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Soil moisture and terrestrial snow mass are two important hydrological states
needed to accurately quantify terrestrial water storage and streamflow. Soil moisture
and terrestrial snow mass can be measured using ground-based instrument networks,
estimated using advanced land surface models, and retrieved via satellite imagery.
However, each method has its own inherent sources of error and uncertainty. This
leads to the application of data assimilation to obtain optimal estimates of soil mois-
ture and snow mass. Before conducting data assimilation (DA) experiments, this
dissertation explored the use of two different observation operators within a DA
framework: a L-band radiative transfer model (RTM) for soil moisture and sup-
port vector machine (SVM) regression for soil terrestrial snow mass. First, L-band
brightness temperature (7}) estimated from the RTM after being calibrated against
multi-angular SMOS T,’s showed good performance in both ascending and descend-

ing overpasses across North America except in regions with sub-grid scale lakes and



dense forest. Detailed analysis of RTM-derived L-band T} in terms of soil hydraulic
parameters and vegetation types suggests the need for further improvement of RTM-
derived T} in regions with relatively large porosity, large wilting point, or grassland
type vegetation. Secondly, a SVM regression technique was developed with explicit
consideration of the first-order physics of photon scattering as a function of different
training target sets, training window lengths, and delineation of snow wetness over
snow-covered terrain. The overall results revealed that prediction accuracy of the
SVM was strongly linked with the first-order physics of electromagnetic responses
of different snow conditions. After careful evaluation of the observation operators,
C-band backscatter observations over Western Colorado collected by Sentinel-1 were
merged into an advanced land surface model using a SVM and a one-dimensional en-
semble Kalman filter. In general, updated snow mass estimates using the Sentinel-1
DA framework showed modest improvements in comparison to ground-based mea-
surements of snow water equivalent (SWE) and snow depth. These results motivate
further application of the outlined assimilation schemes over larger regions in order

to improve the characterization of the terrestrial hydrological cycle.
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Chapter 1: Introduction

1.1 Terrestrial Hydrological Cycle

The terrestrial water and energy cycles play a crucial role in understanding
the complicated interaction between the land surface and atmosphere [221]. Un-
derstanding the water and energy cycles leads to improved knowledge of available

water resources for human beings as well as ecosystems.

Precipitation o\ ey
Evaporation Runoy

Net Radiation

Transpiration

Surface
Water

Ground Water

Figure 1.1: Schematic of hydrological cycle.

The water cycle is composed of different hydro-meteorological variables such
as precipitation, evapotranspiration, soil moisture, snow, and runoff (Figure 1.1).
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Among these variables, both soil moisture and snow are regarded as important vari-
ables to estimate or predict the seasonal streamflow [113]. Soil moisture is defined
as a water stored in the soil above the water table [24]. Snow has been known as
“water tower” as it stores winter precipitation and discharges it through snowmelt
during springtime [125]. It supplies freshwater to more than 1.2 billion people (ap-
proximately one-sixth of the world’s population) for agricultural and human us-
age [13,20,197]. Seasonal variation of both soil moisture and snow directly influence
to the runoff. Snowmelt during the springtime significantly increases streamflow,
which influences the terrestrial hydrological cycle. In case of soil moisture, it di-
rectly influences the partitioning of surface energy fluxes (latent heat and sensible
heat fluxes) as well as precipitation fluxes, and in turn, exerts a first-order control on
streamflow [72]. More specifically, when the intensity of precipitation and snowfall
exceeds the infiltration capacity during saturated soil moisture conditions, it leads

to the generation the surface runoff [196,229].

1.1.1 Measurement of Terrestrial Hydrologic Cycle

In order to measure these hydro-meteorological variables, ground-based net-
works (e.g., Soil Climate Analysis Network [SCAN], Snowpack Telemetry [SNO-
TEL], Global Surface Summary of the Day [GSOD], and FLUXNET) have been
extensively utilized with an advantage of direct quantification and high accuracy at
the point-scale, which leads to the application of ground-based measurements to help

evaluate hydrologic states estimated from satellite-based retrievals as well as from



land surface models [19, 25, 38, 43,59, 135, 137,193]. However, ground-based mea-
surements are limited in terms of spatio-temporal coverage of hydro-meteorological
variables at all locations in space and time. More specifically, the limited spatial
footprint and sparse and/or uneven distribution of ground-based stations makes it
difficult to accurately discern the spatial variation of hydro-meteorological variables.
As an alternative, remote sensing observations are a feasible option to discern the
spatio-temporal variations of hydro-meteorological variables over large areas without

direct physical contact.

1.2 Microwave Remote Sensing Observations

In recent decades, satellite observations have been regarded as a vital informa-
tion source to capture the spatio-temporal variation of land surface state and fluxes,
which leads to their wide application across different hydrological fields [184,201].
Satellite observations provide complete global coverage that helps overcome many
of the sparsity issues that plague ground-based observational networks. Satellite
observations can be subdivided into different frequencies (e.g., visible, infrared, and
microwave) depending on the range of wavelength, A\, within the electromagnetic
spectrum. Among the different types of observations, the microwave portion (1
mm< A < 1 m) of the spectrum offers tremendous potential for monitoring several
hydro-meteorological variables including land surface temperature [94,143], precipi-
tation [99,103], soil moisture [156,214], and terrestrial snow [33,106,200]. Compared

with the visible and infrared spectrums, microwave (MW) observations have a rel-



atively long wavelength that is effectively transparent to atmospheric conditions
(e.g., cloud cover and dust), hence, can view more of the terrestrial environment as
compared to relatively shorter wavelengths such as visible or thermal infrared. In
addition, water molecules are highly interactive with MW photons, which can be
exploited for hydrological research applications.

MW remote sensing sensors can be classified into passive (e.g., radiometers)
and active (e.g., radars) observations based on the type of instrument [211]. Pas-
sive microwave (PMW) sensors measure the naturally emitted radiance from the
environment, including the land surface. This observational variable is commonly
provided as a brightness temperature. Brightness temperature (7}) is defined as
the equivalent temperature of thermally emitted microwave radiation from the ob-
ject [90] and is computed as the physical temperature times the emissivity. In terms
of active microwave (AMW), the sensor sends out a microwave pulse and measures
the returning signal from the measured object (e.g., land surface). This observa-
tional variable is commonly returned to as the backscatter coefficient (¢%). The
underlying principle for using MW observations to study hydrological variables is
based on the different electromagnetic response depending on the dielectric prop-
erties of the surface [12]. Due to the strong interaction of MW radiation (within
a specific portion of the MW spectrum), the presence or absence of water is often
a first-order control on the electromagnetic response of that MW radiation, be it

passive or active in nature.



1.3 Land Surface Modeling

A land surface model (LSM) is another option to overcoming the spatio-
temporal limitations of ground-based measurements. A LSM yields estimates of
the water and energy fluxes at the land surface across various spatial and tem-
poral scales by solving the physical equations of water and energy conservation
related to complex land-atmosphere interactions and near-surface boundary con-
ditions [68]. Many LSMs have been developed and utilized in hydrology includ-
ing the Community Land Model (CLM; [46]), Mosaic Land Surface Model [114],
Variable Infiltration Capacity (VIC; [130]), Joint UK Land Environment Simulator
(JULES; [16]), and NOAH-Multiparameterization (NOAH-MP; [154]). Land surface
estimates from LSMs has been extensively evaluated by comparing against ground-
based measurements across the globe (e.g., [19,25,135,193]). Moreover, LSM outputs
can be utilized for the purpose of evaluating remote sensing-based hydrometeoro-
logical variables [63,167,193]. However, hydrological states estimated from LSMs
contain their own inherent uncertainties triggered from the different model param-

eterization schemes, model boundary conditions, and initial conditions [49,176].

1.4 Data Assimilation Framework

Data assimilation (DA) is defined as a series of statistical algorithms that
jointly use the theoretical (a priori) knowledge of the system model along with

observations (or retrievals) in order to improve the knowledge of the past, present,



and future system states [175]. DA has been widely applied in hydrological fields
due to the limitation in collecting high-quality fluxes from the hydrological cycle
over extensive areas [144]. Estimates of hydrological states from a land surface
(geophysical) model have advantages in providing spatio-temporal variations in each
of the states while measurements generally provides less-biased information than
the model or remote sensing-based products alone. Thus, the main goal of DA
is to produce optimal estimates of geophysical variables that are superior to both
model-alone estimates and remote sensing observations [144].

A DA framework can be divided into two general categories: variational data
assimilation and sequential data assimilation. The main difference between varia-
tional and sequential data assimilation is the length of assimilation window: varia-
tional data assimilation (e.g., 3D-var and 4D-Var) fits the dynamic model with all
available observations during a period of interest while sequential data assimilation
(e.g., Kalman-type filters) updates the state at each observation time (a.k.a., on-line
approach) [151]. In this dissertation, the focus is on the sequential data assimilation
based on the advantage of relatively lower computational expense and the flexibility
to couple hydrologic models with comparable or better accuracy than variational
data assimilation [198].

Typical examples of sequential data assimilation include the Kalman filter,
extended Kalman filter, and ensemble Kalman filter (EnKF) [71]. EnKF is a classical
sequential data assimilation frameworks that implements a finite number of ensemble
replicates to serve as a low-dimensional approximation of the conditional probability

density function (PDF) of state error covariance using a Monte Carlo approach [71].



The general idea of the EnKF is illustrated in Figure 1.2.
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Figure 1.2: Schematic of the ensemble Kalman filter (EnKF).

As part of the the EnKF routine, ensemble replicates are propagated in time
and updates of model states are determined by the mean and spread of the ensem-
ble that approximates the state distribution. The use of ensemble replicates has
an advantage in reducing the problem dimension using a low-rank approximation
of the error covariance matrix and by reducing the associated computational ex-
pense [71]. The update and propagation of the EnKF is processed with a relatively
small number of ensembles, which serves as a low-dimensional approximation of the
conditional probability density function of the state error covariance matrix. More-
over, the EnKF does not require the underlying assumption of standard Kalman
filter, which is limited in application only to linear models with assumption of mu-
tually independent, Gaussian errors.

The EnKF consists of various components including the forward model (a.k.a.,

state system), state and observation matrices, model and observation error terms,



and the observation operator (Figure 1.3). Among these components, the observa-
tion operator is regarded as one of the most essential components. The main role of
the observation operator is to bridge the model state space and observation space.
It significantly influences the performance of the EnKF as it is highly connected to
the determination of the amount of update as well as the error characterization in

the EnKF. Detailed formulation and description of the EnKF is provided in Section

4.2.3.
Open Loop (OL)
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Data Assimilation (DA) Observatlons
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Figure 1.3: General schematic of the Open Loop (OL; model-only simulation) and
data assimilation procedures.
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1.5 Methodological Review of Soil Moisture

1.5.1 Remote Sensing of Soil Moisture

Emitted MW radiation from the soil surface is sensitive to various traits of the
soil such as surface roughness, soil texture, vegetation cover, and moisture content
[122,155]. Among these components, soil moisture content at the soil surface is one

of the crucial components influencing the different electromagnetic response. In the



lower portion of the MW spectrum (e.g., 3 cm < A < 30 cm), the dielectric constant
of water and dry soil is known as 80 and 3.5, respectively [155]. This difference leads
to differences in the emissivities between dry and wet soil (approximately 0.6 and
0.95, respectively), and hence, results in significant differences in T, depending, in
part, on the amount of soil moisture present [183].

Among the wide spectrum of microwave frequencies, wavelengths longer than
10 cm have been applied for retrieving soil moisture as a longer wavelength min-
imizes the effect of vegetation and surface roughness on 7; [163]. For example,
several space-borne L-band radiometers have been successfully launched in order
to retrieve soil moisture. In November 2010, the Soil Moisture and Ocean Salinity
(SMOS) mission was launched by the European Space Agency (ESA) with a pri-
mary objective of monitoring global soil moisture and sea surface salinity [109,110].
SMOS retrieves soil moisture every three days with spatial resolution ranged from
27 km to 55 km.

The U.S. National Aeronautics and Space Administration (NASA) launched
the Soil Moisture Active Passive (SMAP) mission at 31 January 2015 in order to
monitor the surface soil moisture and freeze/thaw status using an L-band radiome-
ter, which provides a spatial and temporal resolution of ~10 km and ~3 days,
respectively [69]. One of the main differences between SMOS and SMAP is that the
former measures 7j, at a single incidence angle while the latter uses the T}, observed
at various incidence angles.

SMOS and SMAP soil moisture have been extensively evaluated across the

globe and have shown reasonable agreement with the ground-based soil moisture



observations [43,101,137]. Jackson et al. [101] compared the soil moisture retrieved
from SMOS and the Advanced Microwave Scanning Radiometer for the Earth Ob-
serving System (AMSR-E) against the in-situ surface (~ 5 cm) soil moisture obser-
vations from four experimental watersheds established by United States Department
of Agriculture (USDA). Results showed that SMOS demonstrated better correlation
coefficient (R) and root mean square error (RMSE) than the AMSR-E observations.
In general, R and RMSE ranged from 0.7 to 0.8 and 0.030 m3m =3 to 0.049 m3m 3 for
the SMOS soil moisture product. Collow et al. [43] also evaluated the soil moisture
retrieved from SMOS by comparing with multiple in-situ observational networks
(e.g., U.S Climate Reference Network (USCRN), SCAN, Oklahoma Mesonet, and
Cosmic Ray) surface soil moisture observations (~ 5 cm) over the Great Plains
of the United States. Statistical comparisons showed that the R ranged from 0.5
to 0.9 while SMOS soil moisture yielded a dry bias over the study area. Ma et
al. [137] assessed the soil moisture from SMAP, SMOS, AMSR2, and ESA Climate
Change Initiative (CCI) products across the globe through comparison with soil
moisture from several ground-based networks. The results confirmed that SMOS
and SMAP products showed superior statistical performance in most of the regions
with R higher than 0.72, in general. In terms of bias and unbiased RMSE, SMAP
showed better agreement with ground-based observation than SMOS in most re-
gions. However, soil moisture retrieval via L-band radiometer images still contains
uncertainties triggered by various parameters such as surface roughness, soil texture,
and vegetation parameters (e.g., vegetation optical depth) and other environmental
conditions (e.g., precipitation) [31,39]
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1.5.2 Data Assimilation of Soil Moisture

Another method to estimate the soil moisture is to implement the L-band MW
observations into land surface models through a data assimilation (DA) framework.
Typically, a radiative transfer model (RTM) is implemented as the observation op-
erator in DA framework [29,52,53,132]. The RTM is a physically-based model
that accounts for the interactions among land surface, vegetation, and atmosphere
states by prescribing specific process-based equations to the various components in-
cluding dielectric properties of the land surface, surface roughness, and microwave
emission and scattering by vegetation and near-surface soil [153,159]. Examples
of commonly-used RTMs include the L-band Microwave Emission of the Biosphere
(L-MEB; [217]), Land Parameter Retrieval Model (LPRM; [158]), Land Surface Mi-
crowave Emission Model (LSMEM; [64]), and the Community Microwave Modeling
Platform (CMEM,; [55]).

Prior to conducting DA, previous research has evaluated the capability of the
RTM to calculate accurate Tj, so that it can adequately serve as observation operator
in DA. Pellarin et al. [161] used the L-MEB model to generate L-band T}, predictions
by employing land surface estimates from the Interactions between Soil, Biosphere,
and Atmosphere (ISBA) model using atmospheric forcings from the International
Satellite Land Surface Climatology Project Initiative I (ISLSCP I) and soil and veg-
etation characteristics from ECOCLIMAP. Drusch et al. [65] used the CMEM model
to calculate the L-band T}, over the globe with the Furopean Centre for Medium-

Range Weather Forecasts (ECMWF) reanalysis datasets, vegetation information
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from ECOCLIMAP, and soil texture and density from Food and Agricultural Orga-
nization (FAO). CMEM-based T}, was evaluated through the comparison against the
Skylab S-194 T, observations from 1990 to 2000 across North America and South
America. This study employed 10 different calibration schemes for the RTM pa-
rameters such as surface roughness and vegetation-related parameters. The results
confirmed that the overall domain-averaged biases for North America and South
America were revealed as 10.7 K and 9.8 K, respectively. De Lannoy et al. [53] cou-
pled a zero-order tau-omega RTM into the NASA Goddard Earth Observing System
(GEOS) Catchment Land Surface Model (Koster et al. [115]) to compute L-band T,
worldwide. This paper utilized two different schemes in terms of dealing with vari-
ous RTM parameters: 1) look-up table based parameterization and 2) calibration of
parameters with SMOS T} observation from July 2011 to July 2012 using a particle
swarm optimization scheme, a metaheuristic optimization scheme implemented with
swarms of different parameter values to solve complex problem [48]. Evaluation of
RTM-based T}, with SMOS T}, observations that were not used for calibration (e.g.,
July 2010 to July 2011) confirmed that the global mean absolute bias of T}, calcu-
lated without calibration was revealed as 7.1 K. However, RTM-derived T}, with the
SMOS calibration schemes showed significant improvement with a global average of
absolute bias as 2.7 K.

The aforementioned studies showed the capability of using a RTM to produce
accurate Ty estimates. Soil moisture DA was then conducted by employing the RTM
to map the geophyiscal states (e.g., soil temperature, soil moisture, and vegetation
water content) from the LSMs into observation space (i.e., 7). De Lannoy and

12



Reichle [52] assimilated SMOS T}, observations into Catchment Land Surface Model
(herein referred to as Catchment) coupled to a RTM using an ensemble Kalman Fil-
ter (EnKF) to improve soil moisture estimates across the North America. The RTM
uses the land surface estimates computed from Catchment using boundary condi-
tions provided by the Modern-Era Retrospective Analysis for Research and Appli-
cation (MERRA) product [177]. In addition, RTM parameters were calibrated with
SMOS v620 T}, observations using a similar scheme as conducted in De Lannoy et
al. [53]. Soil moisture from the Open Loop (i.e., model-only simulation) and assimi-
lated soil moisture were compared against in-situ measurements from the SCAN and
US Climate Reference Network (USCRN). The results confirmed that approximately
80% and 65% of improvement was observed in the surface soil moisture and root-
zone soil moisture estimates, respectively, with unbiased root mean square difference
ranging from -0.004 m?3/m3 to -0.001 m?®/m3. Hostache et al. [96] assimilated SMOS
T}, observations (from 2010 to 2015) into the SUPERFLEX hydrological model [73]
by implementing the CMEM version 5.1 RTM to improve the overall accuracy of
soil moisture across the Murray-Darling basin in Australia. Hostache et al. [96]
implemented the local ensemble transformation Kalman filter for data assimilation.
For the operation of the SUPERFLEX model, the ERA-Interim reanalysis datasets
were used as boundary conditions and vegetation information from ECOCLIMAP
was employed. Comparison of the Open Loop (OL) and DA-based soil moisture
conducted with ground-based soil moisture observation revealed that updated soil
moisture via DA showed improved statistics (e.g., correlation coefficient, root mean
square deviation [RMSD], and unbiased RMSD) over the OL results. Furthermore,
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the correlation coefficient was improved in both surface soil moisture (from 0.78 to

0.80) and root-zone soil moisture (from 0.70 to 0.73).

1.6 Methodological Review of Snow

1.6.1 Remote Sensing of Snow

Passive microwave observations have also been used to characterize snow mass
using T}, over snow-covered terrain as snow mass is closely related to the behavior
of emitted microwave radiation from the terrestrial surface [104]. Namely, T} over
snow-covered terrain is highly influenced by the physical properties of snowpack
such as snow depth, snow density, snow stratigraphy, snow grain size, snow grain
shape, and liquid water content. Retrieval of snow water equivalent (SWE) and snow
depth from PMW generally relies on the spectral gradient as a difference between
two or more brightness temperatures (7,) at two or more different frequencies. A
relatively low frequency (18-19 GHz) is transparent in the snowpack and emitted
radiation reaches the radiometer while a higher frequency (36-37 GHz) undergoes
more scattering, which reduces the arrival of emitted radiation to radiometer [42].
These aforementioned first-order physics lead to developing the simple quasi-linear
algorithm for SWE retrieval using various PMW imagery such as Scanning Multi-
channel Microwave Radiometer (SMMR) [33], Special Sensor Microwave Imager
(SSM/I) [78], AMSR-E [105].

Given the plethora of PMW-based SWE products, many researchers have eval-

uated the accuracy of these SWE products through a comparison with ground-based
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measurements [40,59,202]. These papers demonstrated that even though PMW im-
agery has a relatively coarser spatial resolution, SWE from PMW retrievals showed
reasonable performance in comparison with ground-based measurements as well as
model-based estimates. At the same time, however, it also showed significant un-
certainties resulting from complex snow stratigraphy (e.g., deep snow, depth hoar,
snow grain size, and internal ice crusts) as well as external conditions (e.g., densely-
vegetated regions or sub-grid scale lakes) [42,59,78,202].

AMW has been regarded as an alternative option to retrieve snowpack infor-
mation (e.g., SWE, snow depth, and snow wetness) through measuring the inten-
sity of the returned signal generated by a radar (a.k.a., backscatter). Spaceborne
synthetic aperture radar (SAR) is one type of AMW remote sensing based on an
imaging radar onboard on the satellite platform with side-looking geometry [147].
SAR measures the backscatter from a land surface; backscatter is dependent on the
dielectric properties of the snow-covered terrain as well as the surface roughness
and the geometry of scattering snow media [141,204,212]. Figure 1.4 illustrates
the typical propagation of microwave photons through a snowpack using an active
microwave sensor.

In general, total backscatter from snow-covered terrain (o, ) can be observed
through the sum of the following three components: 1) backscatter from the air-snow

2) volume scattering within the snowpack, ¢? ., and 3) backscatter

snow?

interface, o

air?

at the underlying snow-land interface, o That is, oyt is computed as:

ground*

0 _ 0 0 0
Ototal = Oair + O snow + Uground (11)
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Figure 1.4: Description of scattering mechanisms over snow-covered terrain (based
on the [204]).

Radar backscatter over a snow-covered surface is linked to several parameters,
including viewing characteristics of the sensor (e.g., frequency, polarization, and
geometry), snow structure (e.g., liquid water content, snow grain size, snow grain
shape, and snow stratification), and underlying soil (e.g., soil dielectric constant
and surface roughness) [14]. For MW frequencies lower than L-band (1.25 GHz),
o0  from within the snowpack is minimal as the snow grain size is much smaller

snow

than the L-band wavelength [188]. In contrast, the magnitude of o as well

as Og.ouna ar€ highly dependent on the dielectric properties of the snowpack at C-
band (5.5 GHz) or higher frequencies [129,188]. The incidence angle, defined as the
angle between the incoming signal that is perpendicular to the surface, is another
important component as it determines the path of the microwave photon inside the

snowpack [14]. According to Snell’s law, specifying the change in incidence angle

depending on a change of medium, a large incidence angle at the snow-air interface
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results in more refraction within the snow layer, which leads to a greater increase
in backscatter as detected at the radar receiver [188].

The polarization, which represents the direction of transmission or reception of
the electromagnetic wave, is also important in terms of characterizing the underlying
snowpack. Polarization can be classified into linear, circular, or elliptical forms based
on the amplitude and phase differences [4]. Each polarization can be classified into
co-polarized (i.e., vertical transmit and vertical receive; o) and cross-polarized
(i.e., vertical transmit and horizontal receive; 0¥ ;) forms depending on the direction
of the transmitted and received signal. When the shape of the snow particle is
spherical, the oV, is preferred for use in a snowpack retrieval due to the negligible
backscatter in cross-polarization [14]. In reality, however, Yueh et al. [228] showed
that ol can also provide useful information when non-spherical snow particles
or densely packed snow layer exists that cause multi-path backscatter. Nager et
al. [150] also demonstrated that 0¥, can help discriminate between wet snow and
snow-free condition with less angular dependence at a low incidence angle. However,
the ol at a high incidence angle contains non-negligible noise. Therefore, Nagler
et al. [150] suggested the utilization of both o, and o, for snow retrievals using
SAR.

Based on the fundamental electromagnetic theory that reflected on the backscat-
ter from snow-covered terrain, a variety of different spaceborne SARs have been
utilized for estimating snow cover extent, snow depth, and SWE. Table 1.1 summa-
rizes the detailed specification of various spaceborne SAR systems widely used for

retrieving snowpack information. SAR imagery has been primarily used to deter-
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Table 1.1: Brief description of spaceborne SAR instruments.

Satellite Frequency [GHz] Polarization Temporal Coverage
ERS-1/2 5.3 single 1991/07 ~ 2011/04
RADARSAT-1 5.3 single 1993/11 ~ 2013/03
RADARSAT-2 5.405 single & dual  2007/12 ~ present
Envisat 5.331 single & dual 2002/08 ~ 2010/10
TerraSAR-X 9.65 single & dual 2017/11 ~ present
Sentinel-1A /B 5.405 single & dual 2014/03 ~ present

mine snow cover area (SCA) based on a threshold detection algorithm. For example,
Rott and Nagler [180] developed a snow mapping algorithm over mountain areas lo-
cated in Austria using ERS-1 SAR data. This study proposed the threshold-based
classification algorithm, which is based on the threshold calculated as the ratio of
backscatter from wet snow cover versus that from snow-free conditions (a.k.a. ref-
erence image). When the ratio is less than the threshold value (defined as -3 dB
via frequency distribution of the ratio at dry and wet snow surface) the specific
area is classified as snow-covered terrain. The application of this algorithm showed
reasonable accuracy at classifying wet snow but showed poorer performance during
dry snow conditions. Similar research was conducted in the Eastern Alps of Austria
using ERS-1/2 and RADARSAT SAR data [148]. They used a similar algorithm
introduced in Rott and Nagler [180] except that dry snow at higher elevations was
excluded by using a digital elevation map. Comparison of SAR-based snow cover
retrieval with Landsat-5 Thematic Mapper showed overall pixel-by-pixel agreement
ranged from 81 to 85% while SAR-based snow cover underestimates coverage at the
edge of the snowpack. Pivot [166] used RADARSAT and ERS-2 datasets to char-

acterize the snow-covered area in the northern Hudson Bay Lowlands in Canada
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during the winter seasons of 1997 and 1998 via comparison with ground-based ob-
servations. Backscatter increased with respect to SWE when frost penetrated the
first 20 cm of the surface soil while backscatter showed no significant change at lo-
cations where backscatter is dominated by scattering at the snow-land interface.
Nagler et al. [150] also used a threshold-based segmentation to build snow cover
maps based on Sentinel-1 observations over Iceland and the European Alps. Their
study used the ratio of snow-covered and snow-free backscatter observation for both
co- and cross-polarization separately that is transformed to the unit of dB. Then,
these two ratios were combined using a weighting factor, which was a function of
the local incidence angle. These calculations lead to the threshold of -2 dB for
classifying snow-free and snow-covered regions. Evaluation of Sentinel-1 snow maps
using Landsat-7 Enhanced Thematic Mapper (ETM) normalized snow difference in-
dex (NDSI) images showed the overall pixel-by-pixel possibility of detection ranged
from 0.95 to 0.97. However, Nagler et al. [150] mentioned the presence of significant
error and uncertainty in Sentinel-1 snow maps in regions of dense forest as scatter-
ing is predominated by the canopy rather than the underlying snow. Hence, rather
than using threshold-based approaches, Singh et al. [191] introduced the utilization
of a polarization factor, which is the ratio of backscatter from the cross-polarized
and co-polarized observations collected by the Advanced Land Observation Satellite
(ALOS)-Phased Array-Type L-Band Synthetic Aperture Radar (PARSAR). Singh
et al. [191] utilized a supervised classification routine to extract the wet snow regions
based on a polarization factor. Results revealed that the newly proposed classifica-

tion scheme showed better accuracy than other wet snow mapping algorithms when
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compared with snow cover maps obtained via optical remote sensing.

There are relatively few studies focused on the estimation of SWE or snow
depth using SAR due to the difficulty in capturing the complex scattering mech-
anisms over snow-covered terrain [126]. Bernier et al. [15] estimated SWE using
RADARSAT images during the winter of 1998 and 1999 at La Grande River water-
shed in eastern Canada. The SWE retrieval algorithm can be divided into two steps:
1) estimate the thermal resistance of the snowpack layer via linear regression with
the backscatter ratio of winter (snow-covered) versus fall (snow-free) observations
and 2) estimate SWE by multiplying the thermal resistance with a parameter that
is a function of mean snow density. Mean SWE from RADARSAT at the watershed
scale was similar to that from interpolated SWE maps determined using ground-
based measurements. However, point-scale comparisons of RADARSAT-based SWE
with ground-based measurements showed a clear overestimation at the lowest and
highest incidence angles. Instead of using a linear relationship to obtain SWE, Li
et al. [126] estimated snow depth and SWE for dry snow based on SAR interfer-
ometry (i.e., synthetic aperture radar interferometry (InSAR) and differential SAR
interferometry (DInSAR)) that are based on the phase difference at the air-snow
interface, which is influenced by the refraction of the MW radiation penetrating
the snowpack layer. This algorithm was applied using Envisat C-band Advanced
Synthetic Aperture Radar (ASAR) over the Manas River Basin in China. Evalua-
tion of SWE estimates using Envisat suggests the potential to estimate snow depth
and SWE even though uncertainties related to terrain characteristics as well as in-

cidence angle effect still need to be addressed. Conde et al. [44] utilized a similar
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approach as Li et al. [126] to obtain the temporal variation of SWE using Sentinel-1
datasets over northeastern Finland from December 29, 2015 to January 22, 2016.
Comparison with ground-based SWE measurements showed good accuracy in terms
of root mean square error (~6 mm) but contained uncertainties associated with the

presence of wet snow as well as the overlying forest cover.

1.6.2 Snow Estimation using Machine Learning

Machine learning (ML) is defined as an algorithm that can learn a highly-
sophisticated relationship between inputs and outputs for a given physical system
based on statistical inference [127]. The term learning (a.k.a., training) suggests
an optimization procedure that reduces the differences between the observations
and the model estimates [195]. ML has advantages in improving computational
efficiency by replacing the time-consuming human activity of discovering regularities
in the training data by using automated techniques [123]. In this regard, it has
been widely applied across a wide range of scientific and engineering fields in the
forms of prediction, classification, and pattern recognition [77]. Examples of ML
techniques include decision trees, random forests, artificial neural networks (ANNs),

and support vector machines (SVMs).

1.6.2.1 ML and Snow Cover Extent

ML techniques have also been applied to snow-related studies. In the context

of snow cover mapping, optical remote sensing has been widely used with ML tech-
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niques to improve the accuracy of snow-covered area mapping. Simpson and Mcln-
tire [190] used a feed-forward recurrent ANN to discriminate snow-covered land
from clouds and snow-free land pixels using Advanced Very High Resolution Ra-
diometer (AVHRR) and Geostationary Observing Environmental Satellite (GOES)
system. Validation of the snow cover retrieval using SNOTEL measurements showed
the high classification accuracy (ranged from 94% to 97%) while it showed signifi-
cant uncertainty in forest-covered regions with complex terrain. Similarly, Dobreva
and Klein [61] applied a multi-layer, feed-forward ANN to estimate the snow cover
fraction (SCF) using Moderate Resolution Imaging Spectroradiometer (MODIS)
surface reflectances, NDSI, Normalized Difference Vegetation Index (NDVI), and
IGBP land cover over North America for the years 2000 to 2003. The comparison of
ANN-based and original MOD10 SCF maps with Landsat ETM+ binary snow cover
map revealed that both products showed reasonable accuracy with a coefficient of
determination ranging from 0.79 to 0.97 and RMSE between 0.12% to 0.23% across
the different land cover types. Most notably, the ANN-based SCF map showed rela-
tively higher accuracy than the MOD10 product in deciduous and mixed agriculture

and forest land cover types.

1.6.2.2 ML and Snow Mass Estimation

In the case of retrieving SWE and snow depth, PMW datasets have also been
used as inputs to ML techniques [34,47,208]. Cao et al. [27] utilized an ANN with

Bayesian regularization to estimate the snow depth using AMSR-E T, from 2002 to
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2003 over the Qinghai-Tibet Plateau, Tibet. Inputs to the ANN include four Tys
at both vertical and horizontal polarization at either 18.7 GHz or 36.5 GHz. Split
samples of the ground-based snow depth measurements were used as training targets
and the other subset used for validation. Evaluation of the ANN-based snow depth
retrieval was performed with the comparison of snow depth estimated from the [33]
algorithm known as the Spectral Polarization Difference algorithm (SPD; [7]) along
with a temperature gradient algorithm (i.e., TGI; [120]). The results showed that
ANN-based snow depth retrievals yielded reasonable statistics with the highest cor-
relation coefficient and lowest mean square error when compared to ground-based
measurements. Tedesco et al. [203] also utilized an ANN to invert SSM/I T} into
SWE and snow depth estimates during the years 1996 to 1999 at 12 different test
sites across Finland. Tys observed at 19 GHz and 37 GHz at both polarizations
were selected as inputs, and then ground-based SWE and snow depth measure-
ments were selected as training targets. ANN-based SWE and snow depth were
compared among three existing retrieval algorithms (e.g., SPD, Helsinki University
of Technology (HUT), and Chang et al. [33] model) against ground-based measure-
ments. The results revealed that ANN-based SWE and snow depth estimates yielded
the best statistical results with the lowest root mean square error and the highest
coefficient of determination. However, Tedesco et al. [203] highlighted limitations
regarding the low applicability to regions without ground-based measurements be-
cause successful training of ML techniques is severely limited in data-sparse regions.
Xiao et al. [223] introduced support vector machine regression to develop the snow

depth retrieval algorithm using T}, from SSM/I and Special Sensor Microwave Im-
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ager/Sounder (SSMIS) for a 25 year period (1992-2016) across Eurasia. Utilizing
Tys at different frequencies, other parameters such as latitude, longitude, land cover
type, elevation, and day of the year were also selected as input datasets for SVM.
The SVM-based snow depth estimates were compared with algorithms introduced
in Chang et al. [33], the SPD algorithm, and ANN-based snow depth [203]. Results
revealed that SVM-based snow depth yielded the highest correlation coefficient with
the lowest root mean square error when compared to ground-based measurements.
Overall, the SVM snow depth retrieval showed advantages in improving the accu-
racy of estimated snow depth, but deficiencies including the influence of terrain and
vegetation still need to be addressed.

Rather than estimating SWE or snow depth dependent on point-based mea-
surements as the training dataset, T}, over the snow-covered terrain can be used
in conjunction with ML techniques without the need for ground-based information.
Forman et al. [75] predicted PMW Tjs with an ANN over snow-covered terrain across
North America during the period 2002 to 2011. Inputs to the ANN included land
surface geophysical variables relevant to define snowpack conditions using the NASA
Catchment land surface model. The ANN was trained using the T,s observed by
AMSR-E at three different frequencies (10.65, 18.7, and 36.5 GHz) and two different
polarization (horizontal and vertical). Validation of ANN-based Tjs was conducted
by split-sample validation with AMSR-E Tys that were not used for training as well
as airborne-derived T}, suggested that ANN could reasonably estimate Tj, during both
snow accumulation and ablation phases. However, Forman et al. [75] highlighted
ML limitations with respect to the condition of input and training datasets. For
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example, the modeling of internal ice layers, snow grain shape, or snow grain size is
not considered in Catchment while PMW T, is modulated by such influences. Anal-
ogously, Forman and Reichle [74] utilized SVM regression to estimate the T}, over
North America using the same inputs and training datasets as Forman et al. [75] and
compared the feasibility of SVM and ANN in terms of T} prediction. The results
confirmed that T} estimated from the SVM was unbiased with an anomaly R of 0.7
across the study area. The main reason for this phenomenon is that SVM is trained
for each frequency and polarization with multiple tuning parameters while the ANN
was trained with all frequency and polarization combinations simultaneously. Sim-
ilar results could be found in Forman and Xue [77] that also used both ANN and
SVM to predict the PMW T}, observed from SSM/I.

In the case of space-borne SAR, it has rarely been used in ML to estimate the
snowpack conditions or snow mass even though AMW imagery provides relatively
finer spatial resolution than PMW imagery. He et al. [92] examined the application
of an SVM classifier to map snow cover information from the Radarsat-2 Polarimetric
SAR datasets over the Tianshan mountains in China during snow accumulation and
ablation period in 2013. Validation of the snow cover map with Gaofen-1 wide-field
viewer data showed a mean pixel-by-pixel accuracy of 73.6% and 82.7% for snow
accumulation and ablation period, respectively. Tsai et al. [207] used Sentinel-
1 backscatter and ancillary datasets (e.g., topographic elevation information from
Shuttle Radar Topography Mission [SRTM]| and land cover information from the
European Space Agency Climate Change Initiative) using a random forest (a.k.a.,
one type of an unsupervised machine learning algorithm) to classify the wet and dry
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snow more efficiently. The training period was selected within the first hydrological
year (August 2016 to July 2017) and predicted snow classification was validated
during the second hydrological year (August 2017 to July 2018). Validation of
ML-based snow classification with snow cover information retrieved from Landsat
8 (suggested in Nagler et al. [150]) showed overall pixel-by-pixel comparison ranged

from 75% to 90% over the majority of land cover types except for grasslands.

1.6.3 Snow Mass Estimation using Data Assimilation

1.6.3.1 Snow Covered Area Assimilation to Update Snow Mass

Retrieved snow cover information from satellite imagery has been utilized to
update the state variables estimated from hydrological models through various DA
frameworks, including simple direct insertion, variational approaches, and Kalman-
filter based approaches [49]. A number of snowpack-related variables such as SCA,
SCF, SWE, and snow depth from in-situ measurements or satellite retrievals have
been applied in a DA framework in different forms. Rodell and Houser [178] used di-
rect insertion to assimilate MODIS snow cover retrievals into the Mosaic LSM [114]
in order to improve the accuracy of snow-water storage. Roy et al. [181] also inte-
grated snow cover information from MODIS and the NOAA Interactive Multisen-
sor Snow and Ice Mapping System (IMS) into the Modéle Hydrologique Simplifié
a I'Extéme (MOHYSE) hydrological model using the direct-insertion method in
order to improve simulated springtime streamflow in Quebec, Canada. They ap-

plied a simple SWE threshold rule: when the model (observation) has more snow
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than the observation (model), the former was fixed to the threshold. Evaluation
of simulated discharge with ground- and model-based discharge revealed a slight
improvement in root mean square error while it did not show improvement in the
Nash-Sutcliffe coefficient. Direct insertion has the advantage of simplicity but has
significant limitations in the consideration of uncertainties in the observations or
geophysical model [206].

As an alternative to direct insertion, Kalman-type filters, including the ex-
tended Kalman filter (EKF) and Ensemble Kalman filter (EnKF), have been em-
ployed. Andredis and Lettenmaier [3] used an EnKF with a snow depletion curve
(serving as the observation operator by converting snow cover fraction into snow
water equivalent) to assimilate MODIS snow cover information into the Variable
Infiltration Capacity (VIC) model to improve the SWE from 1999 to 2003 across
the Snake River basin in the United States. Evaluation of assimilated SWE against
ground-based measurements revealed a slight improvement in correlation coefficient
and root mean square error with the greatest level of improvement during the snow
ablation season. Arsenault et al. [5] compared the ability of direct insertion versus an
EnKF to assimilate MODIS SCF retrievals into the Community land surface model
(CLM) to improve SWE estimates in Washington state and Colorado. Validation
of assimilated SWE against the SNOTEL and National Weather Service Coopera-
tive Observer Program (Co-op) network showed that direct insertion showed slight
improvement at lower elevations while it disrupted the regional water mass balance.
Alternatively, the EnKF showed good performance over high elevation areas with

little violation in water mass balance. De Lannoy et al. [49] also used the EnKF
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to assimilate AMSR-E SWE and MODIS snow cover retrievals into the Noah LSM
over Northern Colorado from 2002 to 2010. The authors conducted several different
experiments, including single sensor assimilation (e.g., AMSR-E SWE or MODIS
snow cover only) and multi-sensor assimilation (e.g., with or without downscaling)
using the AMSR-E SWE product. Validation of updated (posterior) product SWE
and snow cover with ground-based measurements (i.e., SNOTEL and Co-op) re-
vealed marginal improvements in terms of root mean square error and correlation
coefficient when the snow was deep or the region was completely snow-covered. SCF
assimilation improved the onset timing of snow season, but it did not significantly

improve posterior SWE estimates.

1.6.3.2 SWE Assimilation to Update Snow Mass

As assimilation of snow cover information does not significantly improve the
quality of SWE estimates, researchers have tried to directly use the SWE retrieved
from PMW observations. Dong et al. [62] assimilated SWE retrievals from AMSR-~
E into a three-layer snow hydrology model using an extended Kalman filter and
compared it with Open Loop (i.e., without assimilation) and in-situ measurements.
Results showed that assimilated snow depth was superior in accuracy to model-only
and satellite-based SWE. However, when the model-based SWE exhibited more than
100mm at the beginning of the snow season, assimilated SWE did not show any
improvement. Montero et al. [146] also assimilated the Satellite Application Facil-

ity on Support to Operational Hydrology and Water Management (H-SAF) SWE
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retrievals into the Hydrologiska Byrans Vattenbalansavdelning (HBV) conceptual
hydrological model [133] in order to improve model accuracy of streamflow. As-
similation was conducted using the Moving Horizon Estimation (MHE) technique,
which is classified as a variational assimilation method, over Germany and Turkey
during the period of 2010 to 2013. Assimilated SWE showed some improvement
in terms of streamflow estimation while it also showed uncertainties related to wet
snow conditions as well as to an accurate snow accumulation and ablation period
as inferred from the satellite-based product.

After attempting to assimilate SWE retrievals derived from AT, observations,
researchers started to directly implement AT, for assimilation as it is revealed as
more efficient than utilizing PMW-based SWE retrievals [93]. Graf et al. [86] as-
similated AT}, retrieved from AMSR-E T} at 18.7 and 36.5 GHz with horizontal po-
larization into the Japanese Meteorological Agency (JMA) Simple Biosphere Model
(SiB) model to improve the snow depth for the period of November 2002 to March
2003 over Eastern Siberia. Graf et al. [86] used the Microwave Emission Model
Layered Snowpack (MEMLS) RTM as the observation operator to convert model
states (i.e., snow depth) into observation space (i.e., Tp,). The results confirmed that
assimilated snow depth showed better performance than the Open Loop (OL) as
well as the AMSR-E SWE retrievals. However, several sources of errors such as
the lack of known snow grain size as well as model structure error in MEMLS still
need to be addressed. Che et al. [36] assimilated AT, between 18.7 and 36.5 GHz
from AMSR-E into CLM using an EnKF to improve the accuracy of estimated snow

depth over Eastern Siberia from October 2003 to April 2004. The DA framework
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showed improvement in snow depth during the snow accumulation period. How-
ever, it contained significant uncertainties during the snow ablation period due to
the presence of wet snow. Xue et al. [225] also conducted an assimilation exper-
iment using AMSR-E T} into the NASA Catchment model using an EnKF from
2002 to 2011 across North America. Even though the overall DA framework was
similar to research discussed directly above, Xue et al. [225] used a SVM as the
observation operator when mapping the model states into 7} space rather than a
RTM as done in previous studies. Assimilated SWE and snow depth were compared
with in-situ measurements as well as against reference datasets (e.g., Global Snow
Monitoring for Climate Research [GlobSnow and Canadian Meteorological Centre
[CMC] daily snow depth product). The assessment of assimilated SWE and snow
depth showed slightly better statistical performance than the OL which resulted in

the improvement of cumulative runoff.

1.6.3.3 SAR Assimilation to Update Snow Mass

Besides snow data assimilation using PMW imagery, SAR observations also
have several advantages in terms of improving snowpack estimates given the quasi-
independence with atmospheric conditions, high-spatial resolution, and sensitivity
toward the presence of volumetric mediums on the land surface [164]. Despite these
advantages, there are relatively few studies employing SAR observations into a DA
framework to improve snowpack estimates. Nagler et al. [149] assimilated MODIS

snow cover information and Envisat ASAR data into a snowmelt-runoff model in
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Austrian Alps from 2005 to 2006. Assimilated runoff showed good agreement with
ground-based measurements. This assimilation procedure updates the nominal SCA
estimates by employing the interpolated weather station datasets at northern Fin-
land from 2004 to 2006. Analysis of assimilated SCA through comparison with
MODIS snow cover retrievals showed improvement in RMSE and R. When the for-
est cover is accounted for prior to assimilation, statistics of assimilated SCA showed
more statistical improvement. Laojus et al. [136] improved the snow cover area map-
ping from RADARSAT through the weather station assimilation method, which is
a simple method to update the snow cover area information using satellite-based

and ground-based interpolated snow information.

1.7 Research Objectives and Science Questions

Throughout the vein of research introduced above, the potential of microwave
observations to explore the soil moisture and snow mass information is demon-
strated. At the same time, however, retrieval of soil moisture and snow mass
information using microwave observations exhibited uncertainties with regards to
vegetation, soil characteristics, and complicated snow stratification. This motivates
the application of data assimilation to improve the accuracy of soil moisture and
snow mass information. As a part of the data assimilation framework, radiative
transfer models and machine learning techniques have been used as the observation
operators in data assimilation frameworks with the benefit of providing reasonable

estimates of microwave observations.
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In response to the potential use of microwave observation to better inform soil
moisture and snow mass estimates, the research presented below is intended to help
address the overarching scientific question: “Can radiative transfer model and
machine learning techniques serve as effective observation operators in
the assimilation of microwave observations into a land surface model to
better characterize soil moisture and terrestrial snow mass?” In order to
address the scientific question, the following three specific scientific hypothesis will
be addressed:

Scientific Hypothesis 1: A radiative transfer model can serve as an effec-

tive observation operator to improve soil moisture by reproducing accurate L-band
T, estimates.

Scientific Hypothesis 2: The accuracy of predicted C-band backscatter

using a machine learning algorithm will be influenced by the consideration of first-
order physics scattering mechanisms depending on snow conditions as well as the
number of available datasets for both training targets and inputs.

Scientific Hypothesis 3: Inclusion of a machine learning algorithm as the

observation operator into an advanced land surface model using an ensemble-based
DA framework will improve the accuracy (and reduce the uncertainty) of modeled

snow mass estimates.
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1.8 Structure of Thesis

The overall dissertation is composed of five chapters. In Chapter 1, the im-
portance of acquiring of soil moisture and snow mass information using different
techniques (e.g., ground-based measurement, remote sensing, machine learning, and
data assimilation) as well as a review of the current literature are discussed. It also
outlines the overall objective and detailed scientific hypothesis of this research.

In Chapter 2, the capability of support vector regression is introduced, which is
used as an observation operator in the snow DA framework as presented in Chapter
4. More specifically, SVMs were generated with additional physical constraints ad-
dressing first-order physics of electromagnetic responses for different snow conditions
through considering the influence of training target sets, training window length,
and snow wetness conditions. Chapter 2 outlines the integration of the fundamen-
tal concepts of scattering mechanisms within the snowpack into the SVM training
and prediction procedure, which enhances the accuracy of predicted backscatter.
Furthermore, it motivates the application of well-trained support vector regression
into a snow DA framework. This chapter has been submitted to the IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing entitled as
“Prediction of active microwave backscatter over snow-covered terrain across West-
ern Colorado using a land surface model and support vector machine regression”.

In Chapter 3, a zero-order radiative transfer model (RTM) implemented into
the NASA Goddard Earth Observing System (GEOS) was used to estimate L-band

Ty, across North America. For the operation of RTM, various RTM parameters (e.g.,
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vegetation and surface roughness parameters) were calibrated based on multi-year
SMOS observations. RT'M-derived Tjs were then assessed through comparison with
the daily T}, observations collected by the L-band radiometer onboard the Aquarius
satellite. More specifically, RTM-derived Tys were evaluated as a function of soil hy-
draulic parameters and vegetation types. The goal of this work was to verify the use
of the RTM to estimate L-band 7Tps in the context of soil moisture estimation so that
Aquarius T}, observations could eventually be included in NASA’s data stream to
improve modeled surface soil and root zone soil moisture in GEOS-5. This chapter
formed a manuscript entitled “Evaluation of GEOS-5 L-Band Microwave Bright-
ness Temperature using Aquarius Observations over Non-Frozen Land across North
America” which is in review with the Remote Sensing.

In Chapter 4, C-band backscatter observations from Sentinel-1 were integrated
into the Noah-Multiparameterization (Noah-MP) land surface model using well-
trained SVMs developed in Chapter 2 in conjunction with a one-dimensional en-
semble Kalman filter (EnKF) in order to improve the accuracy of terrestrial snow
mass estimates. Evaluation of the assimilation framework is conducted by comparing
results from both the Open Loop (OL; model-only run without the benefit of C-
band backscatter observations) and data assimilation (DA; model run after merging
with C-band backscatter observations) results using in-situ measurements of snow
water equivalent and snow depth collected across Western Colorado. The research
presented in Chapter 4 is the first known attempt to merge C-band backscatter
observations with a land surface model using a SVM as the observation operator

for the purpose of improving the accuracy of modeled snow mass estimates. Part of
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this chapter is under preparation for submission to a peer-reviewed journal.
Chapter 5 provides the overall conclusions and summary of key findings from
the different experiments regarding improvements in soil moisture as well as snow
mass information. Moreover, the implications and future directions of research based
on these results is discussed, and the new and novel components of this research

contributed to the hydrologic science community are also compiled and summarized.
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Chapter 2: Prediction of Active Microwave Backscatter over Snow-
covered Terrain across Western Colorado using a Land

Surface Model and Support Vector Machine Regression

2.1 Overview

Previous research addressed the capability of machine learning (ML) algo-
rithms (e.g., artificial neural network [ANN] and support vector machine regression
[SVM]) to reproduce plausible space-borne passive microwave (PMW) T}, observa-
tions over snow-covered terrain [2,74,77]. In addition, follow-on studies [121, 224]
revealed that a SVM can serve as an efficient observation operator to produce pre-
dicted PMW T, as part of a data assimilation framework aimed to improve the snow
mass estimates within a land surface model. For backscatter observations, however,
ML has been widely utilized as a classifier (e.g., snow free versus snow-covered terrain
and dry snow versus wet snow) rather than for backscatter prediction. Therefore,
the primary objective of this chapter is to investigate the robustness of a SVM gen-
erated with the additional physical constraints addressing the first-order scattering
mechanisms over snow-covered terrain in order to predict C-band backscatter as a

function of geophysical inputs that reasonably represent the relevant characteristics
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of the snowpack. More specifically, SVM prediction will be evaluated as a function of
different training targets, training windows, and physical constraints regarding snow
wetness. Section 2.2 provides the description of study area, data, and model while
Section 2.3 describes the detailed methodological review of developing a physically-
constrained SVM over snow-covered terrain. In Section 2.4, the evaluation of SVM
prediction is performed based on different criteria (e.g., training targets, training
windows, and snow wetness delineation) is described. Lastly, conclusions and a final

discussion is presented in Section 2.5.

2.2 Study Area, Data, and Land Surface Model

2.2.1 Study Area

The study domain selected here is Western Colorado within the latitude of
36.875°N and 41.125°N and longitude of 104.375°W and 109.125°W (Fig. 2.1).
The study area includes three national forests in the southern Rocky Mountains
(i.e., San Juan [7.603 km?], Rio Grande [7.527 km?], and Grand Mesa [1.400 km?]).
The range of elevation for the selected study domain lies between 1314 m and
4125 m with over 60% of the total study area at elevations higher than 2250
m. The dominant forest cover in the study domain is lodgepole pine, classified
as an evergreen conifer, according to the United States Forest Service forest type
map (https://data.fs.usda.gov/geodata/rastergateway/forest_type). An-
nual meteorological characteristics of these regions suggest a wet, rainy season dur-

ing the summer along with winter storms in high elevations starting from November
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Figure 2.1: Maps of the study domain showing (a) elevation obtained from SRTM
30m datasets and (b) forest cover fraction obtained from the global forest cover
datasets from Hansen et al. [91].

to early May [30]. The primary reason for selecting Western Colorado as study
domain is that it contains a variety of snow conditions across a range of topographic
and land cover types. Furthermore, the selection of this domain helps leverage the
NASA SnowEx campaign, which is a multi-year airborne and ground-based snow
campaign with the primary objective to assess the characteristics of snow using in-
situ and remotely-sensed observations [111]. Two primary evaluation sites — Grand
Mesa and Senator Beck — are located within the study area. Grand Mesa, in par-
ticular, is known as one of the largest flat-topped mountains in the world. Since
SAR observations generally contain geometric distortions over complex terrain, the
investigation of SAR over flat terrain can help minimize the geometric distortion,
which is regarded as one of the largest source of uncertainties for the backscatter

observations.

38



2.2.2 Sentinel-1 Observations

Sentinel-1 is a constellation of two satellites (Sentinel-1A and -1B launched in
April 2014 and April 2016, respectively) developed by the European Space Agency
as a component of the European Copernicus Program [8]. Sentinel-1 ensures the
data continuity of previous SAR systems, including ERS-2 and ENVISAT, with the
main objective of continuously monitoring the land surface, ocean, and ice during
all-weather, day-and-night conditions [170]. Both Sentinel-1A and Sentinel-1B carry
C-band SAR sensors with a 180° difference in orbital phase [205]. Sentinel-1 has
a revisit frequency of 12 days for each satellite, which results in achieving a 6-
day global revisit frequency between the two different satellites. However, it has
an irregular data acquisition scenario over North America until 2017 due to the
evolving observation (operational) scenarios, and as a result, impacts the availability

of Sentinel-1A and -1B products in these regions [131].

Table 2.1: Main characteristics of Sentinel-1 data acquisition mode.

Parameters Stripmap In:fcflir(()?\l]\eft)mc Wiingbw Wave (WV)
Polarization Single Dual Dual Dual
Swath Width 80 km 250 km 400 km 20km x 20 km
Spatial resolution  5m X 5m 5m x 20m 20m x 40m 5m X bm
Sea ice
Application Small island Land Polar zone Ocean
Maritime

Sentinel-1 provides four exclusive image acquisition modes (e.g., Strip-map,
Interferometric Wide swath [IW], Extra Wide swath, and Wave [WV] mode). Table

2.1 describes the main differences and characteristics of each mode. In the case of
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Table 2.2: Main characteristics of Sentinel-1 TW ground range detected (GRD)
products.

Product Type GRD-High
Center Frequency 5.407 GHz
Swath Width 250 km

Incidence Angle 18.3° — 46.8°

Resolution 20m X 22m

Pixel Spacing 10m x 10m

IW and EW modes, a relatively large swath can be obtained by virtue of terrain
observation with a progressive scan SAR (TOPSAR) technique. TOPSAR allows the
antenna steering in both azimuth and range directions, which enables the acquisition
of more information from the target with different sub-swaths [56].

Along with the data acquisition modes, Sentinel-1 has three different process-
ing levels: 1) Level-0 product providing the unfocused and compressed backscat-
ter observations, 2) Level-1 data (Single Look Complex; SLC and Ground Range
Detected; GRD) that utilizes baseline processing algorithms, and 3) Level-2 data
(Ocean; OCN) products that apply advanced processing algorithms to the Level-
1 products for wind, wave, and other applications. As the primary focus of this
research is to apply C-band backscatter in analyzing terrestrial snowpack character-
istics, the Sentinel-1 IW GRD datasets are used here. Table 2.2 describes the main
characteristics of the Sentinel-1 IW GRD datasets.

Before applying the Sentinel-1 imagery to this analysis, it is essential to first
preprocess the datasets in order to remove several sources of noise such as geometric

distortion, speckle, and thermal noise [80,160]. Accordingly, standard pre-processing
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Figure 2.2: Description of Sentinel-1 preprocessing steps conducted through the
google earth engine.

steps (Figure 2.2) were employed using Google Earth Engine with an additional in-
cidence angle normalization step following the procedures as outlined in Lievens et
al. [131]. The pre-processed Sentinel-1 imagery was then regridded (as an arith-
metic average) onto a 0.01-degree equidistant cylindrical grid in order to match the
resolution of the land surface model used in this analysis (see Section 2.2.3 for more

details).

2.2.3 Land Information System

The NASA Land Information System (LIS) is a software framework devel-
oped at the NASA Goddard Space Flight Center to integrate a suite of land surface
models (LSMs), satellite observations, ground-based measurements, and data as-
similation in order to obtain improved posterior estimates of land surface states
and fluxes [118]. The main advantage of the LIS framework is the flexibility and
high-performance computing capabilities, including advanced software techniques,
that enables computational tractability in integrating and assimilating observations

across regional and global scales. LIS is comprised of three main components: 1)
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the Land surface Data Toolkit (LDT), 2) LIS core, and 3) Land Validation Toolkit
(LVT). LDT is the prepocessor for LIS, which processes the input datasets to use
in the LSMs [6]. It also allows the processing of model parameters, meteorological
forcing datasets, and initial conditions to meet the needs of DA-related data pro-
cessing requirements. LIS core is the main infrastructure that enables the various
LSMs including Noah-MP; CLM, VIC, and Community Atmosphere Biosphere Land
Exchange (CABLE) with high performance computation using input datasets gener-
ated via LDT [118]. The last component in LIS system is LVT, which is designed to
conduct evaluation and intercomparison of the simulated geophysical variables from
LIS with large validation datasets including ground-based measurements, remotely-
sensed datasets, and reanalyses [119]. It also enables the analysis of estimates from
LIS subsystems including DA, optimization, and radiative transfer models.

Among the various suite of LSMs included in LIS, Noah-MP was selected for
use in this study. Noah-MP is based on the Noah LSM and allows for multiple pa-
rameterizations of the different processes (e.g., energy balance within the vegetation
canopy, snowpack metamorphosis, frozen soil and infiltration, and interaction be-
tween soil moisture and ground water) of land-atmospheric interactions [154]. Niu
et al. [154] discussed how Noah-MP employs a three-layer, physically-based snow
model that considers melting and refreezing of snow, which results in a more accurate
quantification of snow mass than those from different land surface models [199,226].
The NASA Modern-Era Retrospective analysis for Research and Application, ver-
sion 2 (MERRA-2) [82] product was selected for use as the meteorological boundary
conditions. The input datasets (e.g., land cover type, soil texture, and topography)
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were processed using the Land Data Toolkit [6] and initial conditions were adjusted
during the spin-up period, starting from January 1980 to March 2015. After the
spin-up period, all subsequent experiments utilize the same initial conditions in an
effort to minimize initial condition errors and uncertainty. Geophysical variables
derived from LIS have a spatial and temporal resolution of 0.01° (equidistant cylin-

drical projection) and daily (averaged 15-minute model estimates), respectively.

2.3 Experimental Setup

2.3.1 Support Vector Machine

Machine learning (ML) is rapidly becoming an essential research tool to im-
prove the knowledge of complex hydrologic processes [28]. ML is an algorithm that
can learn a highly sophisticated, non-linear relationship between inputs and outputs
for a given physical system based on statistical inference [127]. The term learning
(a.k.a., training) suggests an optimization procedure that reduces the differences
between the observations and the model estimates [195]. ML has advantages in im-
proving computational efficiency by replacing the time-consuming human activity
of discovering regularities in the training data by using automated techniques [123].
Examples of ML techniques include decision trees, random forests, artificial neural
networks, and support vector machines.

Support vector machine (SVM) regression is one of the supervised machine
learning algorithms that maps the input space into higher dimensional feature space

using a kernel function [213]. SVMs have been widely utilized in hydrologic fields
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with a variety of purposes such as spatial pattern recognition [128,179], classification
[92,168], and temporal prediction [2,74,77,87,121,227].

He et al. [92] examined the application of a SVM classifier to map snow cover
using Radarsat-2 Polarimetric SAR over the Tianshan mountains in China. Xiao
et al. [223] explored snow depth retrieval with support vector machine regression
using brightness temperatures (7,) from the SSM/I and Special Sensor Microwave
Imager/Sounder across Eurasia. Ahmad et al. [2], Forman and Reichle [74], and
Forman and Xue [77] utilized SVMs to predict T}, over snow-covered terrain using
observed Tj from different passive microwave radiometers. This study here focuses
on predicting C-band backscatter over snow-covered terrain using SVM regression.
The overall framework, in general, follows that of Forman and Reichle [74], although
it uses different training targets and LSMs along with different physical consider-
ations in the context of active versus passive remote sensing of snow. A detailed

description of the SVM training and prediction procedure is introduced below.

2.3.2 SVM Regression

Figure 2.3 shows the general schematic of support vector machine regression
used in this study. Assume a [M x N] training matrix, x, such that it contains
N = 4 different geophysical variables simulated from Noah-MP for characterizing
the physical conditions of snow at M different times for a given location in space.
The training target (z; Sentinel-1 backscatter observations in this paper) has a

size of [M x 1]. Suppose the [1 x N] input vector (y) is comprised of geophysical
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Figure 2.3: General schematic of support vector machine regression.

variables estimated from the LSM to characterize the physical properties of snow
at a given time and location. When the input datasets are trained based on the
co-polarized (i.e., vertical transmit and vertical receive; ;) and cross-polarized
(i.e., vertical transmit and horizontal receive; a{,;) backscatter observations from
Sentinel-1, predicted backscatter at co- (6%,) and cross-polarization (6%,;) can be

computed through the nonlinear SVM expressed as follows:

~0 M
Oyy

= fx) = (a; — of)k(zi,y) +0 (2.1)
P

where M indicates the number of available training target sets in time at a given lo-
cation in space; a; and o] represents the dual Lagrangian multipliers at time 7; and 0
represents the bias (a.k.a., offset) coefficients that are all defined during the training

procedure. x is the training matrix with a size of [M x N| comprising model input
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vectors  at the times of the M training targets [74]. k(x;,y) = exp{—7||z; — y||*}
is a scalar radial basis kernel function (RBF) that helps map the geophysical inputs
into the observation space. The rationale for choosing a RBF for the kernel in this
study is based on previous research proved that showed a RBF yielded satisfactory
performance in solving complicated, nonlinear hydrologic problems [9,60]. The solu-
tion to equation (2.1) is calculated by employing the LIBSVM library [35], which is
an open source machine learning library developed by National Taiwan University.

Please see Appendix B for more details on the SVM regression procedure

2.3.3 SVM Inputs, Training Targets, and Outputs

One of the most important steps to develop a well-designed ML algorithm is
the selection of relevant input variables [22]. Thus, an exhaustive sensitivity analysis
was first conducted with nine geophysical variables from Noah-MP (Figure 2.4) to
select the most appropriate combination of input datasets for SVM regression. Here,
the normalized sensitivity coefficient (NSC; Willis and Yeh [219]) was utilized to
assess the sensitivity of predicted backscatter from the SVM to each state variable

used from Noah-MP. NSC can be calculated as follows:

7

op, “Me T AR M?

J

: o M — M? 0
NSCl’]: an P ~ J J P_'L

(2.2)

where M7 and P} is the initial metric and state value, respectively. M j’ indicate the
perturbed metric value and dF; is the amount of perturbation. Note that i and j
indicate the index for state and output metric, respectively. In this study, each LIS

input state was perturbed +2.5 % one at a time. Here, we assume the independence
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Figure 2.4: List of input datasets for SVM regression with corresponding scattering
algorithm.
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between any two states even if the NSC is still dependent throughout all states.
Comparison of NSCs from different states can provide valuable information as to
verify the theoretical scattering mechanisms in the snow-covered terrain as well as

choose reasonable input datasets for predicting backscatter with SVM.

Table 2.3: Geophysical states used as input for SVM training and prediction.

Model State Unit Unit conversion factor
Snow Water Equivalent m 10
Snow Density kg/m? 0.01
Snow Liquid Water Content mm 1
Top-layer snow temperature K 0.01
Near surface temperature K 0.01
Leaf Area Index ] 1
Bottom-layer snow temperature K 0.01
Top-layer soil temperature K 0.01
Top-layer soil moisture m?3/m? 10

Figure 2.5 exhibits the NSCs of each state vector for dry snow (e.g., December,
January, and February) and wet snow (e.g., March, April, and May) period. The
results revealed that both snow density and SWE showed the highest NSCs during

both seasons. In the case of SLWC, it showed the third highest sensitivity (co-pol:
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Figure 2.5: Summary of domain-averaged Normalized Sensitivity Coefficients of
predicted backscatter during (a) dry and (b) wet snow seasons for both co- and
cross-polarized observations.
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0.02 and cross-pol: 0.004) during the spring season (Figure 2.5(b)) while the dry
snow season showed sensitivity near zero at both polarizations (Figure 2.5(a)). This
result is reasonable given wet snow has more liquid water inside the snowpack than
dry snow due to the snow melting. In addition to NSCs, statistical metrics (e.g.,
bias, relative bias, RMSE, unbiased RMSE, and standard error ratio) were computed
with respect to different input states from Noah-MP. The selection of input states
followed the order represented in Table 2.3. For example, the number of datasets as
five represents that it used 1) SWE, 2) snow density, 3) SLWC, 4) top layer snow
temperature, and 5) leaf area index as inputs for training. Dimensioned statistics
(e.g., bias, RMSE, and ubRMSE) as well as relative bias showed that utilizing four
input states (e.g., SWE, snow density, SLWC, and top layer snow temperature) pro-
duced the most reasonable accuracy of predicted backscatter (Table 2.4). Moreover,
all statistics (including both dimensioned and dimensionless) approached asymp-
totic values after four input states. These results provided rationale that using a
selection of four input states (listed in Table 2.5) for SVM regression was the most
appropriate.

As the four variables have different ranges of magnitude, each variable was
first rescaled using a scale factor in order to remove the different orders of magni-
tude, which will significantly influence the weights and SVM prediction capability.
In addition to the LSM state variables, the Interactive Multisensor Snow and Ice
Mapping (IMS) [152] binary snow cover product was used to further constrain the
SVM training only when snow cover is positively detected using the visible and
thermal-based snow cover estimation algorithm.
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Table 2.4: Statistical summary of evaluation metrics as a function of the input
states.

(a) ovy 1 2 3 4 5 6 7 8 9
Bias 20.53 | -0.48 [-0.49 | -0.16 | -0.32 | -0.32 | -0.32 | -0.32 | -0.32
Relative Bias | 4.79 | 4.39 | 4.46 | 1.43 | 2.92 | 2.89 | 2.89 | 289 |2.89
RMSE 146 [1.45 |1.43 | 1.38 | 1.34 | 1.34 | 1.34 |1.34 | 1.34
ubRMSE 117 [1.17 |1.16 | 1.03 | 1.14 | 114 | 114 |1.14 | 1.14
Standard Error | o)y o0 | 198 (114 | 101 | 111 | 111 | 111 | 111
Ratio

@) ovn 1 D) 3 4 5 6 7 8 9
Bias 2055 1-0.52 | -0.53 | -0.47 | -0.4 | -04 |-04 |-04 |-04
Relative Bias | 3.01 | 2.83 [2.92 |3.10 | 2.56 | 2.55 | 2.55 | 2.55 | 2.55
RMSE 1.40 [1.38 |1.37 | 112 | 115 | 115 | 1.15 | 1.15 | 1.15
ubRMSE 112 [1.12 | 1.10 | 073 | 094 | 094 | 094 |0.94 |0.94
Standard Error |y 101y 10 1 100 | 0.80 | 002 | 0.92 | 0.92 | 0.02 | 0.92
Ratio

Note:Units for bias, RMSE, and ubRMSE are dB. Relative bias has units
of % and standard error ratio is dimensionless.

Training targets (and outputs) for the SVM were selected as ol and o¥.j; as
observed by Sentinel-1 over snow-covered terrain. Backscatter coefficients observed
at different polarizations contain different information about terrestrial snow. Gen-

erally, oV, for dry snow tends to have limited sensitivity to snow as the backscatter

Table 2.5: SVM Inputs and Outputs.

. Scale
Inputs Unit Factor
Snow Water m 10
Equivalent
Snow Density® kgm ™3 0.01
Snow Liquid mm 1

Water Content®

Top layer K 0.01
Snow Temperature

Outputs Unit ]?‘;i’lc?)r
Vs dB none
oV i dB none

® Column-integrated estimates.
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from the snow-land interface often dominates over snow volume scattering [10].
Nevertheless, the sensitivity of o}, during wet snow conditions is relatively high
due to the significant absorption and reflection from the snowpack [131,150]. In
terms of 0¥, it generally shows more sensitivity than o, during both dry and wet
snow conditions due to the depolarization of the microwave signal caused by multi-
ple scatterings within the snowpack [228]. Based on these different characteristics,

backscatter at different polarizations were trained separately.

2.3.4 Training Procedures

A SVM was trained at each 0.01° equidistant cylindrical model grid location
in order to explicitly consider the heterogeneity of regional climatology, land cover
type, and topography. At each pixel, a separate SVM was generated for produc-
ing predicted co-polarized (6%,) and cross-polarized (6V,;) backscatter separately.
Available Sentinel-1 observations from April 2015 to August 2016 and September
2017 to August 2018 were utilized for training, which includes two complete winter
seasons. Sentinel-1 observations from September 2016 to August 2017 were excluded
in order to be used to evaluate the SVM prediction, which is described further in
Section 2.3.5.

There are numerous considerations when developing a physically—constrained,
well-designed SVM, including parameter setups, input datasets, training targets,
and training windows. Accordingly, the first experiment was conducted to analyze

the influence of different training targets on SVM prediction performance. Sentinel-
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1 observes backscatter along ascending and descending overpasses. One of the main
differences between the ascending and descending overpass is the local overpass
time. Ascending measures backscatter at approximately 6 p.m. local time while
descending measures backscatter at approximately 6 a.m. local time. Moreover,
the ascending and descending tracks have different incidence and azimuth angles in
complex terrain, which leads to a different backscatter intensity [182]. Normalizing
the incidence angle for both ascending and descending overpasses during the pre-
processing step (previously described in Section 2.2.2) reduces the influence of the
local incidence angle. Hence, more available training targets (which, in general, is
advantageous given a sparse training set) can be obtained by combining both the
ascending and descending overpasses. However, it remains to be seen if combining
different overpasses is advantageous or disadvantageous. Consequently, Sentinel-1
backscatter from the ascending node versus the descending node versus the combined
overpasses were trained separately in order to explore the different impacts on SVM
performance.

The second experiment is designed to examine the influence of different train-
ing windows on the prediction accuracy of the SVM across which to collect the
Sentinel-1 training targets. Figure 2.6 shows the concept of three different train-
ing windows: 1) fortnightly, 2) monthly, and 3) seasonal. The fortnightly training
procedure includes 2-weeks of overlap before and after the specific fortnight (14-day
period) in order to reduce temporal discontinuities between different SVMs [75].
Analogously, the monthly training period includes the month before and month af-
ter the specific month of training during the collection of the training targets. In the
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Figure 2.6: Schematic description of fortnightly versus monthly versus seasonal
training approaches. Different training windows provide different degrees of wet
versus dry snow delineation. Bold arrows indicate the training period and dashed
arrows represent the temporal overlap. The gray dotted lines represent periods of
time not included in the training data for the period ¢;. The shorter window provides
better discrimination, but the trade-off is a less robust SVM due to fewer training
targets as a function of time.

case of a seasonal training window, it includes the Sentinel-1 observations during
the entire snow season (e.g., from September to May). The underlying rationale of
the fortnightly training window is to generate a physically-constrained SVM that
more carefully considers the first-order control on the different electromagnetic re-
sponses from dry snow versus wet snow. Dry snow is regarded as a scatterer of
MW radiation while wet snow is regarded as an absorber given that the presence
of liquid water within the snowpack results in a large increase in permittivity [186].
Thus, a shorter training window can enhance the delineation between dry versus
wet snow. On the other hand, elongating the length of the training window ensures
more available training data for the SVM even though there is more possibility to
comingle the observations containing a different electromagnetic regime.

Lastly, explicit SVM training for dry snow versus wet snow conditions was
conducted separately in order to explicitly analyze the influence of snow wetness on
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Figure 2.7: Conceptual model of active MW backscattering mechanisms during (a)
dry snow conditions and (b) wet snow conditions (modified from [67]).

SVM prediction efficacy. Figure 2.7 illustrates the different scattering mechanisms
over dry and wet snow conditions. During dry snow conditions, a snowpack is a mix-
ture of air and ice. Microwave radiation can penetrate deeper into a dry snowpack
(i.e., less absorption) than during wet snow conditions. Accordingly, backscatter
from the underlying ground is more influential on the total observed backscatter
relative to other scattering components (Figure 2.7(a)). When the snow depth or
snow surface roughness increases, the influence of backscatter from within the snow-
pack as well as at the air-snow interface increases. Correspondingly, the influence of
backscatter from the underlying ground is reduced [220]. In the case of wet snow,
which is now a heterogeneous mixture of air, ice, and water, the photons cannot
penetrate as deeply into the snow due to the decrease in scattering albedo and the
corresponding increase in the absorption of microwave radiation associated with the
existence of liquid water inside the snowpack [187,220]. Accordingly, backscatter

over wet snow is primarily dominated by backscatter at the air-snow interface in
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most situations (Figure 2.7(b)). However, during the ripening stage, backscatter
over wet snow can also be increased due to the complex wet snow metamorphism,
including an increase in snow surface roughness and an increase in the snow grain
size during overnight refreezing [139]. Considering the different electromagnetic re-
sponses of C-band radiation during for dry snow versus wet snow conditions (based
on the snow wetness in the a priori LSM estimates) provides one more mechanism to
explore different physically-constrained training techniques to the machine learning

procedure.

2.3.5 Evaluation Scheme

Predicted backscatter for both polarizations were evaluated by comparing
against Sentinel-1 backscatter observations not used during training (i.e., from Sep
2016 to Aug 2017). This ensures that the validation dataset is entirely independent
from the Sentinel-1 datasets used for training. One of the main reasons to select
Sep 2016 to Aug 2017 for validation is that this period was considered as a typical
snow year for the available years in Sentinel-1 records.

In order to quantitatively evaluate the predicted backscatter from the SVM,
domain-averaged bias, root mean square error (RMSE), and unbiased RMSE (ubRMSE)
were computed by averaging the metrics across the snow-covered grid cells in this

study domain. Bias is calculated as follows:

1 n
i=1
where n is the number of predicted and observed backscatter values collocated at a

95



given location in space and time and &7, [dB] and o)), [dB] represents the predicted
and observed backscatter at a given polarization, respectively. Bias is one of the
goodness-of-fit statics that explains the systematic error. RMSE is a dimension-

less statistic representing both systematic and non-systematic errors that can be

calculated as:

n

1
RMSE =, | =) (6%, — 0%,)° (2.4)

n -
=1
In addition, ubRMSE is utilized to identify the random error by removing the bias
from RMSE as:

ubRMSE? = RMSE? — bias? (2.5)

These statistics were calculated over the course of the entire validation period.
In addition, statistics during the snow accumulation and snow ablation periods were
calculated separately as the delineation of dry snow versus wet snow motivates three
different experiments outlined in Section 2.3.4. Seasonal snow, in general, can be
divided into a snow accumulation period and a snow ablation period. The snow accu-
mulation period typically has relatively dry snow conditions while the snow ablation
period has relatively wetter snow conditions. When considering the regional clima-
tology of Western Colorado, December, January, and February (DJF) are treated
here as the snow accumulation period and March, April, and May (MAM) are
treated here as the snow ablation period [185].

As part of the statistical evaluation, the presence of statistically significant
differences between the various domain-averaged statistics was conducted using the

two-sided Wilcoxon signed rank sum test [218]. Wilcoxon signed rank test is a non-
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parametric hypothesis test to examine the null hypothesis that central tendencies
of two samples are not different [142]. The main reason for selecting the Wilcoxon
signed rank test is that the predicted and observed backscatter is non-Gaussian,

which violates the assumption for the two-sample t-test.

2.4  Results and Discussions

2.4.1 Influence of Training Targets on SVM Prediction

The influence of different training target sets on the robustness of SVM predic-
tion over snow-covered terrain was explored by using three different training target
sets: 1) Sentinel-1 observations from ascending (6 p.m. local time) overpasses only,
2) descending (6 a.m. local time) overpasses only, and 3) the combination of the
two different overpasses. In this section, the same geophysical inputs acquired from
LIS (listed in Table 2.5) were utilized for SVM regression and a fortnightly training
window was selected for each of the three different scenarios. With these experi-
mental setups, predicted backscatter from the different sets of training targets were
evaluated by comparing against Sentinel-1 observations during Sep. 2016 to Aug.
2017, which were not used for SVM training. Table 2.6 summarizes the spatial cov-
erage as well as the domain-averaged statistics of predicted 63, and 6%, using the
three different training sets for the validation period.

Among the three different training target sets, predicted backscatter using the
descending-only overpasses showed the lowest magnitude of domain-averaged bias

at both co- and cross-polarizations. The computed bias for the descending-only
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Table 2.6: Domain-averaged statistics of predicted backscatter from ascending-only;,
descending-only, and the combination of both ascending and descending overpasses
compared against the Sentinel-1 observations from Sep 2016 to Aug 2017 not used
during training.

Bias RMSE  ubRMSE Ci‘iﬁfgle
Datasets 60y vy 6%y 6%y oY, Yy [%]
Ascending-only -0.89 -0.84 1.64 1.36 0.91 0.73 7.2
Descending-only -0.74 -0.82 1.58 1.36 1.16  0.80 11.9
Combination -0.83 -0.95 2.54  2.06 2.08 1.54 15.2

Note: All statistics are different at p = 0.05 using Wilcoxon signed rank sum test.

training targets were within the range from -5.37 to 4.86 dB with a spatial mean
of -0.74 dB for 6¥,. Similarly, the bias of 6%, with descending-only training tar-
gets ranged from -4.92 to 3.85 dB with the spatial mean of -0.82 dB. In the case
of ascending-only and combined training target sets, it revealed a relatively wider
range of biases than descending-only training sets at both polarizations. For exam-
ple, predicted backscatter of 6%, with ascending-only training sets and combined
training sets showed the bias ranging from -12.3 dB to 11.7 dB and -10.2 dB to
14.5 dB, respectively. This difference in the range of bias resulted in exhibiting the
lowest mean RMSE at both polarizations over the study area when descending-only
training targets were used (Table 2.6). Among the three different training target
sets, the combined training target set showed the highest RMSE and ubRMSE at
both polarizations. This result is also confirmed in the first row of Figure 2.8 in
that combined training targets showed wider spread than other training target sets.

Different statistical behavior for ascending and descending overpasses is a con-

sequence of the different electromagnetic responses from the snowpack in accordance
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Figure 2.8: Probability plots of observed and predicted co-polarized backscatter
during the validation period collected in both time and space. The different columns
represent the different training targets: ascending-only (left column), descending-
only (middle-column), and combination of ascending and descending (right column).
The different rows represent the different training windows (fortnightly, monthly,
and seasonal training period from the top to bottom). The dashed line represents
the 1:1 line.
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with the data acquisition times. As discussed earlier in Section 2.3.3, the local time
of ascending and descending overpass is approximately 6 p.m. and 6 a.m., re-
spectively. Differences in observation time often results in having different snow
conditions based on the diurnal melt-refreeze metamorphism. Diurnal variation of
the air temperature results in small amounts of diurnal melting and refreezing at
the snow surface. Accordingly, the descending acquisitions prior to sunrise (~6
a.m. local time) tends to minimize wet snow conditions and are relatively dry given
refreezing while ascending acquisitions following sunset (~6 p.m. local time) are
often relatively wet at the surface by comparison. In the case of combined training
targets, the mixture of signals from ascending and descending overpasses within a
single training matrix resulted in producing more uncertainties, which is revealed
as relatively larger RMSE and ubRMSE than the other training target sets.

Figure 2.9 illustrates the spatial distribution of bias, RMSE, and ubRMSE
using three different training target sets over the study domain. Notably, the com-
bined training set showed the highest percentage of spatial coverage as more training
datasets are available through combining observations from ascending as well as de-
scending overpasses. At the same time, however, higher magnitudes of bias, RMSE,
and ubRMSE were seen in the predicted backscatter when using the combined train-
ing target set. More specifically, comparison of Figure 2.9 with the elevation map
presented in Figure 2.1(a) suggests that a relatively large magnitude of negative
bias was observed within the elevation range of 2500 m to 3500 m. Throughout the
different training target sets, all three sets commonly showed that more than 69%

(77.5% for ascending-only, 71.9% for descending-only, and 69.5% for combined) of
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Figure 2.9: Spatial distribution of bias (top row), RMSE (middle row), and ubRMSE
(bottom row) of co-polarized backscatter (6%,,) for the validation period Sep. 2016
to Aug. 2017. The different columns represent the training target sets for ascending
only (left column), descending only (middle column), and combination of ascending
and descending (right column). The white space in each map represents where there
are no available SVM predictions at locations due to either no existence of snow in
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pixels with a larger magnitude of negative bias (relative to the lower decile of bias)
were located within the specific elevation range. This phenomenon is likely caused
by the influence of vegetation on C-band backscatter. Comparison of the eleva-
tion map (Figure 2.1(a)) with the forest cover fraction illustrated in Figure 2.1(b)
showed that most of the pixels with high forest cover fraction are located within
the elevation range of 2500 m to 3500 m. Huang and Andereeg [98] stated that this
specific elevation band contained heterogeneous forest with aspen tress and moun-
tain snowberry as under-story species. Westman and Paris [216] and Dedieu et
al. [58] mentioned that backscatter observed over the heterogeneous forest is highly
influenced by vegetation-related scattering components such as multiple scatterings
within the canopy and scattering from the forest floor, which results in reducing the
sensitivity of C-band backscatter toward the snow.

In terms of the percent spatial coverage among the different training target
sets, the combination of ascending and descending observations showed the highest
spatial coverage followed by descending-only and ascending-only observations (Table
2.6 and Figure 2.9). The explanation for this behavior is that the the combination
of two different sets of overpasses increases the number of available training targets,
which results in more predicted backscatter at more locations across the study area.

Figure 2.10 summarizes the domain-averaged statistics of predicted 6%, and
6V during the snow accumulation and ablation periods. Comparing the two differ-
ent periods, the accuracy of predicted backscatter during the snow ablation (wet)
period showed more negative bias than the snow accumulation (dry) period. The

magnitude of bias during the snow accumulation period ranged from -0.93 to -0.64

62



dB and was less negative than for the snow ablation period that ranged from -1.15
to -0.72 dB. In terms of different training target sets, the descending-only set showed
slightly smaller absolute bias, RMSE, and ubRMSE at both polarizations than did
the ascending-only set or the combined set during both the snow accumulation pe-
riod and snow ablation periods (Figure 2.10). Statistics from the descending-only
training set showed a modest range of bias from -0.84 to -0.64 dB. Similarly, RMSE
and ubRMSE also yielded moderate results relative to the other training target sets
and ranged from -0.84 to -0.64 dB and 1.28 to 1.68 dB for RMSE and ubRMSE,
respectively. In the case of the combined training set, ubRMSE was relatively large
during both the snow accumulation (1.84 dB for 67, and 1.31 dB for 6{,;) and the
snow ablation (2.10 dB for 60, and 1.56 dB for 6¥;) periods (Figure 2.10).
Distinctive statistical behaviors during snow accumulation and ablation pe-
riods are largely governed by the different physical characteristics of the snow de-
pending during the different observation times. That is, snowpack during the snow
ablation period is apt to have deeper and wetter snow than during the snow accu-
mulation period, which introduces more heterogeneity within the snowpack given
the presence of internal ice crusts, depth hoar, and wind slabs. Moreover, during
the snow ablation period starting from March, in general, tends to have wetter snow
surface as the top layer of snowpack experiences some degree of melt during the af-
ternoon given more incoming solar radiation reaching the snow surface coupled with
relatively warmer air temperatures. As mentioned in Section 2.3.3, the ascending
and descending overpass times are 6 p.m. and 6 a.m. local time, respectively. As a

result, the top of the snow surface will be relatively wetter during the ascending over-
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Figure 2.10: Domain-averaged statistics of predicted backscatter for three different
training target sets during the (a) snow accumulation (December, January, and
February) period and (b) snow ablation (March, April, and May) period. Asterisks
indicate statistically significant differences between all pairs using the Wilcoxon
signed rank sum test (p < 0.05).
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pass (6 p.m. local time) while colder air temperatures during the nighttime cause
the refreezing of any wet snow at the surface prior to sunrise, which corresponds
to the descending overpass time (6 a.m. local time). These different conditions
at the snow surface lead to the different electromagnetic responses as described in
Section 2.3.4, and in turn, result in different statistical behavior for the ascending
and descending overpasses. Furthermore, merging observations acquired from both
ascending and descending overpasses tends to introduce more random errors related
to different electromagnetic responses given the difference in snow conditions (e.g.,

daytime versus nighttime observations) as well as differences in viewing geometry.

2.4.2 Influence of Training Window Length on SVM Prediction

The spatial distribution of bias calculated by comparing the predicted backscat-
ter, 6V, against the corresponding Sentinel-1 observations not used during the
training for different training windows and training sets across the validation pe-
riod is depicted in Figure 2.11. Overall results showed that the magnitude of bias
was reduced in accordance with an increase in the training window. For example,
elongating the training window from fortnightly to seasonal resulted in reducing the
magnitude of bias in the south-western and middle portions of the study area (Figure
2.11). Domain-averaged bias for ascending-only training sets also revealed significant
improvement in bias comparing fortnightly training (-0.89 dB) and seasonal train-
ing (0.04 dB). Similar statistical behavior was observed for both descending-only

and combined training sets in both co- and cross-polarizations. However, compar-
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ing Figure 2.11(a) with 2.11(g) and Figure 2.11(c) with 2.11(i), the southern and
northwestern regions of the study domain using seasonal training period showed a
relatively larger, positive bias (approximately 4-5 dB) than in other parts of study

area.
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Figure 2.11: Spatial distribution of bias for co-polarized backscatter (67,) during
the validation period from Sep. 2016 to Aug. 2017. The different columns repre-
sent the different training target sets: ascending-only (left column), descending-only
(middle column), and combination of ascending and descending (right column). The
different rows represent the different training windows (fortnightly, monthly, and
seasonal from the top to bottom).

In terms of spatial coverage, the elongation of the training window resulted in
the increase of spatial coverage (Figure 2.11). In general, the increased generation
of SVMs makes it possible to make more predictions across the study domain when
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there are more available training datasets as a function of time and space. More
specifically, ascending-only and combined training sets showed a significant increase
in SVM spatial coverage in comparison with descending-only training set. For in-
stance, spatial coverage for the combined training sets was revealed as 15.3%, 20.3%,
and 33.9% for fortnightly, monthly, and seasonal training periods, respectively. Sim-
ilarly, spatial coverage of combined training sets (30.1%) was significantly expanded
comparing with the fortnightly training period (7.18%) for ascending-only training
sets. This provides clear evidence that elongation of the training window leads to
an increase in availability of training data, and in turn, results in generating more
SVMs at more locations as well as providing more predicted backscatter at more
locations. In the case of descending-only training sets, the seasonal training period
showed a slight increase in spatial coverage from fortnightly training while there
was no difference in spatial coverage between monthly and seasonal training period.
The fortnightly, monthly, and seasonal training period yielded a spatial coverage
of 11.9%, 12.2%, and 12.2%, respectively. This behavior was highly influenced by
the limited number of descending observations over the study area during the study
period. Potin et al. [169] mentioned that the initial stage of Sentinel-1 operations
primarily focused on the European continent based on the pre-defined observation
scenario. Accordingly, Sentinel-1 observations obtained from descending nodes have
significant gaps prior to May 2017 within the Western Colorado study area based on
the evolving Sentinel-1 (operational) observation scenario designed by ESA. More
specifically, dual-polarized (i.e., 6, and 6% ) Sentinel-1 observation with TW mode

were mostly observed by ascending overpasses prior to May 2017. Thus, the oper-
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ational limitation of dual-polarized observations during IW mode over descending
overpasses limits the available training period to the 2017-18 winter season for gen-
erating SVMs over study domain. This operational issue prior to May 2017 is the
cause of the limited increase in the amount of spatial coverage for the descending-
only training activities.

Overall, including more training data via increasing the length of the training
window enables the existence of more SVMs, and in turn, resulted in more pre-
dicted backscatter across the study domain. At the same time, however, increasing
the training matrix also resulted in introducing more uncertainties due to a more
diverse electromagnetic response during a larger variety of snowpack conditions. For
instance, a seasonal training window utilizes Sentinel-1 observations from the spring
(i.e., March, April, and May) and fall (i.e., September, October, and November) in
order to predict the backscatter during the winter season (i.e., December, January,
and February). However, it is known that fall and spring have distinctively different
snowpack characteristics. The snowpack is relatively shallow and dry during the fall
season while the spring season has relatively deeper and wetter snow, which leads to
more complex snow stratigraphy with internal ice crusts. Accordingly, elongation of
the training window resulted in including the mixture of electromagnetic response
from dry, shallow snow mixed with deeper, wetter snow in a single training matrix
that tends to weaken the robustness of the SVM predictions, and hence, results in
worsening the accuracy of predicted backscatter.

Figure 2.12 and Figure 2.13 summarized the domain-averaged statistics (e.g.,
bias, RMSE, and ubRMSE) of predicted backscatter at both co- and cross-polarization
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Figure 2.12: Summary of domain-averaged statistics (e.g., bias, RMSE, and
ubRMSE) of predicted backscatter for fortnightly, monthly, and seasonal training
windows during the snow accumulation (December, January, and February) period.
N.S. represents no statistically-significant difference between pairs at p=0.05 using
the Wilcoxon signed rank sum test. Other datasets achieved statistically-significant
differences at p=0.05 if not marked. Left-most column used ascending-only training
targets; middle column used descending-only training targets; right-most column
used a combination of the two. The different bar colors represent different train-
ing window lengths. Top and bottom rows represent the co-polarized (6V,,) and
cross-polarized (6%;) backscatter.

using the three different training target sets and three training periods during the
snow accumulation and ablation periods, respectively. According to Figure 2.12,
the magnitude of bias, RMSE, and ubRMSE was reduced, in general, as the train-
ing period elongated from fortnightly to seasonal. For the predicted co-polarized
backscatter, 63, at ascending overpasses, the magnitude of bias decreased from
-0.79 dB (fortnightly training) to 0.07 dB (seasonal training). Similar behavior was

observed for RMSE (1.64 dB for fortnightly training and 1.08 dB for seasonal train-
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Figure 2.13: Same as Figure 2.12 except for the snow ablation (March, April, and
May) period.

ing) as well as ubRMSE (1.06 dB for fortnightly training and 0.93 dB for seasonal
training). In the case of combined training target sets, bias for predicted 69, showed
gradual decreasing pattern (e.g., -0.87 dB, -0.59 dB, and -0.10 dB for fortnightly,
monthly, and seasonal training, respectively) in accordance with the increase of the
training window length. Similar results were revealed for RMSE and ubRMSE in
that fortnightly training showed highest magnitude while seasonal training showed
the lowest magnitude. These statistical results illustrate that more training data
with a given temporally sparse datasets often results in generating a more robust
SVM although the training matrix becomes more complex containing information
from different types of snow (e.g., wet versus dry, shallow versus deep).

Domain-averaged statistics during the snow ablation depicted in Figure 2.13
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depicted analogous statistical behavior with that of the snow accumulation period
in that magnitude of bias, RMSE, and ubRMSE from three different training tar-
get sets were decreased in accordance with the elongation of training window, in
general. For example, predicted oy using ascending-only and combined training
target sets revealed a decreasing trend in bias and RMSE. Similar behavior was ob-
served for oy using the combined training set such that bias decreased from -1.00
dB to -0.83 dB, 2.09 dB to 1.88 dB, and 1.52 dB to 1.36 dB for bias, RMSE, and
ubRMSE, respectively. At the same time, however, an opposite statistical behavior
was sometimes observed during the snow ablation period in that the magnitude of
statistics were increased as the length of training window elongated. For instance,
the magnitude of bias from predicted oy 5 using ascending-only training set was in-
creased from monthly training (-0.89 dB) to seasonal training (-0.91 dB). Similarly,
ubRMSE of &y using ascending-only training was slightly increased from monthly
training (1.05 dB) to seasonal training (1.11 dB) even if seasonal training contains
the largest number of training data at a given location. Further, ubRMSE for the
combined training set for 6%, also showed a slight increasing trend as the training
window was elongated from fortnightly to monthly (Figure 2.13). These phenomena
provide evidence that merging observations from different snow conditions within
the same training matrix introduces more random errors in the predicted backscat-
ter. Overall, the results bring up questions regarding which training window is the
most adequate for a robust SVM. Among the different training window approaches,
the fortnightly training period has the best likelihood of physically constraining ei-

ther a dry snow or wet snow signal within the single training matrix. On the other
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hand, the monthly and seasonal training periods have a higher likelihood of contain-
ing a mixture of wet and dry snow conditions, which leads to a mixture of scattering
(dry) and absorbing (wet) electromagnetic responses for the same location that than
leads to a SVM with less predictive efficacy. This brings about the conundrum of
quality of training data versus the number of training data within a sparse set of
training targets in both space and time. In the limit as the number of training data
approach infinity, the physically-constrained approaches should be superior, but is

not always evident given the severity of the data sparsity in this study.

2.4.3 Influence of Separate Training for Dry versus Wet Snow Con-
ditions

Statistical analysis of predicted backscatter using different sets of training
targets (i.e., ascending-only, descending-only, and combined datasets) and training
windows (i.e., fortnightly, monthly, and seasonal) emphasized that the mixture of
different electromagnetic responses from different snow conditions resulted in weak-
ened SVM performance. Section 2.3.3 also highlighted the inherent characteristics
of C-band signal during dry versus wet snow conditions. The focus here is on exam-
ining the influence of different snow wetness conditions toward SVM prediction by
comparing the statistics of predicted backscatter with and without explicit dry snow
and wet snow delineation based on Noah-MP snow liquid water content estimates.

Previous research has used a variety of methods to characterize snowmelt. For

example, diurnal amplitude variation [102] and cross-polarized gradient ratio [1] has
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been used for PMW observations to detect snowmelt. In this study, however, snow
liquid water content from the Noah-MP simulation was utilized as a constraint for
delineating dry snow versus wet snow. More specifically, SVMs for dry snow and wet
snow pixels were generated separately while four input datasets (e.g., SWE, snow
density, snow liquid water content, and top layer snow temperature) remained the
same. Note that snow wetness estimates from Noah-MP are not perfect. However,
considering the absence of ground-based snow wetness measurements, it is assumed
here that the model-based estimates are a feasible proxy. Using the Noah-MP snow
wetness estimates, wet snow is defined here simply as when the snow liquid water
content was greater than zero. Similar to the previous sections, three different sets of
training targets (i.e., ascending-only, descending-only, and combined training sets)
were used separately in this section.

Figure 2.14 shows the spatial distribution of bias for predicted co-polarized
backscatter, 63, using the three different training sets without and with dry snow
versus wet snow delineation via Noah-MP. Note that the increase in white space
in the bottom row (relative to the top row) is due to fewer training targets being
available, and hence, fewer SVMs that can be generated due to the increased data
sparsity. The use of modeled liquid water content from Noah-MP added another
physical constraint during SVM training. As such, the size of the training matrix
was further reduced, which resulted in fewer trained SVMs that in turn reduced the
spatial coverage. Comparing Figure 2.14(a)-(c) with Figure 2.14(d)-(f), generating
separate SVMs for dry and wet snow pixels modestly resulted in reducing the mag-

nitude of bias. Table 2.7 also shows that separate training for dry and wet snow
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Figure 2.14: Spatial distribution for bias of predicted 6}, without explicit dry versus
wet snow delineation (top row) and with explicit dry versus wet snow delineation
(bottom row) from Sep. 2016 to Aug. 2017. The different columns represent the
training sets for ascending only (left column), descending only (middle column), and
combination of ascending and descending (right column).

resulted in improving most of the domain-averaged statistics of predicted backscat-
ter at both polarizations in spite of the reduced number of targets for use during
training. For the ascending-only and descending-only training target sets, the bias,
RMSE, and ubRMSE were slightly improved only when using the explicit dry versus
wet snow delineation during training. Most notably, 67, from the descending-only
training set showed significant improvement in bias from -0.72 dB to -0.40 dB. Even
though the combined training set also showed slight improvement in ubRMSE for
both 6%, and 6%, the bias and RMSE were slightly increased when using the ex-
plicit dry versus wet delineation during training. This phenomenon was due, in large

part, to the different observation times for ascending and descending overpasses. As
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Table 2.7: Domain-averaged statistics of predicted backscatter using the three dif-
ferent training sets (a) without dry versus wet snow classification and (b) with dry
versus wet snow classification based on Noah-MP. Statistical evaluations are based
on comparison to Sentinel-1 observations from Sep. 2016 to Aug. 2017 not used
during training.

(a) Bias [dB] RMSE [dB] ubRMSE [dB]
Datasets GO OV oV 0Ny 0 o0y
Ascending-only -0.16 -0.48 1.38  1.12 1.03 0.73
Descending-only -0.60 -0.72 1.58  1.36 1.23 0.90
Combination -0.48 -0.72 222 177 1.86 1.36
(b) Bias [dB] RMSE [dB] ubRMSE [dB]
Datasets ovv Ovy ovv OovH ovy OvH
Ascending-only -0.12 -0.39 1.37  1.09 1.05 0.69
Descending-only -0.30 -0.40 1.52  1.23 1.16 0.88
Combination -0.54 -0.67 230  1.78 1.59 1.14

Note: All statistics are different at p = 0.05 using Wilcoxon signed rank sum test

mentioned earlier, the different observations at different times (overpasses) will of-
ten have different snow conditions depending on the diurnal melting and refreezing
cycle. Accordingly, even if the specific pixel is classified as a wet or dry snow pixel
based on the modeled snow liquid water content, the combined overpass training set
is often composed of a mixture of both wet snow and dry snow signals.

In addition to the comparison of accuracy before and after applying the dry
versus wet snow delineation, statistics of predicted backscatter based on explicit dry
versus wet snow delineation were classified into dry and wet snow pixels and an-
alyzed in order to evaluate the efficacy of the physically-constrained SVM (Figure
2.15). Separation of dry and wet snow pixels also relies on the liquid water content

estimates from Noah-MP. For the domain-averaged bias, dry snow periods showed
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slightly better performance than for wet snow. 6V, over dry snow pixels yielded a
bias of -0.15 dB while wet snow pixels showed comparable or slightly higher mag-
nitude of bias with -0.31 dB. The results showed that predicted backscatter over
dry snow and wet snow pixels using ascending-only training exhibited comparable
statistical performance. Similar behavior was observed with 61, with a domain-
averaged bias of -0.43 dB and -0.51 dB for dry and wet snow, respectively. In terms
of RMSE and ubRMSE, dry and wet snow pixels showed comparable statistical re-
sults. For example, 67, over dry snow pixels yielded RMSE and ubRMSE of 1.38
dB, and 1.09 dB, respectively, which were similar for wet snow pixels (1.37 dB for
RMSE and 1.13 dB for ubRMSE). Similarly, RMSE of 6}, ; over dry snow pixels was
1.08 dB which showed similar statistical performance as for wet snow pixels (1.09
dB). As mentioned earlier, ascending overpasses often have relatively wetter surface
snow conditions due to the small amount of diurnal melting during the afternoon.
It is believed that this leads to the similar statistical behavior over dry snow pixels
versus wet snow pixels using the ascending-only training set.

In the case of descending-only and combined training sets, wet snow pixels
showed a lower magnitude of bias than did dry snow pixels. Bias of 6., and 6%
using the descending-only training set was -1.45 dB and -1.40 dB for dry snow
while it was reduced to -0.11 dB and -0.23 dB during wet snow conditions. Similar
behavior was observed for combined training sets in that bias of wet snow pixels
(-0.16 and -0.25 dB for 6., and 6%, respectively) showed a smaller magnitude
than that of dry snow pixels (-0.82 and -0.96 dB for 60 and 67, respectively).
Moreover, descending-only training sets showed lower RMSE at wet snow pixels
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Figure 2.15: Domain-averaged statistics of predicted backscatter for three different
training approaches at (a) dry snow locations and (b) wet snow locations during
the validation period of Sep. 2016 to Aug. 2017. Asterisks indicate statistically
significant differences between all pairs using the Wilcoxon signed rank sum test (p
< 0.05).

than dry snow pixels at both polarizations (Figure 2.15).

In general, C-band backscatter has a deeper penetration depth for dry snow
(~20 m) than wet snow (~3 cm) due to the difference in snowpack properties (i.e.,
snow grain size, snow density, and snow liquid water content) [140]. Furthermore, C-
band backscatter during dry snow conditions, in general, is dominated by backscat-
ter at the snow-land interface compared to other components listed in Equation 1.1
(i.e., volume scattering or air-snow interface scattering) [129]. This behavior leads to

no significant difference between backscatter from snow-free conditions versus shal-
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low, dry snow conditions [150], while volume scattering (and hence backscatter) still
plays an important role to total backscatter during deep, dry snow conditions [131].
Conversely, backscatter during wet snow conditions is generally controlled by ei-
ther backscatter from the air-snow interface or by volume scattering depending on
the snow wetness [129]. At the same time, the influence of backscatter from the
snow-ground interface is minimized due to the increase of absorption. Hence, the
backscatter has a relatively larger variability during wet snow conditions as C-band
radiation undergoes a large amount of absorption and/or reflection (Figure 2.7).
This increased sensitivity during wet snow conditions provides more information
content for the SVM to yield better predictions regarding C-band backscatter (and
its relation to snow mass) as compared to the SVM predictions during dry snow
conditions when C-band backscatter is predicated more on backscatter from the
snow-land interface rather than volume scattering associated with terrestrial snow
mass. These differences in the fundamental physics result in a better statistical

performance as related to snow mass when the snow is wet rather than dry.

2.5 Conclusions and Future Work

The main goal of this paper was to assess the feasibility of physically-constrained
SVMs to predict C-band backscatter over snow-covered terrain in Western Col-
orado. When considering the first-order physics of scattering and absorption over
snow-covered terrain, the influence of training target sets, training window length,

and dry versus wet snow delineation on SVM efficacy were examined to develop a
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well-trained SVM. Backscatter coefficients observed from Sentinel-1 as well as geo-
physical variables from Noah-MP over the snow-covered regions were utilized as
training targets and input vectors for SVM training, respectively.

Predicted backscatter using the different sets of training targets commonly
showed that over 69% of locations with larger negative bias than the lower decile
were located within the elevation range of 2500m to 3500 m. This suggests the
reduced sensitivity of C-band backscatter to snow due to the influence of volume
scattering in regions with overlying heterogeneous forest cover. Among the different
training target sets (e.g., ascending-only, descending-only, and the combination of
the two), combining both ascending and descending datasets showed advantages in
extending the spatial coverage of prediction (15.2%) due to an increased number
of points in time for training. However, this approach degraded the RMSE (2.54
dB for 6{,;, and 2.06 dB for 6).;;) and ubRMSE (2.08 dB for 6{,;, and 1.54 dB
for 6%,;;) due to the mixture of different signals during different snow conditions
(i.e., dry scattering snow mixed with wet absorbing snow). Ascending-only and
descending-only training sets yielded more robust SVM-based predictions during the
snow accumulation and ablation periods based on the relationship between diurnal
melt, diurnal refreezing, and the corresponding overpass time.

Elongation of the training window length also allows for the usage of more
available training data (in time) for SVM training, which results in an increase in the
spatial extent of predicted backscatter via the SVMs. More specifically, the spatial
coverage of predicted backscatter using the combined training target set and seasonal

training window was maximized up to 33.9%. In terms of statistical behavior,
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seasonal training showed, in general, slightly better statistical improvements in all
three training target sets throughout the validation year. More specifically, the
magnitude of bias from the combined training sets with a seasonal training window
(-0.10 dB for 69, and -0.50 dB for 6¥,;,) was significantly decreased when compared
with that using the fortnightly training window (—0.83 dB for 6%, and -0.95 dB
for 6%.;). Similar behavior was shown when comparing the statistics from the snow
accumulation and snow ablation periods while RMSE and ubRMSE for ascending-
only and descending-only training sets tended to increase along with elongation of
training window. These results suggest that elongation of the training window length
can improve the accuracy of predicted backscatter by obtaining more training target
sets in space and time. At the same time, however, it was evident that the elongated
training window also resulted in a slight degradation in the seasonal variability of
the snowpack due to a mixture of signals from different (i.e., dry versus wet; shallow
versus deep) snow conditions.

Considering the behavior of C-band backscatter and its dependence on liquid
water content within the snowpack, dry and wet snow pixels were trained separately
using modeled snow liquid water content from Noah-MP. The results confirmed that
separate training of dry versus wet snow pixels resulted in reducing the magnitude
of bias, RMSE, and ubRMSE of ascending-only and descending-only training sets.
For example, the bias of descending-only was reduced from -0.60 to -0.30 dB for 6.,
and -0.72 to 0.40 dB for 6%,,;. Moreover, separate training for dry versus wet snow
pixels, and the physical constraints associated with the different electromagnetic

responses of the snow, demonstrated different performance at wet snow locations
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versus dry snow locations. For instance, the bias of the combined training target set
showed -0.82 dB for oy, and -0.96 dB for oy,;; while wet snow pixels showed much
lower biases with -0.16 dB for 6, and -0.25 dB for 6{,;;. This implies that C-band
backscatter showed relatively higher sensitivity toward wet snow than dry snow
due to the different electromagnetic responses (e.g., scattering versus absorption)
depending on the different snow conditions, which influences the penetration depth
as well as the dominant scattering component.

In summary, prediction of C-band backscatter over snow-covered land using
a physically-constrained machine learning approach suggests that explicit consid-
eration of the first-order physics as related to different scattering mechanisms in
accordance with snow conditions is essential in achieving reasonable accuracy. Fur-
ther, this paper provides a fundamental framework utilizing SVM regression as an
observation operator within a data assimilation system to be pursued in a follow-on
study in order to improve model-derived snow mass information based on a Bayesian
merger of an advanced land surface model with C-band backscatter observations.
This paper also highlights the necessity of considering the first-order physics dur-
ing machine learning training in order to ensure the machine learning algorithm

produces the right answer for the right reason.
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Chapter 3: Evaluation of GEOS L-Band Microwave Brightness Tem-
peratures using Aquarius Observations over Non-Frozen

Land across North America

3.1 Overview

Previous research showed that L-band brightness temperatures (7}) from SMOS
and SMAP demonstrated skill in retrieving soil moisture estimates across the globe
while also containing significant uncertainty over densely vegetated areas [45]. This
motivates merging L-band microwave observations into a land surface model using a
radiative transfer model (RTM) as the observation operator. RTMs have shown the
ability to reasonably reproduce L-band T} [65,161]. However, prior to conducting a
data assimilation experiment to enhance soil moisture estimates, it is important to
first explore the error characteristics and uncertainties in the observation operator
(RTM in this case) prior to conducting assimilation.

The overall objective of this chapter is to investigate the performance of the
zero-order tau-omega RTM embedded in the Goddard Earth Observation System
(GEOS) through comparison with T} observations collected by the Aquarius L-band

radiometer over North America. More specifically, performance of RTM-derived T,
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was investigated in terms of soil hydraulic parameters (e.g., porosity and wilting
point) and vegetation types. Section 3.2 describes the zero-order tau-omega RTM
as well as the calibration schemes of RTM parameters. Section 3.3 provides the
datasets utilized as part of this study. Section 3.4 describes the statistical indices
used for evaluating RTM-derived T}. Description of the the statistical performance
of RTM-derived T, is presented in Section 3.5 and key findings and conclusions are

summarized in Section 3.6.

3.2 L-band Radiative Transfer Model

3.2.1 Zero-Order Tau-Omega Model

A radiative transfer model (RTM) is a mathematical formulation describing
the propagation of electromagnetic radiation through a medium accounting for emis-
sion, absorption, transmission, and scattering [32]. A zero-order tau-omega model
is one of the widely used solutions to solve the radiative transfer equations and es-
timate L-band T}, [145]. Figure 3.1 describes the schematic of a tau-omega model to
estimate L-band T7;. Brightness temperature at the top of the atmosphere, T}, 704,
consists of upward and downward atmospheric radiation along with surface and veg-
etation components. The tau-omega model simplifies T, estimation at the top of

atmosphere T, 704, at polarization p = (H,V) as:

Tb,TOV,p = Ts(l - Tp)Ap + Tc(l - Wp)(l - Ap)(l + TpAp> + Tb,ad,prA;%

(3.1)

Tb,TOA,p - Tb,au,p + Tb,TOV,p X eXp<_Tatm,p) (32)
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Figure 3.1: Conceptual drawing for the tau-omega model used to esti-
mate L-band T}.

where Tj rov,, [K] is the brightness temperature at top of the vegetation, T [K] is
the surface soil temperature, and T, [K] is the canopy temperature that is assumed
to equal Ty [53]. T qup [K] and T} 4q, [K] are the upward and downward atmospheric
radiation, respectively. 7, [-] is the rough surface soil reflectivity, w, [-] is the scat-
tering albedo, A, [-] is the vegetation attenuation, and 7,4y, [-] is the atmospheric
optical depth used for representing atmospheric attenuation. Note that atmospheric
components (€.g., Ty aup, Thadp, and Tatm ) follows the Pellarine et al. [161].

Vegetation attenuation, A,, is calculated through the vegetation opacity model
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proposed by Jackson and Shumugge (1991) [100] as:

o _Tveg,p
Ay = exp(=5) (3.3)
Toegp = by X VWC =b, x LEWT x LAI (3.4)

where 6 [rad] is the incidence angle and T,e,, is the vegetation opacity at nadir.
Tyegp |-] 1s a function of the vegetation structure parameter b, -] and the vegetation
water content VW C' [kg m2]. VIWC is calculated as the product of leaf equivalent
water thickness, LEWT [kg m™?], and leaf area index, LAI [m? m™]. The rough
surface reflectivity 7, in Equation (3.1) is calculated as a function of smooth surface

reflectivity R, via:
= [(1 - Q)R, + QR,] exp(—hcos™ 0) (3.5)

where @) [-] is the polarization mixing factor due to surface roughness, N [-] is the
angular dependence, and ¢ indicates polarizations (V, H) when p = (H,V). The
smooth surface reflectivity, R,, is computed from the Fresnel equations, which is
dependent on the soil dielectric constant that varies with soil moisture [209]. The
dielectric constant formulation used in the RTM is based on Wang and Schmugge
[215]. h [-] is the effective roughness height parameterized with stepwise function

where:

hfmaz SM S wt
h= (3.6)

Pmag + Dmin—hmaz (AT qpt), wt < SM < poros

poros—wt

3 m3] represents porosity and wt [m3 m™] is the transitional soil

where poros [m
moisture calculated as a function of wilting point [215]. e and hyy,, represent
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the roughness height when soil moisture is at saturation and less than transitional
soil moisture, respectively. Based on Equation 3.6, effective roughness height is
dependent on the soil moisture as different amounts of liquid water results in a
variation of the dielectric constant, and in turn, influences the effective roughness
height.

From Equation (3.1), it is evident that vegetation attenuates the microwave
emission from the soil and simultaneously adds its own contribution to the measured
microwave Tp. In addition, precipitation interception by overlying vegetation and
ground litter also affects microwave emission from the soil [88]. The RTM employed

in this study neglects interception and littering effects [53].

3.2.2 RTM Parameter Calibration Scheme

The GEOS RTM utilizes several state variables (e.g., soil temperature, surface
soil temperature, and vegetation water content) from the NASA Catchment Land
Surface Model [115]. As the RTM is composed of various parameters described in
Section 3.2.1, calibration of the RTM parameters is essential to obtain the climato-
logically unbiased T}, estimates from the model [53]. Among the various parameters,
effective roughness height (h), scattering albedo (w), and the vegetation structure
parameter (b,) are regarded as important parameters in terms of reducing the uncer-
tainties for RTM-derived Ty [53,171]. Accordingly, these parameters were calibrated
against multi-angular SMOS Level 1 version 504 T, observations to compute the

T, estimates at the top of vegetation for both horizontal and vertical polarizations.
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Figure 3.2: Maps of calibrated and uncalibrated area across the study domain.

During the calibration, a particle swarm optimization search algorithm [107] was
employed in order to remove the long-term mean and standard deviation of Tj,
and in turn, resulted in minimizing the climatological difference between different
datasets [53]. Figure 3.2 depicts the maps of calibrated and uncalibrated regions
across the study domain. Note that the regions near inland water bodies and the
northern part of the study area were not included for calibration scheme as these
areas have limited number of SMOS observations during non-frozen soil conditions
for use during calibration. For the regions where SMOS observations are unavail-
able for calibration, these RTM parameters were filled in by using an average of
calibrated parameters for other regions with the same vegetation class.

There are several parameters not selected for the calibration. For example,
parameters regarding soil hydraulic parameters (e.g., porosity and wilting point)

were not included in calibration scheme in order to maintain the consistency with
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soil temperature and soil moisture derived from GEOS [53]. Moreover, several RTM
parameters such as leaf equivalent water thickness (LEWT) and angular dependence
(N,,) were not selected for calibration as these parameters are indirectly calibrated
using the effective roughness height (h) and vegetation structure parameter (b,).
For these parameters, literature-based lookup tables which were used in SMAP soil
moisture calculation as well as other RTMs (e.g., L-MEB, LSMEM, and CMEM)
values associated with each vegetation class were assigned.

RTM T, estimates are generated globally every 3 hours on the 36-km Equal
EASE grid [23] in terrestrial areas with non-frozen soil conditions. Prior to calibra-
tion, the available SMOS observations underwent extensive quality control. L-band
microwave signals are often prone to contamination by radio frequency interference
(RFI) [157] that arises from a variety of transmitters used in communication ap-
plications. As the accuracy of L-band T} is significantly degraded due to the RFI
corruption, large portions of Europe and Asia were masked out due to strong RFI
contamination. During the RTM calibration process using SMOS, further quality
control was applied during frozen soil conditions when the model-based land surface
temperature was less than 273.4 K. The tau-omega model used here [53] is only
applicable during non-frozen soil conditions. Furthermore, SMOS observations col-
lected near water bodies, during intense precipitation events (i.e., precipitation >
10 mm/h), or in the presence of snow cover (i.e., snow water equivalent > 10~* kg

m2) were excluded from calibration.
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3.3 Datasets

3.3.1 Aquarius Satellite Mission

The Aquarius mission is a joint collaboration between NASA and the Argen-
tinian space agency, Comisiéon Nacional de Actividades Espaciales (CONAE), with
participation from Brazil, Canada, France, and Italy. Aquarius was launched on
10 June 2011 and ended on 8 June 2015 due to a hardware failure [124]. The pri-
mary objective of the Aquarius mission was to monitor the seasonal variation of sea
surface salinity in global scale. The Aquarius instrument is onboard the Argentine
Satellite de Applicaciones Cientificas-D (SAC-D) observatory, a sun-synchronous,
polar-orbiting satellite with an altitude of 657 km [17]. Aquarius is a combination
of three L-band (1.413 GHz) passive radiometers and L-band active scatterometer
(1.26 GHz). The T, observations employed in this study are derived only from the
passive radiometers.

L-band T observations in this study are obtained from radiometers over the
non-frozen soils because the primary focus in this chapter is soil moisture. Three
passive radiometers provide T, observations at a spatial resolution (i.e., approximate
field-of-view) of 76 km x 94 km, 84 km x 120 km, and 96 km x 156 km, with incident
angles of 29.36°, 38.49°, and 46.29°, respectively. These incident angles are denoted
as beam #1, beam #2, and beam #3, respectively. The minor axis of each beam
is in the along-track direction while the major axis is aligned in the cross-track

direction. Each radiometer is directed toward the night side of the Earth in order to

89



avoid sun glint. Aquarius observations have a 7-day revisit frequency with ascending
and descending overpasses around 6 a.m. and 6 p.m. local time, respectively.

The Aquarius instrument went through a pre-launch and post-launch calibra-
tion in order to improve the accuracy of observed T}, [165]. Pre-launch calibration
includes the internal and external (a.k.a. laboratory test) receiver calibration as
well as calibration of the antenna switch-matrix. Post-launch calibration includes
the correction of diode temperature, exponential drift, antenna patterns, RFI, and
cold-sky calibration [18]. After the pre- and post-launch calibration, the atmo-
spheric contribution was removed when processing the Level-1 product to a Level-2
T, product. This study utilized Level-2, version-4 Aquarius 7T, provided by the
NASA Jet Propulsion Laboratory (JPL; ftp://podaac.jpl.nasa.gov) in the Hi-

erarchical Data Format (HDF5).

3.3.2 Preprocessing of Aquarius Observation

Besides the calibration, Aquarius 7, underwent post-processing. As the pri-
mary objective of this chapter is to evaluate the RTM-derived T}, the individual
Aquarius overpasses were resampled onto the 36-km Equal-Area Scalable Earth
(EASE) grid [23], which is the same grid used for the Catchment simulations. For
a given orbital track, the individual Aquarius T} observations that were centered
within a particular EASE grid cell were identified and then used to compute a mean
T, value for that EASE grid cell. If more than one Aquarius observation (over a

collection period of a few seconds) fell within a single EASE grid cell, then the arith-
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metic average was applied to that entire cell. In addition, the value applied at a
single cell center was also applied to the relevant neighboring cells (as a function of
look angle) such that the approximate field-of-view for each of the three beams was
correspondingly approximated on the relatively fine-scale 36-km EASE grid. The
process was repeated for each of the three beams for every Aquarius overpass during
the period 25 Aug 2011 through 8 Jun 2015, which represents the entire Aquarius
measurement record.

After preprocessing, both the RTM-based T}, estimates (for all three beams)
and the Aquarius T, observations were properly geolocated in space and time for
subsequent statistical analysis. In order to focus on terrestrial soil moisture esti-
mates, 36-km EASE grid cells with a water fraction greater than 0.05 were excluded
from the analysis because the observed Aquarius T;’s did not represent the same
physical processes as the RTM output (i.e., the RTM does not account for the pres-
ence of surface water impoundments). In addition, grid cells with fewer than 40
observations collected over the course of the four-year study period were excluded

from the analysis in order to yield statistically significant statistics.

3.3.3 Soil Classification and Soil Hydraulic Parameters

Soil information used in this chapter was based on the updated soil classifica-
tion scheme addressed in [50]. This scheme was developed based on the Harmonized
World Soil Database version 1.21 provided by Food and Agricultural Organization

and the State Soil Geographic (STATSGO2) database from U.S. Department of
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Figure 3.3: Cumulative Distribution Function, F(x), of (a) porosity and
(b) wilting point across the study area, including the sampling density
of each category. Q1 to Q3 represents the end points of the first to
third quartiles, respectively, and define the four categories in subsequent
statistical analyses.

Agriculture (USDA) in order to update the soil classification schemes by explic-
itly considering soil organic content. This classification contains 253 soil classes,
including 252 classes from three sets of low to moderate organic carbon categories
with 84 different mineral classes defined from the refined soil texture triangle plus
one additional peat class with a very high organic content. Based on the updated
soil classification scheme, soil hydraulic parameters (SHPs) are determined through
the pedotransfer functions suggested by Wosten et al. [222] using the percentage of

clay, silt, and organic matter [50]. Among the SHPs, porosity and wilting point are
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selected for investigation in this paper as these parameters directly influence the di-
electric constant and surface roughness variables that are used within the RTM. For
the analysis, porosity and wilting point were divided into four different categories
based on the quartile values drawn from the cumulative distribution function of each
variable across our study domain (Figure 3.3). For example, Category I collects the
value within the range of the zero to first quartile (0% to 25%) while Category IV

collects the value from third to fourth quartile (75% to 100%).

3.3.4 Vegetation and Irrigation Data

For the calculation of RTM-derived T}, land cover information from the Mod-
erate Resolution Imaging Spectroradiometer (MOD12Q1 collection 4 with 500 m
spatial resolution) International Geosphere-Biosphere Programme (IGBP) classifi-
cation schemes [79] was employed. However, the NASA Catchment Land Surface
Model (Catchment) uses six broad land cover classes (i.e., Broadleaf evergreen,
Broadleaf deciduous, needleleaf, grassland, shrub, and dwarf) which are based on
the GLOBCOVER 2009 datasets [138]. Accordingly, 16 global IGBP classes were
mapped into six dominant land cover classes across North America in order to
subsequently analyze the performance of RTM T, over different vegetation types.
Figure 3.4(a) represents the vegetation classes across the North America. Note that
broadleaf evergreen forest was excluded from subsequent analysis as it accounts for
less than 5% across the study domain.

Furthermore, as cropland is lumped into the grassland category in the Catch-
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Figure 3.4: Map of (a) vegetation classes discretized based on the Catch-
ment model and (b) irrigation classes based on Global Map of Irrigation
Area (GMIA) dataset across the North America. Five sub-categories are
divided based on the percentage of irrigation area (e.g., 0-0.1%, 0.1-10%,
10-100%).

ment model, the Global Map of Irrigation Area (GMIA; Siebert et al. [189]) dataset
is used to illustrate the percentage of area with actual irrigation relative to the total
area in order to analyze the influence of irrigation over the grassland regions in the
RTM-derived T;,. As the GMIA dataset has a spatial resolution of 5 arc minutes
by 5 arc minutes, it is resampled onto the 36 km EASE grid in order to coincide
with the Catchment model. Further, the GMIA dataset was discretized into three

sub-categories (i.e., 0-0.1%, 0.1-10%, 10-100%) (Figure 3.4b) based on the derived
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CDF.

3.4 Evaluation Metrics

Statistical evaluation of the RTM-based T} rras was conducted by calculating
bias and root mean square error (RMSE) through comparison with Aquarius 7,

observation which can be calculated as:

n

) 1
bias = - Z(Tb,RTM — Th.obs) (3.7)

=1

n

RMSE = %;(TMTM — Thobs)? (3.8)
where n is the number of colocated (in space and time) brightness temperature
observations and predictions, Ty gras [K] is the brightness temperature predicted
by the RTM, and Ty s [K] is the brightness temperature observed by Aquarius.
In general, bias is a measure of systematic error that indicates the over- or under-
prediction of the observation while RMSE accounts for both systematic and non-

systematic (random) errors [142]. Additionally, unbiased root mean square error

(ubRMSE) [70] was computed, which is the RMSE after first removing the bias.
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3.5 Results and Discussions

3.5.1 Comparison between RTM, SMOS, and Aquarius Brightness
Temperatures

Prior to analyzing the RTM-derived T}, Aquarius T}, observations were com-
pared to both SMOS Level 1 version 504 and RTM-derived Tps colocated in space
and time. This analysis is valuable in that different 7}, behavior, according to in-
cidence angle, influences the soil moisture retrieval as well as the data assimilation
framework. Kerr et al. [108] mentioned that angular dependency of Tj critically
influences the determination of surface roughness and vegetation structure param-
eters, which in turn, affects the accuracy of retrieved soil moisture. Moreover,
this analysis can provide potential insights to determine off-diagonal components in
RTM-derived T} error covariance as cross correlations between different incidence
angles and polarizations are non-negligible in future DA framework [52].

Figure 3.5 highlights the angular dependency of the spatio-temporal mean 7,
across North America from co-located values among SMOS-, RTM-, and Aquarius-
based T,’s. The SMOS incidence angles that were closest to the corresponding
Aquarius incidence angles are selected for comparison. In general, the mean T}, at
horizontal polarization decreases with increasing incidence angle. Conversely, the
mean 7;, at vertical polarization generally increases in accordance with increasing
incidence angle. In terms of the difference among different Tys, an increase of inci-

dence angle resulted in more difference of RTM T}, versus either SMOS or Aquarius
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Figure 3.5: Spatio-temporally averaged Tj across the study period (from
25 August 2011 to 7 June 2015) over North America as a function of
incidence angle from SMOS, RTM, and Aquarius.

Ty,. Kornelsen et al. [112] explained that the increase of incidence angle influences
the microwave attenuation from the soil surface as well as the dielectric roughness,
which can lead to a higher difference in 7} at higher incidence angle. However, T,
from both SMOS and Aquarius showed little sensitivity (i.e., less than 1 K) from
40° to 45° at vertical polarization.

Figure 3.6 highlights the maps of bias, RMSE, and ubRMSE of the RTM-
based estimates for beam #1 at horizontal polarization (relative to Aquarius) with
ascending and descending overpasses across North America. Overall computed bias
for ascending overpasses ranged from -8.13 K to 8.58 K with domain-averaged bias
of 0.79 K (Figure 3.6(a)). In the case of descending overpasses, it showed more nega-

tive bias than ascending overpasses (as shown in Figure 3.6(c)) with the bias ranged
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Figure 3.6: Statistical maps of bias (top row), RMSE (middle row), and
unbiased RMSE (bottom row) between Aquarius and RTM 7}, during the
study period (from 25 August 2011 to 7 June 2015) over North America
for beam #1 at H-polarization. Left and right columns represent the
ascending and descending overpasses, respectively.
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between -11.7 K to 4.55 K and a domain-averaged bias of -2.79 K. Similar behavior
was observed for both beam #2 and beam #3 across the ascending and descending
overpasses with bias ranged from -12.8 K to 8.85 K and -14.1 K to 8.40 K for beam
#2 and beam #3, respectively. Opposite signs of biases calculated from ascending
and descending overpasses resulted from the different observation times. Aquarius
has ascending and descending overpasses around 6 a.m. and 6 p.m. in local time,
respectively. Holmes et al. [95] and De Lannoy et al. [53] suggested that the opposite
sign of bias from ascending and descending overpasses could result from the large
magnitude of diurnal biases in the soil temperature estimated from the land surface
model. The northern part of Canada near Lake Winnipeg and Hudson Bay has a
relatively high magnitude of negative bias (i.e., greater than -13.3 K) throughout the
different beams and polarizations. Locations immediately next to water bodies near
the Great Lakes, Great Salt Lake, Lake Winnipeg, and Hudson Bay represented
anomalously large, positive biases (approximately 40 K). In addition, some large
areas in and around the boreal forest regions in northern Canada show higher bias
(18.6 K and 12.7 K for ascending and descending overpasses, respectively), which is
also likely due to the presence of significant numbers of sub-grid scale lakes. These
phenomena are further exacerbated by the resampling of the Aquarius 7}, onto a
relatively finer scale grid. That is, Aquarius 7, was oversampled onto the 36-km
EASE grid in order to facilitate the comparison with RTM-derived T,. However,
when the footprint of the Aquarius 7T; includes open water bodies that extend be-
yond a particular 36-km EASE grid cell, the resampled, neighboring pixels will still
contain information partially contaminated by the nearby open water bodies. Ad-
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ditionally, the lack of a module for open water in the current RTM also resulted in
some strongly biased T; simulation results.

RMSE (Figure 3.6(c) and 3.6(d)) and ubRMSE (Figure 3.6(e) and 3.6(f))
statistics for beam #1 ascending and descending overpasses at horizontal polariza-
tion showed similar patterns of bias. RMSE of beam #1 at horizontal polarization
ranged from 3.99 K to 17.4 K across the different overpasses with domain-averaged
RMSE of 11.6 K and 14.9 K for ascending and descending overpasses, respectively.
Similarly, ubRMSE mostly ranged from the 2.20 K to 13.1 K throughout the ascend-
ing and descending overpasses with domain-averaged ubRMSE of 7.93 K and 7.85 K,
respectively. Nearly identical patterns are witnessed for the other beams and polar-
ization combinations (not shown). The RMSEs are mostly within the range of 4.13
K to 18.9 K for both ascending and descending overpasses across the study domain
for all three beams at horizontal polarization. However, vertical polarization RMSE
results are, in general, smaller than their horizontal polarization counterparts with
RMSE values generally ranging from 3.99 to 16.4 K, 4.14 to 15.2 K, and 3.83 to 14.8
K for beams #1, #2, and #3, respectively (not shown). Large RMSE values are
found in the northern part of Canada and near large water bodies associated with
correspondingly large bias values (see Figure 3.6(a) and 3.6(b).) Unbiased RMSE
results are shown in Figure 3.6(e) and 3.6(f) for beam #1 at horizontal polariza-
tion, and typically range from 0 to 14.2 K, except in the central United States and
Canada, where values typically range from 12.0 to 17.7 K for both ascending and
descending overpasses. Similar ranges of unbiased RMSE were found for beams #2

and #3 at horizontal polarization. The ubRMSE values are slightly smaller at ver-
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tical polarization and typically range between 10.1 to 15.2 K in the Central United
States and between 1.39 to 5.43 K everywhere else.

Besides the statistics over all the pixels across the study domain, statistical
performance of calibrated and uncalibrated grid cells using SMOS T} observations
(illustrated in Figure 3.2) were separately evaluated for the purpose of analyzing the
influence of calibration on the RTM T, accuracy. Figure 3.8 and Figure 3.9 represent
the statistical performance of ascending and descending overpasses over calibrated
and uncalibrated grid cells (depicted in Figure 3.2), respectively. The overall result
confirmed that calibrated pixels showed better bias, RMSE, and ubRMSE than un-
calibrated pixels. For example, the computed bias for ascending overpass mostly
ranged from -7.03 K to 4.00 K (calibrated pixel) and -7.48 K to 8.33 K (uncali-
brated pixel) with domain-averaged bias of 0.79 K and 2.17 K for calibrated and
uncalibrated pixels, respectively. The descending overpass also showed similar be-
havior as the ascending overpasses with the calculated bias ranged from -10.1 K to
0.92 K and -9.73 K to 3.43 K for calibrated and uncalibrated pixels, respectively.
As most of the regions near water bodies and northern boreal forest were excluded
from the calibration (Figure 3.2), results showed a relatively high magnitude of bias,
RMSE, and ubRMSE as compared to other regions. In the case of the regions with
a high percentage of irrigation (Figure 3.4(b)), both calibrated (Figure 3.7) and
uncalibrated (Figure 3.8) pixels showed relatively high bias, RMSE, and ubRMSE
as compared to other regions across the different overpasses. Comparing calibrated
and uncalibrated pixels, statistics over calibrated pixels showed slight improvement

in comparison with uncalibrated regions. Detailed discussion about performance
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over irrigated areas is provided in Section 3.5.3.
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Figure 3.7: Statistical maps of bias (top row), RMSE (middle row), and unbiased
RMSE (bottom row) between Aquarius and RTM 7, during study period (from 25
August 2011 to 7 June 2015) at calibrated regions over North America for beam #1
at H-polarization. Left and right columns represent the ascending and descending
overpasses, respectively.

3.5.2  Performance as a Function of Soil Hydraulic Parameters

Performance of the RTM-derived T}, is evaluated as a function of soil hydraulic
properties (SHPs) across the study domain. Figure 3.9 and Figure 3.10 show the

statistical results of the comparison between RTM and Aquarius T}, as a function
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Figure 3.8: Statistical maps of bias (top row), RMSE (middle row), and unbiased
RMSE (bottom row) between Aquarius and RTM 7}, during study period (from
25 August 2011 to 7 June 2015) at uncalibrated regions over North America for
beam #1 at H-polarization. Left and right columns represent the ascending and
descending overpasses, respectively.

of porosity and wilting point, respectively. The whisker ranges from the 5th to
95th percentiles of the computed statistics whereas the boxplot highlights the 75th,
50th, and 25th percentiles. According to Figure 3.9, the median bias (i.e., 50th
percentile of the boxes shown in the leftmost column of the subplots) is lowest in
Category III for ascending overpasses with a value of -0.05 K and Category II for

descending overpasses with a value of -1.58 K. Across the different overpasses, the
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Figure 3.9: Statistical comparison for different porosity categories di-
vided based on the CDF (Figure 3.4a) for beam #1 at H-polarization.
The different rows show results for ascending and descending overpasses.
The different columns represent the results of bias, RMSE, and unbiased
RMSE. Note that numbers above the boxes indicate the number of sam-
ples for each category.

highest porosity (Category IV) corresponds to the poorest agreement between the
RTM T, estimates and the Aquarius 7}, observations for both ascending (-2.62 K) and
descending (-5.94 K) overpasses. RMSE and ubRMSE plots presented in the second
and third columns of Figure 3.9 also revealed that the highest porosity category
showed the highest median values of 11.9 K (RMSE) and 9.83 K (ubRMSE) for
ascending and 13.0 K (RMSE) and 9.31 K (ubRMSE) for descending overpasses.
Statistics over calibrated pixels also showed similar behavior in that the highest
porosity category revealed the highest median bias.

Similar to the behavior of porosity, a higher wilting point, in general, corre-
sponds to a weaker agreement between the RTM T, estimates and the Aquarius T}

observations (Figure 3.10). Median bias for these four categories are 1.41 K, 0.50
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Figure 3.10: Statistical comparison for different wilting point categories
divided based on the CDF (Figure 3.4b) for beam #1 at H-polarization.
The different rows show results for ascending and descending overpasses.
The different columns represent the results of bias, RMSE, and unbiased
RMSE. Note that numbers above the boxes indicate the number of sam-
ples for each category.

K, -0.40 K, and -2.67 K for ascending overpasses and -1.98 K, -2.89 K, -4.29 K,
and -5.80 K for descending overpasses, respectively. Similar behavior was shown for
calibrated pixels over both ascending and descending overpasses in that the highest
median bias was shown at the highest wilting point category (Category IV). RMSE
and ubRMSE for the different wilting point categories also suggest more RTM un-
certainty in the highest wilting point category (Category IV) with values of 11.7
K (RMSE) and 9.32 K (ubRMSE) for ascending and 12.7 K (RMSE) and 9.15 K
(ubRMSE) for descending overpasses, respectively.

High values of uncertainties for RTM 7T} in soils with large porosity or large
wilting point can be explained through the influence on the surface roughness and

dielectric constant. Soils with higher porosity or wilting point tend to have a higher
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fraction of clay [215]. As clay has a large surface to volume ratio (relative to silt),
it has an affinity for binding a greater percentage of water molecules, which causes
a variation in the dielectric constant [155]. Additionally, an increase in wilting
point or porosity will influence the calculation of effective roughness height in the
RTM (Equation 3.6) when the soil moisture is within the range of transition point
and porosity [53]. Improper parameter estimation of effective roughness height
significantly influences the calculation of surface reflectivity, and in turn, results
in reduced accuracy of RTM derived T,. Another possible cause is related to the
lack of SMOS observations for use during calibration over regions parameterized as
peat, which features high porosity values (approximately 0.8). Furthermore, because
peatlands are typically also water-rich, the screening of SMOS data for open water

fractions less than 0.05 yielded a limited number of observations in these areas.

3.5.3 Performance as a Function of Vegetation Type

In a similar manner as conducted for soil hydraulic parameters, a statisti-
cal evaluation of predicted T, performance was conducted as a function of vege-
tation type over ascending and descending overpasses separately. Statistical com-
parisons for horizontal polarization are shown in Figure 3.5.3. Two forest classes
(e.g., broadleaf deciduous and needleleaf forest) showed better agreement with lower
median bias, RMSE, and ubRMSE between the RTM and Aquarius observations
relative to other vegetation classes. For beam #1 at H-polarization, ascending over-

passes showed a median bias of 1.37 K and -0.49 K and descending overpasses showed
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Figure 3.11: Statistical comparison over the dominant vegetation classes
(Figure 3.4) for beam #1 at H-polarization. The different rows show
results of bias, RMSE, and unbiased RMSE. The different columns show
results for ascending and descending overpasses. The upper and lower
whiskers represent 95th and 5th percentiles, respectively, whereas the
boxes show the median line along with 75th and 25th percentiles.
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a median bias of -1.30 K and -2.63 K for broadleaf deciduous and needleleaf forest,
respectively. In terms of the range between the 5th and 95th percentile values of
bias and RMSE, the grassland and shrub vegetation types showed a more narrow
range than did dwarf vegetation. Among the different vegetation classes, grassland
showed the largest magnitude of bias, RMSE, and ubRMSE for both ascending and
descending overpasses across the study domain. Median biases for ascending and
descending overpasses were -3.4 K and -7.35 K, respectively. Similarly, the RMSE
and ubRMSE plots presented in Figure 3.5.3(c) through Figure 3.5.3(f) showed poor
performance in T}, estimation in grasslands. Ascending overpasses showed the range
of RMSE and ubRMSE as 7.42 K to 19.9 K and 5.97 K to 17.4 K, respectively. Sim-
ilarly, descending overpasses showed the range of RMSE and ubRMSE from 8.31 K
to 21.5 K and 5.88 K to 16.2 K, respectively.

De Lannoy et al. [53] also revealed similar behavior in that 7, estimates from
the RTM exhibited low uncertainties over dense vegetation while large uncertainties
were observed over regions with grassland. Poor performance in grassland regions
might result from poorly parameterized agricultural croplands. Mahanama et al.
[138] mentioned that irrigated croplands, rainfed croplands, and Mosaic cropland
(50-70%) are classified as grassland in the Catchment model. Accordingly, additional
analysis was conducted through statistical comparisons for different categories of
irrigation area percentage introduced in Section 3.3.3.

Statistical comparison of Aquarius and RTM T} in accordance with different
percentages of irrigated areas within a pixel (via GMIA) revealed that pixels with
more than 80% of irrigated area showed the highest bias for ascending and descend-
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Table 3.1: Statistical comparison of RTM-derived T;, at beam #1 horizontal po-
larization depending on the different percentage of pixel with irrigation scheme (I)

provided by GMIA datasets. Units for bias, RMSE, and ubRMSE are K.

(a) Ascending | I>10% | 0.1%<I<10% | I <0.1%
# of samples 138 521 202
bias -4.95 -3.29 -2.80
RMSE 14.3 14.0 13.8
ubRMSE 12.0 11.8 12.5

(b) Descending | I>10% | 0.1%<I<10% | I <0.1%
# of samples 192 494 159
bias -7.81 -6.06 -6.03
RMSE 16.7 15.4 13.5
ubRMSE 11.8 11.6 11.0

ing overpasses (Table 3.1). Moreover, according to Figure 3.4, major irrigation-
dominated regions including parts of Nebraska, the Lower Mississippi River Basin,
and the California Central Valley [162] are classified as grassland even though they
are intensively irrigated croplands. De Lannoy and Reichle [52] and Rains et al. [172]
revealed that SMOS observations have potential capability of containing informa-
tion regarding the irrigation. This result suggests that predicted T will likely be less
accurate due to a lack of an explicit irrigation scheme in the land surface model (and
hence not considered in the RTM) [54]. Irrigation, in general, makes soil moisture
wetter and physical temperature lower via relatively cool water added to warm soil in
conjunction with evaporative cooling, which leads to a lower T;,. Because irrigation
is not explicitly accounted for the Catchment model, uncertainties of soil moisture
during irrigation tend to increase. As the soil moisture underestimates in the model,
it leads to an overestimate of the effectiveness roughness height in the RTM based
on Equation 3.6 depending on the magnitude of soil moisture in comparison with
wilting point and porosity. These phenomenon result in underestimation of surface
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reflectivity (Equation 3.5), and in turn, underestimation of surface reflectivity as

well as the brightness temperature at the top of atmosphere (Equation 3.1).

3.6  Conclusions and Future Work

The overall objective of the research was to evaluate the RTM-based L-band 7,
estimates through comparison with Aquarius 7} observations collected by a space-
borne L-band radiometer over North America. The evaluation process was per-
formed as a function of soil hydraulic parameters and vegetation types, which are
regarded as two essential factors to be considered when using T, to retrieve soil
moisture. Overall evaluation was conducted for the entire Aquarius period from 25
August 2011 to 7 June 2015. Analyses were performed at all three incidence angles
(29.36°, 38.49°, and 46.29°, a.k.a., beams #1, #2, and #3) from Aquarius at both
horizontal and vertical polarizations, and for ascending and descending overpasses.

Overall comparison of RTM-derived T}, with Aquarius 7}, observations (for both
ascending and descending overpasses) revealed that RTM-derived T}, showed good
performance with Aquarius T} across the study domain except within some regions
that are not included in the calibration scheme due to a lack of available SMOS
observations. Areas near to, or with, dynamic ponding or static lakes exhibited
relatively large uncertainties due to the oversampling of Aquarius T}, as well as lack
of an open water module in the current RTM. Statistics computed over different soil
hydraulic parameters (e.g., porosity and wilting point) revealed that higher porosity

and higher wilting point corresponded to poorer statistics due to the variation in
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surface roughness and dielectric constant.

Among the vegetation classes, broadleaf deciduous and needleleaf forest yielded
the best statistics in terms of bias, RMSE, and ubRMSE. The RTM exhibited bet-
ter performance in regions of dwarf vegetation as compared to the shrub land and
grassland vegetation types. The RTM exhibited the lowest accuracy in grasslands
among the five different vegetation classes, which is largely attributed to regions
of agricultural irrigation and a lack of local irrigation schemes as well as a lack of
inter-annual crop rotations in the land surface model that serves as the input to the
RTM.

In summary, RTM-derived 7} does a reasonable job in reproducing L-band 7,
observations from Aquarius over different soil hydraulic properties and vegetation
types across North America. Better agreement between the RTM-derived estimates
and the Aquarius observations was witnessed with decreasing porosity and wilt-
ing point. The RTM-derived T, produced reasonable statistics for most vegetation
types while further consideration of cropland (which is classified as grasslands in
this study) could improve the accuracy of the RTM. These findings support the
usefulness of SMOS T, observations to calibrate RTM parameters, and in turn, es-
timate reasonable L-band 7T} from the RTM. Furthermore, these findings can be
leveraged into a follow-on study by including Aquarius L-band 7T, in a data assim-
ilation framework for the purpose of improving soil moisture estimates in a land
surface model. For example, as most of the northern part of the study domain was
not calibrated due to the presence of abundant sub-grid scale lakes, relaxing the
constraints of SMOS T}, with regards to the distance to open water bodies could
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assure more SMOS observations for use during calibration. Furthermore, an update
of the current RTM by including a module for open water should also be considered.
In terms of error characterization, larger observation errors need to be assigned for

grassland areas as well as for regions with high porosity soil and high wilting points.
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Chapter 4: Estimation of Snow Mass Information through Assimila-
tion of C-band Synthetic Aperture Radar Observations
using an Advanced Land Surface Model and Support Vec-

tor Machine Regression

4.1 Overview

Beyond the retrieval of snow water equivalent (SWE) and snow depth based on
remote sensing imagery, data assimilation (DA) has been widely applied to extend
the value of remotely-sensed observations while also enhancing model estimates of
snow. The ultimate goal of using DA is to acquire optimal estimates of snow mass
information that is superior to both the observations or the model-only estimates. In
terms of snow mass assimilation, snow cover estimates (e.g., snow cover area [SCA]
and snow cover fraction [SCF]) from optical imagery or brightness temperatures, 7j,
from passive microwave (PMW) radiometry have been typically used for updating
snow mass. In terms of active microwave (AMW) observations, there are relatively
few studies employing space-borne SAR imagery into a DA framework in order to
improve estimates of snowmelt runoff and snow stratigraphic profiles [136,164]. The

study presented in this section is the first attempt to integrate C-band backscatter
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observations into an advanced land surface model (LSM) to improve terrestrial snow
mass estimates. Notably, the investigation of a physically-constrained support vector
machine (SVM) regression technique developed in Chapter 2 suggests that SVMs can
serve as an observation operator in terms of snow mass assimilation. Accordingly,
this chapter is intended to address the scientific hypothesis that integration of the
SVM regression into a LSM as part of a DA framework will improve the accuracy
of snow mass estimates.

Section 4.2 provides the overall introduction of DA as well as the one-dimensional
ensemble Kalman filter (EnKF) used to assimilate the C-band backscatter observa-
tions into the LSM. Section 4.3 describes the brief introduction of datasets, models,
and the study area. In Section 4.4, the assessment of updated SWE and snow depth
through comparison with a model-only run (i.e., without data assimilation) as well
as against ground-based measurements is introduced. Afterwords, study conclusions

and discussion are presented.

4.2 Datasets, Models, and Methods

4.2.1 Sentinel-1 Backscatter Observations

In a similar fashion as discussed in Chapter 2, Sentinel-1 IW GRD backscatter
observations were selected as the primary application with a focus on terrestrial
snow mass estimates. Moreover, Sentinel-1 backscatter observations underwent the
same preprocessing steps introduced in Section 2.2.2 using Google Earth Engine to

mitigate geometric distortions (e.g., foreshortening and overlying) as well as thermal
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and speckle noises. Additionally, Sentinel-1 observations were resampled onto a 0.01°
equidistant cylindrical grid to coincide with the spatial resolution of geophysical
estimates from the Noah-MP land surface model. One main difference in this chapter
is that Sentinel-1 observations for only ascending overpasses (approximately 6 p.m.
local time) was utilized rather than observations from descending overpasses or a
combination of ascending and descending overpasses in order to minimize random
errors caused by the mixture of different electromagnetic responses from different

snow conditions (e.g., dry snow versus wet snow) as summarized in Section 2.3.4.

4.2.2 Land Information System

The NASA Land Information System (LIS) is an inclusive software framework
developed at the Goddard Space Flight Center. LIS contains various components
including advanced land surface models (LSMs), various types of observation read-
ers (e.g., ground and satellite observations), DA algorithms, and high-performance
computing routines all with the primary objective of enhancing the knowledge of
land-atmosphere interactions [118]. Among the various LSMs provided within LIS,
the Noah-multiparameterization (Noah-MP; [154]) model was chosen for this study.

The basic framework of Noah-MP follows the Noah LSM while it augments
multiple parameterization options to improve the representation of land-atmosphere
interactions [154]. In terms of snow, Noah-MP contains a physically-based snow
model with three snow layers and improved snow albedo schemes, which results in

better representation of snow mass estimates as well as snowmelt timing as compared
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to the Noah LSM [154,226]. Selection of the parameterizations applied in Noah-MP
follows the schemes introduced in Kwon et al. [121].

Before running each simulation, initial conditions for the model were estab-
lished during a spin-up period (e.g., January 1980 to May 2015) using a single
replicate followed by a 20-member ensemble of model realizations computed from
an additional model run from May 2015 to August 2016 based on perturbed me-
teorological fields from the Modern-Era Retrospective analysis for Research and
Application, version 2 (MERRA-2; [82]) and Tropical Rainfall Measuring Mission
(TRMM) products as boundary condition (details outlined in Section 4.2.3). With
the established ensemble of initial conditions, Noah-MP was simulated using both
model-only (a.k.a., Open Loop) and data assimilation techniques on a 0.01° equidis-
tant cylindrical grid with a daily time step (aggregated up from 15-minute model

run) from September 2016 to August 2017.

4.2.2.1 Ground-based Measurements and Study Area

Evaluation of snow mass estimates (i.e., SWE and snow depth) from both
the model-alone simulation (a.k.a. Open Loop; OL) and the DA simulation was
conducted through a comparison with SWE and snow depth measurements from
the SNOwpack TELemetry (SNOTEL) network. SNOTEL is a ground-based mea-
surement network operated by the U.S. Department of Agriculture National Re-
sources Conservation Services (NRCS; https://www.wcc.nrcs.usda.gov/snow/)

and provides SWE, snow depth, precipitation, and air temperature measurements.
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In this study, SWE and snow depth measurements during the validation period (e.g.,
September 2016 to August 2017) were collected from 112 stations located within the
study domain (Figure 4.1). The average elevation for the selected sites was 3071 m
with the lowest elevation being 2268 m (Battle Mountain; WY317) and the highest

elevation being 3542 m (Sargents Mesa; CO 1128).

108" W 106" W

Figure 4.1: Geographic location of the study domain including the locations of
SNOTEL stations. The black lines in the right-most figure represent the boundary
lines of subbasins (Hydrological Unit Code level 4 scale) provided by the USGS.

4.2.3 Data Assimilation Framework

This study utilized a one-dimensional EnKF to integrate Sentinel-1 backscatter
observations into the Noah-MP land surface model. One main advantage of the
EnKF is that it does not require linear models or Gaussian errors, which leads to its
wide application in numerous hydrologic studies including soil moisture [89,97,174],

snow mass [51,81,192,225], and streamflow [41,57,85].
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As part of the EnKF routine, ensemble replicates are propagated in time and
updates of model states are determined by the mean and spread of the ensemble
replicates which approximate the state distribution. During the propagation step,
the a priori state vector at time step t, yf ~, is calculated as a function of a posteriori
model state vector at time step t —1, yffl, forcings, u;—1, and additive model error,

o, which can be written as:
ylm = f(ygfl,ujﬁt_l,ozj) for je[l,2,...N,] with y(t =ty) =yo (4.1)

where j represents a given replicate that is propagated with the geophysical (land
surface) model and N, represents the number of the ensemble replicates. In this
study, N,=20 ensemble replicates was selected based on Kwon et al. [121]. The
symbol f(-) indicates the nonlinear geophysical model operator (i.e., Noah-MP in
this study). After the propagation step, the EnKF uses an update equation as
follows:

vt =yl A K(Ze+ ) = Moyl )] (4.2)

where yf_ and yf+ indicate the a posteriori and a priori model state of the jth
ensemble at time step ¢, respectively. Z; is the Sentinel-1 backscatter observations
at measurement time ¢ that is perturbed with measurement error, ¢, following a
Gaussian distribution of mean zero and observation error covariance, Cl,,. M (y7™)
is the backscatter estimate from the observation operator, M,(-), which maps the
geophyiscal model space to observation space. In this study, SVM regression serves
as M;(-) (see section 4.2.4 for details). K; is the Kalman gain, which is a relative
weight between the observation error and model error that determines the amount

118



of update. K; can be computed as:
K, = Couly]™, My(y]"))[Cov(My(y ™), Mi(yi ")) + Cu] (4.3)

where Cov(y]™, My(y]™)) represents the error cross-covariance between the a pri-
ori model estimates and estimated backscatter derived from the observation oper-
ator. Cov(Myy; , Mi(y;)) denotes the error (sample) covariance of the estimated
backscatter derived from the observation operator and C,, is the error covariance
of the Sentinel-1 backscatter observations. Based on Lievens et al. [132], 0.3% dB?
was selected as the error covariance of the Sentinel-1 backscatter observations.
Perturbation of model forcings is one key aspect in the OL and DA simulations
that implicitly quantifies the uncertainty of the boundary conditions, and hence, the
resulting snowpack based on ensemble replicates. Details of the perturbation scheme
follows that introduced in Kwon et al. [121] and Reichle et al. [175]. Selected param-
eters for perturbation include the radiation components (i.e., downwelling shortwave
and downwelling longwave radiation), near-surface air temperature, and precipita-
tion. An overview of the perturbation parameters are summarized in Table 4.1.
Throughout all four boundary conditions highlighted in Table 4.1, a first-order au-
toregressive model temporal correlation of 1 day was used. In the case of shortwave
radiation and precipitation, these parameters were perturbed using additive, zero-
mean Gaussian distributions while multiplicative, log-normal distributions with a
mean of one was utilized to perturb longwave radiation and near-surface air tem-

perature.
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Table 4.1: Overall summary of perturbations of meteorological forcing datasets
for both OL and DA. Note that M and A represents multiplicative and additive,
respectively. AR(1) represents the first-order autoregressive temporal correlation.

Cross Correlation

Error Standard

Forcings Type Deviation AR(1) SW IwW P T,
Shortwave Radiation (SW) M 0.5 1 day 1
Longwave Radiation (LW) A 50 Wm™2 1lday -05 1
Rainfall Rate (P) M 0.5 lday -08 05 1
Near-Surface
Air Temperature (7,) A 1K lday 03 06 -01 1

4.2.4 Support Vector Machine Observation Operator

The main role of the observation operator, M,(-), within the DA framework
is to map the model states (e.g., SWE estimated from Noah-MP) into observation
(i.e., backscatter) space. Existing studies [2,75,77,121] demonstrate the ability of
machine learning (ML) algorithms as an effective observation operator (alternative
to a radiative transfer model, e.g.) for snow mass assimilation. More specifically,
Chapter 2 revealed that the physically-constrained support vector machine (SVM)
regression developed over snow-covered terrain successfully reproduced the C-band
backscatter observations when considering the different electromagnetic response
from different snow conditions.

Given the [1 x NJ] input vector (y) that represents four geophysical variables
from Noah-MP (e.g., SWE, snow density, snow liquid water content, and top layer

snow temperature), the general solution to SVM regression can be expressed as:

T = @) = Y- k) + 5 (4.9

where oy and &y denotes the predicted co- and cross-polarized backscatter from
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the well-trained SVM, respectively. Training matrix, x, contains the model input
vectors, y, at the times of m training targets at a given pixel with a matrix size of [M
x NJ], where M indicates the number of a available Sentinel-1 observations for SVM
training [74]. «; and o indicate the dual Lagrangian multipliers and 0 represents
the offset coefficients. Among the different kernel types, the Gaussian radial basis
kernel function, k(x;,y) = exp{—||z; — y||*}, was selected in this study. Solution
of Equation 4.4 was conducted using the LIBSVM library [35], which is an open
source machine learning module provided by National Taiwan University. SVM
training and prediction follows the procedure outlined in the Section 2.3.4 and is

also summarized in the following section.

4.2.4.1 SVM Training and Prediction Procedure

Training targets (and outputs) include both co-polarized (oyy) and cross-
polarized (oy i) Sentinel-1 backscatter observations over snow-covered terrain, which
is conditionally constrained by the Interactive Multisensor Snow and Ice Map-
ping System (IMS) snow cover products from National Oceanic and Atmospheric
Administration/National Environmental Satellite, Data, and Information Service
(NOAA/NESDIS). In this section, backscatter at different polarizations were trained
separately because of the different electromagnetic response in oyy and oy gy de-
pending on the snow wetness. For example, oy does not show significant variation
during the dry snow season as the long deeper penetration depth of C-band radi-

ation leads the total backscatter to be predominantly controlled by the snow-land
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interface [129]. However, an increase of liquid water content within the snowpack
during wet snow conditions leads to more absorption and reflection of C-band pho-
tons, which results in the sharp decrease of oy [131]. In the case of oy g, C-band
photon scattering is more variable as it is more sensitive to multiple scatterings
within the snowpack as compared to co-polarized C-band radiation [66,228|.

During the SVM training phase, Sentinel-1 observations during April 2015 to
August 2016 and September 2017 to August 2018, were selected for use. In order
to implement a split-sampling procedure, Sentinel-1 observations during September
2016 to August 2017 were excluded from SVM training and instead were used dur-
ing the validation procedure. For training of each grid cell, a fortnightly training
period was used that includes 2-week period before and after the specific fortnight
of interest. This was done to better capture the snow seasonality while also reducing
discontinuities between one fortnightly period and the next [75].

Besides the training target, the selection of optimal input variables plays an
important role in implementing physical constraints into the statistical learning pro-
cess. Following the techniques outlined in Section 2.4, four snow-related geophysical
variables estimated from Noah MP (i.e., SWE, snow density, snow liquid water, and
top-layer snow temperature) were selected for this study. Selection of this particular
set of input datasets was predicted by the C-band scattering mechanisms over the

snow-covered terrain.
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4.2.4.2 SVM Controllability Issues

In general, the controllability of the system is guaranteed if and only if chang-
ing the inputs of the system can change the system output [210]. For the use of
SVM regression as an observation operator in this DA framework, it is assumed that
errors in the prognostic model states(s) are correlated back to the SVM-based pre-
dictions [121]. Once the appropriate type and number of input datasets and training
targets are established, the SVM-based DA framework, in general, is controllable.
In short, controllability issues arise when the trained SVM is required to make pre-
dictions based on inputs (scenarios) that were not witnessed during the training
procedure. Unfortunately, as mentioned in Section 2.2.2; irregular data acquisition
before early 2017 might influence the number of available training datasets, at times,
lead to the generation of an uncontrollable SVM-based observation operator that,
in turn, results in degrading the accuracy of snow mass estimates via DA.

In order to minimize this controllability issue, a rule-based DA update was uti-
lized in this study. First, when considering the typical range of Sentinel-1 backscatter
observations over snow-covered terrain (e.g., ranged from -30 dB to 0 dB in both
oyy and oy g ), assimilation was turned off when the predicted backscatter was out-
side of this specific range. Further, when the absolute deviation between predicted
and observed backscatter is larger than an established threshold (e.g., 10 dB based
on the previous chapter), the assimilation routine was turned off. These simple rules
are intended to help mitigate issues related to a lack of SVM controllability that

occurs infrequently, but has deleterious effects when it does occur.
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4.2.4.3 Evaluation Metrics

For the evaluation of DA performance, snow estimates, including SWE and
snow depth, from both the OL and Sentinel-1 DA were compared against the ground-
based measurements. Even though only SWE was directly updated in the Sentinel-1
DA framework, it is worthwhile to evaluate snow depth as it is also directly impacted
by the updated SWE assuming a constant snow density [76].

Correlation coefficient (R), bias, and root mean square error (RMSE) are se-
lected to quantitatively examine the performance of the OL and Sentinel-1 DA and

are computed as:

N,
1
bias = <= > ((Yest ) — Ymeas.;) (4:5)
S ]:1
1 &
RMSE = | 57 > ({Yest) — Ymens.i)? (46)
s j=1

N _ _
R _ Zj:1(<yest,j> - yest,j)(ymeas,j - ymeas)
N — Ns —
\/Zj:1(<yest,j> - <yest>)2\/2j:1 (ymeas,j - ymeas)2

where (yes: ;) represents the ensemble mean of SWE or snow depth estimates at time

(4.7)

J obtained from both OL and Sentinel-1 DA. y,,cqs,; denotes the ground-based SWE
or snow depth at time j. (Yes) is the time-averaged ensemble mean of SWE or snow
depth estimates from the OL or Sentinel-1 DA. ¥,,..s denotes the time-averaged
SWE or snow depth from the ground-based measurements. R is a measure of the
agreement in seasonal variation between the model estimates and ground-based
measurements. Bias represents the systematic error while RMSE accounts for both

systematic and non-systematic errors. In addition, unbiased RMSE (ubRMSE; [70])
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was also included to address the non-systemic error by removing the bias from

RMSE.

4.3 Results and Discussion

4.3.1 DA with and without Rule-based Updates

Performance of Sentinel-1 DA with and without rule-based updates (intro-
duced in Section 4.2.4.2) was evaluated in order to assess the influence of the rule-
based updates toward the robustness of the Sentinel-1 DA. As SWE is the only
state variable which is directly updated through the assimilation, daily SWE esti-
mates from both OL and Sentinel-1 DA (with and without rule-based update) were

compared against the SNOTEL SWE measurements.
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Figure 4.2: Domain-averaged goodness-of-fit statistics for SWE estimates simulated
from OL and Sentinel-1 DA (with and without rule-based updates) in comparison
against the SNOTEL SWE measurements. DA,; does not include the rule-based
updates whereas DA, does. Error bars represent the 95% confidence interval. As-
terisks indicate that evaluation metrics calculated for the experiment (e.g., DAy
or DA,y) yielded statistically significant differences with those calculated from the
Open Loop
at a 5% significance level.

Figure 4.2 summarizes the domain-averaged R, bias, RMSE, and ubRMSE
calculated by comparing SWE estimates from the OL and Sentinel-1 DA simulations,
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including both with and without rules-based updates (denoted as DAy; and DA,
respectively) against SNOTEL SWE measurements from 112 stations within the
study domain. The results confirmed that Sentinel-1 DA with the rule-based update
showed significant improvement in R and bias compared to Sentinel-1 DA without
the update rules as well as compared to the OL. Sentinel-1 DA without the rule-
based update showed no significant difference in terms of domain-averaged bias with
OL (-0.16 m) while Sentinel-1 DA with the rules-based update showed a less negative
domain averaged bias of -0.11 m. Similarly, OL and Sentinel-1 DA without rule-
based update did not show a significant difference in R (0.44) while Sentinel-1 DA
with the rule-based update showed better agreement in terms of seasonal behavior

with ground-based measurements (R=0.52).
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Figure 4.3: Spatial maps of correlation coefficient, R, computed between SNOTEL
and (a) OL SWE and (b) Sentinel-1 DA (without rule-based update) SWE from
September 2016 to August 2017. The difference in R between the OL and Sentinel-
1 DA is shown in (c). The red colors (positive values) in (c) suggests that Sentinel-1
DA agrees better with SNOTEL SWE than does the OL. Oppositely, blue colors
(negative values) indicate that the OL showed better agreement with SNOTEL SWE
than did Sentinel-1 DA.

The spatial distribution of R for the SWE estimates from OL and Sentinel-1

DA without the rule-based update versus SNOTEL SWE measurements and dif-
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ferences in skill are shown in Figure 4.3. Among the available SNOTEL stations,
56 sites out of 112 SNOTEL stations yielded better performance by OL than did
Sentinel-1 DA without the rule-based update. Similar behaviors were observed from
bias, RMSE, and ubRMSE in that more than 50% of available stations indicated
that the OL performed better than Sentinel-1 DA without the rule-based update.
However, Figure 4.3(c) illustrates that the difference between R calculated from DA
without the rule-based update and OL against SNOTEL measurements showed that
most of the stations indicated no significant improvement in SWE estimates between
the OL and Sentinel-1 DA. Among all SNOTEL stations within the study domain,
CO 717 (Ripple Creek, CO) showed the largest decrease in R (Figure 4.3(c)) and a
relatively large degradation in bias (from -0.06 m to -0.31 m) as well as RMSE (from
0.40 m to 0.49 m). Accordingly, the time series of SWE simulated from OL and
Sentinel-1 DA (without and with rule-based updates) against ground-based SWE

measurements are shown in Figure 4.4 for the detailed analysis.
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Figure 4.4: Time series of SWE estimated from OL (blue) and Sentinel-1 DA with
(red) and without (green) rule-based updates along with SNOTEL measurements
(black dots) at Ripple Creek station (CO 717; 40.1°N 107.3°W). Solid lines repre-
sent the ensemble mean of SWE and corresponding shadow region represents the
ensemble spread of the SWE estimates.
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Figure 4.5: Time series of observed and predicted co-polarized (oyy) and cross-
polarized (oyg) backscatter at Ripple Creek station during 1 January 2017 to 28
February 2017. The left and right column represents the Sentinel-1 DA without
(a.k.a., DAy;) and with the rule-based update (a.k.a., DAys), respectively.

Results revealed that both OL and Sentinel-1 DA (with and without rule-based
updates) showed a similar trend before 5 January 2017. However, Sentinel-1 DA with
and without rule-based updates showed significantly different behavior after 5 Jan-
uary 2017 in that Sentinel-1 DA without the rule-based update showed a significant
decrease in SWE while Sentinel-1 DA with rule-based update showed an increasing
trend of SWE (Figure 4.4). The main reason for this phenomenon is the influence
of the rule-based update into Sentinel-1 DA. Figure 4.5 illustrates the time series of
observed Sentinel-1 backscatter and predicted backscatter via the observation oper-
ator at both co-polarized (o) and cross-polarized (oy g ) backscatter from January
to February 2017. It reveals that the predicted oy showed reasonable agreement
between predicted and observed backscatter while oy showed a large discrepancy.

Given the limited number of training datasets as well as a lack of Sentinel-1 obser-
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vations, SVM regression tends to predict a heavily biased predicted backscatter at
this location. For example, predicted oy represented in Figure 4.5(a) produced
higher magnitude of backscatter than the observed oyy,. This behavior results in
decreasing the SWE estimates (Figure 4.4). In the case of DA with the rule-based
update, because the assimilation switch for oy is turned off and only oy g is used
in calculating the Kalman gain, the updated SWE has a slightly better agreement
with the SNOTEL SWE measurements relative to the OL. Moreover, another ad-
vantage of applying the rule-based update is to further influence the accuracy of
predicted backscatter. As the SVM utilizes the updated (a posterior) geophysical
variables to predict the oy and oy g, it results in improving the accuracy of the
predicted backscatter in the following days. For example, Sentinel-1 DA without
rule-based update showed a slight increase in predicted oyy on 29 January 2017
while Sentinel-1 DA with rule-based update showed a slight decrease in predicted

ovy, which better agrees with the magnitude of observed oyy (Figure 4.5(a) and

(b)).

4.3.2 Evaluation of SWE against Ground-based Measurements

The primary focus of this section is the evaluation of Sentinel-1 DA with
the rule-based update (hereafter denoted as Sentinel-1 DA,,) through comparison
against the SNOTEL SWE measurements from September 2016 to August 2017.
Domain-averaged statistics presented in Figure 4.2 indicated that Sentinel-1 DA

yielded the significant improvement in R and bias while the magnitude of RMSE and
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Figure 4.6: Spatial maps of correlation coefficient, R, (top row) and bias (bottom
row) computed against the SNOTEL SWE measurement from September 2016 to
August 2017. Left and middle columns represent the statistics of OL SWE and
Sentinel-1 DA, (with rule-based update) SWE, respectively. The differences in R
and bias are shown in (c) and (f), respectively. The red colors (positive values) in
(c) suggests that Sentinel-1 DA,y agrees better with SNOTEL SWE than does the
OL. Oppositely, blue colors (negative values) indicate that the OL showed better
agreement with SNOTEL SWE than did Sentinel-1 DA ».

ubRMSE were slightly increased. Figure 4.6 illustrates the temporal mean of R and
bias as well as improvements in statistical metrics at the SNOTEL stations when
using Sentinel-1 DA,s. In the case of OL, R ranged from -0.21 to 0.99 while R for
Sentinel-1 DA, ranges from -0.18 to 0.99. Among all available SNOTEL stations,
more than 90% yielded a statistical improvement, indicating that Sentinel-1 DA,
resulted in better agreement in terms of seasonal variation with the SNOTEL SWE
measurements relative to the OL simulation. Similar behavior was observed for bias

in that Sentinel-1 DA, showed a smaller magnitude in bias than the OL (Figure
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4.6(f)). The bias in SWE estimated from the OL ranged from -0.55 m to 0.11 m
while the bias of SWE simulated from Sentinel-1 DA,s ranges between -0.49 m to
0.24 m. In general, SWE estimates from Sentinel-1 DA, showed less bias than the

OL at 84 SNOTEL stations (out of a total of 112) located within the study domain.
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Figure 4.7: Scatter plots of the bias, RMSE, and ubRMSE in accordance with the
peak of SWE observed from SNOTEL stations. Note that blue and red dot repre-
sents the Open Loop (e.g., model-only simulation) and Sentinel-1 DAy, respectively.

According to Figure 4.6(d) and (e), most of the bias was negative across the
study domain. One of the main reasons for the discrepancy between simulated and
measured SWE can be explained through the spatial scale mismatch. Ground-based
measurements have a spatial footprint of ~1 m? while SWE estimates from both the
OL and Sentinel-1 DA, have a spatial footprint of ~10% m?. Furthermore, the bias
in SWE estimates from both the OL and Sentinel-1 DA,s is increasingly negative
with an increase in the amount of peak SWE (Figure 4.7(a)). One possible expla-
nation for this phenomenon is related to the difficulty in representing the complex
snow stratigraphy as snow becomes deeper. The increase in SWE uncertainty with
higher peak SWE can be also explained by errors in the snow albedo. Snow albedo

is a first-order control in the partitioning of available energy at the surface, and in
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turn, influences the amount of snowmelt [11]. Kumar et al. [117] assimilated the
Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrievals in the
Noah-MP land surface model over the continental U.S. The results confirmed that
model-only run tends to significantly underestimate snow albedo during the winter
period (e.g., November to March). Underestimation of the snow albedo results in an
increase of the net radiation and snowmelt, and in turn, reduces the peak snow accu-
mulation. Furthermore, Bosilovich et al. [21] revealed that MERRA2 precipitation
showed relatively large uncertainties over the Rockies due to the orographic effect
related to the complex topography. Uncertainties in precipitation significantly influ-
ences to the accuracy of MERRA-2 snowfall data. Liu and Margulis [134] addressed
that raw MERRA2 snowfall product showed significant underestimation when com-
pared against the ensemble-based snowfall reanalysis datasets implemented with the
uncertainty of precipitation.

Focusing on the evaluation of the OL and Sentinel-1 DA, performance, inte-
gration of C-band backscatter observations with machine learning as the observation
operator helped to slightly reduce the magnitude of bias with the trend line slightly
approaching to the slope of zero (Figure 4.7(a)). RMSE and ubRMSE represented in
Figure 4.7(b) and (c) also showed that Sentinel-1 DA,y showed slight improvement
as the trend line of Sentinel-1 DA 5 is less than for the OL simulation. However, the
bias in Sentinel-1 DA, showed more spread in terms of bias, RMSE, and ubRMSE
at relatively low peak SWE values.

Domain-averaged statistics of SWE estimates from both the OL and Sentinel-1

DA,> during the snow accumulation (e.g., December, January, and February) and
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Table 4.2: Domain-averaged statistics of SWE estimated from the OL and Sentinel-1
DA, relative to SNOTEL SWE measurements. Note that statistics with an asterisk
denote statistically significant differences between the SWE estimates from the OL
and Sentinel-1 DA, at a 5% level of significance.

Period R [-] Bias [m] RMSE [m] ubRMSE [m]
Snow OL  0.75 -0.10 0.14 0.07
Accumulation DA,, 0.81 -0.03* 0.14 0.07
Snow OL  0.32 -0.29 0.33 0.11
Ablation DAy, 0.40 -0.22% 0.31 0.13*

snow ablation (e.g., March, April, and May) are summarized in Table 4.2. Overall,
statistics during the snow accumulation period showed better performance than dur-
ing the snow ablation period. Domain-averaged bias was significantly reduced from
-0.10 m (OL) to -0.03 m (Sentinel-1 DA5) and R also revealed slight improvement
from 0.75 (OL) to 0.81 (Sentinel-1 DAs) yet did not achieve statistical significance
at the 5% significance level. Even though domain-averaged bias showed significant
improvement in Sentinel-1 DA 5, the RMSE and ubRMSE yielded no significant skill
difference between the OL and Sentinel-1 DA 5. This phenomenon is also revealed
in Figure 4.7(a) in that the bias in Sentinel-1 DA, showed a relatively wider spread
relative to the OL when the peak SWE is less than 0.4 m.

In the case of the snow ablation period, the magnitude of statistical metrics
was lower than that for the snow accumulation period. More specifically, the ranges
of R were within the range of -0.17 to 0.93 for OL and -0.17 to 0.96 for Sentinel-1
DA,s. In the case of the bias, the OL yielded a bias range from -0.95 m to 0.15 m

while the bias of Sentinel-1 DA, ranged from -0.62 m to 0.20 m. RMSE does not
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reveal any significant differences between the OL and Sentinel-1 DA,5; ubRMSE
showed a slight increase from 0.11 (OL) to 0.13 (Sentinel-1 DAy,) with a statistical

significance of 5%.

4.3.3 Evaluation of Snow Depth against Ground-based Measurements
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Figure 4.8: Time series of the estimated snow depth from OL and Sentinel-1 DA
as well as SNOTEL snow depth measurement at Mineral Creek (CO 629; 40.23°N
106.6°W) during September 2016 to August 2017. Note that solid line represents
the ensemble mean of the snow depth estimates while shading of corresponding color
represents the ensemble spread of snow depth estimates.

Figure 4.8 represents the time series of snow depth at Mineral Creek (CO 629;
40.23°N 106.6°W) from September 2016 to August 2017. The reason for selecting
this site is fairly typical seasonal variation of snow among the 112 SNOTEL stations.
These results confirmed that both the OL and Sentinel-1 DA, showed good agree-
ment in capturing seasonal patterns with the ground-based snow depth measure-
ments. Among the various statistical metrics, bias showed the most improvement
from -0.24 m (OL) to -0.03 m (Sentinel-1 DA,3). Sentinel-1 DAy, showed slightly
better performance in capturing the seasonal variation of SNOTEL snow depth

measurement with a slightly higher magnitude of R (0.90) than the OL (0.81).
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Similarly, RMSE and ubRMSE of DA (0.30 m and 0.29 m, respectively) showed
improvement compared to the RMSE and ubRMSE of the OL (0.38 m and 0.31 m,
respectively). In addition, Sentinel-1 DA,y showed advantages over the OL from
late-March (Figure 4.8). That is, the OL showed a significant, rapid snowmelt exist
immediately after the peak in early-March and then the snow disappeared by 15
Apr 2017. However, snow depth estimates from Sentinel-1 DA, were similar to
the SNOTEL measurements in late-March and yielded a slightly longer snow season
compared to the OL. According to the global forest cover datasets [91], this site
showed a high forest cover fraction of around 0.7. Chen et al. [37,38] mentioned
that high vegetation cover fraction often results in shortening the snow period in
Noah-MP snow mass estimates as an increase of canopy during spring leads to the
increase of longwave radiation from the sub-canopy that often results in early snow
disappearance. With the assimilation of Sentinel-1 observations during the snow
ablation period that contains relatively deeper and wetter snow, Sentinel-1 DA
resulted in the improvement in the updated snow depth.

The spatial distribution of R for the snow depth estimates from the OL and
Sentinel-1 DA,s compared to SNOTEL snow depth measurements revealed that
over 50% of the SNOTEL stations (e.g., 54% for OL and 66% for Sentinel-1 DA)
showed R larger than 0.6. R for the OL and Sentinel-1 DA, ranged from -0.05
to 0.98 and -0.03 to 0.98, respectively. In terms of the difference of R from OL
versus SNOTEL measurements and Sentinel-1 DA, versus SNOTEL measurements
illustrated in Figure 4.9(c), 101 out of 112 SNOTEL stations showed improvement

as a result of Sentinel-1 DA 5. In terms of bias, snow depth showed a similar pattern
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Figure 4.9: Spatial maps of correlation coefficient, R, (top row) and bias (bottom
row) computed against the SNOTEL snow depth measurement from September 2016
to August 2017. Left and middle columns represent the statistics of the OL and
Sentinel-1 DA, (with rule-based update), respectively. The differences in R and
bias are shown in (c¢) and (f), respectively. The red colors (positive value) in (c)
suggests that Sentinel-1 DA,y agrees better with the SNOTEL snow depth than
does the OL. Oppositely, blue color (negative values) indicate that the OL showed
better agreement with SNOTEL snow depth than does Sentinel-1 DA,..

with SWE in that negative bias was dominant across the study domain. The bias
of the OL ranged from -1.41 m to 0.31 m while the bias of Sentinel-1 DA, ranged
between -1.29 m to 0.56 m. Differences in the magnitude of the bias between the
OL and Sentinel-1 DA, showed that approximately 80% of the stations showed
improvement in snow depth when estimated with Sentinel-1 DAo (Figure 4.9(f)).
Table 4.3 summarizes the domain-averaged R, bias, RMSE, and ubRMSE of
the snow depth estimates from the OL and Sentinel-1 DA, during the snow accu-

mulation and snow ablation periods. Most of the statistics indicate improvement
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Table 4.3: Domain-averaged statistics of snow depth estimated from the OL and
Sentinel-1 DA, relative to SNOTEL snow depth measurements. Note that statis-
tics with an asterisk denote statistically significant differences between the OL and
Sentinel-1 DA, at a 5% level of significance.

Period R [-] Bias [m] RMSE [m] ubRMSE [m]
Snow OL 0.73 -0.42 0.53 0.22
Accumulation DA, 0.79 -0.24* 0.46 0.20
Snow OL  0.58 -0.72 0.81 0.27
Ablation DA,; 0.65* -0.57* 0.75 0.29

via Sentinel-1 DA, during both the snow accumulation and ablation periods. More
specifically, the bias of Sentinel-1 DA, during the snow accumulation and snow
ablation periods showed a significant improvement at a 5% significance level. The
bias during the snow accumulation period ranged from -1.18 m to 0.28 m for the
OL whereas Sentinel-1 DA, yielded bias ranging from -0.93 m to 0.45 m. Similar
behavior was observed for RMSE and R with a slight improvement in Sentinel-1
DA,s compared with the OL. Overall improvement in Sentinel-1 DA, with regards

to snow depth is similarly related to the overall improvement in SWE.

4.4 Conclusions and Future Work

The main goal of this chapter is to improve snow mass estimates (i.e., SWE
and snow depth) by assimilating C-band backscatter observations into an advanced
land surface model using support vector machine regression and a one-dimensional
ensemble Kalman filter. The DA experiment was conducted across the snow-covered

terrain of Western Colorado for September 2016 to August 2017. The SWE and snow
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depth estimates in the Open Loop (i.e., without assimilation) and DA simulation
were compared against measured SWE and snow depth at 112 SNOTEL stations.

Before evaluating the performance of Sentinel-1 DA, the influence of applying
a rule-based update, which prescribes the expected range of backscatter over the
snow-covered terrain, was evaluated by comparing SWE estimates from DA with and
without the rule-based update against the SNOTEL SWE measurements. In general,
more than 50% of the SNOTEL stations yielded a slight improvement in R and
bias; however, many of these improvements were small values close to zero. When
constraints on the range of predicted backscatter, 6%, and 6%,;; were introduced
using a rule-based update, the improvements were much more significant. The rule-
based update helped mitigate some of the SVM controllability issues related to a
limited number of available training datasets. Furthermore, the application of rule-
based update also improved the accuracy of SVM-based predicted backscatter during
the SWE update, and in turn, improved the overall accuracy of SWE estimates.

A detailed assessment of SWE estimates from Sentinel-1 DA, (a.k.a. DA
with the rule-based update) showed the capability of Sentinel-1 DAy, to improve the
accuracy of SWE estimates relative to the OL run. Detailed analysis of bias, RMSE,
and ubRMSE for the SWE estimates from Sentinel-1 DA, also revealed the most
improvements in the accuracy of the SWE estimates. More specifically, more than
75% of the SNOTEL stations showed improvement in bias and R. Statistical analysis
of the SWE estimates from Sentinel-1 DA, during both the snow accumulation and
snow ablation periods revealed the improvements, in general, when compared against
the OL. More specifically, the bias showed statistically significant improvements

138



during both the snow accumulation (e.g. -0.10 m for OL to -0.03 m for Sentinel-1
DA,s) and snow ablation periods (e.g. -0.29 m for OL to -0.22 m for Sentinel-
1 DAys). In the case of RMSE and ubRMSE, there was no statistically significant
difference between the OL and Sentinel-1 DA, while ubRMSE was slightly degraded
in Sentinel-1 DA 5. In addition, bias, RMSE, and ubRMSE from Sentinel-1 DA
showed more statistical spread when the peak SWE calculated from SNOTEL SWE
measurements was relatively small, which is partly related to the relatively small
sensitivity of C-band backscatter in dry, shallow snow.

Updated snow depth estimates via Sentinel-1 DA, also showed improvement
compared to the OL. Specifically, more than 54% of the SNOTEL stations showed
improvement in both R and bias. Seasonal variations in the snow depth estimates
from the OL and Sentinel-1 DA 5 showed reasonable agreement with the SNOTEL
measurements. More specifically, Sentinel-1 DA, showed advantages during the
snow ablation period in that both magnitude and seasonal variation of snow depth
matched closer to that of the SNOTEL measurements than the OL. Furthermore,
Sentinel-1 DA, slightly extended the snow season relative to the OL. The statistical
behavior of snow depth estimates during the snow accumulation and snow ablation
period also yielded an improvement in accuracy when using the Sentinel-1 DAy5. The
snow ablation period showed a more significant improvement in R and bias at 5%
level of significance. Overall, improvement in snow depth estimates from Sentinel-
1 DAys is highly related to the improvement in SWE estimates as snow depth is
recalculated based on the updated SWE assuming constant snow density before

and after the update. Moreover, integration of Sentinel-1 backscatter observations
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helped improve the accuracy of snow mass estimates. At the same time, however,
random errors were added via Sentinel-1 DA, due to the complex electromagnetic
responses of C-band backscatter in snow, the presence of noise in the backscatter
observations, and limitations in the efficacy of the SVM-based observation operator.

In summary, this study helped demonstrate the capability support vector ma-
chine (SVM) regression as an observation operator within a C-band backscatter
observation assimilation framework in order to improve the characterization of ter-
restrial snow mass. Furthermore, the rule-based update implemented during DA
helped mitigate some of the controllability issues of SVM regression when trained
by sparse training datasets. This research further motivates the application of
physically-constrained SVM regression that considers the first-order physics of the

electromagnetic response of terrestrial snow.
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Chapter 5: Conclusions and Future Research

5.1 Conclusions

This dissertation focused on the evaluation of two different types of observa-
tion operators: 1) a radiative transfer model (RTM), and 2) a machine learning
algorithm for the improvement of soil moisture and terrestrial snow mass estimates,
respectively. Furthermore, a machine learning-based observation operator was uti-
lized in the Sentinel-1 data assimilation framework in order to improve the terrestrial
snow mass estimates across regional scales. The overall scientific question explored
in this study is: “Can a radiative transfer model and a machine learning techniques
serve as effective observation operators in the assimilation of microwave observations
into a land surface model to better characterize soil moisture and terrestrial snow
mass?”

In Chapter 2, a physically-constrained support vector machine (SVM) was
designed to predict C-band backscatter observations over snow-covered terrain in
Western Colorado. More specifically, different types of training targets, training
window lengths, and delineation of snow with respect to the liquid water content
were considered in conjunction with the first-order electromagnetic response of snow.

Evaluation of predicted backscatter yielded reasonable accuracy when compared
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against the Sentinel-1 observations. More specifically, a combination of ascending
overpasses with descending overpasses yielded a significant increase in spatial cov-
erage and the lowest magnitude of bias, but introduced more random errors due to
the mixture of signals from different snow conditions. Similarly, elongation of the
training window length resulted in acquiring more spatial coverage and improvement
in bias while RMSE and ubRMSE were slightly increased. Lastly, separate training
of dry snow versus wet snow revealed the improvement in statistical performance
when compared with predicted backscatter without the dry snow versus wet snow
delineation.

In Chapter 3, L-band brightness temperatures (7}) are estimated from a zero-
order tau-omega RTM calibrated with multi-angular SMOS T} observations across
North America. RTM-derived T}, was compared against Aquarius 7, observations
colocated in space and time as a function of soil hydraulic parameters and vege-
tation types. The overall comparison showed that RTM-derived T;, showed good
performance during both ascending and descending overpasses excluding the pres-
ence of sub-grid scale lakes and densely-forested regions. RTM-derived T} showed
good performance over relatively low porosity soils and low wilting point soils while
uncertainty was increased along with the increase of porosity and wilting point. In
terms of vegetation types, broadleaf and needleleaf forest showed reasonable sta-
tistical performance while grassland vegetation showed the highest uncertainty due
to a lack of irrigation schemes and inter-annual crop rotation with the land surface
model.

In Chapter 4, the SVM regression based explored in the Chapter 2 was uti-
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lized as observation operator along with a one-dimensional ensemble Kalman filter
in order to integrate C-band backscatter observations into an advanced land surface
model with the goal of improving terrestrial snow mass estimates. DA experiments
were conducted from September 2016 to August 2017 over snow-covered terrain
across Western Colorado and evaluated through comparison against SNOTEL mea-
surements. Before conducting the evaluation of updated SWE and snow depth, the
influence of applying a rule-based updates, which prescribes an expected range of
observed backscatter over snow-covered terrain, on DA performance was also ex-
amined. DA with the rule-based update yielded significantly better statistics than
the traditional DA approach without the rules as well as the OL when compared
against SNOTEL measurements. More notably, the rule-based update exhibited
more robustness in overcoming SVM controllability issues and influencing the ac-
curacy of SVM-based predicted backscatter. Assessments of SWE and snow depth
estimates from Sentinel-1 DA showed significant improvement in terms of R and
bias when compared against measured SWE and snow depth from SNOTEL sta-
tions. Sentinel-1 DA highlighted advantages during the snow ablation period in that
the snow season was slightly extended and the magnitude of SWE and snow depth
showed better agreement with SNOTEL measurements.

Overall results lead to the conclusion that RTM and machine-learning based
algorithms can serve as effective observation operators in future DA studies by suc-
cessfully reproducing L-band brightness temperature and C-band backscatter over
snow-covered terrain, respectively. Furthermore, the well-trained support vector ma-

chine regression algorithm demonstrated skill within the Sentinel-1 DA framework,
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which leads to a better characterization of terrestrial snow mass estimates.

5.2 Main Contributions and Novelty of Research

This dissertation includes the first attempt to utilize SVM regression over
snow-covered terrain for the purpose of predicting C-band backscatter as presented
in Chapter 2. More specifically, physically-constrained approach based on the first-
order physics of scattering mechanisms over the snow-covered terrain yielded mod-
erate accuracy in terms of statistical comparison. Key findings can be summarized

as follows:

e Among the different training target sets, C-band backscatter observations from
the descending overpass are preferred for use in snow mass data assimilation

framework.

e Examination of different training window suggests that a monthly training

window best balances the spatial coverage with prediction accuracy.

e SVM training using wet snow versus dry snow delineation is strongly recom-
mended as the approach implicitly considers the different first-order scattering

mechanisms over snow-covered terrain.

Chapter 3 showed that a RTM-derived L-band 7}, yielded reasonable accuracy
in comparison with the Aquarius L-band 7T}, observations across North America.
Overall results encourage the use of the L-band RTM as an observation operator

in a future soil moisture DA framework. Major findings and contribution to the
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scientific community can be summarized as follows:

e Multi-angular SMOS T} observations serve as an effective calibration dataset

to obtain accurate L-band T} estimates from the RTM.

e Uncertainties of RTM-derived T}, estimates with respect to soil hydraulic pa-
rameters and vegetation cover types can help better characterize error covari-

ances to be used in a further soil moisture DA framework.

Chapter 4 is new and novel in that C-band backscatter was integrated into the
Noah-MP land surface model using SVM regression and an ensemble Kalman filter
with the objective of improving terrestrial snow mass estimates. Key findings from

Chapter 4 are summarized as follows:

e Integration of C-band backscatter over snow-covered terrain yielded systematic
improvements in SWE and snow depth estimates when compared against the

model-only simulation.

e DA showed larger improvements of snow mass estimates during the snow ab-
lation period rather than the snow accumulation period due to the increased

sensitivity of C-band radiation in a wet (ripe) snowpack.

5.3 Future Research Plans

5.3.1 Aquarius Brightness Temperature Assimilation

Evaluation of the RT'M-derived T}, showed the ability to serve as an observa-
tion operator within a soil moisture data assimilation framework. Key findings in
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Chapter 3 can be further implemented into a future soil moisture DA framework.
For example, the calibration scheme using SMOS observations should be modified
by relaxing the constraints regarding the distance to open water bodies in order to
improve the accuracy of RTM-derived T}, near open water bodies. In addition, a
spatially-variant observation error can be more accurately prescribed. For example,
regions with relatively high porosity soils and high wilting point soils as well as
grassland land cover types should have a relatively large magnitude of observation

error as compared to other regions.

5.3.2 Robustness Experiments of SVM Framework

Although physically-constrained support vector regression showed reasonable
performance in predicting backscatter over the snow-covered terrain, several com-
ponents can still result in the overall improvement of SVM performance. First, an
extension of the training period can result in obtaining more Sentinel-1 observa-
tions, and in turn, better yield unbiased predicted backscatter via support vector
machine regression. Furthermore, consideration of including more geophysical vari-
ables from LSM as input datasets for SVM should be explored. For example, the
scattering mechanism during the dry snow conditions showed that backscatter from
the snow-land interface becomes the dominant scattering component. Thus, includ-
ing a dynamic estimates of root mean square height (defined as a standard deviation
of surface elevation variation) or a dynamic estimates of soil roughness could help to

improve the predicted backscatter during the snow accumulation period. Further-
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more, as backscatter is significantly influenced by the vegetation cover, normalized
difference vegetation index (NDVI) and enhanced vegetation index (EVI) can be an-
other consideration accounting for the accumulation of biomass as an input dataset
for SVM training. Lastly, better characterization of dry snow versus wet snow con-
ditions should be considered. The current analysis utilized the snow liquid water
content from Noah-MP as a proxy to classify dry versus wet snow conditions while
it also contains uncertainty. Thus, a combination of snow wetness information from
LSM as well as passive and active microwave imagery should be included in future

work.

5.3.3 Examination of Physically-constrained Machine Learning in

Snow Mass DA

In Chapter 4, the examination of SVM trained ascending-only training target
sets with a fortnightly training window utilized in the DA framework resulted in the
improvement of terrestrial snow mass estimates. Based on these results, Sentinel-1
DA could be extended to using different training target sets (e.g., descending-only
observations and combination of ascending and descending overpasses) and different
training windows (e.g., monthly and seasonal training periods) and then assess the
influence on the accuracy of updated snow mass estimates. Furthermore, significant
improvements of predicted backscatter along with the delineation of dry versus wet
snow pixels described in Chapter 2 can be also implemented into the Sentinel-1

DA framework. As the first-order physics of different scattering mechanisms with
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regards to different snow wetness conditions should be considered in the Sentinel-1
DA framework, it is expected to improve the overall accuracy of daily snow mass

estimates during both the snow accumulation and snow ablation periods.

5.3.4 Extension of Sentinel-1 DA to Hydro-meteorological Fluxes

Along with the improvement of terrestrial snow mass estimates with the Sentinel-
1 DA framework, it can be further hypothesized that the improvement in SWE mag-
nitude as well as the elongation of the snow period would result in improvements
in other hydrological variables. More specifically, it is hypothesized that updated
snow mass estimates could also improve the accuracy of streamflow estimates from
the LSM based on the improved snow melt information from DA. Furthermore, a
combination of streamflow routing model (e.g., Hydrological Modeling and Analysis
Platform (HyMAP; Getirana et al. [83,84]) along with Sentinel-1 DA updates dur-
ing the snow melt period would likely be reflected in changes to the surface runoff.
Evaluation of runoff at daily and monthly timescales could be conducted through

comparison with ground-based streamflow observations provided by USGS and the

Global Runoff Data Centre (GRDC).
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Appendix A: L-band Radiative Transfer Model

The L-band RTM utilized in Chapter 3 requires 32 different parameters in
order to estimate the L-band brightness temperature (73). For this study, an in-
cidence angle of 42.5°was utilized, which corresponds to the incidence angle of the
SMOS level 1C product. Table A.1 summarizes the initially assigned values for the
key RTM parameters utilized for parameterizing the soil roughness (e.g., roughness
parameter [h], angular dependence [N, |, and scattering albedo [w]) and vegetation
conditions (e.g., leaf equivalent water thickness [LEWT] and vegetation structure
parameter [b,]). Note that all the variables excluding the LEWT and N, were
calibrated using multi-angular SMOS observations based on the particle swarm op-
timization search algorithm introduced in Kennedy and Eberhart [107].

For the soil-texture dependent parameters such as fraction of the different
types of soils (e.g., sand, clay, and silt) as well as the soil hydraulic parameters
(e.g., porosity and wilting point) were not selected for calibration in order to assure
the consistency with the soil moisture and soil temperature as estimated from the
Catchment land surface model [53]. Figure A.1 shows the spatial pattern of sand,
clay, and silt fractions across the study domain based on the soil classification scheme

introduced in De Lannoy et al. [50].
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Figure A.1: Maps of (a) sand, (b) clay, and (c) silt fractions across the
study domain.
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Figure A.2: Maps of porosity utilized in the GEOS L-band RTM across
the study domain.
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Figure A.3: Maps of wilting point (WP) utilized in the GEOS L-band
RTM across the study domain.
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Table A.1: Summary of the literature-based values assigned for the calibration of the
key parameters accounting for surface roughness and vegetation conditions (modified
from De Lannoy et al. [53]). Note that subscript p represents the polarization (i.e.,
horizontal or vertical polarization).

Land cover h=hmin=Rmaz [-] w [-] LEWT [kgm?] by[-] N,
Broad deciduous 1.66 0.05 1 033 0
Neeedleleaf deciduous 1.66 0.05 1 0.33 0
Grassland 1.66 0.05 0.5 0.2 0
Shrub 1.66 0.05 0.5 0.3 0
Dwarf 1.66 0.05 0.5 015 0

Figures A.2 and A.3 illustrate the spatial distribution of porosity and wilting
point, respectively, which are used in the L-band RTM in this study. Parameteriza-
tion of wilting point (WP) was computed using the fraction of sand (f;) and clay

(f) shown in the Figures A.1(a) and (b) following the equation A.1.

WP =0.06774 — 0.00064 x fs+ 0.00478 x f. (A.1)

Wilting point is also utilized to estimate the transition of soil moisture (WT),
which plays a key role in parameterizing effective roughness height (h) described in
Section 3.2.1. Figure A.4 describes the WT over the study domain. WT is calculated
as follows:

WT =048 x WP +0.165 (A.2)

In addition to the WT, field capacity is utilized in the L-band RTM which is
represented in Figure A.5. Field capacity is included in the RTM as an additional
constraint in the parameterization of effective roughness height, h.

In order to parameterize the electromagnetic response of vegetation, vegetation
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Figure A.4: Maps of transition of soil moisture (WT) utilized in GEOS-5
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Figure A.5: Maps of field capacity (FC) utilized in the GEOS-5 L-band
RTM across the study domain
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transmissivity (7,eq,) is calculated based on the LEWT, b, and leaf area index
(LAI). Tyeq,p is further utilized in acquiring the vegetation attenuation (A,) expressed
in Equation 3.2.1. Figures A.6 and illustrate the spatial distribution of the 7,4,

and A,, respectively, over the study domain for 02 July 2012.

Figure A.6: Maps of vegetation transmissivity (7,e,,) for 02 July 2012
over the study domain.
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Figure A.7: Maps of vegetation attenuation (A,) for 02 July 2012 across
the study domain.
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Appendix B: Support Vector Machine Regression

Figure B.1 illustrates a schematic for the one-dimensional, nonlinear support
vector machine (SVM) regression along with the variables utilized in SVM regres-
sion. Assume a [M x N]| training matrix, =, such that it contains N = 4 different
geophysical variables simulated from Noah-MP (e.g., snow water equivalent, snow
density, snow liquid water content, and top layer snow temperature) used in char-
acterizing the physical conditions of snow at M different times for a given location
in space. The training targets (z; Sentinel-1 backscatter observations in this paper)

have a size of [M x 1].

)

L ,' Hyperplane

Figure B.1: Schematic for nonlinear support vector machine regression and corre-
sponding variables. Note that dots on the dashed lines represents the data points
selected as the so-called support vectors.
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This study utilized the e-SV regression introduced in Vapnik [213]. The main
goal for e-SV regression is to minimize the objective function, which can be written
as:

flw,0) = (w- ¢(x)) +6 (B.1)
where w is a weighting factor and ¢(x) is nonlinear function for mapping the geo-
physical variables into observation (i.e., backscatter) space. (w - ¢(x)) refers to the
inner (dot) product of w and ¢(x). d represents the bias coefficient. As the main
goal of SVM regression is to optimize parameters to increase the accuracy of f(w,d),

the basic formulation of nonlinear SVM regression can be expressed as follows:

minimize §Hw|] —l—C;(@ + &)

(

fw,8) —z; <e+¢

subject to zi— f(w,0) <e+&

&, & =0

(

where C'(> 0) is the user-defined constant representing the trade-off between toler-
ance of ¢ and f(w,d) [194]. In this study, C is estimated based on the difference
between the maximum and minimum training targets (e.g., co-polarized and cross-
polarized backscatter). & and £ are slack variables and z; represents the Sentinel-1
backscatter observation at timestep ¢. For the ¢, representing the margins, the range
was set from 0 ~ 5 before SVM training and it is optimized during the training pro-
cedure. Optimization of equation B.2 is commonly regarded as a dual optimization
problem [35] and can be solved by applying a dual set of Lagrangian multipliers («;
and o) as:
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m

o1 . .
minimize 5 Z (Ozi — ai)(&j - aj)<¢($i) : gb(x]))
ij=1
+ Z elay + OZ Z Zz o; + OZ
i=1 i=1 (B3)
Sortielas+af)=0
subject to

a;, af €10,C),i=1,2,....m

In real-world applications, computation of (¢(z;) - ¢(x;)) can be too compu-
tationally costly, which motivates one to employ a kernel technique for improving
computational efficiency by directly mapping the solution into higher-dimensional
space [75,194]. There are different types of kernel functions that can be used such
as linear, nonlinear, and polynomial forms [26]. Among them, the radial basis
kernel function (RBF) is employed in this study due to its advantages in dealing
with datasets having nonlinear relationships between inputs and outputs (training

target). As such, the kernel function can be expressed as:

k(i 25) = (i), d(x;)) = exp{—7llz; — 2;]|"} (B.4)

where z; and z; represent a single instance of x in time and space and || -|| represents
the Euclidean norm between ¢(z;) and ¢(x;). The positive parameter, v, is an
adjustable parameter to control the width of the Gaussian variable. When ~ is
small, more weight will be given to the points closer to x; while a larger v indicates
more importance to points far from x;. In this study, the initial range of v was
prescribed from the 277 to 27.

Replacing the dot product with the RBF kernel function expressed in Equation

158



B.4 allows for Equation B.3 to be rewritten as:

m

.. . 1 * *
minimize Z (i — i) (aj — af)k(zi, )

1,j=1

—l—ie(amta izl (a; +of)
i=1 i=1

(B.5)
> elai+a7) =0
subject to
a;, af €1[0,C],i=1,2,...m
In a similar manner, the weight vector, w, can be calculated as follows:
w = Z(@i —af)P(x;) (B.6)
i=1
f(w,0) =Y (o — af)k(wi ;) +6 (B.7)
i=1

Note that bias coefficient, § is computed during the training procedure based on
the Karush-Kuhn-Tucker (KKT) conditions [116], and in turn, w can be calculated
so that which is utilized for estimating the prediction. Details of the SVM training

and prediction schematic is summarized in Figure B.2.

flxw)= i{u -, JK (x,x J+b

() K(xx)=blx)o(x)

i s 1 support vector x,, i =1L2,...p
test vector x

Figure B.2: Schematic of the regression procedures constructed by the support
vector machine [173].
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Example maps of different parameter values for the trained support vector
machines during 15 January 2017 to 29 January 2017 using combined training target
sets and fortnightly training window are shown in Figures B.3 and B.4. The total
number of parameters in a trained SVM is dependent on the number of so-called
support vectors, which is dependent on the size of the training set. Therefore, there
is no singular, deterministic number of the parameter values illustrated in Figures
B.3 and B.4 merely demonstrate a few of the myriad of parameter values in in order
to provide the reader with a better idea for how a well-trained SVM in this study is
constructed. For instance, SWE and snow density showed positive bias during the
15 January 2017 to 29 January 2017 ranged between 8.3 to 12.5 and 16.0 to 20.0,
respectively. In case of snow liquid water content, most of bias showed the negative
value (ranged from -8.3 to -6.5) during the period. The range of weights lied from

-0.27 to 0.15 throughout the different input variables.
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Figure B.3: Maps of bias coefficient, ¢, for (a) SWE, (b) snow density, (c) snow liquid

water content, and (d) top layer snow temperature used for predicting backscatter
during 15 January 2017 to 29 January 2017.
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uid water content, and (d) top layer snow temperature used for predicting backscat-
ter during 15 January 2017 to 29 January 2017.

162



1]

Bibliography

ABDALATI, W., AND STEFFEN, K. Snowmelt on the Greenland Ice Sheet

as Derived from Passive Microwave Satellite Data. Journal of Climate 10, 2
(1997), 165-175.

AHMAD, J. A., FORMAN, B. A., AND KwON, Y. Analyzing machine learn-
ing predictions of passive microwave brightness temperature spectral difference
over snow-covered terrain in High Mountain Asia. Frontiers in Farth Science

7 (2019), 212.

ANDREADIS, K. M., AND LETTENMAIER, D. P. Assimilating remotely
sensed snow observations into a macroscale hydrology model. Advances in
Water Resources 29, 6 (2006), 872—-886.

ANGUEIRA, P., AND RoMO, J. A. Equipment and Subsystem Technology
Aspects: A Radio Link Designer Approach. John Wiley & Sons, Ltd, 2012,
ch. 4, pp. 100-173.

ArseNauLT, K. R., Houser, P. R., DE Lannoy, G. J. M., AND
DIRMEYER, P. A. Impacts of snow cover fraction data assimilation on mod-

eled energy and moisture budgets. Journal of Geophysical Research: Atmo-
spheres 118, 14 (2013), 7489-7504.

ArseNauLT, K. R., KuMAR, S. V., GEIGER, J. V., WANG, S., KEwmP,
E., Mocko, D. M., BEAUDOING, H. K., GETIRANA, A., NAVARI, M.,
L1, B., JAacos, J., WEGIEL, J., AND PETERS-LIDARD, C. D. The Land
surface Data Toolkit (LDT v7.2) — a data fusion environment for land data
assimilation systems. Geoscientific Model Development 11, 9 (2018), 3605—
3621.

ASCHBACHER, J. Land surface studies and atmospheric effects by satellite
microwave radiometry. PhD dissertation, University of Innsbruck, 1989.

163



8]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

ASCHBACHER, J., AND MILAGRO-PEREZ, M. P. The European Earth mon-

itoring (GMES) programme: Status and perspectives. Remote Sensing of
Environment 120 (2012), 3 — 8.

Azmvmi, H., BONAKDARI, H., AND EBTEHAJ, I. Design of radial basis
function-based support vector regression in predicting the discharge coefficient
of a side weir in a trapezoidal channel. Applied Water Science 9, 4 (2019), 78.

BAGHDADI, N., GAUTHIER, Y., AND BERNIER, M. Capability of multitem-

poral ERS-1 SAR data for wet-snow mapping. Remote Sensing of Environment
60, 2 (1997), 174 — 186.

Bair, E. H., RITTGER, K., SKILES, S. M., AND DOZIER, J. An exami-
nation of snow albedo estimates from modis and their impact on snow water
equivalent reconstruction. Water Resources Research 55,9 (2019), 7826-7842.

BARBA, A. A., AND D’AMORE, M. Relevance of dielectric properties in

microwave assisted processes. Microwave materials characterization 6 (2012),
91-118.

BArRNETT, T. P., ADAM, J. C., AND LETTENMAIER, D. P. Potential
impacts of a warming climate on water availability in snow-dominated regions.

Nature 438, 7066 (2005), 303-309.

BERNIER, M., DEDIEU, J.-P., AND DUGUAY, Y. Snow characterization us-

ing radar imaging. In Land Surface Remote Sensing in Continental Hydrology,
N. Baghdadi and M. Zribi, Eds. Elsevier, 2016, pp. 139 — 182.

BERNIER, M., FORTIN, J.-P., GAUTHIER, Y., GAUTHIER, R., Roy, R.,
AND VINCENT, P. Determination of snow water equivalent using radarsat sar
data in eastern canada. Hydrological Processes 13, 18 (1999), 3041-3051.

BEsT, M., PRYOR, M., CLARK, D., ROONEY, G., ESSERY, R., MENARD,
C., EDWARDS, J., HENDRY, M., PORSON, A., GEDNEY, N MERCADO,
L., SircH, S., BLyTH, E., BOUCHER, O., CoXx, P., GRIMMOND, C., AND
HArDING, R. The Joint UK Land Environment Simulator (JULES), model
description—Part 1: energy and water fluxes. Geoscientific Model Development

4,1 (2011), 677-699.

BinprLisH, R., JAcksonN, T., CosH, M., ZHAao, T., AND O’NEILL, P.
Global soil moisture from the Aquarius/SAC-D satellite: Description and ini-
tial assessment. IEEE Geoscience and Remote Sensing Letters 12, 5 (2015),
923-927.

Biswas, S. K., JonEs, L., Rocca, D., AND GALLIO, J. Aquarius/SAC-D
Microwave Radiometer (MWR): Instrument description & brightness temper-
ature calibration. In 2012 IEEE International Geoscience and Remote Sensing

Symposium (2012), pp. 2956-2959.

164



[19]

[22]

[23]

[24]

[25]

[26]

[27]

BryTH, E., GaAsH, J., LLoyD, A., PRYOR, M., WEEDON, G. P., AND
SHUTTLEWORTH, J. Evaluating the JULES land surface model energy fluxes
using FLUXNET data. Journal of Hydrometeorology 11, 2 (2010), 509-519.

BorMANN, K. J., BROwN, R. D., DERKSEN, C., AND PAINTER, T. H.

Estimating snow-cover trends from space. Nature Climate Change 8, 11 (2018),
924-928.

BosiLovicH, M. G., AKELLA, S., Coy, L., CULLATHER, R., DRAPER, C.,
GELARO, RoNALD, K., ROBIN, Liu, Q., MoLoD, A., NORRIS, P., WAR-
GAN, K., CHAO, W., REICHLE, R., TAKACS, L., VIKHLIAEV, Y., BLOOM,
S., CoLLow, A., FIrTH, S., LABOW, GORDO NND PARTYKA, G., PAWSON,
S., REALE, O., SCHUBERT, S. D., AND SUAREZ, M. MERRA-2: Initial
evaluation of the climate. National Aeronautics and Space Administration,
Goddard Space Flight Center, 2015.

BowbpeN, G. J., DANDY, G. C., AND MAIER, H. R. Input determination

for neural network models in water resources applications. Part 1—background
and methodology. Journal of Hydrology 301, 1 (2005), 75 — 92.

Brobpzik, M. J., BILLINGSLEY, B., HARAN, T., RAUP, B., AND SAVOIE,
M. H. EASE-Grid 2.0: Incremental but Significant Improvements for Farth-
Gridded Data Sets. ISPRS International Journal of Geo-Information 1, 3
(2012), 32-45.

BRUTSAERT, W. Hydrology: an introduction. Cambridge University Press,
2005.

Cari, X., Yana, Z.-L., Davip, C. H., Niu, G.-Y., AND RODELL, M.
Hydrological evaluation of the Noah-MP land surface model for the Mississippi
River Basin. Journal of Geophysical Research: Atmospheres 119, 1 (2014), 23—
38.

Camps-VaLLs, G., GoMmez-CHOvVA, L., MunNoz-Mari, J., VILA-
FrANCES, J., AND CALPE-MARAVILLA, J. Composite kernels for hyper-
spectral image classification. IEEE Geoscience and Remote Sensing Letters 3,

1 (Jan 2006), 93-97.

CAo, Y., YANG, X., AND ZHU, X. Retrieval snow depth by artificial neu-
ral network methodology from integrated AMSR-E and in-situ data—A case
study in Qinghai-Tibet Plateau. Chinese Geographical Science 18, 4 (2008),
356-360.

CARLYLE-MOSES, D. E., LEVIA, D. F., IIDA, S., MICHALZIK, B., NANKO,
K., AND TISCHER, A. Forest-Water Interactions, vol. 240. Springer Nature,
2019.

165



[29]

[38]

CARRERA, M. L., BILODEAU, B., BELAIR, S., ABRAHAMOWICZ, M., RUS-
SELL, A., AND WANG, X. Assimilation of Passive L-band Microwave Bright-
ness Temperatures in the Canadian Land Data Assimilation System: Impacts
on Short-Range Warm Season Numerical Weather Prediction. Journal of Hy-
drometeorology 20, 6 (2019), 1053-1079.

CERVENY, R. S. The Western San Juan Mountains: Their Geology, Ecology,
and Human History. American Scientist 85, 3 (1997), 281-282.

CHAN, S. K., BinprisH, R., O’NEeiLL, P. E., NJoku, E., JACKSON,
T., COLLIANDER, A., CHEN, F., BURGIN, M., DUNBAR, S., PIEPMEIER,
J., YUEH, S., ENTEKHABI, D., CosH, M. H., CALDWELL, T., WALKER,
J., Wu, X., BERG, A., ROWLANDSON, T., PACHECO, A., MCNAIRN,
H., THIBEAULT, M., MARTINEZ-FERNANDEZ, J., GONZALEZ-ZAMORA, A.,
SEYFRIED, M., BoscH, D., STARKS, P., GOODRICH, D., PRUEGER, J.,
PALECKI, M., SMALL, E. E.; ZREDA, M., CALVET, J., CROw, W. T., AND
KERR, Y. Assessment of the SMAP Passive Soil Moisture Product. [EEFE
Transactions on Geoscience and Remote Sensing 54, 8 (2016), 4994-5007.

CHANDRASEKHAR, S. Radiative transfer. Courier Corporation, 2013.

CHANG, A., FOSTER, J., AND HALL, D. Nimbus-7 SMMR Derived Global
Snow Cover Parameters. Annals of Glaciology 9 (1987), 39-44.

CHANG, A. T. C., AND TSANG, L. A Neural Network Approach to Inversion

of Snow Water Equivalent from Passive Microwave Measurements. Nordic
Hydrology 23 (1992), 173-182.

CHANG, C.-C., AND LIN, C.-J. Libsvm: A library for support vector ma-

chines. ACM transactions on intelligent systems and technology (TIST) 2, 3
(2011), 27.

Cug, T., L1, X., JIN, R., AND HuaNnG, C. Assimilating passive microwave
remote sensing data into a land surface model to improve the estimation of
snow depth. Remote Sensing of Environment 143 (2014), 54-63.

CHEN, F., BARLAGE, M., TEWARI, M., RASMUSSEN, R., JIN, J., LET-
TENMAIER, D., LivNeEH, B., LiN, C., MIGUEZ-MAcCHO, G., Niu, Guo-
Yue WEN, L., AND YANG, Z.-L. Modeling seasonal snowpack evolution
in the complex terrain and forested Colorado Headwaters region: A model

intercomparison study. Journal of Geophysical Research: Atmospheres 119,
24 (2014), 13-795.

CHEN, F., ZHANG, G., BARLAGE, M., ZHANG, Y., HICKE, J. A., MED-
DENS, A., ZHOU, G., MAassMAN, W. J., AND FrRANK, J. An Observational
and Modeling Study of Impacts of Bark Beetle-Caused Tree Mortality on
Surface Energy and Hydrological Cycles. Journal of Hydrometeorology 16, 2
(2015), 744-761.

166



[39]

[41]

[44]

[45]

[46]

CHEN, Y., Yang, K., QiN, J., Cul, Q., Lu, H., LA, Z., HAN, M., AND
TaNG, W. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals

against observations from two networks on the Tibetan Plateau. Journal of
Geophysical Research: Atmospheres 122, 11 (2017), 5780-5792.

CHo, E., TuTTLE, S. E., AND JAcOBS, J. M. Evaluating Consistency of
Snow Water Equivalent Retrievals from Passive Microwave Sensors over the
North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2. Remote
Sensing 9, 5 (2017).

CLArk, M. P., Rupp, D. E., Woobs, R. A., ZHENG, X., IBBITT, R. P.,
SLATER, A. G., SCHMIDT, J., AND UDDSTROM, M. J. Hydrological data
assimilation with the ensemble Kalman filter: Use of streamflow observations

to update states in a distributed hydrological model. Advances in Water
Resources 31, 10 (2008), 1309-1324.

CLIFFORD, D. Global estimates of snow water equivalent from passive mi-
crowave instruments: History, challenges and future developments. Interna-
tional Journal of Remote Sensing 31, 14 (2010), 3707-3726.

CoLrLow, T. W., RoBOCK, A., Basara, J. B., anDp ILLsTON, B. G.
Evaluation of SMOS retrievals of soil moisture over the central United States

with currently available in situ observations. Journal of Geophysical Research:
Atmospheres 117, D9 (2012).

CoNDE, V., Nico, G., MATEUS, P., CATALAO, J., KONTU, A., AND
GRITSEVICH, M. On The Estimation of Temporal Changes of Snow Water
Equivalent by Spaceborne SAR Interferometry: A New Application for the
Sentinel-1 Mission. Journal of Hydrology and Hydromechanics 67, 1 (2019),
93-100.

Curi, H., Jiang, L., Du, J., ZHao, S., WANG, G., Lu, Z., AND WANG, J.
Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture products

in the Genhe area of China. Journal of Geophysical Research: Atmospheres
122,16 (2017), 8650-8666.

Da1, Y., ZeEng, X., DickiNsON, R. E., BAKER, I., BoNaAN, G. B.,
BosiLovicH, M. G., DENNING, A. S., DIRMEYER, P. A., HOUSER, P. R.,
Niu, G., OLESON, K. W., SCHLOSSER, C. A., AND YANG, Z.-L. The Com-
mon Land Model. Bulletin of the Americn Meteorological Society 84, 8 (2003),
1013-1024.

Davis, D. T., CHEN, Z., TsaNnG, L., HWANG, J. ., AND CHANG, A. T. C.
Retrieval of snow parameters by iterative inversion of a neural network. IEEFE
Transactions on Geoscience and Remote Sensing 31, 4 (July 1993), 842-852.

DE ALMEIDA, B., GoMEs, B. S., AND LEITE, V. C. Particle swarm opti-
mization: A powerful technique for solving engineering problems. In Swarm

167



[49]

[50]

[51]

[52]

[53]

[54]

[55]

Intelligence-Recent Advances, New Perspectives and Applications. IntechOpen,
2019.

DE LanNoYy, G., REICHLE, R. H., ArRsENAULT, K. R., HOUSER, P. R.,
KuMAR, S., VERHOEST, N. E. C., AND PAUWELS, V. R. N. Multiscale
assimilation of Advanced Microwave Scanning Radiometer—-EOS snow water
equivalent and Moderate Resolution Imaging Spectroradiometer snow cover
fraction observations in northern Colorado. Water Resources Research 48, 1
(2012).

DE LaNNoy, G. J., KOSTER, R. D., REICHLE, R. H., MAHANAMA, S. P.,
AND L1U, Q. An updated treatment of soil texture and associated hydraulic
properties in a global land modeling system. Journal of Advances in Modeling
FEarth Systems 06 (2014), 957-979.

DE LanNoOY, G. J., REICHLE, R. H., HOUSER, P. R., ARSENAULT, K. R.,
VERHOEST, N. E., AND PAUWELS, V. R. Satellite-scale snow water equiv-

alent assimilation into a high-resolution land surface model. Journal of Hy-
drometeorology 11, 2 (2010), 352-369.

DE LaNNoOY, G. J. M., AND REICHLE, R. H. Assimilation of smos bright-

ness temperatures or soil moisture retrievals into a land surface model. Hy-
drology and Earth System Sciences 20, 12 (2016), 4895-4911.

DE Lannoy, G. J. M., REICHLE, R. H., AND PAUWELS, V. R. N. Global
Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over
Nonfrozen Land Using SMOS Observations. Journal of Hydrometeorology 14,
3 (2013), 765-785.

DE LAaNNOY, G. J. M., REICHLE, R. H., AND VRUGT, J. A. Uncertainty
quantification of GEOS-5 L-band radiative transfer model parameters using
Bayesian inference and SMOS observations. Remote Sensing of Environment
148 (2014), 146 — 157.

DE RosNAy, P., DrRuscH, M., BOONE, A., BaLsaMO, G., DECHARME,
B., HARRIS, P., KERR, Y., PELLARIN, T., POLCHER, J., AND WIGNERON,
J.-P. AMMA Land Surface Model Intercomparison Experiment coupled to
the Community Microwave Emission Model: ALMIP-MEM. Journal of Geo-
physical Research: Atmospheres 114, D5 (2009).

DE ZAN, F., AND MONTI GUARNIERI, A. Topsar: Terrain observation by
progressive scans. IEEFE Transactions on Geoscience and Remote Sensing 44,

9 (Sep. 2006), 2352-2360.

DecHANT, C., AND MORADKHANI, H. Radiance data assimilation for oper-
ational snow and streamflow forecasting. Advances in Water Resources 34, 3

(2011), 351 — 364.

168



[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

DEebpIEU, J. P., DE FARIAS, G. B., CASTAINGS, T., ALLAIN-BAILHACHE,
S., POoTTIER, E., DURAND, Y., AND BERNIER, M. Interpretation of a
RADARSAT-2 fully polarimetric time-series for snow cover studies in an

Alpine context — first results. Canidian Journal of Remote Sensing 38, 3
(2012), 336-351.

DERKSEN, C., TOOSE, P., REES, A., WANG, L., ENGLISH, M., WALKER,
A., AND STURM, M. Development of a tundra-specific snow water equivalent
retrieval algorithm for satellite passive microwave data. Remote Sensing of
Environment 114, 8 (2010), 1699-1709.

DiBIKE, Y. B., VELICKOV, S., SOLOMATINE, D., AND ABBOTT, M. B.
Model induction with support vector machines: introduction and applications.

Journal of Computing in Civil Engineering 15, 3 (2001), 208-216.

DoOBREVA, I. D., AND KLEIN, A. G. Fractional snow cover mapping through
artificial neural network analysis of modis surface reflectance. Remote Sensing
of Environment 115, 12 (2011), 3355 — 3366.

Dong, J., WALKER, J. P., HOUSER, P. R., AND SuN, C. Scanning mul-

tichannel microwave radiometer snow water equivalent assimilation. Journal
of Geophysical Research: Atmospheres 112, D7 (2007).

DRESSLER, K. A., LEAVESLEY, G. H., BALES, R. C., AND FASSNACHT,
S. R. Evaluation of gridded snow water equivalent and satellite snow cover
products for mountain basins in a hydrologic model. Hydrological Processes

20, 4 (2006), 673-6838.

DRrRuscH, M. Initializing numerical weather prediction models with satellite-
derived surface soil moisture: Data assimilation experiments with ECMWF’s
Integrated Forecast System and the TMI soil moisture data set. Journal of
Geophysical Research: Atmospheres 112, D3 (2007).

DruscH, M., HoLMES, T., DE RosNAYy, P., AND BaLsamo, G. Com-
paring ERA-40-based L-band brightness temperatures with Skylab observa-
tions: A calibration/validation study using the Community Microwave Emis-
sion Model. Journal of hydrometeorology 10, 1 (2009), 213-226.

Du, J., SHi, J., AND RoTT, H. Comparison between a multi-scattering and
multi-layer snow scattering model and its parameterized snow backscattering
model. Remote Sensing of Environment 114, 5 (2010), 1089 — 1098.

ECKERSTORFER, M., AND MALNES, E. Manual detection of snow avalanche
debris using high-resolution Radarsat-2 SAR images. Cold Regions Science
and Technology 120 (2015), 205 — 218.

Ex, M. B., MircHELL, K. E.; LiN, Y., ROGERS, E., GRUNMANN, P.,
KoOREN, V., GAYNO, G., AND TARPLEY, J. D. Implementation of Noah

169



[70]

[71]

[72]

[73]

[74]

[75]

land surface model advances in the National Centers for Environmental Pre-
diction operational mesoscale Eta model. Journal of Geophysical Research:
Atmospheres 108, D22 (2003).

ENTEKHABI, D., NJjoku, E. G., O'NELL, P. E., KeELroca, K. H.,
Crow, W. T.  EDELSTEIN, W. N., EnTIN, J. K., GOODMAN, S. D.,
JACKSON, T. J., JOHNSON, J., KIMBALL, J., PIEPMEIER, J. R., KOSTER,
R. D., MARTIN, N., McDonALD, K. C., MOGHADDAM, M., MORAN, S.,
REIcHLE, R., SH1, J. C.; SPENCER, M. W., THURMAN, S. W., TSANG,
L., AND VAN ZvL, J. The soil moisture active passive (SMAP) mission.
Proceedings of the IEEE 98, 5 (2010), 704-716.

ENTEKHABI, D., REICHLE, R. H., KOSTER, R. D., AND CrOW, W. T.

Performance Metrics for Soil Moisture Retrievals and Application Require-
ments. Journal of Hydrometeorology 11, 3 (jun 2010), 832-840.

EVENSEN, G. Data assimilation: the ensemble Kalman filter. Springer Science
& Business Media, 2009.

FeLpman, A. F., SHorr GianorTi, D. J., Trico, I. F., SALvuccr,
G. D., AND ENTEKHABI, D. Satellite-Based Assessment of Land Surface
Energy Partitioning—Soil Moisture Relationships and Effects of Confounding
Variables. Water Resources Research 55, 12 (2019), 10657-10677.

FENicIA, F., KAVETSKI, D., AND SAVENIJE, H. H. G. Elements of a flexible
approach for conceptual hydrological modeling: 1. Motivation and theoretical
development. Water Resources Research 47, 11 (2011).

ForMAN, B. A., AND REICHLE, R. H. Using a Support Vector Machine and
a Land Surface Model to Estimate Large-Scale Passive Microwave Brightness
Temperatures over Snow-Covered Land in North America. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 8, 9 (2015),
4431-4441.

ForMaAN, B. A., REICHLE, R. H., AND DERKSEN, C. Estimating Passive
Microwave Brightness Temperature Over Snow-Covered Land in North Amer-
ica Using a Land Surface Model and an Artificial Neural Network. Geoscience
and Remote Sensing, IEEE Transactions on 52, 1 (2014), 235-248.

ForMAN, B. A., REICHLE, R. H., AND RODELL, M. Assimilation of terres-

trial water storage from GRACE in a snow-dominated basin. Water Resource
Research 48, November 2011 (2012), 1-14.

ForMAN, B. A., AND XUE, Y. Machine learning predictions of passive

microwave brightness temperature over snow-covered land using the special
sensor microwave imager (SSM/I). Physical Geography 38, 2 (2017), 176-196.

170



[78]

[80]

[31]

[82]

[33]

[84]

[85]

FosTER, J. L., SUuN, C., WALKER, J. P., KELLY, R., CHANG, A., DONG,
J., AND POWELL, H. Quantifying the uncertainty in passive microwave snow

water equivalent observations. Remote Sensing of Environment 94, 2 (2005),
187-203.

FrIEDL, M. A., SULLA-MENASHE, D., TAN, B., SCHNEIDER, A., RaA-
MANKUTTY, N., SIBLEY, A., AND HuANG, X. MODIS Collection 5 global
land cover: Algorithm refinements and characterization of new datasets. Re-
mote Sensing of Environment 114, 1 (2010), 168-182.

FrurrA, L. A., MiLovicH, J. A., KARSZENBAUM, H., AND GAGLIARDINTI,
D. A. Radiometric corrections and calibration of sar images. In IGARSS '98.
Sensing and Managing the Environment. 1998 IEEE International Geoscience
and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174) (July
1998), vol. 2, pp. 1147-1149 vol.2.

GARNAUD, C., BELAIR, S., CARRERA, M. L., DERKSEN, C., BILODEAU,
B., ABRAHAMOWICZ, M., GAUTHIER, N., AND VIONNET, V. Quantifying
snow mass mission concept trade-offs using an observing system simulation
experiment. Journal of Hydrometeorology 20, 1 (2019), 155-173.

GELARO, R., McCARTY, W., SUAREZ, M. J., ToDLING, R., MoOLOD,
A., Takacs, L., RANDLES, C. A., DARMENOV, A., BosiLovicH, M. G.,
REICHLE, R., WARGAN, K., Cov, L., CULLATHER, R., DRAPER, C.,
AKELLA, S., BUCHARD, V., CONATY, A., DA SiLvAa, A. M., Gu, W.,
KM, G.-K., KOSTER, R., LuccHESI, R., MERKOVA, D., NIELSEN, J. E.,
PArRTYKA, G., PAWSON, S., PuTMAN, W., RIENECKER, M., SCHUBERT,
S. D., SIENKIEWICZ, M., AND ZHAO, B. The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2). Journal of
Climate 30, 14 (2017), 5419-5454.

GETIRANA, A., BOONE, A., YAMAZAKI, D., DECHARME, B., ParA, F.,
AND MOGNARD, N. The Hydrological Modeling and Analysis Platform
(HyMAP): Evaluation in the Amazon Basin. Journal of Hydrometeorology
13,6 (2012), 1641-1665.

GETIRANA, A. C. V., DuTRrA, E., GUIMBERTEAU, M., KAM, J., L1, H.-
Y., DECHARME, B., ZHANG, Z., DUCHARNE, A., BOONE, A., BALSAMO,
G., RopeELL, M., ToURE, A. M., XUE, Y., PETERS-LIDARD, C. D.,
KuMAR, S. V., ArRSENAULT, K., DRaAPEAU, G., RUBY LEUNG, L., RON-
CHAIL, J., AND SHEFFIELD, J. Water balance in the amazon basin from
a land surface model ensemble. Journal of Hydrometeorology 15, 6 (2014),
2586-2614.

GicaaMo, T. Z., AND TARBOTON, D. G. Ensemble streamflow forecasting
using an energy balance snowmelt model coupled to a distributed hydrologic
model with assimilation of snow and streamflow observations. Water Resources
Research (2019).

171



[30]

[90]

[91]

[93]

[94]

[95]

Grar, T., Koikg, T., L1, X., HIrRAI, M., AND Tsursul, H. Assimilating
passive microwave brightness temperature data into a land surface model to
improve the snow depth predictability. In 2006 IEEE International Symposium
on Geoscience and Remote Sensing (July 2006), pp. 706-709.

GRANATA, F., GARGANO, R., AND DE MARINIS, G. Support vector regres-
sion for rainfall-runoff modeling in urban drainage: A comparison with the
EPA’s storm water management model. Water 8, 3 (2016), 69.

GRANT, J. P., WIGNERON, J. P., VAN DE GRIEND, A. A., KRUSZEWSKI,
A., SOBJERG, S. S., AND SKOU, N. A field experiment on microwave forest
radiometry: L-band signal behaviour for varying conditions of surface wetness.

Remote Sensing of Environment 109, 1 (2007), 10-19.

GRUBER, A., DE LANNOY, G., AND CROW, W. A Monte Carlo based adap-
tive Kalman filtering framework for soil moisture data assimilation. Remote
sensing of environment 228 (2019), 105-114.

Harr, D. K., KeLry, R. E., FOSTER, J. L., AND CHANG, A. T. Esti-
mation of Snow Extent and Snow Properties. American Cancer Society, 2006,
ch. 55.

Hansen, M. C., Poraprov, P. V., MooORE, R., HANCHER, M., TuU-
RUBANOVA, S. A., TYUKAVINA, A., THAU, D., STEHMAN, S. V., GOETZ,
S. J., LoveLanD, T. R., KOMMAREDDY, A., Ecorov, A., CHINI, L.,
JusTice, C. O., AND TOWNSHEND, J. R. G. High-resolution global maps
of 21st-century forest cover change. science 342, 6160 (2013), 850-853.

HEe, G. J., Jiang, J. X., X1A, Z. H., HAO, Y., X1A0, P. F., FENG, X. Z.,
AND WANG, Z. Snow cover extraction in mountain areas using RadarSat-2
polarimetrie SAR data. In 2016 16th International Conference on Ground
Penetrating Radar (GPR) (June 2016), pp. 1-5.

HELMERT, J., SENSOY SORMAN, A., ALVARADO MONTERO, R.,
DE MicHELE, C., DE RosNAY, P., DumoNT, M., FINGER, D. C., LANGE,
M., PicArD, G., PoTorPovA, V., PULLEN, S., VIKHAMAR-SCHULER, D.,
AND ARSLAN, A. N. Review of snow data assimilation methods for hydro-
logical, land surface, meteorological and climate models: Results from a cost
harmosnow survey. Geosciences 8, 12 (2018).

HorMmEes, T., DE Jeu, R., OwWgE, M., AND DorLMAN, A. Land surface
temperature from Ka band (37 GHz) passive microwave observations. Journal

of Geophysical Research: Atmospheres 114, D4 (2009).

HorwmEs, T. R. H., JACKSON, T. J., REICHLE, R. H., AND BASARA, J. B.
An assessment of surface soil temperature products from numerical weather
prediction models using ground-based measurements. Water Resources Re-

search 48, 2 (2012).

172



[96]

98]

[99]

[100]

[101]

[102]

[103]

[104]

105

HostacHE, R., Rains, D., MavLick, K., CHini, M., PELICH, R.,
Lievens, H., Fenicia, F., CoraTto, G., VERHOEST, N. E. C., AND
MATGEN, P. Assimilation of SMOS brightness temperature into a large-
scale distributed conceptual hydrological model. Hydrology and Earth System
Sciences Discussions 2019 (2019), 1-28.

Huang, C., L1, X., Lu, L., AND GU, J. Experiments of one-dimensional
soil moisture assimilation system based on ensemble kalman filter. Remote

sensing of environment 112, 3 (2008), 888-900.

Huang, C.-Y., AND ANDEREGG, W. R. L. Large drought-induced above-

ground live biomass losses in southern Rocky Mountain aspen forests. Global
Change Biology 18, 3 (2012), 1016-1027.

HurrMAN, G. J., BowviN, D. T., NELKIN, E. J., WoLFF, D. B., ADLER,
R. F., Gu, G., Hong, Y., BowMmaN, K. P., AND STOCKER, E. F. The
TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear,
combined-sensor precipitation estimates at fine scales. Journal of hydromete-
orology 8, 1 (2007), 38-55.

JACKSON, T., AND SCHMUGGE, T. Vegetation effects on the microwave
emission of soils. Remote Sensing of Environment 36, 3 (1991), 203-212.

JAckson, T. J., BinprisH, R., CosH, M. H., ZHAO, T., STARKS, P. J.,
BoscH, D. D., SEYFRIED, M., MORAN, M. S., GooDrICH, D. C., KERR,
Y. H., AND LEROUX, D. Validation of Soil Moisture and Ocean Salinity
(SMOS) Soil Moisture Over Watershed Networks in the U.S. IEEE Transac-
tions on Geoscience and Remote Sensing 50, 5 (May 2012), 1530-1543.

JoHNsoN, M. T., RAMAGE, J., Trovy, T. J., AND BrobpzIK, M. J.
Snowmelt Detection with Calibrated, Enhanced-Resolution Brightness Tem-
peratures (CETB) in Colorado Watersheds. Water Resources Research 56, 1
(2020).

Joyce, R. J., JANowIAK, J. E.; ARKIN, P. A., AND XIE, P. CMORPH: A
method that produces global precipitation estimates from passive microwave
and infrared data at high spatial and temporal resolution. Journal of hydrom-
eteorology 5, 3 (2004), 487-503.

Kanag, D. H., TaN, S.; AND KiMm, E. J. Evaluation of Brightness Tempera-
ture Sensitivity to Snowpack Physical Properties Using Coupled Snow Physics
and Microwave Radiative Transfer Models. IEEE Transactions on Geoscience
and Remote Sensing 57, 12 (2019), 10241-10251.

KeLLY, R. The AMSR-E Snow Depth Algorithm: Description and Initial
Results. Journal of The Remote Sensing Society of Japan 29, 1 (2009), 307—
317.

173



[106]

[107]

[108]

[109]

[110]

[111]

[112)

[113]

[114]

[115]

KeLLy, R. E., CHANG, A. T., TSANG, L., AND FOSTER, J. L. A prototype
AMSR-E global snow area and snow depth algorithm. IEEE Transactions on
Geoscience and Remote Sensing 41, 2 (2003), 230-242.

KENNEDY, J., AND EBERHART, R. Particle swarm optimization. In Proceed-
ings of ICNN’95-International Conference on Neural Networks (1995), vol. 4,
[EEE, pp. 1942-1948.

KERR, Y. H., WALDTEUFEL, P., RICHAUME, P., WIGNERON, J. P., FER-
RAZZOLI, P., MAHMOODI, A., AL BiTAR, A., CABOT, F., GRUHIER, C.,
JUGLEA, S. E., LEROUX, D., MIALON, A., AND DELWART, S. The SMOS
soil moisture retrieval algorithm. IFEEFE transactions on geoscience and remote
sensing 50, 5 (2012), 1384-1403.

KERR, Y. H., WALDTEUFEL, P., WIGNERON, J. ., MARTINUZZI, J., FONT,
J., AND BERGER, M. Soil moisture retrieval from space: the soil moisture
and ocean salinity (SMOS) mission. [EEE Transactions on Geoscience and

Remote Sensing 39, 8 (2001), 1729-1735.

KERR, Y. H., WALDTEUFEL, P., WIGNERON, J., DELWART, S., CABOT,
F., BouTin, J., ESCORIHUELA, M., FoNT, J., REUL, N., GRUHIER, C.,
JUGLEA, S. E., DRINKWATER, M. R., HAHNE, A., MARTIN-NEIRA, M.,
AND MECKLENBURG, S. The SMOS Mission: New Tool for Monitoring Key
Elements ofthe Global Water Cycle. Proceedings of the IEEE 98, 5 (2010),
666-687.

KM, E., GATEBE, C., HALL, D., NEWLIN, J., MISAKONIS, A., ELDER,
K., MarsHALL, H. P., HIEMSTRA, C., BRUCKER, L., DE MARcCO, E.,
CRAWFORD, C., KANG, D. H., AND ENTIN, J. NASA’s SnowEx campaign:
Observing seasonal snow in a forested environment. In 2017 IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS) (July 2017),
pp. 1388-1390.

KoORrRNELSEN, K. C., CosH, M. H., AND COULIBALY, P. Potential of bias

correction for downscaling passive microwave and soil moisture data. Journal
of Geophysical Research: Atmospheres 120, 13 (2015), 6460-6479.

KOSTER, R. D., MAHANAMA, S. P., LIVNEH, B., LETTENMAIER, D. P.,
AND REICHLE, R. H. Skill in streamflow forecasts derived from large-scale
estimates of soil moisture and snow. Nature Geoscience 3, 9 (2010), 613-616.

KoOSTER, R. D., AND SUAREZ, M. J. Modeling the land surface boundary

in climate models as a composite of independent vegetation stands. Journal
of Geophysical Research: Atmospheres 97, D3 (1992), 2697-2715.

KosTER, R. D., SUAREZ, M. J., DUCHARNE, A., STIEGLITZ, M., AND
KuMmAR, P. A catchment-based approach to modeling land surface processes

174



[116]

[117]

18]

[119]

[120]

[121]

[122]
[123]

[124]

[125]

in a general circulation model 1. Model structure. Journal of Geophysical
Research 105, D20 (2000), 24809-24822.

Kunn, H. W., AND TUCKER, A. W. Nonlinear programming. In Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probability
(Berkeley, Calif., 1951), University of California Press, pp. 481-492.

KuMAR, S., Mocko, D., VuyovicH, C., AND PETERS-LIDARD, C. Impact
of Surface Albedo Assimilation on Snow Estimation. Remote Sensing 12, 4
(2020), 645.

KumMmAR, S. V., PETERS-LIDARD, C. D., TiaN, Y., HOUSER, P. R.,
GEIGER, J., OLDEN, S., LiGHTY, L., EAsT™MAN, J. L., Dory, B.,
DIRMEYER, P., Abpawms, J., MircHeLL, K., WoobD, E. F., AND
SHEFFIELD, J. Land information system: An interoperable framework for

high resolution land surface modeling. Environmental Modelling and Software
21, 10 (2006), 1402-1415.

KumAR, S. V., REICHLE, R. H., HARRISON, K. W., PETERS-LIDARD,
C. D., YATHEENDRADAS, S., AND SANTANELLO, J. A. A comparison of

methods for a priori bias correction in soil moisture data assimilation. Water
Resources Research 48, 3 (2012), 1-16.

Kunzi, K. F., PATIL, S., AND RoTT, H. Snow-Cover Parameters Retrieved
from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) Data.
IEEE Transactions on Geoscience and Remote Sensing GE-20, 4 (Oct 1982),
452-467.

Kwon, Y., FormaN, B. A., AHMAD, J. A., KUMAR, S. V., AND YOON,
Y. Exploring the Utility of Machine Learning-Based Passive Microwave
Brightness Temperature Data Assimilation over Terrestrial Snow in High
Mountain Asia. Remote Sensing 11, 19 (2019).

LaksHMI, V. Remote sensing of soil moisture. ISRN Soil Science 2013 (2013).

LANGLEY, P., AND SIMON, H. A. Applications of machine learning and rule
induction. Communications of the ACM 38, 11 (1995), 54-64.

LE VINE, D. M., LAGERLOEF, G. S. E., CorLomMB, F. R., YUEH, S. H.,
MEMBER, S., AND PELLERANO, F. A. Aquarius : An Instrument to Mon-
itor Sea Surface Salinity From Space. IEEE Transactions on Geoscience and
Remote Sensing 45, 7 (2007), 2040-2050.

L1, D., WRZESIEN, M. L., DURAND, M., ADAM, J., AND LETTENMAIER,
D. P. How much runoff originates as snow in the western united states, and
how will that change in the future? Geophysical Research Letters 44, 12
(2017), 6163-6172.

175



[126]

[127]

128]

129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

L1, H., WaANG, Z., HE, G., AND MAN, W. Estimating Snow Depth and
Snow Water Equivalence Using Repeat-Pass Interferometric SAR in the North-
ern Piedmont Region of the Tianshan Mountains. Journal of Sensors 2017

(2017).

L1, H., ZHANG, Z., AND Liu, Z. Application of Artificial Neural Networks
for Catalysis: A Review. Catalysts 7, 10 (2017).

L1, J., AND CASTAGNA, J. Support vector machine (svim) pattern recognition
to avo classification. Geophysical Research Letters 31, 2 (2004).

L1ANG, S. Advances in land remote sensing: system, modeling, inversion and
application. Springer Science & Business Media, 2008, ch. 3.3.

LianG, X., LETTENMAIER, D. P., AND WooD, E. F. One-dimensional
statistical dynamic representation of subgrid spatial variability of precipitation

in the two-layer variable infiltration capacity model. Journal of Geophysical
Resaerch: Atmosphere 101, D16 (1996), 21403-21422.

Lievens, H., DEMUZERE, M., MARSsHALL, H.-P., REICHLE, R. H.,
BRUCKER, L., BRANGERS, 1., DE RosNAY, P., DumonT, M., GIROTTO,
M., IMMERZEEL, W. W., JoNas, T., Kim, E. J., KocH, I., MARTY,
C., SALORANTA, T., SCHOBER, J., AND DE LaNNOY, G. J. M. Snow
depth variability in the Northern Hemisphere mountains observed from space.
Nature communications 10, 1 (2019), 4629.

Lievens, H., REICHLE, R. H., Liu, Q., DE LANNOY, G., DUNBAR, R. S.,
KiMm, S., DAs, N. N., CosH, M., WALKER, J. P., AND WAGNER, W. Joint
Sentinel-1 and SMAP data assimilation to improve soil moisture estimates.
Geophysical research letters 44, 12 (2017), 6145-6153.

LINDSTROM, G., JOHANSSON, B., PERSSON, M., GARDELIN, M., AND
BERGSTROM, S. Development and test of the distributed HBV-96 hydrolog-
ical model. Journal of hydrology 201, 1-4 (1997), 272-288.

Liu, Y., AND MARGULIS, S. A. Deriving Bias and Uncertainty in MERRA-2
Snowfall Precipitation Over High Mountain Asia. Frontiers in Earth Science
7 (2019), 280.

Liu, Y., YANG, Z., LIN, P., ZHENG, Z., AND XIE, S. Comparison and

evaluation of multiple land surface products for the water budget in the yellow
river basin. Journal of Hydrology (2019), 124534.

Lvuojus, K. P., PuLLIAINEN, J. T., METSAMAKI, S. J., AND HAL-
LIKAINEN, M. T. Enhanced SAR-Based Snow-Covered Area Estimation

Method for Boreal Forest Zone. IEEFE Transactions on Geoscience and Remote
Sensing 47, 3 (March 2009), 922-935.

176



[137]

138

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Ma, H., ZENG, J., CHEN, N., ZHANG, X., CosH, M. H., AND WANG,
W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI:

A comprehensive assessment using global ground-based observations. Remote
Sensing of Environment 231 (2019), 111215.

MaHANAMA, S. P., KosTER, R. D., WALKER, G. K., TAKAcs, L. L.,
REICHLE, R. H., DE LANNOY, G., Liu, Q., ZHAO, B., AND SUAREZ,
M. J. Land boundary conditions for the Goddard Earth Observing System
model version 5 (GEOS-5) climate modeling system: Recent updates and data
file descriptions. Tech. rep., National Aeronautics and Space Administration,
sep 2015.

MAaRIN, C., BErRTOLDI, G., PREMIER, V., CALLEGARI, M., BriDA, C.,
HURkAMP, K., TSCHIERSCH, J., ZEBISCH, M., AND NOTARNICOLA, C.
Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine
regions. The Cryosphere Discussions 2019 (2019), 1-31.

MATZLER, C. Applications of the interaction of microwaves with the natural
snow cover. Remote sensing reviews 2, 2 (1987), 259-387.

MATZLER, C. Microwave permittivity of dry snow. IEEE Transactions on
Geoscience and Remote Sensing 34, 2 (March 1996), 573-581.

McCUuUEN, R. H. Modeling hydrologic change : statistical methods. CRC
press, 2016.

McFARLAND, M. J., MILLER, R. L., AND NEALE, C. M. Land surface
temperature derived from the SSM/I passive microwave brightness tempera-
tures. IEEE Transactions on Geoscience and Remote Sensing 28, 5 (1990),
839-845.

McLAUGHLIN, D. An integrated approach to hydrologic data assimilation:

Interpolation, smoothing, and filtering. Advances in Water Resources 25, 8-12
(2002), 1275-1286.

MEYER, T., WEIHERMULLER, L., VEREECKEN, H., AND JONARD, F. Veg-
etation Optical Depth and Soil Moisture Retrieved from L-Band Radiometry
over the Growth Cycle of a Winter Wheat. Remote Sensing 10, 10 (2018).

MONTERO, R. A., SCHWANENBERG, D., KRAHE, P., LISNIAK, D., SEN-
soy, A., SORMAN, A. A., AND AKKOL, B. Moving horizon estimation for
assimilating H-SAF remote sensing data into the HBV hydrological model.
Advances in Water Resources 92 (2016), 248 — 257.

MOREIRA, A., PRATS-IRAOLA, P., YOUNIS, M., KRIEGER, G., HAJNSEK,
[., AND PArATHANASSIOU, K. P. A tutorial on synthetic aperture radar.
IEEE Geoscience and remote sensing magazine 1, 1 (2013), 6-43.

177



[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158

NAGLER, T., AND RoTT, H. Retrieval of wet snow by means of multitem-
poral SAR data. IFEE Transactions on Geoscience and Remote Sensing 38,
2 (March 2000), 754-765.

NAGLER, T., RorT, H., MALCHER, P., AND MULLER, F. Assimilation

of meteorological and remote sensing data for snowmelt runoff forecasting.
Remote sensing of Environment 112, 4 (2008), 1408 — 1420.

NAGLER, T., RorT, H., RIPPER, E., BiPPUs, G., AND HETZENECKER,

M. Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR.
Remote Sensing 8, 4 (2016).

NAkANO, S., UENO, G., AND HiGgucHI, T. Merging particle filter for se-
quential data assimilation. Nonlinear Processes in Geophysics 14, 4 (July

2007), 395-408.

NATIONAL IcE CENTER. IMS Daily Northern Hemisphere Snow and Ice
analysis at 1km, 4km, and 24km Resolutions, version 1. Tech. rep., National
Snow and Ice Data Center, 2008.

NEELAM, M., AND MoOHANTY, B. P. Global sensitivity analysis of the
radiative transfer model. Water Resources Research 51, 4 (2015), 2428-2443.

Niu, G.-Y., YANG, Z.-L., MitcHELL, K. E., CHEN, F., EX, M. B., BAR-
LAGE, M., KUMAR, A., MANNING, K., NIYOGI, D., ROSERO, E., TEWARI,
M., AND XiA, Y. The community Noah land surface model with multipa-
rameterization options (Noah-MP): 1. Model description and evaluation with

local-scale measurements. Journal of Geophysical Research: Atmospheres 116,
D12 (2011).

Nioku, E. G., AND ENTEKHABI, D. Passive microwave remote sensing of
soil moisture. Journal of hydrology 184, 1-2 (1996), 101-129.

Nioku, E. G., Jackson, T. J., Laksumi, V., CHAN, T. K., AND
NGHIEM, S. V. Soil moisture retrieval from AMSR-E. IEEE transactions
on Geoscience and remote sensing 41, 2 (2003), 215-229.

Oriva, R., Dacanzo, E., KERRr, Y. H., MECKLENBURG, S., NIETO,
S., RICHAUME, P., AND GRUHIER, C. SMOS radio frequency interference
scenario: Status and actions taken to improve the RFI environment in the
1400-1427-MHz passive band. IEEE Transactions on Geoscience and Remote
Sensing 50, 5 (2012), 1427-1439.

Oweg, M., pE Jeu, R., AND HoLMES, T. Multisensor historical climatol-

ogy of satellite-derived global land surface moisture. Journal of Geophysical
Research: Earth Surface 113, F1 (2008).

178



[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

Pan, M., SAaHoo, A. K., AND WooD, E. F. Improving soil moisture

retrievals from a physically-based radiative transfer model. Remote Sensing
of Environment 140 (2014), 130 — 140.

PARK, J., KOorosov, A. A., BABIKER, M., SANDVEN, S., AND WON, J.
Efficient Thermal Noise Removal for Sentinel-1 TOPSAR Cross-Polarization
Channel. IEEE Transactions on Geoscience and Remote Sensing 56, 3 (2018),
1555-1565.

PELLARIN, T., WIGNERON, J. ., CALVET, J. ., BERGER, M., DOUVILLE,
H., FERRAzZZOLI, P., KERR, Y. H., LOPEZ-BAEZA, E., PULLIAINEN, J.,
StMMONDS, L. P.;, AND WALDTEUFEL, P. Two-year global simulation of
L-band brightness temperatures over land. IEEFE Transactions on Geoscience
and Remote Sensing 41, 9 (2003), 2135-2139.

PeErVEZ, M. S., AND BrROwN, J. F. Mapping Irrigated Lands at 250-m
Scale by Merging MODIS Data and National Agricultural Statistics. Remote
Sensing 2, 10 (2010), 2388-2412.

PeETROPOULOS, G. P., IRELAND, G., AND BARRETT, B. Surface soil mois-
ture retrievals from remote sensing: Current status, products & future trends.
Physics and Chemistry of the Earth, Parts A/B/C 83-84 (2015), 36 — 56.

Emerging science and applications with microwave remote sensing data.

PuaN, X. V., FERRO-FAMIL, L., GAay, M., DURAND, Y., DuMONT, M.,
MORIN, S., ALLAIN, S., D’URsO, G., AND GIRARD, A. 1D-Var multi-
layer assimilation of X-band SAR data into a detailed snowpack model. The
Cryosphere 8, 5 (2014), 1975-1987.

PiepMEIER, J., BROWN, S., GALEs, J., HONG, L., LAGERLOEF, G.,
LE VINE, D., DE MATTHAEIS, P., MEISSNER, T., BINDLISH, R., JACK-
SON, T., ET AL. Aquarius radiometer post-launch calibration for product
version 2. Tech. rep., National Aeronautics and Space Administration, 2013.

Pivor, F. C. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline,
Churchill, Manitoba, Canada. Remote Sensing 4, 7 (2012), 2133-2155.

POLCHER, J., PILES, M., GELATI, E., BARELLA-ORTIZ, A., AND TELLO,
M. Comparing surface-soil moisture from the SMOS mission and the OR-
CHIDEE land-surface model over the Iberian Peninsula. Remote sensing of

environment 174 (2016), 69-81.

Possa, E. M., AND MAILLARD, P. Precise Delineation of Small Water

Bodies from Sentinel-1 Data using Support Vector Machine Classification.
Canadian Journal of Remote Sensing 44, 3 (2018), 179-190.

179



[169]

[170]

171]

[172]

[173]

[174]

[175]

[176]

[177]

178]

Porin, P., RosicH, B., GRIMONT, P., MIRANDA, N., SHURMER, I.,
O’CoNNELL, A., TORRES, R., AND KRASSENBURG, M. Sentinel-1 Mis-
sion Status. In Proceedings of EUSAR 2016: 11th Furopean Conference on
Synthetic Aperture Radar (2016), pp. 1-6.

Porin, P., RosicH, B., ROEDER, J., AND BARGELLINI, P. Sentinel-1
Mission operations concept. In 2014 IEEE Geoscience and Remote Sensing

Symposium (July 2014), pp. 1465-1468.

QUETS, J., LANNOY], G. J. D., YAARI|, A. A., CHAN, S., CosH, M. H.,
GRUBER, A., REICHLE, R. H., DER SCHALIE], R. V., AND WIGNERON,
J.-P. Uncertainty in soil moisture retrievals: An ensemble approach using
SMOS L-band microwave data. Remote Sensing of Environment 229 (2019),
133 — 147.

Rains, D., HaN, X., LiIEVENS, H., MoNTZKA, C., AND VERHOEST, N.
E. C. SMOS brightness temperature assimilation into the Community Land
Model. Hydrology and Earth System Sciences 21, 11 (2017), 5929-5951.

RaNkoOVIC, V., GRuJovi¢, N., Divac, D., AND MILIVOJEVIC, N. Devel-

opment of support vector regression identification model for prediction of dam
structural behaviour. Structural Safety 48 (2014), 33-39.

REICHLE, R., MCLAUGHLIN, D. B.; AND ENTEKHABI, D. Hydrologic Data

Assimilation with the Ensemble Kalman Filter. Journal of Hydrometeorology
130 (2002), 103-114.

REICHLE, R. H. Data assimilation methods in the Earth sciences. Advances
in Water Resources 31, 11 (2008), 1411-1418.

REICHLE, R. H., DE LANNOY, G. J. M., FORMAN, B. A., DRAPER, C. S.,
AND Liu, Q. Connecting Satellite Observations with Water Cycle Variables
Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS.
Surveys in Geophysics 35, 3 (2014), 577-606.

RIENECKER, M. M., SuaArez, M. J., GELARO, R., TobpLING, R.,
BacMmEISTER, J., Liu, E., BosiLovicH, M. G., SCHUBERT, S. D.,
Takacs, L., Kim, G. K., BLoowm, S., CHEN, J., COLLINS, D., CONATY,
A., DA Siva, A., Gu, W., JOINER, J., KOSTER, R. D., LuccHESI, R.,
Movrobp, A., Owens, T., Pawson, S., Pecion, P., REDDER, C. R.,
REICHLE, R., ROBERTSON, F. R., RuDDICK, A. G., SIENKIEWICZ, M.,
AND WOOLLEN, J. MERRA: NASA’s modern-era retrospective analysis for
research and applications. Journal of Climate 24, 14 (2011), 3624-3648.

RopELL, M., AND HOUSER, P. R. Updating a Land Surface Model with
MODIS-Derived Snow Cover. Journal of Hydrometeorology 5, 6 (2004), 1064—
1075.

180



[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

RoobprPosHTI, M. S., SAFARRAD, T., AND SHAHABI, H. Drought sensitivity

mapping using two one-class support vector machine algorithms. Atmospheric
research 193 (2017), 73-82.

RorT, H., AND NAGLER, T. Monitoring temporal dynamics of snowmelt
with ERS-1 SAR. In 1995 International Geoscience and Remote Sensing Sym-
posium, IGARSS '95. Quantitative Remote Sensing for Science and Applica-
tions (July 1995), vol. 3, pp. 1747-1749 vol.3.

Roy, A., ROYER, A., AND TURCOTTE, R. Improvement of springtime
streamflow simulations in a boreal environment by incorporating snow-covered
area derived from remote sensing data. Journal of Hydrology 390, 1 (2010),
35 — 44.

SCHAUFLER, S., BAUER-MARSCHALLINGER, B., HOCHSTOGER, S., AND
WAGNER, W. Modelling and correcting azimuthal anisotropy in Sentinel-1
backscatter data. Remote Sensing Letters 9, 8 (2018), 799-808.

SCHMUGGE, T., JACksoON, T., Kustas, W., AND WANG, J. Passive mi-
crowave remote sensing of soil moisture: Results from HAPEX, FIFE and
MONSOON 90. ISPRS Journal of Photogrammetry and Remote Sensing 47,
2-3 (1992), 127-143.

SCHMUGGE, T. J., Kustas, W. P., RitrcHig, J. C., JACKSON, T. J., AND

RANGO, A. Remote sensing in hydrology. Advances in water resources 25,
8-12 (2002), 1367-1385.

SERREZE, M. C., CLARK, M. P., ARMSTRONG, R. L., McGinNis, D. A.,
AND PULWARTY, R. S. Characteristics of the western United States snowpack
from snowpack telemetry (SNOTEL) data. Water Resources Research 35, 7
(1999), 2145-2160.

SH1, J., Davis, R. E., AND DozIER, J. Stereological determination of

dry-snow parameters for discrete-scatterer microwave modeling. Annals of
Glaciology 17 (1993), 295-299.

SHI, J., AND DozIER, J. Radar backscattering response to wet snow. In
[Proceedings] IGARSS "92 International Geoscience and Remote Sensing Sym-
posium (May 1992), vol. 2, pp. 927-929.

SHI, J., AND DOZIER, J. Estimation of snow water equivalence using SIR-
C/X-SAR. L. Inferring snow density and subsurface properties. IEEE Trans-
actions on Geoscience and Remote Sensing 38, 6 (2000), 2465-2474.

SIEBERT, S., HENRICH, V., FREKEN, K., AND BRUKE, J. Update of the
digital global map of irrigation areas to version 5. Institute of Crop Sci-
ence and Resource Conservation, Rheinische Friedrich- Wilhelms-Universitit,

Bonn, Germany and Food and Agriculture Organization of the United Nations
(2013).

181



[190]

191]

[192]

193]

[194]

[195]

196]

197]

198

199]

[200]

[201]

[202]

SiMPSON, J. J., AND MCINTIRE, T. J. A recurrent neural network classifier

for improved retrievals of areal extent of snow cover. IEEE Transactions on
Geoscience and Remote Sensing 39, 10 (Oct 2001), 2135-2147.

SINGH, G., VENKATARAMAN, G., YAMAGUCHI, Y., AND PARK, S. Capa-
bility Assessment of Fully Polarimetric ALOS-PALSAR Data for Discriminat-
ing Wet Snow From Other Scattering Types in Mountainous Regions. I[EEFE
Transactions on Geoscience and Remote Sensing 52, 2 (Feb 2014), 1177-1196.

SLATER, A. G., AND CLARK, M. P. Snow Data Assimilation via an Ensem-
ble Kalman Filter. Journal of Hydrometeorology 7, 3 (2006), 478-493.

SLEVIN, D., TETT, S., AND WILLIAMS, M. Multi-site evaluation of the
JULES land surface model using global and local data. Geosci. Model Dev.
Discuss 7 (2014), 5341-5380.

SMOLA, A. J., AND SCHOLKOPF, B. A tutorial on support vector regression.
Statistics and Computing 14, 3 (Aug 2004), 99-222.

SOLOMATINE, D. P., AND SHRESTHA, D. L. A novel method to estimate

model uncertainty using machine learning techniques. Water Resources Re-
search 45, 12 (2009).

SONG, S., AND WANG, W. Impacts of Antecedent Soil Moisture on the
Rainfall-Runoff Transformation Process Based on High-Resolution Observa-
tions in Soil Tank Experiments. Water 11, 2 (2019), 296.

STURM, M., GOLDSTEIN, M. A., AND PARR, C. Water and life from snow:

A trillion dollar science question. Water Resources Research 53, 5 (2017),
3534-3544.

SUN, L., SEibou, O., NISTOR, I., AND Liu, K. Review of the Kalman-type

hydrological data assimilation. Hydrological Sciences Journal 61, 13 (2016),
2348-2366.

Suzuki, K., AND ZUPANSKI, M. Uncertainty in solid precipitation and snow
depth prediction for Siberia using the Noah and Noah-MP land surface models.
Frontiers of Earth Science 12, 4 (2018), 672-682.

TarT, A. Estimation of snow water equivalent using passive microwave radi-
ation data. Remote Sensing of Environment 64, 3 (1998), 286-291.

TaNG, Q., Gao, H., Lu, H., AND LETTENMAIER, D. P. Remote sensing:
hydrology. Progress in Physical Geography 33, 4 (2009), 490-509.

TEDESCO, M., AND NARVEKAR, P. S. Assessment of the nasa amsr-e swe
product. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 3, 1 (March 2010), 141-159.

182



[203]

204]

205]

[206]

1207]

[208]

1209]

[210]

[211]

212]

213]

TEDESCO, M., PULLIAINEN, J., TAKALA, M., HALLIKAINEN, M., AND
PAMPALONI, P. Artificial neural network-based techniques for the retrieval
of SWE and snow depth from SSM/I data. Remote Sensing of Environment
90, 1 (2004), 76 — 85.

THAKUR, P. K., AGGARWAL, S., GARG, P., GARG, R., MANI, S., PAN-
DIT, A., AND KUMAR, S. Snow physical parameters estimation using space-
based Synthetic Aperture Radar. Geocarto International 27, 3 (2012), 263~
288.

TORRES, R., SNOELJ, P., GEUDTNER, D., BiBBY, D., DAVIDSON, M., AT-
TEMA, E., PoTIN, P., ROMMEN, B., FLOURY, N., BROWN, M., TRAVER,
I. N., DEGHAYE, P., DUESMANN, B., RosicH, B., MIRANDA, N., BRUNO,
C., L’ABBATE, M., Croci, R., PIETROPAOLO, A., HUCHLER, M., AND
RosTAN, F. GMES Sentinel-1 mission. Remote Sensing of Environment 120
(2012), 9 — 24. The Sentinel Missions - New Opportunities for Science.

Tourge, A. M., LuoJus, K., RopELL, M., BEAUDOING, H., AND GE-
TIRANA, A. Evaluation of Simulated Snow and Snowmelt Timing in the
Community Land Model Using Satellite-Based Products and Streamflow Ob-
servations. Journal of Advances in Modeling Earth Systems 10, 11 (2018),
2933-2951.

Tsarl, Y.-L. S., DieTz, A., OpPELT, N., AND KUENZER, C. Wet and Dry
Snow Detection Using Sentinel-1 SAR Data for Mountainous Areas with a
Machine Learning Technique. Remote Sensing 11, 8 (2019).

TsanG, L., CHEN, Z., OH, S., MARKS, R. J., aAND CHANG, A. T. C.
Inversion of snow parameters from passive microwave remote sensing measure-
ments by a neural network trained with a multiple scattering model. [FEFE
Transactions on Geoscience and Remote Sensing 30, 5 (Sep. 1992), 1015-1024.

Tsang, L., KoNG, J. A., AND SHIN, R. T. Theory of Microwave Remote
Sensing. Wiley series in remote sensing. Wiley, 1985.

Tsut, C.-C. Robust control system design: advanced state space techniques.
CRC Press, 2003, ch. 1.3.

ULABY, F., AND LONG, D. Microwave Radar and Radiometric Remote Sens-
ing. University of Michigan Press, 2014.

UraBy, F. T., AND STILES, W. H. The active and passive microwave
response to snow parameters: 2. Water equivalent of dry snow. Journal of

Geophysical Research: Oceans 85, C2 (1980), 1045-1049.

VAPNIK, V. The nature of statistical learning theory. Springer science &
business media, 1995.

183



214]

[215]

[216]

[217]

[218]

[219]

[220]

221]

[222]

WAGNER, W., HAHN, S., KipD, R., MELZER, T., BARTALIS, Z., HASE-
NAUER, S., FIGA-SALDANA, J., DE ROSNAY, P., JANN, A., SCHNEIDER,
S., KommMma, J., KuBu, G., BRUGGER, K., AUBRECHT, C., ZUGER, J.,
GANGKOFNER, U., KIENBERGER, S., BrRocca, L., WANG, Y., BLOSCHL,
G., EITZINGER, J., STEINNOCHER, K., ZEIL, P., AND RUBEL, F. The AS-
CAT soil moisture product: A review of its specifications, validation results,
and emerging applications. Meteorologische Zeitschrift 22, 1 (2013), 5-33.

Wang, J. R., AND SCHMUGGE, T. J. An empirical model for the complex
dielectric permittivity of soils as a function of water content. IEEE Transac-
tions on Geoscience and Remote Sensing GE-18, 4 (1980), 288-295.

WESTMAN, W. E., AND PARIs, J. F. Detecting forest structure and biomass
with C-band multipolarization radar: Physical model and field tests. Remote
Sensing of Environment 22, 2 (1987), 249 — 269.

WIGNERON, J.-P.; KERR, Y., WALDTEUFEL, P., SALEH, K., ESCORI-
HUELA, M.-J., RICHAUME, P., FERRAZZOLI, P., [DE RosNAY]|, P., GUR-
NEY, R., CALVET, J.-C., GRANT, J., GUGLIELMETTI, M., HORNBUCKLE,
B., MATZLER, C., PELLARIN, T., AND SCHWANK, M. L-band microwave
emission of the biosphere (L-MEB) model: Description and calibration against
experimental data sets over crop fields. Remote Sensing of Environment 107,
4 (2007), 639-655.

WiLcoxoN, F. Individual comparisons by ranking methods. In Breakthroughs
in statistics. Springer, 1992, pp. 196-202.

WiLLis, R., AND YEH, W. Groundwater systems planning and management.
Prentice Hall Inc., Old Tappan, NJ, 1 1987.

WinsvoLD, S. H., KAAB, A., NuTH, C., ANDREASSEN, L. M., VAN PELT,
W. J. J., AND SCHELLENBERGER, T. Using SAR satellite data time series
for regional glacier mapping. The Cryosphere 12, 3 (2018), 867-890.

Woopb, E. F., Rounpy, J. K., Troy, T. J., vAN BEEk, L. P. H.,
BieErkeENns, M. F. P., BrLytH, E., bpE Roo, A., DoLL, P., Ek, M.,
FAMIGLIETTI, J., GocHis, D., VAN DE GIESEN, N., HOUSER, P., JAFFE,
P. R., KOLLET, S., LEHNER, B., LETTENMAIER, D. P., PETERS-LIDARD,
C., SIVAPALAN, M., SHEFFIELD, J., WADE, A., AND WHITEHEAD, P.
Hyperresolution global land surface modeling: Meeting a grand challenge for
monitoring Earth’s terrestrial water. Water Resources Research 47, 5 (2011).

WOSTEN, J., PACHEPSKY, Y., AND RAWLS, W. Pedotransfer functions:

bridging the gap between available basic soil data and missing soil hydraulic
characteristics. Journal of Hydrology 251, 3 (2001), 123 — 150.

184



[223]

[224]

[225]

[226]

227]

228

[229]

X1A0, X., ZHANG, T., ZHONG, X., SHAO, W., AND L1, X. Support vec-
tor regression snow-depth retrieval algorithm using passive microwave remote
sensing data. Remote Sensing of Environment 210 (2018), 48 — 64.

XUE, Y., AND FORMAN, B. A. Atmospheric and Forest Decoupling of Passive
Microwave Brightness Temperature Observations Over Snow-Covered Terrain
in North America. IEEE Journal of Selected Topics in Applied Farth Obser-
vations and Remote Sensing 10, 7 (2017), 3172-3189.

XUE, Y., FormaN, B. A., AND REICHLE, R. H. Estimating snow mass
in North America through assimilation of AMSR-E brightness temperature
observations using the Catchment land surface model and support vector ma-
chines. Water Resources Research (2018), 1-22.

YanNG, Z.-L., N1u, G.-Y., MitcHELL, K. E., CHEN, F., Ex, M. B., BAR-
LAGE, M., LONGUEVERGNE, L., MANNING, K., Nivyocit, D., TEWARI, M.,
AND XI1A, Y. The community Noah land surface model with multiparameter-
ization options (Noah-MP): 2. Evaluation over global river basins. Journal of
Geophysical Research: Atmospheres 116, D12 (2011).

Yu, P. S., CHEN, S. T., AND CHANG, I. F. Support vector regression for
real-time flood stage forecasting. Journal of Hydrology 328, 3 (2006), 704 —
716.

YUEH, S. H., DINARDO, S. J., AKGIRAY, A., WEST, R., CLINE, D. W.,
AND ELDER, K. Airborne Ku-Band Polarimetric Radar Remote Sensing of
Terrestrial Snow Cover. [EFEE Transactions on Geoscience and Remote Sens-

ing 47, 10 (Oct 2009), 3347-3364.

ZEHE, E., BECKER, R., BARDOSSY, A., AND PLATE, E. Uncertainty of
simulated catchment runoff response in the presence of threshold processes:
Role of initial soil moisture and precipitation. Journal of hydrology 315, 1-4
(2005), 183-202.

185



