Q value from the model, (1/Q)data,i is the i-th mea-

sured 1/Q data point, and σ1/Q,i is the uncertainty in (1/Q)data,i. From the ap-

proximately 8% fluctuations in 1/Q values (see Section 4.1.1), I have σ1/Q,i =

8% × (1/Q)data,i. Of course it is possible that different (1/Q)data,i have different
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Figure 5.6: χ2 of 1/Q as a function of superconducting gap ∆ value
used in simulation. Different colors represent different data sets. The
dots are the calculated χ2 values, and the dotted curves are a 2nd order
polynomial fit to the calculated χ2.

σ1/Q,i values but examination of the scatter in 1/Q data in Fig. 5.1 suggests this is

a reasonable estimate. I also note that I did not perform the simulations for some

Prf values where I have data. For those Prf values, I used a spline interpolation to

obtain the (1/Q)model,i value.

In Eq. 5.4, the sum is taken over all the points in all the data sets, but it

is interesting to also compare χ2 for the different 1/Q data sets. Figure 5.6 shows

χ2 values as a function of ∆, and different colors corresponding to different data

sets. The black dots show the χ2 values for the data set taken at base temperature

(Tb = 25 mK) and no illumination (Iopt = 0) data, corresponding to the black dots

in Figs. 4.7, 4.8, and 5.4. I found that the calculated χ2 was lowest for ∆ = 166 µeV,

with χ2 ≈ 12. χ2 should be minimized for the best fit value, and I can approximate
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the behavior of χ2 near the minimum with a second order polynomial. The black

dotted curve is the 2nd order polynomial fit to the calculated χ2 points. The fit curve

reveals that χ2 is minimized with χ2 = 12.2 at ∆ = 166.3 µeV. The uncertainty

in ∆ can then be found from the change in ∆ that cause χ2 to increase by 1 from

the minimum value. In the fit curve, this occurs at ∆ = 165.9 µeV and 166.7 µeV.

Hence this data set gives ∆ = (166.3± 0.4) µeV.

For the subsequent data sets, I performed nonequilibrium simulations for fewer

values of ∆. The blue dots in Fig. 5.6 used the no illumination data, which includes

the data where the temperature was varied (all dots in Fig. 4.8). The blue dotted

curve is the corresponding 2nd order polynomial fit to χ2. Here χ2 gave a best fit

∆ = (167.7 ± 0.2) µeV. The red dots in Fig. 5.6 show χ2 for data sets where Iopt

was varied at 25 mK (dots in Fig. 5.5 as well as other intensities not shown) and the

red dotted curve is the corresponding 2nd order polynomial fit to χ2. Here χ2 gave

a best fit ∆ = (166.3± 0.1) µeV. The green dots in Fig. 5.6 used all the data from

the previously described sets and the green dotted curve is the corresponding fit.

Here χ2 gave a best fit value ∆ = (166.7 ± 0.1) µeV. I note that this value of ∆ is

consistent with the ∆ = 167 µeV I used in the simulated curves shown in Figs. 4.7,

4.8, 4.9, 5.4, and 5.5 as well as Table 5.1, and the fact that in the simulations I

constrained ∆ to be integer multiples of 1 µeV. I note that this analysis assumed

that the other fit parameters (τe, α1, α2, 1/Q0, and f0) had no uncertainty. When

the uncertainties of other parameters are taken into account as well, the uncertainty

in ∆ should increase.

Finally, I note that for the four curves shown in Fig. 5.6, χ2 has minimum
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values of 12.2, 43.1, 182, and 250. The corresponding degrees of freedom ν were 18,

64, 166, and 213. The corresponding values for p(χ2, ν) are 0.84, 0.98, 0.19, and

0.038. The first three of these values fell within the 5% to 95% window corresponding

to a good fit of the model to the data. The last value lie outside the window, but

not by a significant amount.

5.2.4 Discussions: Validity of Effective Heating Model

In Fig. 5.7(a), I plot the best fit effective temperature Teff as a function of

illumination intensity Iopt for all applied Iopt values. The points are from my fits to

the 1/Q vs Prf data and the solid curve is a fit of the points to the expression for

absorbed optical power

Popt(Teff) = Popt(Teff,0) + γIopt, (5.5)

where Popt is numerically calculated from Eq. 2.97, and γ is a fit parameter. This

equation just says that the total optical power is the sum of the applied optical power

and a background optical power Popt(Teff,0). I find excellent agreement between

data and simulation with fit parameters Teff,0 = 238 mK and γ ≈ 6.8 × 103 µm2.

From the data itself I had found Teff,0 = 236 mK, and from Eq. 2.96, I expected

γ = εA = 6.3 × 103 µm2. The 10% discrepancy between the expected and the fit

values of γ is less than the uncertainty in the surface emissivity ε and the incident

optical intensity Iopt.

In Fig. 5.7(b), I compare the measured 1/Q values (dots) and the 1/Q values

from the simulation (solid curves) as a function of Iopt for Prf = −65 dBm and −45
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Figure 5.7: (a) Effective temperature Teff vs optical illumination intensity
Iopt. The black circles are extracted from fit to data shown in Fig. 5.4.
The green curve is a fit to Eq. 5.5. (b) Inverse quality factor 1/Q and
(c) fractional frequency shift −δfr/fr vs Iopt for Prf = −65 dBm (blue)
and −45 dBm (red). In each plot, the closed circles are measured and
the solid curves are from the nonequilibrium simulation with Tb = 25 mK
and Teff using the fit values in (a). For comparison, the dotted curves
in (b) and (c) are from the nonequilibrium simulation assuming simple
heating with Tb = Teff from fit in (a) and no illumination (Popt = 0).
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dBm. Here I used the nonequilibrium simulation with Tb = 25 mK and Teff values

obtained from the fit shown in Fig. 5.7(a). I used simulated values for 1/Q only

for the nine Iopt values where I had data, and performed spline interpolation for

other values of Iopt. The data and simulation agree well for both Prf values. I show

the corresponding comparison for the frequency shift in Fig. 5.7(c). The measured

−δfr/fr values are shown as dots and the values from simulation are shown as solid

curves. For Prf = −65 dBm, I used the data from the first illumination session while

for Prf = −45 dBm, I used the data from the second illumination session. Again the

data and simulations agree well. The largest disagreement is a small discrepancy in

−δfr/fr at the lowest Iopt values, as discussed in the previous section.

Gao et al. have suggested that pair-breaking radiation produces nearly the

same effect on 1/Q and fr as an increase in temperature [42]. Comparing our

measured 1/Q and fr values at higher temperatures with values obtained under

illumination between Prf = −65 dBm and −55 dBm, I find that for comparable

values of δfr/fr, the 1/Q values under illumination are higher than the 1/Q values

at the same increased bath temperatures.

To compare this increased temperature model with our model for optical il-

lumination, in Fig. 5.7(b) and (c), the dotted curves show 1/Q and δfr/fr for the

increased temperature model. Here I used the nonequilibrium simulation with Tb

values equal to the Teff fit values in Fig. 5.7(a) and nopt = 0. The discrepancy in

δfr/fr between the two models is small for both values of Prf, as shown in Fig. 5.7(c).

On the other hand, Fig. 5.7(b) shows that for Prf = −65 dBm the 1/Q from the

increased temperature model is smaller than that from the data or the full model
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for the entire range of Iopt. For Prf = −45 dBm, the difference between the two

models are negligible below Iopt ≈ 300 aW/µm2 and the 1/Q from the increased

temperature model is again smaller above the same Iopt. This comparison suggests

that the non-equilibrium model for nopt is better than the increased temperature

model for simulating effects produced by optical illumination.

In summary, I note that the illumination model for the nonequilibrium quasi-

particle distribution can explain our results well and that our model is still relatively

simple in its treatment of optical effects. I believe this picture can be improved using

a more complete model that includes, among other things, the system’s microscopic

response to the absorption of optical photon energy and the time dynamics of quasi-

particles and phonons after photon absorption [157, 158].

5.2.5 Discussions: Rolloff Behavior in 1/Q vs Prf

I mentioned earlier that the inverse quality factor from quasiparticles 1/Qqp

in this regime has a behavior that is very similar to the inverse quality factor from

TLSs. In our resonators, I can distinguish the two by fitting the 1/Q vs Prf curves

at different temperatures and optical intensities. However in the past the super-

conducting qubit community usually assumed that TLS loss was dependent on Prf,

but that quasiparticle loss was independent of Prf. It is possible that this may have

caused some confusion in the past. For example, the weak Prf dependence of TLS

loss reported by Macha et al. [137] and Khalil et al. [138] may actually come from

quasiparticles or a combination of quasiparticles and TLSs.
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The dependence of 1/QTLS on the drive is parameterized by a characteristic

field Ec or a characteristic voltage Vc, which can be rescaled into a characteristic rf

photon occupation nc. Due to the similarity to the rolloff in the loss due to quasi-

particles, one can define a similar characteristic variable for quasiparticle 1/Qqp.

However, since 1/Qqp does not have an analytical expression in the nonequilibrium

model, determining this characteristic variable is an open question. In addition to

rf photon occupation, another possible candidate for the characteristic variable is

the absorbed rf power Prf,ab.

5.3 Additional Illumination Measurements

5.3.1 Comparison Between Parallel and Perpendicular Lines

In Section 3.5 I mentioned that there were two optical fiber lines in the sys-

tem, one aligned perpendicular to the resonator surface, the other parallel to the

resonator surface. All of the illumination measurements discussed in the previous

sections were done using the perpendicular line. We also performed some illumina-

tion measurements using the parallel line and compared the response between the

two lines.

As discussed previously, to first order, 1/Q increases approximately propor-

tional to the number of quasiparticles generated by pair-breaking radiation, which

is proportional to P
1/2
opt [146]. As before, I will define Popt = εIoptA as the absorbed

optical power, ε is the emissivity, Iopt is the illumination intensity, and A is the area

of the resonator perpendicular to illumination.
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Figure 5.8: IIllustration of chip illumination from both fiber perpendic-
ular and parallel lines. Figure not to scale.

Figure 5.8 shows an illustration of the illumination coming from the two fibers.

For the same optical intensity Iopt the absorbed optical power is then proportional

to εA where A = A⊥ for the perpendicular fiber and A = A‖ for the parallel fiber.

The emissivity ε can depend on the roughness of the surface, with rougher surface

having higher emissivity. It is possible the edge surfaces of the resonator have higher

roughness than the top surface, due to the etching process. However, I will assume

here that they have similar emissivity. This means that Popt mainly depends on

the illuminated area A. What this means is that the parallel and perpendicular

illumination are expected to give the same response when the ratio of the applied

intensities is I‖/I⊥ = A⊥/A‖. Here I⊥ is the intensity of perpendicular illumination

hitting the top surface, while I‖ is the intensity of the parallel illumination hitting

the edge surface of the inductor line closest to the fiber.

As discussed in the previous sections, the illuminated area of the perpendicular
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illumination is A⊥ = 4.18×104 µm2. When the parallel fiber is perfectly aligned, the

edge surface of the inductor line closest to the fiber is the only surface illuminated.

For perfect alignment, the illuminated area is given by the product of the film

thickness (215 nm) and the length of the illuminated inductor line (400 µm), which

gives A‖ = 86 µm2. This gives the ratio of the cross sections A‖/A⊥ ≈ 1/500. Of

course, there may be slight errors in the alignment of the fibers.

If the perpendicular fiber is misaligned by a small angle θ⊥, the cross-section

area of the top surface is multiplied by the factor cos θ⊥. For very small angles,

cos θ⊥ → 1. The edge surfaces may absorb some of the radiation as well, but since

the area of these surfaces is much smaller than the top surface, and it is multiplied

by the factor sin θ⊥ → 0, it is negligible. Hence A⊥ will change very little with

slight misalignment. On the other hand, if the parallel fiber is misaligned by a small

angle θ‖, there will be absorption from either the top surface or the bottom surface

of the resonator aluminum film, as well as edge surfaces located further away. Even

though the intensities reaching the top and bottom surfaces are reduced on account

being further away and θ‖ small, the much larger top surface area means this can be

a large contribution and the effective cross-section A‖,eff ≡
∫
I.dA/Iopt can increase

by a significant amount. From these results, I can conclude that slight errors in

the alignment of the fibers can result in a significant increase in the ratio of the

cross-sections A‖,eff/A⊥ and thus I expect A‖/A⊥ & 1/500.

Figure 5.9 shows the measured 1/Q vs illumination intensity Iopt for illumina-

tion from both fibers. The rf drive power is fixed at Prf = −65.3 dBm. The blue dots

are the data for perpendicular fiber and the red dots are data from parallel illumina-
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Figure 5.9: Inverse quality factor 1/Q vs illumination intensity Iopt for
Prf = −65.3 dBm for both fiber lines. The blue dots are data from per-
pendicular illumination, the red dots are data from parallel illumination.
The blue dotted curve is fit of nonequilibrium model to the perpendic-
ular data. The red dotted curve is a rescaled version of the blue dotted
curve translated by Iopt → 48Iopt, such that it agrees to parallel data.
The black dashed horizontal line is 1/Q = 1.63 × 10−6, the averaged
measured value of 1/Q when Iopt = 0 aW/µm2.
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tion. The blue dotted curve is a fit of the perpendicular data to the nonequilibrium

model (this curve is the same as the blue solid curve in Fig. 5.7(b)). The red dotted

curve is the blue dotted curve rescaled along the x-axis by Iopt → 48Iopt such that it

agrees well to the parallel data. The good agreement means the response from the

parallel fiber at intensity I‖ is comparable to the response from the perpendicular

fiber with a ratio of intensities I‖/I⊥ ≈ 48. This appears to be consistent with the

misalignment picture described above, although the ratio increased by an order of

magnitude from the minimum possible value of 1/500. I could then calculate the

angle θ‖ by solving sin θ‖ ≈ 1/48− 1/500, and I found θ‖ ≈ 1.1◦. As it was entirely

possible to misalign the fibers by up to a few degrees, this value of θ‖ was reasonable.

In Chapter 3, I noted that disconnecting and reconnecting the fiber connections

at the screen room wall could introduce additional losses, likely from variations in

the connections or dust getting on the connectors. For the perpendicular fiber, we

found that this intensity could be reduced up to a factor of 3. The perpendicular

data shown in Fig. 5.9, as well as the ones discussed in the previous sections, were

taken after we attempted to minimize the loss as much as possible. However, the

parallel fiber measurements were performed only once, and we did not perform any

checks whether there were losses on the connection. It is possible that there were

some losses, which would cause the real ratio of intensities to be higher than what

we measured.

I also note here that the model for the parallel illumination is extremely simpli-

fied. For perpendicular illumination, the intensity of light I⊥ hitting the top surface

is almost uniform, and hence I could assume that the quasiparticle density is inde-
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pendent of position in the resonator. However, for parallel illumination, most of the

quasiparticles are expected to be generated in the inductor because it is closest to

the fiber. For perfect alignment, all of the quasiparticles would be created there.

This means the quasiparticle density is not uniform in the resonator. If that is the

case, quasiparticle diffusion needs to be taken into account in the nonequilibrium

model and I should use the averaged quasiparticle distribution over the inductor.

The knowledge that reduction in cross-section decreases the resonator response

to light, although quite obvious, was useful in improving the design for the eventual

hybrid system experiment. The initial proposal was to put the tapered optical fiber

above the 5 − 10 µm wide inductor line. The design was changed such that now

the tapered fiber is going to be located to the side of the inductor line. This should

minimize the cross section of the resonator, and minimize the resonator response

to Rayleigh scattering from the fiber. To get this alignment we plan to use x- and

z-axis Attocube stages [103] to move the resonator with respect to the fiber while

monitoring the response of the fiber (see Section 9.3).

5.3.2 Dependence on Polarization of Light

For superconducting structures with sizes less than or comparable to the wave-

length λ of the light, the absorption and resulting response are expected to depend

on the polarization of the light. This effect was previously observed in superconduct-

ing nanowire single photon detectors (SNSPDs) [192, 193]. SNSPDs are typically of

order ≈ 500 µm long, very thin (≈ 5 nm), and very narrow (≈ 100 nm) meandering
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superconducting wires. The polarization dependence is due to the interaction be-

tween the electric field of the photon and the nanowire. When the optical photon

is linearly polarized parallel to the wire, there is no change in photon absorption

compared to what one would expect for scaling with the exposed area. On the other

hand, when the optical photon is linearly polarized perpendicular to the wire, sur-

face charges causes electric field screening, which results in a reduction in absorption

by up to 50% [192, 193].

In our resonator, since the thickness of the film t = 215 nm is less than the

photon wavelength λ = 780 nm, we expect the resonator to show a polarization-

dependent response to parallel illumination. On the other hand, the smallest struc-

tures seen by the perpendicular illumination are 5 µm wide, hence we expect the

response from perpendicular illumination is independent of polarization.

The 780 nm light from the laser is linearly polarized. However, we see the

scattered light, which has a polarization that depends somewhat on the polarization

of the applied light. As I mentioned in Chapter 3, to adjust the polarization I added

a quarter-wave plate followed by a half-wave plate in the beam path. The angle of

the quarter-wave plate θλ/4 sets the ellipticity of the polarization. When the angle

between θλ/4 and the polarization direction of linearly polarized incident light is 0◦

or 90◦, the light coming out of the wave plate is still linearly polarized. When the

angle is 45◦, the light coming out is circularly polarized. For other angles, the light is

elliptically polarized. The angle of the half-wave plate θλ/2 sets the direction of the

polarization of linearly or elliptically polarized light. For circularly polarized light,

the half-wave plate effectively does nothing. However, since the light still needs to
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travel through the fiber from the optical table to the cavity, the polarization of the

light illuminating the resonator may be different from what is set at the wave plates,

and cannot be independently measured with our setup when it is cold.

For this polarization comparison, I used Prf = −65.3 dBm, where Q ≈ 1.6 ×

10−6 when no optical illumination was applied. For the optical intensities from the

perpendicular and parallel fibers, I chose I⊥ ≈ 13 aW/µm2 and I‖ ≈ 450 aW/µm2.

These intensities were chosen because when the two wave plates were not used, these

two intensities gave comparable 1/Q ≈ 2.0× 10−6 for Prf = −65.3 dBm. I note that

the 1/Q from the two illuminations were not exactly equal, with ratio of intensities

of only about 35, while we found in the previous section that it needs to be about

48 for it to be equal.

Fig. 5.10(a) shows a false-color plot of 1/Q as a function of both wave plate

angles for parallel illumination. 1/Q clearly shows a dependence on polarization

angle. When θλ/4 ≈ 0◦ and 80◦, the contrast is strongest, and the 1/Q dependence

on θλ/2 appears to be sinusoidal with minimum value of 1/Q ≈ 1.9× 10−6 at about

θλ/2 ≈ 50◦ and maximum value of 1/Q ≈ 2.3 × 10−6 at about θλ/2 ≈ 0◦. Since

1/Q ≈ 1.6 × 10−6 for the case of no illumination, the increase in 1/Q is reduced

by about 60% at minimum 1/Q value compared to the maximum 1/Q value. This

is consistent with the polarization picture described above with a linearly polarized

light coming out of the parallel fiber. I assume that when 1/Q is at a minimum, the

light is polarized perpendicular to the inductor line, and when it is at a maximum,

the light is polarized parallel to the line. This means for one of the θλ/4 values, 0◦ or

80◦, the polarization of light from the laser is nearly aligned with the quarter-wave
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Figure 5.10: False-color plot of inverse quality factor 1/Q vs wave plate
angles θλ/2 and θλ/4 for (a) parallel illumination and (b) perpendicular
illumination.
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plate angle. For the other value of θλ/4, the polarization of light from the laser is

nearly perpendicular to the quarter-wave plate angle. I note here that the two cases

should be separated by 90◦, however we have very rough steps between angles at

10◦. It is also likely that the contrast is even higher around −10◦, which we did not

measure.

On the other hand, when θλ/4 ≈ 40◦, the dependence is significantly weaker

with 1/Q ≈ 2.1 × 10−6 for all θλ/2 values. This is consistent with a near circularly

polarized light coming out of the fiber. Since for circularly polarized light, the

half-wave plate does not change the polarization, 1/Q should not be dependent on

θλ/2.

Figure 5.10(b) shows a false-color plot of 1/Q as a function of both wave plate

angles for perpendicular illumination. 1/Q does not appear to have any dependence

on θλ/4 and θλ/2 with 1/Q values between 1.9 × 10−6 and 2.05 × 10−6. This is

consistent with what I expected for perpendicular illumination.

I can compare the θλ/2 and θλ/4 dependence results of the parallel illumination

with the expected dependence. Pablo Solano performed a simulation to calculate

the time-averaged and scaled Poynting energy density Ix only for electric field per-

pendicular to inductor line (here defined as x-direction) as a function of waveplate

angles [194]. Since Ix ∝ 〈|Ex|2〉t where Ex is the x-component electric field, Ix is the

proportional time-averaged intensity from the x-component of the electric field only.

In the simulation, the polarization of the scattered light from the fiber is assumed

to be identical to the polarization of light coupled to the fiber. He also assumed

the initial beam was linearly polarized in the x-direction, which is also aligned with
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Figure 5.11: Scaled x-component of Poynting energy density Ix vs wave
plate angles θλ/2 and θλ/4.
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θλ/4 = 0 and θλ/2 = 0. Figure 5.11 shows the results of Pablo’s simulation of Ix vs

θλ/2 and θλ/4. The contour of the Ix plot appears to be similar to the contour of

1/Q vs θλ/2 and θλ/4 of Fig. 5.10(a). In the simulation, Ix has a 100% contrast, in

comparison to the 60% contrast in the increase in loss in measured data. Neverthe-

less, the simulation suggests that the polarization dependence we see is consistent

with the physical picture described at the beginning of this section.

The knowledge that the resonator response to illumination can depend on

polarization may be useful to the hybrid system experiment. If the polarization of

the Rayleigh scattering from the tapered fiber can be controlled, one can reduce the

increase in loss due to optical illumination by up to 60% by arranging the Rayleigh

scattered light to be predominantly polarized perpendicular to the inductor.

5.3.3 Pulsed Light Experiments

By using a pulse of optical illumination instead of continuous illumination, we

should be able to study the transient behavior of the quasiparticles, specifically right

after the pulse is turned on or off. A complete model for the quasiparticle behavior

under an optical pulse would require solving the time-dependent nonequilibrium

quasiparticle (see Chapter 2). This requires finding the quasiparticle distribution as

a function of time f(E, t), which appears to be computationally challenging.

Instead, I considered the total quasiparticle density nqp, which is related to

f(E) through Eq. 2.64. While nqp by itself is not sufficient to calculate σ1 and σ2, it

can be shown that for small changes in nqp, σ1 and σ2 change linearly with nqp [42].
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nqp, as well as the total phonon density nφ for Ω > 2∆, obey the Rothwarf-Taylor

kinetic equations [146].

The recombination time τR is the characteristic time for quasiparticles to in-

teract and form Cooper pairs and this should be one of the key timescale for quasi-

particle transient behavior. For a thermal distribution with temperature Tb much

lower than the critical temperature Tc, Kaplan et al. derived an expression for the

τR given by [150]

τR = τ0

(
kBTc
2∆0

)5/2(
Tc
πTb

)1/2

e∆0/kBTb , (5.6)

where the definitions of the variables are the same as I used in my discussion of

nonequilibrium quasiparticles. In Eq. 2.73 I showed that nqp(T ) = 2N0

√
2πkBT∆0

e−∆0/kBT , hence Eq. 5.6 can be rewritten as

τR = τ0
2N0

nqp

(kBTc)
3

(2∆)2
= τ0

2N0

nqp

kBTc
(3.52)2

, (5.7)

using the relation 2∆ = 3.52kBTc. Equation 5.7 depends on nqp but does not have

an explicit dependence on temperature Tb, and this let me apply this expression to

the case of a nonequilibrium distribution of quasiparticles.

Since taking the entire S21 vs f trace would be too slow for pulsed measure-

ments, instead I measured the phase ϕ of S21 at the resonance frequency fr, where

ϕ[S21(fr)] =
Re[S21(fr)]

Im[S21(fr)]
. (5.8)

For small shifts in resonance frequency, the change in phase is proportional to the

change in frequency δϕ ≈ 2Qδfr/fr. The regime where this is valid is called the

linear regime. In practice, I used the VNA to measure ϕ as a function of time at

the resonance frequency fr.
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Figure 5.12: Timing sequence of the optical pulse.

As I discussed in Chapter 3, the timing of the optical pulses is controlled by

sending voltage pulses to the acousto-optic modulator (AOM). The timing of the

optical pulse is shown in Fig. 5.12. At the beginning of the cycle, the light was off

for 13 ms, then I applied a 20 ms long optical pulse. The light was switched off for

13 ms and this was followed by a 204 ms pulse with the light on. This pulse was long

enough that I could maintain a duty cycle above 90%. This sequence was repeated,

resulting in 4 Hz repetition rate. For this measurement, I used the perpendicular

illumination. The timing of the VNA measurement was triggered using the same

repetition rate as the optical pulse. I then averaged the ϕ vs time t data for 1000

repetitions. I fit ϕ vs t at the beginning of the 20 ms pulse to an exponential and

extracted the time constant τR. I also fit ϕ vs t right after the pulse was turned off.

Figure 5.13 shows ϕ vs t for several Prf values. To keep the resonance shift

in the linear regime, I chose a very low optical intensity of Iopt < 2 aW/µm2. I

note that the Iopt values are different for different Prf; each Iopt was chosen so that

there was roughly the same δϕ between light on and off. For the lower powers, the

data appears to be very noisy, and this results in large uncertainties in the extracted
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Figure 5.13: Phase ϕ of S21 vs time t for several Prf values for pulsed
illumination measurements. The Prf and corresponding Iopt value are
shown in the legend. The dashed vertical lines indicate the approximate
start and end time of the 20 ms optical pulse.
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Figure 5.14: Measured recombination time τR vs rf power Prf for pulsed
optical illumination. Blue dots are for pulse turn on, red dots are for
pulse turn off. The dashed black line is the τR calculated using Eq. 5.7
and nqp from nonequilibrium simulations.

exponential time scale. The three curves in Fig. 5.13 show very similar behavior,

despite the different Iopt and Prf.

Figure 5.14 shows the extracted τR values as a function of Prf, with the error

bars shown. As I noted, the error bars for the lower Prf values are large. Nevertheless,

the τR values are about 0.6 ms, with a slightly lower value of about 0.4 ms for the

highest Prf. τR for pulse turn on (red dots) are comparable to τR for turn off. I also

compared the measured times to τR calculated using Eq. 5.7 with nqp values from

the nonequilibrium simulations (shown as black dashed line). The calculated value

was about 0.08 ms, almost an order of magnitude lower than the measured value.

There are several reasons why the expected and measured value may be dif-
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ferent. First, Eq. 5.6 has an exponential dependence on ∆0. It is possible the

actual ∆0 was slightly higher, which would result in significantly higher τR. How-

ever this would cause disagreement with the 1/Q and δfr results from continuous

illumination and their agreement to the nonequilibrium quasiparticles. It is also

possible that Eq. 5.7 is not valid for nonequilibrium distributions. Also, Eq. 5.6

is only approximate for low temperatures. It would be interesting to find τR for

a nonequilibrium distribution using the transient solutions of the Chang-Scalapino

equations [147]. Finally, Rothwarf and Taylor noted that τR can also be modified

by strong quasiparticle-phonon interactions [146], which should also emerge in the

nonequilibrium simulations.

I also note that my measurements were limited by the noise in the ϕ signal due

to weak coupling, which prevented me from making pulsed measurements over a wide

range of Prf and Tb values. However, Jared and Kristen have also performed pulsed

illumination measurements on a lumped-element resonator coupled to a transmission

line, which had about 4-5 orders of magnitude lower value of Qe. They measured τR

as a function of temperature Tb, with the results shown in Fig. 5.15. They found that

τR follows Eq. 5.6 with ∆ = 200 µeV above Tb ≈ 220 mK. Below Tb ≈ 180 mK, τR is

constant at about 1 ms. One interesting observation was that at low temperatures

they found that turning on light and turning off light resulted in different τR, with

τR ≈ 1.2 ms for turn on and 1.4 ms for turn off. The cause for this difference is still

unclear.
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Figure 5.15: Measured recombination time τR vs refrigerator temper-
ature Tb for pulsed illumination on a previous resonator, measured by
Jared Hertzberg and Kristen Voigt [195]. The purple curve is τR cal-
culated using Eq. 5.6 with ∆ = 200 µeV. The green curve at the very
bottom of the plot is the coupling time of the resonator to the microwave
line.
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5.4 Summary

In this chapter I discussed measurement results on resonator MW2-14 under

optical illumination from the perpendicular fiber. First I discussed the expected TLS

and quasiparticle losses under illumination; the loss from TLS should decrease while

the loss from quasiparticles should increase with increasing illumination intensity

Iopt.

For the range of parameters in our measurements, it was hard to observe the

behavior of the TLS loss. However, the 1/Q and δfr/fr increase with increasing Iopt

behavior can be explained well by the nonequilibrium quasiparticle distribution.

The Teff dependence on Iopt is consistent with the optical power absorbed by the

resonator. I also showed that the nonequilibrium quasiparticle distribution with the

effective heating model explains our results better than a simple heating picture of

quasiparticles.

The quasiparticle 1/Q show a dependence on Prf that was also seen at refriger-

ator base temperature and higher temperatures, as discussed in Chapter 4. However,

for the illumination case, the shape of the 1/Q vs Prf curves appear very similar to

the curve for 1/Q due to TLS loss. I discussed how we may be able to define a

characteristic scale for quasiparticle loss, similar to the characteristic field or volt-

age for TLS loss. However, due to the nonanalytical nature of the nonequilibrium

quasiparticle distribution, I did not obtain an explicit formula for this characteristic

field.

I also discussed a comparison between data collected using illumination from
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the perpendicular fiber, which we used for most of our measurements, to data col-

lected using illumination from parallel fiber. The difference in response between

the two fibers was roughly consistent with the difference in cross-section of the res-

onator seen by the two illuminations, assuming a small misalignment of the fiber

in the parallel case. We also attempted to illuminate the resonator using polarized

light from both fibers and varied the polarization ellipticity and angle. The results

were as expected, with perpendicular illumination showing no dependence on po-

larization and parallel illumination showing a strong dependence. The results from

these comparison measurements were useful in validating the design of our hybrid

system.

Finally, I also measured the phase response of the resonance as a function

of time under pulsed illlumination. We measured a recombination time constant of

about 0.6 ms. This was about an order of magnitude higher than the expected value,

but shorter than what Jared Hertzberg and Kristen Voigt obtained in a similar study

in another system. Finally, I discussed the need for a better model which includes

the transient behavior of the nonequilibrium quasiparticle distribution.
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Chapter 6: Theory of the Transmon

In this chapter, I discuss the theory of transmon qubits. I begin by discussing

the background, basic circuit representation and Hamiltonian. I then discuss the

Circuit QED system, where the transmon is coupled to a harmonic oscillator, and

discuss the resulting Hamiltonian. I then describe two ways to read out the state

of a transmon: the low-power readout and the high power readout. Next I discuss

dissipation and dephasing in transmons and the underlying sources. I next describe

how an applied rf drive affects the state of the qubit, and how the presence of

decoherence affects the drive. Finally, I discuss how nonequilibrium quasiparticles

may be generated in a transmon, and examine how they affect the relaxation time

and transition frequency.

6.1 Transmon Circuit Representation and Hamiltonian

The design of the transmon qubit was based on a previous qubit design, the

Cooper-pair box (CPB). The CPB was the first superconducting qubit design that

was experimentally realized [17, 24]. The circuit representation of a CPB is shown

in Fig. 6.1. It consists of a single ultra-small junction J and a parallel capacitance

CJ , which comes from the capacitance of the Josephson junction. The key element
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Figure 6.1: Circuit diagram of a Cooper-pair box.

is an island formed by one junction electrode and the associated capacitor plate.

Typically CPB’s are biased with a gate voltage Vg connected to the junction by a

gate capacitance Cg. The Hamiltonian of a CPB can be written as [196]

Ĥ = 4EC(n̂− ng)2 − EJ cos γ̂, (6.1)

where n is the excess number of Cooper pairs that have tunneled through the junc-

tion and are on the island, ng = −CgVg/2e is the Cooper pair number offset from

voltage bias, and γ the phase across the junction. Here I also used the energies EJ

and EC which were also defined in Eqs. 1.8 and 1.9,

EJ =
Φ0I0

2π
, (6.2)

EC =
e2

2CΣ

, . (6.3)

In the above equations, Φ0 is the flux quantum, I0 is the junction critical current,

and CΣ = CJ +Cg is the total capacitance of the island. Cooper-pair boxes typically

have EJ . EC and in this limit the charge on the island is a good quantum variable

(except at certain values of ng). I note here that the operators n̂ and γ̂ are conjugate
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variables, and satisfy the commutation relation

[γ̂, n̂] = i. (6.4)

Using Mathieu functions, the Hamiltonian can be solved exactly in the phase

basis, and the energy eigenvalues can be written as [32, 196]

Em = ECa2[ng+k(m,ng)](−EJ/2EC), (6.5)

where m = 0, 1, 2, . . ., ar(q) is the characteristic value for Mathieu cosine function

with characteristic exponent r and parameter q, and k(m,ng) is integer-valued func-

tion sorting the order of the eigenvalues. The two lowest energy levels E0 and E1,

with the qubit transition energy given by the energy separation E01 = E1−E0, can

be used for the qubit ground and excited states.

Figure 6.2 shows Em for m = 0, 1, and 2 for three different values of EJ/EC ,

corresponding to the states |g〉, |e〉, and |f〉 of the qubit. For the Cooper-pair box

regime EJ/EC . 1 (Fig. 6.2(a)), the Em curves depend strongly on bias ng, while

for EJ/EC � 1 (Fig. 6.2(c)), the Em curves appear to be independent of ng.

CPB qubits have typically been operated at ng = ±0.5 where E01 is minimum

[197]. These points are typically called the “sweet spot” because E01 is minimally

affected by small fluctuations in ng, that is, the qubit is protected from charge

noise. As dephasing can be caused by low frequency fluctuations that affect E01

(see Section 6.5), a CPB will have less charge-noise induced dephasing at the sweet

spot. However, away from the sweet spot, the coherence degrades, and this is a

problem because larger chargefluctuations will move the qubit away from the sweet

spot.
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(c)

Figure 6.2: Energy eigenvalues for Cooper-pair box for (a) EJ/EC = 1,
(b) EJ/EC = 10, and (c) EJ/EC = 100. For all plots, the blue curve
corresponds to E0, the red curve corresponds to E1, and the green curve
corresponds to E2.
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J CJCx

Figure 6.3: Circuit diagram of an isolated transmon.

The dephasing in the CPB was so large, even at the sweet spot, that it is

no longer considered a viable qubit candidate, and this was the motivation for the

design of the transmon, which was theoretically proposed by Koch et al. [32]. As

shown in Fig. 6.2(c), for EJ/EC � 1, the Em’s are independent of ng and hence E01

is independent of ng as well. This means that device in this regime are protected

by charge noise and that they cannot be tuned by means of bias voltage.

The transmon regime can be achieved by adding a shunting capacitor Cx

parallel to the junction to reduce EC , as shown by the circuit diagram of Fig. 6.3.

In the figure the gate voltage Vg is removed as now the qubit energy cannot be tuned

by changing Vg. By using a dc SQUID instead of a single junction, one can vary

EJ and hence the qubit energy by applying flux bias. Since this also couples in flux

noise, it is not necessarily desirable and the transmon I discuss in Chapter 8 has a

single junction and it is not tunable.

The Hamiltonian of the transmon is esentially the same as the Hamiltonian

of an unbiased phase qubit or of a CPB as given by Eq. 6.1, except I set ng = 0

197



and take CΣ = Cx + CJ . The second term (phase term) of the Hamiltonian can

be thought of as potential energy with a minimum when γ = 0. Assuming small

deviations around this minimum, I can expand cos γ̂ = 1 − γ̂2

2!
+ γ̂4

4!
− . . ., and the

Hamiltonian can be written as

Ĥ = 4EC n̂
2 +

EJ
2
γ̂2 − EJ −

EJ
24
γ̂4 + . . . (6.6)

The first and second term on the right hand side are simply the Hamiltonian of a

harmonic oscillator. The third term is a constant offset and can be ignored. The

fourth term is fourth order in γ̂ and since γ is small by assumption, this term can be

thought of as a perturbation to the harmonic oscillator. Analogous to the position

and momentum of a harmonic oscillator, γ̂ and n̂ can be written in terms of creation

and annihilation operators b̂† and b̂ as

γ̂ =
1√
2

(
8EC
EJ

)1/4

(b̂† + b̂) (6.7)

n̂ =
i√
2

(
EJ

8EC

)1/4

(b̂† − b̂) (6.8)

To fourth order, the Hamiltonian can then be rewritten as

Ĥ =
√

8EJEC

(
b̂†b̂+

1

2

)
− EJ −

EC
12

(
b̂† + b̂

)4

. (6.9)

The first term is the harmonic oscillator Hamiltonian, with spacing between levels

√
8EJEC . Using the definition of EJ and EC , as well as the Josephson inductance

LJ = Φ0/2πI0 (see Eq. 1.6 with γ = 0), the level spacing can be written as ~/
√
LJCΣ,

which is exactly what would be expected for an LC resonator with inductance LJ

and capacitance CΣ.
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I can find the leading order correction to the energy eigenvalues by using first-

order perturbation theory. For the γ̂4 perturbative term, I find

E(1)
m = − EC

12
〈m(0)|

(
b̂† + b̂

)4

|m(0)〉

= − EC
12

(6m2 + 6m+ 3), (6.10)

where |m(0)〉 is the m-th eigenstate of the unperturbed harmonic oscillator, with

m = 0, 1, 2, . . .. Hence the energy of the m-th level Em is

Em =
√

8EJEC

(
j +

1

2

)
− EJ −

EC
12

(6m2 + 6m+ 3). (6.11)

Thus the transmon transition energy E01 is

E01 = E1 − E0 =
√

8EJEC − EC . (6.12)

To be useful as a qubit, the transmon needs to be sufficiently anharmonic.

That is, the next highest transition energy E12 = E2 − E1 needs to be far enough

away from E01 so that the lowest two energy levels can be isolated as a qubit. The

anharmonicity α is defined by

α = E12 − E01. (6.13)

Form Eq. 6.11, one finds

α = −EC . (6.14)

This negative sign means E12 is lower than E01. Typically we would like the anhar-

monicity to be of order 100 or 200 MHz to allow fast high-power pumping of the

0→ 1 transition without causing occupation of |2〉 state. For E01/h ∼ 5 to 10 GHz

this gives 20 . EJ/EC . 200 as an acceptable range for the transmon.
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6.2 Circuit QED System

A transmon is typically coupled to a microwave resonator which in turn is

coupled to a microwave drive line and an output line for state readout. The resonator

can be a planar resonator (for 2d transmons) [198] or a 3d cavity (for 3d transmons)

[49]. This arrangement is called circuit quantum electrodynamics (QED) [36, 172],

analogous to cavity QED systems in quantum optics where atomic states are coupled

to an optical cavity [199].

6.2.1 Jaynes-Cummings Hamiltonian

For a two-level system with transition frequency ωq coupled to a cavity with

frequency ωr with coupling strength gge, the Hamiltonian in the rotating wave ap-

proximation is given by the Jaynes-Cummings Hamiltonian [129]

Ĥ = ~ωrâ†â +
~ωq
2
σ̂z + ~gge(âσ̂+ + â†σ̂−). (6.15)

Here â† is the creation operator for photons in the harmonic cavity and â is the

annihilation operator. σ̂x, σ̂y, and σ̂z are the x-, y- and z-Pauli matrices, respectively

(see Eq. 2.36), and σ± are defined as

σ± =
σx ± iσy

2
. (6.16)

I define |g〉 as the qubit ground state, |e〉 as the qubit excited state, and |m〉

as the cavity state with m photons inside the cavity. Then the qubit-cavity product

states can be written as |g,m〉 and |e,m〉. Figure 6.4 shows the energy ladder of

these states, with the levels shown when gge = 0.
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Figure 6.4: Energy diagram of a qubit-cavity system showing the levels
for an uncoupled system. The brown arrows represent the states that
are coupled.

The coupling term ~gge(âσ̂++â†σ̂−) in the Hamiltonian of Eq. 6.15 only couples

|g,m〉 states with |e,m−1〉 states (shown by the brown arrows in Fig. 6.4). That is,

the coupling term only couples states with the same total cavity and qubit excitation

numbers. If I write the Hamiltonian in the product state basis, the Hamiltonian

then has a block-diagonal form with 2 × 2 blocks containing states with the same

total excitation. For total excitation number n > 0, the block for |e, n − 1〉 and

|g, n〉 can be written as

Hn = ~

(n− 1)ωr + ωq/2 gge
√
n

gge
√
n nωr − ωq/2

 . (6.17)

Note also the uncoupled ground state |g, 0〉 has energy E|g,0〉 = −~ωr/2. The eigen-
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values of the n−th block of Eq. 6.17 are

En,± =

(
n− 1

2

)
~ωr ± ~

√(
∆

2

)2

+ g2
gen. (6.18)

Here I have defined ∆ ≡ ωr − ωq as the detuning between the cavity and qubit

frequencies, and I have implicitly assumed ωr > ωq so ∆ > 0, even though that need

not be the case. The eigenstates are given by

|n,−〉 = cos θn|e, n− 1〉 − sin θn|g, n〉 (6.19)

|n,+〉 = sin θn|e, n− 1〉 + cos θn|g, n〉, (6.20)

where tan(2θn) = 2gge
√
n/∆.

From Eq. 6.18 one sees that the energies of the coupled states are shifted due to

the coupling. These states are called the ‘dressed’ states because they are ‘dressed’

by the presence of the photon field. As an example, when the cavity and the qubit

are resonant (ωq = ωr), the resulting dressed states for n excitations are separated

by 2~gge
√
n and the states are an equal superposition of |e, n− 1〉 and |g, n〉.

6.2.2 Dispersive Regime

The energy of the dressed states of Eq. 6.18 can be rearranged such that

En,± =

(
n− 1

2

)
~ωr ±

~∆

2

√
1 +

n

nc
, (6.21)

where the critical excitation number nc is defined by

nc ≡
∆2

4g2
ge

. (6.22)
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For n� nc, I can take the approximation

En,− ≈
(
n− 1

2

)
~ωr −

~∆

2

(
1 +

n

2nc

)
= (n− 1)~ωr +

~ωq
2
−
n~g2

ge

∆
(6.23)

En,+ ≈
(
n− 1

2

)
~ωr +

~∆

2

(
1 +

n

2nc

)
= n~ωr −

~ωq
2

+
n~g2

ge

∆
. (6.24)

Equations 6.23 and 6.24 show that for the regime n� nc, the coupled energies are

shifted by n~g2
ge/∆. Notice that in order to reach the limit where n � nc requires

g � ∆, and this is called the dispersive limit. Typically circuit QED systems are

operated within this regime, although n� nc may be used during the readout (see

Section 6.3.2)

In the dispersive limit, the dressed states of Eqs. 6.19 and 6.20 can be approx-

imated as

|n,−〉 ≈ |e, n− 1〉 − gge
√
n

∆
|g, n〉 (6.25)

|n,+〉 ≈ gge
√
n

∆
|e, n− 1〉 + |g, n〉. (6.26)

Thus the dressed states in the dispersive limit are nearly the same as the uncoupled

qubit-cavity product states, with a small g
√
n/∆ contribution from the state it’s

coupled to.

To diagonalize the Hamiltonian consider the unitary transformation

U = exp
[
−gge

∆

(
âσ̂+ − â†σ̂−

)]
(6.27)

Using U and taking the dispersive approximation g � ∆, the Hamiltonian given by
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Eq. 6.15 can be rewritten as [172]

U HU † = ~
(
ωr −

g2
ge

∆
σ̂z

)
â†â +

~
2

(
ωq −

g2
ge

∆

)
σ̂z. (6.28)

The first term on the right hand side of Eq. 6.28 shows that the cavity frequency

is shifted depending on the state of the qubit. When the qubit is in the ground

state, the cavity frequency is shifted by g2
ge/∆, and when the qubit is in the excited

state, the cavity frequency is shifted by the same amount in the opposite direction.

I define the dispersive shift as χ ≡ g2
ge/∆, and the two dressed cavity frequencies

are separated by 2χ. The second term on the right hand side of Eq. 6.28 shows that

the qubit frequency is also shifted by χ.

Eq. 6.28 can also be rearranged to get

U HU † = ~ωrâ†â +
~
2

[
ωq − 2χ

(
â†â+

1

2

)]
σ̂z. (6.29)

The second term on the right hand side of Eq. 6.29 shows that in addition to the

χ shift, the qubit frequency is further shifted depending on the number of photons

inside the cavity, with each photon contribute a further shift of 2χ. I can define

ω̃q,0 = ωq − χ as the dressed qubit frequency when there are zero photons in the

cavity. Then the qubit frequency when there are m photons in the cavity is given

by

ω̃q,m = ω̃q,0 − 2mχ. (6.30)

The energy level of the circuit QED system in the dispersive regime is sum-

marized in Fig. 6.5. In the figure, the dashed lines represent the energy of the bare

(uncoupled) states, while the solid lines represent the energy of the dressed (cou-

pled) states. The black arrows represent the dressed cavity frequencies, with the
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Figure 6.5: Energy diagram of dressed states (solid) and uncoupled bare
(dashed) states in a qubit-cavity system in the dispersive regime.

left arrow showing the cavity transition when the qubit is in the ground state, and

the right arrow showing the cavity transition when the qubit is in the excited state.

The purple arrows represent the dressed qubit frequencies, with the lowermost ar-

row when there are no photons in the cavity, and the arrows above representing an

increasing number of cavity photons.

In practice, the number of photons inside the cavity can fluctuate, with a

probability P (m) to have m photons inside the cavity. When one performs qubit

spectroscopy, the observed spectrum will include all the allowed qubit transitions

that can occur given the initial state of the system. When the linewidth of each peak

Γ is larger than χ, the resulting spectrum when the photon number is fluctuating can

appear as a non-Lorentzian or distorted peak, as Ben Cooper and I observed in a LC

205



filtered dc SQUID phase qubit [31, 170]. This regime when Γ > χ is called the weak

dispersive regime. The opposite regime, when Γ < χ is called the strong dispersive

regime. In the strong dispersive regime, the spectrum shows well-separated peaks,

with the relative height of the m-th peak proportional to the probablity P (m).

When there is no cavity drive, the probability should follow a thermal distribution

approximately P (m) ∝ e−m~ω̃c,g/kBT where T is the effective temperature of the

cavity. When there is a weak coherent drive at the cavity resonance with power such

that the average photon number inside the cavity is 〈m〉, one expects the probability

to follow Poisson distribution P (m) = e−〈m〉〈m〉m/m! [200, 201], although significant

deviations have also been observed [202].

6.2.3 Generalized Jaynes-Cummings Hamiltonian

In the preceding discussions of a circuit QED system the qubit only has two

levels. As I discussed in Section 6.1, transmons have more than two energy levels.

The Jaynes-Cumming Hamiltonian can be generalized to include multiple levels and

the Hamiltonian can be put in the form [32]

Ĥ = ~ωrâ†â + ~
∑
m

ωm|m〉〈m| + ~
∑
m

(
gm,m+1|m〉〈m+ 1|â† + h.c

)
. (6.31)

Here ~ωm = Em are the transmon energies as discussed in Section 6.1, |m〉 are the

transmon eigenstates, and gm,m+1 is the coupling strength between the cavity and

the |m〉 ↔ |m+ 1〉 transition of the transmon. The |m〉 ↔ |n〉 transition frequency

of the transmon for n > m is given by ωm,n = ωn − ωm. To reduce the possibility

of confusion with the number states of the cavity, I will write the transmon states
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Figure 6.6: Energy diagram of a transmon-cavity system showing the
levels for an uncoupled system. The brown arrows represent the states
that are coupled.

|m〉 with indices g, e, f, . . . similar to the qubit in the previous subsections instead

of numbers 0, 1, 2, . . . as in Section 6.1. The Hamiltonian of Eq. 6.31 can also be

derived using a circuit model of a transmon (see Fig. 6.3) coupled capacitively to

an LC resonator [32, 201]. The energy ladder of the (uncoupled) transmon-cavity

system is shown in Fig. 6.6.

Similar to the two-level qubit system, the dispersive limit is achieved when

gm,m+1 � ∆m,m+1, where ∆m,m+1 = ωr−ωm,m+1 is the detuning between the cavity

and the |m〉 ↔ |m + 1〉 qubit transition. Similar to the χ in the two-level case, I

can define

χm,m+1 =
g2
m,m+1

∆m,m+1

. (6.32)

In the dispersive regime, Koch et al. have shown that in the reduced transmon
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Hilbert space containing only |g〉 and |e〉, the Hamiltonian of Eq. 6.31 becomes the

effective Hamiltonian Heff given by [32]

Heff ≈ ~ω̃râ†â +
~ω̃ge

2
σ̂z − ~χâ†âσ̂z. (6.33)

Here ω̃r is the shifted cavity frequency given by

ω̃r ≈ ωr +
χef
2
, (6.34)

ω̃ge is the dressed qubit frequency given by

ω̃ge ≈ ωge − χge, (6.35)

χ is the effective dispersive shift given by

χ = χge −
χef
2
, (6.36)

Grouping the second and the third term in the right hand side of Eq. 6.33

shows that each photon in the cavity contributes an additional 2χ shift in the qubit

frequency. On the other hand, grouping the first and third term in the right hand

side of Eq. 6.33 shows that the cavity frequency is further shifted depending on the

state of the transmon. When the transmon is at |g〉, then the cavity frequency is

ω̃r,g = ω̃r + χ = ωr + χge. (6.37)

When the transmon is at |e〉, then the cavity frequency is

ω̃r,e = ω̃r − χ = ωr + (χef − χge). (6.38)
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6.3 State Readout

Below I describe two methods to read out the state of the transmon. For my

measurements of the transmon that I describe in Chapter 8, I used a low-power

dispersive readout (Section 6.3.1) for the initial search for the qubit transitions.

For the rest of the measurements, I used the high-power Jaynes-Cummings readout

(Section 6.3.2).

6.3.1 Dispersive (Low Power) Readout

The low-power dispersive readout uses the fact that the cavity resonance fre-

quency depends on the state of the qubit, as discussed in the previous section. In

practice, the readout is typically accomplished by applying a continuous tone at the

dressed frequency for the ground state (ωr + χge for transmon, see Eq. 6.37) and

then monitoring the change in amplitude or phase of the output signal. Additional

microwave signals can then be used to perform qubit operation while the readout is

on

Equation 6.21 implies that the dispersive regime only works for small photon

numbers in the cavity. This means the measurement tone needs to be sufficiently

weak such that the average photon number 〈n〉 inside the cavity is 〈n〉 � nc =

∆2/4g2
ge. Additionally, as discussed in the previous section, the presence of photons

in the cavity will cause additional shift in the qubit frequency as well, and this

results in the emergence of multiple photon peaks. To suppress the photon peaks

and isolate a single qubit transition peak (corresponding to 0 photons in the cavity),
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then the measurement power needs to be very weak, i.e. 〈n〉 � 1.

As this readout method probes a state that is mainly a cavity state with very

small (≈ gge/∆) amplitude of the qubit state, the effect of the measurement on the

qubit state is weak. Hence the dispersive readout is considered a nearly quantum

non-demolition (QND) measurement [172], which does not completely project, col-

lapse, or destroy the quantum state being measured. However, because this readout

requires a very small measurement power, typically a large amount of averaging is

needed to achieve a good signal to noise ratio. This is the reason why I did not use

this readout that much. However, this is a potentially a very powerful technique

because of its QND nature. Thus, for example, with the addition of a good low-noise

parametric amplifier, Murch et al. used this measurement technique to track the

trajectory of the state of a qubit in real time [203].

6.3.2 Jaynes-Cummings (High Power) Readout

When the cavity is driven very strongly, the dispersive limit breaks down and

the cavity frequency recovers to the bare (uncoupled) cavity frequency ωr. For a

two-level qubit, this can be shown relatively easily from the exact energy eigenvalues

given in Eq. 6.18. The cavity frequency ωr,n,± at photon occupation n can be defined

as the frequency needed to add additional photon into the cavity, that is, from n to

n+ 1. From the definitions of En,± in Eq. 6.18, I can write ωr,n,± as

ωr,n,± = (En+1,± − En,±)/~

= ωr ±

√(∆

2

)2

+ g2
ge(n+ 1) −

√(
∆

2

)2

+ g2
gen

 . (6.39)
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For small n, Eq. 6.39 yields the dressed cavity frequencies in the dispersive regime,

with ωr,n,+ corresponding to the cavity frequency when the qubit is in |g〉, and ωr,n,−

corresponding to the cavity frequency when the qubit is in |e〉. For large n, one finds

ωr,n,± ≈ ωr ± gge

(√
n+ 1−

√
n
)
≈ ωr ±

gge
2n
. (6.40)

Thus for very large n, the cavity frequency approaches ωr for both states.

In Eq. 6.40, the cavity frequency approaches ωr equally for both |g〉 and |e〉

states. For a transmon with higher level states, Boissonneault et al. found that the

behavior of the cavity frequency as a function of n also depended on the state of

the qubit [204]. The dressed cavity frequency approaches the bare cavity frequency

faster when the qubit is in the excited state than when it is in the ground state. One

implication of this behavior is that if one applies a microwave signal with frequency

ωr, there will be a range of power where the amplitude of the output signal is high

when the qubit is in the excited state and low when it is in the ground state. Below

this range of power, the cavity resonance is near the low-power dressed frequency

(for both ground and excited states) and the output signal would be low at ωr,

while above well this range of power, the cavity resonance is at the bare frequency

for both states and the output signal is high independent of the qubit state.

Applying the bare cavity tone changes the states significantly, and thus this

readout is not a QND measurement. This means in practice, the cavity tone is

applied as a short (a few µs) pulse at the end of the qubit operations. Reed et al.

were the first to perform this readout on 2d transmon qubits [205] and many other

groups have used it since. The fact that the relatively high power is used allows for
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good signal-to-noise ratio.

6.4 Relaxation Time in Transmon

As I discussed in Section 1.3, one of the characteristic times for a qubit is the

relaxation time T1. The relaxation time is the mean time for a qubit to decay from

the excited state to the ground state. If a qubit is prepared in its excited state and

then nothing is done, the probability Pe(t) of the qubit to still be in the excited

state a time interval t latershould follow

Pe(t) = e−t/T1 . (6.41)

Relaxation is caused by the loss of energy from the qubit to various dissipation

channels, either internal or external to the qubit. As an alternative to T1, relaxation

can also be characterized by the relaxation rate Γ ≡ 1/T1 or the quality factor

Q = ωgeT1.

6.4.1 Circuit Model for Relaxation

A dissipation channel can be modeled as an arbitrary admittance Y (ω) con-

nected in parallel to the transmon, as shown in Fig. 6.7. For this circuit model, the

relaxation time is just the RC time constant, which is given by [160, 206]

T1 =
CΣ

Re[Y (ωge)]
. (6.42)

Figure 6.8 shows two of the simplest possible dissipation models. The first one,

Fig. 6.8(a) shows the junction coupled directly to an impedance Z0, for example the
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JC
Σ

Y (ω)

Figure 6.7: Circuit model for relaxation in a transmon. The dissipation
channel is modeled as an admittance Y (ω).

(a)

Z0 JC
Σ

(b) Cg

Z0 JC
Σ

Figure 6.8: Simple dissipation models showing (a) transmon directly
coupled to impedance Z0 and (b) transmon capacitively coupled to
impedance Z0 by capacitance Cg.
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50 Ω line. In this case T1 = Z0CΣ. However, transmons are not directly coupled

to 50 Ω lines because the resulting T1 would be so short that the device would

be useless. Figure 6.8(b) shows an impedance Z0 that is capacitively coupled to a

transmon by a capacitance Cg. The admittance Y (ω) of this circuit is given by

Y (ω) =
1

Z0 + (i/ωCg)
=

Z0 − (i/ωCg)

Z2
0 + (1/ωCg)2

. (6.43)

For weak coupling Cg � CΣ and Cg � 1/ωZ0, the relaxation time can be approxi-

mated as

T1 ≈
CΣ

ω2
geC

2
gZ0

. (6.44)

which will be much longer greater than the value Z0CΣ found for the direct coupled

case.

There are several known and possible sources of energy relaxation in a trans-

mon. The overall relaxation rate is the sum of all the relaxation rate from all sources,

and the overall T1 is then given by

1

T1

=
∑
i

1

Ti,1
, (6.45)

where 1/Ti,1 is the relaxation rate contribution from each source. I describe some

of the main known sources of dissipation below.

6.4.2 Purcell Effect

As I showed in Section 6.2.2, in the dispersive regime the dressed states of

a circuit QED system are the uncoupled qubit-cavity product states with a small

contribution (of order ∼ g/∆) from the states they are coupled to. The qubit-cavity
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coupling also means that loss in the cavity will contribute to loss in the qubit. This

effect is called the Purcell effect [159] (see also Section 2.4.2). If the relaxation rate

of the cavity is κ ≡ 1/T1,c, then the Purcell contribution of the relaxation rate is

given by

ΓPurcell =

(
∆

gge

)2

κ (6.46)

1

T1,Purcell

=

(
∆

gge

)2
1

T1,c

. (6.47)

In reality, the cavity or resonator will also have higher order modes, in addition

to the fundamental mode typically used for circuit QED. The qubit can couple to

these modes as well, and this will give additional Purcell contributions to the qubit

relaxation. The Purcell contribution to relaxation, including from higher order

modes, can also be found from the admittance Y (ω) seen by a transmon [160, 201],

i.e. if one can find Y (ω) seen by the transmon, the Purcell contribution will be

included

6.4.3 Two-Level Systems

In a transmon, two-level systems (TLSs) may be located in the Al oxide in

the Josephson junction and in the metal surface, as well as in the substrate-metal

and substrate-air boundaries. In Section 2.2 I detailed how a single TLS and an

ensemble of TLSs affects the loss and resonance frequency of a superconducting

resonator. Since a transmon can be approximated to first order as an LC resonator,

we expect TLSs to affect the loss in a transmon similar to how TLSs affect the loss

in a resonator. For the standard TLS distribution, loss in a resonator due to an
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ensemble of TLS is given by (see Eq. 6.48)

1

QTLS,e

(〈n〉) =
F tan(δ) tanh(~ω/2kBT )√

1 + (〈n〉/nc)β
, (6.48)

where 〈n〉 is the average photon occupation number (not to be confused with the

critical photon number), F is the dielectric fill factor, tan(δ) is the dielectric loss

tangent, T is the temperature of the resonator, nc is the characteristic photon occu-

pation number, and β ≈ 2 is the exponent. In a standard qubit operation, typically

only the qubit ground and excited states will be occupied, and population in higher

states should be negligible. This suggests taking the limit for low 〈n〉, and the

relaxation contribution from TLSs reduces to

1

T1,TLS

= ωF tan(δ) tanh(~ω/2kBT ). (6.49)

6.4.4 Quasiparticle Tunneling

Quasiparticles within the superconducting film will also contribute to relax-

ation in a superconducting qubit. In addition to the quasiparticle processes that I

described in Section 2.3, quasiparticle can also tunnel through the junction. When a

quasiparticle tunnels through the junction, it can gain or lose some of its energy E.

Quasiparticle tunneling could cause a qubit that is in the excited state to decay by

transferring energy ~ωge from the qubit to the quasiparticle. Quasiparticle tunneling

could also cause a qubit that is in the ground state to get excited by transferring

energy ~ωge from the quasiparticle to the qubit.

Figure 6.9 shows a simple picture for quasiparticles in a Josephson junction.

On the left side of the junction the superconductor has a superconducting gap
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Figure 6.9: Simplified picture of quasiparticles in a Josephson junction:
The superconductor on the left of the junction has a gap ∆l and quasi-
particle distribution fl(E) and the superconductor on the right of the
junction has a gap ∆r and quasiparticle distribution fr(E)

∆l and quasiparticle distribution fl(E), and on the right side of the junction the

superconductor has a gap ∆r and quasiparticle distribution fr(E). The normalized

density of states of the superconductor on the left ρl(E) and on the right ρr(E) are

given by (see Eq. 2.63)

ρi(E) =


0, for E < ∆i

E√
E2 −∆2

i

, for E > ∆i.

(6.50)

where the subscript i is l for left superconductor and r for right superconductor.

There have been many theoretical and experimental studies on quasiparticle

induced relaxation in various types of qubits, e.g. by Lutchyn et al. [207, 208],

Martinis et al. [20], and Catelani et al. [21, 209]. All of them use the assumption

that ∆l = ∆r ≡ ∆, which actually may not be a reasonable assumption for double-

angle evaporated Al/AlOx/Al junctions as it is known from work in CPBs that the

gap can be different for the first and second evaporation [210, 211]. Nevertheless, if

∆1 = ∆2, then this means ρl(E) = ρr(E) = ρ(E) as well. For clarity, however I will

continue to distinguish ρl and ρr from each other.

The qubit relaxation rate due to quasiparticles tunneling from the left to the
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right and gaining energy ε is given by [20]

Γ→(ε) =
1

RNCΣ

∫ ∞
∆

dE

|ε|
ρl(E) fl(E) ρr(E + ε) [1− fr(E + ε)]

(
1 +

∆2

E(E + ε)

)
,

(6.51)

where RN is the normal state junction resistance. Similarly, the relaxation due to

quasiparticles tunneling from the right superconductor to the left superconductor is

given by

Γ←(ε) =
1

RNCΣ

∫ ∞
∆

dE

|ε|
ρl(E + ε) [1− fl(E + ε)] ρr(E) fr(E)

(
1 +

∆2

E(E + ε)

)
.

(6.52)

The total dissipation rate from quasiparticle gaining energy ε is

Γ↔(ε) = Γ→(ε) + Γ←(ε). (6.53)

To proceed, I now explicitly make the assumption ρl(E) = ρr(E) = ρ(E). If

there are no additional nonequilibrium quasiparticle effects on the superconductor,

I also have fl(E) = fr(E) = f(E), which will simplify the discussion significantly.

Γ↔(ε) can now be written as

Γ↔(ε) =
2

RNCΣ

∫ ∞
∆

dE

|ε|
ρ(E) ρ(E + ε) f(E) [1− f(E + ε)]

(
1 +

∆2

E(E + ε)

)
.

(6.54)

Note that using a change of variables, Γ↔(−ε) can be written as

Γ↔(−ε) =
2

RNCΣ

∫ ∞
∆

dE

|ε|
ρ(E) ρ(E + ε) f(E + ε) [1− f(E)]

(
1 +

∆2

E(E + ε)

)
.

(6.55)

The qubit relaxation rate from quasiparticle tunneling includes contributions from
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both qubit excitation and decay, and thus

1

T1,qp

= Γqp = Γ↔(~ωge) + Γ↔(−~ωge) (6.56)

=
2

RNCΣ

∫ ∞
∆

dE

~ωge
ρ(E) ρ(E + ~ωge)

(
1 +

∆2

E(E + ~ωge)

)
× {f(E) [1− f(E + ~ωge)] + f(E + ~ωge) [1− f(E)]} . (6.57)

I also note here that quasiparticle tunneling will cause qubit excitations and

leave a background excited state population Pe that is given by [212]

Pe =
Γ↔(−~ωge)

Γ↔(~ωge) + Γ↔(−~ωge)
. (6.58)

Catelani et al. used an approach that is similar to the one I described above

to take into account the effects due to nonequilibrium quasiparticles. They assumed

the density of quasiparticles nqp is given by [209]

nqp = nne + nth, (6.59)

where nne is the nonequilibrium quasiparticle density, nth = 2N0

√
2πkBT∆ e

− ∆
kbT is

the thermal quasiparticle density (see Eq. 2.73), and N0 is the single-spin density of

state. Additionally, the population of nonequilibrium quasiparticle was assumed to

be mainly confined to energies between ∆ and ∆ + δE, with δE � ~ωge. This is a

gross simplification, nevertheless, using this assumption, they derived an expression

for the decay time [209]

1

T1,qp

≈ ωge
π

[
nne

N0

√
2∆~ωge

+ 4e−∆/kBT cosh

(
~ωge
2kbT

)
K0

(
~ωge
2kbT

)]
, (6.60)

where Kn is the n-th order modified Bessel function of the second kind. I note the

similarity of the thermal component of 1/T1,qp (the second term in Eq. 6.60) to the
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real component of the Mattis-Bardeen conductivity σ1 from thermal quasiparticles.

In particular, comparing to Eq. 2.74, one sees that the only difference is that except

the sinh term in Eq. 2.74 is replaced by a cosh term in Eq. 6.60.

The presence of quasiparticles would also cause a shift in the qubit frequency.

This shift comes from two effects, the first is from quasiparticle tunneling, which

also adds an imaginary component to the admittance Y (ω) of Fig. 6.7. The second

is from changes in EJ due to changes in the density of quasiparticles. Taking into

account both effects, Catelani et al. also derived the expression of the fractional

frequency shift δωge/ωge [49, 209]

δωge
ωge

≈ − nne

4N0∆

(
1 +

1

π

√
2∆

~ωge

)
−
√
πkBT

2∆
e
− ∆

kBT − e
−∆+(~ωge/2)

kBT I0

(
~ωge
2kbT

)
,

(6.61)

where In is the n-th order modified Bessel function of the first kind. I also note

the similarity of the thermal component of the frequency shift to the imaginary

component of Mattis-Bardeen conductivity σ2 from thermal quasiparticles as given

in Eq. 2.75.

So far I have used the assumptions where the superconducting gap and quasi-

particle distribution of the left and right superconductors in Fig. 6.9 are identical.

In practice, due to differences in evaporation parameters, it is not uncommon for

the two sides of the junction to have somewhat different superconducting gaps even

when they are made using double-angle evaporation during the same pumpdown,

with nominally the same material. The gap in Al in particular is sensitive to oxygen

[211]. Furthermore, the actual structure of the superconducting films in a transmon
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is significantly more complicated than shown in Fig. 6.9. Another effect that needs

to be taken into account is the possibility of having nonequilibrium distribution of

quasiparticles, not only due to rf drive and optical illumination (see Section 2.3),

but also due to tunneling through the junction [147]. This results in a significantly

more complicated picture, as I discuss below.

6.5 Dephasing Time in Transmon

The following discussion of the effect of dephasing on a qubit state is based on

the dissertations of Tony Przybysz [213] and Adam Sears [166]. Here I will use the

Bloch sphere representation of the qubit state |ψ〉 (see Eq. 1.1). I start with initial

qubit state |ψ(0)〉 at time t = 0, which is given by

|ψ(0)〉 = cos(θ0/2)|g〉 + eiφ0 sin(θ0/2)|e〉. (6.62)

Assuming there is no relaxation, I can find the time evolution of the state by applying

the propagator t̂ = e−iĤt/~ on |ψ〉

|ψ(t)〉 = e−iĤt/~|ψ(0)〉 = cos(θ0/2)e−iEgt/~|g〉 + eiφ0e−iEet/~ sin(θ0/2)|e〉. (6.63)

Only the phase difference between the |g〉 and |e〉 amplitudes is physically important,

hence Eq. 6.63 can be rewritten as

|ψ(t)〉 = cos(θ0/2)|g〉 + exp[i(φ0 − ωget)] sin(θ0/2)|e〉. (6.64)

From Eq. 6.64 I can then write the phase φ(t) at time t as

φ(t) = φ0 − ωget. (6.65)
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This means the phase precesses around the Bloch sphere with angular frequency

ωge.

The previous derivation assumed that the qubit frequency ωge is a constant.

If there are fluctuations in ωge, the frequency as a function of time can be written

as

ωge(t) = 〈ωge〉 + δωge(t), (6.66)

where 〈ωge〉 is the average frequency and δωge(t) is the frequency fluctuations from

the average value. In this case, φ(t) becomes

φ(t) = φ0 − 〈ωge〉t−
∫ t

0

δωge(t
′)dt′. (6.67)

Equation 6.67 shows the phase evolution for a single trial. For qubit measurements

that are averaged over many trials, one must take the ensemble average of the phase

fluctuation. I now define 〈exp(−i
∫ t

0
δωge(t

′)dt′)〉 ≡ F (t). One finds that for a free

induction decay 〈exp(i∆ϕ)〉 = exp(−1
2
〈∆ϕ2〉) [214], and I can write

F (t) =

〈
exp

(
−i
∫ t

0

δωge(t
′)dt′

)〉
= exp

(
−1

2

∫ t

0

dt1

∫ t

0

dt2〈δωge(t1) δωge(t2)〉
)
. (6.68)

Eq. 6.68 means that fluctuations in the qubit frequency result in decay in phase

information. This process is called dephasing. Fluctuations in the qubit frequency

can be caused by external noise, and the ensemble average in the right hand side of

Eq. 6.68 is related to noise power spectral density Sωge(ω) by

Sωge(ω) =

∫ ∞
−∞
〈δωge(t) δωge(0)〉 eiωt dt (6.69)
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〈δωge(t) δωge(0)〉 =
1

2π

∫ ∞
−∞

Sωge(ω) e−iωt dω. (6.70)

Using Eq. 6.70, F (t) can be written as

F (t) = exp

(
− 1

4π

∫ ∞
−∞

dω Sωge(ω)

∫ t

0

dt1

∫ t

0

dt2 e
−iω(t1−t2)

)
= exp

(
− |t|

2π

∫ ∞
−∞

d(ωt/2)Sωge(ω)
sin2(ωt/2)

(ωt/2)2

)
. (6.71)

The fraction sin2(ωt/2)/(ωt/2)2 = sinc2(ωt/2) acts as a weighting factor for the

noise. It is maximum for ω = 0, and hence dephasing tends to be dominated by low

frequency noise.

For Gaussian white noise, the noise power spectral density is flat, Sωge(ω) = S0.

Hence Eq. 6.71 can be written as

F (t) = e−|t|S0/2. (6.72)

Thus for white noise F (t) decays exponentially, and the characteristic decay time is

defined by the dephasing time Tφ, given by

Tφ =
2

S0

. (6.73)

In addition to white noise, another type of noise that is commonly present in

superconducting devices is 1/f noise [215], where the noise power spectral density

follows S1/f (ω) ∝ 1/|ω|µ, with µ ≈ 1. For µ exactly 1, the phase coherence decays

not with an exponential envelope, but with a Gaussian envelope ∝ e−t
2/2σ2

[213].

One obvious noise source is charge noise, which was typically the limiting noise

source for CPBs. The variance of the qubit frequency fluctuations from charge noise

is given by

〈δω2
ge〉 =

(
∂ωge
∂ng

)2

〈n2
g〉. (6.74)
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Transmons are designed specifically to be insensitive to charge noise by keeping

(∂ωge/∂ng) exponentially small compared to what it would be in CPBs. Hence

charge noise is not the limiting factor of dephasing in transmons unless EJ/EC got

too small or if higher transmon levels are used.

Flux noise is another noise source in transmons, but only for flux tunable

SQUID transmons in which a change in flux causes a change in EJ and hence ωge.

The transmon that I l discuss in Chapter 8 has a single junction, which should be

very insensitive by flux noise.

Another type of noise in transmons is the 1/f critical current noise. Critical

current noise can be caused by reconfigurations of the ions inside the Josephson

junction [216]. It could also be caused by fluctuations in the number of pairs if pair

breaking processes are present. Similar to flux noise, critical current noise will cause

fluctuations in EJ and hence ωge. The variance of the qubit frequency from critical

current noise is given by

〈δω2
ge〉 =

(
∂ωge
∂I0

)2

〈I2
0 〉 ≈

(
ωge
2I0

)2

〈I2
0 〉, (6.75)

since ωge ∝
√
I0 (see Eq. 6.12).

Another known source of dephasing is cavity photon induced dephasing, due

to the coupling between a qubit and a cavity mode. This source of dephasing may

generally be the limiting factor in superconducting qubits. Let κ be the relaxation

rate of the cavity and χ be the dispersive shift. In the weak dispersive regime χ < κ,

Schuster et al. found that by applying a coherent cavity tone corresponding to

average cavity population 〈n〉 to a CPB coupled to a coplanar waveguide resonator,
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the photon-induced dephasing rate of the CPB follows [217]

1

Tφ
≈ 8〈n〉χ

2

κ
. (6.76)

In the weak dispersive regime as well, Bertet et al. found with a thermal

cavity population 〈n〉 = 1/(e~ωc/kBT − 1), the photon-induced dephasing rate for a

flux qubit follows [218]

1

Tφ
= 4〈n〉 (〈n〉+ 1)

χ2

κ
. (6.77)

More recently, in the strong dispersive regime χ > κ where the photon peaks

are distinguishable, for a qubit peak corresponding to N photons in the cavity, Sears

et al. found the photon-induced dephasing rate is given by [219]

1

Tφ
= [(〈n〉+ 1)N + 〈n〉(N + 1)]κ. (6.78)

Eq. 6.78 was experimentally verified in 3d transmons for N = 0 and 1 [219].

6.6 Microwave Drive and Rabi Oscillation

A circuit QED system with a coherent drive with frequency ωd has a driving

Hamiltonian given by [172]

Ĥd =
~Ωr(t)

2
(â†e−iωdt + âeiωdt) +

~Ωq(t)

2
(σ̂+e−iωdt + σ̂−eiωdt). (6.79)

Here I have assumed a two-level qubit system. The first term on the right hand side

corresponds to the effect of the drive Eq. 6.79 on the cavity, and the second term

corresponds to the effect of the drive on the qubit. Ωr(t) and Ωq(t) are measures of

the power of the drive, and depend on the coupling between the drive line and the

cavity or qubit.
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I now consider the effect of the drive on the qubit state. I assume that there

is a constant drive power Ωq(t) = Ωq, and no relaxation or decoherence. For a

two-level qubit, the Hamiltonian can be written as

Ĥ = Ĥ0 + Ĥd =
~ωge

2
σ̂z +

~Ωq

2
(σ̂+e−iωdt + σ̂−eiωdt), (6.80)

where Ĥ0 is the undriven Hamiltonian and Ĥd is the drive term. So far I have used a

Schrödinger picture of quantum mechanics, but here I will switch to the interaction

(Dirac) picture, with Ĥd as the perturbation term to the Hamiltonian Ĥ0. I define

the unitary transformation Û given by

Û = eiĤ0t/~ =

eiωget/2 0

0 e−iωget/2

 (6.81)

The qubit state in the interaction picture |ψI(t)〉 is given by

|ψI(t)〉 = Û |ψS(t)〉, (6.82)

where |ψS(t)〉 is the qubit state in the Schrödinger picture. The perturbation Hamil-

tonian in the interaction picture Ĥd,I(t) is given by

ĤI(t) = Û Ĥd Û † (6.83)

=
~Ωq

2

eiωget/2 0

0 e−iωget/2

 0 e−iωdt

eiωdt 0

e−iωget/2 0

0 eiωget/2


=

~Ωq

2

 0 ei(ωge−ωd)t

e−i(ωge−ωd)t 0

 . (6.84)

The time-evolution of the qubit state in the interaction picture is given by

i~
d

dt
|ψI(t)〉 = ĤI(t)|ψI(t)〉. (6.85)
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I now define the qubit state in the interaction picture as |ψI(t)〉 = αg(t)|g〉+αe(t)|e〉

and rewrite Eq. 6.85 as two coupled differential equations

i
dαg
dt

=
Ωq

2
e−i δω tαe (6.86)

i
dαe
dt

=
Ωq

2
ei δω tαg, (6.87)

where δω = ωge − ωd is the detuning of the drive. I assume the initial condition

that the qubit is in the ground state, i.e.. |ψS(0)〉 = |g〉 and thus from Eq. 6.82,

|ψI(0)〉 = |g〉. I can solve Eq. 6.86 and 6.87 to obtain |ψI(t)〉. Then I use Eq. 6.81

to evaluate |ψS(t)〉 and find

|ψS(t)〉 =

cos

(
t

2

√
(δω)2 + Ω2

q

)
+ i

i δω√
(δω)2 + Ω2

q

sin

(
t

2

√
(δω)2 + Ω2

q

) |g〉
− iΩq√

(δω)2 + Ω2
q

sin

(
t

2

√
(δω)2 + Ω2

q

)
|e〉. (6.88)

The probability for the qubit to be in excited state is given by

Pe(t) = |〈e|ψS(t)〉|2 =
Ω2
q

2
[
(δω)2 + Ω2

q

] [1− cos
(
t
√

(δω)2 + Ω2
q

)]
. (6.89)

The probability Pe(t) oscillates as a function of time with frequency

ΩR =
√

(δω)2 + Ω2
q. (6.90)

This behavior is called a Rabi oscillation and the ΩR is called the Rabi frequency.

When the qubit is driven at the qubit frequency, δω = 0, the Rabi frequency is

ΩR = Ωq, and Pe(t) oscillates between 0 and 1. When there is some detuning

δω 6= 0, the Rabi frequency is faster (ΩR > Ωq), and Pe(t) is always less than 1.
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Figure 6.10: Comparison between Rabi oscillations without decoherence
(dashed blue curve) and with decoherence (solid red curve). The param-
eters are Ω/2π = 10 MHz and T ′ = 400 ns. The dotted black curves are
the envelope of the oscillation with decoherence.
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So far I have assumed no decoherence. When there is decoherence but no

detuning, the probability Pe(t) instead follows

Pe(t) =
1

2

[
1− e−t/T ′

cos(Ωqt)
]
. (6.91)

Figure 6.10 shows a comparison between Rabi oscillations with and without decoher-

ence. With decoherence, the envelope of the Rabi oscillation exponentially decays

with decay time T ′, which is given by [220]

1

T ′
=

1

2

(
1

T1

+
1

T2

)
. (6.92)

At long times the probability Pe(t)→ 1/2, which can be interpreted as the system

is in a mixed state with equal probability to be found in |g〉 or |e〉, or the state has

spread out over the entire Bloch sphere. I note here that the Pe saturates to 1/2

only for strong enough drive such that Ω � T ′. For weak drive, Pe saturates to a

lower value [221].

6.7 Nonequilibrium Quasiparticles in Optically Illuminated Trans-

mon

6.7.1 Complete Quasiparticle and Phonon Picture

The picture of quasiparticles in a transmon that was discussed in Section 6.4.4

is a simplified picture of what should occur in an actual transmon. In particular, the

cross-section of the superconductor around the Josephson junction in my transmon

is depicted in Fig. 6.11. Two separate Al layers are deposited on each side of

229



sapphire
substrate

Δ1 Δ1

Δ2 Δ2

Figure 6.11: Cross-section of the Al layers and junctions in my transmon.
Gray squares are the Al layers, with superconducting gaps ∆1 and ∆2.
Blue lines are the AlOx junction layers, with the layer inside the red
dashed circle acting as the junction for the transmon. The yellow square
is the sapphire substrate.

the transmon’s junction. As the two layers came from different evaporations, they

typically can have somewhat different superconducting gaps. In Fig. 6.11, ∆1 is the

gap for the lower layer and ∆2 is the gap for the upper layer. The two Al layers are

separated by three Josephson junctions (blue lines in Fig. 6.11). The junction used

by the transmon is the smallest one (red dashed circle), located in the middle. The

other two junctions are much larger, each with a junction area that is equal to the

area of a single pad of the transmon. Considering the layout, there are four distinct

regions of superconductor, one with gap ∆1 on the left side, one with ∆2 on the left

side, one with ∆1 on the right side, and one with ∆2 on the right side.

Figure 6.12 shows a block diagram for the nonequilibrium quasiparticle and

phonon processes for the four superconducting regions. Each region has its own

quasiparticle distribution f(E) (blue squares) and phonon distribution n(Ω) (gray

squares), connected through scattering, pair breaking, and recombination processes
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Figure 6.12: Block diagram of all quasiparticle and phonon processes in
an optically illuminated transmon (see Fig. 6.11).
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(green arrows). A Josephson junction allows quasiparticles to tunnel between two

superconducting regions, and the three junctions in Fig. 6.11 connect different quasi-

particle regions in Fig. 6.12. The phonon-phonon interactions are represented by

the purple arrows. I note that the two phonon regions on each side are directly

connected, but there is no direct connection between phonons on opposing sides of

the junction. For the most part, the substrate is directly connected only to the

lower Al layers. Hence I assume the thermal bath is connected to the phonon dis-

tributions for the lower superconductor regions, which have gap ∆1, but not to the

upper superconducting region, which have gap ∆2. Microwave drive (blue arrows)

can directly excite quasiparticles in all four superconducting regions. Also in my

experiment the transmon is illuminated from above, so I only allow the illumination

(red arrows) to directly create phonons in the upper layers with gap ∆2.

This picture is fairly comprehensive and significantly more complicated than

the simple picture presented in Fig. 6.4.4. Finding the quasiparticle and phonon

distributions for all four regions appears to be doable, but will likely take consider-

able computation time. Instead, I developed a simplified model, as I describe in the

next section.

6.7.2 Simplifying the Picture

In the discussion of quasiparticle tunneling in Section 6.4.4, I made an im-

plicit assumption that the tunneling process does not change the distribution of the

quasiparticles on either side of the junction, even though there is an exchange of par-
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ticles. In fact, Chang and Scalapino discussed quasiparticle tunneling as one of the

possible processes that can change the quasiparticle distribution [147]. A normal-

superconductor junction biased with voltage V creates an additional quasiparticle

generation term Gqp(E) (see Eq. 2.76) in the kinetic equations given by [147]

Gqp(E) ∝ [f(E − eV )− f(E + eV )] . (6.93)

I can generalize this relation to superconductor-superconductor tunneling. I

assume two quasiparticle regions with density of states ρ1(E) and ρ2(E) and distri-

bution f1(E) and f2(E), separated by a junction. If there is a voltage V across the

junction, the quasiparticle generation term Gqp,1(E) for f1(E) is given by

Gqp,1(E) =
M

τtV1

ρ2(E + eV ) {f2(E + eV )[1− f1(E)]− f1(E)[1− f2(E + eV )]}

=
M

τtV1

ρ2(E + eV ) [f2(E + eV )− f1(E)] . (6.94)

Here M is a proportionality constant, V1 is the volume of superconducting region 1,

and τt is the tunneling timescale representing the tunneling strength. In Eq. 6.94 I

have assumed tunneling from region 1 to 2 and vice versa. Similarly, the quasiparticle

generation term Gqp,2(E) for f2(E) can be written as

Gqp,2(E) =
M

τtV2

ρ1(E − eV ) [f1(E − eV )− f2(E)] , (6.95)

where V2 is the volume of superconducting region 2. In Eq. 6.94 and 6.95 the volumes

V1 and V2 appear in order to maintain power balance from quasiparticle tunneling.

I also assumed the same bias voltage, where the voltage is higher on the side of

superconductor 1 by V .
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As I mentioned above, the timescale τt represents the strength of the tunneling

in the junction. The tunneling strength should depend on the junction area and the

thickness of the oxide layer. When tunneling is weak, τt is large, and vice versa. For

very weak tunneling τt → ∞, Gqp,i(E) of Eqs. 6.94 and 6.95 approach zero, which

means that the quasiparticle distributions would not be affected by the tunneling

terms. In the other extreme, for very strong tunneling τt → 0, the magnitude of the

generation terms Gqp,i(E) are very large except when f1(E) = f2(E + eV ). This

implies that the resulting steady-state quasiparticle will obey f1(E) = f2(E + eV )

above unless they are driven so hard that the quasiparticle generation term from rf

drive stand to approach Gqp,i

The three junctions in Fig. 6.12 should have the same barrier height as they

are oxidized at the same time. As the middle junction is much smaller than the

other two, it is reasonable to assume that the effective tunneling strength is much

weaker than the other two. I may then assume that the effect of the tunneling in

this junction on the distributions are negligible, and f2,l(E) and f1,r(E) regions are

not connected. This means the block diagram in Fig. 6.12 can be separated into

two disconnected block diagrams, the left half and the right half. As the left and

right side of the transmon is symmetric with the same area and film thicknesses,

this means the distributions are symmetric as well, and I have fj,l(E) = fj,r(E) and

nj,l(Ω) = nj,r(Ω) for j = 1 and 2. I can then focus just on one half of the block

diagram, and in the following I will use the notation for the left side.

Each large junction has area corresponding to half of the transmon area, which

in my case is about 2.5× 104 µm2. Because of the large area, I assume very strong
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strong tunneling effect from this junction. As there is no voltage bias applied across

this large junction, I then have f1,l(E) = f2,l(E).

In Section 2.3 I argued that the interaction between a phonon distribution in

a superconductor and a phonon distribution in the substrate results in the phonon

rate term

dn(Ω)

dt

∣∣∣∣
φ−b

=
nb(Ω, Tb)− n(Ω)

τe
, (6.96)

where nb(Ω, Tb) is the substrate bath thermal distribution at temperature Tb and τe

is the phonon escape time from the superconductor to the thermal bath. I can now

generalize this term to describe the interaction between the two phonon distributions

n1,l(Ω) and n2,l(Ω) and write

dn1,l(Ω)

dt

∣∣∣∣
φ1−φ2

=
[n2,l(Ω)− n1,l(Ω)]

τp

∑
j(Ni/Ω

3
D)jVj

(Ni/Ω3
D)1V1

, (6.97)

dn2,l(Ω)

dt

∣∣∣∣
φ1−φ2

=
[n1,l(Ω)− n2,l(Ω)]

τp

∑
j(Ni/Ω

3
D)jVj

(Ni/Ω3
D)2V2

. (6.98)

Here τp is the characteristic phonon escape time between the two phonon regions,

Ni is the atomic density, and Ω3
D is the Debye energy. The ratio on the right hand

side appears due to the need to maintain power balance from the phonon-phonon

process between the two phonon regions. Here I also use the same assumption that

I used in previous nonequilibrium simulations, where I used the theoretical values

for the characteristic times τ0 and τφ and the single spin density of states N0. I then

use Eq. 2.84 to find Ni/Ω
3
D.

The escape times τe and τp are governed by the mismatches in the lattice

and acoustic modes between the two regions [151]. There should be significantly

less lattice mismatch between two Al layers compared to between Al and sapphire.
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Figure 6.13: Simplified block diagram of the quasiparticle and phonon
processes in an optically illuminated transmon (compare with Fig. 6.12).

Hence I expect τp � τe. If τp → 0, I have a very strong connection between the two

phonon baths, similar to the strong junction tunneling connection between the top

and bottom quasiparticle regions, as discussed previously. If I use this assumption,

I have n1,l(Ω) = n2,l(Ω) as well.

Using all these consideration, the block diagram of Fig. 6.12 then reduces to

the simplified block diagram shown in Fig. 6.13. There is only one quasiparticle

distribution f(E) and one phonon distribution n(Ω). However, I note that this

picture does not require ∆1 = ∆2. The combined kinetic equations df(E)/dt and
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dn(Ω)/dt contain the generation, scattering, pair breaking, recombination, and es-

cape terms from both regions 1 and 2, but no cross quasiparticle-quasiparticle or

cross phonon-phonon terms.

The combined kinetic equation df(E)/dt for the quasiparticles is given by

[ρ1(E)V1 + ρ2(E)V2]
df(E)

dt
= ρ1(E)V1

df1(E)

dt
+ ρ2(E)V2

df2(E)

dt
, (6.99)

where df1(E)/dt is the kinetic equation for quasiparticles in region 1 and df2(E)/dt

is the kinetic equation for quasiparticles in region 2. The product ρi(E)Vi in Eq. 6.99

acts as a weighting term for the quasiparticles in each superconducting region.

The combined kinetic equation dn(Ω)/dt for the phonons is given by[(
Ni

Ω3
D

)
1

V1 +

(
Ni

Ω3
D

)
2

V2

]
dn(Ω)

dt
=

(
Ni

Ω3
D

)
1

V1
dn1(Ω)

dt
+

(
Ni

Ω3
D

)
2

V2
dn2(Ω)

dt
,

(6.100)

where dn1(Ω)/dt is the kinetic equation for phonons in region 1 and dn2(Ω)/dt is the

kinetic equation for phonons in region 2. The product (Ni/Ω
3
D)iVi in Eq. 6.100 acts

as a weighting term for the phonons in each superconducting region. The phonon

density of states D(Ω) does not appear in the weighting term as it is independent

of ∆ and hence cancels out from Eq. 6.100.

When ∆1 = ∆2, I have ρ1(E) = ρ2(E) and (Ni/Ω
3
D)1 = (Ni/Ω

3
D)2 and Eq. 6.99

and 6.100 reduce to Eq. 2.76 and 2.77.

6.7.3 Numerical Simulations

To find the quasiparticle distribution f(E) and phonon distribution n(Ω) of

the model of Fig. 6.13, I use the numerical method described in Section 2.3. Here I
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also assume ∆1 = ∆2, which is not expected to correspond to the situation in my

transmon but simplifies the kinetic equations as discussed in the previous section. In

my experiments described in Chapter 8, I mainly measured the qubit relaxation time

T1 as a function of refrigerator temperature and illumination intensity. During the

relaxation, there is no applied microwave drive. Of course, there is a microwave pulse

during the qubit preparation and this may affect the distribution during relaxation.

However, the microwave pulses are typically short (50 to 100 µs). Also, the range

of applied rf powers are significantly lower than the powers used in Chapters 4 and

5 where nonequilibrium effects from rf drive are significant. Because of these, I will

assume the rf drive can be neglected in the simulation.

Once f(E) and n(Ω) are obtained from the simulations, I can calculate the

expected transmon relaxation rate due to quasiparticles using Eq. 6.57. From the

similarities between the expression for the expected frequency shift of the transmon

(Eq. 6.61) and of resonators (Eq. 2.75) due to thermal quasiparticles, I assume

without proof that

δωge
ωge

= −δσ2

2σ2

. (6.101)

This frequency shift is consistent with the picture of the transmon as an anharmonic

LC resonator with the Josephson junction as an inductor with an inductance that

is mainly proportional to the junction critical current.

Table 6.1 shows the parameters I use in the simulations discussed below. The

chosen material parameters are for typical Al films. The RN and CΣ values are the

typical values for 3d transmons with transition frequency ωge/2π ≈ 5.1 GHz ≈ 21
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Figure 6.14: (a) Simulated quasiparticle distribution f(E) vs normalized
energy E/∆ and (b) simulated phonon distribution n(Ω) vs normalized
energy Ω/∆ for bath temperature Tb = 10 mK and effective temperatures
Teff of 90 mK (blue curve), 210 mK (red curve), and 330 mK (orange
curve). Other parameters are shown in Table 6.1. The black dashed
curve in (b) is the thermal distribution for Tb = 10 mK.
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Table 6.1: Parameters used in nonequilibrium simulations.

Symbol Parameter Value

∆ superconducting gap 180 µeV

~ωge rf photon energy in simulation 21 µeV

V Al volume 1.7× 104 µm3

N0 single spin density of states at Fermi level 1.74× 1010 /eV µm3

Ni/Ω
3
D atomic density/(Debye frequency)3 1.21× 1015 (eV µm)−3

τ0 quasiparticle-phonon time 438 ns

τφ phonon-quasiparticle time 0.26 ns

τe phonon escape time 3 ns

RN normal state junction resistance 7 kΩ

CΣ junction total parallel capacitance 100 fF

µeV/h. The volume V is half of the total Al volume in my 3d transmon, as I am

effectively simulating only half of the transmon in the simplified model. Figure 6.14

shows the simulated distributions f(E) and n(Ω) for bath temperature Tb = 10 mK

and several effective temperature Teff values. As expected, the distributions behave

similarly to the distributions for resonators simulated in the earlier chapters, with a

large jump in f(E) at E = 3∆ and in n(Ω) at Ω = 2∆ due to the optical absorption.

Figure 6.15 shows the simulated relaxation time due to quasiparticles T1,qp and

fractional qubit transition frequency shift −δfge/fge as a function of bath tempera-

tures Tb for three different effective temperature Teff values. The relaxation rate and

frequency shift curves show similar behavior. For Tb . Teff, the curves are relatively

flat, while for Tb & Teff the curves follow the no illumination behavior (blue curves)

closely, with a kink at Tb ≈ Teff.
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Figure 6.15: (a) Simulated quasiparticle relaxation rate T1,qp and (b) sim-
ulated fractional qubit transition frequency shift −δfge/fge vs bath tem-
perature Tb and for effective temperatures Teff of 0 mK (no applied opti-
cal power, blue curve), 150 mK (red curve), and 300 mK (orange curve).
Other parameters are as shown in Table 6.1.
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Figure 6.16: (a) Simulated quasiparticle relaxation rate T1,qp and (b) sim-
ulated fractional qubit transition frequency shift −δfge/fge vs effective
temperature Teff and for temperatures Tb: 10 mK (blue curve), 120 mK
(red curve), and 230 mK (orange curve). Other parameters are as shown
in Table 6.1.
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For comparison, Figure 6.16 show the simulated T1,qp and −δωge/ωge as a

function of effective temperature Teff for three different bath temperatures Tb values.

Here the behavior of the curves is similar to when I varied Tb. For Teff . Tb, the

curves are relatively flat, while for Teff & Tb the curves follow the low Tb behavior

closely, with a sharp at Teff ≈ Tb.

6.7.4 Extensions to the Model

In the numerical simulations that I described in the previous ssection, for sim-

plicity I assumed that the two superconducting layers hde the same superconducting

gap ∆. When the gaps are not equal, the kinetic equations become significantly more

complicated. The different ∆ values affect the distributions f(E) and n(Ω), as well

as the predicted T1,qp and −δωge/ωge values. One should expect the effects to be

more significant if |∆1 −∆2| > ~ωge.

I also assumed that the rf drive had no effect on the distributions. To include

these effects on qubit relaxation, one would need to find the time-dependences of

f(E) and n(Ω), both during the microwave pulse and during the relaxation. I

believe a different numerical method, such as a variant of multivariable Runge-Kutta

methods [222].

6.8 Summary

In this chapter, I discussed the theory of transmons and circuit QED sys-

tems. I started by discussing the circuit representation of a Cooper-pair box and
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its Hamiltonian, and how a transmon can be viewed as a modified CPB. I then

discussed a coupled cavity and transmon, forming a circuit QED system. I focused

on the dispersive regime, where the coupling between the two is weak compared to

the detuning, and discussed the energy levels in this regime.

I then discussed relaxation and dephasing in a transmon, and listed possible

sources. I then discussed how an applied rf drive at the transition frequency cre-

ates Rabi oscillation in the qubit populations, and how decoherence affects Rabi

oscillation.

Finally, I examined at length how the presence of nonequilibrium quasiparti-

cles affect the relaxation rate and transition frequency of a transmon. I described

the distribution of quasiparticles and phonons in a transmon, and discussed how I

modeled the dynamics of this system and possible extensions to the model.
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Chapter 7: Experimental Details: Transmon

In this chapter, I describe experimental details for the measurements in Chap-

ter 8 in which I applied optical illumination to a 3d transmon. I discuss the design

choices and fabrication steps for building the transmon as well as the 3d cavity in

which the transmon is mounted. I also discuss the microwave setup, pulsing sequence

for qubit manipulation, and the qubit state readout. Finally, I briefly discuss the

optical illumination line, which was nearly identical to the one used in the resonator

experiments described in Chapters 4 and 5.

7.1 Transmon Design Considerations

The design of the 3d transmon qubits I used was very similar to the qubit

designs used by other groups, including Yale [49], IBM [165], and LPS [189]. Specif-

ically, I designed the qubit based on discussions with Sergey Novikov from Ben

Palmer’s group at LPS.

Figures 7.1(a) shows the CAD drawing of the transmon I used in the experi-

ment. The largest structures in the design are two 700 µm × 350 µm pads. These

act both as a shunting capacitor and as a dipole antenna to couple to the microwave

field in the cavity. Some transmons have had an array of holes patterned into the
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(a) 350 μm200 μm
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(b)

200 nm

200 nm

250 nm

Figure 7.1: CAD drawing of the transmon. (a) Entire transmon device.
(b) Detail of the Josephson junction.
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pads to trap vortices [165], however I did not include them in my design. The two

pads are connected with a 100 µm long line with 5 µm width, with a short break

located in the middle where the Josephson junction is located. To reduce effects of

dielectric loss from the junction oxide, I wanted the area of the junction to be as

small as possible. After testing to fabricate different junction sizes, I decided that

a junction with dimensions about 200 nm × 200 nm was small enough and gave

reasonable fabrication yield. In the CAD design, the junction appeared as two 200

nm wide lines, perpendicularly oriented to each other, separated by a 200 nm × 250

nm bridge (see Fig. 7.1(b)). The lines would overlap and form the junction during

the double-angle deposition process.

One of the main parameter choice I made was for the qubit g → e transition

frequency fge = ωge/2π to be between 4 and 5.5 GHz. I chose this range because the

frequency needed to be within the working range of all the microwave components

(see Section 7.4), and the components with the narrowest range were the isolators at

4-8 GHz. Additionally, I wanted the transmon-cavity system to be in the dispersive

regime, with gge � ∆ge, where gge is the coupling strength and ∆ge = ωc−ωge is the

detuning between the cavity and the qubit. This limit also reduce the Purcell effect

loss in the qubit. For qubits and the cavities similar to the ones I used, reported

values of gge/2π ranged between 120 MHz and 150 MHz [49, 189]. Hence I aimed

for ∆ge/2π to be 600 MHz or larger. The relevant cavity frequency in the system is

the TE101 mode frequency f101, which was about 6.1 GHz for the cavity I used (see

Section 7.3). That determined the upper limit of fge to be of 5.5 GHz. In principle,

I could have used qubit frequencies above the cavity frequency, i.e. between 6.7
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GHz and 8 GHz. However, other groups have observed that qubits with frequencies

above the cavity frequency typically had lower coherence times than qubits with

frequencies below the cavity frequency[160] . This might be due to coupling to the

higher order cavity modes which would give additional Purcell loss or to decreased

isolation from the input and output lines at higher frequencies.

As I discussed in Section 6.1, the g → e transition frequency of the transmon

is given by (see Eq. 6.12),

fge ≈
(√

8EJEC − EC
)
/h, (7.1)

where EJ is the Josephson energy and the charging energy is given by EC = e2/2CΣ,

where CΣ is the total capacitance across the junction. In 3d transmons, the capac-

itances include the junction capacitance CJ , the capacitance between the two pads

Cp, and the capacitance between the pads and the cavity Cp−c. In my device CJ ≈ 1

fF is much smaller than the other two capacitances, hence CΣ largely depends on

the geometry and dimensions of the transmon and cavity. For the dimensions of the

qubit and cavity similar to the one I used, others have measured the range of EC/h

between 170 and 210 MHz [165, 189]. It is possible to get better bounds on EC by

performing finite-element EM simulations [166, 223], however I did not do so for my

design, since it was similar to earlier designs.

For the range of EC values discussed above, I used Eq. 7.1 to calculate the range

of EJ needed to achieve the desired fge value and found that I needed EJ/h between

11 and 24 GHz. From Eq. 6.2, the Josephson energy is given by EJ = Φ0I0/2π,

where Φ0 is the flux quantum and IC is the junction critical current. The range
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of EJ above gives a range of I0 between 22 and 48 nA. The junction area is fixed,

and I did not use a SQUID loop to allow EJ modulation, so the only way I could

vary IC was by varying oxidation parameters (see next Section). Once the junction

was fabricated, the IC value was essentially fixed, and hence fge was fixed as well

(except for a slow oxidation at room temperature which would cause I0 to decrease

with time).

7.2 Transmon Fabrication

I performed the entire transmon fabrication process present below. Part of

the fabrication process, especially the e-beam lithography process, was based on a

process Ben Cooper and I developed previously for fabricating phase qubits [170].

The main difference was that the transmon process did not require any optical

lithography.

7.2.1 Application of E-Beam Layers

The first step in the process was done at FabLab in the Kim Engineering

Building. I started with a clean 3 inch c-axis sapphire wafer that was about 430 µm

thick and polished on one side. I first cleaned the wafer with acetone, methanol,

and IPA, followed by DI water. I then dried the wafer with N2. To make sure that

all the water was completely gone from the surface, I prebaked the wafer on a hot

plate at 120◦C for 5 minutes.

I then mounted the wafer on a Headway EC101 spinner [224]. With the wafer
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spinning at about 1000 rpm, I applied LOR10A resist from a beaker. After the

resist was applied, I increased the spin speed to 4000 rpm in about 3 seconds and

spun it for another 45 seconds. This resulted in a 1000 nm thick LOR resist layer

[225]. If dust particles landed on the surface of the wafer prior to appying the resist,

radial streaks would reveal where the dust particles landed and this caused some

uneveness in surface thickness, as LOR is much more viscous than typical resists. If

the amount of streaking was significant, I removed the resist layer by submerging it

in acetone for several minutes. I then recleaned the chip with solvents and applied

a new resist layer. For the wafer I ended up using, a few streaks were visible and

most of the surface appeared to be clean.

I then baked the wafer inside an oven. In the past, I typically baked the wafer

at 180 to 200◦C. However, because I was sharing the oven with another FabLab user,

I had to bake it at about 230◦C for 7 minutes. This higher temperature resulted in

a harder resist layer and affected the development time of the LOR resist.

I then mounted the wafer on the spinner again. With the wafer stationary, I

applied 950 PMMA C2 resist. I then spun the wafer at 4000 rpm for 45 seconds,

leaving a 150 nm thick PMMA layer [226]. I then baked the wafer in the oven for

230◦C for about 2 hours and 15 minutes.

7.2.2 Deposition of Al Anti-Charging Layer

I next thermally evaporated an Al layer that was used to prevent charge

buildup on the sapphire during the e-beam write. In the past, Ben Cooper and
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I found that evaporating this layer using the thermal evaporator at CNAM would

create many craters on the surface of the resist after development. We attributed

this to dust landing on the surface of the wafer before the wafer was mounted inside

the evaporator. We found that by keeping the surface clean by keeping the wafer

inside the clean room environment and using the thermal evaporator in FabLab,

this problem did not appear [170].

However, the Fablab’s evaporator was down when I was planning to do the

evaporation. As a result, I used the evaporator in CNAM (see Section 7.2.6 below).

During the preparation, I attempted to keep the wafer protected as long as possible.

For this deposition, I did not need the pressure to be very low, and I started the Al

evaporation when the chamber pressure is at 7 × 10−6 Torr. The deposition speed

was approximately 6 Å/s, and the total Al thickness was about 150 Å.

While I observed a few craters on some of the chips after development, the

density was significantly less than what we observed in the past. Additionally, the

presence of craters was not as catastrophic to transmons as it was to our previous

phase qubit designs because the surface area of the transmon was much smaller than

the surface area of the phase qubit and its bias leads.

7.2.3 Dicing

Before dicing, I applied 1813 photoresist layer on the wafer. This layer pro-

tected the e-beam layers and the anti-charging layer from damage and contamination

during dicing. I spun the wafer at 4000 rpm for 45 seconds, then baked it on a hot
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plate at 120◦C for 5 minutes.

I used the Microautomation Industries Model 1006 dicing saw located in the

back room of FabLab, with a 200 µm wide blade for sapphire. Typically when dicing,

one attaches the wafer to the vacuum chuck using double-sided tape, then dices the

entire thickness of the wafer, in addition to part of the tape. However, I found that

the tape did not stick well to sapphire wafers, although it worked fine for silicon

wafers and this could result in chips flying away during dicing. In addition to the

possibility of losing the chips if they fell into the water drain, this could damage the

saw blade as well. Instead, I did not use the tape and attached the wafer directly to

the vacuum chuck. I diced the wafer into 5 mm × 5 mm square chips but did not cut

all the way through, leaving about 100 µm thick sapphire intact. This worked well,

but meant I would need to break the chips apart later. Due to the dicing process

that I used, the size of each individual chip could vary between 4.8 and 5.2 mm.

7.2.4 E-Beam Lithography

Just before doing e-beam lithography, I removed the protective resist layer on

the chip that I wanted to use by putting it in an acetone bath for about 5 minutes,

and then dried it using N2.

I performed e-beam lithography using a JEOL 6500 scanning electron micro-

scope (SEM) system [227] with a Nabity Nanometer Pattern Generation System

(NPGS) [228] located at the Laboratory for Physical Sciences (LPS). After the chip

was mounted inside the SEM chamber, I checked the beam current, found a good fo-
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cus, then made sure the design file and run file stored in the NPGS control computer

were correct.

For initial focusing, I usually attempted to focus on a scratch mark I made

near the edge of the chip or on a dust particle on the surface. Once I managed to get

a reasonable focus, I further improved the focus by focusing on contamination spots

I made by using the SEM’s spot mode for several seconds. Typically I made the

spots about 100 µm away from the expected position of the junction. I was usually

aiming for a circular spot with 10 to 20 nm diameter. If the spots were elongated,

I needed to adjust the stigmation as well.

The SEM CAD files are separated into multiple layers, and each layer can

have patterns with different colors. The patterns in the same layer have the same

magnification, spacing between points, and emission current. An x- and y- offset

between layers may also be defined, as the alignment is not perfect. The patterns

in the same layer with different colors may have different dose. All these writing

parameters are specified in the run file.

The design file of the transmon I used was called transmon05 200nm.DC2. The

file consisted of two layers. The junction was located in the first layer, while the

lines and pads were located in the second layer. The writing parameters are shown

in Table 7.1, and were saved in a run file called transmon05 200nm MMDDX.RF6,

where MMDD corresponds to the date of writing and X corresponds to the Xth

device written that day. The beam current for the first layer was typically around

30 pA, corresponding to spot 2 on the SEM, while the beam current for the second

layer was typically around 1500 pA, corresponding to spot 11 on the SEM. Smaller
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Table 7.1: Parameters used in SEM writing of transmon

Parameter Layer 1 Layer 2

(x,y) offset (µm) (0,0) (5,0)

magnification 900 90

spacing between points (nm) 24 93

spot size 2 11

beam current (pA) ≈ 30 ≈ 1500

dose (µC/cm2) 600 600 400

color orange magenta cyan

part junction line pads

emission current allows us to draw smaller patterns, while larger emission current

allows us to draw larger patterns more quickly. The dose is the total charge per

unit surface deposited on the written surface. I found that the junction and the line

required higher dose than the pads. For the transmon pattern with the specified

parameters, the entire write typically took about 30 minutes.

7.2.5 Development

I performed the development process in FabLab. First, I removed the Al anti-

charging layer by putting the chip inside an MF-CD-26 developer [169]. Typically

the Al layer was removed after about 3 minutes. I then rinsed the chip in DI water

for several seconds, then dried it with N2.

I then developed the PMMA layer by putting the chip inside an MIBK:IPA

1:3 solution [169] for 60 s. I rinsed the chip in IPA for several seconds, then dried
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it with N2. Finally, I developed the LOR undercut layer by putting the chip in a

bath MF-CD-26 developer [169]. The development time for this step depends on the

desired undercut width. I found that a development time for 37-40 s was appropriate

for the chips I used. I next rinsed the chip in DI water for several seconds and then

dried it with N2. I then examined the chip under a microscope and if the chip looked

like it required more LOR development, I repeated the LOR development process

for 3-4 seconds, rinsed, and inspected it again.

Figures 7.2 show the transmon05 200nm 0609A chip I used in the experiment

after the development process. The undercut was clearly visible as bright edges

in Fig. 7.2(a). As Fig. 7.2(b) shows, there were several black spots on the pad

surface. I initially thought these were dust particles landing on the surface after

development. However, I always found these spots in similar locations for most

of my writes and it appears that the locations of these spots corresponded to the

locations of the contamination spots. Evidently the resist layer hardened due to

the heat from continuous electron beam hitting the surface during the spot making

process.

7.2.6 Double-Angle Al Deposition and Oxidation

I performed the double-angle Al deposition and oxidation using the cryo-

pumped thermal evaporator in room 0219 in CNAM (see Figure 7.3). During the

period when I was performing fabrications, the evaporator used a glass chamber.

However, the chamber was recently replaced by an aluminum chamber.
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(a)

(b)

Figure 7.2: Optical pictures of transmon05 200nm 0609A chip after de-
velopment process.(a) Under 100x magnification, the junction and the
undercut are visible. The undercut appears brightest in this image.
(b) Under 5x magnification, the pads are visible. The resist layers ap-
pear dark while the developed surface appear brighter in this image. The
black spots on the pads appears to be related to the contamination spots
generated during e-beam writing process
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(a) (b)

(c)

Figure 7.3: Photograph of the thermal evaporator in room 0219 in
CNAM. (a) External view. (b) Evaporation electrodes inside the vac-
uum chamber. (c) The lid viewed from below. The chamber was recently
replaced from a glass chamber to an aluminum chamber.
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Figure 7.4 shows the step-by-step sequence of the evaporation process. I used

Al pellets with 99.999% purity purchased from Alfa Aesar [229], and put 3 to 4 of

them in a tungsten boat from R.D. Mathis [230]. The evaporator has three working

evaporation electrodes (see Fig. 7.3(b)). I mounted a boat on each of the three

electrodes: two for the evaporation, and one as backup in case one of the boats

broke.

For transmon junctions, we want the base pressure to be as low as possible

during evaporation. The evaporator usually can reach a base pressure of order

10−7 Torr after pumping overnight. However, the cryopump performance degraded

during the period when I was performing fabrications and was later replaced. This

affected the ultimate base pressure of the evaporator and how long the evaporator

could hold that pressure. As a result, I evaporated with the base pressure slightly

lower than 2 × 10−6 Torr. The incorporation of O2 in an Al film tends to increase

the superconducting gap and critical temperature Tc [211], but probably also leads

to more TLSs between the film and substrate.

For the first evaporation (see Fig. 7.4(b)), I used electrode 1 and evaporated

at an angle θ1 ≈ 10◦. I tried to keep the evaporation speed between 5 and 10 Å/s.

I aimed for a total film thickness between 300 to 350 Å according to the crystal

monitor. I note that because the electrode was not located directly underneath the

chip, the actual deposition angle could have been off by up to 5◦. There might also

have been a small alignment error. Additionally, as the crystal monitor was oriented

horizontally while the chip was tilted, the actual thickness of the film on the chip

would be less than what was measured on the monitor, by a factor of cos θ1.
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-θ2

Figure 7.4: The double-angle evaporation and oxidation sequence.
(a) The cross-section of the junction bridge before deposition, (b) first
Al deposition, (c) oxidation, and (d) Second Al deposition.
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After closing the shutter and switching off the power to electrode 1, I oxidized

the junction by bleeding a small amount of O2 gas into the chamber (see Fig. 7.4(c)).

For the junction parameters that I was aiming for, I found the optimal O2 pressure

to be between 170 and 200 mTorr, and oxidized for about 3 minutes. With the

current setup, it was hard to control the O2 pressure with great accuracy. If the

pressure was too low, I would oxidize longer and vice versa. I typically attempted

to keep the pressure × time product constant. At the end of the time period, I

repumped the chamber to base pressure.

For the second evaporation (see Fig. 7.4(d)), I used electrode 3 and evaporated

at an angle θ2 ≈ −25◦. I kept the same range of evaporation speed, and attempted

to extract as much Al as possible. This meant the thickness of the second layer

can vary between 400 to 800 Å according to the crystal monitor. Similar errors

in alignment and film thickness as I described in the first evaporation also applied

here.

For transmon05 200nm 0609A chip which I used in the measurements, I evap-

orated about 300 Å in the first deposition and about 500 Å in the second deposition.

In between the depositions, I oxidized the chip at 165 mTorr for 2 minutes 50 sec-

onds.

7.2.7 Lift-Off

I performed the lift-off process in the FabLab. I started by putting the chip in

an acetone bath for 5 minutes. I next put it in a heated bath of Remover PG [169].
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After 15 minutes, I took it out of the bath, sprayed it with IPA while it is in an IPA

bath. This removed most of the unwanted Al and e-beam resist. To remove any

remaining resist residue, I put the chip back inside the heated Remover PG bath for

another 15 minutes. I finished by rinsing it with IPA and then dried it using N2.

I then checked the chip for remaining resist residue by inspecting it under

an optical microscope. If needed, I would repeat the lift-off process. Typically

at the end, the surface of the sapphire looked clean. However, there could be some

nanoscale residue near the junction, which would not be observable under the optical

microscope (for example, as reported in Ref. [201]). Figure 7.5 shows photographs

of the transmon05 200nm 0609A chip I used in the experiment after lift-off. In

Fig. 7.5(b), the junction overlap is clearly visible.

7.2.8 Resistance Measurement

As a final check, I measured the resistance across the junction using the probe

station located in the sub-basement lab. To reduce chances of the junction blowing

up during measurement, I used as low current as possible, and connected the junction

in series to a known resistor. Additionally, I made sure to ground myself (using a

grounding strap) and the probe station as well as I could.

In the previous Section, I discussed that the desired range of junction critical

current IC is between 22 and 48 nA. The junction resistance RN in the normal state

and critical current IC are related by the Ambegaokar-Baratoff formula [231], given
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(a)

(b)

Figure 7.5: Optical pictures of transmon05 200nm 0609A chip after lift-
off process: (a) Under 100x magnification, where the junction is visible.
(b) Under 5x magnification, where the pads are visible.
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by

RNIC =
π∆

2e
, (7.2)

where ∆ is the superconducting gap. Although Eq. 7.2 describes the relation be-

tween RN and IC at superconducting temperatures, the junction resistance at room

temperature is comparable to RN and Eq. 7.2 should give a good estimate of critical

current IC . Assuming ∆ ≈ 170 µeV for Al, the range of RN I was aiming for was

between 6 and 12 kΩ. I measured a resistance of 6 kΩ for the transmon05 200nm -

0609A junction which was acceptable. After this measurement, I mounted the chip

was in the cavity.

7.3 3D Cavity

The transmon was mounted inside the 3d cavity SI-2(see Fig. 7.6). This was a

modified version of cavity SI-1that was used in the resonator experiments. Figure 7.6

shows the cavity with transmon05 200nm 0609A chip mounted. Cody machined this

cavity as well, which had a similar design and machining process as the ones used

for cavity SI-1, as detailed in Section 3.3.

There were several differences between the SI-2 and SI-1 cavities. Cavity SI-2

was machined from Al 6063 alloy, which should have fewer magnetic impurities.

The dimensions of the cavity were different as well, as shown in Table 7.2. This

resulted in different mode frequencies, with the SI-2 TE101 mode frequency at about

f101 = 6.3 GHz with no chip inside. Additionally, the smallest dimension b = 4 mm

allowed us to mount the chip in the standard orientation (see Fig. 7.6(b)).
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(a)

(b)

Figure 7.6: Pictures of aluminum cavity SI-2 with transmon05 200nm -
0609A chip mounted. (a) Both halves of the cavity, (b) The lower half
of the cavity with the chip mounted. In both photographs, the two
transmon pads are visible.
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Table 7.2: List of 3d cavity parameters. f101 is based on Eq. 3.2 assuming no chip
mounted inside the cavity.

Name Al Alloy a (mm) b (mm) d (mm) f101 (GHz)

SI-1 6061 25.4 5 35.6 7.3

SI-1 (modified) 6061 22.9 5 35.6 7.8

SI-2 6063 30.5 4 38.1 6.3

SI-2b 6063 30.5 4 38.1 6.3

The position of the input and output pins were also changed. In SI-1, the pins

were located at the node of the TE201 mode, while in SI-2, they were moved to the

node of TE102 mode. This resulted in extremely weak microwave coupling to the

TE102 mode and should reduce the coupling between the transmon and the TE102

mode, which was the second closest mode to the transmon. In addition to that, the

pins used in SI-2 were modified as well. For the input, I used the same pin type as

the ones used in SI-1. This gave an input coupling quality factor Qin ≈ 2× 105. For

the output, I used a longer and thicker pin (Fairview Microwave SC3778 connector

[232]) that gave a smaller output coupling quality factor Qout ≈ 5 × 104. The pins

were made from berylium-copper, coated with gold. I solder-tinned the larger output

pin so that the surface was superconducting at the refrigerator base temperature.

The imbalance between the input and output coupling resulted in the microwave

signal coming out faster and stronger on the output side, improving the measured

signal.

Cody also milled another hole through the cavity walls that allowed illumina-

tion from an optical fiber (see Section 7.5). I mounted the chip in the slot on the
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cavity and closed the cavity, using the procedure described in Section 3.3. With the

chip mounted, the TE101 mode frequency went down to about f101 = 6.1 GHz.

7.4 Electronics Setup

7.4.1 Setup Inside Dilution Refrigerator

Figure 7.7 shows the microwave setup inside the refrigerator for the transmon

illumination experiment described in Chapter 8. The wiring inside the refrigerator

was largely identical to the wiring used in the resonator experiments (see Section 3.4

and Fig. 3.8). The main difference was the isolator in the input line, right before

the cavity, was removed from the refrigerator and mounted in the microwave output

line of another dilution refrigerator, located in SB0331.

The microwave lines primarily consisted of semi-rigid UT-85-SS-SS coaxial

cable, with stainless steel inner and outer conductors. Some shorter segments used

flexible UT-85-Flexi, with silver-plated copper inner and outer conductors. At the

input line, Midwest Microwave cryogenic attenuators [179] were anchored to different

stages to reduce Johnson-Nyquist noise: 10 dB at the 4 K stage, 10 dB at the 700

mK stage, and 30 dB total at the mixing chamber. At the output line, two Pamtech

CTH1409KS isolators [180] were anchored at the mixing chamber to reduce noise

and other stray microwaves coming down the output lines, without attenuating the

output signal from the cavity. A Caltech CITCRYO4-12A HEMT amplifier was

anchored to the 4K stage, with a 3 dB cryogenic attenuator attached to the input

of the HEMT to prevent self-oscillation.
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Figure 7.7: Setup for microwave input and output lines in the dilution
refrigerator. The lines are either semi-rigid stainless steel UT-85-SS-SS
or flexible silver-plated copper UT-85-Flexi coaxial cable.
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7.4.2 Room Temperature Setup

Figure 7.8 shows the diagram for electronics setup at room temperature for

the transmon experiment described in Chapter 8 and Fig. 7.9 shows the rack that

contains most of the measurement instruments. In Fig. 7.8, instruments to the left of

the dilution refrigerator set the timing of the pulses and applied various microwave

signals, while the instruments to the right were used for readout. The instruments

were connected as shown to a 10 MHz reference signal provided by a Stanford FS725

Rb frequency standard [183]. As the frequency standard had a limited number of 10

MHz output ports, I daisy-chained the reference signal by using a 10 MHz output

signal from an instrument directly connected to the FS725.

An Agilent 33120A arbitrary waveform generator (AWG) [177] set the repe-

tition rate of the experiment, applying a TTL signal with frequency equal to the

repetition rate. Typically, the repetition rate was set at 1 kHz. This signal was then

used to trigger multiple Stanford DG535 pulse generators [183] that were used to

set the timing of the pulse and readout. I used three microwave sources, one Agilent

E8257D, one Agilent 83731B, and one Agilent 83732B [177]. Two sources were used

to apply pulses at the cavity and the qubit pulse, respectively, and were gated by

pulses from DG535. The last source applied a continuous signal for LO reference sig-

nal, with a frequency that was the same or slightly detuned to the cavity frequency,

depending on whether I was performing homodyne or heterodyne measurement (see

next Ssection). For photon number peak measurements (see Section 8.3.3), I added

an additional Agilent 83620B source (not shown in Fig. 7.8), but otherwise I used
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Figure 7.9: Photograph of rack that contains part of qubit pulsing and
readout setup.
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the aforementioned three sources. All sources, pulsers, and the AWG were con-

nected to a Dell Windows PC with a National Instruments PCI-GPIB card [184].

This allowed us to adjust the measurement parameters from the computer using

MATLAB.

The pulses from the cavity and qubit sources were combined using a MAC

Technologies C3205-30 directional coupler [233], with a 4 to 8 GHz frequency range

and 30 dB coupling. The combined pulse then passed through the screen room wall,

to the top plate of the refrigerator, where it was connected to the input line inside

the refrigerator.

The signal coming out of the output line of the refrigerator were then amplified

further by a Miteq AMF-3F-04000800-07-10P room temperature low-noise amplifier

[182] (4-8 GHz range and about 30 dB gain) and a Mini Circuits ZX60-14012L+

amplifier [178] (0.3-14 GHz range and 11 dB gain). The amplified signal was then

mixed with the LO signal using a Marki IQ0318L IQ mixer. The mixer had two

output ports for the mixed-down signal: the in-phase (I) port and the other for the

quadrature (Q) port. The signal from both outputs was passed through two identical

sets of low-pass filters, then amplified using two Stanford SR560 preamplifiers [183].

The gain, coupling, and filter settings of the amplifier depended on whether I was

performing homodyne or heterodyne measurements, as well as the rf power used.

For homodyne measurements, I used DC coupling and low-pass filtering, while for

heterodyne measurement, I used AC coupling and band-pass filtering. Finally, the

amplified I and Q signals entered a National Instrument BNC-2110 breakout box

[184], which was connected to a National Instruments PCI-6115 data acquisition
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Figure 7.10: Typical timing diagram for the cavity and qubit pulses for
each repetition for qubit state readout. Blue denotes measurement pulse
applied at the cavity frequency and green denotes qubit manipulation.

card (DAQ) [184] located inside the PC used for instrument control.

The DAQ digitized the I and Q signals, which was then recorded for later

processing and analysis. In addition to the two mixed-down signals, two more lines

were connected to the breakout panel. The first line supplied a pulse from one of the

pulse generators, which acted as a trigger for the DAQ. The other line carried a 5

MHz TTL signal from a second Agilent 33120A AWG. This signal set the acquisition

rate for the DAQ to be 5 Msamples/channel/s, as well as made sure that the DAQ

was connected to the 10 MHz reference clock. The DAQ should have a maximum

acquisition rate of 10 Msamples/channel/s, however I was not able get it to work at

this rate with an external reference clock somehow.

7.4.3 Pulsing and Readout Sequence

Figure 7.10 shows the typical pulsing sequence I used for qubit operations

and state readout. In each repetition, two microwave pulses were applied for state
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measurement. For low power/QND readout (see Section 6.3.1), the frequency of the

pulse was at the dressed cavity frequency in the single rf photon regime and the

pulse was approximately 80 µs long. For most of the measurements, I used a high

power/Jaynes-Cummings readout (see Section 6.3.2), the frequency of the pulse was

at the bare cavity frequency and the pulse was between 2 to 6 µs long, with most

of the measurements performed with 2 µs long pulses.

The first pulse was at the beginning of each repetition, while the second pulse

started 300 µs after the the beginning of the first pulse. I performed qubit operations

between the first and second pulses. After the second pulse, I let the system relax

thermally for 700 µs before starting another repetition. Hence the first pulse acted

as a reference pulse and should always measure a |g〉 state, with some background

|e〉 state population from thermal effects and other possible background effects. The

second pulse measured the excited state population after the qubit operations.

Given the timing of the measurement pulses, I set the overall repetition rate

to be 1 kHz. Prior to choosing this rate, I varied the timing between pulses and

repetition rates, with rates as low as 500 Hz, allowing for longer relaxation window.

However, I found no observable difference between measurement results taken with

lower rates. As a result, I chose the higher repetition rate (1 kHz) and this allowed

me to perform the measurements faster.

For the transmon illumination experiment, I typically performed three different

types of measurements for each refrigerator temperature T and optical intensity Iopt

value. Figure. 7.11 shows the timing diagrams for the three measurements. Typically

the first measurement I performed was qubit spectroscopy (see Fig. 7.11(a)), to find
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vary fspectroscopy
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time
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Figure 7.11: Timing diagram for different qubit measurements: (a) spec-
troscopy, (b) Rabi oscillation, and (c) relaxation (T1) measurements.
Blue denotes measurement pulse applied at the cavity frequency and
green denotes qubit drive pulse.
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the exact value of the qubit frequency fge for the given temperature and Iopt settings.

Here I applied 100 µs long pulse from the qubit source that ended just before the

beginning of the second cavity pulse. The frequency of the qubit source was varied

to sweep out a range around fge

Once fge was found, I set the qubit source frequency to be fge and measured

the Rabi oscillations (see Fig. 7.11(b)). Here I varied the length of the qubit pulse

(t in Fig. 7.11(b)), with the qubit pulse ending right at the beginning of the second

cavity pulse. As a result, for each different t value, I had to adjust the starting time

of the qubit pulse as well.

The final measurement was the qubit relaxation measurement (see Fig. 7.11(c)).

Here I typically set the length of the qubit pulse to be 50 µs, with drive power chosen

such that the qubit was in the 50-50 saturation state at the end of the pulse. In

this measurement, I varied the delay time between the end of the qubit pulse and

the beginning of the cavity pulse (t in Fig. 7.11(c)) by adjusting the starting time

of the qubit pulse.

I should note that in addition to the three types of measurements that I per-

formed, there are additional types of qubit coherence measurements. These include

Ramsey free-induction decay [234] and spin echo [235] measurements. However,

these measurements are more complicated and require well shaped qubit pulses.

For my measurements, I simply pulsed the microwaves using the internal gating of

the sources, which gave me limited pulse shaping capabilities. For pulse shaping,

other groups have used a very fast AWG or dedicated pulse shaping boards com-

bined with a set of mixers and filters [166, 189, 201]. Our group plans to acquire
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these in the near future.

7.5 Optical Illumination Setup

The setup for optical illumination of the transmon was almost identical to the

setup used in optical illumination of resonators described in Section 3.5. The setup

on the optical table at room temperature (see Fig. 3.10) and inside the refrigerator

were completely identical, and hence I will not repeat them here. I found that the

splitting ratio η between the branch going into the refrigerator and the branch going

into the power meter was η ≈ 0.74 when I measured it at the end of the cooldown.

I only used one illumination line, oriented perpendicular to the surface of

the chip. Since we were concerned with fiber vibrations affecting the resonance

frequency of the cavity (see Section 4.3), we decided to reduce the amount of fiber

protruding inside the cavity space. Cody machined a new Al mounting bracket, and

Jared secured the fiber to the bracket so that the end of the fiber was flush with

the wall of the bracket. This meant the end of the fiber was further away from

the chip, which resulted in a larger illumination spot diameter of dspot ≈ 5.2 mm,

comparable to the dimensions of the chip. The combination of the smaller splitting

ratio and the larger spot size meant that for the same optical power coupled to the

optical fiber, the optical intensity Iopt hitting the surface of the chip (see Eq. 3.4)

in the transmon measurement was about 25 times smaller than the intensity of

perpendicular illumination in the resonator experiments.
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7.6 Summary

In this chapter, I discussed the design and fabrication of a transmon which I

used for the experiments described in the next chapter. I also briefly discussed the

design and fabrication of the 3d cavity, which was similar to the 3d cavity used in

the resonator experiments. I then discussed the microwave setup, including wiring

inside the dilution refrigerator, the instrument setup for pulsing and readout, as

well as the pulsing and readout sequence. Finally, I briefly discussed the optical

illumination lines which are largely identical to the illumination line used in the

resonator experiments.
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Chapter 8: Transmon Results

In this chapter, I discuss the results of my measurements on the device called

transmon05 200nm 0609A device. I begin by discussing the initial characterization

of the circuit QED system using spectroscopy of the cavity and transmon. I then

discuss time dependent measurements of the transmon at 10 mK and no applied

optical power. I also discuss spectroscopy and time resolved measurements at in-

creased refrigerator temperature and applied optical power. I next discuss how the

transition frequency and characteristic times behave as a function of temperature

and optical intensity, and compare it with the prediction from known sources of

decoherence. Finally, I discuss the effects of pulsing the illumination on relaxation.

I note here that this section is from preliminary analysis of the data. Additional

detailed analysis will be needed to fully understand more aspects of the data.

8.1 Measurement Details

Device transmon05 200nm 0609A was measured inside the dilution refrigera-

tor in the Atoms on SQUIDs laboratory in Room 1305B of the Physics Building

between June 24 and September 10, 2015. The refrigerator base temperature dur-

ing the measurements was about 10 mK. The house chilled water failed on July 21,
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causing the pulse tube compressor to shut down and the mixing chamber to go up to

about 30 K before I could start condensing again. Hence, I divided the measurement

is divided into two sessions: before and after the water failure.

During the first measurement session, I initially used one µ-metal shield mounted

at room temperature outside of the refrigerator vacuum can, and tried to have the

screen room door closed during measurements. However, I observed that the cavity

peak frequency and linewidth fluctuated significantly. In particular, the bare and

dressed cavity peaks fluctuated by several MHz, which was much larger than the

linewidth. Sometimes the peak even appeared to vanish completely. On the other

hand, it was unclear whether the qubit peak was affected by these fluctuations. It

was possible that some of the jitter I observed in my earlier resonator measurements

(see Chapter 4) was related to these fluctuations. One related problem I encoun-

tered as that it was hard to perform a long set of measurements, as I would have to

adjust the measurement parameters when the frequencies drifted too much.

After further investigations, it appeared that the cavity frequency was affected

by curcumstances outside the refrigerator. These include opening and closing the

screen room door, or walking around or dancing on the screen room floor. The

effect appeared to be random in the sense that sometimes the peak was sharpest

when the door was fully open, sometimes it was sharpest when it was half open,

and sometimes it was sharpest when the door was closed. Often, I had to adjust

the door during measurements to find the optimal position. These observations

suggest that the fluctuations might be caused by either mechanical effects, i.e. poor

mechanical isolation between the refrigerator and the rest of the screen room, or
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magnetic effects, i.e. local fluctuations in magnetic field near the chip. Ben Palmer’s

group at LPS observed similar fluctuations in high Q cavities before adding more

magnetic shielding. This suggested that magnetic fluctuations were the likely cause.

Before starting the second session, while the refrigerator was at about 8 K,

with the help of Sudeep Dutta and Roberto Ramos, I added two additional µ-

metal shields outside the refrigerator. During the second session, I still observed

fluctuations on the cavity peak but the magnitude was much smaller, about 100

kHz maximum, which was less than the cavity linewidth. This was much more

manageable, and I did not need to interrupt the measurements very often. This

was consistent with magnetic fluctuations being improved by the addition of the

shielding. All of the results I present in this chapter came from the second session.

I mainly used the high-power Jaynes-Cummings readout (see Section 6.3.2) for

the qubit measurements. As discussed in Section 7.4.3, for each repetition I used two

measurement pulses: the first at the beginning acted as a reference, and the second

after the qubit operations acted as the actual measurement of the qubit state. I

define VAB as the measured voltage from the first pulse, and VCD as the measured

voltage from the second pulse, both averaged over many (typically 8000) repetitions.

In the Jaynes-Cummings readout, the difference between the two voltages should

be proportional to the excited state probability [205]. As the fluctuations were

still present, the averaged output signal from the qubit measurements still drifted

somewhat. However, I found that the fractional voltage difference δV/V , defined by

δV

V
≡ VCD − VAB

VAB
, (8.1)
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Figure 8.1: Periodic artifacts that could appear in qubit measurements:
(a) Periodic sawtooth pattern in average voltage in heterodyne measure-
ments. Blue curve is VAB and red curve is VCD. (b) Periodic pattern
that occasionally appear in spectrum in homodyne measureements. For
both plots, the feature at 5.096 GHz is the qubit g → e transition peak.

appeared to be unaffected by the fluctuations for a set applied cavity power. In this

chapter, I use δV/V as the measure of excited state probability. I typically chose

the cavity power such that δV/V was maximized. For homodyne measurements at

10 mK and no optical power, I used a cavity power of -5 dBm at the source for

readout.

For the first several weeks of measurements, I used a heterodyne Jaynes-

Cummings readout with the LO source frequency set 625 kHz higher than the

cavity source frequency. I observed that in addition to the random fluctuations,

the measured voltages VAB and VCD consistently followed what looked like a saw-

tooth pattern [see Fig. 8.1(a)], with a period of the pattern approximately 1 hour of

measurement time. As I used a DAQ acquisition rate of 5 Msamples/s, I captured

8 points for each oscillation of the mixed down signal. It was possible that the

sawtooth pattern was caused by sampling drift due to frequency errors between the

281



sources and the DAQ, which would be unexpected because all of them were basically

connected to the same 10 MHz Rb clock. The sawtooth pattern appeared to create

a similar periodic pattern in δV/V .

To eliminate this artifact, from about August 5, 2015, until the end of the

cooldown I used a homodyne readout with the LO frequency set at the bare cavity

resonance frequency. This appeared to remove the sawtooth pattern, although the

fluctuations remained. However, some spectroscopy measurements of δV/V still ap-

peared to exhibit a small oscillation in the background level [see Fig. 8.1(b)]. This

oscillation behavior appeared to have a period of about 1 hour of measurement time

as well, suggesting it was caused by the same issue as the original oscillation. How-

ever, this behavior did not always appear, and could appear or disappear between

spectroscopy measurements taken a few hours apart. While I did not observe this

behavior directly in the time dependence measurements, it’s possible this behavior

caused some sets of measurements to have larger scatter than than would otherwise

have been the case.

8.2 Initial Cavity Characterization

For the initial cavity characterization, I did not use the qubit measurement

setup described in Section 7.4.2. Instead, I used the VNA to measure the transmis-

sion S21 and varied the applied rf powers, similar to the resonator measurements

described in Section 3.4.

Figure 8.2 show the color map of |S21|2 in dB as a function of frequency and rf
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Figure 8.2: Map of the cavity |S21|2 as a function of frequency and
rf power applied by the VNA. The main cavity transition peaks are
indicated by the dashed lines.
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power applied by the VNA. Several features can be clearly seen. At high powers, the

peak frequency is located at 6.1268 GHz (black dashed line). This is the bare cavity

frequency ωc/2π. In Fig. 8.2, the bare cavity peak vanished below -40 dBm. Note

that due to the presence of the 30 dB directional coupler and slightly different lines

for the standard qubit readout (see Fig. 7.8), this power was roughly comparable to

the -5 dBm cavity power at the source I used for most of the qubit measurements.

At lower powers, the peak frequency is located at 6.1407 GHz (blue dashed

line). As there is no applied qubit drive, the qubit is at the ground state, and this

dressed frequency is given by ω̃r,g/2π = (ωr + χge)/2π (see Eq. 6.37). From these

frequency values, I extract χge/2π = 13.9 MHz.

Additionally, at low powers a faint peak at ≈ 6.1340 GHz (red dashed line)

was present. Most likely this peak is due to the dressed cavity transition when the

qubit is in the excited state ω̃r,e. The fact that it was visible implies the presence of

a background qubit excited state population. In this case, from Eqs. 6.36 and 6.38

I can extract χ/π = 6.7 MHz. Given χ and χge, I also find χef/2π = 21.1 MHz.

To show the behavior of the cavity transition peak in more detail, in Fig. 8.3

I plot the cavity spectrum as a function of frequency for several different Prf values.

For the y-axis, I use P2, which is the power measured at port 2 of the VNA, instead

of |S21|2. At the highest power (Prf = −25 dBm, blue curve), the bare peak appeared

to be Lorentzian. By fitting this peak, I found the total quality factor Q ≈ 3.2×104.

Since for the cavity Qin ≈ 2×105 and Qin ≈ 5×104, this meant the internal quality

factor Qi ≈ 2 × 105. This value was typical for the Al 3D cavities I used (see

Section 4.3), but lower than ones typically reported by other groups [49].
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Figure 8.3: Individual line traces showing measured power P2 at VNA
port 2 as a function of frequency f for several applied rf powers Prf .

With decreasing power, the bare peak started to get distorted before vanishing

completely. At the same time, the dressed peak started very broad, then slowly got

sharper with decreasing power. At the lowest power (Prf = −80 dBm, purple curve),

the extracted quality factor was Q ≈ 9.4×103. The fact that the Q was much lower

for the dressed peak suggests a significant addition of loss or dephasing due to

coupling to the qubit.

8.3 Qubit Spectroscopy

For qubit spectroscopy, I used a low-power dispersive readout initially to find

where the qubit transitions were located. For all further measurements I discuss

below, I used the high-power Jaynes-Cummings readout with the pulse timings
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Figure 8.4: Qubit spectroscopy at high (Pq = −20 dBm, blue curve) and
low (Pq = −40 dBm, red curve) qubit drive powers. The qubit transition
peaks are labeled.

discussed in Section 7.4.3.

8.3.1 Extraction of Qubit Parameters

Figure 8.4 shows the qubit transition spectrum for two different applied qubit

drive powers Pq. The blue curve corresponds Pq = −20 dBm and this spectrum

has two broad peaks and two sharp peaks, roughly regularly spaced. The red curve

corresponds to Pq = −40 dBm. In this lower power spectrum the sharp peaks

vanished, while the broad peaks have sharper width and shorter height. The broad

peaks correspond to the single-photon qubit transitions; the peak at 5.096 GHz is

the |g〉 ↔ |e〉 transition and the peak at 4.883 GHz is the |e〉 ↔ |f〉 transition.

The sharp peaks correspond to multi-photon qubit transitions, with the right sharp

peak corresponding to the two-photon |g〉 ↔ |f〉 and the left peak most likely
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corresponding to the two-photon |e〉 ↔ |h〉 transition.

I note here that these peaks are not the bare qubit peaks. As discussed in

Chapter 6, the qubit peaks are also shifted due to coupling to the cavity, and the

peaks shown in Fig. 8.4 are the dressed cavity peaks. This gives f̃ge = ω̃ge/2π =

5.096 GHz and f̃ef = ω̃ef/2π = 4.883 GHz. In Eq. 6.35, the dressed qubit transition

frequency is given by ω̃ge/2π = (ωge − χge)/2π, which I can use to extract the bare

|g〉 ↔ |e〉 transition frequency ωge/2π = 5.110 GHz. From the bare cavity and qubit

transitions, I get the detuning ∆ge/2π = (ωc−ωge)/2π = 1.017 GHz, and I can then

calculate the coupling strength between the cavity and the |g〉 ↔ |e〉 transition to

be gge/2π =
√

∆geχge/2π = 119 MHz.

Using χef/2π = 21.1 MHz as extracted from the cavity spectroscopy, and the

|e〉 ↔ |f〉 transition, I can similarly find ∆ef/2π ≈ 1.23 GHz and gef/2π ≈ 160

MHz. Here I assumed that the dressed |e〉 ↔ |f〉 transition was shifted from the

bare transition by the same amount as the |g〉 ↔ |e〉 transition. More accurate

estimates would require numerical calculation of the eigenvalues of the generalized

Jaynes-Cummings Hamiltonian with additional levels [236].

As discussed in Section 6.1, the anharmonicity (ωge − ωef )/2π in a transmon

is given by EC . From the spectroscopy, I find EC/h = 213 MHz. Using ~ωge =

√
8EJEC −EC , I can then extract EJ/h = 16.6 GHz. The values of EJ and EC , as

well as the coupling strength gge were within or very close to the range of expected

values as discussed in Section 7.1.

The fact that I observed the |e〉 ↔ |f〉 peak with standard qubit spectroscopy

was initially unexpected. This suggested that there was a significant background
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|e〉 state population at base temperature when no optical illumination was applied.

This was evident in both the qubit spectrum and the cavity spectrum. The likely

source was stray radiation hitting the cavity, similar to the effects I saw in Chapter 4.

I note here that for the transmon measurements, the 4 K hot finger was not present,

but there were other possible sources of background radiation, for example the still

shield at 700 mK. I did not use any additional shielding schemes to reduce the effects

of background radiation [45, 46]. Another possibility was that light in the cladding

of the fiber, directly illuminating the transmon. A third possibility was that there

was insufficient noise-filtering on the input and output microwave lines.

8.3.2 Peak Linewidths

In Fig. 8.4 the width of the qubit peak increased with increasing drive power.

This effect is called power broadening. Additionally, the height of the peak also

initially increased with increasing power, before saturating at highest powers. As I

discussed in Section 6.6, due to decoherence a strong continuous drive at the qubit

frequency will result in saturation at an excited state probability of 1/2.

The full-width half maximum (FWHM) of the qubit peak ∆f is given by [130,

221]

∆f =
1

πT2

√
1 + Ω2

RT1T2 +
1

πT †2
, (8.2)

where T1 is the relaxation time, T2 is the coherence time, T †2 is the inhomogenous

broadening time, and ΩR is the Rabi oscillation frequency. ΩR is related to the

applied qubit drive power Pq by ΩR ∝
√
Pq. The inhomogenous broadening time T †2
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Figure 8.5: Qubit peak linewidth ∆f vs qubit drive power Pq for ω̃ge/2π
peak (blue dots) and ω̃ef/2π (red dots). The black dashed line shows
the expected behavior in the limit of high drive power.

is related to low frequency fluctuations. At low powers Ω2
R � 1/T1T2, the FWHM

is

∆f =
1

πT2

+
1

πT †2
≡ 1

πT ∗2
. (8.3)

T ∗2 is defined as the spectroscopic coherence time, and is the lower limit of T2. At

high powers Ω2
R � 1/T1T2, the FWHM becomes ∆f ≈ ΩR

√
T1/T2 ∝

√
Pq.

I fit the ω̃ge/2π and ω̃ef/2π qubit resonances at different Pq values to a

Lorentzian. I did not take many measurements of the qubit spectrum at differ-

ent Pq during the second session, but Figure 8.5 shows the extracted linewidth for

the data I acquired. At high powers, ∆f for both ω̃ge/2π and ω̃ef/2π peaks appeared

to have the same width. I also compared the extracted widths to the expected ∆f

dependence for high powers (black dashed line), and they showed good agreement.

At the lowest powers, ∆f values were higher than the black dashed lines as would
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be expected. The lowest measured linewidth of |g〉 ↔ |e〉 transition was about 1.5

MHz at Pq = −50 dBm. This gave a lower limit of T2 of 210 ns, which turned

out to be much shorter than 2T1. This is consistent with a large contribution from

inhomogenous broadening or dephasing

8.3.3 Photon Number Peaks

As I discussed in Chapter 6, when there are n rf photons inside the cavity,

the dressed qubit frequency is shifted from the zero photon peak by 2nχ/2π (see

Eq. 6.33). For a distribution of rf photons, multiple photon peaks can be observed.

For a coherent drive with average photon number n̄, the expected probability dis-

tribution of the peaks follows a Poisson distribution [200].

To observe the photon number peaks, I applied a continuous tone using an

additional microwave source set at the dressed cavity frequency of ω̃r,g/2π = 6.1407

GHz (’cavity pump’), while performing qubit spectroscopy with Pq = −40 dBm.

Figure 8.6 shows spectra taken at three different cavity pump powers Pc. I com-

pare the data with a Poisson distribution of photon peaks (red curves), using the

extracted width of 1.4 MHz and n = 0 frequency from the previous section. I then

varied n̄ and χ to find best agreement. I found 2χ/2π ≈ 6.3 MHz, slightly smaller

than the value of 6.7 MHz I extracted from cavity spectroscopy. This value of χ

gave slightly higher χef/wπ ≈ 21.5 MHz and thus gef as well. I note here that the

periodic artifacts in the homodyne measurements I discussed in Section 8.1 resulted

in an apparent 6 to 7 MHz periodic structure in some spectra, comparable to χ/π
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Figure 8.6: Measured (blue dots) and fit (red curves) photon number
peaks in qubit spectrum for coherent distributions with average photon
number (a) n̄ ≈ 0.08 for no applied drive, (b) n̄ ≈ 0.5 for Pc = -40 dBm,
and (c) n̄ ≈ 1.0 for Pc = -35 dBm.
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which made it difficult to extract n̄.

In Fig. 8.6(a) I plot the qubit spectrum when no cavity pump was applied. I

observed a presence of a small 1-photon peak, corresponding to a background photon

population of n̄ ≈ 0.08. This suggested an 8% background probability of the cavity

in the 1-photon state. Some possible causes of this background probability were a

higher cavity temperature than base temperature due to imperfect thermalization,

the presence of the background radiation increasing the effective temperature of the

cavity (see Section 4.2.3), or insufficient filtering of the noise on the input and out-

put microwave lines. These are the same possible causes of the qubit’s background

excited state populations. An the two populations are similar. Assuming a Boltz-

mann distribution, an 8% 1-photon state probability corresponds to temperature of

T ≈ 120 mK for a 6.14 GHz resonance.

For higher cavity pump powers (see Fig. 8.6(c)), the position of the higher

number photon peaks, as well as the relative distributions, appeared to deviate

somewhat from the simplified low-power Jaynes-Cummings model. More sophisti-

cated models that include higher states of the qubit and higher order nonlinearities

[201] may be needed to explain this behavior.

8.4 Characteristic Time Measurements

8.4.1 Rabi Oscillation

Figure 8.7 shows the typical δV/V vs pulse length results of Rabi oscillation

measurements. While I observed an oscillation with an amplitude that decayed with

292



pulse length (ns)
0 100 200 300 400 500

δV
/V

-0.1

0

0.1

0.2

0.3

0.4

Figure 8.7: δV/V vs qubit pulse length for a typical Rabi oscillation
driven at frequency ω̃ge. The Rabi oscillation appears to be very dis-
torted and the saturation level of δV/V ≈ 0.25 appears to be far above
the 50% population of δV/V ≈ 0.15.
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time, it did not look like one expects. In particular, as the oscillation decayed away,

the output appeared to saturate at higher than 50%. Comparing the saturation

point in the 0.5 to 1 µs range with the saturated spectrum levels after a 100 µs

pulse, the saturation point appeared to also slowly increased from δV/V ≈ 0.25 at

0.5 µs to δV/V ≈ 0.5 at 100 µs.

The reasons for this unusual looking oscillation were unclear. One possibility

is that I ended up exciting higher levels in the qubit. It was possible that this may

have been caused by imperfect pulse shape, as I used the internal gating from the

sources instead of a dedicated board for optimal pulse shaping. Imperfect qubit

pulse shape may cause leakage to higher excited states [237]. Sudeep Dutta and I

checked the shape of the pulses using a Tektronix TDS8000B fast oscilloscope [238]

and found that the pulses from the source had a rise time of about 3 to 5 ns without

a noticeable overshot. This was much less than the apparent Rabi period. However,

this is so short it may have caused significant spectral broadening of the pulse, which

could have led to higher-level qubit transitions. This suggested that the pulse may

well have been the cause of the unusual oscillation. Another possible reason was

that this qubit appears to have a non-negligible background |e〉 state population as

observed in the spectroscopy, where e→ f transition peak height is comparable to

g → e transition peak height (see Fig. 8.4). This would have reduced the fidelity of

the Rabi oscillation behavior.

Even though the unusual oscillation made it hard for me to extract the relevant

Rabi oscillation parameters, I observed that when I varied the qubit drive power,

the apparent Rabi oscillation frequency roughly followed the expected dependence
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on power ΩR ∝
√
P , as discussed above. Additionally, if I assumed the envelope

of the oscillation still follow an e−t/T
′

dependence, I could extract a rough value for

the Rabi decay time of T ′ = 300 to 400 ns.

I observed similarly unusual Rabi oscillations at all temperatures and illumi-

nation intensities.

8.4.2 Qubit Relaxation

As the Rabi oscillation was unusual, as described in the previous subsection,

it was somewhat hard to set the proper timing for a π or π/2 pulse. Instead for

the qubit relaxation measurements, I measured qubit relaxation from the saturated

state after a 50 µs long qubit pulse. This should have left the device in a 50-50 mixed

state of |g〉 and |e〉. However, it is possible that the system was left with a small

population of higher level qubit states such as |f〉. A typical δV/V vs measurement

delay time result is shown in Figs. 8.8. Here I used Pq = −30 dBm. The data

points with negative time meant the measurement pulse started before the qubit

drive pulse ended, and below I fit starting from a time when I started observing a

rapid decrease in δV/V , which occurred around -0.2 µs.

As seen in Fig. 8.8(b), a semi-log plot of δV/V vs delay time is not a straight

line and thus Pe did not follow an exponential dependence of. Instead, it looked

like there were two exponential timescales, a short exponential timescales for ap-

proximately the first 1 µs, and a longer timescale after that. Thus I tried fitting the
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Figure 8.8: (a) Linear plot and (b) semilog plot of δV/V vs delay time
for typical relaxation measurements. Curves show fit to two models: red
dashed curves are sum of two exponentials as in Eq. 8.4 and green dotted
curves are quasiparticle fluctuation model as in Eq. 8.5.
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decay to a sum of two exponentials

δV

V
(t) = Ae−t/T1 + A′e−t/T

′
1 , (8.4)

where A and A′ are the exponential decay amplitudes, T1 the longer decay time,

and T ′1 the shorter decay time. The red dashed curve in Fig. 8.8 shows this fit,

with T ′1 = (0.86 ± 0.08) µs and T1 = (24.0 ± 2.0) µs. Eq. 8.4 would be roughly

what one expects if there is a small probability to be in a higher level qubit state

(|f〉 and higher) which is detected with high visibility but decays rapidly. With

this interpretation, T1 is the lifetime of the excited state of the qubit and T ′1 is the

lifetime of the higher levels.

Recently Pop et al. reported observation of a similar nonexponential decay in

their long-lived 3d fluxonium qubit [23]. They attributed this behavior to fluctua-

tions in the number of quasiparticle within the superconducting islands between the

Josephson junctions in their junction array. They fit the decay to the expression

Pe(t) = A exp
[
λ
(
e−t/T1,q − 1

)]
e−t/T1,r , (8.5)

where A is the decay amplitude, λ is the average number of quasiparticle in the is-

lands, T1,q is the relaxation time from a single quasiparticle, and T1,r is the relaxation

time from other sources of dissipation.

Unlike fluxonium, my transmon did not have superconducting islands. Nev-

ertheless, I fit Eq. 8.5 to the nonexponential decay in my device. Although the

superconducting volume of the transmon would be too high to have only a few

quasiparticles at one time, it could be plausible to have only a few tunnel through

the junction at one time. Attempting to fit the data in Fig. 8.8 to Eq. 8.5 (green
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dotted curves) gave λ = (0.91±0.05), T1,q = (1.22±0.14) µs, and T1,r = (24.7±2.1)

µs. Comparing the fits to Eqs. 8.4 and 8.5, the two curves are indistinguishable

within the fit region in Fig. 8.8 and the shirt and long time constants from each fit

are comparable. For the subsequent relaxation measurements, unless noted, I will

fit only to Eq. 8.5.

I note here that I performed relaxation measurements from the saturated state

at 10 mK with no applied optical powers multiple times. I always observed the

nonexponential behavior and the extracted decay times were quite repeatable, with

fluctuations comparable to the error. This was in contrast to the results by Pop

et al., who observed a nonexponential behavior and an exponential behavior for

identical measurements separated by several days [23].

I also attempted to perform relaxation measurements using 50 µs qubit pulses

with weaker drive powers such that the saturation level was lower than the ”50-50

saturation”. When the level was high enough such that I could observe the relax-

ation behavior, I also found nonexponential behavior with similar decay times. For

example, in Fig. 8.9, I showed two relaxation measurements. The black dots corre-

spond to Pq = −30 dBm (the same data as Fig. 8.8) and the blue dots correspond

to Pq = −45 dBm. For the lower power dataset, I extracted λ = (0.95 ± 0.07),

T1,q = (1.40 ± 0.21) µs, and T1,r = (27.4 ± 3.3) µs, which are very similar to the

higher power numbers.
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Figure 8.9: Comparison of two relaxation measurements with different
qubit drive powers. Black dots are data for Pq = −30 dBm with the
green curve the fit to data, and blue dots are data for Pq = −45 dBm
with yellow curve showing the fit to data. For both fit curves, I used
Eq. 8.5.
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8.5 Illumination Dependence

8.5.1 Measurement Details

For each illumination intensity Iopt, I performed qubit spectroscopy measure-

ments at several qubit drive powers, as well as Rabi oscillation and relaxation mea-

surements. As mentioned in the previous section, I mainly focused on the relaxation

measurements because the Rabi oscillation results looking unusual (see Fig. 8.7). I

note that for each Iopt value, I typically had to adjust the measurement rf power to

find the best δV/V ; I found that I had to increase Prf slightly with increasing Iopt,

from -5 dBm for Iopt = 0 to -2 dBm at maximum Iopt.

The range of optical powers I used was between 0.12 nW and 25 nW after

the ND filters were taken into account. This corresponded to optical intensities Iopt

between 4.3 and 860 aW/µm2 incident on the resonator. The power from the laser

could drift, and most of the optical powers I used were smaller than the resolution

of the power meter, which was about 1 nW. To check for drifts in the optical power

I used the same method I used in the resonator measurements (see Section 5.2.1)

which involved measuring the optical power without the ND filters before and after

a set of qubit measurements. If the power had drifted by 20% or more, I retook

that set. I had to do this several times during the cooldown. For the highest optical

powers (above 5 nW) I used, the power were resolvable by the power meter, which

meant I could check the power in real time during measurements.

I also observed that the frequency lock on the laser jumped to a different
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position two or three times over the approximately 2 weeks I took optical data on

the transmon. Although the lock jumped, I did not observe a significant power

change after the jumps. The cause of the lock jump was unclear, but probably due

to temperature or humidity changes in the lab or laser setup.

8.5.2 Qubit Spectroscopy

For each Iopt, I typically performed qubit spectroscopy at two qubit rf drive

powers Pq. For lower Iopt values, typically these were Pq = -50 dBm and -40 dBm.

For higher Iopt values, as the peaks became broader it became harder to observe

a qubit peak at these values, and I had to use higher Pq values. For the highest

intensity Iopt = 860 aW/µm2, I used Pq = -30 dBm and -20 dBm. The peaks

observed at these measurements were the dressed qubit peak ω̃ge/2π.

I fit the qubit spectra to a Lorentzian and extracted the frequency and linewidth

of the peak. Figure 8.10(a) shows the extracted ω̃ge/2π frequencies as a function of

Iopt. The frequency roughly decreased with increasing Iopt as expected. At the high-

est optical intensity the frequency shifted down by about 5 MHz from the Iopt = 0

value, corresponding to δωge/ωge ≈ −10−3. However, when I zoomed in at low Iopt

values (see Fig. 8.10(b)), I found that the frequency appeared to increase with in-

creasing Iopt at the lowest Iopt values. From Iopt = 0 to about 10 aW/µm2, ω̃ge/2π

increased by about 250 kHz (δωge/ωge ≈ 5 × 10−5) before starting to decrease at

about 15 aW/µm2. While the increase was only slightly higher than the error bars,

it appeared to be systematic with Iopt, suggesting that this increase was real instead
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Figure 8.10: (a) Extracted dressed qubit frequency ω̃ge/2π from fit vs
optical intensity Iopt at 10 mK. (b) Detailed view of (a) showing ω̃ge/2π
at low Iopt values.
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Figure 8.11: Extracted qubit peak linewidth ∆f vs Iopt at 10 mK.

of from random scatter in the data.

Figure 8.11 shows the extracted peak FWHM vs Iopt. Similar to the frequency,

the linewidth appeared to initially decrease with increasing Iopt, reaching a mini-

mum of ∆f ≈ 1.1 MHz at Iopt ≈ 20 aW/µm2 and increased with increasing Iopt

afterwards, with ∆f ≈ 11 MHz at the highest Iopt. I note here that for the qubit

drive powers Pq that I used, none of the peaks were saturated at the long-time pulse

50-50 value, there might have been some power broadening in the linewidths.

I note here that I did not observe evidence of photon number peaks in the

spectrum when optical illumination was applied to the transmon. For example, in

Fig. 8.12 I show a qubit spectrum taken for Pq = −30 dBm and Iopt = 300 aW/µm2,

along with the fit from which I extracted ω̃ge = 5.0937 GHz and ∆f = 6.2 MHz.

Since χ/π ≈ 6.3 MHz, the first photon peak would be at 5.0874 GHz and would
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Figure 8.12: Qubit spectrum for Pq = −30 dBm and Iopt = 300 aW/µm2.
Blue curve is data, red curve is fit of data to a Lorentzian.

result in an asymmetric peak. The peak appeared quite Lorentzian, but of course

there was also significant scatter and a small peak could have been present at 5.0874

GHz. I note that the optical illumination mainly illuminated the transmon which

had a very small volume and the power levels were so low that one would not expect

heating of the cavity with a much larger volume. Hence the fact that I did not

see photon peaks made sense, as I did not expect the cavity’s microwave photon

distribution to be affected by the optical illumination at the power levels I used.

8.5.3 Relaxation Times

I performed qubit relaxation measurements for similar Iopt values as the ones

used in the spectroscopy measurements in the previous section. For all optical

intensities, I observed nonexponential behavior similar to the example discussed in
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Figure 8.13: Comparison of two relaxation measurements with different
optical intensities: Black dots are data for Iopt = 0 with the green curve
the fit to data, and orange dots are data for Iopt = 170 aW/µm2 with
the yellow curve the fit to data.

Section 8.4.2. For example, in Fig. 8.13 I show δV/V vs delay time for no optical

illumination (the black points show same data that was discussed in Section 8.4.2)

and for Iopt = 170 aW/µm2 (orange dots). Here both the long and short decay

times for the illuminated case appeared shorter than those for the no illuminated

case, as expected (see discussion in Section 6.7).

Figure 8.14 shows the fit parameters I extracted as a function Iopt. The shorter

relaxation time T1,q decreased with increasing Iopt, from 1.2 µs to 0.2 µs at the

highest Iopt (see Fig. 8.14(a)). The longer relaxation time T1,r also decreased with

increasing Iopt, from about 30 µs to 5 µs at the highest Iopt (see Fig. 8.14(b)). The

average quasiparticle number λ was at about 0.9 for Iopt = 0, initially increased with

increasing Iopt, up to a maximum of about 1.4 at Iopt ≈ 30 to 80 aW/µm2, then
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Figure 8.14: Extracted relaxation fit parameters vs Iopt showing (a) short
relaxation time T1,q, (b) long relaxation time T1,r, and (c) average quasi-
particle number λ parameter from fit to Eq. 8.5.
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Figure 8.15: Extracted relaxation times T1,q vs T1,r for all optical inten-
sities Iopt.

gradually decreased with increasing Iopt to 0.5 at maximum Iopt (see Fig. 8.14(c)).

The intensity where λ was highest was comparable, if not exactly equal to the Iopt

value where the qubit frequency ω̃ge was highest in the spectrum. I note that this

variation of λ with Iopt does not make good physical sense, suggesting that this may

not be an appropriate model for my device.

As Figs. 8.14(a) and (b) show, the short and long the relaxation times have

a similar dependence on Iopt. In Fig. 8.15 I plot T1,q vs T1,r for all data points in

Figs. 8.14. It appears that T1,q increased with increasing T1,r, roughly linearly, up to

T1,q ≈ 1.2 µs and T1,r ≈ 20 µs. For T1,r values above 20 µs, T1,q may have flattened

out at 1.2 µs.
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8.5.4 Discussion of Illumination Dependence

If optical illumination only affected the loss and frequency of the qubit through

quasiparticles, and the quasiparticle tunneling picture followed the simplified picture

I described in Section 6.7, I would not expect the frequency to initially increase

with increasing illumination. It is possible that extending the model to include

different gaps on each side of the junction could reveal the cause of this behavior.

As the transmon was operated at low rf photon numbers, dielectric loss from one or

more TLSs might also have contributed significantly to the loss. The TLS effective

temperature could increase with illumination, and as I discussed in Chapter 2, an

increase in TLS temperature would result in an increase in resonance frequency and

decrease in TLS loss. The fact that the average quasiparticle number parameter λ

appeared to behave similarly to the qubit frequency suggests that it was possible

the frequency behavior was due to quasiparticles. However, this model does not

appear to be well-founded for my device and λ does not appear to correspond to

quasiparticle number.

In the fitting model, T1,q was supposed to be the relaxation time due to quasi-

particles and T1,r was supposed to be the relaxation time from other sources, not

including quasiparticles. However, for most of the data, the two relaxation times

appeared to behave similarly (see Fig. 8.15). This again suggests that this is not a

physically reasonable model for my system. In contrast, much of the behavior makes

sense if the fast exponential is due to the decay of a small population in higher levels

while the slow decay is the decay of the state |e〉, as both rates would depend on
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quasiparticle loss. λ may then be related to the initial relative populations of |e〉,

|f〉, and higher level states.

8.6 Temperature Dependence

8.6.1 Measurement Details

Similar to the previous section, for each refrigerator temperature I performed

qubit spectroscopy, Rabi oscillation, and relaxation measurements. While for the

illumination measurements I had to adjust the cavity measurement rf powers to find

optimal δV/V , for elevated temperatures this appeared to be unchanged, and I used

-5 dBm for all temperatures.

The range of temperatures I used was between 10 mK and 265 mK. At 235 mK

I also performed the same set of measurements with several applied optical powers,

and for these I had to adjust the cavity rf powers for each Iopt. The results from

these optical measurements are discussed separately in Section 8.6.4 below.

8.6.2 Qubit Spectroscopy

For each temperature, I typically measured the qubit spectrum at two or three

different qubit drive powers. I fit the spectra for the lowest power where the qubit

peak was visible. For the highest temperatures, the qubit peaks became asymmetric,

wider on the low frequency side (see Fig. 8.16 for example). This was consistent

with the presence of cavity photon number peaks, as for a thermal distribution at

309



f (GHz)
5.06 5.07 5.08 5.09 5.1

δV
/V

-0.05

0

0.05

0.1

0.15

Figure 8.16: Asymmetric qubit spectrum at 220 mK due to thermal
cavity photon peaks. Blue curve is the spectrum data, red curve is
spectrum fit to thermal distribution of photon number peaks at 220
mK.
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temperature T , the probability P (n) to find n photon in the cavity is given by

P (n) =
e−n~ω̃c,g/kBT

1− e−~ω̃c,g/kBT
, (8.6)

where the denominator is the normalization factor, and the cavity is at the dressed

frequency ω̃c,g/2π. When the peak appeared asymmetric, I fit the spectra to the

sum of the photon peaks with distribution given by Eq. 8.6 and a temperature equal

to the refrigerator temperature (solid red line in Fig. 8.16). I assumed χ/π = 6.3

MHz as in the photon peak measurements, and varied ω̃ge and ∆f . For example,

in Fig. 8.16 I have ω̃ge/2π = 5.0955 GHz and ∆f = 4 MHz. The resulting fits

were typically in good agreement with the data. However, I varied the parameters

by hand, the spectra at the highest temperatures were very noisy, the parameters

were rough estimates, and I didn’t attempt to find the uncertainty values for these

parameters.

Figure 8.17(a) shows the dressed qubit frequency ω̃ge/2π and Fig. 8.17(b)

shows the linewidth, both as a function of refrigerator temperature. In both plots,

blue dots are fit of the spectrum to a single Lorentzian peak and red circles were

from thermal photon peak fit. In both plots, the two dots at 220 mK were from two

fits to the same spectrum, hence both fit methods appeared to agree quite well at

least at 220 mK.

In Fig. 8.17(a), ω̃ge/2π appeared to slightly increase with increasing tem-

perature, up to a maximum of about 5.0965 GHz at 100 mK, before decreas-

ing with increasing temperature. At 265 mK, ω̃ge/2π was at about 5.0945 GHz

(δωge/ωge ≈ 3× 10−4). In Fig. 8.17(b), ∆f initially decreased with increasing tem-
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Figure 8.17: (a) Dressed qubit frequency ω̃ge/2π vs refrigerator
temperature.(b) Qubit linewidth ∆f vs refrigerator temperature. For
both plots, blue dots are fit to single Lorentzian peak and orange circles
were from thermal photon peak fit. The orange and blue dots at 220
mK were from the same spectrum.
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Figure 8.18: δV/V vs pulse delay time of a relaxation measurement at
160 mK (black dots) as well as fit to single exponential decay (yellow
curve), sum of two exponentials as in Eq. 8.4 (red dashed curve), and
quasiparticle fluctuation model as in Eq. 8.5 (green dotted curve).

perature, with the minimum width of around 1.1 MHz reached at about 150 mK.

Above 150 mK, ∆f increased with increasing temperature, with ∆f ≈ 15 MHz at

265 mK. I note here that the maximum ∆f in the temperature measurements was

comparable or even larger than the maximum ∆f in the illumination measurements,

but the maximum frequency shift δωge/ωge in the temperature measurements was

only about 1/3 of the maximum shift in the illumination measurements.

8.6.3 Relaxation Times

For refrigerator temperatures of 130 mK and lower, I observed a nonexpo-

nential relaxation behavior similar to the base temperature meaurements, and the
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relaxation could be fit well to Eq. 8.5. However, the uncertainties in the fit param-

eters grew with increasing temperatures as well (see Figs. 8.19 below).

For 160 mK and above, the relaxation curves fit well to Eq. 8.4 and 8.5 but

the parameters had significant uncertainties. For example, Fig. 8.18 shows a plot of

δV/V vs pulse delay time for a relaxation measurement at 160 mK. I fit the data

to Eqs. 8.4 (red curve) and 8.5 (green curve). The fit curves appeared to agree well

with the data and with each other, but the extracted parameters had significant

uncertainties, with T ′1 = (0.99 ± 0.49) µs and T1 = (5.8 ± 4.5) µs for Eq. 8.4 and

T1,q = (3.0± 2.1) µs, T1,r = (6.6± 11.5) µs, and λ = 2.5± 2.3 for Eq. 8.5. I also fit

the data in Fig. 8.18 to a single exponential decay. This also appeared to fit quite

well with T1 = (1.37 ± 0.07) µs and the uncertainty in T1 is reasonable. For even

higher temperatures, the single exponential fit the data well. This difficulty is what

one would expect if one tries to fit a double-exponential decay to a curve with a

single exponential decay.

Figure 8.19 shows the extracted fit parameters from relaxation measurements

at different temperatures. For 130 mK and below, I fit the results to Eq. 8.5,

while for above 130 mK, I fit to a single exponential decay with decay time T1. As

discussed above, the uncertainties in the extracted fit values, grew with increasing

temperature. Nevertheless, although the scatter is large, T1,q appeared to increase

with increasing temperatures up to 130 mK where I switched to a single exponential

fit (see Fig. 8.19(a)). Above 130 mK, T1 appeared to initially follow T1,q with

T1 ≈ 1.5 µs but decreased with increasing temperature to T1 ≈ 300 ns at 265 mK

(see Fig. 8.19(a)).
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Figure 8.19: Extracted relaxation fit parameters vs temperature. (a) T1,q

(blue dots) for temperatures 130 mK and lower and T1 (black dots) for
temperatures above 130 mK. (b) T1,r (red dots) for temperatures 130
mK and lower and T1 (black dots) for temperatures above 130 mK.
(c) parameter λ.
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T1,r appeared to decrease with increasing temperature from an average of 27

µs at 10 mK to about 10 µs at 130 mK (see Fig. 8.19(b)). λ increased with in-

creasing temperature from 0.9 at 10 mK to about 1.5 at 100 mK (see Fig. 8.19(c)).

Thus T1,q vs T1,r appeared to have an inverse dependence in the high temperature

measurements compared to the optical illumination measurements. Furthermore, it

is possible that Eq. 8.5 failed to fit at higher temperatures because T1,r became low

enough at higher temperatures, that the decay was dominated by T1,r.

8.6.4 Illumination Dependence at 235 mK

With the refrigerator temperature set at 235 mK, I applied optical illumination

on the qubit and performed qubit measurements for a few values of Iopt. Similar

to the higher temperature results when no optical illumination was applied (Sec-

tion 8.6.2), the qubit transmon peak appeared asymmetric due to cavity thermal

photon number peaks. However, due to the a large scatter in the data, it was hard

to fit to the same model I used and extract a good set of spectrum parameters,

especially at the highest Iopt values.

For the relaxation measurements, the δV/V vs pulse delay time results could be

fit well to a single exponential decay with the decay time defined as T1. Figure 8.20

shows the fit T1 values as a function of Iopt (red dots), compared to the T1,q values for

relaxation measurements at 10 mK (blue dots, the same as Fig. 8.14(a)). As shown

previously in Fig. 8.19(a), T1 ≈ 0.5 to 0.7 µs when no optical power was applied at

235 mK. For low optical intensities below Iopt ≈ 100 aW/µm2 where T1,q & 0.5 µs,
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Figure 8.20: T1 vs Iopt for relaxation measurements taken at 235 mK
(red dots) overlaid over the T1,q vs Iopt from 10 mK measurements (blue
dots).

T1 appeared to be minimally changed by Iopt. For higher intensities, T1 appeared to

follow the T1,q vs Iopt dependence at 10 mK, with slightly lower values. Assuming

the quasiparticle picture of Section 6.7, one might then estimate that Iopt ≈ 100

aW/µm2 corresponds to phonon effective temperature Teff ≈ 235 mK.

8.6.5 Discussion of Temperature Dependence

In the simple quasiparticle tunneling picture of Section 6.7, for a constant il-

lumination intensity Iopt (and hence phonon effective temperature Teff), T1 and ωge

should consistently decrease with increasing bath temperature Tb. The fact that the

short time T1,q increased and the long time T1,r decreased with increasing temper-

ature suggested that T1,q might be due to TLSs and T1,r which disagrees with the

discussion in Section 8.4.2 and 8.5.4. Similarly, the illumination measurements sug-
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gested (see Section 8.5.4) that both timescales were likely affected by quasiparticle

loss. These discrepancies again suggests that Eq. 8.5 model may not be appropriate.

8.7 Modeling Relaxation Time and Frequency Shift Behavior

8.7.1 Sources of Loss

Some of the parameters I extracted my from spectroscopy and relaxation mea-

surements had significant uncertainty, especially for the temperature dependent re-

sults (see Fig. 8.19). This makes it more challenging to distinguish different sources

of loss as it allows a much wider range of parameters to be used in the models.

Furthermore, the relaxation showed a decay with two characteristic decay times for

most of the measurements. It was not obvious whether one or the other relaxation

times, or both were of interest.

The sources of relaxation I initially considered included Purcell loss, coupling

toTLSs, and dissipation from quasiparticle tunneling quasiparticle tunneling. Some

of these were easy to pin down. For example, from the extracted parameters, I could

calculate the Purcell decay time using Eq. 6.47. Around the cavity single photon

occupation, the quality factor of the dressed cavity peak was Q ≈ 9400. This gave

a Purcell contribution from the TE101 mode of T1,Purcell = (∆ge/gge)
2(Q/ωc) ≈ 18

µs. I note that this value was actually shorter than the T1,r values at 10 mK under

no illumination and thus not consistent. However, the bare cavity peak had a

significantly higher quality factor at Q ≈ 3.2 × 104, which gave T1,Purcell ≈ 61 µs,

which was consistent with T1,r. Since the dressed states are superpositions of qubit
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and cavity states, the lower Q of the dressed cavity peak was likely due to coupling

to the qubit, or possibly other microwave modes with a short coherence time. A self

consistent analysis would need to be done and I suspect this will reveal that either

T1,q or T1,r is the true lifetime of the qubit. I note that both possible Purcell times

were much longer than the measured decay time of T1,q ≈ 1.2 µs.

I next consider if the relaxation time T1,q ≈ 1.2 µs at 10 mK and no optical

illumination was due to TLS. With this assumption I could use Eq. 6.49 to find

F tan(δ) = 1/ωgeT1,q ≈ 2.6 × 10−5. Using this value and Eq. 2.60 to calculate

the frequency shift as a function of temperature I found a shift of only about 15

kHz between 10 mK and 300 mK, much smaller than the observed shifts in the

resonance. Thus one conclusion was that the effect of TLS on frequency shift should

be negligible. Another conclusion was that T1,q was not consistent with TLS loss.

I note that there could still be a nonequilibrium quasiparticle and constant loss

components in the relaxation time, and thus these were upper limits on F tan(δ)

and frequency shift. In fact, since I observed a significant |e〉 state population in

qubit spectroscopy, it was likely that the quasiparticles in the qubit were hot, either

due to a background radiation or poor thermalization.

8.7.2 Nonequilibrium Quasiparticles

I simulated the loss and frequency shift due to quasiparticle tunneling using

the simplified tunneling model and the nonequilibrium quasiparticle simulation de-

scribed in Section 6.7.3. Unlike the resonator simulations, because I did not take rf
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Table 8.1: Parameters used in nonequilibrium simulations of the transmon.

Symbol Parameter Value Source

∆ superconducting gap 190 µeV simulation parameter

~ωge qubit energy in simulation 21 µeV closest 1 µeV multiple

(h× 5.07 GHz) to measured energy

A half of transmon Al surface area 2.45× 105 µm2 design parameter

V half of transmon Al volume 1.75× 104 µm3 design parameter

N0 single spin density of states 1.74× 1010 eV−1µm−3 Ref. [149]

at Fermi level

Ni/Ω
3
D atomic density/(Debye frequency)3 1.09× 1015 (eV µm)−3 Eq. 2.84

τ0 quasiparticle-phonon time 438 ns Ref. [150]

τφ characteristic phonon time 0.26 ns Ref. [149]

τe phonon escape time 0.2 ns simulation parameter

ε Al absorption coefficient ≈ 10% nominal

ω̃ge,0/2π baseline transmon frequency 5.096 GHz simulation parameter

Teff,0 effective temperature 163 mK simulation parameter

of background radiation (compare with T1,r)

T ′eff,0 effective temperature 200 mK simulation parameter

of background radiation (compare with T1,q)

EJ/h Josephson energy 16.6 GHz fit to spectrum

EC/h charging energy 213 MHz fit to spectrum

RN junction normal resistance 8.93 kΩ Eqs. 1.8 and 7.2

CΣ total parallel capacitance 91 fF Eq. 1.9
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absorption into account in Eq. 2.76, I did not need the measured quality factors as

inputs in the simulation. Table 8.1 shows the parameters I used in the simulation.

I note here that most of these parameters were from a preliminary analysis, and

further analysis is needed to see if better agreement with the data can be obtained.

In the simulation, the superconducting gap ∆ was an adjustable parameter but

single-valued i.e. the same on both junction electrodes, even though the difference

in ∆ between the two sides was likely greater than the grid size 1 µeV [211]. In the

simulations I used ~ωge = 21 µeV = h × 5.07 GHz, which was the closest integer

multiple of 1 µeV from the qubit transition frequency ≈ 5.1 GHz. As I discussed

in Section 6.7, for the simplified model I effectively simulated only one half of the

transmon, thus the Al surface area A and volume V were half of the transmon

surface area and volume. However, as I discussed in Section 4.2.3, the effect of

illumination was largely independent of the Al dimensions. Similar to the resonator

simulations (see Chapter 2), I used standard values for aluminum quasiparticle-

phonon characteristic scattering time τ0 = 438 ns [150] and phonon-quasiparticle

characteristic scattering time τφ = 0.26 ns [149]. The phonon escape time τe was an

adjustable parameter in the model, obtained from the optical power absorption. I

used an approximate Al emissivity of ε ≈ 10%. For the temperature of the phonon

bath Tb, I used the refrigerator temperature. In Chapter 6, I used the parallel

capacitance CΣ and the junction normal state resistance RN in the simulations.

Here CΣ was calculated from EC using Eq. 1.9. RN was calculated from EJ using

Eq. 1.8 and the Ambegaokar-Baratoff formula of Eq. 7.2. I used EJ and EC values

from the spectroscopy results. All of these parameters are summarized in Table 8.1.
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8.7.3 Temperature Dependence

Figure 8.21(a) shows the measured T1,r (red dots) and T1 (black dots) as a

function of refrigerator temperature along with T1 from the nonequilibrium sim-

ulation (green curve). For the chosen parameters, the simulated values appeared

to be flat and consistent with data up to about 130 mK. Above 130 mK, both the

simulated and measured values of T1 rapidly decreased with increasing temperature,

although the simulated values decreased faster. Figure 8.21(b) shows a comparison

between the measured ωge/2π (dots) and the expected ωge/2π (green curve) from

the nonequilibrium simulations as a function of refrigerator temperature. The sim-

ulated curve roughly followed the measured values, although with slightly less shift

than measured. It did not capture the apparent slight increase in frequency between

0 and 100 mK, but it was possible the increase was just due to fluctuations.

The typical value for the superconducting gap for aluminum is ∆ = 170 µeV.

In the simulations, I used ∆ = 190 µeV, which was about 10% higher. This value

was chosen to balance the discrepancy in the measured and simulated values of T1

and δωge/ωge. T1 appeared to agree to the data best for ∆ ≈ 200 to 210 µeV, while

δωge/ωge agreed best for ∆ ≈ 170 to 180 µeV. Superconducting gaps of ∆ ≈ 200

µeV and higher have been measured in Al-AlOx-Al Josephson junctions many times

before [211, 219, 239]. A higher superconducting gap in a junction is very typical if

the Al film is deposited under some ambient oxygen [211], which is likely for double

angle junction depositions.

In the simulations, I also needed to take into account the effects of background
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Figure 8.21: (a) Relaxation times T1,r (red dots) and T1 (black dots) as
a function of refrigerator temperature and (b) qubit transition frequency
ωge/2π as a function of refrigerator temperature. I compare data in both
plots to expected results (green curve) using nonequilibrium quasiparti-
cle simulation using Teff,0 ≈ 163 mK and other parameters in Table 8.1.
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Figure 8.22: Relaxation times T1,q (blue dots) and T1 (black dots) as a
function of refrigerator temperature. I compare data to expected results
(green curve) using nonequilibrium quasiparticle simulation using T ′eff,0 ≈
200 mK and other parameters in Table 8.1.

radiation represented by the effective temperature Teff,0 ≈ 163 mK. This value was

lower than the effective temperature Teff,0 ≈ 236 mK I found during resonator mea-

surements (see Chapters 4 and 5). This was expected because I removed 4 K hot

finger for the transmon measurements and this reduced the background radiation

level on the cavity. However, 163 mK was still relatively high and this suggests

further steps would be needed to shield the cavity and reduce the effective temper-

ature further. Of course, many other parameters were also different between the

resonator measurements and transmon measurements, hence this was not a perfect

comparison. I note that if I compare the measured T1,q with the calculated T1 from

nonequilibrium simulations I needed to use higher background effective tempera-

ture T ′eff,0 ≈ 200 mK (see Fig. 8.22) while other parameters shown in Table 8.1 are
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unchanged.

8.7.4 Illumination Dependence

To connect the applied optical intensity Iopt with the effective temperature

Teff, similar to the resonator analysis, I used Eq. 5.5 where

Popt(Teff) = Popt(Teff,0) + εAIopt. (8.7)

Here I used Teff,0 = 163 mK and assumed the emissivity ε ≈ 10%. In the nonequilib-

rium simulations, I used the Teff values shown in the plot Teff vs Iopt of Fig. 8.23(a)

and calculated using Eq. 8.7. In Chapters 4 and 5 I used τe ≈ 9 ns for a 215 nm

film, which gives τe ≈ 3 ns for a 70 nm film. To achieve power balance, I had to use

τe = 0.2 ns, which was an order of magnitude lower. However, this value was similar

to the τe values used by de Visser et al. [48] and within the possible τe values for

aluminum [151].

I used the nonequilibrium simulation to calculate T1 and ωge/2π for sev-

eral values of Iopt, and these simulations are compared to the measured values in

Figs. 8.23(b) and 8.23(c). While the measured values captured the general behav-

ior, the agreement was poor. The T1 from simulations were much lower than the

measured T1,r, while the simulated shifts in ωge/2π were much less than the data.

For a given Iopt, increasing Teff would result in better agreement in ωge/2π but worse

agreement in T1, and vice versa. Thus the values of Teff were chosen above to balance

the two.
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Figure 8.23: (a) Effective temperature Teff vs optical intensity Iopt cal-
culated using Eq. 8.7. (b) Relaxation time T1,r vs Iopt and (c) transition
frequency ωge/2π vs Iopt. I compare data in both plots to expected re-
sults (green curve) using nonequilibrium quasiparticle simulation using
Teff value from (a) and parameters in Table 8.1.
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8.7.5 Further Extensions to Model

The relatively poor agreement between the data and the simulation suggests

that something essential has been left out in the model. In Section 6.7.4 I briefly

discussed several possible extensions to the quasiparticle model in the transmon.

These include considering that the two Al layers may have different ∆, as well

as attempting to find the time dependence of the distributions f(E) and n(Ω) to

take microwave drive into account. So far, for simplicity, I have assumed that the

superconducting gap ∆ the same on both sides of the junction, but this is unlikely to

be the case. Furthermore, a difference in ∆ on the two sides would cause dramatic

changes in the tunneling resistance. This is the most likely shortcoming of the simple

model.

8.8 Pulsed Light Measurements

When optical illumination or rf drive is turned on or off, the quasiparticle

distribution f(E) will reach a new steady state distribution after a time on the

order of the recombination time τR. In the resonator measurements, I measured the

recombination time in the resonator’s Al film by measuring the change in the phase

of S21 as a function of time as the illumination is pulsed (see Section 5.3.3). A direct

analog for this measurement on a qubit would be performing a measurement of the

qubit spectrum as a function of time under pulsed illumination. This would require

a QND readout, which was prohibitively slow in the current measurement setup.

Instead, I performed relaxation measurements under a pulsed illumination.

327



(a)

2 μs 2 μscavity

98 μs

qubit

light

time
50 μs

t

to

power

3.91 ms - to

(b)

2 μs 2 μscavity

98 μs

qubit

light

time
50 μs

t

to

power

3.9 ms + t  - to

Figure 8.24: Pulse timing diagram for optical pulse experiments: (a) Re-
laxation measurements where the optical pulse turn-off time is fixed rel-
ative to cavity pulses. (b) Relaxation measurements where the optical
pulse turn-off time is fixed relative to qubit pulse.
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As before, the timing of the optical pulse was controlled by sending pulses to the

acousto-optic modulator. I used two different timing schemes, shown in Fig. 8.24.

Since the recombination time can be as high as 2 ms (see Section 5.3.3), I wanted

the optical pulses to be at least 1 ms to make sure the quasiparticle reached a steady

state distribution before turning off. This required a slower repetition rate, which I

set to 250 Hz, or one repetition for 4 ms for these measurements.

For the first set of measurements, I kept the optical pulse fixed relative to

the cavity rf measurement pulses with delay time to (the time difference between

the end of the optical pulse and the beginning of the second measurement pulse)

(see Fig. 8.24(a)). Here the optical pulse timing changed relative to the qubit drive

pulse over the course of the measurement. The length of the optical pulse was

3.91 ms−to, fixed over the course of a single relaxation measurement but varied for

different values of to.

In the second set of pulsed optical measurements, I changed the optical pulse

timing such that it turned off at fixed time relative to the qubit pulse instead (see

Fig. 8.24(b)). For these measurements, the optical pulse was set to end roughly a

duration to after the end of the qubit pulse. I kept the start time of the optical

pulse fixed. Since the qubit pulse changed over the course of the measurement, the

length of the optical pulse changed as well. If t is the delay time between the end

of the qubit pulse and the second measurement pulse, then the length of the optical

pulse is given by 3.9 ms+to − t.

The optical intensity was set at Iopt ≈ 35 aW/µm2. This intensity was mea-

sured for a continuous illumination, and may be different or drift when pulsed using
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Figure 8.25: δV/V vs pulse delay time for a relaxation measurement
under pulsed illumination using timing scheme shown in Fig. 8.24(a).
Red curve is fit of data to Eq. 8.8. Black dashed line is the offset value
obtained from fit.

the AOM. For continuous illumination, the measured relaxation times for this in-

tensity is T1,q ≈ 0.9 µs and T1,r ≈ 15 µs.

Figure 8.25 show a plot of δV/V as a function of the delay time t0 between

the qubit pulse and cavity pulse for the pulse timing given by Fig. 8.24(a) with

t0 = 200 µs. Unlike previous relaxation measurements, here δV/V does not appear

to reach zero for long times, but a constant nonzero value. This could be explained

by the fact that in continuous illumination measurements, I had to vary the cavity

drive power to find optimal δV/V . It could be that as the light was turned off, the

optimal point for the cavity power also changed over time. If the optimal power

for reading out the cavity changed, then it would mean the two cavity pulses had

different effective powers within the repetition, and this would give δV/V 6= 0 at

330



long delay times. To take this effect into account, I fit the relaxation δV/V to the

same form as Eq. 8.5, with an additional constant C such that

(δV/V )(t) = A exp
[
λ
(
e−t/T1,q − 1

)]
e−t/T1,r + C. (8.8)

In Fig. 8.25, the fit to Eq. 8.8 gave T1,q = (1.12± 0.11) µs, T1,r = (20± 9) µs, and

λ = 1.24± 0.10.

Figures 8.26 show the extracted fit parameters as a function of to for the timing

using Fig. 8.24(a). I expected for to → ∞ the fit parameters would approach the

values for Iopt = 0 (red dotted line) while for to → 0 they would approach the values

for continuous Iopt = 35 aW/µm2. Although I only had a few data points, T1,q

(Fig. 8.26(a)) and λ (Fig. 8.26(c)) appeared to roughly follow this behavior with

some spread. On the other hand, T1,r did not appear to follow any obvious behavior

with most of the values at 20 µs or lower. It is possible the addition of a constant C

in the fit, with a relatively large scatter in the δV/V vs t data, caused the extracted

T1,r to go down. More data and further analysis would be needed to come to a

definite conclusion.

I also performed a few relaxation measurements with the pulse timing given

by Fig. 8.24(b) where the light turned off some time to after the end of the cavity

pulse. If the change in quasiparticle distributions were instantaneous, one would

observe a sharp change in the behavior of δV/V vs t at t ≈ to. However, due to

an expected long recombination time I would expect a slower change. For to & T1,q

the signal δV/V was already very low at t ≈ to, and it was hard to observe any

changes. I also performed one measurement where to = 1 µs ≈ T1,q (see Fig. 8.27),
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Figure 8.26: Extracted relaxation fit parameters vs to in pulsed illumi-
nation measurements: (a) T1,q, (b) T1,r, and (c) λ. Red dotted line
are from the parameters for Iopt = 0 and green dotted line are from the
parameters for continuous Iopt = 35 aW/µm2.
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Figure 8.27: δV/V vs pulse delay time for a relaxation measurement
under pulsed illumination using timing scheme shown in Fig. 8.24(b).
Red vertical dashed line at t0 = 1 µs shows the approximate position of
the turn-off of the optical pulse.

and I did not observe any major changes there either. This might be because the

recombination time were much larger than T1,q (which should be the case), or the

data was too noisy to observe changes in T1,q.

8.9 Summary

In this chapter I presented my results from measurements on an optically

illuminated transmon. Qubit and cavity spectroscopies revealed that the device had

energy and coupling parameters very close to the design values. However, in the

qubit spectroscopy I also observed a significant |e〉 ↔ |f〉 transition peak. This

suggests that I had a high background |e〉 state population. The cavity may also

showed background qubit excited state population of about 8%.
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The time dependent measurements showed some deviation from the expected

behavior. The measurement fidelity was low and the Rabi oscillation measurements

showed unusual behavior including a 50-50 saturation level that appeared to slowly

increase over a time scale of tens of µs. In addiation, the qubit relaxation showed

non-exponential behavior. It could be fit to a quasiparticle fluctuation model based

on Ref [23] with two characteristic times T1,q ≈ 1.2 µs and T1,r ≈ 25 µs although

this picture does not appear to be appropriate for my device. It also fits well to the

sum of two exponentials, which suggests that there was a small population of higher

levels being excited.

When I applied optical illumination, the qubit frequency appeared to initially

slightly increase with increasing intensity Iopt before decreasing with increasing Iopt

as expected from the simple quasiparticle picture. Both relaxation times T1,q and

T1,r decreased with increasing Iopt as expected.

When I increased the temperature, the qubit frequency also appeared to ini-

tially slightly increase with increasing temperature before decreasing with increasing

temperature. Above about 220 mK, the qubit peak became asymmetric, consistent

with the cavity photon peaks picture with a thermal distribution. T1,q slightly in-

creased while T1,r decreased with increasing temperature. Above about 160 mK, the

relaxation measurements became a simple exponential with a single decay time T1.

I simulated the effect of illumination and temperature on the quasiparticles

using the simple junction picture described in Chapter 6 and calculated the expected

qubit frequencies and relaxation times. While the simulation captured the rough

behavior, the agreement was relatively poor. This suggests the model may need to
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be extended to include different superconducting gaps on each side of the junction.

Finally, I performed a few relaxation measurements with a pulsed illumination,

varying the delay time to between the turn off time of the light and the cavity

measurement time. T1,q appeared to depend on to, from the continuous illumination

value at low to to the no illumination value at high to.
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Chapter 9: Conclusions and Outlook

In this dissertation, I reported measurements on the effect of 780 nm opti-

cal illumination on two different superconducting devices. Below I will summarize

the results and discuss possible extensions to the work, as well as briefly describe

progress in building a superconductor-atom hybrid system.

9.1 Conclusions of Resonator Measurements

9.1.1 Summary of Results

In Chapters 4 and 5 I described measurements of the resonance frequency fr

and quality factor Q of an Al thin film lumped-element microwave resonator inside

a 3d aluminum cavity at temperatures down to 25 mK. I studied the dependence

of fr and Q on microwave drive power Prf, optical illumination intensity Iopt, and

refrigerator temperature T between 20 and 300 mK. At the base temperature of

25 mK with no illumination and for low microwave powers, both fr and Q showed

multiple branches. fr in particular appeared to jump randomly between branches

every several days. In the low rf power limit, Q rapidly increased with increasing

Prf. This behavior suggested that in the low rf power regime, the loss was dominated
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by coupling to a single or a few two-level systems (TLSs).

At higher rf powers, Q continued to increase with increasing Prf up to a maxi-

mum of about 2×106 at Prf = −45 dBm (corresponding to 〈n〉 ≈ 2×108 rf photons in

the cavity). At higher powers the peak was distortion. Under optical illumination,

the optically-induced loss caused Q to decrease with increasing Iopt and increase

with increasing Prf. The variation in Q due to Prf was very similar to the behavior

expected for loss from a distribution of two-level systems. This behavior suggested

the presence of optically activated TLSs, however I found that the loss was better

explained by the presence of nonequilibrium distribution of quasiparticles generated

by the illumination and excited by the microwave drive.

I developed a model for the nonequilibrium quasiparticle distribution follow-

ing the approach developed by Goldie and Withington [149], based on the kinetic

equations by Chang and Scalapino [147]. I extended their technique to include ef-

fects due to optical illumination. Using Parker’s heating model [107] I assumed the

optical illumination creates an effective source of phonons with energy higher than

twice the superconducting gap. I solved the the coupled quasiparticle-phonon rate

equations numerically and fit the simulation results to the measurements. The best

fit curves were in good agreement with the observed dependence of the resonator

quality factor Q and frequency shift δfr on temperature, microwave power, and op-

tical illumination. In the simulations, I had to include the presence of background

illumination with Teff ≈ 236 mK, which I attributed to blackbody radiation from

a 4K hot finger located a few inches from the cavity. This result confirmed the

importance of shielding a superconducting device from radiation and also revealed
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the importance of shielding the resonator from high-energy phonons produced by

such illumination.

9.1.2 Possible Improvements and Extensions

Measurements of the rf-dependence of the photo-induced loss in superconduct-

ing thin-films can be used to discriminate quasiparticle loss from TLS induced loss,

confirm optical absorption in a resonator, detect nonequilibrium quasiparticles, and

study quasiparticle dynamics at high rf-drive.

Examination of the kinetic equations suggest several methods for reducing

quasiparticle loss. Protecting the device from stray light [45, 46] and reducing the

emissivity of the device should obviously reduce loss. To be effective, the shielding

needs to protect the device not only from stray light and background blackbody

radiation, but also from phonons of energy > 2∆ created by the absorbed light

that cause pair breaking. Minimizing the kinetic inductance ratio will reduce the

sensitivity of loss and frequency shift to temperature changes and optical illumina-

tion. For kinetic-inductance detectors it is instead desirable to increase the optical

frequency shift sensitivity while keeping the loss low.

By performing quasiparticle simulations using different material parameters

[156], one may be able to identify optimal materials for different purposes. For

example, de Visser et al. has suggested that the rf-dependence of quasiparticle loss is

stronger for superconductors with a smaller superconducting gap [48]. Results from

such simulations could be compared to measurements of optically-induced and rf-
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dependent loss on resonators made from Nb, Ta, and TiNx. Also, my results suggest

that the use of quasiparticle traps or the use of materials with short quasiparticle

recombination times should reduce the quasiparticle density and its associated loss.

Finally, despite its complexities, I note that the model was still relatively simple in

its treatment of optical effects. I believe this approach can be extended to simulate

time-dependent behavior and can be improved by using a more complete model of

the optical absorption process [157, 158].

9.2 Conclusions of Transmon Measurements

9.2.1 Summary of Results

I fabricated an Al transmon qubit with a g → e transition frequency of about

5.1 GHz, mounted it in a 3d cavity with a TE101 mode frequency of 6.13 GHz. I

illuminated the transmon with 780 nm light from an optical fiber and measured the

qubit transition frequency and relaxation time as a function of illumination intensity

and temperature between 10 and 265 mK. Cavity spectroscopy measurements 10 mK

revealed the presence of a background |e〉 state population of about 8% and qubit

spectroscopy revealed a cavity photon excited state population of about 8% as well.

This suggests a qubit temperature higher than the refrigerator temperature or the

presence of background radiation. This may have been due to radiation from the

700 mK shield, optical photons in the fiber cladding, insufficient attenuation on the

input and output microwave lines, or insufficient cooling of the cold attenuators on

the input and output microwave lines.
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The Rabi oscillations showed unusual behavior where the 50-50 saturation

level appeared to slowly increase over time suggesting excitations to higher level

qubit states. The qubit relaxation showed non-exponential behavior which I fit to a

quasiparticle fluctuation model based on Ref [23] with characteristic times T1,q ≈ 1.2

µs and T1,r ≈ 25 µs for no illumination at 10 mK.

With increasing Iopt, the qubit frequency appeared to initially slightly increase

before decreasing. The decrease was expected from a simple quasiparticle tunnel-

ing picture. Both relaxation times T1,q and T1,r decreased with increasing Iopt as

expected.

With increasing temperature, the qubit frequency also appeared to slightly

increase from 10 mK to 100 mK before decreasing at higher temperatures. Above

about 220 mK, the qubit peak became asymmetric, consistent with a thermal dis-

tribution of cavity photon number peaks. Initially T1,q slightly increased while T1,r

decreased with increasing temperature. Above about 130 mK, the relaxation mea-

surements revealed a simple exponential with a single decay time T1.

I simulated the effect of illumination and temperature on the distribution

of quasiparticles using a simple junction picture and calculated the expected qubit

frequencies and relaxation times. While the simulation captured the rough behavior,

the agreement was relatively poor. This suggests the model had some incorrect

parameters or needed to be extended to include different superconducting gaps on

each side of the junctions.
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9.2.2 Possible Improvements and Extensions

As discussed above, the quasiparticle tunneling model only gave rough quali-

tative agreement but poor quantitative agreement with the transmon data. Further

analysis is needed to understand this discrepancy. Of course there might be other

sources of decoherence that need to be taken into account, for example TLSs or

coupling to other modes, but these are not expected to vary with optical intensity.

Two serious experimental complications were the presence of magnetic fluctua-

tions and a relatively high background excited state population. These suggest that

the refrigerator needs better magnetic and optical shielding. The group is currently

in the process of obtaining room-temperature and cryogenic magnetic shields and

copper thermal shields at the mixing chamber. This should improve both magnetic

and optical shielding at the same time. To reduce magnetic fluctuations further, it

is desirable to reduce the amount of magnetic materials near the device, for exam-

ple in the cavity connectors. To reduce background radiation further, we can add

additional layers of absorptive coating on the shields [45, 46].

The relaxation appeared to be limited by the background radiation, but it is

also important to have a clean substrate surface and metal film to reduce dielectric

loss [115]. SEM imaging of the junctions I fabricated revealed what appeared to be

resist residue around the junction, which can contribute significant loss. Developing

a better and cleaner fabrication process should reduce the effect of dielectric loss on

qubit decoherence.

The pulsing scheme I used provided very limited control of the shape of the
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pulses, which in turn limited the type of measurements that I could do. These can

be improved by using a dedicated pulse shaping board instead of just using the

internal gating of the source. It is also possible some of the unusual behavior in

the time-dependent measurements were caused by measurement issues, including

the sawtooth patterns observed in heterodyne measurements, the distorted Rabi

oscillation, and the nonexponential qubit relaxation. One way to improve the mea-

surement would be to use a faster data acquisition card. This would allow us to

perform heterodyne and homodyne measurements at higher sampling rate than what

I used (5 Msamples/s).

Finally, the models suggest that quasiparticle induced loss in superconducting

qubits may be reduced by using materials with two different gaps to form the tunnel

junction. Further analysis and experiments are needed to confirm this possibility.

9.3 Progress Towards Building a Hybrid System

Understanding the effects of illumination on resonators and transmons, and

designing possible schemes to mitigate photo-induced loss on the resonator are just

some of the steps towards building a hybrid quantum system that couples atoms to

superconducting devices. Based on the resonator measurements, Jared Hertzberg

and Kristen Voigt have redesigned the resonator setup such that the light absorption

has been greatly reduced. Compared to the setup I used, the new setup was also

closer to the design of the proposed hybrid system (see Fig. 1.3).

Jared also redesigned the resonator. To increase the coupling of the resonator
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to the microwave cavity, he added a 3d transmon-like dipole antenna structure. To

increase the effective coupling between the trapped atoms and the resonator, he also

redesigned the inductor into a single line inductor which reduced the inductance. To

keep the resonance frequency of the resonator the same, he increased the capacitance

of the interdigitated capacitor.

As the system is being cooled down from room temperature to base temper-

ature, thermal contraction will cause the relative position between the fiber and

the resonator to change. To control the relative position of the fiber at cryogenic

temperatures, the cavity and resonator is mounted on Attocube piezostages [103] to

allow movement on two axes, while the fiber is fixed.

In fact, Jared and Kristen have found that they can infer the relative position

between the fiber and the resonator by observing the response of the LC resonator

peak to illumination [240]. The illumination cross-section changes depending on the

position of the fiber, and is minimized when the fiber is aligned parallel to and in

the same plane as the surface of the chip and the inductor. As the illumination

intensity, and thus quasiparticle generation rate, are not uniform over the surface

of the resonator, quasiparticle diffusion needs to be taken into account to under-

stand the response. To understand their data, I helped Kristen and Jared develop a

quasiparticle diffusion model in the resonator using finite-element solver COMSOL

[188]. The relative position obtained from the resonator response can then be com-

pared with the absolute position of the cavity measured by PCB resonator sensors

positioned outside the cavity. Initial measurements by Kristen and Jared showed

that the resonance response as a function of position was roughly consistent with
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the quasiparticle model [240].

9.4 Final Remarks

In addition to the hybrid quantum system, I believe my results are of interest

to the field of microwave kinetic-inductance detectors (MKIDs) [105, 106]. MKIDs

use superconducting resonators as detectors for x-ray photons. In fact, many of the

analytical tools I used came from the MKID field, and I hope this work can be useful

for them as well.

The fact that quasiparticles were the source of optically-induced loss in a su-

perconducting film was not unexpected. What was unexpected, at least for me

initially, was that the quasiparticle loss in the thin-film resonator showed a compli-

cated dependence on rf power, temperature, and incident optical intensity, and the

rf power dependence appeared to be very similar to that from loss due to a distri-

bution of TLSs. It took us a while to finish the analysis of the resonator results

and there were a few detours and false starts. I believe we now have a reasonable

starting point for a detailed analysis of the transmon results and for other devices

that the group may study in the future, including a hybrid quantum system that

couples trapped atoms to a superconducting qubit.
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Appendix A: Building the Jacobian in the Nonequilibrium Quasi-

particle Simulations

As described in Section 2.3.4, the simulation to find the nonequilibrium quasi-

particle distribution requires the (2N + 1)× (2N + 1) Jacobian matrix given by

J(αl) =



∂(df1/dt)
∂f1

· · · ∂(df1/dt)
∂fN

∂(df1/dt)
∂B

∂(df1/dt)
∂n1

· · · ∂(df1/dt)
∂nN

...
. . .

...
...

...
. . .

...

∂(dfN/dt)
∂f1

· · · ∂(dfN/dt)
∂fN

∂(dfN/dt)
∂B

∂(dfN/dt)
∂n1

· · · ∂(dfN/dt)
∂nN

∂δPrf,ab

∂f1
· · · ∂δPrf,ab

∂fN

∂δPrf,ab

∂B

∂δPrf,ab

∂n1
· · · ∂δPrf,ab

∂nN

∂(dn1/dt)
∂f1

· · · ∂(dn1/dt)
∂fN

∂(dn1/dt)
∂B

∂(dn1/dt)
∂n1

· · · ∂(dn1/dt)
∂nN

...
. . .

...
...

...
. . .

...

∂(dnN/dt)
∂f1

· · · ∂(dnN/dt)
∂fN

∂(dnN/dt)
∂B

∂(dnN/dt)
∂n1

· · · ∂(dnN/dt)
∂nN


. (A.1)

Here I previously defined fj = f(Ej) and nj = n(Ωj), with Ej = j+ ∆− 1 µeV and

Ωj = j µeV.

In the simulations, I build the Jacobian matrix element-by-element, by taking

the partial derivatives of Eq. 2.90 and discretized versions of Eqs. 2.76 and 2.77.

Here I will briefly summarize the elements of the Jacobian. I note that Eqs. 2.76

and 2.77 contain multiple terms and I will describe each term separately.

In all of the equations, the energies E and Ω are written in units of step size

1 µeV and hence they are integers. This is also the case for superconducting gap

∆ and rf photon energy ~ωr. The dE and dΩ are artifacts from discretization of
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the integrals, and their values are the step size of 1 µeV. Also note that the allowed

values of the subscript j in fj and nj are integers between 1 and N . fj and nj are

assumed to be zero for values outside the evaluated range of E and Ω.

Partial Derivatives of dfj/dt

The right hand side of the rate equation of dfj/dt of Eq. 2.76 contains four

terms: the quasiparticle excitation from rf drive Gqp(E,ωr) and three sums. The

first two sums represent quasiparticle-phonon scattering and the last sum represents

recombination and pair breaking processes. Here I define the three sum terms as

fj,1, fj,2, and fj,3 respectively.

∂(dfj/dt)/∂fk

fk appears in the first (rf drive) term when Ek equals either Ej, Ej + ~ωr, or

Ej − ~ωr. Hence I have

∂Gqp,j

∂fk
=



−2B [h+(Ek, Ek + ~ωr) + h+(Ek, Ek − ~ωr)] , forEj = Ek

2B h+(Ej, Ej + ~ωr) = 2B h+(Ek − ~ωr, Ek), forEj = Ek − ~ωr

2B h+(Ej, Ej − ~ωr) = 2B h+(Ek + ~ωr, Ek), forEj = Ek − ~ωr

0, otherwise

(A.2)

For the scattering terms, if k 6= j, fk only appears in at most one term within

the sum, and as a result the partial derivative of the remaining terms within the

sum is zero. If k = j, fk appears in all terms, and the sum is preserved.
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Second term (fj,1):

∂(dfj,1/dt)

∂fk
=



0, for k < j

− 1

τ0(kBTc)3

∞∑
Ω=0

dΩ Ω2 h−(Ej, Ej + Ω) (nΩ + fj+Ω) , for k = j

1

τ0(kBTc)3
dΩ (Ek − Ej)2 h−(Ej, Ek) (1− fj + nk−j) , for k > j

(A.3)

I note that in practice the sum for j = k does not go to Ω =∞ but to N − j.

Third term (fj,2):

∂(dfj,2/dt)

∂fk
=



1

τ0(kBTc)3
dΩ (Ej − Ek)2 h−(Ej, Ek) (fj + nj−k) , for k < j

− 1

τ0(kBTc)3

j−1∑
Ω=0

dΩ Ω2 h−(Ej, Ej − Ω) (1 + nΩ − fj−Ω) , for k = j

0, for k > j

(A.4)

For the fourth term (fj,3), if k = j, fk = fj appears once in each of the terms

within the sum, except when Ω = 2Ej where it appears twice within that term. In

the end, I have

∂(dfj,3/dt)

∂fj
= − 1

τ0(kBTc)3

[
dΩ (2Ej)

2 h+(Ej, Ej) (fj + n2j)

+
∞∑

Ω=j−1

dΩ Ω2 h+(Ej,Ω− Ej)
(
fΩ−j−2(∆+1) + nΩ

) ]
(A.5)

I note the long subscript on one of the f ’s is because f0 corresponds to f(∆), and

hence fΩ−j−2(∆+1) corresponds to f(Ω − Ej). Also note that the sum, in practice

does not go to Ω =∞.
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Otherwise if k 6= j, fk only appears once in the sum when Ω = Ej + Ek

∂(dfj,3/dt)

∂fk
= − 1

τ0(kBTc)3
dΩ (Ej + Ek)

2 h+(Ej, Ek) (fj + nj+k) (A.6)

∂(dfj/dt)/∂B

In Eq. 2.76 of the paper, only Gqp depends on B, and the dependence is linear,

and hence it is straightforward to write

∂(dfj/dt)

∂B
=
Gqp,j

B
. (A.7)

∂(dfj/dt)/∂nk

Gqp is independent of nk, but the other three terms depend on it. In all three,

nk only appears in at most one of the terms within the sum.

Second term (fj,1):

∂(dfj,1/dt)

∂nk
= − 1

τ0(kBTc)3
dΩ Ω2

k h−(Ej, Ej + Ωk) (fj − fj+k) (A.8)

Third term (fj,2):

∂(dfj,2/dt)

∂nk
=


− 1

τ0(kBTc)3
dΩ Ω2

k h−(Ej, Ej − Ωk) (fj − fj−k) , for Ωk < En −∆

0, otherwise

(A.9)

Fourth term (fj,3):

∂(dfj,3/dt)

∂nk
=



1

τ0(kBTc)3
dΩ Ω2

k h−(Ej,Ωk − Ej)

×
(
1− fj − fk−j−2(∆−1)

)
, for Ωk > En + ∆

0, otherwise

(A.10)
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I note the long subscript at the second f on the right hand side where fk−j−2(∆−1)

corresponds to f(Ωk − Ej).

Partial Derivatives of δP

The right hand side of Eq. 2.90 only contains a single sum term and −Prf,ab,

which is a number.

∂δP/∂fk

fk appears four times in the sum over E, twice when E = Ek and once each

for E = Ek − ~ωr and for E = Ek + ~ωr. However, some of the terms cancel out

and this results in

∂δP

∂fk
= 8N0 dE B ~ωr[h+(Ek + ~ωr, Ek) ρ(Ek + ~ωr)

− h+(Ek − ~ωr, Ek) ρ(Ek − ~ωr)]. (A.11)

∂δP/∂B

The sum term in δP is proportional to B, and hence it is straightforward to

write

∂δP

∂B
=

4N0

∞∑
E=∆

dE Iqp(E)Eρ(E)

B
=

δP + Prf,ab
B

(A.12)
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∂δP/∂nk

Expression of δP is independent of nk, so this is straightforward and ∂δP/∂nk =

0 for all nk.

Partial Derivatives of dnj/dt

The right hand side of the rate equation of dnj/dt of Eq. 2.77 contains four

terms: the phonon generation term from optical illumination, two sums, and the

escape term to thermal bath. The first sum represents the quasiparticle-phonon

scattering and the second sum represents recombination and pair breaking processes.

Here I define the two sum terms as nj,1 and nj,2 respectively, and the escape term

as nj,3. I note that the optical generation term is independent of fk, B, and nk and

hence will not contribute to the Jacobian.

∂(dnj/dt)/∂fk

For the first sum term (nj,1), fk appears twice within the sum, when E =

Ek − Ωn and E = Ek. In the end I have

∂(dnj,1/dt)

∂fk
= − 2

πτφ0 ∆
dE
[
h−(Ek − Ωj, Ek) ρ(Ek − Ωj) (fk−j − nj − 1)

+ h−(Ek, Ek + Ωj) ρ(Ek)(nj + fk+j)
]

(A.13)

For the second sum term (nj,2), if Ωj < 2∆ there is nothing to sum, and the

term ∂(dnj,2/dt)/∂fk = 0.
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If Ek > Ωj−∆, fk does not appear in the sum, and hence ∂(dnj,2/dt)/∂fk = 0

as well.

Otherwise, fk appears twice in the sum, when E = Ek and E = Ωj −Ek, and

I can write

∂(dnj,2/dt)

∂fk
=

2

πτφ0 ∆
dE h+(Ek,Ωj − Ek) ρ(Ek)

(
nj + fj−k−2(∆−1)

)
(A.14)

Again, I note the subscript of f where here fj−k−2(∆−1) corresponds to f(Ωj − Ek).

The escape term is independent of fk and hence ∂(dnj,3/dt)/∂fk = 0.

∂(dnm/dt)/∂B

The expression for (dnj/dt) is independent of B for all nj, so this is straight-

forward and ∂(dnj/dt)/∂B = 0.

∂(dnj/dt)/∂nk

The expression for (dnj/dt) only depends on nj, and so for k 6= j I have

∂(dnj/dt)/∂nk = 0.

For k = j, the terms are nonzero.

First term (nj,1):

∂(dnj,1/dt)

∂nj
= − 2

πτφ0 ∆

∞∑
E=∆

dE h−(E,E + Ωj) ρ(E)
(
fE−∆+1 − fE+Ωj−∆+1

)
(A.15)

Again, I note the long subscript on both f ’s. Also, in practice, the sum only goes

to E = N instead of ∞.
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Second term (nj,2):

∂(dnj,2/dt)

∂nj
= − 1

πτφ0 ∆

Ωj−∆∑
E=∆

dE h+(E,E − Ωj) ρ(E)
(
1− fE−∆+1 − fΩj−E−2(∆−1)

)
(A.16)

As before, I note long the subscript on both f ’s. I also note that for Ωj < 2∆ the

sum contains zero terms, and the term ∂(dnj,2/dt)/∂nj = 0.

The third term (nj,3) is straightforward:

∂(dnj,3/dt)

∂nj
= − 1

τe
(A.17)
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S. Wünsch, and M. Siegel, “Losses in coplanar waveguide resonators at mil-
likelvin temperatures”, Appl. Phys. Lett. 96, 062503 (2010).

[138] M. Khalil, F. Wellstood, and K. Osborn, “Loss dependence on geometry and
applied power in superconducting coplanar resonators”, IEEE Trans. Appl.
Supercond. 21, 879 (2011).

[139] L. Faoro and L. B. Ioffe, “Internal loss of superconducting resonators induced
by interacting two-level systems”, Phys. Rev. Lett. 109, 157005 (2012).

[140] L. Faoro and L. B. Ioffe, “Interacting tunneling model for two-level systems
in amorphous materials and its predictions for their dephasing and noise in
superconducting microresonators”, Phys. Rev. B 91, 014201 (2015).

[141] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of super-
conductivity”, Phys. Rev. 106, 162 (1957).

[142] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity”,
Phys. Rev. 108, 1175 (1957).

[143] L. N. Cooper, “Bound electron pairs in a degenerate fermi gas”, Phys. Rev.
104, 1189 (1956).

[144] M. Tinkham, Introduction to superconductivity, 2nd Ed. (Dover Publications,
Mineola, NY, 1996).

[145] D. C. Mattis and J. Bardeen, “Theory of the anomalous skin effect in normal
and superconducting metals”, Phys. Rev. 111, 412 (1958).

[146] A. Rothwarf and B. N. Taylor, “Measurement of recombination lifetimes in
superconductors”, Phys. Rev. Lett. 19, 27 (1967).

363



[147] J.-J. Chang and D. Scalapino, “Kinetic-equation approach to nonequilibrium
superconductivity”, Phys. Rev. B 15, 2651 (1977).

[148] J.-J. Chang and D. Scalapino, “Nonequilibrium superconductivity”, J. Low
Temp. Phys. 31, 1 (1978).

[149] D. J. Goldie and S. Withington, “Non-equilibrium superconductivity in quan-
tum-sensing superconducting resonators”, Supercond. Sci. Technol. 26, 015004
(2013).

[150] S. Kaplan, C. Chi, D. Langenberg, J. Chang, S. Jafarey, and D. Scalapino,
“Quasiparticle and phonon lifetimes in superconductors”, Phys. Rev. B 14,
4854 (1976).

[151] S. B. Kaplan, “Acoustic matching of superconducting films to substrates”,
English, J. Low Temp. Phys. 37, 343 (1979).

[152] J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, “Effective tunneling
density of states in superconductors”, Phys. Rev. Lett. 10, 336 (1963).

[153] I. Giaever, H. R. Hart, and K. Megerle, “Tunneling into superconductors at
temperatures below 1◦ K”, Phys. Rev. 126, 941 (1962).

[154] Newton’s Method - Wikipedia, the free encyclopedia, http://en.wikipedia.
org/wiki/Newton’s_method, Accessed: 10/27/2015.

[155] T. Guruswamy, D. J. Goldie, and S. Withington, “Quasiparticle generation
efficiency in superconducting thin films”, Supercond. Sci. Technol. 27, 055012
(2014).

[156] T. Guruswamy, D. J. Goldie, and S. Withington, “Nonequilibrium super-
conducting thin films with sub-gap and pair-breaking photon illumination”,
Supercond. Sci. Technol. 28, 054002 (2015).

[157] A. Zehnder, “Response of superconductive films to localized energy deposi-
tion”, Phys. Rev. B 52, 12858 (1995).

[158] A. G. Kozorezov, A. F. Volkov, J. K. Wigmore, A. Peacock, A. Poelaert,
and R. den Hartog, “Quasiparticle-phonon downconversion in nonequilibrium
superconductors”, Phys. Rev. B 61, 11807 (2000).

[159] E. M. Purcell, “Spontaneous emission probabilities at radio frequencies”,
Phys. Rev. 69, 681 (1946).

[160] A. A. Houck, J. A. Schreier, B. R. Johnson, J. M. Chow, J. Koch, J. M.
Gambetta, D. I. Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, and R.
J. Schoelkopf, “Controlling the spontaneous emission of a superconducting
transmon qubit”, Phys. Rev. Lett. 101, 080502 (2008).

[161] C. Song, M. P. DeFeo, K. Yu, and B. L. T. Plourde, “Reducing microwave
loss in superconducting resonators due to trapped vortices”, Appl. Phys. Lett.
95, 232501 (2009).

364



[162] D. Bothner, T. Gaber, M. Kemmler, D. Koelle, and R. Kleiner, “Improving
the performance of superconducting microwave resonators in magnetic fields”,
Appl. Phys. Lett. 98, 102504 (2011).

[163] D. Bothner, C. Clauss, E. Koroknay, M. Kemmler, T. Gaber, M. Jetter, M.
Scheffler, P. Michler, M. Dressel, D. Koelle, and R. Kleiner, “Reducing vortex
losses in superconducting microwave resonators with microsphere patterned
antidot arrays”, Appl. Phys. Lett. 100, 012601 (2012).

[164] I. Nsanzineza and B. L. T. Plourde, “Trapping a single vortex and reducing
quasiparticles in a superconducting resonator”, Phys. Rev. Lett. 113, 117002
(2014).

[165] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D.
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