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The research presented in this dissertation contributes to the growing literature on 

applications of operations research models to problems in healthcare through the 

development and analysis of mathematical models for two fundamental problems 

facing nearly all hospitals: the single-day surgery scheduling problem and planning 

for triage in the event of a mass casualty incident. Both of these problems can be 

understood as sequential decision-making processes aimed at prioritizing between 

different classes of patients under significant uncertainty and are modeled using 

stochastic dynamic programming.  

Our study of the single-day surgery scheduling problem represents the first model 

to capture the sequential nature of the operating room (OR) manager‟s decisions 

during the transition between the generality of cyclical block schedules (which 



  

allocate OR time to surgical specialties) and the specificity of schedules for a 

particular day (which assign individual patients to specific ORs). A case study of the 

scheduling system at the University of Maryland Medical Center highlights the 

importance of the decision to release unused blocks of OR time and use them to 

schedule cases from the surgical request queue (RQ). Our results indicate that high 

quality block release and RQ decisions can be made using threshold-based policies 

that preserve a specific amount of OR time for late-arriving demand from the 

specialties on the block schedule. 

The development of mass casualty incident (MCI) response plans has become a 

priority for hospitals, and especially emergency departments and trauma centers, in 

recent years. Central to all MCI response plans is the triage process, which sorts 

casualties into different categories in order to facilitate the identification and 

prioritization of those who should receive immediate treatment. Our research relates 

MCI triage to the problem of scheduling impatient jobs in a clearing system and 

extends earlier research by incorporating the important trauma principle that patients‟ 

long-term (post-treatment) survival probabilities deteriorate the longer they wait for 

treatment. Our results indicate that the consideration of deteriorating survival 

probabilities during MCI triage decisions, in addition to previously studied patient 

characteristics and overall patient volume, increases the total number of expected 

survivors.  
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Chapter 1. Introduction 

The costs associated with the healthcare system have risen dramatically in recent 

years, and the increased public scrutiny to which the system has been subjected has 

been accompanied by increased attention from operations researchers and systems 

engineers (Valdez et al. 2010). Research in this area has touched on nearly all aspects 

of the healthcare system, with particular emphasis being given to problems in hospital 

operations management and public health administration. This dissertation 

contributes to this growing body of research through the development and analysis of 

mathematical models for two fundamental problems facing nearly all hospitals: the 

single-day surgery scheduling problem and planning for triage in the event of a mass 

casualty incident (MCI). While surgery scheduling is purely a hospital operations 

management problem, mass casualty response planning lies at the intersection of 

hospital management and public health disaster management. As the following 

chapters will demonstrate, both problems can be understood as sequential decision-

making processes aimed on prioritizing between different classes of patients under 

significant uncertainty and can be modeled using stochastic dynamic programming 

(SDP). In addition to generating meaningful insights into the surgery scheduling and 

MCI triage problems, our analyses highlight the contributions that SDP models can 

make to the many sequential decision-making processes that permeate the delivery 

and management of healthcare. 

1.1. Overview of Problems 

The Single-Day Surgery Scheduling Problem 

The problem of scheduling surgical procedures in hospital operating room (OR) 

suites has received extensive treatment in the operations research literature. The 

research presented in Chapters 2 through 4 contributes to these efforts by modeling 

and analyzing a fundamental, but previously understudied, interaction within surgery 

scheduling systems. In particular, our research is the first to explicitly model the 

transition from the generality of cyclical block schedules (which assign operating 

rooms to surgical specialties) to the specificity of the surgical schedule on the day of 



 

 2 

 

surgery (which has individual patients assigned to specific ORs at specific times of 

day). Our analysis of this transition begins with a case study of the scheduling system 

at the University of Maryland Medical Center (Chapter 2) and continues with the 

development and analysis of a SDP model for the OR manager‟s decision-making 

process throughout this transition (Chapters 3 and 4). In particular, the case study 

reveals the importance of the OR manager‟s decisions to release unused blocks of OR 

time originally allocated to specific specialties and use them to schedule cases off of 

the surgical request queue. Our mathematical and computational results show how 

these decisions can be optimized using threshold-based block release and request 

queue policies. 

Mass Casualty Incident Triage 

The development of mass casualty incident (MCI) response plans and protocols 

has become a priority for hospitals, and especially emergency departments and 

trauma centers, in recent years. Research in this area is focused on how to effectively 

deliver life-saving medical care to a potentially large number of severely wounded 

casualties that will die if not treated promptly. Central to all MCI response plans is 

the triage process, which sorts patients into different categories in order to facilitate 

the identification and prioritization of those who should receive immediate treatment. 

While the majority of the medical literature on MCI triage is based on the personal 

experiences of trauma physicians and retrospective statistical analysis of past events, 

this area is beginning to receive more attention from operations researchers (see 

Chapter 5). Our research contributes to this trend by extending an existing model that 

approaches triage as a multi-class scheduling problem for “impatient” jobs (that is, 

jobs that will abandon the system prematurely if forced to wait too long for service). 

Our research in Chapter 6 incorporates into the existing models the important trauma 

principle that patients‟ long-term (post-treatment) survival chances deteriorate the 

longer they are forced to wait for treatment. Our results indicate that the consideration 

of deteriorating survival probabilities during MCI triage decisions increases the total 

number of expected survivors. 
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1.2. Stochastic Dynamic Programming in Healthcare 

Healthcare decision-makers, especially in areas of hospital management and 

public health administration similar to those studied here, are rarely fortunate enough 

to have all necessary information made available to them at once. As a result, their 

decisions occur sequentially as information becomes available and situations around 

them change. As our analyses will demonstrate, SDPs are well-positioned to model 

these types of problems because of the explicitly sequential nature of the decision 

policies they produce. However, working with SDPs, and turning them into 

meaningful policy tools, can be potentially cumbersome for a number of reasons. 

First, the “curse of dimensionality” often means that realistic-sized problems are 

computationally intractable. Second, optimal SDP policies are often large, complex 

structures (reflecting the underlying state and decision spaces), and it can be difficult 

to turn these structures into meaningful insights that can be effectively communicated 

to decision-makers. This final point is particularly crucial in the area of healthcare, 

where intuitive and flexible solutions are needed in order to gain the support of 

stakeholders. 

The research presented in this dissertation develops and tests exact and 

approximate solution procedures to SDPs that model the processes of sequential 

decision-making under uncertainty common to both of the problems described above. 

As will be discussed below, demand for elective surgery is naturally categorized 

according to the requesting surgical specialty (e.g., orthopedic) and the resulting 

management decisions focus on prioritizing between these categories in the face of 

the uncertain timing and quantity of this demand. In contrast, mass casualty incidents 

enforce no natural categorization, and triage during MCIs becomes a problem of 

sorting large numbers of patients into treatment categories and prioritizing between 

these categories. Our SDP formulations of these problems are no exception to the 

concerns raised above, and a recurring theme throughout our study of both problems 

is the use of special cases, theoretical structural results, and policy maps to generate 

meaningful insights that lead to high quality and intuitive heuristic procedures.  
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Chapter 2. Surgery Scheduling: Literature Review 

and Case Study 

Research has shown that operating room (OR) scheduling plays a central role in 

determining hospital occupancy levels (McManus et al. 2003). Furthermore, the OR 

suite is known to be the most resource-intensive and profitable unit of a hospital 

(Macario et al. 1995). For these reasons, among others, the problem of scheduling 

surgical patients into operating rooms has received a great deal of recent attention in 

the operations research and management science literature. In a recent review of the 

literature on OR planning and scheduling, Cardoen et al. (2010) find nearly 250 

manuscripts covering a large number of different problem variations, with over half 

of these contributions occurring in the last ten years. At its core, the surgery 

scheduling problem, in all its variations, involves the allocation of a fixed amount of 

resources (ORs, hospital staff) under uncertain demand. Like other scheduling 

problems, surgery scheduling approaches hope to make more efficient use of existing 

resources. However, as the literature and case study discussed below demonstrate, the 

large number of stakeholders and contentious nature of surgery scheduling introduce 

complexities that help to distinguish it from other scheduling problems. 

The version of the surgery scheduling problem presented in this dissertation is 

focused on how operating room managers prioritize between different classes of 

surgical demand in the development of the schedule for a single day in an OR suite. 

In particular, this prioritization informs how managers schedule cases off of surgical 

waiting lists, or request queues. A case study of the surgery scheduling system at the 

University of Maryland Medical Center in Baltimore shows this prioritization to be 

part of a dynamic, sequential decision-making process, while the relevant literature 

either ignores this aspect of the problem or models it statically. The bulk of this 

chapter is devoted to a review of this literature and the results of the case study. These 

efforts indicate that surgery scheduling decisions must take into account surgeons‟ 

preferences and satisfaction in addition to traditional objectives such as maximizing 

OR utilization and reducing instances of overcapacity. The final section discusses 
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these insights and uses them to motivate our proposed model for the single-day 

surgery scheduling problem, which we present and analyze in Chapters 3 and 4. 

2.1. Literature Review 

Many hospitals schedule their OR suites using cyclic master, or block, surgery 

schedules, in which available OR space is assigned to specific surgical specialties, or 

service lines. For hospitals using block schedules, the literature on elective surgery 

scheduling describes the problem as consisting of three stages: (1) determining the 

amount of OR time to allocate to various surgical specialties, (2) creating a block 

schedule implementing the desired allocations, and (3) scheduling individual patients 

into available time (Blake and Donald 2002, Santibañez et al. 2007, Testi et al. 2007).  

The first stage is referred to as case mix planning, and decisions at this stage 

typically reflect the long-term strategic goals of hospital management, such as 

meeting the demand for surgical specialties‟ services, achieving desired levels of 

patient throughput, or maximizing revenue (Blake and Carter 2002, Gupta 2007, 

Santibañez et al. 2007, Testi et al. 2007). The second and third stages represent 

medium- and short-term operational decisions, but differ markedly in their objectives. 

Block scheduling models have traditionally focused on implementing desired 

allocation levels (Blake and Donald 2002), but are moving toward a focus on leveling 

hospital bed occupancy and minimizing overcapacity (Beliën and Demeulemeester 

2007, van Oostrum et al. 2008). Research on individual patient scheduling, including 

patient selection, room placement, and sequencing, typically aims to minimize patient 

delays or maximize OR utilization (Denton et al. 2007, Guinet and Chaabane 2003). 

The large number of stakeholders involved in surgery scheduling has also motivated a 

number of multi-objective models for both block scheduling and individual patient 

scheduling (Beliën et al. 2009, Blake and Carter 2002, Cardoen et al. 2009, 

Ozkarahan 2000). 

Research on Block Schedules 

As mentioned above, earlier research into creating block schedules focuses on 

implementing the allocation levels specified during case mix planning. Both Strum et 
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al. (1999) and Dexter et al. (1999b) use statistical analyses of historical hospital data 

to predict the number of hours surgical specialties should be allocated. In two related 

papers, Blake and Carter (2002) and Blake and Donald (2002) allocate available 

operating room time to different surgical specialties to maximize hospital profitability 

and meet surgeons‟ demand for OR space. Specifically, Blake and Carter use a goal 

programming model to determine the desired case mix, while Blake and Donald use 

integer programming to determine a block schedule that meets these specifications. 

Samanlioglu et al. (2010) use a similar integer programming approach to determine 

block schedules that meet surgeons‟ demand levels. 

More recent research on block scheduling builds on the findings of McManus et 

al. (2003), which state that much of the variability in hospital bed occupancy levels is 

caused by imbalances in the surgical schedule. This research suggests that hospitals 

faced with overcrowding and high rates of patient diversion (i.e. patients being turned 

away due to lack of available beds) can reduce the occurrence of these problems by 

optimizing their block schedules. A subsequent wave of research addresses this issue 

by incorporating patients‟ lengths of stay into mathematical programming models and 

heuristic procedures aimed at leveling hospital bed occupancy and minimizing 

overcapacity (Beliën and Demeulemeester 2007, Chow et al. 2008, Price et al. 2011, 

Santibañez et al. 2007, Testi et al. 2007, van Oostrum et al. 2008). A final group of 

papers focuses on finding block schedules that minimize the amount of time patients 

have to wait for surgery (Tanfani and Testi 2010, Zhang et al. 2009). 

Research on Individual Patient Scheduling 

All hospitals, regardless of whether or not they use block schedules, must solve 

the problem of scheduling individual patients into specific OR time. For this reason, 

this stage of surgery scheduling benefits from a more robust literature than the earlier 

stages. Our review of this portion of the literature touches on the primary problem 

variations and methodologies. For a more thorough review, please see Cardeon et al. 

(2010). In general, patient scheduling studies can be categorized based on their 

consideration of the following three decisions: choosing which surgical cases to 

schedule, assigning cases to ORs on specific days, and sequencing cases within 
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specific ORs. Typically either the first two or last two of these decisions are modeled, 

although some research focuses more narrowly on just one of these decisions. Based 

on which subset of the decisions is being considered, scheduling objectives range 

from minimizing patients‟ waiting times to maximizing OR utilization and reducing 

overtime. While each of the studies considers different sets of realistic constraints 

(such as the consideration of an underlying block schedule, recovery and downstream 

bed availability, limitations on patient waiting times, and surgeons‟ preferences) and 

different levels of stochasticity (with respect to case durations), the primary 

objectives remain fairly consistent throughout. 

Ozkarahan et al. (2000) use an integer goal programming approach to select 

which patients to schedule and in which ORs to schedule them on a single day. Testi 

et al (2007) study a problem with a similar scope using discrete event simulation to 

judge the quality of different scheduling policies. Other research that focuses on 

selecting which patients and which ORs does so over the course a longer planning 

horizon (typically one week) (Ogulata and Erol 2003, Lamiri et al. 2008a,b, Min and 

Yih 2010). Each of these papers relies on a multi-stage model to address the separate 

decisions of choosing which patients and then assigning them to specific ORs on 

specific days. Ogulata and Erol (2003) use a hierarchical mathematical programming 

approach, while Lamiri et al. (2008a) use a column generation algorithm. Both Lamiri 

et al. (2008b) and Min and Yih (2010) use two-stage stochastic programming 

techniques. 

Most of the research that focuses on assigning patients to ORs and sequencing the 

cases within ORs focuses on the single day problem. The two-stage nature of the 

problem again necessitates sophisticated heuristics or multi-stage solution procedures. 

Sier et al. (1997) formulate the problem as a nonlinear integer program and use 

simulated annealing to obtain good solutions. Jebali et al. (2006) solve a series of 

integer programs. Pham and Klinkert (2008) model the problem as a job shop 

scheduling problem and find solutions using mixed integer linear programming. Hans 

et al. (2008) use off-line bin-packing heuristics to create robust schedules using 

planned slack, and their work is the exception in that it schedules cases over the 

course of a week rather than a single day. 
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Other research is more targeted in its focus. Guinet and Chaabane (2003) model 

the assignment of patients to operating rooms (without regard to sequencing) as a 

generalized assignment problem and use a primal-dual algorithm to find high quality 

solutions. Denton et al. (2010) assign cases to operating rooms using a stochastic 

programming model to incorporate uncertain case durations. Both Denton et al. 

(2007) and Cardoen et al. (2009) investigate the optimal sequencing of cases within 

an OR using stochastic linear programming and a branch-and-price approach, 

respectively. 

An Understudied Interaction 

A fundamental, but understudied, element of the day-to-day job of surgery 

scheduling is the transition from the generality of the block schedule (in which OR time 

is allocated to specialties) to the specificity of a completed schedule for a particular day 

(in which OR time is assigned to specific cases). While block schedules are often 

incorporated as constraints in the individual patient scheduling models discussed 

above (Hans et al. 2008, Min and Yih 2010, Pham and Klinkert 2008, Testi et al. 

2007), each of these models schedules large batches of patients all at once, rather than 

sequentially. As will be discussed in greater detail below, in practice, individual 

patients are scheduled into ORs over time as the demand for surgery is generated, 

resulting in a dynamic and sequential decision-making process. The few studies that 

do consider the dynamic evolution of a surgical schedule focus on the scheduling of 

add-on, or waiting list, cases, but do so either for a limited number of cases or on a 

limited number of days (Dexter et al. 1999a, Dexter and Traub 2002, Dexter et al. 

2003, Dexter and Macario 2004, Gerchak et al. 1996). As a result, these studies 

provide only a limited picture of the dynamics of the surgery scheduling process. The 

fundamental contribution of our treatment of the single-day surgery scheduling 

problem in the following chapters is the explicit modeling of the dynamic transition 

between the block and individual patient stages of surgery schedule and the 

management policies that control this interaction.  
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 Related Research 

The stochastic dynamic programming (SDP) model we propose in Chapter 3 has 

much in common with existing research on capacity allocation (Schütz and Kolisch 

2010a,b) and, in particular, airline revenue management (Brumelle and Walczak 

2003, Lee and Hersh 1993, Subramanian et al. 1999). While the specifics of our 

model will be presented later, we conclude our literature review with a brief review 

what distinguishes our work from this related research. In these problems, a finite 

resource (OR time, seats on a flight) with a fixed expiration date (the day of surgery, 

the departure time for the flight) must be allocated to competing demand classes. The 

demand from each of the classes arrives over time, and decision-makers must decide 

how much of the resource to allocate to lower priority classes and how much to 

reserve for higher priority classes. In the existing models, arriving demand must be 

accepted or rejected at the moment of its arrival and rejected demand is lost. In the 

surgery scheduling problem, however, lower priority demand is placed on a waiting 

list, or request queue, and can be accepted at a number of different decision points 

leading up to the day of surgery. While our proposed surgery scheduling model 

displays solution behavior similar to the revenue management models (particularly to 

Lee and Hersh 1993), the introduction of the request queue concept increases the 

complexity of the state space and complicates the analysis leading to these results.  

2.2. Case Study of a Surgery Scheduling System 

In order to gain insight into how the transition from the block schedule to 

individual patient scheduling occurs in a real hospital‟s operating room suite, we 

continue with the results of a case study of the surgery scheduling system at the 

University of Maryland Medical Center in Baltimore. The case study consists of two 

components: (1) information about the system gathered through meetings and 

interviews with administrators and schedulers in the hospital‟s Peri-Operative 

Services department and (2) data collected during a detailed observation of the 

evolution of the schedule for a particular day in the OR suite. The first stage serves to 

identify the fundamental components and decision-makers in the scheduling system, 

from which we are able to build a model of how surgical cases flow through this 
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system. The second stage illustrates how these processes and decisions occur in 

practice and, in particular, leads to a greater understanding of the factors influencing 

an OR manager‟s decision-making throughout the development of the schedule. 

A Model for the Scheduling System 

The University of Maryland Medical Center (UMMC) uses a cyclic block 

schedule to allocate operating room time to particular surgical specialties and 

surgeons for their elective surgeries. The block schedule is the primary mechanism by 

which UMMC guarantees access to OR time for its surgeons, who can be viewed as 

customers of the hospital in that they are free to take their surgical cases to another 

hospital if they are unsatisfied with the OR time they are allocated. Table 1 shows 

what this block schedule looks like for a subset of the ORs at UMMC during the 

spring of 2009. The bulk of the block schedule is cyclic on a weekly basis, with many 

of the ORs (e.g., 8, 17, and 20) being allocated to the same specialty every day of the 

week and others changing specialties from day to day (e.g., 18 and 29). As shown in 

rooms 21 and 22 on Wednesday, some blocks are split into morning and afternoon 

sessions and allocated separately. Room 22 also provides an example of how a room 

can be allocated to different specialties in alternating weeks (such as the 1st, 3rd, and 

5th Monday of each month versus the 2nd and 4th Monday of each month). Blocks 

marked as “URGENT” or “OPEN” are unallocated and made available for emergency 

surgeries and for specialties and surgeons that do not have an allocated block on the 

day in question, respectively. 

The first step in understanding the impact that the block schedule has on the 

development of specific daily schedules is to identify the critical components of the 

scheduling system and the ways in which surgical cases flow through this system. It 

is important to distinguish here between the flow of surgical case information through 

the scheduling system (an information system) and the flow of patients through the 

different units of a hospital (a physical system). Our focus will be on the flow of 

surgical cases through the scheduling system. 
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Table 1. The cyclic block schedule for a subset of operating rooms at UMMC in 

spring 2009 

Room Monday Tuesday Wednesday Thursday Friday 

8 Urology Urology Urology Urology Urology 

17 Neurosurgery Neurosurgery Neurosurgery Neurosurgery Neurosurgery 

18 
Surgical 

Oncology 
Thoracic  General Surgery Transplant General Surgery 

20 Pediatrics Pediatrics Pediatrics Pediatrics Pediatrics 

21 Cardiac Vascular 
Donor (am) 

Vascular Donor 
OPEN (pm) 

22 
URGENT (1,3,5) 

Cardiac 
Transplant (am) 

Cardiac 
Transplant (1,3,5) 

Transplant (2,4) OPEN (pm) URGENT (2,4) 

29 General Surgery General Surgery 
Surgery 

Oncology 

Surgical 

Oncology 

Surgery 

Oncology 

Demand for surgery is generated when it is determined (by a physician in a clinic, 

a surgeon making his rounds, or emergency personnel, for instance) that a patient 

requires surgery. There are two primary ways that the hospital and the OR staff 

become aware of this demand. If the surgery is urgent, the patient is taken to an OR 

as soon as possible, and the information about the case essentially bypasses the 

scheduling system (although it is entered later for documentation and billing 

purposes). On the other hand, if the surgery is deemed to be elective, the details of the 

case are communicated to the hospital by the surgical specialty (or the surgeon) 

associated with the case. Therefore, the surgical specialties serve as the entry point 

for surgical cases into the elective surgery scheduling system, as illustrated in Figure 

1 below.  

At UMMC, demand for elective surgery is day-specific. That is, when the demand 

is communicated to the scheduling system, it is accompanied by a specific date in the 

future on which the surgeon would like to perform the surgery. This day-specific 

demand goes hand in hand with the cyclic block scheduling approach, which guides 

the surgeon‟s choice of dates and provides a measure of assurance (at least for 
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specialties with allocated blocks) that cases can be scheduled on the desired date. This 

notion of day-specific demand and its relationship to the block schedule allows us to 

isolate the scheduling system for a particular day in the OR suite. Another 

fundamentally important aspect of the demand for elective surgery on a particular day 

is that it is generated over time rather than all at once. According to UMMC staff, 

surgical specialties begin generating demand approximately one month before the day 

of surgery and continue to generate elective demand up until the day before surgery. 

Demand generated on the day of surgery, which is essentially demand for immediate 

surgery, is classified as urgent rather than elective. 

 

Figure 1. Flow of surgical cases through UMMC's scheduling system 

If we focus our attention then on the scheduling system for a single day, we can 

model the flow of surgical cases through the system using the diagram in Figure 1. 

The available OR time on the day in question has been allocated to specific surgical 

specialties according to the block schedule. We refer to specialties on this day‟s block 

schedule as “primary” specialties and their demand for surgery as “primary” demand. 

Initially, primary specialties have complete control of their allocated blocks and, as 

indicated in Figure 1, primary demand associated with an allocated block is added to 



 

 13 

 

the OR schedule without any further input from hospital administrators or scheduling 

staff. Specialties (or surgeons) that do not have allocated blocks (“secondary” 

specialties) can still generate demand for the day in question (“secondary” demand), 

but they must submit their cases to a surgical request queue (RQ). If a primary 

specialty‟s allocated OR time has been filled, it may also submit excess demand to 

the RQ. Just as demand is day-specific, the surgical RQ at UMMC is day-specific and 

unmet requests are not automatically rolled over from one day of surgery to the next. 

In the period leading up to the day of surgery, cases accumulate on the RQ and 

the OR manager looks to schedule these RQ cases into OR time that has not been 

filled by the primary specialties. As illustrated in Figure 1, adding a RQ case to the 

OR schedule requires an active RQ decision on the part of the OR manager. This sits 

in direct contrast to the scheduling of primary demand into allocated blocks, which is 

controlled by the primary specialties and is outside the OR manager‟s control. 

Recalling that demand for surgery is generated over time, it is clear that the OR 

schedule for the day of surgery evolves over time as the day of surgery approaches. 

The OR manager‟s RQ decisions interact directly with the timing and volume of the 

primary demand to determine which cases will be added to the schedule.  

At UMMC, there are fixed days before surgery, referred to as block release dates, 

after which OR managers can begin scheduling RQ cases into unfilled blocks. The 

block release dates (typically two or three days before the day of surgery) vary from 

specialty to specialty, with one of the chief reasons cited for this variation being the 

differences in primary demand patterns between the specialties. Before the block 

release dates, RQ cases may not be assigned to open times. On each day between the 

block release date and the day of surgery, the OR manager uses the request queue 

policy to determine how and when to schedule RQ cases into open times. The factors 

that contribute to and influence the RQ policy will be discussed in more detail in the 

next subsection.  

Finally, Figure 1 also illustrates how the cases that enter the elective surgery 

system eventually exit the system. On the day of surgery, cases on the OR schedule 

move to the operating rooms and exit the system as completed cases. Cases on the 

schedule can also exit the system by being cancelled (or rescheduled for another day). 
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Cancellations that occur before surgery begins exit the system directly from the OR 

schedule, while some cancellations happen after the case has entered the OR. Lastly, 

some cases on the RQ never get added to that day‟s OR schedule and exit the system 

directly from the RQ. Because the RQ at UMMC is day-specific, the surgeons 

associated with unmet demand must resubmit their cases to the surgery scheduling 

system for another day in the future, where they appear as newly generated demand. 

The Development of a Single Day’s Schedule 

From this model of the surgery scheduling system, we can see that the final 

schedule for a given day in the OR suite at UMMC is a product of the interaction of 

the underlying block schedule, the primary demand patterns for the specialties with 

allocated blocks, the block release dates associated with each of these specialties, and 

the RQ policies used by the OR manager to schedule RQ cases into unused time. As 

discussed in the literature review above, none of the mathematical models in the 

existing research fully capture all the aspects of this interaction. In order to build such 

a model, we must take a closer look at the factors contributing to the OR manager‟s 

decision-making policies. To this end, we proceed with a discussion of how the 

schedule for a specific day in the spring of 2009 was developed. 

The operating room suites at UMMC consist of 19 rooms in the General OR 

Suite, four rooms in the North OR Suite, six rooms in the Shock Trauma Center, and 

two additional minor ORs. The trauma rooms are reserved for urgent and emergency 

surgeries, and thus are not included in the block schedule. While the minor ORs 

appear on the block schedule, they are too small for most elective surgeries and are 

therefore subject to strict scheduling restrictions. Therefore, we focused our 

observation of UMMC‟s scheduling system on the 23 rooms in the General and North 

OR Suites, each with a stated capacity of eight hours per day. On the day in question, 

these rooms were allocated to surgical specialties according to the block schedule 

shown in Table 3 below. 

Working closely with the Peri-Operative Services department and the OR 

manager at UMMC, we tracked each surgical case that entered the scheduling system 

for the day in question. For each case, we collected basic information such as the 
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associated specialty and surgeon, standard procedural codes, the expected duration, 

and special resource requirements. In addition, we tracked the movement of each case 

through the system from the time it arrived to the time it exited. This data included 

the scheduling lead (how many days before the day of surgery it arrived), transitions 

from the RQ to the schedule, swapping of scheduled cases between ORs, case 

cancellations, and the ultimate completion of the case on the day of surgery. In 

addition, to the extent possible, we recorded the reasoning behind scheduling 

decisions made by the OR manager, with a particular focus on why and when RQ 

placement decisions were made (or not made). 

The earliest arriving case for the day in question was added to the schedule 30 

working days before the day of surgery, and demand continued to arrive up until the 

night before surgery. Using Figure 1 to identify the different trajectories through the 

scheduling system, Table 1 shows the frequencies of each possible trajectory. Overall, 

69 surgical cases entered the system for the day in question, of which 51 ultimately 

received surgery, eleven were scheduled and later cancelled or rescheduled, and 

seven were never scheduled. Roughly two-thirds of the completed cases were 

generated by the primary specialties, while nearly all of the cancelled cases came 

from the primary specialties. Of the cancelled cases, seven were for clinical reasons 

(such as the need for further testing), two were rescheduled, one was due to a lack of 

recovery beds, and the other was cancelled by the patient after entering the OR. 

Table 2. Frequency of trajectories through the scheduling system for a day in 

UMMC‟s OR suite 

Trajectories Through the Scheduling System Frequency 

Total Cases 69 

Completed Cases   

    Specialty → Schedule → Operating Room → Completed 35 

    Specialty → Request Queue → Schedule → Operating Room → Completed 16 

Cancelled or Rescheduled Cases   

    Specialty → Schedule → Operating Room → Cancelled 0 

    Specialty → Request Queue → Schedule → Operating Room → Cancelled 1 

    Specialty → Schedule → Cancelled 9 

    Specialty → Request Queue → Schedule → Cancelled 1 

Cases Never Scheduled   

    Specialty → Request Queue → Never Scheduled 7 
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Table 3 presents summary statistics for the primary demand generated by each of 

the specialties on the block schedule on the day of our observation. Of the 20 rooms 

allocated to specialties, only four rooms had primary specialties that generated no 

demand for the day in question. For the other rooms, the total primary demand is 

shown both as the number of cases and the sum of the scheduled durations. Most of 

the primary specialties scheduled over six hours of cases into their allocated blocks, 

with several specialties exceeding the stated capacity with more than ten hours of 

cases. The average scheduling lead for the primary specialties ranged from one day 

before surgery (Cardiac) to 23 days (Otolaryngology), and seven specialties had 

average scheduling leads of one week or less. 

Because the block release date for each room indicates the day on which the OR 

manager may begin scheduling RQ cases into unused time, Table 3 also shows the 

portion of the primary demand that arrived after the block release date. As expected, 

the same specialties that had short scheduling leads generated most of their demand 

after their block release date. As a closer look at the secondary demand reveals, these 

specialties with late-arriving demand ran the risk of having their allocated blocks 

given to RQ cases by the OR manager. 

Secondary demand can divided into two categories. Primary specialties with 

allocated blocks often assign their blocks to particular surgeons. Therefore, some 

secondary demand is generated by specialties that have allocated blocks, but by 

surgeons that have not been assigned a block on the day in question. The rest of the 

secondary demand comes from specialties that do not have allocated blocks on the 

day in question. Table 4 presents a summary of the secondary demand for each of 

these categories on the day of our observation. As the table shows, the majority of the 

secondary demand came from specialties that already had allocated blocks. On 

average, these requests for surgery were added to the RQ around four days before the 

day of surgery. The OR manager first considered placing RQ cases into the OPEN 

rooms (rooms 7 and 14) one week before the day of surgery (two days prior to the 

first block release date), and we can see that roughly a fifth of the secondary demand 

was generated before the first RQ decision was made. More detailed data on the 
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timing of both the primary and secondary demand for the day of our observation is 

presented in Table 5. 

Table 3. Block schedule allocations and summary of primary demand for elective 

surgery for a day in UMMC‟s OR Suite 

OR Primary Specialty 

Block 

Release 

Date 

(days) 

Total  

Primary Demand 

Primary Demand 

Scheduled After 

Block Release 

Average 

Scheduling 

Lead 

(days) # of Cases Hours # of Cases Hours 

7 OPEN 
      

8 Urology (SUR) 3 3 6.3 
  

19.0 

9 Orthopedics (SOR) 0 0 0 
   

10 Orthopedics (SOR) 2 0 0 
   

11 Neurosurgery (SNG) 2 3 8.9 
  

9.0 

12 Oral / Dental (DOM) 3 1 10.0 
  

14.0 

14 OPEN 
      

15 Otolaryngology (SEN) 3 4 11.6 
  

23.3 

16 Orthopedics (SOR) 2 4 9.1 
  

13.0 

17 Neurosurgery (SNG) 2 3 12.5 
  

3.8 

18 Transplant (STO) 3 2 6.3 
  

10.0 

19 Oncology (SON) 3 5* 17.2* 2 6.3 3.8 

20 Pediatrics (SPD) 2 4 5.4 
  

5.0 

21 Cardiac (SCS) 2 3 13.9 3 13.9 1.0 

22 Vascular (SVA) 2 0 0 
   

23 Thoracic (STH) 2 3 6.5 2 5.3 2.3 

24 Cardiac (SCS) 2 0 0 
   

25 Cardiac (SCS) 2 1 5.6 1 5.6 1.0 

26 URGENT 
      

29 Oncology (SON) 3 3 6.9 
  

10.7 

30 Gynecology (OGY) 3 1 1.2 1 1.2 1.0 

31 General Surgery (SGL) 3 2 6.1 
  

9.0 

32 General Surgery (SGL) 3 2 6.4 
  

9.0 

* 3 cases (10.8 hours) were cancelled or rescheduled before the final 2 cases were scheduled. 

 

Table 4. Summary of secondary demand for elective surgery for a day in UMMC‟s 

OR suite 

  

Total  

Secondary Demand 

Demand Before 

First RQ Decision 

Average 

Request 

Lead 

(days)   # of Cases Hours # of Cases Hours 

Specialties With an Allocated Block 24 76.6 5 23.0 4.3 

Specialties Without an Allocated Block 2 6.1 0 0 3.4 



 

  

 

Table 5. Number of cases and hours of primary and secondary demand for a day in UMMC‟s OR suite 

    Days Before Surgery 

Category of Demand >15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Primary                                   

OR Specialty                                   

8 SUR 1 (1.5)   2 (4.9)                             

9 SOR                                   

10 SOR                                   

11 SNG           1 (3.5) 1 (1.5)       1 (3.9)             

12 DOM     1 (10)                             

15 SEN 4 (11.6)                                 

16 SOR 2 (5.0)             1 (1.8)           1 (2.3)       

17 SNG                 1 (2.7) 1 (5.2)     1 (4.6)         

18 STO             2 (6.3)                     

19 SON               1 (5.1)         2 (5.8)     2 (6.3)   

20 SPD                       4 (5.4)           

21 SCS                               3 (13.9)   

22 SVA                                   

23 STH                       1 (1.2)       2 (5.3)   

24 SCS                                   

25 SCS                               1 (5.6)   

29 SON     1 (1.7)         2 (5.2)                   

30 OGY                               1 (1.2)   

31 SGL                 2 (6.1)                 

32 SGL                 2 (6.4)                 

Secondary                                   

   Specialties With  

      an Allocated Block 
1 (12.5) 1 (3.8)   2 (5.0)       1 (1.7)        1 (3.3) 2 (2.7)  1 (2.0) 3 (6.9) 11 (36.9) 3 (4.5) 

   Specialties Without  

      an Allocated Block 
                        1 (4.1) 1 (2.0)       

Note: Demand arrival is presented as “Number of cases (hours of cases).” The solid vertical bars for the primary demand represent the timing of the block release date for each 

specialty. The solid vertical bar for the secondary demand represents the timing of the first RQ decision.  
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Also shown in Table 5 are the block release dates for each of the primary 

specialties (the dark vertical bars for each OR) and the first day on which RQ cases 

were considered for placement in unused time (the dark vertical bar for the secondary 

demand). This detailed demand information allows us to track exactly which RQ 

decisions were feasible and which cases were actually scheduled on each day leading 

up to the day of surgery. In order for a RQ decision (placing a specific case in a 

specific OR) to be feasible, we require the OR to have already released its block and 

be able to accommodate the case without exceeding eight scheduled hours. In certain 

instances, the feasibility of a room changed from day to day based on case 

cancellations or swaps between rooms. We will point out these instances when 

appropriate, but will avoid going into greater detail in order to maintain focus on the 

RQ decisions. 

As mentioned above, the OR manager first considered placing RQ cases into the 

OPEN rooms five days before the day surgery. Table 6 and Table 7 show the state of 

the RQ on the five days leading up to the day of surgery and on the day of surgery, 

respectively. For each case, the corresponding specialty and expected duration are 

shown, in addition to an indicator of whether this was the first day on which this case 

was considered for addition to the schedule. The tables also show the ORs that could 

feasibly take on at least one of the RQ cases (based on the block release dates and a 

stated capacity of eight hours per day) and the subsequent RQ decisions for each case 

on the day in question. RQ cases that are not scheduled on one day are reconsidered 

for placement the following day (see, for example, Case 6 on days 4 through 2), and 

we correspondingly refer to these RQ decisions as “deferrals.”  

On day 5, a concerted effort was made to schedule each of the cases that were 

already on the RQ, with two cases being scheduled in apparent contradiction with 

stated block release dates and RQ policies. One of the exceptions was due to the 

resolution of surgical equipment restrictions (Case 1 into Room 30), while the other 

was prompted by a match between the secondary specialty and the original room 

allocation (Case 5 from Orthopedics into Room 16). Relatively few RQ cases were 

added to the schedule over the next four days, in spite of the increased feasibility 

resulting from the block releases on days 3 and 2. Over the course of these four days, 
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room 7 was filled by two additional cases and another case was added to room 8, 

reflecting another match between the secondary specialty (Urology) and the original 

room allocation. 

Table 6. State of the surgical request queue and subsequent RQ decision over the five 

days before the day of surgery 

Days 

Before 

Surgery Specialty 

Duration 

(hours) New? Feasible Rooms (hours filled) Decision 

Day 5 

     
    Case 1 OGY 3.8 y 

Rooms 7, 14 (0) 

Scheduled in Room 30* 

    Case 2 SEN 12.5 y Scheduled in Room 14 

    Case 3 DOM 2.0 y Scheduled in Room 7 

    Case 4 DOM 3.0 y Scheduled on another day 

    Case 5 SOR 1.7 y Scheduled in Room 16* 

Day 4 

     
    Case 6 SUR 3.4 y Room 7 (3.8) Deferred 

Day 3 

     
    Case 6 SUR 3.4 n 

Room 7 (3.8), Room 8 (6.4), 

Room 18 (6.3), Room 31 (6.1), 

Room 32 (6.4) 

Deferred 

    Case 7 EYE 4.1 y Scheduled in Room 7 

    Case 8 SGL 1.4 y Deferred 

    Case 9 SGL 1.4 y Deferred 

Day 2 

     
    Case 6 SUR 3.4 n 

Room 7 (3.8), Room 8 (6.4), 

Rooms 10, 21, 22, 24, 25 (0), 

Room 18 (6.3), Room 20 (5.4), 

Room 23 (1.2), Room 31 (6.1), 

Room 32 (6.4) 

Scheduled in Room 8 

    Case 8 SGL 1.4 n Deferred 

    Case 9 SGL 1.4 n Deferred 

    Case 10 SEN 2.0 y Deferred 

    Case 11 EYE 2.0 y Scheduled in Room 7 

Day 1 

     
    Case 8 SGL 1.4 n 

Rooms 10, 21, 22, 24, 25 (0), 

Room 18 (6.3), Room 20 (5.4), 

Room 23 (1.2), Room 31 (6.1), 

Room 32 (6.4) 

Deferred 

    Case 9 SGL 1.4 n Deferred 

    Case 10 SEN 2.0 n Removed from RQ 

    Case 12 SGL 1.5 y Deferred 

    Case 13 SGL 3.0 y Deferred 

    Case 14 SGL 2.4 y Deferred 

* Case 1 was placed on the RQ due to surgical equipment restrictions in Room 30, which were later resolved.  

   Case 5 was given an exception and scheduled in Room 16 in advance of the block release date. 

Of particular interest on days 2 and 1 was the decision by the OR manager not to 

place any of the waiting RQ cases into the empty ORs (rooms 10, 21, 22, 24, and 25). 

The reason the manager gave for these deferrals was the anticipation of late-arriving 
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primary demand from the specialties controlling these rooms. In two of the five 

rooms (rooms 21 and 25, both Cardiac rooms), this anticipation was justified by the 

arrival of significant primary demand on the day before surgery. As shown in Table 7, 

secondary demand from the specialties controlling two of the other rooms (rooms 10 

and 24, allocated to Orthopedic and Cardiac, respectively) arrived on the day before 

surgery. Again showing a preference for matching up secondary specialties with 

original room allocations, these RQ cases were scheduled in the respective ORs on 

the morning of surgery. 

Table 7. Status of the surgical request queue and subsequent RQ decisions on the day 

of surgery 

Day of 

Surgery Specialty 

Duration 

(hours) New? 

Feasible Rooms  

(hours filled) Decision 

Day 0 

     
    Case 8 SGL 1.4 n 

 

Rooms 9, 10, 22, 24 (0),  

Room 18 (6.3),  

Room 19 (6.3),  

Room 20 (5.4),  

Room 23 (6.5),  

Room 25 (5.6),  

Room 29 (6.9),  

Room 31 (6.1),  

Room 32 (6.4) 

Never scheduled 

    Case 9 SGL 1.4 n Never scheduled 

    Case 12 SGL 1.5 n Scheduled in Room 10 

    Case 13 SGL 3.0 n Scheduled in Room 19 

    Case 14 SGL 2.4 n Scheduled in Room 29 

    Case 15 SCS 1.9 y Scheduled in Room 24 

    Case 16 SCS 7.2 y Scheduled in Room 24 

    Case 17 SOR 3.5 y Scheduled in Room 10 

    Case 18 SPD 0.4 y Scheduled in Room 20 

    Case 19 SPD 1.7 y Scheduled in Room 20 

    Case 20 SON 7.3 y Scheduled in Room 14** 

    Case 21 STO 4.4 y Scheduled in Room 22 

    Case 22 STO 4.4 y Never scheduled 

    Case 23 STH 3.4 y Scheduled on another day 

    Case 24 SCS 1.9 y* Scheduled in Room 25 

    Case 25 SCS 1.9 y* Scheduled in Room 24 

    Case 26 SGL 0.8 y* Scheduled on another day 

* These cases arrived to the RQ overnight on the night before surgery, and were therefore still 

considered elective cases. 

** Cases were swapped between rooms 9, 14, and 16, freeing up Room 14 and filling up Room 9. 

After these specialty-based RQ decisions, three rooms were still empty on the 

morning of surgery (room 9, the final block to be released, room 22, and room 26, 

originally marked URGENT) and several other rooms had an available hour or two. 
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As many of the remaining RQ cases were scheduling into these open times as 

possible, with some continued preference for matching up secondary specialties with 

original block allocations (scheduling Pediatric cases into room 20 and swapping 

cases between rooms so that Orthopedic cases could be done in room 9). After all RQ 

decisions were made on the day of surgery, every OR with the exception of room 22 

(which had 4.4 hours scheduled) and room 26 (which continued to be empty) had at 

least 6 hours of surgeries on its schedule. Room 26 remained empty until a case 

scheduled into a different OR was moved there late in the afternoon on the day of 

surgery. 

From this data on the RQ decisions made by the OR manager, and their 

relationship to the primary and secondary demand arrival patterns, we begin to get a 

sense of the underlying RQ policies guiding the decisions. The decision to place a RQ 

case into an OR with available time is largely influenced by the anticipation (or lack 

thereof) of late-arriving demand from the primary specialty, showing a reluctance to 

give away allocated block time if the primary specialty is likely to end up needing it. 

Once it has been deemed appropriate to add RQ cases to a room‟s schedule, there is a 

clear preference for matching the secondary specialty to the primary specialty 

originally controlling the room. In the following section we will discuss these 

observations in more detail, while relating them to both the existing literature on 

block release policies and to our proposed model.  

2.3. Discussion and Modeling Implications 

In discussing the results of our case study, it is helpful to return to our initial 

motivations for studying the surgery scheduling system. As the literature review in 

Section 2.1 illustrates, very little work has been done on the transition from the block 

scheduling stage to the individual patient stage of surgery scheduling. Our initial 

meetings with administrators and schedulers at UMMC identified the block release 

dates as the fundamental tool that makes this transition work. Furthermore, UMMC 

had recently gone through significant changes in their block release policy. In the 

year prior to our case study, the block release dates had been moved from their 

current positions back to a week before the day of surgery. However, this change was 
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not well received, and the block release dates were subsequently returned to their 

original (and current) positions. These internal issues at UMMC demonstrated the 

contentious nature of block release decisions and, along with the gap in the literature, 

motivated the very natural question of how block release dates can be set optimally.  

A series of papers by Dexter et al. (2003) and Dexter and Macario (2004) actually 

studies this very question, but in a limited way. In these papers, the authors study the 

addition of a single, elective add-on (i.e., request queue) case to an existing surgical 

schedule on block release dates ranging from one to five days before the day of 

surgery. In their analyses, the RQ case is added to the OR with the largest amount of 

unused time at the moment of the block release, and the efficiency of the resulting OR 

schedules is compared via simulation. Based on their results, they conclude that the 

timing of the block release has very little impact on the efficiency of the final 

schedule and suggest that hospitals set their block release policies according to the 

preferences of their particular stakeholders. 

However, the general applicability of their work is limited by a number of factors. 

First, they assume that the block schedule underlying the development of the schedule 

has been allocated based on optimizing efficiency (according to the methodologies 

discussed in Strum et al. (1999)). Second, they only consider the addition of one RQ 

case to the schedule. They justify the limitation to just one RQ case by arguing that if 

the underlying block schedule has been allocated optimally, the number of RQ cases 

for a particular day of surgery will rarely exceed one case. Finally, in their 

simulations, they do not consider the reality that adding a RQ case to the schedule 

will dynamically influence the evolution of the schedule after the block release.  

In practice, hospitals may have good reasons for not allocating their blocks using 

the methods advocated by Strum et al. (1999). For instance, at UMMC, which is a 

large tertiary care center, some blocks must be allocated to high priority, low volume 

specialties (such as Transplant) to ensure that cases from these specialties can be 

scheduled and performed promptly when they are generated. Furthermore, as the case 

study demonstrates, OR managers frequently have to consider more than one RQ 

case, and the impact that RQ placements have on the development of the rest of the 

schedule is central to their decision-making. In the discussion of their results, Dexter 
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and Macario (2004) acknowledge that the impact of the block release timing increases 

when the OR suite is likely to have several ORs with unused time or when the RQ 

cases are longer (both of these situations were observed during our case study at 

UMMC). It is logical, then, to question whether the conclusions of Dexter et al. 

(2003) and Dexter and Macario (2004) continue to hold in more general settings. 

Focus on Block Release Timing 

Returning to the results of our case study, we see that there are two fundamentally 

different types of decisions that the OR manager must make in order to add a RQ case 

to the schedule. The first involves the decision to release an allocated block, and the 

second involves the selection of a particular RQ case to schedule in the released time. 

The research on block release timing discussed above pertains to the first of these 

decisions, and our research will correspondingly continue to focus on this aspect of 

the problem.  

In the case study, the selection of individual RQ cases was based on a range of 

factors, including time spent on the RQ (reflecting a first-come, first-served 

prioritization), specialty and equipment matching, and the relative urgency of the 

case, to name a few. While complex, these factors tended to be easily identifiable and 

were more reflective of the particulars of each case than the structure of the 

scheduling system as a whole. In contrast, the decision to release an allocated block in 

the first place was more dependent on system-wide factors, such as the primary 

demand arrival patterns and the balance between waiting RQ cases (as a group rather 

than individually) and yet-to-arrive primary cases. As such, our modeling efforts will 

focus on the factors and interactions within the scheduling system (as depicted in 

Figure 1 and illustrated by the case study) that contribute to block release decisions. 

Our decision not to model the particular factors associated with each individual RQ 

case (which would be impossible to model in full) facilitates our approach in two 

ways. First, it makes our model more parsimonious and helps maintain our focus on 

the decisions to release allocated blocks (in essence choosing how many RQ cases to 

add the schedule, rather than which ones). Second, from an implementation 
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standpoint, it allows the OR manager to retain a degree of flexibility in responding to 

the unique details and requirements of particular cases. 

Before continuing with the framework with our modeling approach, it is 

important to draw a distinction between block release dates and the decision to 

release an allocated block. As illustrated in several of the ORs during our observation 

at UMMC, an allocated OR with unused time is not automatically released just 

because the block release date has passed (see Table 6 above). Furthermore, not all of 

the unused time in a block must be released at once. As acknowledged by one of the 

administrators at UMMC, block release dates are merely constraints on the OR 

manager‟s ability to make block release (and subsequent RQ) decisions. As a result of 

these observations, in the following chapters, our modeling objective focuses not on 

choosing optimal block release dates but rather on optimizing the timing and extent of 

block release and RQ decisions over the days leading up to the day of surgery. This 

broader scope allows us to more realistically model the block release and request 

queue decisions made by an OR manager over the development of a particular 

schedule. 

Modeling Framework 

The reasoning behind the block release and request queue decisions made by the 

OR manager during our observation at UMMC make it clear that the primary demand 

arrival patterns play an important role in these decisions. In choosing not to schedule 

RQ cases into rooms 10, 21, 22, 24, and 25 on the two days prior to the day of 

surgery (even though their block release date had passed), the manager made it clear 

that it was more desirable to make the current RQ cases wait for a decision than to 

block any late-arriving primary cases from accessing their allocated blocks. In two of 

these five rooms, this anticipation was rewarded by the last minute arrival of primary 

demand, while the other three rooms were ultimately released to RQ cases on the day 

of surgery. The decisions with respect to these rooms were not based on maximizing 

the utilization of the ORs (the manager chose uncertain future demand over existing, 

known demand), but instead were based on customer satisfaction costs associated 

with the competing demand types. 
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In their research, Dexter and Macario (2004) acknowledge these satisfaction 

costs, but do not incorporate them directly into their decision framework. In order to 

mathematically model block release decisions in a more general setting, it is 

necessary to formalize these costs and analyze how they interact with the primary 

arrival patterns to influence the OR manager‟s decisions. Suppose that an OR has 

time for one additional case and the RQ contains a case that fits in this available time. 

The OR manager is faced with the following choice: either release the block and 

schedule the RQ case in the available time or defer scheduling the case (and 

considering it again on the following day). Deferring the RQ case leaves open the 

possibility that a primary case may arrive to use the remaining time, but is 

undesirable because the surgeon and the patient associated with the RQ case must 

wait at least one more day for a decision. We define this satisfaction cost as a deferral 

cost. If the RQ case is scheduled (thus filling the OR) and another primary case 

arrives, then the OR manager has blocked the primary specialty‟s access to its 

allocated room. We define this satisfaction cost as a blocking cost. The balance 

between deferral costs and potential blocking costs informs the OR manager‟s 

decision to schedule or defer RQ cases. An illustration of the decision tree associated 

with this scenario is presented in Figure 2. Of course, in practice, an OR manager 

must weigh these costs for multiple RQ cases across multiple ORs over the course of 

several days leading up to the day of surgery. 

 

Figure 2. The OR manager‟s decision tree for a simple RQ scenario 
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These satisfaction costs highlight the often contentious nature of surgery 

scheduling decisions, and any attempt to study block release and RQ policies must 

take these factors into account. The primary motivation for the remainder of our 

research on the surgery scheduling problem, as presented in the next two chapters, is 

to mathematically model the interaction of these satisfaction costs with surgical 

demand patterns and explore their role in making optimal block release and RQ 

decisions. Rather than focus on traditional block scheduling and individual patient 

scheduling objectives (such as leveling hospital occupancy and maximizing OR 

utilization), our analysis will focus on how OR managers can make equitable 

scheduling decisions in the face of competing demands from various surgeons and 

surgical specialties. 

In this chapter, combining a review of the existing literature with a case study of 

the scheduling system at UMMC, we have argued that the transition between the 

block scheduling and individual patient scheduling stages of surgery scheduling is the 

result of a dynamic interaction between the arrival patterns for both primary and 

secondary demand and the OR manager‟s RQ policies and block release decisions. In 

the following two chapters we will develop and study a stochastic dynamic 

programming (SDP) formulation of this sequential decision-making process. Because 

this approach to the surgery scheduling problem is new to the literature, our analysis 

will focus on capturing the most important relationships and developing a better 

understanding of how these relationships contribute to the evolution of the OR 

schedule.  
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Chapter 3. The Single-Day Surgery Scheduling 

Problem: General Formulation and a Special Case 

Based on the structure of the surgery scheduling system at the University of 

Maryland Medical Center and the insights gained from our observation of the 

evolution of a single day‟s operating room schedule, we proceed with our formulation 

and analysis of the dynamic single-day surgery scheduling problem (SDSSP). The 

limited existing literature on the interaction of block schedules and patient scheduling 

suggests that the structure and insights from our case study are generalizable to other 

hospitals that use block scheduling (Dexter et al. 2003, Dexter and Macario 2004, 

Ozkarahan 2000). For this reason, our treatment of the SDSSP is aimed not at solving 

a single hospital‟s scheduling problem, but rather at developing general insights into 

how operating room managers can balance competing demand classes to make 

equitable request queue decisions. 

3.1. Problem Statement and General Formulation 

Problem Statement 

As discussed above, we can limit the general problem of scheduling a suite of 

operating rooms to the specific problem that considers only one day‟s schedule. As a 

starting point, we assume that a suite of identical ORs has been allocated on the day 

in question to surgical specialties according to a block schedule. Demand for elective 

surgery is generated over time and enters the scheduling system as either primary 

demand or secondary demand, as described above. Primary demand is divided 

according to the primary specialties associated with each of the ORs, therefore we can 

think of each OR as having a separate source of primary demand. In contrast, 

secondary demand is not disaggregated in this way. Each of the demand sources is 

assumed to be stochastic, both in the quantity of demand generated and the timing of 

its arrival. When primary demand arrives to the system, it is added immediately to the 

schedule for its associated OR, providing there is adequate space. If there is not 

adequate space, then the excess primary demand is directed to the RQ. Secondary 
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demand is added directly to the RQ, where all RQ cases must wait for the OR 

manager to make RQ decisions. 

Two types of costs are associated with the process of developing an OR schedule 

using a block scheduling system: (1) utilization costs associated with the ORs and (2) 

the deferral and blocking customer satisfaction costs defined at the end of Chapter 2. 

The utilization costs are common in the literature, but the customer satisfaction costs 

are a distinctive feature of this formulation. On each day leading up to the day of 

surgery, the OR manager must choose the number of RQ cases to add to each OR‟s 

schedule for the day of surgery. The manager‟s objective is to minimize the expected 

total cost of deferral and blocking penalties incurred on the days before surgery and 

the OR utilization costs on the day of surgery. In general, block release dates restrict 

the days on which RQ cases can be added to the schedule and may differ from room 

to room and RQ policies dictate which decisions to make in which scenarios. 

The dynamic relationship between decisions and costs suggests a stochastic 

dynamic programming (SDP) formulation. Because block release dates serve as 

constraints on the OR manager‟s RQ decisions, it is clear that an optimal RQ policy 

combination would use no block release dates and the optimal decisions from the 

unconstrained SDP as the RQ policy. For this reason, the formulation and analysis in 

the subsequent sections consider an SDP unconstrained by block release dates. 

However, because block release dates are used in practice, the added cost of imposing 

them will be studied in Chapter 4. 

General Formulation 

We proceed with a SDP formulation for the general SDSSP. We assume that the 

demand sources (primary for each OR and secondary) are independent of each other, 

as are the number of arrivals from day to day for a given source. RQ decisions for 

each OR are made once a day on each day leading up to the day of surgery, and are 

made before any additional cases for the day of surgery arrive. For modeling 

purposes, cases will be separated into different types based on their scheduled 

durations (the amount of OR time allocated to the case). While this approach requires 

discretizing the case durations, which may not capture the entire range of possible 
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durations, there is a precedent in the literature for treating case durations in this 

manner (see, for instance, Guinet and Chaabane 2003). In addition to helping 

maintain the computational tractability of the resulting SDP, this approach allows the 

analysis to stay focused on the principal issue of how OR managers balance potential 

blocking and deferral costs. 

The input data for the formulation is defined as follows: 

   number of days before the day of surgery on which surgical demand is 

generated 

   number of identical rooms in the OR suite 

   capacity of the ORs (in hours) 

   number of case types 

    duration (in hours) of cases of type  , for         

The stochastic demand for surgery is given by two classes of random variables 

associated with primary cases and secondary cases. From this point forward, all 

references to days refer to the number of days before the day of surgery, with day 0 

representing the day of surgery. For        ,        , and        : 

  
     number of primary cases of type   that arrive to room   on day   

  
    number of secondary cases of type   that arrive on day   

The blocking and deferral costs for each day before surgery and the utilization 

costs for the day of surgery are similarly defined. For         and        : 

  
    penalty for unscheduled cases of type   left on RQ on the day of 

surgery 

  
     penalty for unused space in room   on the day of surgery 

For        ,        , and        : 

  
    deferral cost on day   for cases of type   

  
     blocking cost on day   for cases of type   arriving to room   
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Three classes of state variables are required to represent the state of each OR‟s 

schedule at the start of day   (before day  ‟s RQ decisions have been made and before 

any new cases have arrived). Naturally, states are required to keep track of the 

number of available hours remaining in each room and the number of cases of each 

type on the RQ. The extra state variable, the number of blocking eligible hours in 

each OR, reflects the presence of RQ cases that were added to the schedule on 

previous days but have not yet incurred a blocking penalty. This auxiliary state 

accounts for the fact that a primary case might be blocked by a RQ case scheduled on 

a previous day. For        ,        , and        : 

  
     available hours remaining on room  ‟s schedule on day   

  
    number of blocking eligible hours on room  ‟s schedule on day   

  
    number of cases of type   on the RQ on day   

Finally, the decision variables can be defined. For        ,        , and 

       : 

  
    number of RQ cases of type   to add to room  ‟s schedule on day   

With the exception of the day of surgery, the costs incurred each day are 

separated into deferral costs and blocking costs. Deferral penalties are only assessed 

up to the number of RQ placements that are feasible, and can be computed with the 

following expression. For         and        : 

   
   number of cases of type   deferred on day   

                 
  

 

  
 

 

   

   
      

  

 

   

 

When the RQ decisions are made on day  , that day‟s arrivals have not yet 

occurred. Therefore, the number of blocking penalties incurred on day   is a random 

variable that depends upon the decision variables and on the arrival of primary cases. 

The consideration of different case durations raises an important question related to 

computing blocking costs. If a longer primary case is blocked and sent to the RQ, 
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should a blocking penalty be assessed for the entire case or only for the part of the 

case that overlaps with the blocking eligible hours on the OR schedule? Suppose, for 

example, that the schedule for room   has one available hour (  
   ) and one 

blocking eligible hour (  
     and that a primary case with a duration of two hours 

arrives (  
     for the case type with     ). Because this case will not fit in the 

available time, it is blocked and placed on the RQ. The blocking penalty can be 

assessed either for the entire two hour duration or for just the fraction of the case that 

overlaps with the blocking eligible hour. (Both approaches will be considered during 

computational testing in Chapter 4). These blocking quantities cannot be computed 

with a closed form expression, but instead require an algorithm. The pseudocode for 

this algorithm, which we refer to as ProcessDay, is presented later in this subsection. 

The algorithm returns the following values, which are important for computing 

blocking costs and for writing the transition and optimality equations. For   

     ,        , and        : 

   
    number of cases of type   blocked on day   after arriving to room   

   
    fraction of cases of type   blocked on day   after arriving to room   

    
    number of primary cases of type   scheduled in room   on day   

This is now sufficient information to define the value function, Bellman‟s 

optimality equation, and the day-to-day transition equations. Note that the daily 

blocking penalty for each room is a convex combination of the number blocked and 

the fraction blocked, with the weighting parameter   satisfying      . This 

parameter allows us to address the question of full or partial blocking, and its impact 

will be explored during computational testing. For convenience, some quantities are 

expressed in vector form (across operating rooms, case types, or both) in the 

optimality equation and subsequent discussion. For          
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              minimum expected remaining cost from state            

on day                              

     

    
  

     
    

     
          

           
   

 

   

 

 

   

                          

                  
  

 

   

   
               

                   
  

 

   

   
               

                
   integer 

where, for         and        : 

                 
      

        
       

   

 

   

 

                  
     

        
      

   

 

   

 

                  
    

    
     

      
       

   

 

   

 

The boundaries for the SDP are day   and day 0. On day   the system is 

initialized to empty, and on day 0 the boundary costs come from the unused time on 

each of the OR‟s schedules and the unscheduled cases that remain on the RQ. We 

note that deferral and blocking penalties are not a concern on the day of surgery, 

because we assume that all elective demand arrives to the system prior to day  ‟s RQ 

decisions. As with the daily deferral costs, the objective function on day 0 only 

penalizes those cases left on the RQ that could have been feasibly added to the 

schedule. The boundary value function is defined as follows: 
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This day 0 value function is an integer program with some additional constants in the 

objective function, and for a single operating room (     it reduces to an integer 

knapsack problem.  

The final details needed to complete the formulation involve some aspects of the 

ProcessDay algorithm for computing the blocking quantities for each room. The 

algorithm represents how the system processes a particular realization of the primary 

demand arrival random variables for each of the operating rooms. The pseudocode for 

this algorithm is presented below. In order to process primary arrivals of different 

types, it is necessary to assume some sort of case type prioritization on behalf of the 

primary specialty. Recall from Chapter 2 that this prioritization is beyond the control 

of the OR manager, so we do not include it as a decision variable in the model. (Note 

that prioritization between the RQ case types is within the OR manager‟s control and 

is reflected as such in the daily RQ decision variables). We assume throughout that 

the primary specialty prioritizes its cases by decreasing duration. That is, longer 

duration cases receive priority over the shorter duration cases. Other prioritization 

rules could easily be considered within the framework of the algorithm. 
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Pseudocode for ProcessDay Algorithm 

INPUT:        
 ,   

 ,   
  ,   

  ,    for         and a given room s 

DEFINE:   

    
   number of primary arrivals of type   placed into room   on day        

      
   number of primary arrivals of type                                 

                 on day   if the blocking eligible hours were available  

INITIALIZE:   

   
    

       
   

    // space available in room after RQ decisions 

    
    

       
   

     // blocking eligible hours after RQ decisions 

    
     

     
               // space available if blocking hours were free 

FOR            :             // reflects prioritization of primary arrivals 

 // determine cases of type   that either fit or would have fit into open space 

        
   

 

  
 

     
         

             

       
         

    
   

 

  
    

 // compute blocking penalties 

    
         

       
    

    
                

            

 // compute remaining space for next iteration 

    
     

         
   

    
     

           
   

END-FOR 

RETURN:      
  ,    

  ,    
   for         and a given room s 

We conclude our presentation of the general formulation for the SDSSP with a 

comment about the computational complexity involved in solving this initial SDP. As 

with many SDPs, this formulation is susceptible to the curse of dimensionality. The 

number of feasible states for a given operating room (not taking into account the RQ) 
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is linear in the number of days before surgery ( ) and quadratic in the capacity of the 

OR (due to possible combinations of   
  and   

 ). Combining these states across 

operating rooms already yields a combined complexity that is exponential in the 

number of rooms. While there is no theoretical bound on the size of the RQ, it is clear 

that any practical truncation must maintain enough space for each case type to fill the 

available capacity in each of the rooms (we will return to this truncation issue later in 

Chapter 4). This introduces additional complexity that is exponential in the number of 

case types. Without even considering the range of feasible decision values or the 

possible supports for the arrival random variables, we see that the SDP for the general 

SDSSP quickly becomes intractable for large problems. The case study in Chapter 2 

shows that realistic values of   can exceed 20 days (with non-trivial decisions 

typically occurring in the final 5 days) and values for the OR capacity ( ) are 

typically eight hours. At UMMC, there are over 20 ORs and case durations can range 

from less than an hour to over eight hours. We tackle this complexity problem by first 

analyzing a special case of SDSSP with one operating room and one case type. The 

results of this analysis will motivate heuristic approaches for SDSSP that we will 

present and test in Chapter 4. 

3.2. A Single OR with Unit Durations 

Because of the novelty of this approach to the single-day surgery scheduling 

problem, we begin with an analysis of the simplest case, a single operating room 

where all cases have the same (unit) duration. As the following discussion will show, 

the optimal daily solutions for this special case, which we will refer to as SDSSP1, 

follow a threshold pattern that reserves a specific amount of space in the OR for the 

remaining primary demand on each day leading up the day of surgery. This intuitive 

result, together with the algorithm for determining the optimal thresholds, serves as 

the basis for our continued analysis of more general cases with multiple case types 

and multiple operating rooms in Chapter 4. 



 

 

37 

Simplified Formulation 

The general formulation simplifies considerably for SDSSP1. While we refrain 

from restating the entire simplified formulation, several pieces of the simplification 

are helpful in proving that the optimal solutions follow the threshold pattern 

mentioned above. Throughout our discussion of SDSSP1, we will drop the operating 

room and case type indices (  and  , respectively) from our notation. The definitions 

of the arrival random variables (   and    , daily cost parameters (   and   ), state 

variables (  ,   , and   ), and decision variables (  ) require no further modification. 

The expression for the number of deferral and the ProcessDay algorithm for the 

number of blocking penalties incurred on day   both simplify considerably. First, the 

number of deferral penalties incurred on day   simplifies to the following: 

                   

Because SDSSP1 does not consider different case types, the number of blocking 

penalties can actually be computed using a closed expression, rather than requiring 

the ProcessDay algorithm. Recall that the number of blocking penalties depends on 

the realization of the primary arrivals. Figure 3 illustrates how the blocking penalties 

change between three different demand scenarios, which leads to the following 

expression for the number of blocking penalties on day  . 

 
Figure 3. Illustration of different blocking penalty scenarios for SDSSP1 
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The figure and the resulting expression show that if the primary arrivals will fit 

into the available space in the room (after that day‟s RQ decision), then no blocking 

penalty is incurred. On the other hand, if the number of arrivals is large, the number 

of blocking penalties is capped by the number of blocking eligible cases in the room 

(from previous days‟ and from that day‟s RQ decisions). 

The transitions from day   to day     can also be simplified considerably using 

this new expression for day  ‟s blocking penalties.  

                           

               

                              

Finally, in order to facilitate our analysis of the value function minimization 

problem, we introduce the following notation referring to the function that each day‟s 

value function aims to minimize. First, for         , and then, for the day of 

surgery (   ). 

                                                         

                                             

This allows us to restate the value function for all  :  

                                                           

This notation also allows us to introduce a notation for the optimal SDP decision 

corresponding to state           . We also define a finite difference function for the 

function                 with respect to   , which we will require later in our 

analysis. 
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The following two subsections study the optimal decisions for SDSSP1. We first 

discuss a sample path for a simple example and observe the threshold behavior that 

emerges from the policy maps for the optimal decisions. We then formalize this 

threshold behavior and prove both its existence and optimality.  

Optimal Solution Patterns 

In order to better understand the optimal decisions generated by the SDP, and how 

they translate to blocking and deferral costs, it is helpful to look at a sample path for a 

small numerical example. Suppose an OR has capacity for four cases, and that the 

daily primary and secondary demand arrivals both follow Poisson distributions. The 

daily arrival rates and system costs are specified in Table 8. The resulting SDP is 

solved to get the optimal decision for each feasible state on each day. Table 9 

illustrates the sample path generated by single realizations of the arrival random 

variables, combined with the optimal decisions and transitions generated by the SDP.  

Of particular interest in this example are days 3 and 2, where the optimal SDP 

decisions for the given states say to schedule one case off the RQ on each day. On 

day 3, the RQ consists of two cases but only one is taken, leading to a deferral 

penalty. Because there is still sufficient space in the room for the primary service line 

arrival           , no blocking penalty is incurred and one blocking eligible case 

is passed to the following day. On day 2, another deferral penalty is incurred, and 

because the primary service line‟s arrivals exceed the remaining available space 

           a blocking penalty is also incurred. On the day of surgery, we see that 

there is no available time in the OR (     , while there are still three cases on the 

RQ. Because penalties for not scheduling RQ cases are only assessed up to what is 

feasible, and no placements are feasible on day 0, no costs are incurred for these 

unscheduled cases. 
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Table 8. Input data for a simple SDSSP1 instance 

 

Days Before Surgery 

 

4 3 2 1 0 

Arrival Rates 

         Primary 1 2 0.5 0.5 0 

    Secondary 1 1 1 1 0 

Costs 

          Deferral (  ) 1 1 1 1 1 

     Blocking (  ) 3 3 3 3 5 

Note: Capacity of OR is set to 4 cases and random variables 

follow Poisson distributions. 

 

Table 9. Sample path for a simple SDSSP1 instance using the optimal SDP solutions 

 

Days Before Surgery ( ) 

 

4 3 2 1 0 

Wj 0 2 2 2 3 

Bj 0 0 1 1 0 

Cj 4 4 2 0 0 

xj 0 1 1 0 0 

Tj 0 1 2 1 0 

Rj 2 1 0 0 0 

NDj 0 1 1 0 3 

NBj 0 0 1 1 0 

Daily Costs 0 1 4 3 0 

 

In the exploration of optimal policies for SDSSP1 across a wide range of input 

data, a striking trend emerges. For all input data satisfying certain realistic 

assumptions, the optimal policy for each day follows what we describe as a threshold 

policy. That is, for each day before surgery there is a specific amount of space 

preserved for future primary arrivals, and the optimal decision takes as many cases as 

necessary to reach this threshold. If this number of cases is not feasible, then the 

decision takes the system as close to the threshold as possible. Furthermore, the 

threshold is independent of the RQ demand arrival process and the number of 

blocking eligible cases already in the OR. For the example above, the observed 

thresholds were (2, 3,  ,  ,  ) for days 4,…, . Looking at these thresholds for the 

states observed in the sample path in Table 9 sheds light on why the corresponding 

decisions are made (e.g., on day 3, four spaces are available and the threshold is three, 
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so one RQ case is scheduled). Figure 4 shows how the optimal decisions change as 

the available time in the OR increases for a hypothetical day on which the threshold 

says to preserve time for two future primary cases. If the available time is already less 

than the threshold, then no RQ cases are scheduled. On the other extreme, if there are 

not enough cases on the RQ to reach the threshold, then the optimal decision takes as 

many RQ cases as are present. 

 

Figure 4. Sample policy map showing threshold behavior for SDSSP1 

The next section presents an analytical proof that the optimal policies for the 

single room SDP always demonstrate this threshold behavior. The proof leads to a 

constructive algorithm for finding the desired thresholds, and thus all optimal 

decisions, for any set of input data without solving the full SDP. 

Optimality of the Threshold Behavior 

In the course of an induction proof for the optimality of the threshold behavior, 

the nature of the costs and state transitions for certain adjacent states and decision 

values will be important. The relationships below for         result from the 

transition equations presented with the SDP formulation above. If explicit 

dependence on the state variables, decision variables, or arrival random variables is 

not shown, then these values are held constant in the differences below. The notation 
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     represents an indicator random variable, and the relationships are grouped for 

clarity. 

Group 1:                                

                                    

                                   

                                   

Group 2:                                        

                                   

                                           

                                             

Group 3:   
                    

             

                               

                                       

                                       

These relationships provide the necessary insights to proceed with a formal 

statement and proof of the threshold policy suggested above. Two realistic 

assumptions on the input data are required: (1)           and (2)              . 

These do not limit the strength of the result, because (1) deferral costs are certain 

while blocking penalties depend on uncertain future arrivals and (2) increasing the 

blocking penalty as the day of surgery approaches would discourage filling up the 

remaining space. In the statement of the theorem, part (iii) is the desired threshold 

result, while the other parts are necessary in the development of the proof. 
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Theorem 3.1  For         and all feasible states           , 

(i)   a function       s.t.       is non-increasing in  ,          and 

                           

(ii)                  is convex in    

(iii)      satisfying                   s.t.  

                                                 

(iv)                                  
 

      

             

              
  

The proof proceeds using weak induction. 

Base Case (   ): Observe the following statements about day 0. First, no OR slots 

need to be preserved for future arrivals, leading to an effective threshold of     . 

This gives the desired structure to the optimal decisions. 

                                  

                                        

Second, substituting this choice of    into the day 0 value function, followed by some 

simplification, allows the value function to be expressed in terms of        . This 

observation leads to the following equality for day 0. 

                                

Using the Group 1 transition relationships and this day 0 equality, the first two 

desired statements for day 1 emerge: 
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                       where                     

Note that                . Also,       is clearly non-increasing in  , which 

gives                  non-decreasing in    and proves the convexity of 

                with respect to   . 

Minimizing                 then suggests looking for the point where the finite 

difference changes signs. In other words, seek out    such that            

       and try to set         . Such a    exists because                

(by assumption on input data) and because             as    . If the 

desired value for    is infeasible, then choose    on the boundary closest to the 

desired value. This gives the desired expression for the optimal decision in terms of 

the threshold   . 

                                  

All that remains for the base case is to show part (iv) of the claim, which is 

critical for the inductive step. For brevity, define   
                      

and   
              . From the expression above for the optimal decisions, there 

are two cases to consider: (1)   
     

    when         and (2)   
     

    

when        . 

Case 1 (  
     

   ): The group 2 transition relationships state that in this 

scenario the subsequent day 0 states (from the corresponding   
   and   

  day 1 states) 

will either be identical (for      ) or differ in such a way that by the day 0 equality 

above they will have the same value (for      ). The desired difference then 

depends only on the differences in deferral and blocking costs. 
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Case 2 (  
     

   ): According to the group 3 transition relationships, the 

blocking costs and subsequent day 0 states will be identical in this scenario. The 

deferral costs will also be the same, giving: 

                                  

These two cases yield the final piece of the base case. 

Inductive Step: Assume that all parts of the claim hold for day    . 

                                                   

                                                                          

                                                                       

                                   

By the group 1 relationships, the day     states are identical when         . 

Otherwise, the states have the form of the difference in part (iv) of the induction 

assumption. By the induction assumption then, the resulting values are equal when 

               . But for         , it follows that                  . 

Combining these pieces with the induction assumption, the difference in day     

states is                when                    , and is zero 

otherwise. This is reflected in the conditional expectation below, allowing the finite 

difference calculation to continue. 

                                   

                                                                               

                                                                

    

   

 

                                   

where                                      
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It is important to note that if       , then the final summation in this expression 

disappears. Moving on to show that       possesses the desired qualities, the next 

two results use both the induction assumptions on         and the assumption that 

       . 

                                     

    

   

 

                                         

                                      

                   

               

             

                                         

    

   

 

                                     

    

   

  

                                                         

                                                     

      

   

                   

At this stage, note that              by the selection of      and         

            and              by the induction assumption. Continuing with 

the computation gives: 

                                          

Therefore       is non-increasing in  , which gives                 convex in 

  . Using the same argument presented in the base case, minimizing                 
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requires finding    such that                   and trying to set         . 

Again, this    is guaranteed to exist because                and because 

            as    . If the desired value for    is infeasible, then choose    

on the boundary closest to the desired value. This gives the required expression for 

the optimal decision in terms of the threshold   : 

                                  

In order to finish up the final part of the claim, define   
              

        and   
              . Just as in the base case, the expression for the 

optimal decisions yields two cases for the relationship between these two policies: (1) 

  
     

    when         and (2)   
     

    when        . 

Case 1 (  
     

   ): The group 2 transition relationships state that in this 

scenario the subsequent day     states (from the corresponding   
   and   

  states) will 

either be identical (for      ) or differ in such a way that part (iv) of the induction 

assumption may be applied (for      ). Applying the induction assumption when            

      gives that the difference in values between the day     states will be 

           when            , and will be zero otherwise. But when      , 

note that              . This implies that the value of the day     states will only 

be nonzero when              , a result which appears in the conditional 

expectation below. 
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Case 2 (  
     

   ): As in the base case, the group 3 transition relationships 

show that the blocking costs and subsequent day     states will be identical in this 

scenario. The deferral costs will also be the same, giving: 

                                  

These cases complete the proof of the claim.                   

The definition of       and part (iii) of the claim suggest a constructive algorithm 

to determine the optimal thresholds for any set of input data. The proof of the base 

case demonstrates that in addition to setting     ,    can be found by iterating 

through       for           until it changes sign. Using      and storing 

        for               ,       can similarly be computed and    selected at the 

point where       changes sign. 

Equipped with this algorithm for computing the optimal policy thresholds, 

optimal solutions for SDSSP1 can be obtained for any set of input data outside of the 

SDP framework (and thus escaping the curse of dimensionality associated with 

SDPs). In order to get a better feel for the sensitivity of the optimal thresholds, and 

thus the optimal RQ decisions, to the input data, the next subsection applies the 

optimal threshold algorithm to a range of input data 

Computational Results 

In the algorithm for computing the optimal policy thresholds, it is interesting to 

note that the room capacity and day 0 utilization costs play no role in determining the 

thresholds. In fact, what drives the thresholds are the primary arrival distributions (  ) 

and the ratio of blocking (  ) to deferral (  ) costs. To demonstrate the sensitivity of 

the thresholds to these input parameters, we test a range of ratios on different arrival 

scenarios. Three arrival scenarios are considered, corresponding to early, middle, and 

late demand arrival patterns, and the daily arrivals are assumed to follow Poisson 

distributions with the rates shown in Table 10. 
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Table 10. Primary demand arrival rates for three arrival scenarios 

Arrival 

Scenarios 

Days Before Surgery 

4 3 2 1 0 

Early 2 1 0.5 0.5 0 

Middle 1 1 1 1 0 

Late 0.5 0.5 1 2 0 

Note: Arrival random variables follow a Poisson distribution. 

For each of these scenarios, the day 0 costs are set to 0, the deferral costs are fixed 

at 1, and a range of blocking costs is selected. For the purposes of this initial 

sensitivity testing, the blocking costs remain constant from day to day within each 

scenario. The optimal daily thresholds are computed using the algorithm suggested in 

the proof of Theorem 3.1. The resulting thresholds are shown in Table 11. In each 

scenario, a blocking-to-deferral cost ratio of 1:1 leads to thresholds of 0, in effect 

equivalent to a greedy RQ policy. For larger ratios, the threshold patterns mirror the 

arrival patterns. Ratios in the range of 2:1 and 3:1 give day-to-day thresholds that 

roughly match the expected day-to-day arrivals, while ratios of 5:1 or higher yield 

thresholds that begin to mirror the cumulative remaining expected arrivals.  

Table 11. Optimal SDSSP1 decision thresholds for a range of blocking costs across 

three demand arrival scenarios 

Blocking Costs 

Early Arrivals Middle Arrivals  Late Arrivals 

Days Before Surgery Days Before Surgery Days Before Surgery 

4 3 2 1 4 3 2 1 4 3 2 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 1 0 0 1 1 1 1 0 1 1 2 

3 3 1 1 1 2 2 2 1 1 2 2 2 

4 4 2 1 1 3 2 2 2 2 2 3 3 

5 4 2 1 1 3 3 2 2 3 3 3 3 

6 4 2 1 1 4 3 3 2 3 3 4 3 

7 5 3 2 1 4 4 3 2 4 4 4 4 

Interestingly, for lower blocking costs, the thresholds in the late-arriving demand 

scenario start low and actually increase as the day of surgery approaches. This reflects 

the fact that deferring a RQ for several days in a row can eventually be as costly as 

blocking a primary case, suggesting that if the secondary demand is high and arrives 

early, then a primary specialty with late-arriving demand runs the risk of losing its 
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space before it has an opportunity to fill it. One way for the OR stakeholders to avoid 

having a specialty lose its allocated space in this manner is to set a block release date 

(which is exactly why block release dates are used in practice). However, we note that 

a blocking cost structure with higher blocking costs before the demand arrival peak 

and lower costs after the peak could have the same effect by producing appropriate 

thresholds. It warrants reminding that deferral and blocking costs are not reflective of 

actual dollar costs, but rather are reflective of subjective satisfaction costs. 

The common use of block release dates in practice, and the fact that they often 

differ between specialties, indicates some underlying, if unstated, complexities in the 

relative costs that OR managers associate with deferring RQ decisions and blocking 

primary cases. Based on the results of this analysis of SDSSP1, we argue for an 

approach that explicitly identifies the relative values placed on blocking and deferring 

and uses these values to set the corresponding RQ policies. In practice, these values 

could be made to incorporate a range of practical concerns related to releasing blocks 

of OR time and scheduling RQ cases. For instance, deferral costs on the days 

immediately before surgery could reflect potential difficulties in getting last-minute 

RQ cases cleared for surgery (such as the need for pre-operative tests or payment 

paperwork). Blocking costs could incorporate equipment requirements and room 

preferences associated with different primary specialties. Finding reliable methods for 

eliciting these relative values from the relevant OR stakeholders, and determining 

how they differ from day-to-day and from specialty-to-specialty, is an area ripe for 

future research.  

We also recall that SDSSP1 reflects a simplified version of the scheduling 

problem for a single OR where the room capacity, arrival random variables, and RQ 

decisions are stated in terms of the number of cases, essentially ignoring case 

durations. The intuitive nature of the threshold result for SDSSP1, and its lack of 

limitations on the arrival distributions, raises important questions about whether this 

behavior generalizes to versions of SDSSP with multiple case types (e.g. multiple 

case durations) and multiple operating rooms. In Chapter 4, we continue our analysis 

of SDSSP by studying these natural extensions of SDSSP1.  
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Chapter 4. The Single-Day Surgery Scheduling 

Problem: Analyzing the General Case 

As discussed at the end of the previous chapter, the simple and intuitive nature of 

the threshold result for SDSSP1 raises the fundamental question of whether this 

behavior extends to more general versions of SDSSP. In this chapter, we explore two 

natural extensions of the problem with one OR and unit durations. In Section 4.1 we 

continue to look at a single OR and study the impact of different case durations. 

While the threshold behavior is no longer optimal in this case, we show that 

threshold-based heuristics can be used to generate high quality RQ decisions. In this 

section we also explore the costs that imposing different block release dates has on 

scheduling decisions. In Section 4.2, we return to the scenario with unit durations and 

extend it to consider multiple ORs. We show that the single OR thresholds are 

optimal when the request queue is sufficiently long and propose a threshold-based 

heuristic for the case when the RQ is limited in length. Together, these analyses lay a 

foundation from which to solve realistic problems with multiple ORs and multiple 

case types. 

4.1. A Single OR with Multiple Case Types 

In this section we consider the single-day surgery scheduling problem for a single 

OR with multiple case durations (SDSSP2). The general formulation for SDSSP can 

be applied directly to SDSSP2 without any modification (simply let     . 

Throughout our discussion of SDSSP2, we will drop the OR index   from our 

notation (and will continue to vectorize over the case types when convenient). In the 

following sections we first discuss some implementation issues that are necessary to 

reduce the computational burden involved in solving the SDP directly. An analysis of 

optimal policy maps shows that while the solutions to SDSSP2 do not exactly follow 

a threshold pattern, they do exhibit approximate threshold behavior. This approximate 

behavior motivates a range of threshold-based heuristics, which we test on a broad 

range of test problems.  
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Implementation Issues and Solution Structure 

We begin by showing that the day 0 value function for SDSSP2 reduces to an 

integer knapsack problem. While not critical from the perspective of solving the SDP 

to optimality (the result integer programs are small and can be solved quite quickly), 

the knapsack nature of the value function allows us to use knapsack heuristics to find 

day 0 solutions in our heuristics. Without restating the constraints, the day 0 value 

function for SDSSP2 can be thus rearranged: 

             

                         
    

       
  

  
    

     
  

 

   

            
 

 

   

   

                             
      

  

  
    

  

 

   

      
     

         
 

 

   

  

                             
      

  

  
    

  

 

   

      
     

         
 

 

   

  

Also recall from the discussion in Section 3.1 that the current formulation places 

no upper bound on the size of the RQ. In order to implement a solution algorithm for 

SDSSP2, however, the RQ must be truncated at some point. Early implementations of 

our code showed that a truncation rule that combined the states with large RQs by 

ignoring any values beyond the point of truncation created a “bounce-back” effect 

that impacted the optimal solutions. Apparent irregularities in the optimal solutions 

followed the location of the truncation. In particular, the solutions for the RQ states 

closest to the truncation point (no matter where the truncation point was located) 

would take fewer RQ cases than states with smaller RQs, which ran counter to our 

results for SDSSP1. This behavior necessitated a more sophisticated technique for 

limiting the number of RQ states that would not allow the system to prematurely 

return from the point of truncation. 

Instead of truncating, we opt to combine the states with large RQs (those greater 

than a given boundary) into a state in which the RQ is described as “infinite.” In order 

to justify that this technique does not produce solution irregularities of its own, two 
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properties must hold. First, once the RQ state variable for a case type exceeds what 

will fit into the remaining time on the schedule, this condition must continue to hold 

for all subsequent states. Second, the optimal decisions must be identical for all states 

beyond the selected boundary. We claim below that these properties hold if the RQ 

boundary for each case type is located anywhere beyond the range of feasible 

decisions, which allows the RQ boundaries to be set as small as possible and greatly 

reduces the computational complexity of the SDP implementation. 

Similar to the definitions in Section 3.2, the following definitions will be useful 

both in the statement and proof of the desired claims. The first definition applies to 

      . 

                    
    

            
          

   
 

   

                         

                   
       

  

  
    

     
  

 

   

            
 

 

   

  

The dependence on the decision variables,   
 , is not explicitly stated on the right 

hand side of the first definition but is implied for all quantities that depend on   
 . 

With these functions thus defined, an alternative statement of the value function for 

         can be given, with the minimization still subject to the same constraints 

described above. This re-statement of the value function also provides a concise way 

to refer to the optimal decision for each feasible state. 

                  
                  

                      
                  

Finally, a quantity we refer to as the “trimmed RQ state” is defined for each 

feasible state that reflects the maximum number of feasible RQ placements for each 

case type. 
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The two lemmas below represent the two properties described above. The first 

lemma justifies the notion that once the number of RQ cases exceeds the remaining 

capacity, it will continue to do so. The second lemma states that the value functions 

and optimal decision vectors are identical for all states where the number of a certain 

case type on the RQ exceeds what is feasible. 

Lemma 4.1  If   
   

  

  
 , then     

   
    

  
  for all possible future states. 

Proof: 

    
   

    

  
     

    
    

     
      

   

  
         

      
   

   

  
  

                             
     

    
      

      
  

   

          
      

   
    
   

  
    

      
    

                            
     

    
     

           
      

   
    
   

  
  

                            
    

  

  
  

                            

The first several steps are simply manipulations of the transition equations 

defined above. The second to last step uses the fact that the arrival random variables 

are non-negative, as well as an observation on the nature of the floor function. The 

final step reflects the initial assumption that the desired inequality holds for day  .  ■

         

 

 



 

 

55 

Lemma 4.2  For all feasible states            for all days        , the following 

equalities hold:  

(i)                                  

(ii)                            

(iii)                            

The proof proceeds by induction on  . 

Base Case (    : The first equality relies directly on the definition of    
 . 

                   
       

  

  
    

     
  

 

   

            
 

 

   

  

                                       
     

    
  

 

   

            
 

 

   

  

                                                     

Note that the feasible regions for the decision vector are identical for states 

           and            . Both sides of equalities (ii) and (iii) represent 

minimization problems of identical functions over identical feasible regions, clearly 

implying that these equalities must hold. 

Inductive Step: Assume that all the desired equalities hold for day    . Note that 

moving from state            to             has no impact on the deferral and 

blocking penalties (   
 ,    

 , and    
  , provided that the decision variables are 

held constant. The deferrals are computed based on what is feasible, the blocking 

penalties do not rely on the RQ outside of determining feasible decisions, and, as in 

the base case, the feasible regions are identical for both states. Therefore, looking at 

the difference between                 and                  comes down to looking 

at the difference between the subsequent day     states. The next day‟s available 

space (    ) and blocking eligible hours (    ) will also be identical, again provided 

that the decision variables are held constant. Therefore, the focus lies on potential 
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differences on day      between the RQ states. The goal is to show that the trimmed 

day      RQ states (limited to the day       decisions that are feasible) are equal 

starting from either   
  or    

  on day  . It will be helpful to express the RQ day    to 

day     transition equation as a function   of the starting RQ state, with all other 

variables being held constant. 

    
    day     RQ state for case type k from state            

     
    day     RQ state for case type k from state             

Showing that these two RQ states have equal trimmed RQ states now amounts to 

showing that the following equality holds. 

     
    

  
      

         
    

  
       

    

If   
     

 , then equality trivially holds. If   
     

 , then   
   

  

  
  and 

   
   

  

  
 . Then by Lemma 4.1,     

     
    

  
  and     

     
    

  
 . As a result, 

both sides of the equality reduce to  
    

  
 . Returning to equality (i), the difference in 

question becomes: 

                                 

                                                                                 

                                                       
                        

    

                                   

The first step uses equality (ii) of the induction assumption, and second uses the result 

above that the trimmed day     RQ states will be equal for both original day j RQ 

states. As in the base case, equalities (ii) and (iii) follow directly from equality (i).   ■  

The final two parts of Lemma 4.2 are the justification for combining all states past 

the RQ boundary into one state. For case type  ,  
 

  
      used as the boundary 
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because it equals the maximum number of cases of type   that will fit into an empty 

OR schedule. Because the value function and optimal decisions are identical for all 

states beyond this boundary (all other things being equal), aggregating these states 

will not impact the resulting optimal policy. 

Optimal Solution Behavior 

In order to explore the extent to which the SDSSP1 threshold behavior extends to 

SDSSP2, we solved SDSSP2 to optimality for a range of input data and analyzed 

policy maps of the resulting solutions. The policy maps in Figure 5 show the optimal 

decisions for a single instance of SDSSP2 across a representative selection of states. 

In this example, the scheduled OR capacity is four hours, and there are two case 

types: one-hour cases and two-hour cases. The rest of the input data come from one of 

the test problems described below. The policy maps show the total hours of each case 

type taken from the RQ and placed on the OR schedule by the optimal decision for 

each state. A single map shows all possible hours remaining (  ) and blocking 

eligible hours (  ) states for a single RQ state on a particular day. Note that the sum 

of the hours remaining and the blocking eligible hours cannot exceed the scheduled 

capacity of the room (as indicated by the infeasible states). 

 

Figure 5. Policy maps for SDSSP2 showing the number of hours of cases scheduled 

by the optimal decisions three days before surgery for two RQ states across all 

feasible hours remaining (    and blocking eligible hours (  ) states. 

Cases of duration 1 Cases of duration 2 Infeasible states 
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The fact that the policy map does not change when the number of cases on the RQ 

is increased confirms the notion (as indicated by Lemma 4.2) that having more cases 

on the RQ does not pressure the optimal decision into taking more cases. The maps 

also immediately show that certain behaviors from SDSSP1 do not extend to 

SDSSP2. In particular, a change in the number of blocking eligible hours can change 

the optimal decision. This change is evident between      and      for both 

maps. Figure 6 depicts the number of available hours on the OR schedule after the 

optimal decisions and clearly illustrates the fact that the decisions do not exactly 

follow a threshold pattern. However, it does appear that the decisions are guided by a 

“target” threshold. In this case, the OR manager generally seeks to leave one hour 

available in the OR, and deviates from this target only by small amounts and in a few 

situations. 

 

Figure 6. Hours remaining on the OR schedule after the optimal decisions to SDSSP2 

three days before surgery for a single RQ state across all feasible hours remaining 

(    and blocking eligible hours (  ) states. 

The results in Section 3.2 show that the optimal thresholds for SDSSP1 depend on 

the primary case arrival distribution and on the ratio of blocking costs to deferral 

costs. In the case of SDSSP2, three other potential factors merit exploration: the ratio 

of the deferral costs and blocking costs between the case types, the balance of the 

primary arrivals between the case types, and the weighting parameter ( ) that 

balances the number blocked (   
 ) and the fraction blocked (   

 ).  

Hours Remaining in OR 

Infeasible states 
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Table 12 shows the ranges of the input data used to create an initial set of 162 test 

problems. The remaining problem parameters are held constant for all the instances. 

The scheduled capacity of the OR is set to four hours (   ), and there are two case 

types with durations of one and two hours, respectively (         ). The 

problems are solved over a period of four days before the day of surgery (   ). 

The blocking and deferral costs are held constant from day to day for each instance 

(following the ratios in Table 12), and the cost of unused OR time is set to ten 

(     ). The case arrivals on each day follow Poisson distributions, and a total of 

six hours of primary cases and six hours of secondary cases are expected over the 

time horizon. For the secondary cases, an equal number of each case type is expected 

(    
       

       , and the expected number of primary cases is weighted 

between the two case types as indicated by the ratios in Table 12. The expected 

number of primary arrivals is the same every day, implying that this initial set of test 

problems will not capture the influence of the arrival timing on the optimal solutions. 

This factor and the impact of block release dates will be explored later. 

Table 12. Input data for a set of 162 test problems for the SDSSP2. 

Parameter Notation Range of Values 

Blocking Parameter  λ 0, 0.5, 1 

Deferral Cost Ratio hj
2 
: hj

1
 1:1, 2:1 

Blocking Cost Ratio rj
2 
: rj

1
 1:1, 2:1, 3:1 

Blocking-to-Deferral Cost Ratio rj
1 
: hj

1
 1:1, 3:1, 5:1 

Case Type Arrival Rate Ratio E[Tj
2
] : E[Tj

1
] 1:2, 1:1, 2:1 

 

A thorough analysis of policy maps similar to those in Figure 5 and Figure 6 for 

each of the test problems reveals insight into three fundamental aspects of the 

solution behavior: (1) the extent to which the solutions follow an approximate 

threshold pattern, (2) the nature of the target thresholds (relative to the input data), 

and (3) the factors that drive the selection of one case type over another. While it is 

not feasible to present the entire set of policy maps here, we summarize the results of 

this analysis and present selected policy maps when appropriate. 
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The most striking and important trend is that the optimal decisions exhibit an 

approximate threshold behavior like the example shown in Figure 5 and Figure 6. In 

many cases the thresholds are exact, but even when the optimal solutions deviate 

from the apparent threshold they do so in only a small number of states and rarely by 

more than a single hour in either direction. 

Of the five factors listed in Table 12, two have no significant impact on the nature 

of the optimal decisions and apparent target thresholds. As shown by the sample 

policy maps in Figure 7 for different   values (         and   with all other input 

held constant), the impact of the blocking weight parameter ( ) is minimal. Smaller   

values effectively lower the blocking costs, and, as a result, more hours of RQ cases 

tend to be scheduled when     than when      However, the change rarely 

amounts to more than an hour‟s difference for a handful of states and never affects 

the apparent threshold guiding the optimal decisions. Similarly, as shown in Figure 8, 

the relative prevalence of one primary case type over another (    
       

  ) has very 

little influence on the optimal decisions. This suggests that the total hours of cases 

expected each day (which is held constant throughout) is more important in 

determining the target threshold than the prevalence of a particular case type. Finally, 

neither factor has any significant impact on the optimal solutions‟ tendency to prefer 

one case type over another (i.e. taking two one-hour cases over one two-hour case, or 

vice versa).  

 

Figure 7. Policy maps for SDSSP2 showing the number of hours of cases scheduled 

by the optimal decisions three days before surgery for three different blocking weight 

parameters (   

Cases of duration 1 Cases of duration 2 Infeasible states 
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Figure 8. Policy maps for SDSSP2 showing the number of hours of cases scheduled 

by the optimal decisions three days before surgery for three different primary case 

type arrival ratios (    
       

    

These observations leave the deferral and blocking cost structure as the primary 

determinant of the target threshold and the selection between the two case types. As 

in SDSSP1, the ratio of blocking cost to deferral cost (in the form of the   
    

  ratio) 

has the most influence on the approximate thresholds for the general SDSSP. 

Furthermore, the apparent thresholds for the three ratios listed in Table 12 (1:1, or 

greedy; 3:1, or low; and 5:1, or high) exhibit threshold trends much like those 

observed in Table 11 for SDSSP1. When the two costs are weighted equally, the 

optimal decisions universally try to fill the OR schedule as much as possible (thus the 

„greedy‟ label). When the ratio is „low,‟ the thresholds roughly aim to preserve 

enough open time for the total hours of cases expected each day. When the ratio is 

„high,‟ the thresholds move to preserve enough open time for the total cumulative 

remaining hours of expected cases. Sample policy maps for these three scenarios are 

presented in Figure 9. 

The other cost ratios included in this initial set of test problems (the blocking and 

deferral cost ratios between the case types) also impact the optimal solution behavior. 

Recall that the cost ratio discussed above is set for the first type (  
    

 ), but not for 

the second case type (  
    

 ). However, the between-case-type ratios (  
    

  and 

  
    

 ) affect the ratio of the blocking cost to the deferral cost for the second case 

type. When the between-case-type ratios combine to the make the cost ratio for the 

Cases of duration 1 Cases of duration 2 Infeasible states 
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second case type higher than the cost ratio for the first case type, the approximate 

thresholds increase by as much as an hour. This pattern is reversed when the between-

case-type ratios combine to make the cost ratio lower for the second case type. While 

these trends in the target thresholds are perhaps not as clean as those observed for 

SDSSP1, they provide evidence that the optimal solutions to SDSSP2 exhibit 

threshold behavior similar to that observed for SDSSP1. 

 

Figure 9. Policy maps for SDSSP2 showing the number of hours of cases scheduled 

by the optimal decisions three days before surgery for three different blocking to 

deferral cost ratios (  
    

   

In some cases the optimal solutions prefer one case type over another. In 

particular, when the deferral costs are the same for both case types (  
    

      , 

the solutions uniformly prefer the shorter case type. When the deferral costs are 

proportional to the case durations (  
    

     ), the prioritization becomes more 

difficult to decipher. However, a weak preference seems to exist for the type with the 

higher ratio of blocking cost to duration. Together, these observations suggest a 

prioritization that first considers the ratio of deferral cost to duration and then 

considers the ratio of blocking cost to duration. Another critical property, particularly 

in light of the approximate thresholds discussed above, is an overall tendency to aim 

for the threshold rather than prioritize one case type over another. 

These three sets of observations suggest a framework for threshold-based 

heuristics. As discussed at the end of Section 3.1, the complexity of SDSSP (and thus 

of SDSSP2) is quadratic in the capacity of the OR and exponential in the number of 

Cases of duration 1 Cases of duration 2 Infeasible states 
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case types. This complexity makes heuristic approaches necessary for solving 

realistically-sized problems (such as the schedule presented in the case study in 

Section 2.2) in which the scheduled OR capacity may be as large as eight hours and 

the case durations can exceed four hours. 

Threshold-Based Heuristics 

Our proposed heuristics for the single-day surgery scheduling problem require 

two components: (1) a threshold for each day and (2) a case type prioritization rule. 

The thresholds identify how much open time to preserve for future primary cases and, 

for each state, define a target number of hours to take off the RQ. The case type 

prioritization rule then indicates how to reach this target. 

The trends in the approximate threshold behavior motivate three simple methods 

for determining thresholds and a fourth method based on the optimal threshold 

algorithm from SDSSP1. Each of these methods is described below: 

 Greedy: Set each threshold to zero hours. 

 Day-to-Day: Set each threshold to the expected number of hours of cases 

arriving that day. 

 Cumulative: Set each threshold to the expected cumulative remaining number 

of hours of cases. 

 Smart: Use the optimal threshold algorithm from SDSSP1. 

The final method requires some manipulation of the input data in order to apply 

the SDSSP1 algorithm. Specifically, the multiple case types must be combined into a 

single case type. The arrival distributions for primary cases are combined to form a 

single distribution for the hours of arrivals on each day. The deferral and blocking 

costs for each case type are combined to form weighted costs, with the weights 

determined by the expected number of arrivals of each case type. The following 

definitions create the input data for the threshold algorithm. The first and third 

definitions are for        , while the second definition is for        . 
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Using this modified input, the optimal threshold algorithm from Section 3.2 is used to 

find the thresholds for the Smart threshold rule. 

The first three methods, which are based on the observed behavior for specific 

problem scenarios, should work well for some problems and poorly for others. 

Specifically, the Greedy threshold rule should work well for problems with “greedy” 

cost ratios. Similarly, the Day-to-Day and Cumulative threshold rules should work 

well for problems with the “low” and “high” cost ratios, respectively. The final 

threshold method can adapt to the input data and we hypothesize that it will perform 

well in all scenarios. 

Three different case type prioritization schemes are based on the insights gleaned 

from the optimal solution behavior. The last two schemes described below are for 

days       only. Because the deferral and blocking cost structure is different on the 

day of surgery (a single penalty,   , for OR hours left empty rather than multiple 

blocking costs,   
 ), these ratio dependent prioritizations take advantage of the 

knapsack nature of the day 0 costs (as described above).  

 Duration: Case types are prioritized by decreasing duration. 

 Ratios: Case types are prioritized first by decreasing deferral cost-to-duration 

ratio, and second by decreasing blocking cost-to-duration ratio. Remaining 

ties are ordered by decreasing duration. 

 Threshold First: Cases are prioritized as in the Ratios rule, but the 

prioritization is subjugated to first reaching the target threshold.  

This final prioritization scheme is motivated by the observation that the optimal 

decisions often place a higher priority on reaching the threshold than favoring one 
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case type over another. However, implementing this final rule requires a simple 

integer program (IP). In addition to input data on the state of the RQ (  
 ) and the 

case types (  ), the following definitions are needed for the IP: 

   target number of hours to take from the RQ and add to the OR schedule 

    priority of case type   

The priority values amount to a permutation of the set of case types        , where 

a lower priority score denotes a preferred case type. Assuming that the case durations 

and the scheduled OR capacity are integers, the IP can be defined as follows: 

                
 

 

   

            

               
 

 

   

      

                
    

        
  integer           

                

The slack variable z is given sufficient weight in the objective function to ensure 

that the target is reached if at all possible. If there is more than one way to hit the 

target, the RQ variables are weighted according to their priorities to ensure that more 

preferred cases are selected first. Note that the combination of base and exponent for 

the objective function weights reflects a kind of base (   ) arithmetic that ensures 

that no combination of less-preferred cases will be chosen over a more preferred case 

type. 

As mentioned above, the Ratio and Threshold First prioritization schemes rely on 

the knapsack structure of the day 0 costs for the day of surgery. The Ratio scheme 

uses a greedy knapsack heuristic, ordering the case types by decreasing value-to-

weight ratio and greedily taking as many of each type as possible. Because the 

Threshold First method already relies on the availability of an IP solver, the day 0 

knapsack problem is solved to optimality with this prioritization scheme. 
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Computational Results 

Combining the four threshold determination rules and the three case type 

prioritization schemes yields twelve threshold-based heuristics. We begin our 

computational testing with the problem instances defined in Table 12 and explored 

above. For each problem, we are able to use the optimal solution obtained by solving 

the SDP and compare it with each of the heuristics. Notice that the blocking weight 

parameter ( ) and the primary arrivals case type prevalence (    
       

  ), which 

have little influence on the optimal solutions, play similarly limited roles in the 

heuristics. For this reason, the heuristics are tested on the original test instances that 

have     and     
       

      . This leaves a set of 18 test problems that vary 

only in their deferral and blocking cost structure. 

An effective way to test the quality of the various heuristics is to imbed them in a 

simulation environment. The evolution of an OR schedule with specified input data 

and a RQ decision-making policy can easily be simulated to compute the total cost 

associated with a RQ policy and a particular realization of the arrival random 

variables. Each of the heuristics is simulated for 10,000 replications for each of the 

selected test problems, and the costs associated with each problem are expressed as 

percentage deviations from the expected value of the optimal solution. Table 13 

shows the mean deviation across all replications for each of the heuristics applied to 

the selected test problems. The 95% confidence interval (CI) half-widths for each of 

the values shown in Table 13 are given in Table A-1 in the appendix. Note that for all 

negative entries in the table, zero (representing the expected value of the optimal 

solution) falls within the CI. Recall that the three simple thresholds (Greedy, Day-to-

Day, and Cumulative) are expected to perform better for some instances than others. 

These targeted instances are shown in italics in Table 13, and the average 

performance of the heuristics across problem instances is shown for both the targeted 

instances and for all instances.  
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Table 13. Mean percentage deviation from the optimal expected cost for twelve 

threshold-based heuristics applied to test problems across a range of cost structures. 

Averages across problems are shown both for targeted instances and all instances. 

hj
2
 : hj

1
 1:1     

rj
1
 : hj

1
 1:1 3:1 5:1 Mean 

rj
2
 : rj

1
 1:1 2:1 3:1 1:1 2:1 3:1 1:1 2:1 3:1 Target All 

Greedy                       

   Duration 1.3 5.2 7.9 19.6 50.3 87.2 61.5 129.2 194.9 4.8 61.9 

   Ratios 2.8 7.7 9.4 19.8 51 88 59.9 128.2 194.8 6.6 62.4 

   Threshold First 18 18.8 17.5 24.6 53.2 88.6 62.4 126.9 191.3 18.1 66.8 

Day-to-Day                       

   Duration 50 29.2 15.1 4.4 7.3 15.5 11.4 31.8 48.2 9.1 23.7 

   Ratios 60.1 36.2 21.2 9.1 9.9 17.3 14.7 33.4 47.4 12.1 27.7 

   Threshold First 47.4 27.2 13.2 2.9 5.6 14.1 10 30.6 46.9 7.5 22.0 

Cumulative                       

   Duration 96.7 62.2 39 11.6 4.4 3.7 2.9 6.3 8.8 6.0 26.2 

   Ratios 110.6 73.5 47.6 20.1 11 9.2 10.7 12.3 16 13.0 34.6 

   Threshold First 94.6 60.3 37.5 10.4 3.2 2.5 1.8 5.3 7.8 5.0 24.8 

Smart                         

   Duration 1.3 31.7 20.8 8.3 4.4 3.7 2.9 4.2 3.8 n/a 9.0 

   Ratios 2.8 31.5 23 16.2 11 10.5 10.7 11.5 11.8 n/a 14.3 

   Threshold First 18 36.4 20 7.2 3.2 2.2 1.8 2.6 2.3 n/a 10.4 

hj
2
 : hj

1
 2:1 

  
Greedy                       

   Duration -0.2 -1.1 5.2 3 24.4 46.8 31.7 75.3 126.6 1.3 34.6 

   Ratios 7.8 -1.1 5.2 5.1 24.4 46.8 33.2 75.3 126.6 4.0 35.9 

   Threshold First 25.3 17.1 18.5 11.3 29.5 50.2 35.4 77.4 127 20.3 43.5 

Day-to-Day                       

   Duration 81.7 48.6 35.5 6 2.1 4.5 4.5 13 28.6 4.2 24.9 

   Ratios 89 48.6 35.5 8.4 2.1 4.5 4.8 13 28.6 5.0 26.1 

   Threshold First 81.7 48.6 35.5 5.9 2.1 4.5 4.4 13 28.6 4.2 24.9 

Cumulative                       

   Duration 155.1 98.5 74.1 24.6 10.2 4.3 6.4 3.5 6.1 5.3 42.5 

   Ratios 156.8 98.5 74.1 25.2 10.2 4.3 6.9 3.5 6.1 5.5 42.8 

   Threshold First 155.1 98.5 74.1 24.6 10.2 4.3 6.4 3.5 6.1 5.3 42.5 

Smart                         

   Duration -0.2 -1.1 37.3 9.6 9.1 4.3 5.9 3.5 3.2 n/a 8.0 

   Ratios 7.8 -1.1 37.3 12.1 9.1 4.3 6.4 3.5 3.2 n/a 9.2 

   Threshold First 25.3 17.1 40 9.7 9.1 4.3 6 3.5 3.2 n/a 13.1 

Several observations can be made from these results. First, the scenario-specific 

thresholds perform well when they should. In most cases, the cost of the solutions is 

less than 10 percent away from the optimal cost regardless of how the case types are 
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prioritized. As might be expected, the quality of these thresholds deteriorates rapidly 

for other cost structures. The Smart threshold adapts to the different cost structures, 

with deviations typically falling at or below 10 percent and only exceeding 20 percent 

on a few of the “greedy” problems (those with   
    

     ). The Smart threshold 

outperforms the other thresholds as a general-purpose heuristic. Furthermore, its 

flexibility suggests that it will be able to conform and adapt to an even broader range 

of cost structures than those tested here. 

None of the three prioritization schemes significantly outperforms the others 

across the entire range of problems. The Threshold First prioritization scheme is 

worse than the other prioritization schemes when paired with the Greedy and Smart 

thresholds and applied to the “greedy” problems. A greedy approach is appropriate 

for these problems, as observed from the policy maps, and this discrepancy between 

the prioritization schemes confirms the intuition that case type preference matters 

more when larger numbers of RQ cases are being placed. For the other subsets of 

problems, the Duration and Threshold First prioritization schemes slightly 

outperform the Ratios rule. Note that for the given case durations (one and two hours) 

the (decreasing) Duration rule will always reach the target if it is possible. This 

confirms the earlier observation that reaching the threshold is often more important 

than a particular case type preference. 

The thresholds for SDSSP1 suggest that the timing of the primary case arrivals 

also impacts the target thresholds. In order to study how this affects the performance 

of the proposed heuristics, a second set of test problems is needed. The full range of 

inputs used in Table 13 (fixed blocking weight parameter, equal numbers of each case 

type expected over the course of the problem, and varying cost ratios) is combined 

with four new arrival patterns. Each of the two case types is set to arrive either 

“Early” or “Late,” and all possible combinations are tested. The arrival random 

variables are still assumed to follow Poisson distributions for each day, with the 

“Early” arrival rates set to ( ,  .5,  .25,  .25,  ) and the “Late” arrival rates set to 

(0.25, 0.25, 0.5, 1, 0). This new test set consists of 72 problem instances. 

Rather than apply all twelve of the proposed heuristics to this new problem set, 

three representative heuristics are chosen: Greedy + Duration, Smart + Duration, and 
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Smart + Threshold First. The Greedy + Duration heuristic is chosen because it is the 

most naïve of the twelve and serves as a sort of worst case choice. The other two are 

chosen because they perform well over the entire initial problem set and most closely 

represent the trends observed in the policy maps. Table 14 shows the average 

performance of these heuristics over 10,000 simulated replications on the new set of 

test problems, again shown as the percentage deviation from the optimal solution 

value. The evenly spread out arrival scenario in Table 13 is referred to as “Middle” 

and is included in the table for comparison‟s sake. In the interest of space, the results 

are only shown for single values of the between-case-type deferral and blocking 

ratios. Specifically, these ratios in Table 14 are fixed as   
    

    
    

      (the 

case duration ratio). While the exact magnitude of the deviations differs for other 

deferral and blocking cost structures, the observations and patterns discussed here 

remain constant across other cost structures. For similar tables for the other cost 

structures tested, as well the 95% CI half-widths for all the means, please refer to 

Table A-7 through Table A-12 in the appendix. 

Many of the insights from the initial set of test problems are still evident in this 

second set of tests. As expected, the Smart thresholds tend to outperform the Greedy 

+ Duration heuristic in all arrival scenarios except the “greedy” problems where the 

Greedy threshold is expected to perform well. On average, the Smart + Duration 

combination still slightly outperforms the Smart + Threshold First combination. Most 

of difference between these two heuristics originates from the “greedy” problems, 

while their performance is nearly identical for the other cost ratios.  

It is also clear from the results in Table 14 that the timing of the primary service 

line‟s arrivals does have some impact on the performance of the heuristics. The 

Greedy + Duration heuristic performs better overall when more of the cases arrive 

early, while the other two heuristics perform worst in the (Early, Early) scenario. The 

early arrivals leave fewer arrivals closer to the day of surgery, which reduces the time 

that must be preserved for remaining cases and makes greedier policies more 

appropriate. As observed with the first set of test problems, the Smart threshold 

suffers in scenarios where greedier policies are appropriate and more importance is 

placed on the case type preference. On the other hand, the Smart threshold paired 
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with either case type preference does well when lower thresholds are required. In 

these scenarios, the case type preference plays a less significant role because fewer 

hours of cases are taken. While these observations appear at first to implicate the case 

type preferences as the weak step of the proposed heuristics, it may in fact be the case 

that the threshold behavior itself becomes less precise as the optimal solutions 

become greedier. 

From the perspective of the SDSSP, block release dates act as constraints on RQ 

decisions and should lead to lower quality solutions. However, the extent of the 

impact will depend upon the nature of the optimal decisions. In particular, forcing 

some decisions to zero will have less impact on problems with high target thresholds 

and will have more impact on problems with low target thresholds. In order to study 

the impact of block release dates, the 90 test problems presented in Table 13 and 

Table 14 are combined to form a single set of problem instances. The feasible block 

release dates for these problems range from three days before surgery (day 3) to the 

day of surgery (day 0). Setting the block release date to day 3 does not constrain the 

solutions in any way because day 3 is the first day on which a RQ decision can be 

made (the system is empty on day 4). Once a block release date has been chosen, a 

RQ policy is needed to make decisions after the block is released. Three different RQ 

policies are combined with the block release dates: (1) the optimal decisions from the 

fully solved SDPs, (2) the Greedy + Duration heuristic, and (3) the Smart + Duration 

heuristic. Each of these twelve combinations is simulated over 10,000 replications for 

each problem instance and the average results are shown in Table 15. The results are 

again given as percentage deviations from the unconstrained optimal solutions. As in 

Table 14, the results are only shown for single values of the between-case-type 

deferral and blocking ratios (  
    

    
    

     ). The exact magnitude of the 

deviations for other deferral and blocking cost structures differs some, but the 

observations and patterns discussed here remain constant across the other cost 

structures. For tables showing the results of our tests for these other cost structures, as 

well as the 95% confidence interval half-widths for all the means, please see Table A-

18 through Table A-23 in the appendix. 



 

 

 

Table 14. Mean percentage deviation from the optimal solution for three threshold-based heuristics applied to test problems 

representing a range of primary service line arrival patterns and cost structures (for   
    

    
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 1.9 15.8 40 -1.1 24.4 75.3 2.3 21.4 77.0 1.8 17.6 60.1 0.4 15.0 61.5 

    Smart + Duration 1.9 20.1 12 -1.1 9.1 3.5 2.3 6.4 0.4 1.8 5.5 3.5 0.4 1.3 3.8 

    Smart + Threshold First 14.7 20.3 12.1 17.1 9.1 3.5 28.8 6.4 0.4 18.3 5.5 3.5 19.3 1.3 3.8 

Table 15. Mean percentage deviation from the unconstrained optimal solution for three RQ policies paired with different block release 

dates across a range of primary service line arrival patterns and cost structures (for   
    

    
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions                               

   Day 3 2.9 -0.3 -1.6 -1.8 1.4 2.4 -0.9 0.5 0.6 2.6 1.4 -1.0 -1.1 -2.1 -0.6 

   Day 2 42.1 5.4 -1.3 38.0 6.1 2.5 47.5 8.5 0.8 44.6 7.0 -0.6 44.3 4.3 -0.3 

   Day 1 93.1 19.9 3.3 81.2 9.8 2.6 100.4 10.9 0.8 92.5 12.6 -0.5 100.6 11.7 1.3 

   Day 0 143.0 35.3 7.1 115.0 12.8 4.2 124.9 11.1 0.8 123.3 16.7 0.2 141.5 17.3 3.9 

Greedy + Duration                               

   Day 3 5.3 15.2 39.8 0.7 23.6 75.2 1.6 22.5 77.0 8.2 19.9 58.2 -0.5 14.9 59.8 

   Day 2 43.4 8.2 8.9 40.6 21.4 52.0 50.8 37.8 83.3 52.5 27.9 52.1 44.8 15.1 41.4 

   Day 1 94.5 21.4 8.1 83.2 16.0 25.6 103.6 36.0 54.7 97.8 28.3 31.5 101.5 23.4 31.3 

   Day 0 143.0 35.3 7.1 115.0 12.8 4.2 124.9 11.1 0.8 123.3 16.7 0.2 141.5 17.3 3.9 

Smart + Duration                               

   Day 3 5.3 17.1 9.2 0.7 8.2 5.5 1.6 8.8 0.8 8.2 8.1 2.7 -0.5 -0.6 1.5 

   Day 2 43.4 25.7 8.9 40.6 9.3 5.5 50.8 11.1 0.8 52.5 18.4 2.7 44.8 5.9 1.5 

   Day 1 94.5 34.9 12.6 83.2 9.8 3.5 103.6 11.1 0.8 97.8 18.4 2.7 101.5 13.8 2.2 

   Day 0 143.0 35.3 7.1 115.0 12.8 4.2 124.9 11.1 0.8 123.3 16.7 0.2 141.5 17.3 3.9 



 

 

72 

When paired with the optimal decisions, the day 3 results are consistently within 3 

percent of the optimal expected value (with the 95% CI half-widths always including 

zero), verifying the simulation‟s ability to accurately gauge the performance of a 

given policy. When paired with the heuristic RQ policies, the day 3 results are 

directly in line with the unconstrained results presented in Table 13 and Table 14, 

confirming for these instances that setting the block release date to day 3 is equivalent 

to having no block release date. 

As the block release date moves closer to the day of surgery, its impact on 

solution quality becomes evident. Note that when the block release date is set to day 

0, the choice of RQ policy loses significance because all the policies become greedy 

on the day of surgery. For the problems where greedier solutions are appropriate 

(  
    

     ), the solutions deteriorate quickly as the block release policy becomes 

more restrictive. For other blocking-to-deferral cost ratios, the added costs of the 

block release dates depend heavily on the RQ policy they are paired with. When the 

block release dates are paired with good RQ policies (the optimal decisions or Smart 

+ Duration), the added costs increase slightly as the block release policy becomes 

more restrictive, but rarely exceed 20 percent deviation from the optimal. In contrast, 

when the block release dates are paired with a poor RQ policy (Greedy + Duration) 

the solutions at times improve as the block release policy becomes more restrictive. 

This is most noticeable when the blocking-to-deferral cost ratio is high (  
    

  

   ), which is exactly the scenario where the Greedy threshold performs poorly. This 

ability of block release dates to mitigate the effect of poor RQ policies adds a level of 

theoretical justification to their use in practice, where the overall quality of RQ 

policies may be unknown and difficult to ascertain. 

Discussion 

The results of this section demonstrate that the threshold behavior that was shown 

to be optimal for SDSSP1 can be successfully extended to yield high quality solutions 

to the surgery scheduling problem with multiple case durations (SDSSP2). Showing 

that the optimal solutions to SDSSP2 remain constant for large numbers of cases on 

the RQ maintains the computational tractability of the SDP and allows a diverse 
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range of test problems to be solved to optimality. A detailed analysis of the optimal 

policy maps for these test problems reveals that the solutions follow an approximate 

threshold behavior and gives insight into how good thresholds and case type 

prioritization rules can be combined to form threshold-based heuristics. 

A set of threshold-based heuristics is proposed, and the computational results 

show that heuristics using the optimal threshold algorithm from SDSSP1 consistently 

outperform heuristics using other threshold rules. While none of the proposed case 

type prioritization schemes dominates the others, the results favor schemes that focus 

on hitting the target thresholds rather than enforcing strict case type preferences. The 

nature of the target thresholds varies with both the deferral and blocking cost 

structure and the timing of the primary case arrivals. The results indicate that the 

threshold-based heuristics perform best when the target thresholds are higher 

(indicating that fewer RQ cases will be scheduled) and deteriorate somewhat when 

greedy (lower) target thresholds are appropriate.  

Block release dates are shown to be increasingly costly for problems with greedy 

target thresholds. However, in scenarios with higher target thresholds, imposing block 

release dates is not overly costly if good RQ decisions are made after the block is 

released. Block release dates can improve solution quality when paired with poor RQ 

decisions (that is, the resulting solutions are not as bad as they would be otherwise). 

While the results of this section have focused on extending SDSSP1 to problems with 

multiple case durations, it is equally important to explore how SDSSP1 can be 

generalized to problems with multiple operating rooms. In the next section, we 

consider this second extension. 

4.2. Multiple ORs with Unit Durations 

The previous section showed that the optimal thresholds from the problem with a 

single OR and unit durations (SDSSP1) can still be used to make good, if not optimal, 

RQ decisions for the problem with a single OR and multiple case durations. The other 

natural extension to SDSSP1 is to look at problems with multiple ORs while 

maintaining the assumption that all cases have unit durations. We refer to this 

extension as SDSSP3 and investigate in this section the extent to which the optimality 
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of the single OR thresholds (as studied in Section 3.2) can be extended to the problem 

with multiple rooms.  

If we return to the general formulation in Section 3.1, we see that the only factor 

linking the different operating rooms together is the presence of a single, shared RQ. 

A primary role of this shared RQ state in the SDP value function is to limit the total 

number of RQ cases that can be added to the OR schedules. For this reason, we 

explore SDSSP3 under two scenarios. In the first scenario, we assume that the RQ is 

(essentially) infinite, and show that the under this assumption SDSSP3 can separated 

into distinct problems for each OR and solved using the respective optimal SDSSP1 

thresholds. In the second scenario, we consider the case where the RQ is limited. In 

this scenario, we show that SDSSP3 cannot be separated and, furthermore, that the 

structure that facilitated the proof of Theorem 3.1 does not quite hold in the case of 

multiple ORs. However, these attempts suggest an intuitive heuristic approach that 

uses the SDSSP1 data for each OR to find solutions for SDSSP3. 

Before continuing, we observe that the formulation for SDSSP3 can be obtained 

from the general SDSSP formulation by setting     and     . In the analysis 

that follows, we drop the case type index   from our notation for clarity‟s sake, and 

vectorize over the different ORs when appropriate. Also note that the lack of different 

case durations eliminates the need for the ProcessDay algorithm and allows us to use 

the simplified expressions for    ,     ,     , and      (appropriately indexed to 

account for different ORs) from Section 3.2. As with our earlier analyses, it is helpful 

to define the individual functions that the SDP value and boundary functions are 

trying to minimize. The first definition applies for        , and the second applies 

for    . 
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Infinite Request Queue 

Our initial analysis of SDSSP3 will consider the scenario where the RQ is infinite. 

As with SDSSP2, the concept of an “infinite” RQ can be interpreted as a RQ that is 

large enough to be beyond the feasibility limits imposed by the capacity of the ORs. 

While we will not present this concept formally for SDSSP3, a similar approach to 

the one used in Section 4.2 can be used. In the analysis that follows, we will use the 

notation      to represent this assumption. 

In order to show that SDSSP3 can be solved to optimality by breaking it into 

separate instances of SDSSP1 for each OR, it is sufficient to show that the function 

               and the value function             can be separated into distinct 

functions for each OR.  

Lemma 4.3  If      for       , then the function                and the 

value function             for SDSSP3 are separable by operating room such that: 
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The proof proceeds by induction on  . 

Base Case (    : 
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Observe that the function   
    

    
      

   is defined exclusively in terms of room   

and exactly matches the corresponding function from SDSSP1 with     . With 

    , the only constraints on the day 0 minimization of                are 

    
    

  for each room  . Thus the function   
    

    
      

   can be minimized 

for each room without respect to the decisions made in other rooms. 

                                     
    

        

                                   
    

    
      

  

 

   

       
    

        

                                   
    

    
      

         
    

  

 

   

   

                                 
    

    
    

 

   

 

Inductive Step: Assume that value function is separable by room for each feasible 

state with      on day    . Because     , the number deferred on day   

(   ) can be separated into the number deferred as a result of each room‟s decision, 

just as the blocking penalties incurred by a particular OR have no impact on the 

blocking penalties incurred by the other ORs. 

                        
      

  

 

   

                      

                             
    

  

 

   

    
      

  

 

   

        
      

      
    

 

   

  

                              
    

     
      

         
      

      
      

 

   

 

                           
    

    
      

  

 

   

 

Again, the room specific functions   
    

    
      

   are defined exactly as in 

SDSSP1 with     . Repeating the argument made in the base case, the feasible 



 

 

77 

region for the decision variables can be separated by room, and the desired 

separability of the value function for day   follows. 

                   
    

    
      

         
    

  

 

   

 

                              
    

    
    

 

   

 

This completes the proof of the lemma.      ■ 

The ability to separate the value function by room implies that SDSSP3 with an 

infinite RQ can be solved by solving SDSSP1 for each room individually. If the 

optimal thresholds for SDSSP1 for room   are defined as    
  for         , then 

the optimal SDSSP3 decision for room   on day   is given by:  

  
                    

    
   

Limited Request Queue 

The result above clearly indicates that the optimal SDSSP1 thresholds for each 

operating room have a role to play in the optimal solutions to SDSSP3. 

Unfortunately, the separability argument used in Lemma 4.3 breaks down for finite 

RQ states for two reasons. First, the feasible region for the decision vector can no 

longer be separated by room. Second, even though the day   costs associated with a 

given decision can be separated by room, the subsequent day     value function 

cannot be separated (because of its continued dependence on the shared RQ state 

    ). Furthermore, if we naïvely try to use the SDSSP1 thresholds in the case where 

the RQ is not infinite, we clearly run into difficulties when the number of cases on the 

RQ is not sufficient to meet the sum of the RQ decisions dictated by the individual 

thresholds (that is, when             
    

   
   ). The uncertainty involved in 

moving the unfeasible threshold-based decision back to the feasible region is 

illustrated for two ORs in Figure 10. How should the limited number of RQ cases be 

distributed between the rooms? Should one threshold be met and other not met, or 
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should the cases be evenly distributed between the rooms? More importantly, if we 

ignore the constraints on day  ‟s value function minimization, is there any 

mathematical justification for believing that the SDSSP1 thresholds continue to give 

the optimal decisions to the unconstrained  -dimensional minimization problem? 

 

Figure 10. Illustration of the limitations the shared request queue places on meeting 

the individual operating room thresholds for SDSSP3. 

Recall from the proof of Theorem 3.  that the key to determining each day‟s 

optimal threshold is the structure we found in the finite difference functions (in 

particular, the theorem claims that                            for some function 

      that is identical for all states on day  ). A logical step, then, for the  -

dimensional minimization problem associated with SDSSP3 is to look at the partial 

finite differences associated with each room. Using the notation    to refer to the unit 

vector in the  th dimension, we can define these partial finite differences as follows: 

                                                     

Ideally, we would like to be able to show that these partial finite differences exhibit 

the same structure as the finite differences in the proof of Theorem 3.1. If this were 

the case, we would know that the unconstrained minimization of                 

? 
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(which would then be a convex function) could still use the SDSSP1 thresholds for 

each OR (because the partial for each room would be independent of the other 

rooms). Furthermore, the partial finite difference functions could then be used in a 

form of “slowest ascent” algorithm (in the spirit of the classical steepest descent 

optimization algorithm) to move from the unconstrained minimum to the constrained 

minimum. 

As we continue with the calculation of these partial finite differences, it is 

important to note that the group 1, 2, and 3 transition relationships for    ,     , 

    , and      continue to hold in the multiple OR case. Also, changing the decision 

value for one of the ORs does not change the blocking costs incurred by the other 

ORs. The following calculations show that the partial finite differences do not exhibit 

the same structure as the finite differences for each individual room. 

                                                     

                                                
     

            
       

                                                                      

                                   

                             
     

    
    

   

                                                                     

                                   

So far, this calculation exactly follows the form of the       calculation in the 

inductive step of the proof of Theorem 3.1 for SDSSP1. In fact, the similarities 

continue with the difference between the day     value functions. The group 1 

transition relationships imply that when   
    

    
 , the day     states 

                                      and                              

are identical. Therefore, the difference between the day     value functions is only 

nonzero when   
    

    
 . However, a relationship similar to the one in part (iv) of 

Theorem 3.1 (expressing the difference day     value functions in terms of room 
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 ‟s partial finite difference) cannot be found because of the continued 

interdependence of the ORs and the RQ on day    .  

Even though this approach falls short theoretically, the strong similarities between 

the calculation of                   and the finite difference functions       for 

each individual room suggest that the single OR finite differences can still be used as 

reasonable approximations to the multiple OR partial finite differences. If we 

continue to define   
  and   

     for         as the single OR thresholds and 

finite difference functions emerging from Theorem 3.1 applied to room  , then we 

can approximate                   as follows: 

                    
    

    
   

                              
     

    
    

        
    

    
        

    

    
 

   

 

Using these approximations, the optimal SDSSP1 threshold data can be still be 

used in the “slowest ascent” heuristic approach proposed above. While not guaranteed 

to be optimal, we now at least have some justification that this approach behaves in a 

way that reasonably approximates the behavior of the actual partial finite differences. 

The Threshold-Based Slowest Ascent Heuristic 

In this subsection we propose a slowest ascent heuristic that uses the data from the 

optimal SDSSP1 threshold algorithm for each individual OR to generate approximate 

solutions for SDSSP3. The spirit of the algorithm is presented in Figure 10 and Figure 

11. Suppose we are in the situation shown in Figure 10 for two ORs, with the optimal 

SDSSP1 thresholds indicating a preference for taking more cases off the RQ than are 

feasible. The added cost of reducing the decision by one case in either direction can 

be found using the partial finite difference for the respective direction. Using the 

proposed approximation for the partials, our heuristic reduces the threshold-based 

decision by one case in the direction that has the smallest marginal cost (i.e. the 

direction that gives the “slowest ascent”). If the reduced decision is still not feasible, 

then repeated slowest ascent steps can be taken until the decision reaches the feasible 
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region. This iterative process is more clearly defined in the pseudocode for the 

proposed heuristic given below. We note that in applying the heuristic to a given state 

(        ) on a given day  , we assume that the optimal SDSSP1 thresholds 

   
   for          and the finite difference function evaluations    

      for   

               have been calculated and are available. 

 

Figure 11. Example of the data used during the slowest ascent decision process for 

SDSSP3 with two operating rooms 

Pseuodocode for the Threshold-Based Slowest Ascent Heuristic 

INPUT:  

          ,     
   for         , and    

      for                  

INITIALIZE:  

Set   
            

    
   for             // Unconstrained by the RQ 

Define          
                                         // Rooms eligible for reduction 

WHILE     
  

      : 

 // Step in direction of room with lowest marginal increase in cost 

 Find the room     with the minimal value of    
    

     
        

 Set   
     

     and if   
     remove   from set   

END-WHILE 

RETURN:   
   for         
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While we did not test this algorithm computationally, the calculations above 

together with Lemma 4.3 give us reason to hypothesize that this threshold-based 

heuristic will find high quality decisions for SDSSP3.  

4.3. Surgery Scheduling Conclusions 

Our study of the single-day surgery scheduling problem is the first to model the 

sequential nature of an OR manager‟s daily RQ decisions and to investigate the 

dynamic interaction of these decisions with the block schedule, block release dates, 

and primary specialty arrival patterns. We first obtain theoretical, threshold-based 

results for a special case of the surgery scheduling problem, and then systematically 

analyze how these results can be applied in more general settings. In particular, the 

analysis in Section 3.2 shows how an OR manager can make equitable RQ decisions 

by setting daily threshold targets that define how much time to preserve for future 

primary demand. Section 4.1 studies how this concept applies to problems with 

multiple case durations, while Section 4.2 proposes a heuristic that helps to prioritize 

between different ORs‟ thresholds when the RQ does not have enough cases to meet 

them all individually. Finally, our computational testing in Section 4.1 shows that 

block release dates, which generally work as constraints on OR managers‟ decisions, 

can serve as practical safeguards against the costs associated with poor RQ decisions 

(i.e. decisions that do not follow threshold-based guidelines). 

A common theme throughout our analysis, from the case study in Section 2.2 

through the analyses in this chapter, is the importance of both the primary demand 

arrival patterns and the relative blocking and deferral costs associated with request 

queue and block release decisions. The type of data collected in our observation of 

UMMC‟s scheduling system illustrates the kind of empirical analysis that can be done 

with surgical suite data to estimate the demand that a particular specialty or surgeon 

generates for an allocated block of OR time. As mentioned at the end of Chapter 3, 

the relative costs that OR stakeholders associate with blocking and deferral penalties 

have the potential to be quite complex, varying from day-to-day and from specialty-

to-specialty and reflecting a wide range of practical concerns. Our research has shown 

how sensitive the proposed threshold-based rules are to these relative costs, and 
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developing reliable methods for eliciting these costs from the appropriate personnel is 

an important area for future research. While these final comments point out the need 

for continued research before the proposed threshold-based rules can be implemented 

in realistic OR scheduling settings, we feel that the research presented in these 

chapters succeeds in finding significant insights into a previously understudied aspect 

of surgery scheduling.  
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Chapter 5. Mass Casualty Terrorist Bombing 

Response Planning: Literature Review 

The management of the medical response to mass casualty incidents (MCIs) has 

recently received an increasing amount of attention in the trauma and emergency 

medicine literature. The aim of this literature is to guide hospitals, in particular 

emergency departments (ED) and trauma centers, in the development of disaster 

response plans and protocols. Mass casualty incidents are typically accompanied by a 

large surge of victims with potentially life-threatening injuries requiring medical 

attention (Hirshberg et al. 1999). As a special form of MCI, mass casualty terrorist 

bombings (MCTBs) have been the particular focus of a growing subset of the 

research on MCI response planning. In addition to the increasing prevalence of 

terrorist bombings in recent years (Global Terrorism Database 2011), there is ample 

evidence showing that the victims of terrorist bombings present a specific injury 

pattern that distinguishes them from conventional trauma patients (Kluger 2003, 

Kluger et al. 2004). This distinct injury pattern validates the need to research the 

medical response to MCTBs as a unique problem within the wider problem of 

traditional MCI response planning. 

Frykberg and Tepas (1988) published one of the earliest analyses of injury 

patterns observed after terrorist bombings, and their results have guided nearly all 

subsequent research published in this area. Their initial work compiles data from 

existing studies on 220 incidents occurring between 1969 and 1983, and a follow up 

study by Frykberg (2002) adds data from several prominent incidents between 1986 

and 2001. These studies and others suggest four fundamental aspects of the medical 

response that must be considered in the development of a response plan: (1) objective 

of the medical response, (2) description and knowledge of the typical injury patterns, 

(3) triage, i.e. determining which victims are in need of immediate care, and (4) 

delivery of medical care. 
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5.1. Objectives, Injury Patterns, and Delivery of Care 

Objective of the Medical Response 

Most would agree that the general goal of the medical response to a MCI (terrorist 

bombing or otherwise) is to “save as many lives as possible,” but there is no such 

consensus on exactly how this goal should translate to objectives for the delivery of 

medical care. The literature on this point falls into two main camps, those who 

advocate shifting focus from “doing the greatest good for each individual to doing the 

greatest good for the greatest number of people” (Armstrong et al. 2008, Frykberg 

2002, Frykberg 2005) and those who advocate providing severely wounded victims 

with “a level of care that approximates the level of care provided to similar trauma 

patients under normal circumstances” (Ashkenazi et al. 2008, Hirschberg et al. 2001, 

Hirshberg et al. 2005). On the surface, the extent to which these two goals are 

contradictory is not immediately clear, but the difference becomes apparent when 

considering the treatment of the most severely wounded victims (who are not likely to 

survive even with optimal medical care). 

The vagueness of these objectives makes them difficult to measure. However, 

some metrics have been proposed that allow health care providers and researchers to 

judge the efficacy of the medical response to an MCI. The critical mortality rate 

measures the percentage of severely wounded patients who die after their medical 

care has begun (Frykberg 1988, Frykberg 2004). This metric more closely aligns with 

the first objective above. The other metric, which aligns more closely with the second 

objective, focuses on the surge capacity of a hospital, or the hospital‟s capacity to 

treat newly-arriving severely wounded victims without degradation in the care they 

receive (Kosashvili et al. 2009, Peleg and Kellerman 2009, Rothman et al. 2006). The 

recent trend in the literature states surge capacity as an arrival rate and requires a 

method for measuring quality of care (Aylwin et al. 2006, Hirshberg et al. 2001, 

Hirschberg et al. 2005). In a recent simulation model, Hirshberg et al. (2005) 

determine the quality of care by assigning relative scores to the trauma teams (based 

on their compositions) assembled for severely injured patients.  
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Patterns of Injury Severity 

While the magnitude of a MCI or MCTB is often judged publicly by the number 

of immediate casualties, the scope of the problem facing an ED or trauma center in 

the aftermath of such an event depends not on the immediate mortality rate but on the 

number of injured victims who arrive at the hospital seeking treatment (Hirshberg et 

al. 2001). Nearly all analyses of terrorist bombing injury severity patterns show that 

between 10 and 20 percent of injured survivors are severely wounded (Almogy et al. 

2006, Aschkenasy-Steuer et al. 2005, Ashkenazi et al. 2008, Aylwin et al. 2006, 

Frykberg and Tepas 1988, Frykberg 2002, Kluger et al. 2004, and Turégano-Fuentes 

et al. 2008).  

Several factors relating to the circumstances of the attacks have been shown to 

correlate with injury severity patterns. The number of immediate deaths is not 

surprisingly tied to the magnitude of the explosion, but other key factors include 

whether the bomb was detonated in an outdoor space or in a confined area and the 

collapse of any buildings or other structures (Frykberg 2002). Of these factors, the 

difference between open and confined spaces is the most significant in determining 

the rate of severely injured victims among the immediate survivors, with explosions 

taking place in confined spaces (such as buses, restaurants, and crowded 

marketplaces) leading to higher numbers of severely wounded (Frykberg and Tepas 

1988, Frykberg 2002). 

Delivery of Care 

Before appropriate care can be delivered to the victims of an MCI, the casualties 

must go through triage, which is the process of determining which victims are in need 

of immediate care (Frykberg 2005, Halpern et al. 2003). We will discuss the triage 

process, which is itself the focus of a large volume of research, in the next section. In 

the meantime, after victims have been triaged, effectively delivering the appropriate 

medical care requires detailed plans for the flow of each patient category through the 

ED or trauma center. Typically the treatment area for those requiring immediate care 

is separated from the treatment area for those whose care can be delayed, and 

emphasis is placed on maintaining unidirectional patient flow (Ashkenazi et al. 2008, 
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Frykberg 2002, Hirshberg et al. 1999, Hirshberg et al. 2005). In order to prepare the 

hospital for the expected influx of casualties, patients in the ED should be transferred 

to hospital floor beds, all nonurgent activity (including scheduled elective surgeries) 

should be halted, and available personnel should be summoned (Almogy et al. 2004, 

Aschkenasy-Steuer et al. 2005). Some initial estimate of the number and severity of 

expected casualties is critical at this stage, and it is important that management have 

the flexibility to transform other beds to trauma and ICU beds in order to handle the 

surge (Almogy et al. 2004, Aschkenasy-Steuer et al. 2005, Aylwin et al. 2006, 

Turégano-Fuentes et al. 2008). However, Turégano-Fuentes et al. (2008) found that 

too many physicians, nurses, and students were called to the hospital, which crowded 

the ED, and that the decision to discharge all existing patients created more open beds 

than were actually needed. This suggests that while flexibility is important, 

overcompensating for the expected surge can also be detrimental to the effective 

delivery of care. 

Once patient flow has been determined and the appropriate resources have been 

mobilized, guidelines must be in place for assigning medical providers to treatment 

areas and for the standard of care that should be given. Several authors advocate 

assigning specifically designed treatment teams (for instance, one attending physician 

and two residents) to designated trauma rooms or groups of ED beds (Almogy et al. 

2004, Einav et al. 2004, Frykberg 2002). Ashkenazi et al. (2008) suggest that expert 

trauma surgeons, ICU staff, and anesthesiologists not be assigned to specific sites, but 

rather be free to readily assist in the treatment of those who require expert care. 

Multiple authors advocate for restricted radiology and laboratory testing and minimal 

blood bank usage while casualties are still arriving and the full scope of the incident 

is unknown (Frykberg 2002, Frykberg 2005, Hirshberg et al. 1999). During this initial 

phase, surgery should be limited and should focus on damage control (Almogy et al. 

2004, Aylwin et al. 2006, Turégano-Fuentes et al. 2008). In contrast, Ashkenazi et al. 

(2008) argue that after the severely wounded patients are identified, all needed 

resources should be allocated to their treatment and should not be delayed until the 

scope of the incident is known. Finally, Hirshberg et al. (2001) advocate that non-
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critically wounded patients be treated using the principle of minimal acceptable care 

in order to preserve trauma resources. 

5.2. Triage 

Both the objectives discussed above and the strategies for delivering appropriate 

medical care focus the primary efforts of the trauma response to a MCI on the 

effective delivery of life-saving care to those immediate survivors identified as 

severely wounded. For this reason the triage process, which serves to separate the 

severely wounded from the other immediate survivors, is perhaps the most-discussed 

component of MCI response planning. Varying opinions can be found in the literature 

on nearly every aspect of the triage process, including how and where it should be 

conducted, who should conduct it, and how accurate it must be to meet the overall 

objective. Armstrong et al. (2008) claim that the characteristics of an effective triage 

plan are simplicity, time efficiency, predictive validity, reliability, and accuracy, and 

all of the opinions on triage discussed below aim to improve the process in some or 

all of these aspects. 

Categories 

In general, there are five triage categories based on the level of treatment the 

victim requires: (1) those who require immediate care, (2) those whose care may be 

safely delayed, (3) those who require minimal care, often referred to as the walking 

wounded, (4) those who are so severely wounded that they are unlikely to live even 

with medical care, referred to as expectant, and (5) those who are dead (Frykberg 

2002, Frykberg 2005, Lerner et al. 2008). However, in the context of an MCI, the 

most important distinction for in-hospital triage is between those who require 

immediate care and those who do not (Aylwin et al. 2006, Frykberg 2005, Hirshberg 

et al. 2001). Aylwin et al. (2006) also argue for using two categories during on-site 

triage for those who require transport and those who do not. 

Complicating the separation of patients into those who require immediate care 

and those whose care can wait is the reality that not all patients who receive treatment 

will ultimately survive. There is consensus in the literature that triage decisions 
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should incorporate the impact of treatment on long-term (post-treatment) patient 

survival (Frykberg 2005, Lerner et al. 2008). Furthermore, the widely accepted 

trauma concept of the “golden hour” suggests that patients‟ long-term survival 

probabilities deteriorate as they wait for treatment (Lerner and Moscati 2001, Sacco 

2005). 

This notion of long-term survival probability, and its possible deterioration, is 

closely related to the expectant category mentioned above, which happens to be a 

particularly controversial aspect of MCI triage. Outside the context of a MCI, every 

effort would be made to treat expectant patients in spite of the low probability that 

treatment will save their lives. However, in the aftermath of a MCI, and in keeping 

with the stated goal of doing the greatest good for the greatest number of people, 

Frykberg and others claim that patients in the expectant category should not be 

treated (outside of palliative care) because critical resources can be better used on 

patients who are more likely to benefit from treatment (Almogy et al. 2004, Frykberg 

and Tepas 1988, Frykberg 2002, Frykberg 2005). Even Hirshberg, who advocates 

giving severely wounded victims a level of care approximating the care they would 

receive under normal circumstances, acknowledges the need to focus treatment on 

patients that are most likely to benefit from treatment (Hirshberg 2004). Only 

Ashkenazi et al. (2008) refuse to accept an expectant category, and argue that it is 

unacceptable to deny these patients care just because their injuries occur during a 

MCI. 

How, Where, When, and Who? 

Of course, lost in the discussion of how to deal with victims in the expectant 

category is the need for effective tools to actually separate patients into these 

categories. Both Lerner et al. (2008) and Jenkins et al. (2008) provide a survey of 

commonly used triage algorithms, but both papers acknowledge that there is little 

scientific evidence to support one algorithm over another. Thoroughly reviewing the 

wealth of research in this area is outside the scope of this work, but some key findings 

are worth mentioning because of their ability to simplify and accelerate the triage 

process when faced with a large surge of MCTB victims. Meredith et al. (1995) 



 

 

90 

suggest that simplified triage focusing on the ability to follow verbal commands is 

highly accurate in predicting which patients require urgent trauma care. Other 

research finds that basing triage specifically on physiologic and anatomic indicators 

(ignoring mechanism of injury) significantly improves triage accuracy without 

adversely affecting outcomes (Cook et al. 2001). In the specific context of a terrorist 

bombing, triage can capitalize on the distinct injury pattern associated with these 

incidents. Specific external signs have been shown to accurately predict two of the 

leading causes of critical mortality after MCTBs, suggesting that more efficient triage 

could be achieved after a terrorist bombing by focusing exclusively on external signs 

(Almogy et al. 2006). 

Some level of triage is always required at the scene of the incident to separate the 

immediate survivors from the dead, but after this initial assessment the remainder of 

the triage process focuses on classifying the survivors. Several studies argue that 

primary triage should occur on- or near-site followed by secondary triage at the 

entrance to the hospital (Aylwin et al. 2006, Frykberg and Tepas 1988, Frykberg 

2002, Frykberg 2005, Turégano-Fuentes et al. 2008). Aschkenasy-Steuer et al. (2005) 

claim that pre-hospital triage cannot be trusted because not all wounded victims are 

transported to the hospital by emergency medical services (for instance, the walking 

wounded often take themselves to the hospital). Other authors argue that patients 

initially triaged as not requiring immediate treatment be regularly reassessed after 

being admitted to lower-intensity areas of the ED in order to avoid triage errors 

(Almogy et al. 2004, Armstrong et al. 2008, Aschkenasy-Steuer et al. 2005, Hirshberg 

2004). However, another recent study points to empirical evidence suggesting that 

severe injuries are not often missed during primary triage, which makes repeated 

triage an unnecessary use of valuable resources (Ashkenazi et al. 2008).  

In a recent paper, Armstrong et al. (2008) admit that the question of “who should 

perform mass casualty triage across settings and how these multidisciplinary 

professionals should be trained as triage officers” is understudied and remains “ripe 

for investigation”. Aylwin et al. (2006) report that on-scene triage performed by 

trained EMS was more accurate than that performed by ambulance services and 

medically-trained bystanders. The conventional wisdom says that in-hospital triage 
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should be performed by an experience trauma, emergency medicine, or general 

surgeon (Almogy et al. 2004, Frykberg 2005, Kluger 2003, Turégano-Fuentes et al. 

2008). However, the results of a simulation model of the response to a terrorist 

bombing indicated that the accuracy of triage has little impact on outcomes, which 

suggests that triage need not be performed by the most experienced surgeons 

(Hirshberg et al. 1999). This view is echoed by Ashkenazi et al. (2008), who argue 

that because the most important asset for patient survival is an experience trauma 

surgeon, this individual should not be wasted on triage. 

Accuracy and Situational Awareness 

Behind each of these how, where, and who opinions on triage lies some 

understanding of the importance of triage accuracy. Armstrong et al. (2008) point out 

that triage is essentially a form of communication, and the lack of reliable 

communication is known to be a harbinger of poor outcomes in disaster management. 

Triage accuracy is defined in terms of over-triage (classifying a non-severely 

wounded patient as severely wounded) and under-triage (classifying a severely 

wounded patient as non-severely wounded). Under-triage is clearly the more life-

threatening of these two alternatives, and for this reason over-triage rates as high as 

50 percent are often accepted as necessary during MCTBs to limit under-triage (Cook 

et al. 2001, Frykberg 2002, Kluger 2003). Several analyses by Frykberg and co-

authors confirm this notion, finding that under-triage is usually negligible (less than 1 

percent) while over-triage averages over 50 percent (Frykberg and Tepas 1988, 

Frykberg 2002, Frykberg 2005). These same studies show that over-triage rates are 

positively correlated with critical mortality rates, suggesting that treating too many 

patients as severely wounded bogs down critical trauma resources. A different 

analysis of triage decisions at a hospital in Israel, on the other hand, found a 

significant rate of under-triage, indicating that under-triage is not negligible in all 

cases (Ashkenazi et al. 2006).  

Contrasting some of these other findings, Hirshberg et al. (1999) found in a 

simulation study that reducing the over-triage rate did not have a significant impact 

on outcomes. Other authors similarly argue that the negative impact of triage errors 
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can be mitigated by effective planning and flexibility. Another simulation study 

concluded that the ratio of critically injured casualties to available treatment units 

affects critical mortality more than over-triage rates (Hupert et al. 2007). Aylwin et al. 

(2006) found that high over-triage was not associated with high critical mortality in 

one high profile MCTB. Others note that over-triage can be compensated for by the 

use of improvised trauma beds, while the repeated reassessment of non-severely 

injured patients can catch victims with delayed presentation of severe wounds 

(Ashkenazi et al. 2008, Turégano-Fuentes et al. 2008). 

Lastly, there is broad consensus that triage should be performed with a high 

degree of situational awareness. Almogy et al. (2004) suggest that rough information 

regarding the number of casualties and physical location of the incident should be 

communicated to the hospital as soon as possible, to which Armstrong et al. (2008) 

add that “the application of triage in mass casualties varies by casualty load and 

resource availability”. Acknowledging the controversy involved in not treating the 

expectant category, the bounds of this category should differ by incident type and 

location, and should be determined based on numbers and types of casualties and 

resource availability (Armstrong et al. 2008, Frykberg 2002, Frykberg 2005). 

5.3. Mathematical Modeling and a Direction for Research 

The vast majority of the recommendations and opinions advocated in the papers 

referenced above are based on data analysis of past incidents and the personal 

experiences of the authors in managing the medical response to MCIs and terrorist 

bombings. Just as the push for evidence-based decision-making has gained 

momentum in other areas of medical research, mathematical modeling has slowly 

emerged over the last decade or so as a useful tool in the development of MCI 

response plans. In particular, simulation studies of different components of the 

response have become increasingly common. Christie and Levary (1998) simulate the 

transportation of seriously injured casualties to nearby hospitals in the wake of an 

MCI and explore the relationships between resource availability, casualty loads, 

proximity to hospitals, and patient waiting times. As discussed above, Hirshberg et al. 

(1999), Hirshberg et al. (2005), and Hupert et al. (2007) simulate the in-hospital 
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response to a MCI. These papers largely focus on the relationships between triage 

accuracy, resource availability, and common metrics such as the critical mortality rate 

and surge capacity. 

A shortcoming of these simulation studies, particularly as they relate to the many 

triage-related questions raised above, is their simplification of the triage decision 

itself. In the three papers that model the in-hospital response, triage (the classification 

of a patient as requiring immediate or delayed care) is modeled by identifying a fixed 

percentage of all arriving casualties as severely wounded. Triage inaccuracy is 

modeled similarly, with some fixed percentage of initial triage classifications being 

incorrect. In reality, as suggested by the medical research reviewed above, triage 

decisions must take into account a number of dynamic factors, including the total 

number of casualties, the availability of resources, and a range of patient 

characteristics (most triage algorithms use at least three measures of injury severity). 

Two recent papers by Sacco et al. (2005) and Argon et al. (2008) address the 

triage decision more directly. The Sacco Triage Method (STM) is a resource-

constrained linear programming model that optimizes on-scene triage in the face of 

limited on-scene and transportation resources. Both the initial injury severity and 

long-term survival probabilities of patients are estimated, and these estimates are used 

to make triage decisions that maximize the total expected number of survivors. Argon 

et al. (2008) approach the MCI triage problem as an impatient jobs clearing system, 

where a large number of patients is generated almost simultaneously and must be 

scheduled for treatment. Each patient is associated with a random treatment time and 

a random length of time that he or she is capable of surviving while waiting for 

treatment (a measure of impatience), and the model optimizes the number of patients 

that eventually receive treatment. The results of both these studies confirm the notion 

that MCI triage decisions must be made dynamically, taking into account patient 

characteristics and resource constraints, in order to truly maximize the number of 

lives saved. 

In the following chapter, we propose an extension of the model studied by Argon 

et al. (2008) that adds an important third dimension to the patient characteristics 

incorporated in their model. In particular, we add the deteriorating long-term (post-



 

 

94 

treatment) survival probabilities used in the Sacco Triage Method (and suggested by 

the “golden hour” principle) to the treatment times and pre-treatment survival times 

already used by Argon et al. The resulting model can be described as an impatient 

jobs with diminishing rewards clearing system, and our subsequent analysis focuses 

on the impact of deteriorating long-term survival probabilities on the resulting MCI 

triage decisions.  
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Chapter 6. Mass Casualty Incident Triage: The 

Impatient Jobs with Diminishing Rewards Clearing 

System 

6.1. Background and Motivation 

As the previous chapter discusses, the development of mass casualty incident 

(MCI) response plans and protocols has become an important priority for public 

health and hospital administrators in recent years, and the management of the medical 

response to MCIs has correspondingly received an increasing amount of attention in 

the trauma and emergency medicine literature. Triage plays an integral role in the 

success of the response to a MCI by identifying which patients are to receive 

immediate care, but the literature shows that there are still many unresolved questions 

surrounding the design and implementation of the triage process. Triage algorithms 

used in practice categorize surviving patients into one of four groups based on their 

need for immediate treatment, reflecting the fact that patients may die while waiting 

for treatment (Lerner et al. 2008). The volume of casualties generated by a MCI 

forces triage algorithms to also consider whether patients will benefit from immediate 

treatment, since not all patients receiving treatment will ultimately survive (Frykberg 

2005). Exactly how the likelihood of survival after treatment should be incorporated 

into triage decisions remains a subject of much debate. 

 The research by Argon et al. (2008) mentioned in Chapter 5 models the triage 

process as a single-server clearing system with impatient jobs (patients) that will 

abandon the system (die) if forced to wait too long for service (treatment). That work 

is one in a series of recent papers on scheduling impatient jobs in a clearing system 

(Argon et al. 2008, Glazebrook et al. 2004, Li and Glazebrook 2010). Glazebrook et 

al. (2004) associate different rewards with different jobs and explore static policies 

aimed at maximizing the total reward earned by the server. Both Argon et al. (2008) 

and Li and Glazebrook (2010) assume that all jobs have the same reward and use 

stochastic dynamic programming-based, state-dependent heuristics to maximize the 
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number of jobs that receive service. These dynamic heuristics outperform traditional 

static heuristics, suggesting that patient triage in the aftermath of a MCI should rely 

on state-dependent policies that take into account factors such as the number of 

casualties and resource availability. Before discussing our extension of the impatient 

jobs clearing system, we note that the broader literature on stochastic job scheduling 

in queuing and clearing systems with abandonment extends well beyond these three 

articles (see, for instance, Boots and Tijms 1999, Iravani and Balcıog lu 2008, Zhao et 

al. 1991). However, these papers by Glazebrook et al., Argon et al. and Li and 

Glazebrook represent, to the best of our knowledge, the only research that considers 

the “MCI triage” clearing system.  

 As mentioned earlier, a fundamental component of MCI triage, and of trauma 

medicine in general, is the reality that not all patients who receive treatment will 

ultimately survive. Furthermore, patients‟ long-term survival probabilities may 

deteriorate the longer they wait for treatment. This concept is absent from the papers 

by Argon et al. (2008) and Li and Glazebrook (2010), but can be incorporated into 

their impatient jobs clearing system model in the form of rewards for service that 

diminish as jobs are forced to wait. Glazebrook et al. (2004) consider constant 

rewards, but not the case with diminishing rewards. The objective, in the triage 

context, of the resulting impatient jobs with diminishing rewards clearing system is to 

maximize the expected number of survivors (the sum of the survival probabilities of 

those patients who are treated at the time they are treated), rather than the number of 

patients treated. The resulting problem is a generalization of the problems analyzed 

by Glazebrook et al. (2004), Argon et al. (2008), and Li and Glazebrook (2010) that 

we feel more accurately captures the realities of MCI triage. The goal of our research 

is to explore the impact of deteriorating survival probabilities on MCI triage decisions 

through the use of dynamic, state-dependent heuristics. 

Before continuing with our formulation and analysis, it is important to 

acknowledge some of the assumptions and limitations associated with the single-

server model. In practice, triage is the entry point into a large and complex healthcare 

delivery system that consists of many treatment locations with separate queues and 

different processing times (see, for instance, Hirshberg et al. 2005 and Hupert et al. 
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2007). In modeling MCI triage as a single-server system, our server represents the 

post-triage delivery system as a whole and our service times model the departure 

process from this system rather than the time required for a particular medical 

procedure. This interpretation of service times as inter-departure times suggests that 

care will need to be taken when extending our model to include multiple servers. 

 The remainder of the chapter will be laid out as follows. Section 6.2 presents a 

general formulation of the single-server impatient jobs “MCI triage” clearing system, 

as well as a formulation for a special Markov case that will be used in the 

development of heuristic policies. In Section 6.3 we review the heuristics proposed in 

the existing literature, show how they can be extended to the problem with 

diminishing rewards, and propose new heuristics. Section 6.4 discusses our use of the 

medical literature on MCIs and MCI triage to generate a set of test problems. The 

resulting set of problems is used in Section 6.5 to test the performance of the 

proposed heuristics, and Section 6.6 offers a discussion of our results. 

6.2. Impatient Jobs with Diminishing Rewards 

The problem of scheduling impatient jobs in a single-server clearing system with 

diminishing rewards can be formally stated as follows. A single server is tasked with 

providing service to a finite collection of simultaneously arriving jobs. Each job is 

associated with a random service time and a random lifetime, with the latter 

representing how long the job will wait for service before abandoning the system. The 

server receives a positive reward for each job that is serviced. The magnitude of these 

rewards differs between jobs and may decrease as a function of the time that service 

is initiated. The server‟s objective is to sequence the collection of jobs to maximize 

the expected reward earned, stopping only when all jobs have either been served or 

abandoned the system. 

General Formulation 

A stochastic dynamic programming (SDP) formulation for the problem can be 

obtained by extending the formulation given in Li and Glazebrook (2010). We 

assume that the jobs are divided into   classes, where class   is identified by a unique 
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combination of service time (   with distribution function   ) and lifetime (   with 

distribution function   ) random variables and a non-increasing, positive reward 

function (     ). Let    be the number of jobs of class   present at time 0. We assume 

that the service and lifetime random variables, respectively, are i.i.d. within classes 

and independent between classes. The state of the system at each decision epoch   (at 

time   and at the conclusion of a job‟s service) can be described by the number of 

jobs                of each class remaining in the system. We define the value 

function        as the maximum expected rewards earned for being in state   at 

decision epoch  . If a job of class   is taken into service at decision epoch  , the 

system evolves in the following manner. Let   represent the length of the selected 

job‟s service (a realization of its service time random variable) and    

   
    

      
   represent the state of the system at the end of the job‟s service (the 

next decision epoch at time       ). The number of abandonments from job class 

  (due to expired lifetimes) during class  ‟s service can be expressed as      
      

(where     equals one when     and equals zero otherwise). Let               be 

the probability of transitioning from state   at decision epoch   to state    at decision 

epoch        during the service of a job from class  . The optimality equation and 

boundary condition for the SDP (formulation (1)) can be expressed as follows.  

          
        

                    

                          
        

                                

  

      
 

 
          

         

The only difference between this formulation and the one given in Li and 

Glazebrook (2010) is the inclusion of the reward function       in the optimality 

equation (as opposed to the constant, uniform rewards studied in their paper). This 

slight difference introduces significant difficulty from a computational standpoint 

because it ensures that in general the time dimension must be included in the state 

space. As a result, our analysis of this problem focuses on the development of 

heuristic procedures. One approach for developing heuristics is to exploit structural 
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behavior in the optimal policies for problems that can be efficiently solved to 

optimality. However, strong assumptions are required on the distributions of the 

random variables and the shape of the reward functions in order to be able to 

efficiently find optimal policies. The next subsection presents an alternative 

formulation for one such set of assumptions, namely that the random variables are 

exponentially distributed (the Markov case) and the reward functions are 

exponentially decaying to zero at a uniform rate. 

The Markov Case with Uniformly Decaying Rewards 

We assume that jobs are still divided into classes with associated service and 

lifetime random variables. We make the additional assumptions that the random 

variables are exponentially distributed and that the rewards for service decay 

exponentially to zero at a uniform rate. The following formulation is an extension of 

the formulation given by Argon et al. (2008) for the Markov case with uniform 

rewards. Let   
   and   

   be the mean service time and lifetime, respectively, for a 

job in class   (i.e.,         
   and         

  ). Let the reward function for jobs 

from class   be given by          
    for some constant    . The state of the 

system at time   can be described by the number of jobs of each class in the system 

(including the job in service),  , and the state of the server,              . In 

defining the state of the server,   indicates that the server is empty and    indicates 

that the server is busy with a job of type  . Decisions can only occur when the server 

is empty. Note that the system can only be instantaneously empty because any 

remaining jobs will always be available and the next job chosen will enter service 

immediately. Transitions between states occur either when a job is taken into service 

or when a service time or lifetime event occurs. We can take advantage of the 

exponential service time and lifetime distributions to characterize the distribution of 

the time until the next transition and to determine the probability associated with each 

of the possible transitions. Define       be defined as the subset of job classes that 

have jobs in the queue when the system is in state          (i.e. the subset of job 

classes such that         ). Define   
                        as the rate at 
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which the next event will occur if the system is in state         . We will use the 

notation    to refer to the unit vector in the  th direction. The value function 

          for this alternative formulation is defined as the maximum expected 

rewards earned from being in state        . The optimality equations and boundary 

conditions for this formulation can then be stated as follows. 

             
      

                            

            

              
     

   
  

  
                

 

 

 

                                                       
          

  
                

       

             

                      

We will use the following lemma to show that the time dimension can be 

effectively removed from this formulation, taking advantage of the assumption that 

the reward functions decay exponentially to zero at a uniform rate. 

Lemma 6.1 If the service time and lifetime random variables are exponentially 

distributed with rates    and   , respectively, and the reward functions are given by 

         
    for some constant    , then                         for all 

states        . 

Proof: 

The proof proceeds by induction on the number of jobs in the system,  . The base 

case for     holds trivially. Assume that the claim holds for all states    such that 

  
        and   

     for at least one  . Note that this assumption implies that for all 

such states   ,                              . 
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■ 

Using this lemma it is clear to see that the optimal decision in state         will 

be identical to the optimal decision in state        . The following re-statement of 

the optimality equations demonstrates that all optimal decisions can be determined 

based on the value of states at time 0, implying that the time dimension can 

essentially be ignored when solving the SDP.  We shall refer to this re-formulation as 

formulation (2). 
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The resulting formulation, which is expressed exclusively using states at time 0, 

differs from the formulation in Argon et al. (2008) in the inclusion of the different 

initial reward values (        ) and the rate at which the rewards are decaying ( ). 

It is important to note that Lemma 6.1 (and thus this re-formulation) does not apply if 

the rewards do not decay at the same rate for all job classes, or do not decay to zero. 

We will use formulation (2) to extend the structural results presented by Argon et al., 

which in turn illustrate how their heuristics can be extended to the problem with 

diminishing rewards.  

6.3. Scheduling Heuristics 

In developing heuristics for the single-server impatient jobs clearing system with 

diminishing rewards, it is logical to first extend the heuristics published in the 

existing literature on special cases of the problem. The heuristics proposed by 

Glazebrook et al. (2004), Argon et al. (2008), and Li and Glazebrook (2010) differ 
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markedly in their approaches, and the methods required to extend them vary 

accordingly. In addition to these extensions, we present a new heuristic which is 

different in approach but similar in feel to Argon et al.‟s rule.  

Our heuristics for the single-server impatient jobs clearing system (with or 

without diminishing rewards) are similar to dispatching rules commonly used in 

manufacturing scheduling. At each decision epoch, all remaining job classes are 

sequenced according to some priority rule and a job from the highest priority class is 

selected for service. As a result, the statement of a heuristic equates to presenting the 

rule used to compute priorities for each job class. Each of the heuristics we present 

will be dynamic (rather than static), meaning that priorities are recomputed and the 

job classes are reordered at each decision epoch (rather than using a fixed ordering 

determined at time 0). 

In the following discussion, we will continue to consider the Markov case where 

all random variables are exponentially distributed with         
   and         

  . 

Specific assumptions on the shape of the reward functions will be made when 

appropriate. For the heuristics that rely on the Markov assumption, we will also 

discuss how they can be further generalized and applied to the problem with general 

lifetime and service time distributions and reward functions. 

    Rule 

Glazebrook et al. (2004) consider constant rewards (        ) and propose a 

static     rule that is a variant of the    rule frequently seen in the job scheduling 

literature (see, for instance, Van Mieghem 1995). At each decision epoch, the     

rule chooses from among the available jobs according to which job class has the 

maximum value of       . A natural extension of the     that takes into account the 

diminishing nature of the rewards simply replaces the constant    with the value of 

the reward function at each decision epoch. The result is a dynamic policy that 

chooses the job with the maximum value of          . An obvious shortcoming of 

this first extension is that it only uses a snapshot of the reward values at each decision 

epoch, without taking into account the rate at which the rewards are decreasing. This 
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could potentially become important in realistic scenarios where the rewards for 

different job classes decrease at different rates. 

One way to incorporate the shape of the reward functions into the     rule is to 

realize the similarities between the diminishing reward functions and the impatience 

of the jobs. The decay of the reward functions and the expiration of the jobs‟ lifetimes 

both represent the departure of potential rewards from the system, which suggests a 

        rule that adds the rate at which the rewards are decreasing to the rate at 

which jobs are abandoning the system. For general reward functions, this   can be 

thought of as the hazard rate associated with each of the reward functions. If the 

reward function for class   is assumed to be differentiable, then the hazard rate 

function can be defined as          
           

  . The resulting         rule 

chooses the available job with the maximum value of                  . Note that in 

the case discussed in formulation (2) where all rewards decay exponentially to zero at 

a uniform rate,        , which is simply the uniform rate at which all the rewards 

decay.  

Triangular Rule 

Argon et al. (2008) consider the Markov case with constant unit rewards (      

 ) and explore the structure of optimal SDP policies for problems with two jobs 

classes under certain realistic restrictions (motivated by MCI triage) on the values of 

   and   . Their proposed “triangular” heuristic (TRI) chooses the available job class   

that minimizes the approximate expected number of jobs abandoning the system 

during its service, given by the following expression: 

 

  
           

       

 

For two jobs classes, this rule roughly defines a triangular region in the state space 

inside which the more time critical job class (smaller      , or larger   ) is selected 

and outside which the less time critical job class (larger      , or smaller   ) is 

selected. The following lemma extends one of the structural results from Argon et al. 
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to the more general Markov case considered above, where the rewards differ between 

classes but decay exponentially to zero at the same rate. The lemma is stated for two 

job classes, but the heuristic it motivates can be applied to problems with more than 

two classes. 

Lemma 6.2 Consider the problem with two job classes, exponentially distributed 

service times and lifetimes with rates    and   , respectively, and reward functions 

given by          
    for some constant    . Assume that            , 

     ,     , and     . If  

 i                                     fo       , and 

 ii             
                                   

                 
  

then for sufficiently small  ,                            . 

Proof: 

We begin with an important claim based on a lemma in Argon et al. (2008), 

which will play a role in the remainder of the proof. 

Claim: If      , then                            .  

For the proof of this claim, please refer to the proof of Lemma 2 in Argon et al., 

which can easily be modified to incorporate rewards. Intuitively, the claim states that 

if the resulting number of jobs in the queue is identical ( ), then it is better to be 

serving a job with shorter service time. Also observe that this claim will be true for all 

values of  , but especially for small values of   (since the difference between 

              and               will decrease for larger values of   that send 

the reward functions to zero more quickly). 

The proof of the lemma requires us to show that under the specified conditions, 

and for sufficiently small  ,                                  . We first 

note that condition (i) implies that                               and 
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                              (and that the optimal decision in both states 

is to choose a job from class 2). 

 

                                 

                        
  

  
   

             
    

  
   

             

 
        

  
   

               

                                
  

  
   

             
        

  
   

             

 
    

  
   

               

                           
     

                         

  
   

  

                                                        
                                       

  
   

  

                           
     

                         

  
   

  

                                                                
                                       

  
   

  

The previous step uses condition (i), and the following step uses the definition of   
 . 
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The following step again uses the assumptions in condition (i). 

  
                           

  
   

 

                                                   

  
   

  

  
                           

  
   

 

                                                   

  
   

  

Rearranging these terms yields the following. 

  
        

  
   

 
        

  
   

 

                     
           

  
   

 
    

  
   

   

                                                                 
    

  
   

 
           

  
   

   

The expression inside the first set of brackets is non-negative as a direct consequence 

of condition (ii), and leads to the proposed RTRI heuristic presented below. The 

remaining steps use the initial claim we made above, in addition to the requirement 

that   be sufficiently small. 

                     

  
                                                  

   
       

    
  

                     

   
                                                  

   
       

    
   

In this final expression, we know that                           

         , with the difference growing as    . However, the other two expressions 
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become equal as    . Therefore we can argue that for some sufficiently small  , 

the expression as a whole will be positive.                ■ 

The inequality in condition (ii) defines a region similar to the one used in Argon 

et al.‟s TRI rule. Before moving on to the heuristic motivated by condition (ii), it is 

important to discuss some implications and limitations of this result. First, we note 

that, unlike the corresponding condition in Argon et al., the numerator of the right 

hand side of condition (ii) can be negative for certain parameter values satisfying the 

initial assumptions. In these cases, the region in which class 2 is preferred becomes 

empty, and the heuristic always prioritizes class 1. Looking closely at the expression 

in question shows that this will happen when the parameters logically point toward 

choosing class 1, such as when    is much larger than   , the expected lifetimes are 

similar, or   becomes large. 

 The impact of   on the lemma warrants further discussion. When   is large (as 

   ), the reward functions go to zero almost immediately, meaning that all future 

rewards will be negligible and priority should be given to the job with greater 

immediate reward (class 1). In this case, no heuristic should ever give preference to 

class 2, regardless of the expected lifetimes and service times. However, when    , 

the simplified version of Lemma 6.2 holds (the same proof can be used). This 

observation suggests that the lemma becomes applicable for some value of   

approaching   and necessitates the “for sufficiently small  ” condition in the lemma. 

Rather than compute bounds on   for which the lemma applies (which would need to 

be in terms of the other input parameters), we will let negative values on the right 

hand side of condition (ii) indicate the instances in which the lemma (and the 

resulting heuristic) does not ever give priority to class 2. 

We now return to the specifics of the heuristic suggested by condition (ii). 

Rearranging the inequality gives a rule that chooses the available job class   that 

minimizes the following expression: 
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This expression is a weighted version of the original TRI rule that weights the 

approximate expected number of abandonments during service by the reward for 

service, with an additional adjustment for the rate at which the rewards are decaying. 

As a result, a job class that results in a large number of abandonments (due to a long 

service time) may still be selected if its reward is sufficiently high. By replacing    

with a general reward function       and   with the associated hazard rate function 

     , we end up with a heuristic that can be applied to the Markov case with general 

reward functions. The resulting “RTRI” (triangular with rewards) rule chooses the 

available job class   that minimizes the following expression: 

 

     
   

 

        
           

       

  

Minimum Losses During Service Rule 

As mentioned in the previous subsection, the triangular region defined by the TRI 

(RTRI) rule effectively minimizes the approximate expected (weighted) number of 

abandonments during service. This observation suggests a heuristic that more directly 

focuses on the losses during service, rather than arrive at an approximation through 

structural results. Unlike the TRI and RTRI rules which must make strong 

assumptions about the reward functions in order to perform structural analyses, the 

following proposed Minimum Losses During Service (MLDS) rule begins with no 

additional assumptions about the reward functions, other than the initial requirement 

that they be positive and non-increasing. When a job of class   is selected for service 

beginning at time  , the server earns the reward      . In the course of this job‟s 

service, the server loses the full reward       for each job of class   whose lifetime 

expires during service. At the same time, the server loses a portion of the reward 

(             , if   is the duration of service) for each job in the queue whose 

lifetime does not expire during service. The total expected reward lost by selecting a 

job from class   can be expressed as follows. 
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It is informative to look at what this expression simplifies to under some of the 

assumptions we have considered on the reward functions (or will consider during 

testing). If the rewards diminish exponentially at different rates to different non-zero 

values (i.e.                  
     for initial reward    and asymptotic reward 

  ), then the MLDS rule simplifies to choosing the job class   that minimizes the 

following: 

                    
  

     
          

     
     

        
  

       

 

If the rewards decay exponentially to zero at the same rate (     and         ), 

then MLDS chooses the job class   that minimizes the following: 

                      
    

       
 

       

 

From this expression, we can easily see what the rule would become if rewards are 

constant (         and         ) or uniform (           ). Here it becomes 

easier to see the differences between this rule and the RTRI rule discussed above. The 

abandonments from each job class are weighted by the reward associated with that 

job class, rather than all classes being weighted by the reward of the job in service. 

Furthermore, the rates at which the rewards for each class are diminishing appear 

directly in the calculation. Finally, if the rewards are uniform and constant (as in the 
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problem studied by Argon et al.), this rule reduces to the exact expected number of 

abandonments during service, rather than an approximation. 

Fluid-Based Policy Improvement Heuristic 

Li and Glazebrook (2010) also study the problem with constant, uniform rewards 

(             and propose an approximate dynamic programming heuristic to 

improve on the rules studied by Glazebrook et al. (2004) and Argon et al. (2008). 

Their work combines two commonly used approaches: (1) using a single policy 

improvement step to improve some given heuristic (see, for example, Tijms 1994) 

and (2) approximating the dynamic programming value function associated with a 

given policy (see, for example, Powell 2007).  

The single-step policy improvement concept works within the framework of the 

SDP optimality equation in the following manner, using the notation from 

formulation (1) above and incorporating the diminishing reward functions. The value 

associated with following a scheduling policy   beginning at decision state       

(prior to the decision being made) can be defined as        . Let        be the 

decision made by policy   at decision state      .   can potentially be improved by a 

policy improvement step that allows deviations from    for the current decision but 

assumes that   will continue to be used at all future decision epochs. The resulting 

policy improvement (PI) decision for policy   at state       can be defined as 

follows. 

                
        

                           
      

  

      
 

 
  

Notice that the value function used at all future system states is based on using policy 

 , rather than the optimal policy. However, as Li and Glazebrook acknowledge, there 

is considerable difficulty involved in computing         for all possible future states, 

even if   is a static policy (they use the    rule in their study). The novelty of their 

approach lies in the use of a fluid approximation   
       for the value function 

       , which results in a single-step fluid-based, policy improvement heuristic 
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(FPI). Using this fluid approximation, the resulting FPI decision for policy   in state 

      is given by: 

                 
        

                         
         

  

      
 

 
  

This rule represents the logical extension of the heuristic proposed by Li and 

Glazebrook to the problem with diminishing rewards. It is clear that the first 

challenge involved in this extension is the need to incorporate the reward functions 

into the fluid approximation,   
      . Diminishing rewards can make even the     

rule into a dynamic rule, and Li and Glazebrook define their fluid approximation 

based on static rules. Our modification of their fluid algorithm will allow for dynamic 

rules within the approximation. We also observe that this version of the FPI rule is 

still computationally intensive for general reward functions. Even in the Markov case, 

general reward functions force the integration over the service time to be done 

numerically, which results in repeated calls to the fluid approximation (which must be 

computed “online” due to the dependence of the rewards on the time dimension). 

To address this issue, we propose a further modification of the FPI heuristic based 

on the structure of formulation (2) that greatly reduces its computational burden. The 

FPI rule above explicitly enumerates all possible sources of stochasticity due to the 

selection of a job class (both the length of service and the number of abandonments 

during service), and this enumeration is the chief cause of the computational 

difficulty. One way to avoid this difficulty is to incorporate the expected service time 

of the selected job into the fluid approximation. In the notation of formulation (2), the 

result is a fluid approximation of              (with a job from class   already selected 

for service) rather than an approximation of        . Let    
          be this new 

fluid approximation function. The resulting, modified FPI decision for policy   in 

state      , which we will be the one we use in our testing in Section 6.5, becomes: 
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The similarity with the optimality equations in formulation (2) is clear, as are the 

computational savings from only computing one approximation for each job class 

rather than one for each possible (discretized) service time from each possible job 

class. Initial computational testing illustrates the computational savings involved and 

shows no significant drop-off in solution quality (refer to Table A-24 and Table A-25 

in the appendix). It is important to note that FPI must be paired with an initial rule ( ) 

in order to generate a fully-functioning heuristic. Our computational testing will pair 

FPI with several of the heuristics proposed in the sections above. 

We now proceed with the details of the modified fluid approximation itself, which 

allows for a dynamic underlying policy   and incorporates the service time of a job 

already selected for service. The fluid approximation deterministically models all 

service times according to their means and treats the number of each job class present 

in the queue as a continuous variable that decreases (i.e. abandons the queue) at a 

deterministic rate according to the parameters of its lifetime distribution. At the 

completion of every service, the underlying policy   is used to select the next job to 

be served. If a job of class   is selected for service in state  , and we continue to 

assume that all random variables are exponentially distributed, then the amount of job 

class   remaining in the system at the end of service (which lasts   
  ) is given by 

         
     

  

. The algorithm continues selecting jobs for service until the system 

is empty. To account for the fact that the continuous version of    can be less than 

one, we allow fractional service times and rewards and allow the underlying policy   

to determine priorities based on fractional states. The full algorithm for computing the 

fluid approximation for the value of being in state         is given below.  
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Fluid Approximation Algorithm for    
        : 

INITIALIZE     
            // Initialize value to zero 

IF           // If job already in service 

             
     

  

    // Update jobs left in queue 

       
       // Advance time 

END-IF 

WHILE     
 
        // While system not empty 

 Let             // Choose job for service 

                   // Account for fractional remains 

    
            

                  // Reap reward  

               
     

  

   // Update jobs left in queue 

        
       // Advance time 

END-WHILE 

RETURN     
           // Return approximate value function 

 

Note that this algorithm is written for the general state        , allowing the 

same algorithm to be used for    
          (in the modified FPI) and for    

         

  
        (in the original FPI). 

Generalizing to the non-Markov Case 

While we have taken care to point out how each of the proposed heuristics can be 

applied with general reward functions, it is also important to discuss how they can be 

applied to problems with general lifetime and service time distributions. Extending 

the         and RTRI rules can be accomplished by replacing the service and 

lifetime rates (   and   , respectively) with the reciprocals of the expected service 

times and remaining lifetimes. The expected remaining lifetimes can be computed 

conditionally at each decision epoch  . With these changes, at decision epoch  , the 

        selects the available job class   that maximizes the following. 
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Using these same replacements for the service and lifetime rates, at decision epoch  , 

the RTRI heuristic chooses the job class   that minimizes the following. 

 

      
  

 

 

     
      

 
        

            
       

 
 

The development of the MLDS heuristic in section 6.3 begins by assuming 

general lifetime and service time distributions. Therefore, the most general form of 

the rule prioritizes the available job class that minimizes the following. 

                                               
 

        

 

This generalization keeps the spirit of the original rule by explicitly minimizing the 

losses during service. However, in the event that this integration must be done 

numerically and is too computationally costly, the rule can also be generalized by 

replacing the service and lifetime rates from the Markov version with the reciprocals 

of the expected service times and remaining lifetimes. 

Finally, we turn to the algorithm for the fluid approximation. Because service 

times are treated as deterministic in the fluid model, the service time component of 

the algorithm requires no modification. In fact, the only part requiring generalization 

is the computation of the number of jobs of each class remaining at the end of a given 

service. As discussed in Li and Glazebrook (2010), we observe that for service of 

class   starting with    jobs from class   in the system at time  , the number of jobs of 

class   remaining at time     is the solution to the initial value problem 
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where       is the hazard rate function for the lifetime distribution for job class   (as 

discussed for the reward functions above). The solution to this initial value problem is 

given by  

               
       

   
    

which can be substituted directly into algorithm given above. 

6.4. Generating MCI Triage Instances 

In order to test the performance of the heuristics proposed in the preceding 

section, we generate a set of realistic problem instances from the literature on MCI 

response planning and triage. Traditional triage algorithms separate survivors into 

four treatment categories (Frykberg 2005, Lerner et al. 2008), and each of these 

categories can be viewed as a class of patients with an associated lifetime (while 

waiting for treatment), treatment time, and deteriorating survival probability 

(depending on when treatment is received). Table 16 provides a qualitative 

assessment of how these class profiles might change across triage categories 

(excluding the dead category) based on their descriptions in the literature. In the day-

to-day operation of a trauma center, where resources are more readily available, 

patient prioritization is primarily aligned with the patient‟s expected lifetime. During 

a MCI, where resources are stretched thin and the most important distinction is 

between those who should be treated immediately and those who can be delayed 

(Frykberg 2005), prioritization must be based on the full patient profiles of all the 

casualties. The expectant category, which is not typically used during day-to-day 

operations, acknowledges this reality by not prioritizing MCI casualties that will 

consume large amounts of resources (represented by their treatment times) with a low 

likelihood of survival. Thus, our analysis does not consider the expectant category. 

Likewise, we do not consider the walking wounded category because they can wait 

almost indefinitely with minimal loss of reward. The key decision considered in this 

paper is the choice between the immediate and the delayed categories. 
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Table 16. Lifetime, treatment time, and deteriorating survival probability profiles for 

traditional triage categories 

Triage Category Lifetime Treatment Time 
Survival Probability 

Initial Deterioration 

Walking Wounded very long very short very high very slow 

Delayed long short high slow 

Immediate short long moderate fast 

Expectant very short very long low very fast 

  

In keeping with the spirit of the need for immediate vs. non-immediate 

prioritization, we begin our analysis of the MCI triage clearing system on problems 

involving two classes of patients. We assume that patients in class 2 are more 

severely wounded than patients in class 1. In other words, patients in class 2 will have 

shorter expected lifetimes, longer expected treatment times, and lower long-term 

survival probabilities. Figure 12 illustrates how such qualitative assessments (similar 

to those in Table 16) might translate to survival probabilities while waiting for 

treatment (        for lifetime random variable   ) and after treatment (     ) for 

two job classes. Based on these survival probabilities alone, it might appear that class 

2 should be prioritized over class   (at least at time  ). However, if class 2‟s service 

time is excessively long or if there are a large number of class 1 patients requiring 

treatment, prioritizing class 2 may be the wrong choice. As this example 

demonstrates, making triage decisions in order to maximize the expected number of 

survivors requires a clearer understanding of how total casualty loads and their 

associated lifetimes, treatment times, and long-term survival probabilities combine to 

dictate prioritization. 
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Figure 12. Potential pre-treatment and post-treatment survival probabilities for two 

patient classes 

The literature on MCI response planning contains data that we can use to generate 

a wide range of scenarios for the MCI triage clearing system with two job classes. 

While higher profile MCIs are often associated with total casualties (killed and 

injured) in the hundreds, the literature suggests that most events are associated with 

much smaller casualty loads. For instance, studies of the two waves of terrorist 

bombings in Israel in the  99 ‟s and early 2   ‟s indicate that hospitals are typically 

faced with around 30 casualties and rarely face more than 50 (Ashkenazi et al. 2008, 

Kosashvili et al. 2009). The proportion of MCI casualties that are severely wounded 

(reflecting a need for immediate care) ranges from approximately 10 to 50 percent 

(Frykberg 2002, Hupert et al. 2007). The treatment times used in models to study 

MCI response plans indicate that severely injured patients (class 2) can require 

treatment lasting from half an hour to over two hours, while non-severely injured 

patients (class 1) require from five minutes to half an hour (Hirshberg et al. 1999, 

Hupert et al. 2007). For our analysis, these estimates must be adjusted down to reflect 

the fact that the treatment times in our single-server clearing system are essentially 

modeling the departure process from a much larger, more complex trauma system. 
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The literature contains very little data on how long patients are capable of surviving 

while waiting for treatment, so we consider a wide range of what we consider to be 

reasonable lifetimes (one to two hours for severely wounded patients, four to twelve 

hours for non-severely wounded patients). The range of scenarios we will consider 

for the number of jobs, expected service (treatment) times, and expected lifetimes for 

our scenarios are shown in Table 17. 

Table 17. Parameters combinations for 4,320 test instances with two job classes  

Parameter 
# of 

Scenarios 
Values 

Number of Jobs, (n1, n2) 4 (20, 10); (20, 15); (30, 15); (30, 20) 

Mean Lifetimes, (r1
-1

, r2
-1

) 8 {240, 480, 720, 960} x {60, 120} 

Mean Service Times, (μ1
-1

, μ2
-1

) 9 {5, 10, 15} x {20, 25, 30} 

Rewards, Rj(t) = bj+(aj–bj) e
-λjt

   

     (a1, b1) 3 (0.9, 0.7); (0.98, 0.9); (0.98, 0.7) 

     (a2, b2) 5 (0.5, 0.4); (0.5, 0.2); (0.8, 0.6); (0.8, 0.4); (0.8, 0.2) 

     (λ1
-1

, λ2
-1

) 1 (180, 60) 

 

Estimates of long-term survival probabilities and their deterioration over time are 

derived from those used in the Sacco Triage Method (Sacco et al. 2005). Their 

research uses logistic regression to estimate the long-term survival probabilities 

associated with different RPM scores (a measure of respiratory rate, pulse rate, and 

motor response), and then applies the Delphi technique (a method for achieving 

consensus among experts) to estimate how RPM scores deteriorate over time. A 

subset of the resulting survival probability curves (associated with different initial 

RPM scores) is shown in Figure 13, illustrating how long-term survival probabilities 

decrease as a function of the time treatment is initiated. Our analysis models 

diminishing rewards (survival probabilities) as exponential decay functions of the 

form                  
    . This form was chosen because it has few 

parameters (three for each job class) and is not computationally intensive when used 

in our proposed heuristics. The survival probability scenarios we will use for the 
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diminishing reward functions in our analysis are also shown in Figure 13, and the 

parameters for these functions are included in Table 17. 

 

 

Figure 13. Deterioration of long-term survival probabilities used in the Sacco Triage 

Method and the proposed reward functions for the MCI triage clearing system 
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6.5. Computational Testing 

The range of parameters presented in Table 17 can be used to create test problems 

that allow us to analyze how triage prioritization decisions depend on patient 

information (survival while waiting for treatment, time required for treatment, and 

long-term survival probability) and on the number of patients seeking treatment. 

Because problems with exponential random variables and rewards that decay 

exponentially to zero at a uniform rate (as discussed in Section 6.2) can be solved to 

optimality, we begin by looking at three sets of such problems with increasingly large 

rates of decay. For these problems, we compare the performance of each of the non-

fluid-based heuristics with the performance of the optimal policy. We then proceed 

with a full analysis of the heuristics, including the fluid-based approaches, across the 

more general set of problems defined by Table 17. In each case, a discrete-event 

simulation of the system is used to compare the performance of the proposed rules 

with each other and, when available, with the optimal solution.  

Uniformly Decaying Rewards 

Combining each of the problem sizes, mean service times, mean lifetimes, and 

initial reward values (        ) in Table 17 yields a set of 1,152 different problem 

instances for the case in which all rewards decay to zero at the same rate. We 

combine this set of parameters with three different rates of decay (    and     

 8 , 6 ) to generate a larger set of 3,456 test instances. Note that     is equivalent 

to the problem with constant rewards, as studied by Glazebrook et al. (2004). For 

each of these problems we tested the non-fluid-based heuristics presented in Section 

6.3 by computing the optimal policy and then simulating the performance of the 

optimal policy and the heuristics. For each of the rules, we tested the version without 

rewards (  , TRI, and MLDS) and the version(s) with rewards incorporated (   , 

       , RTRI, RMLDS) in order to explore the value of incorporating reward 

information into prioritization decisions. Although not discussed above, we also 

tested the performance of the Shortest Expected Processing Time (SEPT) rule, which 

is commonly used in the job scheduling literature as a baseline heuristic. SEPT will 

always give priority to the class 1 jobs. For each problem instance, the performances 
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of each of the eight resulting rules are averaged over 5,000 simulation replications 

and compared with the mean performance of the optimal policy in the form of 

percentage deviations. The computational effort for these non-fluid-based rules is 

minimal, with each rule averaging roughly 0.0003 seconds per replication. 

In the discussion that follows, we will make use of policy maps to gain insight 

into the performance of certain rules. Sample policy maps for the optimal solution 

and for the TRI rule for one of the test problems with constant rewards are shown in 

Figure 14. The policy maps show which class of job each policy will choose in all 

possible system states. The four different initial problem sizes (       are indicated 

in each map. For the selected problem, we see that the optimal policy prioritizes class 

2 in most states, while the TRI rule only prioritizes class 2 in a small number of 

states. The mean percentage deviations from the optimal policy for the TRI rule for 

initial sizes          2 , 5  and          3 ,2   are 5.54 and 2.97, 

respectively. 

 

Figure 14. Policy maps for optimal solution and TRI rule for a problem with 

uniformly decaying rewards,    
     

       ,2  ,    
     

     48 ,6  , 

          .9, .8 , and     

Table 18 shows the mean and maximum percentage deviations and the number of 

times that the rule solves the problem optimally for each of the heuristics over the full 

set of 1,152 problems for each value of  . Both the mean deviations and worst-case 

performances for    and     increase dramatically for larger values of  . Of the   -
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based rules, only          does not dramatically deteriorate as   increases. The 

mean deviation for the          rule for     6  is less than one percent and the 

heuristic finds the optimal solution in 97 percent of cases. In spite of this, the 

maximum deviation remains high, suggesting that the   -based rules are, in some 

sense, “all or nothing” heuristics. It is also clear that the    rule gets progressively 

better as more information about the reward function is incorporated (first  , then  ).  

The performance of SEPT for the problems in Table 18 is remarkably similar to 

the performance of the TRI, RTRI, MLDS, and RMLDS rules, and in fact, the 

correlation coefficients between the percentage deviations for these five rules for all 

 ‟s exceed  .98 (coefficients not shown). In contrast with the   -based heuristics, 

these rules all improve as   increases, with SEPT, RTRI, and RMLDS finding 

optimal solutions in 98 percent of the problems when     6 . It is interesting to 

note that for the problems with constant rewards, adding the reward information to 

the TRI and MLDS heuristics actually makes their performance worse. However, 

when    , both RTRI and RMLDS do better than TRI and MLDS, respectively. 

This difference is chiefly due to the fact that RTRI and RMLDS exactly match SEPT 

for all problems with    , and SEPT becomes increasingly optimal as   increases. 

Table 18. Summary statistics for percentage deviations from optimal policy for non-

fluid-based heuristics applied to problems with uniformly decaying rewards 

  SEPT  μ R μ R( +λ)μ TRI RTRI MLDS RMLDS 

λ = 0                 

    Mean 1.53 4.94 2.62 2.62 1.22 1.53 1.21 1.52 

    Maximum 15.09 29.22 20.63 20.63 12.38 15.09 12.29 14.43 

    % Optimal* 31.8 27.2 43.1 43.1 15.3 31.8 17.6 31.8 

λ
-1

 =180 
        

    Mean 0.01 30.41 23.22 3.83 0.30 0.01 0.26 0.01 

    Maximum 0.65 64.22 57.33 35.83 4.04 0.65 4.73 0.65 

    % Optimal* 84.2 12.5 28.5 81.6 13.1 84.2 15.7 84.2 

λ
-1

 = 60 
        

    Mean 0.00 48.44 37.94 0.72 0.30 0.00 0.27 0.00 

    Maximum 0.01 84.36 79.34 35.40 5.62 0.01 6.70 0.01 

    % Optimal* 98.0 12.5 28.5 97.2 12.6 98.0 15.4 98.0 

* Percent of the problems for which each rule generates the optimal solution. 

In order to shed some light on how the SEPT, TRI and RTRI rules relate to the 

optimal policies, we turn to a set of policy maps for one of the problems that SEPT 
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does not solve optimally for any of the tested values of  . The maps in Figure 15 

clearly show the effect that increasing   has on the optimal decisions, moving the 

optimal policy (for the states shown) from always prioritizing class 2 to almost 

always prioritizing class 1. This trend explains why SEPT is nearly always optimal 

when     6 . As in Figure 14, the maps in Figure 15 show that when    , the 

TRI rule (which does not use any reward information) significantly underestimates 

the region in which class 2 should be prioritized. Incorporating rewards with       

into the RTRI rule further reduces the size of the region where class 2 is selected, thus 

pushing the rule further from the optimal solution. However, the optimal policies 

begin to look more like SEPT when    , so reducing the size of the region where 

class 2 is selected becomes a good idea for these instances. 

 

Figure 15. Policy maps for optimal solutions and TRI rule for test problems with 

   
     

      5,2  ,    
     

     96 ,6  ,           .9, .8 ,     
 

 8 
  and 

 

6 
 



 

 

125 

These observations about the impact of adding rewards to the TRI heuristic 

prompt a comment on the limitations of Lemma 6.2, at least for the range of problem 

instances we are studying. RTRI matches SEPT exactly for each of the problems in 

this initial analysis, indicating that the region defined by Lemma 6.2, condition (ii) is 

empty for problems with parameters pulled from the MCI response planning and 

triage literature. This observation does not contradict the claims of the lemma, but it 

does suggest that for MCI triage-motivated problems, no feasible state (       

satisfies the inequality in condition (ii). It is clear from Lemma 6.2 that for some set 

of parameters the RTRI rule will not reduce to SEPT, but searching for these 

parameters is beyond the scope of this research. 

The means presented in Table 18 are taken over 1,152 test problems constructed 

from of a wide range of problem sizes, expected service times, expected lifetimes, 

and initial reward values. The results in Table 19 show how the performances of the 

different rules vary over the different values for these parameters for the problems 

with    . For tables showing similar analyses for the problems with    , which 

show comparable, albeit muted, trends, please see Table A-26 and Table A-27 in the 

appendix. The performance of all the heuristics gets worse as the number of class 2 

jobs increases with respect to a fixed number of class 1 jobs. The   -based rules 

similarly get worse as the total number of jobs increases, while the other five rules all 

get better as the total number of jobs increases. The trends across the other parameters 

continue to be divided between the   -based rules and the SEPT, TRI, and MLDS 

rules. The   -based rules all do better when the difference between the expected 

lifetimes gets larger and when the differences between the expected service times and 

between the reward values get smaller. This is in line with the results from 

Glazebrook et al. (2004), who show that     is asymptotically optimal when the 

expected lifetimes go to infinity. In contrast, SEPT, TRI, RTRI, MLDS, and RMLDS 

all improve their performance when the expected lifetimes become smaller and more 

similar and when the differences between the expected service times and between the 

reward values become larger. This is line with the results of Argon et al. (2008), who 

find that the TRI rule works best when jobs are time-critical (i.e., when jobs have 

shorter expected lifetimes). 
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Table 19. Mean percentage deviations from optimal policy for non-fluid-based heuristics for 

problems with     by different input parameters 

  SEPT  μ R μ R( +λ)μ TRI RTRI MLDS RMLDS 

(n1, n2)         
    (20,10) 1.81 3.95 1.95 1.95 1.42 1.81 1.40 1.79 

    (20,15) 2.02 4.86 2.46 2.46 1.66 2.02 1.64 2.00 

    (30,10) 0.98 4.62 2.55 2.55 0.75 0.98 0.77 0.97 

    (30,20) 1.30 6.33 3.52 3.52 1.04 1.30 1.05 1.29 

(r1
-1

, r2
-1

) 
        

    (240,60) 0.29 9.88 5.58 5.58 0.20 0.29 0.19 0.29 

    (480,60) 1.29 5.80 4.31 4.31 0.90 1.29 0.91 1.27 

    (720,60) 2.44 2.48 2.48 2.48 1.82 2.44 1.82 2.41 

    (960,60) 3.53 1.12 1.12 1.12 2.71 3.53 2.69 3.47 

    (240,120) 0.02 6.74 0.45 0.45 0.03 0.02 0.03 0.02 

    (480,120) 0.59 5.93 3.02 3.02 0.51 0.59 0.51 0.59 

    (720,120) 1.54 4.93 2.31 2.31 1.34 1.54 1.34 1.54 

    (960,120) 2.52 2.65 1.69 1.69 2.23 2.52 2.23 2.52 

(μ1
-1

, μ2
-1

) 
        

    (5,20) 0.45 6.23 1.91 1.91 0.42 0.45 0.43 0.45 

    (5,25) 0.16 3.95 1.78 1.78 0.15 0.16 0.15 0.16 

    (5,30) 0.06 5.37 2.36 2.36 0.06 0.06 0.06 0.06 

    (10,20) 2.43 4.63 2.57 2.57 2.15 2.43 2.16 2.43 

    (10,25) 1.27 4.56 2.62 2.62 1.09 1.27 1.10 1.27 

    (10,30) 0.68 6.60 4.22 4.22 0.57 0.68 0.58 0.68 

    (15,20) 4.50 2.22 1.32 1.32 3.18 4.50 3.13 4.43 

    (15,25) 2.65 4.32 2.72 2.72 2.11 2.65 2.08 2.62 

    (15,30) 1.55 6.59 4.08 4.08 1.23 1.55 1.25 1.53 

(R1, R2)         
    (0.98,0.8) 2.25 3.35 2.17 2.17 1.83 2.25 1.83 2.25 

    (0.98,0.5) 0.39 7.19 3.45 3.45 0.24 0.39 0.23 0.39 

    (0.9,0.8) 2.91 2.72 1.91 1.91 2.43 2.91 2.44 2.86 

    (0.9,0.5) 0.56 6.49 2.96 2.96 0.37 0.56 0.36 0.56 

 

Because of the large number of problems for which the optimal policy follows 

SEPT, we return to the mean deviations presented in Table 18 and explore how they 

vary with the optimality of SEPT. Table 20 divides the instances for each value of   

according to the optimality of SEPT and shows the mean percentage deviations for 

each of the rules within each subset. In addition, for problems that SEPT does not 

solve optimally, the table presents the percentages of problems that each rule solves 

optimally and for which each rule finds the best heuristic solution. Among these 
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problems, the TRI, RTRI, MLDS, and RMLDS rules continue to outperform the   -

based rules, although for     the   -based rules are much more likely to find the 

optimal and best heuristic solutions. For the problems with     6 , we see that 

SEPT always finds the best heuristic solution even when it is not optimal. 

Table 20. Mean percentage deviations from the optimal policy for non-fluid-based 

heuristics by optimality of SEPT, and percentages of problems for which SEPT is 

suboptimal that the rules find the optimal and best heuristic solution 

  N SEPT  μ R μ R( +λ)μ TRI RTRI MLDS RMLDS 

λ = 0, Means                   

  SEPT Optimal 366   8.48 1.18 1.18 0.01 0 0.01 0 

  SEPT Suboptimal 786 2.24 3.29 3.29 3.29 1.78 2.24 1.78 2.22 

     % Optimal*     21.5 21.5 21.5 1.7 0 1.5 0 

     % Best*   5.3 39.3 39.3 39.3 44.7 5.3 33.3 5.3 

λ-1 =180, Means                   

  SEPT Optimal 970   32.40 23.86 0.84 0.23 0 0.19 0 

  SEPT Suboptimal 182 0.08 19.80 19.80 19.80 0.66 0.08 0.61 0.08 

     % Optimal*     0 0 0 0 0 0 0 

     % Best*   86.8 0 0 0 2.7 86.8 10.4 86.8 

λ-1 = 60, Means                   

  SEPT Optimal 1129   48.93 38.22 0.24 0.27 0 0.24 0 

  SEPT Suboptimal 23 0.00 24.51 24.51 24.51 1.44 0.00 1.54 0.00 

     % Optimal*     0 0 0 0 0 0 0 

     % Best*   100 0 0 0 0 100 0 100 

* Of the problems for which SEPT is suboptimal, the percentages for which the other rules are 

optimal and for which each rule finds the best heuristic solution. 

Generally Decaying Rewards 

As discussed in Section 6.4, our analysis of more general reward functions 

continues to focus on exponentially decaying rewards, but we no longer require the 

rewards to decay to zero or to decay at a uniform rate across jobs classes. Combining 

each of the parameter values presented in Table 17 yields a set of 4,320 test problems. 

These problems can no longer be solved to optimality using formulation (2), so our 

analysis focuses exclusively on the performance of the proposed heuristics. For these 

problems we consider each of the rules tested above (with the exception of    , 

which was clearly outperformed by        ), in addition to the FPI heuristic paired 

with        , TRI, and RTRI. The MLDS and RMLDS rules can just as easily be 
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paired with the FPI algorithm, but we do not include them in this analysis due to their 

extreme similarity with the TRI and RTRI rules. We also note that because RTRI and 

SEPT are again identical over all the tested problems (see Table 21), FPI+SEPT (not 

included) will be identical to FPI+RTRI. The performance of each heuristic is 

averaged over 2,500 simulation replications. While the computational effort for the 

three FPI-based rules is greater than for the non-fluid-based rules, the times were still 

quite manageable, averaging roughly 0.003 seconds per replication. In the absence of 

an optimal policy, the performance of a rule for a particular problem is measured as a 

percentage deviation from the rule with the best (highest) performance for that 

problem. Summary statistics for the percentage deviations for each rule are shown at 

the top of Table 21. 

For these problems, the SEPT, TRI, RTRI, MLDS, and RMLDS rules continue to 

significantly outperform the   -based heuristics. Among the non-fluid-based rules, 

TRI and MLDS show slightly better mean and worst-case performance than SEPT, 

RTRI, and RMLDS, but are less likely to be the best overall policy. However, in 

comparison with the non-fluid-based rules, the results in Table 21 point most strongly 

to the overall quality of the FPI heuristic, regardless of which underlying rule it uses 

for the fluid approximation. In agreement with the findings of Li and Glazebrook 

(2010), all three of the FPI pairings exhibit better mean and worst-case performance 

than their underlying rules, with the FPI+         heuristic finding the best 

solution more often than any other rule. Recall that the FPI heuristic uses the fluid 

algorithm to approximate the value function in an approximate dynamic programming 

(DP) framework. As a result, we can view the quality of the different FPI rules as a 

reflection on the accuracy of the underlying approximations. It is clear that the 

approximate DP framework yields better solutions than the   -, TRI-, and MLDS-

based rules, but differences still exist between the FPI pairings. 

On the full set of problems, FPI+RTRI has the best overall mean and worst-case 

deviation while FPI+        finds the largest percentage of best solutions. It is 

interesting to note that while TRI outperforms RTRI as a general purpose rule, the 

FPI+RTRI rule does significantly better than the FPI+TRI, indicating that using the 

RTRI rule gives a better approximation of the DP value function. Additionally, the 
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quality of the solutions found by using the         rule in the FPI heuristic 

suggests that         generates a good approximation of the value function, even 

though its general performance cannot compete with TRI or RTRI. Combined, either 

SEPT or FPI+         finds the best overall solution in 88 percent of the original 

problems (not shown in the table). The fact that both         and RTRI on their 

own find larger percentages of best solutions than TRI indicates that the fluid 

approximation benefits from rules that frequently find the best solutions, rather than 

rules that merely perform well on average. This emphasis on the ability of the 

underlying rule to find best solutions is perhaps explained from the perspective of 

FPI‟s policy improvement component, which helps to smooth out the worst-case 

performances of the underlying rules. 

Also presented in Table 21 are differences in the performance of the heuristics for 

each of the different reward pairings (initial rewards       and asymptotic rewards 

     ). Differences by the other problem parameters, which can be found in Table 

A-28 in the appendix, mirror the trends discussed for constant rewards in Table 19. 

Differences bases on just the initial reward values exhibit the same general behavior 

as in the constant reward problems. However, other meaningful differences emerge 

when looking at the different initial and asymptotic reward pairings. We can see that 

the   -based rules perform the worst when there is a large difference between the 

initial rewards and the asymptotic rewards, while SEPT, TRI, RTRI, MLDS, and 

RMLDS improve in these scenarios. These results suggest that the both the initial 

reward values and the asymptotic reward values have significant impact on the 

performances of the various heuristics. 



 

 

 

Table 21. Summary statistics for percentage deviations from the best heuristic and differences by reward structure for problems with 

generally decaying rewards  

                  FPI +  

    SEPT  μ R( +λ)μ TRI RTRI MLDS RMLDS R( +λ)μ TRI RTRI 

Mean 0.41 9.05 4.27 0.38 0.41 0.37 0.42 0.31 0.36 0.20 

Maximum 11.16 39.17 20.08 8.38 11.16 8.29 11.15 7.16 4.80 2.39 

% Best* 56.0 15.3 26.0 18.8 56.0 21.4 55.7 59.7 18.2 41.6 

Rj(0) Rj(∞)                     

(0.98,0.8) (0.9,0.6) 1.17 4.77 3.15 0.91 1.17 0.90 1.17 0.08 0.52 0.35 

  (0.9,0.4) 0.71 5.72 3.94 0.62 0.71 0.61 0.71 0.34 0.45 0.27 

  (0.9,0.2) 0.58 7.04 4.72 0.67 0.58 0.65 0.58 1.00 0.45 0.08 

  (0.7,0.6) 0.70 7.66 3.73 0.44 0.70 0.43 0.69 0.03 0.44 0.36 

  (0.7,0.4) 0.27 8.86 4.86 0.20 0.27 0.18 0.27 0.23 0.32 0.26 

  (0.7,0.2) 0.15 10.42 5.85 0.29 0.15 0.27 0.18 0.87 0.24 0.06 

                        

(0.98,0.5) (0.9,0.4) 0.14 9.09 3.57 0.09 0.14 0.08 0.14 0.05 0.45 0.25 

  (0.9,0.2) 0.02 10.51 4.82 0.16 0.02 0.14 0.02 0.40 0.42 0.05 

  (0.7,0.4) 0.09 12.99 3.16 0.07 0.09 0.05 0.09 0.05 0.25 0.19 

  (0.7,0.2) 0.00 14.64 4.70 0.19 0.00 0.16 0.00 0.22 0.15 0.02 

                        

(0.9,0.8) (0.7,0.6) 1.18 5.70 3.35 0.86 1.18 0.86 1.17 0.04 0.50 0.39 

  (0.7,0.4) 0.60 6.78 4.40 0.48 0.60 0.47 0.60 0.26 0.38 0.28 

  (0.7,0.2) 0.43 8.29 5.26 0.52 0.43 0.50 0.44 0.83 0.33 0.11 

                        

(0.9,0.5) (0.7,0.4) 0.15 10.84 3.54 0.08 0.15 0.06 0.15 0.04 0.32 0.25 

  (0.7,0.2) 0.01 12.49 4.99 0.15 0.01 0.13 0.01 0.14 0.23 0.05 

* Percentage of problems for which each rule generates the best solution.  
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The FPI-based heuristics also show differences between the reward pairings. The 

FPI+TRI and FPI+RTRI heuristics show the same tendencies as the underlying TRI 

and RTRI rules, performing worst when the initial rewards are close together and the 

asymptotic rewards are still fairly high. In contrast, these heuristics (particularly 

FPI+RTRI) perform the best when the initial rewards are further apart and the drop-

off in class 2‟s reward is large. The performance of the FPI+        heuristic 

exhibits the exact opposite trends from the other two FPI rules. Its performance is 

best when the rewards for the two classes show very little drop-off over time, while it 

performs worst when the drop-off in class 2‟s rewards is large. Comparing the 

performances of the three FPI pairings with SEPT shows that FPI+TRI and 

FPI+RTRI tend to perform well when SEPT does best and FPI+        tends to 

do well when SEPT does worst. 

To dig further into this relationship with the performance of SEPT, we conclude 

our analysis with a look at how the various heuristics perform when SEPT does not 

produce the best solutions. Table 22 divides the problems according to whether SEPT 

finds the best solution and shows the mean percentage deviations within each group 

for the different heuristics. In addition, among the problems for which SEPT is not 

best, the table presents the percentage of problems for which each of the other rules 

finds the best solutions. Among these problems, we see that the   -based rules 

continue to perform the worst while TRI and MLDS do better than their counterparts 

with rewards incorporated. Perhaps the most striking trend among these problems is 

the strength of the FPI+         heuristic. The other two FPI heuristics perform 

worse when SEPT is not best while FPI+         performs much better on this 

subset of problems, finding the best solution in over 70 percent of the problems and 

showing a mean deviation of less than 0.1 percent. In fact, of all the rules with mean 

deviations of less than one percent, the FPI+         heuristic is the only one that 

actually does better when SEPT is not best.  
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Table 22. Mean percentage deviations from the best heuristic by the performance of 

SEPT, and percentage of problems for which SEPT is not best that other rules are best 

                  FPI +  

  N SEPT  μ R( +λ)μ TRI RTRI MLDS RMLDS R( +λ)μ TRI RTRI 

Mean                       

  SEPT Best 2378   11.79 4.17 0.07 0 0.06 0.00 0.50 0.28 0.06 

  SEPT Not Best 1901 0.94 5.56 4.40 0.78 0.94 0.76 0.94 0.06 0.47 0.37 

     % Best*     6.5 7.0 10.2 0 11.6 0.1 72.5 4.0 7.5 

* Of the problems for which SEPT is not best, the percentage for which the other rules find the best solution. 

6.6. Discussion 

The design of the triage process is an important component of MCI response 

planning, and triage correspondingly receives a great deal of attention in the 

emergency medicine and trauma literature. Recent research has related the MCI triage 

problem to the more general problem of scheduling jobs in a single-server impatient 

jobs clearing system. This clearing system is marked by a large number of 

simultaneously generated jobs (patients), each requiring service (treatment). The jobs 

are impatient in that they will abandon the system (die) if forced to wait too long for 

service. Motivated by a consensus in the medical literature that (1) triage should 

incorporate patients‟ long-term survival prospects and (2) long-term, post-treatment 

survival probabilities decrease if treatment is delayed, we extend the existing research 

to include rewards (long-term survival probabilities) for service that diminish over 

time. The resulting “MCI triage” clearing system can be described as a single-server 

clearing system for impatient jobs with diminishing rewards. By extending the 

existing research to incorporate deteriorating survival probabilities, we aim to 

generate additional insights into how these probabilities impact triage decisions. 

In general, our results confirm earlier findings that triage decisions should be 

made dynamically based on the number of patients waiting for treatment and on the 

treatment and survival profiles of these patients. However, our results show that using 

rules that include information about the patients‟ long-term survival probabilities 

leads to better system performance. In our analysis of problems with two jobs classes, 

with a range of problem sizes and patient profiles motivated by the medical literature, 

we find that in many cases it is preferable to prioritize less-critical patients (with 
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shorter expected treatment times and higher long-term survival probabilities) in spite 

of the fact that their survival probabilities deteriorate more slowly and they can 

survive much longer while waiting for treatment. In cases where the survival 

probabilities are more equal and the less-critical patients are capable of surviving for 

quite some time without treatment, we find that it can be preferable to prioritize the 

more critically wounded patients. The observation that these results sometimes run 

counter to the prioritizations implied by traditional triage categories highlights the 

subtleties and complexities involved in categorizing patients as either immediate or 

delayed. In reality, patients are distributed along a continuum of severity and 

determining the correct cutoffs between immediate and delayed treatment depends on 

a range of patient and population characteristics. In addition, our results provide some 

mathematical justification for the existence of the expectant category, since more 

severely wounded patients are often delayed in order to serve a larger number of less 

severely wounded patients. 
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Chapter 7. Summary and Conclusions 

The research presented in this dissertation contributes in meaningful ways to the 

growing literature on applications of operations research models to problems in 

hospital management and public health administration. Our approaches to both the 

surgery scheduling problem and the mass casualty incident triage problem involve the 

use of mathematical models to develop new insights into previously understudied, yet 

practically important, aspects of the two problems. More generally, we demonstrate 

how exact and approximate stochastic dynamic programming algorithms can be used 

to study the processes of sequential decision-making under uncertainty that lie at the 

heart of these and many other problems in healthcare. 

7.1. Contributions and Future Work 

The Single-Day Surgery Scheduling Problem 

Our study of the single-day surgery scheduling problem in Chapters 2 through 4 

represents the first model to capture the sequential nature of an OR manager‟s daily 

request queue decisions as they relate to the underlying block schedule and block 

release policies. By explicitly incorporating the customer (i.e. surgeon and patient) 

satisfaction costs involved with these decisions into our model, we are able to show 

how OR managers can use threshold-based decision rules to balance between 

competing classes of demand for surgery. These intuitive threshold-based rules are 

optimal for the special case with a single operating room and unit durations, and our 

analysis shows that they can be extended to produce high-quality heuristics for more 

general problems with varying case durations and with multiple operating rooms.  

While our approach to surgery scheduling is motivated by a case study of the 

scheduling system at the University of Maryland Medical Center, our analysis of the 

resulting model focuses on generating insight into more general settings. To this end, 

our computational results explore the sensitivity of the proposed thresholds to a range 

of important input parameters. In particular, the most important determinants of our 

proposed thresholds are the primary demand arrival patterns and the relative costs 

associated with deferral and blocking penalties. Empirical data collected from 
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hospitals‟ scheduling systems and OR suites, such as the data collected during our 

case study, can be used to estimate the demand arrival patterns, but the problem of 

eliciting appropriate deferral and blocking costs from OR stakeholders is ripe for 

future research. In addition, future research will use hospital data to set up a 

simulation environment incorporating other realistic components of the scheduling 

system (such as stochastic case durations, case cancellations, and swapping cases 

between ORs) and compare the performance of threshold-based schedules with actual 

schedules. 

In closing, these threshold-based decision rules suggest a new way for hospitals 

and OR managers to look at block release policies. Traditionally, a block release date 

is a single day after which the OR manager may (if he chooses) release any remaining 

OR time to RQ cases. Alternatively, a threshold-based block release policy based on 

the research presented in this dissertation would release unused OR time gradually 

over the course of several days leading up to the day of surgery. Such a policy would 

be adaptable to differences in demand arrival patterns between specialties and to 

varying priority levels associated with different specialties. Furthermore, our 

threshold-based policies would maintain the transparency of traditional block release 

dates (the daily thresholds for each OR could be easily distributed), thus providing 

clear, empirical justification for an OR manager‟s decisions during the stochastic and 

often contentious development of single-day surgery schedules. 

Mass Casualty Incident Triage 

Our research into mass casualty incident response planning expands on existing 

research relating MCI triage to the general problem of scheduling impatient jobs in a 

single-server clearing system. The earlier research in this area failed to incorporate 

the important MCI and trauma concepts that (1) not all patients who receive treatment 

will ultimately survive and (2) long-term (post-treatment) survival probabilities 

decrease as patients are forced to wait for treatment. These concepts are particularly 

applicable in the aftermath of a MCI, where a large number of severely wounded 

patients are competing for limited medical resources, and are incorporated into the 

impatient jobs clearing system as diminishing rewards for service.  
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Our contributions to this more general problem, as presented in Chapter 6, are 

threefold. First, we show how two different SDP formulations from the literature can 

be extended and present a range of heuristic procedures that extend and improve upon 

earlier approaches. Second, we use the growing number of published studies on MCI 

response planning and casualty patterns, which rely on everything from expert 

opinion to statistical analyses and mathematical models, to generate a range of 

realistic problem instances for the MCI triage clearing system. Third, we perform 

extensive computational tests in order to gauge the quality of our heuristics and 

generate insights into the impact of deteriorating survival probabilities on MCI triage 

decisions. Our results not only confirm earlier findings that triage decisions should be 

made dynamically based on overall patient volume and individual patient 

characteristics, but they also indicate that including information about patients‟ long-

term survival probabilities leads to better overall system performance. 

Rather than provide definitive guidance on how triage decisions should be made 

in the aftermath of a MCI, the research in this dissertation lays the foundation for 

continued research that will seek to address many of the unresolved triage-related 

questions discussed in Chapter 5. Our computational results are limited by strong 

assumptions on the service and lifetime distributions and on the reward functions, and 

a first logical direction for future work is to test our heuristics under more general 

assumptions. In addition, our single-server model can easily be extended to problems 

with more than two job classes, which will provide further insight into which patient 

profiles are prioritized for immediate treatment in which scenarios. Obtaining 

additional data, either from existing trauma databases, analysis of previous MCIs, or 

hospital MCI response training exercises, will facilitate these continued efforts.  

Other research on the problem of MCI triage will work to push our model beyond 

the single-server clearing system presented here. The single-server assumption does 

not allow for an analysis of how a finite amount of resources should be allocated 

between patient classes (for instance, should any of the ORs in a large OR suite be 

allocated to non-severely wounded patients?). Much of the medical literature in 

Chapter 5 advocates splitting the available resources into an “immediate” treatment 

area and a “delayed” treatment area, and a two-server model could be used to explore 
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the implications of this strategy (with the servers modeling the departure processes 

from each area). We also know that, in reality, patients‟ injuries lie along a continuum 

of injury severity and the extent of these injuries (and a patient‟s corresponding job 

class) cannot always be determined with certainty at the time of triage. For these 

reasons, an additional goal of our continued research in this area is to explore the 

appropriate cutoff points between immediate and delayed treatment along the 

continuum of injury severity and to test the sensitivity of these cutoffs to uncertainty 

in patients‟ true severity. Progress toward these goals will help bring mathematical 

insights to fundamental questions regarding the tradeoff between triage speed and 

triage accuracy (which is related to the question of who should perform triage), the 

decision to perform secondary triage, and the overall design of the triage process. 

7.2. Broader Insights 

In addition to generating new insights into the surgery scheduling and MCI triage 

problems, this dissertation sheds light on both the promise and difficulties involved in 

the application of operations research models, and particularly stochastic dynamic 

programs, to problems in healthcare. The healthcare system (including both the 

healthcare delivery system and the public health system) is faced with the twin 

challenges of complex, highly stochastic problems and a large number of stakeholders 

demanding intuitive, implementable solutions. Regardless of the modeling approach 

used, it is crucial to first identify and model only those components that contribute to 

the behavior being studied (model parsimony) and to then be able to relate the 

proposed solution algorithms back to some underlying intuition behind the problem 

(solution interpretability). These imperatives are doubly important for stochastic 

dynamic programs due to their inherent computational complexity.  

In the sequential prioritization problems we study, the underlying intuition behind 

our solutions boils down to striking a balance between competing patient classes. Our 

threshold-based rules for the single-day surgery scheduling problem seek out a 

balance in the decision space between scheduling existing demand and preserving OR 

time for unknown future demand. For the MCI triage problem, this balance presents 

itself in the state space as a tipping point where a preference for one patient class 
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switches to a preference for a different class. In both cases, searching for this balance 

provides an intuitive framework from which to search for computationally efficient 

algorithms and from which to communicate and ultimately implement the resulting 

solutions. As future research works to apply stochastic dynamic programming to 

problems in healthcare, we feel that this notion of seeking balance in both the state 

and decision spaces, and the processes we use in this dissertation to identify shifts in 

this balance, can help ensure that operations researchers are finding meaningful, 

implementable solutions to the complex problems facing the healthcare industry. 
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Appendix 

A.1. Supplementary Tables for Chapter 4 

Table A-1. 95% confidence interval half-widths for mean percentage deviations 

presented in Table 13 

hj
2
 : hj

1
   1:1 

rj
1
 : hj

1
   1:1 3:1 5:1 

rj
2
 : rj

1
   1:1 2:1 3:1 1:1 2:1 3:1 1:1 2:1 3:1 

Greedy                   

   Duration 3.6 3.2 2.9 2.7 3.1 3.9 3.1 4.5 6.1 

   Ratios 3.8 3.4 3.0 2.7 3.2 4.0 3.1 4.5 6.2 

   Threshold First 3.8 3.4 3.0 2.7 3.2 4.0 3.2 4.5 6.1 

Day-to-Day                   

   Duration 4.0 3.4 2.9 2.5 2.5 2.8 2.5 3.1 3.9 

   Ratios 4.5 3.7 3.2 2.7 2.7 2.9 2.7 3.2 3.9 

   Threshold First 4.0 3.4 2.9 2.5 2.5 2.8 2.5 3.1 3.9 

Cumulative                   

   Duration 4.6 3.8 3.3 2.7 2.5 2.5 2.4 2.6 2.8 

   Ratios 5.1 4.3 3.6 3.0 2.7 2.7 2.7 2.8 3.1 

   Threshold First 4.6 3.8 3.2 2.6 2.5 2.4 2.4 2.6 2.8 

Smart                     

   Duration 3.6 3.6 3.2 2.6 2.5 2.4 2.4 2.5 2.5 

   Ratios 3.8 3.7 3.3 2.9 2.7 2.7 2.7 2.8 2.8 

   Threshold First 3.8 3.7 3.2 2.6 2.5 2.4 2.4 2.4 2.5 

hj
2
 : hj

1
 = 2:1 2:1 

Greedy                   

   Duration 3.5 2.9 2.9 2.3 2.5 3.0 2.5 3.4 4.7 

   Ratios 3.7 2.9 2.9 2.4 2.5 3.0 2.6 3.4 4.7 

   Threshold First 3.8 3.1 3.0 2.4 2.6 3.1 2.6 3.5 4.7 

Day-to-Day                   

   Duration 4.4 3.5 3.2 2.3 2.2 2.3 2.2 2.5 3.1 

   Ratios 4.6 3.5 3.2 2.4 2.2 2.3 2.2 2.5 3.1 

   Threshold First 4.4 3.5 3.2 2.3 2.2 2.3 2.2 2.5 3.1 

Cumulative                   

   Duration 5.5 4.3 3.8 2.7 2.4 2.3 2.3 2.3 2.5 

   Ratios 5.5 4.3 3.8 2.8 2.4 2.3 2.3 2.3 2.5 

   Threshold First 5.5 4.3 3.8 2.7 2.4 2.3 2.3 2.3 2.5 

Smart                     

   Duration 3.5 2.9 3.3 2.5 2.3 2.3 2.2 2.3 2.3 

   Ratios 3.7 2.9 3.3 2.6 2.3 2.3 2.3 2.3 2.3 

   Threshold First 3.8 3.1 3.3 2.5 2.3 2.3 2.2 2.3 2.3 



 

 

Table A-2. Mean percentage deviation from the optimal solution for three threshold-based heuristics applied to test problems 

representing a range of primary service line arrival patterns and cost structures (for   
    

      and    
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 6.2 10.0 30.4 1.3 19.6 61.5 5.2 21.4 64.2 9.0 13.5 42.7 0.9 17.3 62.1 

    Smart + Duration 15.2 18.2 9.3 1.3 8.3 2.9 12.3 7.8 1.6 22.4 9.8 8.0 7.3 4.5 4.7 

    Smart + Threshold First 18.8 18.3 9.6 18 7.2 1.8 27.2 6.8 0.3 33.2 8.5 6.7 13.9 3.3 3.7 

 

Table A-3. Mean percentage deviation from the optimal solution for three threshold-based heuristics applied to test problems 

representing a range of primary service line arrival patterns and cost structures (for   
    

      and    
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 4.7 30.6 75.9 5.2 50.3 129.2 3.1 57.5 139.4 7.5 48.6 108.5 0.4 41.4 106.1 

    Smart + Duration 14.1 20.6 5.1 31.7 4.4 4.2 10.9 5.8 1.0 21.9 10.9 0.6 6.7 2.6 2.9 

    Smart + Threshold First 17.4 20.8 2.6 36.4 3.2 2.6 25.8 4.3 -0.4 32.5 9.0 -1.1 12.5 1.3 1.5 

 

Table A-4. Mean percentage deviation from the optimal solution for three threshold-based heuristics applied to test problems 

representing a range of primary service line arrival patterns and cost structures (for   
    

      and    
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 9.4 52.9 112 7.9 87.2 194.9 8.1 97.4 215.1 10.1 87.1 176.6 6.9 64.1 157.5 

    Smart + Duration 45.9 9.0 2.3 20.8 3.7 3.8 14.3 0.7 0.5 24.9 7.9 1.7 26.3 2.2 4.9 

    Smart + Threshold First 47.6 6.1 0.3 20 2.2 2.3 16.7 -0.7 -0.9 25.5 6.2 -0.1 30.0 1.0 3.3 

  



 

 

 

Table A-5. Mean percentage deviation from the optimal solution for three threshold-based heuristics applied to test problems 

representing a range of primary service line arrival patterns and cost structures (for   
    

      and    
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 6.7 3.1 17.5 -0.2 3 31.7 5.1 6.9 27.7 5.1 4.4 16.9 -1.0 4.4 29.5 

    Smart + Duration 6.7 23.6 8.6 -0.2 9.6 5.9 5.1 7.0 5.0 5.1 17.9 2.9 -1.0 7.7 4.6 

    Smart + Threshold First 20.3 25.7 9 25.3 9.7 6 32.7 8.9 5.0 21.4 20.0 2.9 18.6 10.0 4.6 

 

Table A-6. Mean percentage deviation from the optimal solution for three threshold-based heuristics applied to test problems 

representing a range of primary service line arrival patterns and cost structures (for   
    

      and    
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 4.9 25.3 70.8 5.2 46.8 126.6 4.1 45.4 129.6 6.2 44.2 111.0 1.7 33.7 90.9 

    Smart + Duration 19.3 19.6 0.6 37.3 4.3 3.2 13.7 1.1 -0.5 24.0 9.3 -0.5 1.7 3.7 0.5 

    Smart + Threshold First 23.2 19.5 0.6 40 4.3 3.2 29.9 1.1 -0.5 36.3 9.3 -0.5 18.8 3.7 0.5 

  



 

 

Table A-7. 95% confidence interval half-widths for mean percentage deviations presented in Table 14 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 4.8 3.8 4.3 2.9 2.5 3.4 2.2 1.8 2.5 2.9 2.4 3.0 3.5 2.8 3.6 

    Smart + Duration 4.8 3.9 3.7 3.5 2.3 2.3 2.2 1.7 1.6 2.9 2.1 2.1 3.5 2.6 2.6 

    Smart + Threshold First 5.0 3.9 3.7 3.8 2.3 2.3 2.4 1.7 1.6 3.1 2.1 2.1 3.7 2.6 2.6 

 

Table A-8. 95% confidence interval half-widths for mean percentage deviations presented in Table A-2 

 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 5.0 3.9 4.1 3.6 2.7 3.1 2.4 2.0 2.4 3.3 2.5 2.8 3.5 3.0 3.7 

    Smart + Duration 5.2 4.1 3.7 3.6 2.6 2.4 2.5 1.9 1.8 3.4 2.3 2.2 3.6 2.9 2.9 

    Smart + Threshold First 5.3 4.2 3.7 3.8 2.6 2.4 2.5 1.9 1.7 3.4 2.3 2.2 3.7 2.8 2.9 

 

 

Table A-9. 95% confidence interval half-widths for mean percentage deviations presented in Table A-3 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 4.9 4.2 5.3 3.2 3.1 4.5 2.3 2.3 3.4 3.2 2.9 3.9 3.4 3.3 4.7 

    Smart + Duration 5.1 4.1 3.5 3.6 2.5 2.5 2.4 1.8 1.7 3.3 2.2 2.1 3.5 2.7 2.8 

    Smart + Threshold First 5.1 4.2 3.4 3.7 2.5 2.4 2.5 1.8 1.7 3.4 2.2 2.0 3.6 2.7 2.8 

 

  



 

 

Table A-10. 95% confidence interval half-widths for mean percentage deviations presented in Table A-4 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 4.8 5.0 6.8 2.9 3.9 6.1 2.2 3.0 4.8 2.9 3.8 5.5 3.6 4.0 6.1 

    Smart + Duration 5.4 3.6 3.2 3.2 2.4 2.5 2.3 1.7 1.7 2.9 2.3 2.1 3.9 2.7 2.8 

    Smart + Threshold First 5.4 3.5 3.2 3.2 2.4 2.5 2.3 1.7 1.7 2.9 2.3 2.0 4.0 2.7 2.8 

 

 

Table A-11. 95% confidence interval half-widths for mean percentage deviations presented in Table A-5 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 5.3 3.7 3.7 3.5 2.3 2.5 2.4 1.8 1.8 3.1 2.3 2.3 3.3 2.6 2.9 

    Smart + Duration 5.3 4.1 3.5 3.5 2.5 2.2 2.4 1.8 1.7 3.1 2.5 2.0 3.3 2.7 2.6 

    Smart + Threshold First 5.5 4.1 3.5 3.8 2.5 2.2 2.6 1.8 1.7 3.3 2.5 2.0 3.7 2.8 2.6 

 

Table A-12. 95% confidence interval half-widths for mean percentage deviations presented in Table A-6 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

    Greedy + Duration 4.5 4.1 5.6 2.9 3.0 4.7 2.1 2.2 3.4 2.8 2.9 4.1 3.3 3.2 4.6 

    Smart + Duration 4.7 3.9 3.2 3.3 2.3 2.3 2.2 1.6 1.6 3.0 2.2 1.9 3.3 2.6 2.6 

    Smart + Threshold First 4.8 3.9 3.2 3.3 2.3 2.3 2.3 1.6 1.6 3.1 2.2 1.9 3.6 2.6 2.6 

 

  



 

 

Table A-13. Mean percentage deviation from the unconstrained optimal solution for three RQ policies paired with different block 

release dates across a range of primary service line arrival patterns and cost structures (for   
    

      and   
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions                               

   Day 3 2.7 -4.2 1.1 -0.7 0.8 -0.3 -0.9 -0.6 1.1 -1.6 -0.9 -0.4 -2.5 -1.9 1.7 

   Day 2 24.0 1.8 1.6 20.4 5.5 -0.1 28.9 9.2 2.6 22.5 5.8 1.1 21.8 5.5 2.0 

   Day 1 60.4 15.3 6.2 44.8 10.4 1.0 56.5 12.7 2.7 51.8 15.1 3.1 55.6 12.0 3.7 

   Day 0 98.1 31.5 11.0 66.0 14.0 2.4 69.1 13.4 2.7 72.0 20.5 4.2 80.6 16.2 4.8 

Greedy + Duration                               

   Day 3 7.5 8.6 36.9 4.1 20.0 64.1 3.3 19.5 67.1 5.5 15.7 44.4 -0.2 16.0 62.7 

   Day 2 28.4 6.2 13.1 27.2 19.7 42.9 36.7 36.0 75.2 34.3 23.0 38.0 26.2 22.5 53.5 

   Day 1 66.6 20.5 13.2 51.6 18.1 21.9 67.4 37.3 54.5 62.5 27.7 26.2 62.0 28.8 42.4 

   Day 0 103.5 35.1 13.9 69.2 16.3 4.5 71.3 15.0 4.1 74.9 22.6 6.0 84.7 18.6 7.0 

Smart + Duration                               

   Day 3 17.0 14.7 11.5 29.9 8.2 3.1 11.2 7.8 4.1 19.4 9.8 8.2 7.2 4.6 4.6 

   Day 2 28.4 22.6 13.0 51.8 12.0 3.1 51.9 15.0 4.1 66.5 22.4 8.2 26.2 9.2 4.6 

   Day 1 66.6 32.4 17.3 67.0 13.4 3.4 65.8 15.0 4.1 68.6 23.7 8.2 62.0 15.9 6.4 

   Day 0 103.5 35.1 13.9 69.2 16.3 4.5 71.3 15.0 4.1 74.9 22.6 6.0 84.7 18.6 7.0 

 

  



 

 

Table A-14. Mean percentage deviation from the unconstrained optimal solution for three RQ policies paired with different block 

release dates across a range of primary service line arrival patterns and cost structures (for   
    

      and   
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions                               

   Day 3 0.4 1.5 -1.1 0.2 -1.6 0.4 0.3 0.1 -0.3 0.2 1.5 0.2 -2.4 -1.4 -0.1 

   Day 2 21.4 3.5 -0.9 20.3 -0.4 0.4 30.5 2.5 -0.3 24.2 2.5 0.2 21.6 2.3 -0.1 

   Day 1 56.4 11.5 2.2 44.5 1.4 0.4 57.8 2.8 -0.3 52.2 5.8 0.2 56.3 5.1 0.9 

   Day 0 92.1 20.9 4.8 65.5 3.6 0.6 71.0 2.8 -0.3 71.0 9.9 0.9 81.2 7.7 2.3 

Greedy + Duration                               

   Day 3 5.8 32.5 71.7 5.3 50.2 130.4 4.2 56.5 139.6 6.4 49.6 109.1 -0.6 41.6 107.4 

   Day 2 27.3 11.4 25.1 26.9 33.5 87.6 38.1 65.4 136.8 35.0 48.5 91.1 25.8 30.0 73.5 

   Day 1 62.5 18.2 15.0 50.8 16.3 38.5 68.9 48.0 85.9 62.9 35.7 53.6 63.0 27.2 48.1 

   Day 0 97.0 24.1 7.7 68.6 5.7 2.5 73.5 4.3 1.0 74.0 11.6 2.6 85.1 10.1 4.4 

Smart + Duration                               

   Day 3 15.3 22.5 1.8 32.4 3.1 4.1 11.5 4.3 1.0 20.2 11.6 2.6 6.2 2.0 3.0 

   Day 2 27.3 24.1 1.8 53.9 3.1 4.1 51.8 4.3 1.0 66.8 11.6 2.6 25.8 4.4 3.0 

   Day 1 62.5 28.6 4.4 68.6 3.5 4.1 67.0 4.3 1.0 67.4 11.6 2.6 63.0 7.9 4.1 

   Day 0 97.0 24.1 7.7 68.6 5.7 2.5 73.5 4.3 1.0 74.0 11.6 2.6 85.1 10.1 4.4 

 

 

 

  



 

 

Table A-15. Mean percentage deviation from the unconstrained optimal solution for three RQ policies paired with different block 

release dates across a range of primary service line arrival patterns and cost structures (for   
    

      and   
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions                               

   Day 3 0.9 -1.8 0.1 -0.2 -1.3 0.1 1.5 -0.9 -0.8 -0.3 -0.6 0.0 1.7 -1.1 0.5 

   Day 2 13.4 0.2 0.1 13.6 -1.0 0.1 20.5 -0.8 -0.8 15.5 -0.4 0.0 18.1 0.1 0.5 

   Day 1 39.5 6.1 1.3 29.1 -0.6 0.1 37.5 -0.8 -0.8 32.8 1.9 0.0 44.1 2.0 0.6 

   Day 0 68.8 13.5 3.6 44.3 0.4 1.1 43.4 -0.8 -0.8 45.3 5.3 0.6 62.1 4.3 1.9 

Greedy + Duration                               

   Day 3 9.6 52.5 109.6 11.7 89.9 197.0 9.8 98.9 215.8 11.7 84.8 184.0 6.9 68.2 157.5 

   Day 2 20.5 18.2 43.7 23.5 56.3 123.9 34.9 99.5 203.6 31.3 77.6 152.5 22.5 41.8 98.9 

   Day 1 46.0 14.5 22.8 35.7 24.3 50.9 52.4 64.4 119.3 47.5 48.9 86.1 50.7 29.0 59.4 

   Day 0 73.1 16.9 6.4 46.9 2.3 3.0 45.5 0.6 0.5 47.7 7.1 2.2 65.6 6.6 4.1 

Smart + Duration                               

   Day 3 45.3 8.3 3.9 22.4 3.1 3.6 15.7 0.6 0.5 26.9 7.1 2.2 28.0 3.4 4.7 

   Day 2 55.9 8.3 3.9 37.5 3.1 3.6 30.4 0.6 0.5 34.3 7.1 2.2 39.3 3.4 4.7 

   Day 1 68.8 12.8 3.8 50.7 3.1 3.6 46.7 0.6 0.5 49.3 7.1 2.2 60.2 4.8 4.7 

   Day 0 73.1 16.9 6.4 46.9 2.3 3.0 45.5 0.6 0.5 47.7 7.1 2.2 65.6 6.6 4.1 

 

 

 

  



 

 

Table A-16. Mean percentage deviation from the unconstrained optimal solution for three RQ policies paired with different block 

release dates across a range of primary service line arrival patterns and cost structures (for   
    

      and   
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions                               

   Day 3 3.3 -1.6 -0.9 0.5 -0.5 1.9 0.6 2.2 0.4 4.1 0.4 -1.4 0.3 2.3 -0.5 

   Day 2 41.0 9.7 2.1 41.2 12.5 3.4 50.3 24.4 6.1 45.0 17.1 5.0 44.7 18.6 3.7 

   Day 1 92.0 33.8 13.1 84.9 24.6 6.0 104.3 36.0 6.9 93.5 38.0 9.8 99.3 34.4 8.1 

   Day 0 142.7 56.9 24.0 118.1 34.1 8.5 129.9 38.3 6.9 124.7 47.1 11.8 139.2 44.3 11.4 

Greedy + Duration                               

   Day 3 6.9 3.0 17.8 1.7 4.9 32.0 3.1 6.6 27.7 10.2 7.0 15.9 0.4 8.1 28.0 

   Day 2 42.8 12.2 6.0 43.9 17.2 26.5 53.3 31.7 41.9 53.8 24.7 20.3 44.8 26.1 28.9 

   Day 1 92.8 35.6 15.3 86.5 27.8 16.4 107.7 48.3 37.4 99.4 42.5 21.5 100.1 44.5 29.9 

   Day 0 142.7 56.9 24.0 118.1 34.1 8.5 129.9 38.3 6.9 124.7 47.1 11.8 139.2 44.3 11.4 

Smart + Duration                               

   Day 3 6.9 22.3 9.5 1.7 11.5 6.5 3.1 7.0 4.5 10.2 18.5 2.1 0.4 11.6 5.6 

   Day 2 42.8 34.6 14.0 43.9 25.4 7.1 53.3 26.4 6.9 53.8 40.4 11.7 44.8 22.4 7.9 

   Day 1 92.8 52.2 22.1 86.5 33.5 7.1 107.7 39.6 6.9 99.4 42.8 12.9 100.1 39.2 10.0 

   Day 0 142.7 56.9 24.0 118.1 34.1 8.5 129.9 38.3 6.9 124.7 47.1 11.8 139.2 44.3 11.4 

 

  



 

 

Table A-17. Mean percentage deviation from the unconstrained optimal solution for three RQ policies paired with different block 

release dates across a range of primary service line arrival patterns and cost structures (for   
    

      and   
    

     ) 

  Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions                               

   Day 3 -3.8 -0.7 -1.0 0.4 -0.5 0.3 0.0 -0.1 0.7 -0.3 0.7 0.7 0.8 -0.4 2.2 

   Day 2 23.4 2.9 -1.0 29.8 0.2 0.3 36.2 1.2 0.7 31.3 2.1 0.7 34.7 4.0 2.1 

   Day 1 64.6 10.8 2.0 59.0 1.9 0.3 73.4 1.2 0.7 64.9 4.5 0.7 78.1 9.6 2.5 

   Day 0 106.1 20.8 5.2 81.9 4.3 1.2 85.6 1.2 0.7 83.8 7.6 1.2 109.3 13.5 4.7 

Greedy + Duration                               

   Day 3 1.1 26.2 65.1 5.2 47.8 126.2 3.0 45.8 129.7 7.4 45.2 111.8 2.8 35.4 98.7 

   Day 2 26.3 8.3 18.9 33.5 31.6 81.0 40.7 55.4 127.1 40.1 46.4 95.5 34.9 22.6 60.9 

   Day 1 66.7 13.1 10.0 60.8 14.1 33.4 77.2 39.5 81.0 70.0 32.6 55.9 79.0 23.1 39.7 

   Day 0 106.1 20.8 5.2 81.9 4.3 1.2 85.6 1.2 0.7 83.8 7.6 1.2 109.3 13.5 4.7 

Smart + Duration                               

   Day 3 14.4 20.0 -1.0 36.4 3.2 2.5 12.1 1.2 0.7 25.9 10.2 1.2 2.8 4.1 4.2 

   Day 2 26.3 20.5 -1.0 63.0 3.2 2.5 59.9 1.2 0.7 78.6 10.2 1.2 34.9 4.2 4.2 

   Day 1 66.7 25.0 1.8 80.0 2.0 2.5 78.5 1.2 0.7 94.6 10.2 1.2 79.0 10.1 4.8 

   Day 0 106.1 20.8 5.2 81.9 4.3 1.2 85.6 1.2 0.7 83.8 7.6 1.2 109.3 13.5 4.7 

 

  



 

 

Table A-18. 95% confidence interval half-widths for the mean percentage deviations presented in Table 15 

 

Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions 

  

  

  

  

  

  

  

  

      Day 3 4.6 3.4 3.2 2.9 2.1 2.2 2.2 1.6 1.6 3.0 2.1 2.0 3.5 2.4 2.6 

   Day 2 5.1 3.5 3.2 3.3 2.3 2.2 2.6 1.8 1.6 3.3 2.2 2.0 4.1 2.6 2.6 

   Day 1 6.1 3.8 3.3 4.0 2.4 2.2 3.3 1.8 1.6 3.9 2.2 2.0 5.1 2.8 2.6 

   Day 0 7.3 4.1 3.3 4.7 2.4 2.3 3.7 1.8 1.6 4.3 2.3 2.0 6.1 2.9 2.6 

Greedy + Duration 

  

  

  

  

  

  

  

  

      Day 3 4.8 3.8 4.3 3.1 2.5 3.4 2.3 1.9 2.5 3.2 2.4 3.0 3.5 2.7 3.6 

   Day 2 5.2 3.7 3.7 3.5 2.6 3.3 2.7 2.1 2.7 3.5 2.6 3.1 4.1 2.8 3.6 

   Day 1 6.2 3.9 3.6 4.1 2.6 3.0 3.4 2.3 2.7 4.0 2.6 2.9 5.1 3.1 3.5 

   Day 0 7.3 4.1 3.3 4.7 2.4 2.3 3.7 1.8 1.6 4.3 2.3 2.0 6.1 2.9 2.6 

Smart + Duration 

  

  

  

  

  

  

  

  

      Day 3 4.8 3.9 3.6 3.1 2.3 2.4 2.3 1.8 1.6 3.2 2.1 2.1 3.5 2.5 2.6 

   Day 2 5.2 4.1 3.6 3.5 2.4 2.4 2.7 1.8 1.6 3.5 2.3 2.1 4.1 2.6 2.6 

   Day 1 6.2 4.3 3.7 4.1 2.4 2.3 3.4 1.8 1.6 4.0 2.3 2.1 5.1 2.8 2.6 

   Day 0 7.3 4.1 3.3 4.7 2.4 2.3 3.7 1.8 1.6 4.3 2.3 2.0 6.1 2.9 2.6 

 

  



 

 

Table A-19. 95% confidence interval half-widths for the mean percentage deviations presented in Table A-13 

 

Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions 

  

  

  

  

  

  

  

  

      Day 3 4.8 3.5 3.3 2.9 2.4 2.3 2.2 1.7 1.8 2.7 2.4 2.2 3.4 2.7 2.7 

   Day 2 5.1 3.6 3.3 3.1 2.4 2.3 2.3 1.8 1.8 2.8 2.4 2.1 3.7 2.8 2.7 

   Day 1 5.6 3.9 3.3 3.5 2.5 2.3 2.7 1.9 1.8 3.2 2.5 2.1 4.2 2.9 2.7 

   Day 0 6.3 4.2 3.4 3.8 2.6 2.4 2.9 1.9 1.8 3.4 2.5 2.1 4.8 3.1 2.7 

Greedy + Duration 

  

  

  

  

  

  

  

  

      Day 3 5.1 3.8 4.1 3.1 2.6 3.2 2.3 1.9 2.4 3.0 2.6 2.8 3.5 2.9 3.7 

   Day 2 5.3 3.8 3.8 3.4 2.7 3.2 2.5 2.1 2.6 3.2 2.7 2.8 3.8 3.2 3.8 

   Day 1 5.8 4.0 3.7 3.7 2.8 2.9 2.9 2.3 2.6 3.5 2.8 2.7 4.5 3.4 3.7 

   Day 0 6.5 4.3 3.5 3.9 2.7 2.4 2.9 2.0 1.8 3.5 2.5 2.2 4.9 3.2 2.8 

Smart + Duration 

  

  

  

  

  

  

  

  

      Day 3 5.2 4.0 3.7 3.5 2.5 2.4 2.4 1.9 1.8 3.1 2.4 2.3 3.6 2.9 2.8 

   Day 2 5.3 4.1 3.7 3.7 2.6 2.4 2.8 2.0 1.8 3.6 2.6 2.3 3.8 3.0 2.8 

   Day 1 5.8 4.4 3.8 4.0 2.6 2.4 2.8 2.0 1.8 3.4 2.6 2.3 4.5 3.1 2.8 

   Day 0 6.5 4.3 3.5 3.9 2.7 2.4 2.9 2.0 1.8 3.5 2.5 2.2 4.9 3.2 2.8 

 

  



 

 

Table A-20. 95% confidence interval half-widths for the mean percentage deviations presented in Table A-14 

 

Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions 

  

  

  

  

  

  

  

  

      Day 3 4.6 3.6 3.3 3.0 2.4 2.3 2.2 1.7 1.7 2.9 2.4 2.0 3.4 2.7 2.7 

   Day 2 4.8 3.6 3.3 3.1 2.4 2.3 2.4 1.7 1.7 3.0 2.3 2.0 3.6 2.7 2.7 

   Day 1 5.3 3.7 3.3 3.5 2.4 2.3 2.7 1.7 1.7 3.3 2.3 2.0 4.2 2.8 2.7 

   Day 0 6.0 3.8 3.4 3.8 2.4 2.3 2.9 1.7 1.7 3.5 2.3 2.0 4.8 2.8 2.8 

Greedy + Duration 

  

  

  

  

  

  

  

  

      Day 3 4.9 4.3 5.3 3.2 3.1 4.4 2.3 2.3 3.4 3.2 3.0 3.9 3.4 3.3 4.7 

   Day 2 5.1 4.0 4.5 3.4 3.1 4.2 2.6 2.5 3.6 3.4 3.1 4.0 3.8 3.3 4.5 

   Day 1 5.5 4.0 4.1 3.7 2.9 3.5 3.0 2.5 3.4 3.6 3.0 3.6 4.4 3.4 4.1 

   Day 0 6.2 3.9 3.5 3.9 2.5 2.3 3.0 1.8 1.7 3.6 2.3 2.1 4.9 2.9 2.8 

Smart + Duration 

  

  

  

  

  

  

  

  

      Day 3 5.1 4.2 3.4 3.6 2.5 2.4 2.4 1.8 1.7 3.2 2.3 2.1 3.5 2.8 2.8 

   Day 2 5.1 4.2 3.4 3.8 2.5 2.4 2.8 1.8 1.7 3.7 2.3 2.1 3.8 2.8 2.8 

   Day 1 5.5 4.3 3.4 4.1 2.5 2.4 2.9 1.8 1.7 3.4 2.3 2.1 4.4 2.9 2.8 

   Day 0 6.2 3.9 3.5 3.9 2.5 2.3 3.0 1.8 1.7 3.6 2.3 2.1 4.9 2.9 2.8 

 

 

 

  



 

 

Table A-21. 95% confidence interval half-widths for the mean percentage deviations presented in Table A-15 

 

Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions 

  

  

  

  

  

  

  

  

      Day 3 4.5 3.5 3.2 2.9 2.3 2.4 2.1 1.7 1.7 2.6 2.2 2.0 3.3 2.7 2.7 

   Day 2 4.5 3.5 3.2 3.0 2.3 2.4 2.2 1.7 1.7 2.7 2.2 2.0 3.5 2.8 2.7 

   Day 1 4.9 3.6 3.2 3.2 2.3 2.4 2.4 1.7 1.7 2.9 2.2 2.0 4.0 2.8 2.7 

   Day 0 5.4 3.6 3.2 3.4 2.3 2.4 2.4 1.7 1.7 2.9 2.1 2.0 4.3 2.8 2.7 

Greedy + Duration 

  

  

  

  

  

  

  

  

      Day 3 4.7 5.1 6.7 3.1 4.0 6.1 2.2 3.0 4.7 2.9 3.7 5.5 3.5 4.1 6.2 

   Day 2 4.8 4.4 5.4 3.3 3.7 5.5 2.4 3.1 4.8 3.1 3.8 5.5 3.7 3.9 5.4 

   Day 1 5.1 4.0 4.6 3.4 3.2 4.2 2.7 3.0 4.4 3.2 3.5 4.7 4.2 3.6 4.6 

   Day 0 5.6 3.7 3.3 3.5 2.4 2.4 2.5 1.7 1.7 3.0 2.2 2.1 4.5 2.9 2.8 

Smart + Duration 

  

  

  

  

  

  

  

  

      Day 3 5.3 3.5 3.3 3.3 2.4 2.5 2.2 1.7 1.7 2.9 2.2 2.1 3.9 2.9 2.9 

   Day 2 5.4 3.5 3.3 3.5 2.4 2.5 2.3 1.7 1.7 2.8 2.2 2.1 4.1 2.9 2.9 

   Day 1 5.6 3.6 3.3 3.7 2.4 2.5 2.5 1.7 1.7 3.1 2.2 2.1 4.4 2.9 2.9 

   Day 0 5.6 3.7 3.3 3.5 2.4 2.4 2.5 1.7 1.7 3.0 2.2 2.1 4.5 2.9 2.8 

 

  



 

 

Table A-22. 95% confidence interval half-widths for the mean percentage deviations presented in Table A-16 

 

Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions 

  

  

  

  

  

  

  

  

      Day 3 4.9 3.4 3.3 3.0 2.2 2.2 2.2 1.7 1.6 3.1 2.3 2.0 3.6 2.7 2.5 

   Day 2 5.3 3.6 3.3 3.5 2.5 2.3 2.6 2.0 1.7 3.4 2.5 2.1 4.2 3.0 2.7 

   Day 1 6.2 4.2 3.5 4.2 2.7 2.4 3.3 2.2 1.7 4.0 2.8 2.1 5.2 3.4 2.8 

   Day 0 7.4 4.8 3.8 4.8 3.0 2.4 3.7 2.2 1.7 4.4 2.9 2.2 6.1 3.7 2.8 

Greedy + Duration 

  

  

  

  

  

  

  

  

      Day 3 5.1 3.6 3.7 3.1 2.3 2.6 2.3 1.7 1.8 3.3 2.4 2.3 3.6 2.8 2.9 

   Day 2 5.4 3.8 3.5 3.6 2.6 2.7 2.7 2.0 2.0 3.6 2.7 2.4 4.2 3.2 3.2 

   Day 1 6.3 4.2 3.7 4.2 2.8 2.6 3.4 2.4 2.2 4.1 2.9 2.5 5.2 3.6 3.3 

   Day 0 7.4 4.8 3.8 4.8 3.0 2.4 3.7 2.2 1.7 4.4 2.9 2.2 6.1 3.7 2.8 

Smart + Duration 

  

  

  

  

  

  

  

  

      Day 3 5.1 4.0 3.6 3.1 2.5 2.3 2.3 1.8 1.6 3.3 2.5 2.0 3.6 2.9 2.7 

   Day 2 5.4 4.2 3.7 3.6 2.8 2.4 2.7 2.0 1.7 3.6 2.9 2.2 4.2 3.1 2.8 

   Day 1 6.3 4.7 3.9 4.2 3.0 2.4 3.4 2.3 1.7 4.1 2.8 2.2 5.2 3.5 2.8 

   Day 0 7.4 4.8 3.8 4.8 3.0 2.4 3.7 2.2 1.7 4.4 2.9 2.2 6.1 3.7 2.8 

 

 

 

  



 

 

Table A-23. 95% confidence interval half-widths for the mean percentage deviations presented in Table A-17 

 

Early, Early Middle, Middle Late, Late Early, Late Late, Early 

rj
1
 : hj

1
 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 1:1 3:1 5:1 

Optimal Decisions 

  

  

  

  

  

  

  

  

      Day 3 4.1 3.5 3.1 2.7 2.2 2.2 1.9 1.6 1.7 2.6 2.1 2.0 3.2 2.5 2.6 

   Day 2 4.4 3.6 3.1 3.1 2.2 2.2 2.3 1.6 1.7 2.9 2.1 2.0 3.7 2.7 2.6 

   Day 1 5.2 3.7 3.1 3.6 2.2 2.2 2.8 1.6 1.7 3.4 2.1 2.0 4.5 2.8 2.6 

   Day 0 6.2 3.7 3.2 4.0 2.3 2.2 3.0 1.6 1.7 3.6 2.1 2.0 5.2 2.9 2.6 

Greedy + Duration 

  

  

  

  

  

  

  

  

      Day 3 4.3 4.2 5.4 2.9 3.1 4.6 2.0 2.2 3.5 2.9 2.9 4.1 3.3 3.3 4.7 

   Day 2 4.6 3.9 4.4 3.2 3.0 4.3 2.4 2.4 3.6 3.1 3.0 4.2 3.7 3.2 4.2 

   Day 1 5.3 3.8 3.9 3.7 2.7 3.5 2.9 2.4 3.4 3.5 2.9 3.7 4.5 3.2 3.8 

   Day 0 6.2 3.7 3.2 4.0 2.3 2.2 3.0 1.6 1.7 3.6 2.1 2.0 5.2 2.9 2.6 

Smart + Duration 

  

  

  

  

  

  

  

  

      Day 3 4.5 4.0 3.1 3.4 2.3 2.3 2.1 1.6 1.7 3.1 2.2 2.0 3.3 2.7 2.7 

   Day 2 4.6 4.0 3.1 3.7 2.3 2.3 2.7 1.6 1.7 3.6 2.2 2.0 3.7 2.7 2.7 

   Day 1 5.3 4.1 3.1 4.1 2.2 2.3 2.9 1.6 1.7 4.0 2.2 2.0 4.5 2.8 2.7 

   Day 0 6.2 3.7 3.2 4.0 2.3 2.2 3.0 1.6 1.7 3.6 2.1 2.0 5.2 2.9 2.6 
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A.2. Supplementary Tables for Chapter 6 

 

Table A-24. Mean percentage deviations from the performance of the optimal policy 

for different versions of the fluid-based policy improvement heuristic for problems 

with     by different input parameters 

  
R μ 

Modified 

FPI+Rrμ  

Original 

FPI+R μ*  

Original 

FPI+R μ**  
  

Total 2.04 0.04 0.59 0.33 

(n1, n2)         

    (10,5) 1.68 -0.05 0.36 0.24 

    (15,5) 1.81 0.16 0.62 0.39 

    (15,10) 2.64 0.00 0.78 0.36 

(r1
-1

, r2
-1

)         

    (240,60) 3.67 0.07 0.56 0.15 

    (960,120) 0.42 0.00 0.61 0.51 

(μ1
-1

, μ2
-1

)         

    (5,20) 0.41 0.00 1.10 0.47 

    (10,25) 1.41 0.14 0.23 0.24 

    (15,30) 4.31 -0.04 0.43 0.28 

(R1, R2)         

    (0.9,0.8) 2.57 0.14 0.35 0.28 

    (0.9,0.5) 1.51 -0.07 0.82 0.38 

Note: Numerical integration parameters for the original FPI set to time-step 

Δt and stopping criterion ε. 

* Δt =  .5 and ε =  .    

** Δt =  .25 and ε =  .   5 

 

  



 

 

156 

Table A-25. Computation times per replication for different versions of the fluid-

based policy improvement heuristic for problems with     by different input 

parameters 

 

  
R μ 

Modified 

FPI+Rrμ  

Original 

FPI+R μ*  

Original 

FPI+R μ**  
  

Total <0.001s <0.001s 5.29s 16.07s 

(n1, n2)         

    (10,5) <0.001 <0.001 1.73 3.99 

    (15,5) <0.001 <0.001 4.33 16.17 

    (15,10) <0.001 <0.001 9.82 28.04 

(r1
-1

, r2
-1

)         

    (240,60) <0.001 <0.001 4.82 14.38 

    (960,120) <0.001 <0.001 5.76 17.75 

(μ1
-1

, μ2
-1

)         

    (5,20) <0.001 <0.001 4.99 17.03 

    (10,25) <0.001 <0.001 5.25 15.15 

    (15,30) <0.001 <0.001 5.64 16.02 

(R1(0), R2(0))         

    (0.9,0.8) <0.001 <0.001 5.56 16.84 

    (0.9,0.5) <0.001 <0.001 5.02 15.29 

Note: Numerical integration parameters for the original FPI set to time-step 

Δt and stopping criterion ε. 

* Δt =  .5 and ε =  .    

** Δt =  .25 and ε =  .   5 

 

  



 

 

157 

 

Table A-26. Mean percentage deviations from optimal policy for non-fluid-based 

heuristics for problems with uniformly decaying rewards (     8 ) by different 

input parameters 

  SEPT  μ R μ R( +λ)μ TRI RTRI MLDS RMLDS 

(n1, n2)                 

    (20,10) 0.02 27.26 20.71 3.30 0.36 0.02 0.34 0.02 

    (20,15) 0.02 30.94 23.54 3.77 0.27 0.02 0.26 0.02 

    (30,10) 0.00 28.50 21.83 3.70 0.30 0.00 0.24 0.00 

    (30,20) 0.01 34.95 26.81 4.56 0.25 0.01 0.21 0.01 

(r1
-1

, r2
-1

)                 

    (240,60) 0.01 25.93 16.40 3.30 0.16 0.01 0.12 0.01 

    (480,60) 0.02 33.09 27.85 6.49 0.36 0.02 0.30 0.02 

    (720,60) 0.03 31.68 31.68 7.88 0.59 0.03 0.51 0.03 

    (960,60) 0.03 30.96 30.96 8.59 0.79 0.03 0.72 0.03 

    (240,120) 0 15.52 1.69 0 0.03 0 0.02 0 

    (480,120) 0.00 28.73 18.39 0.85 0.08 0.00 0.08 0.00 

    (720,120) 0.00 39.08 26.42 1.44 0.14 0.00 0.13 0.00 

    (960,120) 0.01 38.30 32.39 2.10 0.19 0.01 0.19 0.01 

(μ1
-1

, μ2
-1

)                 

    (5,20) 0 34.03 20.46 0 0.05 0 0.05 0 

    (5,25) 0 27.04 16.36 0 0.04 0 0.04 0 

    (5,30) 0 29.93 16.70 0 0.05 0 0.04 0 

    (10,20) 0.01 29.88 25.25 4.49 0.24 0.01 0.18 0.01 

    (10,25) 0.00 31.39 25.88 4.17 0.20 0.00 0.15 0.00 

    (10,30) 0 36.17 30.02 0 0.18 0 0.15 0 

    (15,20) 0.07 21.06 18.91 10.34 0.97 0.07 0.97 0.07 

    (15,25) 0.02 29.00 25.43 9.92 0.49 0.02 0.44 0.02 

    (15,30) 0.01 35.20 29.98 5.56 0.43 0.01 0.30 0.01 

(R1, R2)                 

    (0.98,0.8) 0.01 26.82 23.02 5.70 0.18 0.01 0.15 0.01 

    (0.98,0.5) 0.00 35.70 24.38 1.51 0.45 0.00 0.41 0.00 

    (0.9,0.8) 0.03 24.76 22.14 6.30 0.14 0.03 0.11 0.03 

    (0.9,0.5) 0.00 34.35 23.35 1.82 0.41 0.00 0.37 0.00 
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Table A-27. Mean percentage deviations from optimal policy for non-fluid-based 

heuristics for problems uniformly decaying rewards (    6 ) by different input 

parameters 

  SEPT  μ R μ R( +λ)μ TRI RTRI MLDS RMLDS 

(n1, n2)                 

    (20,10) 0.00 46.21 36.16 0.68 0.46 0.00 0.44 0.00 

    (20,15) 0.00 49.15 38.51 0.73 0.30 0.00 0.30 0.00 

    (30,10) 0.00 46.92 36.72 0.69 0.26 0.00 0.20 0.00 

    (30,20) 0.00 51.47 40.38 0.78 0.17 0.00 0.14 0.00 

(r1
-1

, r2
-1

)                 

    (240,60) 0.00 39.70 25.53 0.63 0.16 0.00 0.12 0.00 

    (480,60) 0.00 54.94 46.80 1.41 0.39 0.00 0.34 0.00 

    (720,60) 0.00 54.82 54.82 1.41 0.65 0.00 0.60 0.00 

    (960,60) 0.00 54.81 54.81 2.30 0.91 0.00 0.86 0.00 

    (240,120) 0 21.53 2.50 0 0.01 0 0.01 0 

    (480,120) 0 42.89 27.69 0 0.05 0 0.04 0 

    (720,120) 0 59.43 40.73 0 0.08 0 0.08 0 

    (960,120) 0 59.38 50.65 0 0.12 0 0.12 0 

(μ1
-1

, μ2
-1

)                 

    (5,20) 0 56.41 35.55 0 0.07 0 0.07 0 

    (5,25) 0 43.38 27.12 0 0.05 0 0.05 0 

    (5,30) 0 45.70 26.47 0 0.06 0 0.05 0 

    (10,20) 0 50.41 43.81 0 0.28 0 0.23 0 

    (10,25) 0 50.03 41.94 0 0.21 0 0.16 0 

    (10,30) 0 54.39 45.76 0 0.15 0 0.13 0 

    (15,20) 0.00 37.41 34.24 5.46 1.11 0.00 1.14 0.00 

    (15,25) 0 46.03 41.15 1.02 0.43 0 0.39 0 

    (15,30) 0 52.18 45.43 0 0.32 0 0.22 0 

(R1, R2)                 

    (0.98,0.8) 0.00 43.45 37.90 1.15 0.24 0.00 0.21 0.00 

    (0.98,0.5) 0 55.82 39.32 0 0.39 0 0.35 0 

    (0.9,0.8) 0.00 40.51 36.68 1.73 0.20 0.00 0.18 0.00 

    (0.9,0.5) 0 53.97 37.87 0 0.36 0 0.33 0 
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Table A-28. Mean percentage deviations from the best overall heuristic for problems 

with generally decaying rewards by different input parameters 

                FPI +  

  SEPT  μ R( +λ)μ TRI RTRI MLDS RMLDS R( +λ)μ TRI RTRI 

(n1, n2)                     

    (20,10) 0.58 7.38 3.46 0.52 0.58 0.50 0.58 0.24 0.22 0.40 

    (20,15) 0.59 9.12 4.04 0.53 0.59 0.51 0.59 0.24 0.21 0.44 

    (30,10) 0.22 8.29 4.26 0.23 0.22 0.21 0.22 0.36 0.18 0.27 

    (30,20) 0.27 11.42 5.31 0.25 0.27 0.24 0.28 0.39 0.19 0.34 

(r1
-1, r2

-1)                     

    (240,60) 0.04 13.60 6.41 0.15 0.04 0.11 0.04 0.42 0.13 0.18 

    (480,60) 0.30 10.40 6.22 0.29 0.30 0.27 0.30 0.14 0.22 0.29 

    (720,60) 0.69 6.50 4.66 0.57 0.69 0.55 0.69 0.09 0.23 0.31 

    (960,60) 1.10 4.53 3.52 0.89 1.10 0.86 1.10 0.07 0.24 0.31 

    (240,120) 0.00 9.23 2.36 0.04 0.00 0.03 0.01 0.81 0.09 0.23 

    (480,120) 0.10 10.25 4.00 0.12 0.10 0.12 0.11 0.52 0.17 0.47 

    (720,120) 0.37 10.34 3.72 0.35 0.37 0.35 0.38 0.26 0.25 0.59 

    (960,120) 0.71 7.55 3.26 0.64 0.71 0.63 0.71 0.14 0.25 0.53 

(μ1
-1, μ2

-1)                     

    (5,20) 0.04 10.81 2.94 0.04 0.04 0.04 0.04 0.14 0.09 0.35 

    (5,25) 0.01 7.81 2.44 0.01 0.01 0.01 0.01 0.13 0.03 0.19 

    (5,30) 0.00 9.50 1.85 0.01 0.00 0.01 0.00 0.10 0.01 0.10 

    (10,20) 0.63 8.41 4.50 0.58 0.63 0.56 0.63 0.39 0.33 0.52 

    (10,25) 0.20 8.82 5.56 0.19 0.20 0.18 0.20 0.40 0.23 0.42 

    (10,30) 0.07 11.54 5.60 0.08 0.07 0.08 0.07 0.54 0.15 0.32 

    (15,20) 1.78 4.91 3.63 1.55 1.78 1.51 1.80 0.16 0.40 0.55 

    (15,25) 0.71 8.25 5.42 0.66 0.71 0.62 0.71 0.35 0.30 0.45 

    (15,30) 0.28 11.42 6.47 0.31 0.28 0.27 0.28 0.55 0.24 0.38 

(R1(0), R2(0))                   

    (0.98,0.8) 0.60 7.41 4.37 0.52 0.60 0.51 0.60 0.43 0.40 0.23 

    (0.98,0.5) 0.06 11.81 4.06 0.13 0.06 0.11 0.06 0.18 0.32 0.13 

    (0.9,0.8) 0.74 6.92 4.34 0.62 0.74 0.61 0.74 0.38 0.40 0.26 

    (0.9,0.5) 0.08 11.67 4.27 0.12 0.08 0.10 0.08 0.09 0.28 0.15 

 

 



 

 

160 

References 

Almogy, G., Belzberg, H., Mintz, Y., Pikarsky, A.K., Zamir, G., and Rivkind, A.I. 

(2004). Suicide bombing attacks: update and modifications to the protocol. Annals 

of Surgery, 239(3), 295-303. 

Almogy, G., Mintz, Y., Zamir, G., Bdolah-Abram, T., Elazary, R., Dotan, L., Faruga, 

M., and Rivkind, A.I. (2006). Suicide bombing attacks: can external signs predict 

internal injuries? Annals of Surgery, 243(4), 541-546. 

Argon, N.T., Ziya, S., and Righter, R. (2008). Scheduling impatient jobs in a clearing 

system with insights on patient triage in mass casualty incidents. Probability in 

the Engineering and Informational Sciences, 22, 301-332. 

Armstrong, J.H., Frykberg, E.R., and Burris, D.G. (2008). Toward a national standard 

in primary mass casualty triage. Disaster Medicine and Public Health 

Preparedness, 2(S1), S8-S10. 

Aschkenasy-Steuer, G., Shamir, M., Rivkind, A., Mosheiff, R., Shushan, Y., 

Rosenthal, G., Mintz, Y., Weissman, C., Sprung, C.L., and Weiss, Y.G. (2005). 

Clinical review: the Israeli experience: conventional terrorism and critical care. 

Critical Care, 9(5), 490-499. 

Ashkenazi, I. Kessel, B., Khashan, T., Haspel, J., Oren, M., Olsha, O., and Alfici, R. 

(2006). Precision of in-hospital triage is mass-casualty incidents after terrorist 

attacks. Prehospital and Disaster Medicine, 21(1), 20-23. 

Ashkenazi, I. Kessel, B., Olsha, O., Khashan, T., Oren, M., Haspel, J., and Alfici, R. 

(2008). Defining the problem, main objective, and strategies of medical 

management in mass-casualty incidents caused by terrorist events. Prehospital 

and Disaster Medicine, 23(1), 82-89. 

Aylwin, C.J., König, T.C., Brennan, N.W., Shirley, P.J., Davies, G., Walsh, M.S., and 

Brohi, K. (2006). Reduction in critical mortality in urban mass casualty incidents: 

analysis of triage, surge, and resource use after the London bombings on July 7, 

2005. The Lancet, 368, 2219-2225. 



 

 

161 

Beliën, J. and Demeulemeester E. (2007). Building cyclic master surgery schedules 

with leveled resulting bed occupancy. European Journal of Operational 

Research, 176, 1185-1204. 

Beliën, J., Demeulemeester, E., and Cardoen, B. (2009). A decision support system 

for cyclic master surgery scheduling with multiple objectives. Journal of 

Scheduling, 12(2), 147-161. 

Blake, J. and Carter, M. (2002). A goal programming approach to strategic resource 

allocation in acute care hospitals. European Journal of Operational Research, 

140, 541-561. 

Blake, J. and Donald, J. (2002). Mount Sinai Hospital uses integer programming to 

allocate operating room time. Interfaces, 32(2), 63-73. 

Boots, N.K. and Tijms, H. (1999). A multiserver queueing system with impatient 

customers. Management Science, 45(3), 444-448. 

Brumelle, S. and Walczak, D. (2003). Dynamic airline revenue management with 

multiple semi–Markov demand. Operations Research, 51, 137–148. 

Cardoen, B., Demeulemeester, E., and Beliën, J. (2009). Sequencing surgical cases in 

a day-care environment: an exact branch-and-price approach. Computers & 

Operations Research, 36(9), 2660-2669. 

Cardoen, B., Demeulemeester, E., and Beliën, J. (2010). Operating room planning 

and scheduling: A literature review. European Journal of Operational Research, 

201, 921-932. 

Chow, V.S., Puterman, M.L., Salehirad, N., Huang, W., and Atkins, D. (2008). 

Reducing surgical ward congestion at the Vancouver Island Health Authority 

through improved surgical scheduling. Technical Report, Centre for Operations 

Excellence, The University of British Columbia. 

Christie, P.M.J. and Levary, R.R. (1998). The use of simulation in planning the 

transportation of patients to hospitals following a disaster. Journal of Medical 

Systems, 22(5), 289-299. 

Cook, C.H., Muscarella, P., Praba, A.C., Melvin, W.S., and Martin, L.C. (2001). 

Reducing overtriage without compromising outcomes in trauma patients. Archives 

of Surgery, 136, 752-756. 



 

 

162 

Denton, B., Viapiano, J., and Vogl, A. (2007). Optimization of surgery sequencing 

and scheduling decisions under uncertainty. Health Care Management Science, 

10, 13-24. 

Denton, B.T., Miller, A.J., Balasubramanian, H.J., and Huschka, T.R. (2010). 

Optimal allocation of surgery blocks to operating rooms under uncertainty. 

Operations Research, 58(4), 802-816. 

Dexter, F., Macario, A., and Traub, R.D. (1999a). Which algorithm for scheduling 

elective add-on cases maximizes operating room utilization? Use of bin packing 

algorithms and fuzzy constraints in operating room management. Anesthesiology, 

91, 1491-1500. 

Dexter, F., Macario, A., Qian, F., and Traub, R.D. (1999b). Forecasting surgical 

groups‟ total hours of elective cases for allocation of block time: application of 

time series analysis to operating room management. Anesthesiology, 91, 1501-

1508. 

Dexter, F. and Traub, R. (2002). How to schedule elective surgical cases into specific 

operating rooms to maximize the efficiency of use of operating room time. 

Anesthesia & Analgesia, 94, 933-942. 

Dexter, F., Traub, R., and Macario, A. (2003). How to release allocated operating 

room time to increase efficiency: predicting which surgical service will have the 

most under-utilized operating room time. Anesthesia & Analgesia, 96, 507-512. 

Dexter, F. and Macario, A. (2004). When to release allocated operating room time to 

increase operating room efficiency. Anesthesia & Analgesia, 98, 758-762. 

Einav, S., Feigenberg, Z., Weissman, C., Zaichik, D., Caspi, G., Kotler, D., and 

Freund, H.R. (2004). Evacuation priorities in mass casualty terror-related events. 

Annals of Surgery, 239(3), 304-310. 

Frykberg, E.R. and Tepas J.J. (1988). Terrorist bombings: lessons learned from 

Belfast to Beirut. Annals of Surgery, 208(5), 569-576. 

Frykberg, E.R. (2002). Medical management of disasters and mass casualties from 

terrorist bombings: how can we cope? Journal of Trauma, 53(2), 201-212. 

Frykberg, E.R. (2004). Principles of mass casualty management following terrorist 

disasters. Annals of Surgery, 239(3), 319-321. 



 

 

163 

Frykberg, E.R. (2005). Triage: principles and practice. Scandinavian Journal of 

Surgery, 94, 272-278. 

Gerchak, Y., Gupta, D., and Henig, M. (1996). Reservation planning for elective 

surgery under uncertain demand for emergency surgery. Management Science. 

42(3), 321-334.  

Glazebrook, K.D., Ansell, P.S., Dunn, R.T., and Lumley, R.R. (2004). On the optimal 

allocation of service to impatient tasks. Journal of Applied Probability, 41, 51-72. 

Global Terrorism Database (2010). National Consortium for the Study of Terrorism 

and Responses to Terrorism (START). http://www.start.umd.edu/gtd/. Accessed 

on March 23, 2011. 

Guinet A. and Chaabane, S. (2003). Operating theatre planning. International Journal 

of Production Economics, 85, 69-81. 

Gupta, D. (2  7). Surgical suites‟ operations management. Production and 

Operations Management, 16(6), 689-700. 

Halpern, P., Tsai, M.-C., Arnold, J.L., Stok, E., and Ersoy, G. (2003). Mass-casualty, 

terrorist bombings: implications for emergency department and hospital 

emergency response (part II). Prehospital and Disaster Medicine, 18(3), 235-241. 

Hans, E., Wullink, G., van Houdenhoven, M., and Kazemier, G. (2008). Robust 

surgery loading. European Journal of Operational Research, 185, 1038-1050. 

Hirshberg, A., Stein, M., and Walden, R. (1999). Surgical resource utilization in 

urban terrorist bombing: a computer simulation. Journal of Trauma, 47(3), 545-

550. 

Hirshberg, A., Holcomb, J.B., and Mattox, K.L. (2001). Hospital trauma care in 

multiple-casualty incidents: a critical view. Annals of Emergency Medicine, 37(6), 

647-652. 

Hirshberg, A. (2004). Multiple casualty incidents: lessons from the front line. Annals 

of Surgery, 239(3), 322-324. 

Hirshberg, A., Scott, B.G., Granchi, T., Wall, M.J., Mattox, K.L., and Stein, M. 

(2005). How does casualty load affect trauma care in urban bombing incidents? A 

quantitative analysis. Journal of Trauma, 58(4), 686-695. 



 

 

164 

Hupert, N. Hollingsworth E., and Xiong, W. (2007). Is overtriage associated with 

increases mortality? Insights from a simulation model of mass casualty trauma 

care. Disaster Medicine and Public Health Preparedness, 1 (1 Suppl), S14-S24. 

Iravani, F. and Balcıog lu, B. (2008). On priority queues with impatient customers. 

Queueing Systems, 58, 239-260. 

Jebali, A., Alouane, A.B.H., and Ladet, P. (2006). Operating rooms scheduling. 

International Journal of Production Economics, 99, 52-62. 

Jenkins, J.L., McCarthy, M.L., Sauer, L.M., Green, G.B., Stuart, S., Thomas, T.L., 

and Hsu, E.B. (2008). Mass-casualty triage: time for an evidence-based approach. 

Prehospital and Disaster Medicine, 23(1), 3-8. 

Kluger, Y. (2003). Bomb explosions in acts of terrorism – detonation, wound 

ballistics, triage, and medical concerns. Israel Medical Association Journal, 5, 

235-240. 

Kluger, Y., Peleg, K., Daniel-Aharonson, L., and Mayo, A. (2004). The special injury 

pattern in terrorist bombings. Journal of the American College of Surgeons, 

199(6), 875-879. 

Kosashvili, Y., Aharonson-Daniel, L., Peleg, K., Horowitz, A., Laor, D., and 

Blumenfeld, A. (2009). Israeli hospital preparedness for terrorism-related multiple 

casualty incidents: can the surge capacity and injury severity distribution be better 

predicted? Injury, 40(7), 727-731. 

Lamiri, M., Xie, X., and Zhang, S. (2008a). Column generation approach to operating 

theater planning with elective and emergency patients. IIE Transactions, 40, 838-

852. 

Lamiri, M., Xie, X., Dolgui, A., and Grimaud, F. (2008b). A stochastic model for 

operating room planning with elective and emergency demand for surgery. 

European Journal of Operational Research, 185, 1026-1037. 

Lee, T.C. and Hersh, M. (1993). A model for dynamic airline seat inventory control 

with multiple seat bookings. Transportation Science, 27(3), 252–265. 

Lerner, E.B., and Moscati, R.M. 2001. The golden hour: scientific fact or medical 

“urban legend”? Academic Emergency Medicine, 8(7), 758-760. 



 

 

165 

Lerner, E.B., Schwartz, R.B., Coule, P.L, Weinstein, E.S., Cone, D.C, Hunt, R.C., 

Sasser, S.M., Liu, J.M., Nudell, N.G., Wedmore, I.S., Hammond, J., Bulger, E.M., 

Salomone, J.P., Sanddal, T.L., Lord, G.C., Markenson, D., and O‟Connor, R.E. 

(2008). Mass casualty triage: an evaluation of the data and development of a 

proposed national guideline. Disaster Medicine and Public Health Preparedness, 

2(Suppl 1), S25-S34. 

Li, D. and Glazebrook, K.D. (2010). An approximate dynamic programming 

approach to the development of heuristics for the scheduling of impatient jobs in a 

clearing system. Naval Research Logistics, 57, 225-236. 

Macario, A., Vitez, T., Dunn, B., and McDonald, T. (1995). Where are the costs in 

perioperative care?: Analysis of hospital costs and charges for inpatient surgical 

care. Anesthesiology, 83(6), 1138–1144. 

McManus, M., Long, M., Cooper, A., Mandell, J., Berwick, D., Pagano, M., and 

Litvak, E. (2003). Variability in surgical caseload and access to intensive care 

services. Anesthesiology. 98(6), 1491-1496. 

Meredith, W., Rutledge, R., and Hansen, A.R. (1995). Field triage of trauma patients 

based on the ability to follow commands: a study in 29,573 injured patients. 

Journal of Trauma, 38, 129-135. 

Min, D. and Yih, Y. (2010). Scheduling elective surgery under uncertainty and 

downstream capacity constraints. European Journal of Operational Research, 

2006, 642-652. 

Ogulata, S.N. and Erol, R. (2003). A hierarchical multiple criteria mathematical 

programming approach for scheduling general surgery operations in large 

hospitals. Journal of Medical Systems, 27(3), 259-270. 

Ozkarahan, I. (2000). Allocation of surgeries to operating rooms by goal programing. 

Journal of Medical Systems, 24(6), 339–378. 

Peleg, K. and Kellerman, A.L. (2009). Enhancing hospital surge capacity for mass 

casualty events. Journal of the American Medical Association, 302(5), 565-567. 

Pham, D., and Klinkert, A. (2008). Surgical case scheduling as a generalized job shop 

scheduling problem. European Journal of Operational Research. 185, 1011–

1025. 



 

 

166 

Powell, W.B. (2007). Approximate Dynamic Programming: Solving the Curse of 

Dimensionality. Wiley. Hoboken, NJ. 

Price, C., Golden, B., Harrington, M., Konewko, R., Wasil, E., and Herring, W. 

(2011). Reducing boarding in a post-anesthesia care unit. Production and 

Operations Management, forthcoming. 

Rothman, R.E., Hsu, E.B., Kahn, C.A., and Kelen, G.D. (2006). Research priorities 

for surge capacity. Academic Emergency Medicine, 13, 1160-1168. 

Sacco, W.J., Navin, D.M., Fiedler, K.E., Waddell, R.K., Long, W.B., and Buckman, 

R.F. (2005). Precise formulation and evidence-based application of resource-

constrained triage. Academic Emergency Medicine, 12, 759-770. 

Samanloiglu, F., Ayag, Z., Batili, B., Evcimen, E., Yilmaz, G., and Atalay, O. (2010). 

Determining master schedule of surgical operations by integer programming: a 

case study. Proceeding of the 2010 Industrial Engineering Research Conference, 

June 5-9, Cancun, Mexico. 

Santibañez, P., Begen, M., and Atkins, D. (2007). Surgical block scheduling in a 

system of hospitals: an application to resource and wait list management in a 

British Columbia health authority. Health Care Management Science, 10, 269-

282. 

Schütz , H.-J. and Kolisch, R. (2010a). Approximate dynamic programming for 

capacity allocation in the service industry. Working paper, available at SSRN: 

http://ssrn.com/abstract=1618315. 

Schütz , H.-J. and Kolisch, R. (2010b). Capacity allocation for demand of different 

customer–product–combinations with cancellation, no–shows, and overbooking 

when there is a sequential delivery of service. Working paper, available at SSRN: 

http://ssrn.com/abstract=1618313. 

Sier, D., Tobin, P., and McGurk, C. (1997). Scheduling surgical procedures. Journal 

of the Operational Research Society, 48, 884-891. 

Strum, D.P. Vargas, L.G., and May, J.H. (1999). Surgical subspecialty block 

utilization and capacity planning: a minimal cost analysis model. Anesthesiology, 

90(4), 1176-1185. 



 

 

167 

Subramanian, J., Stidham Jr., S., and Lautenbacher, C.J. (1999). Airline yield 

management with overbooking, cancellations, and no-shows. Transportation 

Science, 33(2), 147–167. 

Tanfani, E. and Testi, A. (2010). A pre-assignment heuristic algorithm for the master 

surgical schedule problem (MSSP). Annals of Operations Research, 178, 105–

119. 

Testi, A., Tanfani, E., and Torre, G. (2007). A three-phase approach for operating 

theatre schedules. Health Care Management Science, 10, 163-172. 

Tijms, H.C. (1994). Stochastic Models: An Algorithmic Approach. Wiley. Chichester, 

UK. 

Turégano-Fuentes, F., Pérez-Diaz, D., Sanz-Sánchez, M., and Alonso, J.O. (2008). 

Overall assessment of the response to the terrorist bombings in trains, Madrid, 11 

March 2004. European Journal of Trauma and Emergency Surgery, 5. 433-441. 

Valdez, R.S., Ramly, E., and Brennan, P.F. (2010). Industrial and Systems 

Engineering and Health Care: Critical Areas of Research--Final Report. (Prepared 

by Professional and Scientific Associates under Contract No. 290-09-00027U.) 

AHRQ Publication No. 10-0079. Rockville, MD: Agency for Healthcare Research 

and Quality. 

Van Mieghem, J. (1995). Dynamic scheduling with convex delay costs: the 

generalized cμ rule. Annals of Applied Probability, 5(3), 808-833. 

van Oostrum, J.M., van Houdenhoven, M., Hurink, J.L., Hans, E.W., Wullink, G., 

and Kazemier, G., (2008). A master surgical scheduling approach for cyclic 

scheduling in operating room departments. OR Spectrum, 30(2), 355-374. 

Zhang, B., Murali, P., Dessouky, M.M., and Belson, D. (2009). A mixed integer 

programming approach for allocating operating room capacity. Journal of the 

Operational Research Society, 60, 663-673. 

Zhao, Z.-X., Panwar, S.S., and Towsley, D. (1991). Queueing performance with 

impatient customers. P ocee ings of IEEE INFOCOM’91, 1, 400-409. 

 


