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The presence of water produces unique specular and spectral characteristics in an 

inundated tidal marsh canopy.  The aquatic substrate can affect conventional attempts to 

retrieve canopy characteristics, such as structure information (e.g., canopy height, leaf 

area index, etc.) or plant species composition.  The background reflectance can also 

influence spectral analysis of plant characteristics based on hyperspectral data.  A model 

to account for the aquatic substrate would be useful to understanding spectral field 

measurements and remote sensing of this type of land cover.  To that end, an existing 

vegetation canopy reflectance model is combined with an aquatic background model to 

account for the effects of an aquatic substrate on the top-of-canopy bidirectional 

reflectance.  The aquatic background model attempts to account for the optical effects of 

an inundated marsh substrate through the inclusion of first-principle models of water 

reflectance.  The enhanced model is applied to multi-angular reflectance measured along 



transects of a brackish marsh canopy.  This allows us to explore whether the enhanced 

model can be used in retrieving the leaf area index (LAI) using non-destructive, above-

canopy measurements.  Then the original and the enhanced canopy reflectance models 

are compared with multi-angular reflectance data to test whether the change is effective 

in capturing specular effects of an inundated canopy.  Furthermore the reflectance data 

and model are used to identify the influence of the background on the spectral 

characteristics of the canopy pertaining to vegetation.  The spectral signature produced by 

the aquatic background model is quite different from the spectra of dry or unsaturated 

soil, which would be associated with terrestrial applications.  The aquatic background 

model signature is used to explain the features seen in a field spectroscopy experiment, 

where canopy inundation levels were artificially raised.  This project demonstrates the 

utility of developing a vegetation canopy model with an aquatic background and 

identifies challenges and directions for improved performance.
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Figure D-1. Shallow water absorption spectra components.  Shown are total absorption 
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non-algal particles, aNAP.  As an example, Ca is set to 3 mg m-3 for the calculation of aph.

Figure D-2. Total scatter coefficients.  Shown are total scatter coefficients for water, bw, 
and particles, bp, and backscatter co-efficient, bb, where ℜ  = 5 and Ca = 3.

Figure D-3. Reflectance spectra for deep turbid water and and turbid water with 
submerged leaves near the surface.  In this example, H = 25 cm, Ca = 3 mg m-3, and 
SPM = 0.3 g m-3.

Figure E-1. Calculation flow diagram. This diagram shows how the main components 
work together.  The gray area includes components that were originally part of the 
original ACRM model.  Above or below each component are shown its input parameters, 
which are defined in Table E-1.  The parameter Car, the concentration of leaf carotenoid 
pigments, was not included in this study because ACRM uses the PROSPECT 3 model.  
Future updates to the model should include PROSPECT 5, which includes Car.

Figure E-2.  Hierarchical structure diagram.  This diagram shows the relationship of the 
new aquatic background code modules to the original ACRM code.  The smcrm 
subroutine drives all calculations for the ACRM and WCRM models.  The original 
subroutines dif2 and biz2 handle the diffuse and direct streams, respectively.  These 
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various subroutines, including the modules for leaf optics (PROSPECT and LIBERTY), 
sky spectrum, and the various higher level driving routine are not shown because no more 
than superficial changes were made to these routines.  External calculations that are 
indicated are not listed in this document.
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Chapter 1  Introduction

 A state of inundation produces unique specular and spectral characteristics in the 

inundated tidal marsh canopy.  Such an aquatic substrate can affect conventional attempts 

to retrieve canopy characteristics, such as structure information (e.g., canopy height, leaf 

area index, etc.) or plant species composition.  The reflectance characteristics of such a 

background can also influence spectral analysis of plant characteristics based on 

hyperspectral data.  A model to account for the effects of inundation would be useful to 

understanding spectral field measurements and remote sensing of this type of surface 

cover.  To that end, an existing vegetation canopy reflectance model is combined with an 

aquatic background model to account for the effects of an aquatic substrate on the top-of-

canopy bidirectional reflectance.  The aquatic background model itself was based on first-

principle models of water reflectance.  The aquatic background reflectance model is also 

developed as a combination of two models: one to predict specular reflectance of a 

slightly roughened water surface and a shallow water model to handle diffuse specular 

reflectance from just beneath the water’s surface.  The combined vegetation canopy and 

aquatic background reflectance model is then used to understand specular and spectral 

characteristics of an inundated canopy.

 The chapter addresses the overall value of the target biome and the importance of 

remote sensing to understand and manage this resource.  Then the issues of remote 

sensing vegetation with aquatic background are discussed and an enhanced model 

approach is proposed.  The chapter concludes with a selection of a particular model for 

use in the study.

 Chapter 2 reviews the theory behind the calculations that are used to model the 

aquatic background optics.  This defines the quantities that are calculated and describes 

how they are used with the vegetation canopy reflectance model.  Two primary 

components are included in these calculations.  First, specular reflectance of the water’s 
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surface is modeled using a roughened Fresnel reflectance, following the approach of 

Cox-Munk (Cox and Munk, 1956).  Second, the diffuse reflectance beneath the surface is 

obtained through a shallow water model taken from the literature (Lee, et al., 1998; 

1999).  The latter component is the main driver of the specular characteristics of the 

aquatic background in non-specular directions.  Further details of the implementation of 

these calculations as computer code are given in Appendix E.

 Chapter 3 discusses retrieving leaf area index (LAI), where LAI is defined as the 

ratio of single-sided leaf area to horizontal ground area and is a key structure parameter 

used in describing canopy dynamics and processes.  More specifically, the chapter 

focuses on the sensitivity of LAI retrievals via the canopy reflectance model to 

background conditions.  The relationship between LAI and canopy reflectance is modeled 

for various sensor angles and wavelengths to identify conditions where there is potential 

for retrieval of LAI from measured canopy reflectance using model inversion.  The 

behavior of the inversion algorithm when the LAI dependency on canopy reflectance 

breaks down is also discussed.  This chapter sets the groundwork for understanding the 

model’s applicability and limitations prior to its employment with field data.

 Chapter 4 describes a field experiment where LAI data and canopy reflectance 

data taken at multiple angles were averaged over transects for three different marsh 

canopies.  The transects were at a length that would be similar in spatial scale to pixels 

collected by some spaceborne remote sensing imager (e.g., Landsat).  The averaged LAI 

was used to predict the multi-angular canopy reflectances using the new model, which 

qualitatively compares the averaged reflectance measurements.  Challenges for 

application of this method for marsh canopies are discussed.

 Chapter 5 describes an experiment where the original and enhanced canopy 

reflectance models are used to predict the canopy reflectance field of a marsh that was 

heavily sampled data over various viewing and illumination angles.  The results show 

that the enhanced model affords an improvement by reducing biases from specular 
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reflectance at visible wavelengths.  Then, cross correlation analysis of the data and 

canopy reflectance models with leaf reflectance data is used to indicate viewing and 

illumination angles that are preferential for reducing the influence of the background 

reflectance on the vegetation signature in the canopy reflectance.

 Chapter 6 discusses how the model can be used to simulate a field experiment 

where the nadir canopy spectral reflectance was measured as the water level within the 

canopy was artificially raised.  The results show that the aquatic background model can 

explain the spectral signature seen in the data.  The results also provide an example of 

how the aquatic background can produce non-linear mixing of vegetation and water 

spectral signatures when vegetation becomes submerged.  Using the marsh reflectance 

model to simulate the experiment also shows that the mixture of chlorophyll and water 

absorptions, along with the high near-infrared (NIR) reflectance of submerged leaves, 

produce a spectral feature that could complicate measurements of the canopy red-edge.

 Chapter 7 provides some synthesis of the results and observations pertaining to 

the model development and working with field data.  This begins with a summary of the 

project and discussion regarding the results and their implications.  This is followed by a 

discussion of the potential applications, limitations, and future work for the enhancement 

model.  The overall assessment concludes that the enhanced model could offer a potential 

method for LAI retrieval from above-canopy remote sensing but further work is needed 

to improve the vegetation canopy reflectance handling of multi-scatter effects in the NIR.  

However, the enhanced model did explain the spectral features of an inundated canopy 

and could have other applications, such as building spectral libraries.  Also, application of 

the model to remote sensing imagery may require further work in developing a model to 

account for the high variable spatial distribution of vegetation, open water, and wet soil.

3



The Importance of Coastal Marsh Systems

 Marshes are a vital part of the coastal ecosystem and provide a number of 

important ecological services, including improving estuarine water quality; providing 

food and resources for avian, piscine, mammal, and invertebrate populations; and 

providing materials and food for agricultural use.  Marshes also help control erosion and 

dissipate wave energy from storms.  Upland estuarine marshes can store flood water 

protecting coastal human populations and their property.  They are also valued for their 

natural beauty and provide resources for human recreation (Barbier, et al., 2011; 

Bromberg-Gedan, et al., 2009).  Given these services, Bromberg-Gedan et al. (2009)

calculated an average annual value of $14,397 per hectare per year for the world’s tidal 

marshes, based on the 2009 inflation-adjusted value derived by Constanza (1997).

 Coastal marshes have been used by humans for centuries to provide raw materials 

and food for livestock , such as harvesting Spartina patens (saltmeadow cordgrass or salt 

marsh hay) for animal fodder or Phagmites austalis (common reed) as thatch for roofing 

(Bromberg-Gedan, et al., 2009).  They are also valuable as open space, as food sources 

and habitats for breeding marine and estuarine fauna (Hughes, 2004), including 

mammals, birds, fish, and invertebrates (e.g., mollusks and crustaceans).  In particular, 

marshes are known to provide important support to bird populations (Hughes, 2004) and 

provision fisheries (Boesch, 1984) that supply commercial and recreational fishing (Bell, 

1997).  In fact, 90% of the world’s catch of fish depends on tidal marshes (UNEP, 2006).

 Coastal and estuarine marshes are ecotones that play a major role in 

biogeochemical cycling between terrestrial and marine biomes.  Coastal marshes function 

as sinks for sediments, nutrients, and pollutants from rivers and runoffs (Cebrian, 2002; 

Day, 1989).  In this sense, coastal marshes have been referred to as the “kidney of the 

landscape” (Cox, 2002, page 5).  Coastal wetlands remove nitrogen from surface water, 

mostly in the form of NO3 and outputs N2O to the atmosphere as a result of 

denitrification.  Through the removal of N and sediment, coastal marshes provide the 
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valuable ecological service of maintaining estuarine water quality and reducing 

eutrophication and subsequent hypoxia in estuarine waters.  Coastal wetlands are also the 

most productive regions in coastal watersheds and export carbon to nearby marine 

ecosystems (Adam, 1990; Cebrian, 2002). These systems uptake carbon, which is output 

to the atmosphere as CO2 and CH4 through respiration and decay processes, and export 

carbon to estuarine systems in the form of suspended organic carbon, including humic 

and fulvic acids.  A personal observation made while in the field was that a substantial 

amount of the above-water carbon stock could be released to the atmosphere as a result of 

season or prescribed burning, and possibly flushed into estuarine waters or buried in 

marsh soils as soot and ash.  Marshes keep a large carbon pool in their soil.  For example, 

soil carbon pools range from one to several hundred metric tons of carbon per hectare in 

the marshes along the Gulf of Mexico.  Likewise, in Gulf of Mexico marshes, the soil 

carbon pool accumulates, on average, a few percent per year.  Eventually, this carbon 

pool can be sequestered as a result of soil accretion.  On an areal basis, these wetland 

systems may be more valuable than any other as carbon sinks because of their high 

sequestration rate (Engle, 2011).

 Coastal marshes also serve as buffers against the sea, dissipating 90% of incident 

wave energy, while their root systems stabilize sediment from erosion.  Furthermore, the 

absorbed energy stimulates sedimentation and helps many salt marshes to keep pace with 

relative sea level rise (RSLR) (Zanuttigh, 2011), which could reduce further land loss and 

erosion.  In fact, marshes can significantly protect inland human assets and coastal land 

from severe storms.  Such disturbances can result in considerable loss of marsh 

vegetation.  For example, hurricane Katrina transformed about 100 mi2 of coastal marsh 

into open water (Klemas, 2009).  However, there is evidence that damage further inland 

may have been worse without those marshes (Gedan, et al., 2011).  Furthermore, upland 

marshes can offer water storage volume during spring tides or high river discharge thus 

limiting flooding in coastal cities and towns (Barbier, et al., 2011).
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Coastal Wetland Threats

 Changes in coastal wetlands can interfere with these essential functions and 

services they provide (Klemas, 2001).  Being vulnerable to anthropogenic disturbances 

and climatic change, this valuable resource has undergone considerable degradation.  

Globally, around half of the original salt marsh ecosystems have been degraded or lost, 

and in some areas, such as the West Coast of the USA, the loss is as much as 90% 

(Barbier, et al., 2011).  The USGS estimates that 85,000 acres of emergent estuarine 

wetlands in the USA were lost between 2004 and 2009 with a loss rate that was three 

times higher than the period from 1998 and 2004 (Dahl, 2011).  83% of that loss was to 

open water stemmed from coastal storms, land subsidence, RSLR, or other ocean 

processes, which could be tied to anthropogenic and natural processes.  These losses 

undermine the function and services that coastal marshes provide (Barbier, et al., 2011).

 Historically, marshes have been exploited for their material goods and used for 

livestock grazing, which can alter the marsh ecology.  Coastal wetlands are being 

converted to salt works in western Australia (Adam, 2002), a practice that in the early 

20th century severely degraded marshes in California.  Coastal marshes have also been 

lost through land reclamation to support agriculture or urban growth (Lotze, 2006) or 

degraded by manmade changes to hydrology, such as damming, diking, or ditching 

through human construction (Bromberg-Gedan, et al., 2009).

 Introduction of invasive destructive plant and animals species has severely 

impacted marshes worldwide.  Natural or anthropogenic changes in watershed ecology, 

e.g., removal of high level predators, can lead to runaway herbivory that can denude 

marshes.  Significant expanses of marshland have been severely degraded by geese, 

herbaceous crabs or snail (Bromberg-Gedan, et al., 2009).  Some spontaneous and 

unexplained marsh dieback has also been observed in marshes of the Gulf of Mexico and 

along the eastern seaboard of the USA, which could be tied to drought, predation 

(Bromberg-Gedan, et al., 2009), excessive submergence (Kearney and Riter, 2011; Webb 
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and Mendelssohn, 1996; Webb, et al., 1995).  However, the etiology of many cases of the 

recently observed phenomenon of “sudden dieback” remains largely unknown (McKee, 

et al., 2004; Ogburn and Alber, 2006).

 Climate changes could also be affecting marsh systems and lead to further 

degradation.  Increased CO2 levels and temperature changes may change the current 

distribution of C3 and C4 plants (Bromberg-Gedan, et al., 2009).  Most marshland grass 

species are C4 plants and are not expected to increase productivity under higher CO2 

levels, but that is probably not the case for C3 plants (Erickson, et al., 2007), which 

include many of the marsh sedges and rushes.  Rising temperatures from global warming 

may bring invasion of warmer water species into colder zones (Zomer, et al., 2009).  

RSLR also endangers these systems through increased inundation and drowning of 

plants, salt water incursion, and increased vulnerability to storms.  As sea level rises 

because of subsidence or global warming, marshes of the supralittoral zone can be 

squeezed out, between the sea and adjoining coastal defenses or agricultural land (Titus, 

1998; Zanuttigh, 2011).  Thus monitoring marshland coverage is important to understand 

the affects of climate change on coastal watershed and estuarine biogeochemical cycling.

Monitoring, Assessment, and Remote Sensing

 Efforts have been made to assess and monitor coastal marshes in order to improve 

our understanding of their essential services and to aid in their management (Dahl, 2011; 

UNEP, 2006).  Part of the process of managing degradation of coastal marsh services 

includes identifying changes in marsh systems that would affect these services (Barbier, 

et al., 2011).  Studies of changes in ecological function and response are often limited to 

a small number of plots and scientists must extrapolate findings to regional scales.  

Although monitoring widespread changes to these landscapes could assist researchers and 

policymakers in assessing and monitoring marsh deterioration or restoration, limited 

accessibility makes large-scale, in situ evaluation challenging (Seher, 1973).  Remote 
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sensing techniques offer an efficient approach to quantify changes in marsh vegetation  

(Klemas, 2011a; 2011b).  The utility of remote sensing techniques has been explored for 

measuring quantities over large regions of wetlands, such as species and cover type 

(Artigas and Yang, 2005; Jensen, et al., 1986; Jollineau and Howarth, 2008; Judd, et al., 

2007; Schmidt and Skidmore, 2003; Silvestri and S., 2003; Underwood, et al., 2006; 

Zomer, et al., 2009), canopy density or LAI (Sone, et al., 2009; Wang, et al., 2007; 

Xavier and Vettorazzi, 2004; Xiao, et al., 2002), or quantities related to plant production 

and stress (Klemas, 2001; Mendelssohn, et al., 2001; Ramsey and Rangoonwala, 2006; 

Tilley, 2003; Vaesen, et al., 2001; Zhao, et al., 2009).  However, the optical properties of 

an inundated canopy can present new challenges for some of these techniques.

Unique Nature of Remote Sensing in Marshes

 Marsh remote sensing depends on the spectral reflectivity of the vegetation 

canopy and its aquatic substrate.  The canopy structure and its substrate affect reflectance 

with changing viewing and solar angles.  Reflectivity that changes as a function of these 

angles is more generally defined as the bidirectional reflectance distribution function 

(BRDF).  The form of the BRDF can also vary with the wavelength of the incident light, 

thus changing spectral characteristics of the canopy reflectance when measured at 

different angles (Sandmeier, et al., 1999).  Thus spectral variation of the BRDF directly 

affects remote sensing techniques for retrieving marsh canopy characteristics, such as 

species composition, aerial biomass, or indicators of plant stress.  Since airborne and 

spaceborne remote sensing imagers measure over a large range of viewing angles and 

solar angles, this effect could be a challenge for existing techniques that are dependent on 

canopy spectral features.

 In general, reflected light from materials found at the bottom of canopy can 

strongly influence remote sensing of vegetation canopies (Gemmell, 2000; Gemmell and 

McDonald, 2000; Goward and Huemmrich, 1992; Huemmrich and Goward, 1997).  
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Experience has shown that the background can have an overwhelming influence in marsh 

vegetation spectroscopy, which includes but is not limited to substances like water, mud, 

sand, detritus, bacterial mats, and algal growth (Field, 2006 - personal communication).  

The presence of an inundated substrate can complicate ground cover classification 

techniques (Brown de Colstoun and Walthall, 2006).  Kuusk (1998) reported that retrieval 

of canopy characteristics from the inversion of a terrestrial vegetation model failed for 

Phragmites austalis because of the presence of water.  In reporting their work on 

mapping invasive species of marshes, Underwood et al. (2006) also noted that variation 

in water turbidity alone reduced the accuracy of classification for certain species by 10 to 

60%.  Influence of the aquatic background presents a significant challenge for remote 

sensing of marshes.

 The aquatic substrate contributes strongly to both directional and spectral features 

in the top of canopy (TOC) reflectance.  Vanderbilt et al. (2002) demonstrated that the 

directional specular solar reflectance produces a signature for inundated canopies that is 

distinct from both canopies with a dry substrate and from open water.  Essentially, the 

specular reflectance causes a second “hot spot” on the solar principal plane in the forward 

scatter direction.  In fact, they exploited this directional feature to successfully distinguish 

inundated canopies from dry ones using an airborne multi-angular, multi-spectral 

radiometer.  Interestingly, Vanderbilt and collaborators from the University of California 

at Davis, have performed more recent, detailed characterization of coastal wetlands in 

California based on sun glint (Ustin, 2006 - personal communication).  Still, given that 

remote sensing instruments used for, inter alia, classification are often pointed at nadir, 

with measurements taken near solar noon, there is a potential impact of strong specular 

reflectance off water from the sun or sky that could adversely affect standard methods.

 Spectral effects of water reflectance have also been studied for the marsh canopy.  

In 1995 and 1996 field experiments, Stutzer (1997) measured the nadir TOC reflectance 

spectra for three marsh species, Schoenoplectus (formerly Scirpus) americanus, Spartina 
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patens and Spartina cynosuroides, while varying inundation levels.  His results showed 

that increasing water level causes a profound change in the nadir reflectance spectrum, 

marked by a dramatic decrease in the Near Infrared (NIR) reflectance because of high 

water absorption.  In addition, features that are uncharacteristic of either ground or 

vegetation spectra appear in the canopy reflectance spectra as the canopy became 

submerged, suggesting the domination of specular reflectance from the water surface.  

For instance, although it is not noted in his thesis, there is a dip in reflectance in a large 

region around 760 nm, which could be attributed to water absorption features.  In general, 

his results demonstrate that water, which is highly variable (i.e., driven by tidal and 

weather related events), can affect remote sensing applications that depend on TOC 

spectral features at optical wavelengths.  Since many species in the marsh are most 

distinguishable at the red to NIR region of the spectrum (Artigas and Yang, 2005), the 

spectral influence of water optics is a significant consideration for species classification, 

as well as other remote sensing applications.

 Historically, efforts to correct for the influence of the BRDF have been strictly 

empirical and narrowly focused.  For instance, Gross, Hardisky, and Klemas (1988) 

empirically derived a statistical correction for sun angle to estimate aerial biomass using 

field spectroscopy.  However, this was specific to the Spartina alterniflora species at a 

single viewing angle.  In addition, Miyamoto et al. (2001) also used multi-angle 

spectroscopy to improve classification of marsh plant species over single nadir 

measurements.  Although those results are tantalizing, the work was very limited in scope 

and detail, and being entirely empirical, they provide little nomothetic knowledge of 

radiative transfer processes that could feed into general or global applications in marsh 

remote sensing.  After an intense effort to empirically characterize the BRDF for S. 

alterniflora, Schill and Jensen et al. (2004) recognized that a more extensive scope was 

needed.  They called for the development of a BRDF model for coastal marsh canopies to 

improve estimates of surface reflectance and albedo, to identify spectral bands that are 
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least affected by BRDF, to find optimal viewing and solar angles for data collection and 

to adjust remote sensing imagery for the effects of BRDF.  In addition, canopy 

characteristics could potentially be retrieved from the inverse of this model and remote 

sensing data.

An Enhanced Canopy Reflectance Model for Marsh Applications

 In this study, an existing canopy reflectance model is enhanced to account for the 

optical influence of an aquatic substrate by coupling it to an aquatic background 

reflectance model.  The aquatic background reflectance model is also developed as a 

combination of two models: one to predict specular reflectance of a slightly roughened 

water surface and a shallow water model to handle diffuse specular reflectance from just 

beneath the water’s surface.  The modeled relationship between LAI and canopy 

reflectance is examined for the combined vegetation and aquatic substrate models, and 

for the canopy reflectance model with its default soil reflectance model.  This provides 

insight into how marsh conditions affect the retrieval of LAI using remotely sensed 

canopy reflectances.  Comparisons of the model to field transect data help identify where 

the vegetation canopy model can be challenged by canopies populated with some marsh 

species.  It is also shown that the addition of an aquatic background model reduces biases 

in canopy BRDF prediction that are caused by specular reflectance.  The enhanced 

canopy model is also used to explain how the optical properties of the aquatic substrate 

can affect the marsh canopy spectral features.  This is of particular interest because it 

could relate to hyperspectral and spectral index techniques.
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Chapter 2  Adaptation of a Canopy Reflectance Model for an 
Inundated Canopy

Introduction

 This chapter describes the adaptation of a canopy reflectance model for emergent 

vegetation in a coastal marsh, hence referred to as the Wetland Canopy Reflectance 

Model, or WCRM.  As marsh vegetation is optically comparable to its counterparts on 

dry land, the approach is to modify an existing canopy reflectance model for terrestrial 

vegetation to account for the aquatic background.  The optical characteristics of the 

aquatic background differ from dry land in two key distinct ways.  First, the air-water 

interface is a Fresnel reflector, which can produce significant specular reflectance.  

Furthermore, although the water’s surface beneath vegetation is much smoother than 

open bodies with a greater fetch (Vanderbilt, et al., 2002), it is not mirror smooth, thus 

some consideration of dispersion of the upwelling light from direct illumination is 

considered.  Second, the water column beneath the air-water interface, along with its 

dissolved and suspended constituents, are characteristically different from unsaturated 

soil.  To account for this, a shallow water model is employed to produce diffuse 

reflectance spectrum.  Together, these specular and diffuse components are combined to 

calculate the key properties of an aquatic background beneath vegetation (see Figure 

2-1).

 Light from the sun and sky works its way through a medium of vegetation to 

reach the underlying inundated substrate.  Along its downward path, it is reflected 

upward, transmitted downward, or absorbed by the vegetation (e.g., leaves, stems, etc.).  

The remaining light that finally reaches the bottom is likewise reflected upward or 

absorbed.  The amount of light that is reflected upward at any given point by leaves or 

substrate depends on the reflectance spectrum of these components.  The transmission of 
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light through leaves or water at any given wavelength also depend on the optical 

properties of these components.  Furthermore, the amount of light that can pass to the 

bottom or make its way to an observer in some direction depends on the density and 

orientation of leaves (Verhoef, 1984).  Hence, the LAI or leaf angular distribution (LAD) 

are important structure parameters in determining the flow of light for given illumination 

and viewing directions.

 To calculate these various flows, a common practice is to consider both the direct 

and diffuse flows of radiation onto and through the canopy.  The direct stream of 

radiation begins with the highly directional beam of light from the sun, while the diffuse 

stream can start with light from the sky.  Direct light propagates through the canopy until 

it encounters material that will scatter it in some new direction.  If the scattering optic 

element is not a specular reflector or transparent, the scattered light partially or fully 
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Figure 2-1. Key components for the aquatic background reflectance model. The aquatic 
background model is based on a diffused reflector at depth Z, as Z approaches zero.  This 
produces a specular component from the air-water interface and a diffuse component 
stemming from an assumed isotropic reflectance condition beneath the surface.  Most of 
the specular radiance is reflected upward at angle i, but any roughening of the surface 
(e.g., capillary waves from wind disturbance) would redirect some specular radiance in 
the direction of the observer.



enters the diffuse stream of light.  The various upward and down streams are illustrated in 

Figure 2-2.
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Figure 2-2. Diagram illustrating the principal fluxes of a vegetation canopy reflectance 
model.  Illustrated are the fluxes that can be calculated within a one-dimensional canopy 
reflectance model.  Magenta lines indicate pathways that are fed by direct flux, while the 
green lines show the pathways of diffuse flux.  White circles indicate switch points in 
the flux pathway (e.g, from a reflectance event).  The direct solar flux enters the diffuse 
downward flux (1) and diffuse upward flux (2). The direct solar flux also undergoes 
single scatter events that redirect light straight to the observer from the canopy (3) and 
from the surface (5).  The direct solar flux is also reflected of the surface and introduced 
into the diffuse upward flux (4). The upward diffuse flux is also reflected off of canopy 
leave back into the downward flux (6) and the reverse is true for the downward flux (7).  
The downward diffuse flux is also reflected off of the surface and can directly reach the 
observed through the foliage (8) and can also be reflected into the upward diffuse flux 
(9).  The upward diffuse flux is also observable as that flux escapes the canopy through 
gaps in the foliage (10).



The Vegetation Canopy Reflectance Model

 The reflectance model chosen for the vegetation component of the marsh 

reflectance model was originally published by Kuusk in 1995 and 1996 and designated 

ACRM.  ACRM was shown to effective in remote sensing applications for terrestrial 

vegetation canopies, with better correlations with ground measures of LAI than several 

well known spectral indices (Houborg, et al., 2009; Houborg and Boegh, 2008; Houborg, 

et al., 2007; Weihs, 2008).  This model includes many of the calculations found in other 

canopy reflectance models in the literature that pertain to a one dimensional turbid 

medium model (Pinty, et al., 2001; Pinty, et al., 2004).  The original vegetation canopy 

model combines the direct radiative flow of an enhanced version of the Nilson-Kuusk (N-

K) model (Nilson and Kuusk, 1989) with the four-stream approximation of diffuse fluxes 

of the Scatter from Arbitrarily Inclined Leaves (SAIL) model (Verhoef, 1984).  The 

enhancement of the former component includes a parameter, based on Markov 

probability, to account for correlation in gaps between canopy layers (Kuusk, 1995b).  

Both of these components are combined into a computationally efficient canopy 

reflectance model (Kuusk, 1995a; 1996).  Details of the calculations in ACRM are given 

in both Kuusk’s 1995 and 1996 publications.  As another benefit, the code supporting the 

ACRM algorithm was also developed to calculate the inverse of the ACRM algorithm, 

i.e., estimating input vegetation parameters given measured reflectance values, making it 

more readily useful for remote sensing applications.  Finally, but no less important than 

the other consideration, the code is freely available from the author.

 The ACRM model also includes the third version of the model called Properties 

Optique Spectrales des Feuilles (PROSPECT) to estimate the leaf reflectance and 

transmittance (Jacquemoud and Baret, 1990).  This model supports remote sensing 

application of the vegetation canopy reflectance model by reducing the need for a priori 

knowledge of leaf optical properties.  PROSPECT uses relative amounts of chlorophyll a 

and b, brown pigment, dry matter, water content, and a structure parameter that 
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modulates the internal leaf complexity.  Thus, fewer parameters are required when 

predicting the canopy BRDF or when inverting the canopy model to retrieve canopy 

structure.

 ACRM estimates the angular distribution of the substrate bidirectional reflectance 

factor (BRF) using a polynomial soil model developed by Walthall et al. (1985).  This 

relies on predefined empirical coefficients, so the angular properties of the soil 

component requires no input parameters.  ACRM also defines the soil reflectance 

spectrum using four Price functions, which essentially forms four-vector basis (Kuusk, 

1995a; 1996) that can describe the spectral characteristics of many dry soils.  The soil 

spectra modeling was based on the work of Price (1990), who developed a four-vector 

basis to describe 500 measured soil spectra.  The modeled soil spectrum, therefore, 

requires values for four coefficients to describe the soil beneath a canopy of interest.  

Default values for these coefficients are provided with the software.  Also by default, the 

first two Price coefficients are varied when inverting the model to get canopy structure 

characteristics (e.g., leaf area index).  In this way, ACRM attempts to account for the 

spectral reflectance of the soil substrate when retrieving properties of the canopy using 

measured reflectances.

Defining Surface Reflectance Quantities

 To create a marsh canopy reflectance model, the interactions between the direct 

and diffuse streams must be considered.  The canopy substrate reflects the direct flux 

upward into direct and diffuse streams towards an observer.  Likewise, the diffuse stream 

is also reflected diffusely or directly.  These four possible interactions are governed by 

four reflectance quantities, which the new model must calculate for the an aquatic 

substrate. In ACRM, these four different reflectance quantities include the surface BRF, 

the hemispheric-directional and directional-hemispheric reflectances, and the bi-

hemispheric reflectance for an isotropic illuminating radiation field (also known as the 
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albedo) (Nicodemus, et al., 1977; Schaepman-Strub, et al., 2006). As many different 

definitions for reflectance exist, using consistent definitions is essential to coupling a new 

aquatic reflectance model with the vegetation canopy reflectance model.  Thus, this 

section will define these quantities, which will be used throughout this thesis.

 Serving as a foundation for all four definitions, the BRDF is an important inherent 

optical property of the surface and is defined as the instantaneous quantity:

 f (θi ,φi ,θr ,φr ) =
dLr (θr ,φr )

Li (θi ,φi )cosθidΩi

      Eq. 1

where Li is the radiance of the light source, dLr is a differential element of the reflected 

radiance (Nicodemus, 1963), di is the differential solid angle in the direction of the light 

source, i is the angle measured from the zenith direction to an incident beam of light, 

while i is the angle of the same beam direction as measured around the surface plane 

from the x-axis.  r and r are the corresponding angles giving the direction of reflectance 

towards an observer (Nicodemus, et al., 1977).  The BRDF, as defined in Equation 1, is 

used to calculate all four reflectance quantities used by the vegetation canopy reflectance 

model.

 The first reflectance quantity, namely the BRF, is used specifically to determine 

the amount of specular flux that is reflected from the surface into the direct flux going 

through the vegetation toward the observer.  This can be related to the BRDF through the  

calculation,

 ρ(θi ,φi ,θr ,φr ) = π f (θi ,φi ,θr ,φr )      Eq. 2

This quantity is often used in the literature, as it is commonly measured in the field using 

reference panels (Schaepman-Strub, et al., 2006).   In the description of the ACRM 

calculations (Kuusk, 1995a; 1996) the quantity ρsoil (θi ,φi ,θr ,φr ) is based on the BRF 

17



calculation for soil developed by Walthall et al.1985).  This quantity will be combined 

with the corresponding quantity for water, ρwater (θi ,φi ,θr ,φr ) , to yield the total BRF of the 

aquatic background, which is denoted as ρaquatic(θi ,φi ,θr ,φr ) .

 In the description of ACRM calculations, the soil directional-hemispheric 

reflectance, ρsoil
(sd ) (θi ,φi ), defines the portion of flow from specular flux that is redirected at  

the dry ground into the upward diffuse flux.  It should be noted that this definition of 

hemispheric reflectance is different from definitions found in the aquatic literature 

because it assumes an isotropic irradiance field (Mobley, 1994).  Thus, this quantity is 

computed for interaction with the vegetation canopy reflectance model as,

 ρ(sd ) (θr ,φr ) = f θi ,φi ,θr ,φr( )
Ω+

∫ cosθrdΩr     Eq. 3

where dr = sin r dr dr is the differential solid angle in the direction of reflectance and 

+ is the entire upward directional hemisphere (i.e., the set of all upward solid angles). 

Similarly, the hemispheric-directional flux, ρsoil
(do) (θr ,φr ), gives the amount of downward 

diffuse flux that is reflected directly toward the observer.  The same assumption of 

irradiance isotropy is used in the formulation of the hemispheric-directional reflectance, 

which is thus computed as,

 

 ρ(do) (θr ,φr ) = f θi ,φi ,θr ,φr( )
Ω−

∫ cosθidΩi     Eq. 4

where di is the differential solid angle in the direction of incidence and - is the entire 

downward directional hemisphere (i.e., the set of all downward solid angles).  In 

implementing of these calculations in the vegetation canopy reflectance model, an appeal 

was made to the property of reciprocity for these quantities, i.e.,

 ρ(do) (θ,φ) = ρ(sd ) (θ,φ)        Eq. 5
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so the same calculation is used for both, but for different directions.

 Finally, the spherical albedo, ρsoil
(dd ), gives the amount of downward diffuse flux that 

is reflected into the upward diffuse flux stream and is calculated given by

 ρ(dd ) = 1
π

f θi ,φi ,θr ,φr( )cosθr dΩr
Ω+

∫
⎛

⎝
⎜

⎞

⎠
⎟

Ω−

∫ cosθidΩi.    Eq. 6

 To couple the two models, the reflectance quantities defined by Equations 2 

through 6 are replaced in ACRM with a linear combination of the soil reflectance 

quantities and corresponding reflectance quantities for a surface inundated with turbid 

water.  Thus, the new reflectance quantities for the aquatic background are defined as,

 ρaquatic (θi ,φi ,θr ,φr ) = (1− β)ρsoil (θi ,φi ,θr ,φr ) + βρwater (θi ,φi ,θr ,φr )  Eq. 7

 ρaquatic
(do) (θi ,φi ) = (1− β)ρsoil

(do) (θi ,φi ) + βρwater
(do) (θi ,φi )    Eq. 8

 ρaquatic
(sd ) (θr ,φr ) = (1− β)ρsoil

(sd ) (θr ,φr ) + βρwater
(sd ) (θr ,φr )    Eq.  9

 ρaquatic
(dd ) = (1− β)ρsoil

(dd ) + βρwater
(dd )        Eq. 10

where,  is the fraction of the soil surface that is covered in water.  In this study,  is 

binary and primarily used to turn the aquatic calculations on or off (i.e.,  = 1 or  = 0, 

respectively); however, it is supposed that intermediate values might facilitate modeling 

the properties of partially covered (i.e., puddled) surfaces.

 Finally, the aquatic background BRDF model is partitioned into specular and 

diffuse components to account for the reflectance at the air-water interface and below 

surface reflectance, respectively.  It thus can be described mathematically as
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 ρwater (θi ,φi ,θr ,φr )  =   ρwater
(d ) (θi ,φi ,θr ,φr )   +   ρwater

(s ) (θi ,φi ,θr ,φr )  Eq. 11

Figure 2-1 illustrates the optical pathways of these two components.  The specular 

component, ρwater
(s ) , is based on a model for a non-flat water surface. The diffuse 

component, ρwater
(d ) , simply assumes a diffuse reflector beneath the surface of the water at 

an arbitrarily small depth, which will be described later.

The Specular Component

 The physical process underlying the specular reflectance of the air-water interface 

is best explained by Fresnel reflectance, calculations of which are given in Appendix A.  

A completely flat Fresnel reflector sends a reflected beam in a single direction.  However, 

angular dispersal of some of the reflected light can be expected because water surface is 

rarely absolutely flat or still.  Thus a specular reflectance model was chosen that 

incorporates the Fresnel reflectance of the water’s surface, and includes reflected beam 

dispersion due to surface roughness.  As specular reflectance is largely spectrally uniform 

over visible and NIR wavelengths, this component contributes primarily to the 

background influence in the BRDF anisotropy.

 The specular component of the aquatic background BRDF is based on the model 

originally developed by Cox and Munk (Cox and Munk, 1954a; 1954b; 1956), which 

extends the notion of a Fresnel reflector to an open body of water with waves.  The Cox-

Munk specular reflectance model is largely based on the empirical response of the open 

ocean surface roughness to windspeed, but the model’s treatment of the effects of a 

roughened surface is still applicable.  However, the empirical linear relationship between 

the surface mean slope squared and the windspeed and direction is excluded from 

WCRM, because wind no longer plays a singular role in determining surface roughness 

for a marsh aquatic substrate.
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 The Cox-Munk specular model partitions the air-water interface into tiny facets, 

each being locally tangent to the surface.  The physics of reflection and facet orientation 

are primary characteristics that determine how much radiant flux from the source is 

reflected in the direction of observation.  First, the conventions and notations for 

describing the physics and facet geometry are described in Appendix A.   Second, the 

amount of specular reflectance is driven by the physics of Fresnel Reflectance and is 

represented by the quantity, rf (,) as defined in Appendix B.  The amount of measured 

upwelling radiance is proportional to the projected area of the each facet in the direction 

of either the source or observation, which is given by cos .  Similarly, the projected area 

of the region contain the facets change the radiance measured by cosθr.  Furthermore, the 

area of the tilted facet is related to the horizontal plane by the factor secθn, because n is 

by definition the angle of greatest tilt of the facet.  All these quantities must factor into 

the calculation of the total energy that is reflected by the aquatic surface.

 In the Cox-Munk model, variation in the slope of these small facets of the water 

surface is treated as being independently and normally distributed in orthogonal, 

horizontal directions.   Interestingly, this is the same as the more generalized Torrance-

Sparrow model (Torrance and Sparrow, 1967) for surfaces with partial specular 

reflection.  However, the Torrance-Sparrow model includes a factor to account for facet 

occlusion or shading.  The absence of this factor is more appropriate for calm wetland 

surface conditions usually found under clear skies, hence the simpler Cox-Munk model is 

preferable.  Also, whether the assumed normal distribution is ideal for cumulative effects 

of all the previously mentioned sources of surface disturbance requires further study.  For 

this effort, however, it was decided that bounding the distribution variance would provide 

insight into the potential contribution of specular reflectance to the character of the marsh 

reflectance.

21



 In the literature, the facet slope probability density function describing the facet 

slope distribution is usually defined over Cartesian space ( 2) for the facet slopes zx and 

zy in the x and y directions, respectively, as

  
 
p
2
(zx , zy ) =

1
2πσ

e− zx
2 + zy

2( ) 2σ 2       Eq. 12

To further simplify this probability density model, a version of the density function that is 

independent of wind direction is applied because the wind direction is not considered a 

significant contributing factor when shielded by vegetation.  When open channels or 

ponds are combined with vegetation within pixels of remote sensing imagery, windspeed 

and direction may play a stronger role, however, generally the wind field is usually not 

available for the marsh at the scales of interest (Kay, et al., 2009; Wang and Bailey, 

2001).

 The proportion of the horizontal surface area where facets are oriented to reflect 

from anywhere in a small solid angle in the direction of the source,  

ξi  to the direction of 

observation,  

ξr , is approximately given by  P2 (zx , zy ) ⋅dzxdzy, which is the same as the 

probability that the slopes of a facet in the x and y directions, zx and zy, orient the facet 

such that light is reflected from the source to the direction of observation.  With this, the 

Fresnel reflectance, and the projection cosines, the small amount of radiance produced by 

specular reflectance, dLr,s, that can be measured in the direction of observation can be 

calculated as,

 
 
dLr ,s = Li

cosω
cosθn cosθr

rf (ω ) ⋅ p2 (zx , zy ) ⋅dzxdzy    Eq. 13

where, Li is the radiance of the source.  For simplicity, the dependence on wavelength  is 

omitted in this equation.  For a more convenient application of the model in WCRM, the 
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variables are changed to spherical coordinates.   Details are given in Appendix C 

regarding that conversion, which leads to the form,

 dLr ,s =
Li

4 cos4θn cosθr

⋅ rf (ω ) ⋅ pΩ θi ,φi ,θr ,φr( ) ⋅dΩr    Eq. 14

 

Allowing dr = di Equation 14 can be rearranged, and rewritten more compactly, to 

match the definition of a BRDF given in Equation 1.  This gives the specular component 

of the water BRDF,

 fwater
(s ) θi ,φi ,θr ,φr( ) = rf ω( ) pΩ

4µn
4µ0µ

       Eq. 15

using the common convention of defining µn = cosθn,  µo = cosθi , and µ = cosθr and 

dropping the angular dependent variables for P to simplify the notation.

Surface Roughness of the Aquatic Background

 The water surface in a marsh is typically calm, as the vegetation tends to shield 

the surface from the wind, therefore the degree of angular dispersion of the specular 

reflectance is smaller than open water conditions (Vanderbilt, et al., 2002).  However, it 

was observed in the field that the water surface rarely stays completely flat and some 

dispersion of specularly reflected light can be expected from the presence of small 

distortions, both dynamic and static, in the air-water interface.

 Dynamic distortions include primary capillary waves from disturbances.  Some 

coastal breezes are sufficiently strong to cause very small capillary waves in the flat 

surface, even for the water surface between plants, either directly or to a much smaller 

extent indirectly by wind driven movement of the plants themselves.  Waves can also 

start from outside the canopy, but are quickly dissipated by the vegetation.  It was also 
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observed that the water surface could occasionally be disturbed slightly by the movement 

of fauna, such as insects and insect larvae, or by bubbles rising from the bottom.

 Static distortions are mainly facilitated by water tension.  Water tension can cause 

curvature in the air-water interface around plants and debris that penetrate or float on the 

air-water interface (see Figure 2-3).  Similarly, the presence of scum or floating debris 

could also change the specular and 

diffuse reflective properties of the 

surface.  Finally, additional dispersion 

of the direct beam, independent of the 

surface, may include light diffusion 

by the atmosphere and the canopy 

(especially at near-infrared 

wavelengths).  This type of scatter 

could appear like the effects caused 

by static surface roughness, and its 

effect may be included into the same 

calculation.

 In general, all these surface distortions could possibly reflect light away from the 

direction of specular reflectance for a completely flat surface.  Furthermore, from a 

remote sensing perspective, the pixel field-of-view of a spaceborne or airborne imager’s 

pixels is likely to mix light reflecting from channels and ponds along with the vegetation 

canopy.  These small bodies of water have a more significant fetch length and were 

observed to be often roughened by the wind.  Therefore, when pointed near the specular 

direction, it is likely that an imaging remote sensing instrument with a pixel size greater 

than a meter or more will consistently detect specular reflectance from the sun, even 

when the air-water interface is essentially still within the canopy.
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Figure 2-3. Photograph of specularly reflected 
light in the marsh. This close-up photograph of a 
Spartina alterniflora canopy in the Blackwater 
Marsh in Maryland, USA demonstrates the 
distortion to the air-water interface created by the 
presence of vegetation and water surface tension.



The Diffuse Component

 The diffuse reflectance component depicts reflectance just below the water’s 

surface and is modeled simply as a submerged isotropic reflector at zero depth.  This 

component of the background reflectance is further approximated as a combination of the 

absorption and backscatter properties of turbid water along with the reflective properties 

of submerged vegetation.  As this component make assumptions of isotropy below the 

water’s surface, it is not expected to contribute to the canopy anisotropy.  Conversely, as 

the specular component is spectrally uniform across the visible and NIR wavelengths, the 

diffuse component contributes the most to the spectral characteristics of the aquatic 

background.  In this model, light passes through the air-water interface, reflects uniformly 

in all directions from under the surface, and returns through the air-water interface.  Thus, 

light emerging in the air from the water was subjected to at least two Fresnel transmission 

events (i.e., in and out of the water) and one isotropic reflectance event.

 Substituting in quantities for air-water interface transmissivity and subsurface 

reflectivity (Mobley, 1994) in a calculation derived by Bohren and Clothiaux (2006) for a 

submerged diffuse reflector, the upwelling radiance from just below the surface can be 

approximated by

 Lr ,d = nr
2t f θi( )t f θr( ) rd

π
Li cosθiΩi      Eq. 16

where, once again dropping the wavelength dependence for simplicity, the Fresnel 

transmittance is given as

 t f θ( ) = 1− rf θ( ).        Eq. 17

and rd is the irradiance reflectance of the submerged diffuser.  The transmittance t f θ( )  

pertains to a flat air-water interface and does not consider the effect of surface roughness, 
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as was done for the specular component.  However, Monte Carlo modeling of Fresnel 

transmittance across a roughened surface showed little difference (<3%) between a 

smooth surface and the surface conditions more likely found on even a large body of 

water with strong winds.  Thus simplifying the model to use a flat surface transmittance 

is considered a reasonable approximation for wetland aquatic surface conditions.  The 

first tf in Equation 16 gives the transmittance of light across the air-water interface into 

the water from the air at the angle of incidence i, as measure from the zenith direction.  

The second use of tf  gives the transmittance from water to air at zenith angle r in the 

direction of observation.  Using reciprocity, this is computed as the transmittance from air 

to water at incident zenith angle r.

 Replacing the incident solid angle i in Equation 16 with a small incremental 

quantity di can be said to produce a small incremental quantity dLi.  Thus, the equation 

can be rewritten to form a BRDF for the diffuse component of the aquatic background,

 
dLr ,d

Li cosθidΩi

= nr
2t f θi( )t f θr( ) rd

π
      Eq. 18

 Lee et al. (1998) described a more rigorous formulation that includes more detail 

of the underwater light field with the equation

 Rrs = nr
2t f θi( )t f θr( )

rd
π

1−Qγ rd π
       Eq. 19

where, the remote sensing reflectance, Rrs, is defined as the ratio of above-water radiance 

leaving the water from just below the surface to the above-water downwelling irradiance.  

Q is the ratio of the downwelling irradiance below the surface to the upwelling radiance 

at nadir.  Q is a measure of the isotropic characteristics and, by definition, becomes  for 
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isotropic reflectance.   is a factor that accounts for internal reflection below the air-water 

interface.  Lee et al. (1998) gives a value for  of around 0.48 (Gordon, et al., 1988; 

Lyzenga, 1978).  With these assumptions, we can use Equation 19 to incorporate 

consideration for the effects of internal reflectance, which can be significant.

 Unlike the definition given for BRDF, Rrs depends on the irradiance from all 

directions in the hemisphere.  For a diffuse reflector, however, the reflected radiation will 

be nearly the same regardless of the nature of the incident light field.  So, for the diffuse 

component of the marsh aquatic background, Rrs is taken to be a close approximation to 

the BRDF.  Therefore, we can write the diffuse component of the marsh aquatic 

background BRDF as,

 fwater
(d ) θi ,φi ,θr ,φr( ) = nr

2t f θi( )t f θr( )rd
π 1− γ rd( ) .      Eq. 20

It should be noted that the new internal reflectance factor of 1/(1 - rd) is more significant 

for high subsurface reflectance, increasing the amount of radiance seen by the observer 

by as much as a factor of two, as illustrated in Figure 2-4.  However, for dark subsurface 

reflectors, which are often seen in marsh conditions, the increase is relatively small.  For 

instance, a 10% irradiance reflectance would increase the observed radiance by around 

5%; a 20% irradiance reflectance would get an increase of around 10%.  But, the 

reflectance measured for a wet marsh soil sample alone did not exceed 12% over the 

spectral range from 400 to 1000nm.  Thus, the predicted positive bias for internal 

reflectance would typically not significant.  Conversely, the presence of light sand or a 

suspension of bright soil particles could cause larger effects.  Thus, the correction factor 

1/(1 - rd) is included so the that model can provide for a broader range of applications.

 The final step is to determine the reflectance attributed to scatter beneath the air-

water interface, rd.  The shallow water model developed by Lee et al. (1998; 1999) is well 
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described by Volpe et al. (2011) for coastal applications.  The underwater remote sensing 

reflectance, which is take as equivalent to rd in this case, is given by

 rd = rrs
dp 1− e− Kd+Ku

C( )H⎡
⎣⎢

⎤
⎦⎥
+ ρb
π
e− Kd+Ku

B( )H       Eq. 21
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Figure 2-4. Predicted above-water reflectances for a submerged diffuser reflector.  
Reflectance rd is varied from 0 to 1.  The black curve gives the response with internal 
reflectance included and the blue without internal reflectance.  The gray dashed curve 
shows the relative difference between the two.  Note that the correction becomes 
increasingly less significant with decreasing rd.



The details of this model are given in Appendix D, including the definition of the 

quantities that appear on the lefthand side of the equation.  The shallow water reflectance 

model is used to understand the reflectance spectrum of the aquatic background and is 

discussed further in Chapter 6.

Computing the Four Reflectance Quantities for Water

 The BRDF for the specular and diffuse components are combined to form a model 

of the total effect of the aquatic background.  The combined BRDF is then used to form 

the reflectance quantities used by the vegetation canopy model through integration.  

Substituting Equations 15 and 20 into Equation 11, the water component of the 

background BRDF becomes

 fwater θi ,φi ,θr ,φr( ) = nr
2t f θi( )t f θr( )rd
π 1− γ rd( )  +  

rf ω( ) pΩ
4µn

4µ0µ
    Eq. 22

where , P, µn, µ0, and µ are dependent on (i,i) ∈ and (r, r) ∈+, as previously 

defined. Examples of the resulting distribution are illustrated in Figures 2-5 and 2-6, both 

with rd set to 0.1.  Figure 2-5 shows a cross section of the BRDF along the principal solar 

plane for a zenith angle of 45 degrees and azimuth of 180 degrees.  The separate 

contributions of the specular and diffuse components can be clearly seen in curves 

corresponding to low values for .  Fresnel transmittance causes the diffuse component to 

drop off significantly near the horizon.  This also produces the darken disk edges and the 

overall darker blue disks in the bottom row in Figure 2-6. The increase of the specular 

component with increasing surface roughness, and the drift of its peak toward higher 

angles, is driven by the cosine of the viewing and illumination zenith angles in the 

denominator of Equation 12.  These factors account for the amount of light being 

received by a detector with a fixed solid angle that is subtended by an area that is 
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increasing with the secant of the viewing angle, and hence likewise viewing an increasing 

number of highlights.

 This does not take into account the attenuation of highlight over that area, which 

tends towards being a parabolic section (i.e., with infinite area) as the detector approaches 

the horizon.  In addition, the model as configured ignores the effects of shadows, multiple 

scattering events, or the visual overlap of waves (Cox and Munk, 1954a; 1954b; 1956).  

However, it is assumed that the omission of such effects, which pertain to high zenith 

angles (e.g., >60°) or extremely rough surface conditions (e.g.,  >0.15), does not 

significantly degrade the model’s ability to provides a practical prediction for surface 
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Figure 2-5. The BRDF along the principal plane for several values of .  In this plot, rd is 
set to 0.1 and the direction of illumination is 45° from zenith and 180° azimuth, which for 
comparison corresponds to the middle row of Figure 2-6.  The specular and diffuse 
components are clearly identifiable for low , where the specular component form a 
localized peak at 45° (and 0° azimuth) and the diffuse component from a base (shown in 
red) that is treated as independent of surface roughness.  The latter can also be seen to 
decrease significantly for large zenith angles as the transmittance across the air-water 
interface decreases.



31

Figure 2-6. Selected BRDF reflectance response as calculated with Equation 22.  Rows 
are associated with zenith angles of an incident beam of light and columns give different 
values of , which represent surface roughness.  The disks show the distribution of the 
reflected light over the hemisphere, following the projection indicated by the diagram in 
the lower lefthand corner.  Light enters from the left and the principal plane is horizontal 
and perpendicular to the page. The graded color bar gives the numerical meaning of the 
color in the disks.  The reflectance rd is set to 0.1 in this example.  The colors at the very 
ends of the bar include values that exceed the numerical range indicated.  The decrease of 
the reflectance distribution along the horizon (disk’s edge) is caused by the diffuse 
component roll-off caused by the decreased transmittance across the air-water interface at 
high zenith angles.  Note that by reciprocity, replacing the incident light direction with 
the observation direction will produce the same distributions.



reflectance over most of the hemisphere of interest to remote sensing of coastal marshes.   

Additional reading on this topic can be found in a paper by Zeisse (1995).

 Figure 2-6 demonstrates how surface roughness disperses the reflected light over 

the entire upper hemisphere.  Going across columns (i.e., varying  in Equation 16 to 

change surface roughness) the light is scattered over a large range of directions with 

increasing surface roughness.  This effectively decreases the amount of light that is going 

in the direction of specular reflectance, which is largely depicted by the first column on 

the left in Figure 2-6, and increases the amount of light going elsewhere in the upper 

hemisphere, especially in directions that are close to the specular direction.  This change 

in distribution effectively increases the brightness of the water with surface roughness. 

 Following the definition given by Equation 2, the BRF used in the vegetation 

canopy model is calculated as,

 ρwater θi ,φi ,θr ,φr( ) = π fwater θi ,φi ,θr ,φr( )     Eq. 23

This quantity controls the amount of reflected light predicted to reach the observer from 

single scatter events from the aquatic surface (see 5 in Figure 2-2).  To determine the 

water contributions to the reflectance quantities defined in Equations 3, 4, and 6, 

Equation 22 is integrated over the upward hemisphere + to get ρwater
(do)  or hemisphere 

downward  to get ρwater
(sd ) , or both and divided by  to get ρwater

(dd ) .   As previously 

mentioned, the principle of reciprocity results in fwater θi ,φi ,θr ,φr( ) = fwater θr ,φr ,θi ,φi( ).  
Thus the hemispheric-directional and directional-hemispheric reflectances are both 

calculated as

 
ρwater

(do) θ,φ( ) = ρwater
(sd ) θ,φ( )

=
nr

2t f θ( )Tf rd
1− γ rd( )  +  1

4µ
rf ω( ) pΩ

µn
4 dΩ

Ω
∫

    Eq. 24
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where dΩ = sinθ  dθ  dφ, µ = cosθ, and the subscripts for , , and  are dropped to 

generalize the form of the function.  Assuming azimuthal isotropy, the constant T is 

simply the integral of the Fresnel transmittance over a hemisphere, which can be written

 Tf = 1− 2 rf θ( )cosθ sinθ dθ
0

π
2∫ .      Eq. 25
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Figure 2-7. Look-up table for the specular component of  the directional-hemispheric or 
hemispheric-directional reflectances.  As calculated by the second term of Equation 24, 
this table is a function of zenith angle and surface roughness, .  The values in the plot 
above show this reflectance quantity divided by .  The intersection of the blue curves 
indicate points that are used in the look-up table for the aquatic background model.



Applying numerical integration to compute the righthand side of this equation gives 

Tf = 0.93.  The second term of Equation 24 is also computed by numerical integration for 

various values of the mean slope square of the air-water interface, , representing surface 

roughness, and zenith angle, .  For application in the vegetation model, these values are 

interpolated in a look-up table as shown in Figure 2-7.  As illustrated by the plot, the 

specular component of Equation 24 is primarily driven by Fresnel reflectance, as 

described in Appendix B, and exactly so for  = 0.  Thus, in log space, the component 

rises steadily from zenith angles of about 45°, but varies slightly with changes in surface 

roughness. In particular, the specular component decreases with increasing surface 

roughness from around 45° and above, only sharply increasing at very high angles, but 

increases slightly for zenith angles much lower than 45°.  With increased variation in the 

surface, there are more opportunities for lower reflectance facet orientations when 

reflectance would otherwise be high or vice versa when reflectance would otherwise be 

low (i.e., near zenith).  In the vegetation canopy model, the total value for ρwater
(do)  controls 

the amount of direct illumination that contributes to the upward diffuse flux (component 

4 of Figure 2-2) and ρwater
(sd )  controls the amount of light going from the downward diffuse 

flux directly toward the observer from the background (component 8 in Figure 2-2).

 Following the definition given by Equation 6 the albedo of the aquatic 

background is calculated as,

 ρwater
(dd ) =

nr
2Tf

2rd
1− γ rd( )  +  1

4π
rf ω( ) pΩ

µn
4 dΩr

Ω+

∫ dΩi
Ω−

∫     Eq. 26

The behavior of the diffuse and specular contributions are illustrated in the plots in Figure 

2-8.  As shown, the numerically integrated specular component (second term) in Equation 

26 is approximately independent of surface roughness.  Therefore a value of 0.026 is used 

in the model algorithm in place of this term and hence plays a very small role in the 

background albedo, unless the diffuse reflectance is less than ~2%.  The diffuse 
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component, conversely, is strongly driven by the subsurface diffuse reflectance rd.  The 

internal reflectance is set to 0.48 in calculating the diffuse component.  In the vegetation 

model, the total albedo controls the flow of light from the downward diffuse flux to the 

upward diffuse flux (component 9 in Figure 2-2).

Physical Plausibility of the Model Predictions

 Little is known about the surface reflectance of the aquatic substrate, and no data 

could be found in the literature regarding some aspects of the surface conditions, such as 

surface roughness.  However, it is worth considering whether results of modeling of the 

aquatic background at least make physical sense.  As expected, results showed that the 

surface roughness plays strong role in varying the BRF around the specular direction.  A 

small amount of surface roughness can disperse the distribution of reflectance light away 

from the specular direction.  For zenith angles greater than zero, increasing surface 
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Figure 2-8. The aquatic background albedo.  The aquatic background albedo (A) is 
primarily a function of the reflectance below the air-water interface, as illustrated in a.  
Surface roughness has little effect on albedo as shown in b (rd is set to 0.1 in this 
example).

a b



roughness pushes the reflectance peak towards the horizon, in addition to widening the 

dispersion pattern.  This result follows the expectation that for all the opportunities 

afforded by non-horizontal air-water facets, the ones reflecting at higher angles will have 

the greater reflectance.  Furthermore, the facets tilting away from the incident light have a 

small range of zenith angles to which they can redirect the light than facets tilting 

towards the light.  Therefore, the beam distribution is skewed to a greater zenith angle 

than that of the specular direction.

 It was also noted that surface roughness had a milder influence on hemispheric-

directional and directional-hemispheric reflectances.  The effect of surface roughness on 

albedo, which is mostly dependent on the subsurface reflectance, is very small.  For low 

zenith angles, the Fresnel reflectance is at a minimum for a flat surface, so some variation 

in the air-water interface increases these reflectance quantities.  For larger zenith angles, 

where Fresnel reflectance is higher, the opposite happens, and thus the hemispheric 

reflectance decreases with increasing surface roughness.  The model predicts a sudden 

increase with surface roughness of hemispheric reflectance near the horizon, but this 

possibly stems from a breakdown in the model’s representation where the calculation 

becomes indeterminate (Zeisse, 1995).  However, this is not a practical limitation for 

employing the model for remote sensing of the marsh landscape.

 After the aquatic background model was integrated into the vegetation 

canopy reflectance model, results from the new WCRM model were also 

considered.  Figure 2-9 illustrates the response of the enhanced model, WCRM, along 

the solar principal plane (SPP) for varying LAI and surface roughness, .  This sensitivity  

analysis indicated that the model response is greatest for these two parameters around the 

specular direction, as expected.  Conversely, the influence of  diminished rapidly as the 

viewing angle moves away from the specular reflection, which was also expected.  

Decreasing  rapidly increased and narrowed the spike associated with specular 

reflectance.  Specular reflectance was also strongly attenuated by increasing LAI.  

36



37

Figure 2-9. The response along the principal solar plane of the full marsh vegetation 
model. Shown is the variation to a) the surface roughness  and to b) to LAI.  In this case, 
the 45° solar zenith angle and wavelength is 920 nm.

Hot spot Specular
Reflection

b
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Therefore, it can be concluded that dense vegetation is less susceptible to aquatic 

background specular reflection, as it would be for any background.  However, this 

pertained to a uniform distribution of marsh cover, which is generally not the case on a 

scale of meters or smaller.  Hollows and spaces in the canopy are not uncommon and 

could cause specular reflectance to direct additional light toward the observer, even when 

the surrounding canopy is fairly dense.  WCRM will require further work to address 

those kinds of vegetation spatial distributions.  It was further observed that the specular 

reflectance peak was substantially higher for NIR wavelengths than for visible 

wavelengths.  This not remarkable as more light would be transmitted to the water 

surface in the NIR, albeit though the diffuse flow.  However, further model runs at 

different wavelengths showed that the specular peak was twice as high for the NIR than 

for the blue even when LAI was set for 0.01.  As the specular component of the aquatic 

background model as no spectral dependence, this results much stem from a limitation of 

the vegetation canopy reflectance model (i.e., ACRM) in modulating the flow from the 

background for very sparse vegetation.

Summary

 A simple, first-principle model of the aquatic background BRDF was formulated 

based on a specular component for the air-water interface and a diffuse component to 

calculate reflectance from beneath the surface.  The specular reflectance based a 

roughened specular reflector as described by the Cox-Munk model (Cox and Munk, 

1954a; 1954b; 1956; Kay, et al., 2009). This component is principally driven by the 

Fresnel reflectance of the air-water interface, however light is dispersed around the 

specular direction by surface roughness, .  The diffuse reflectance is based on the Lee 

shallow water reflectance model (Lee, et al., 1998; 1999).  This component is based on an 

isotropic reflector that is submerged in turbid water.  This component is also subject to 

Fresnel transmittance of the air-water interface and an approximation of the effect of 
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internal reflection under the air-water interface.  These two component were then 

summed to calculate to the total aquatic background BRDF for the new enhanced canopy 

reflectance model.

 The aquatic background BRDF was then used to calculated the four key 

reflectance quantities used for the background in the ACRM vegetation canopy 

reflectance model (Kuusk, 1995a; 1996).  The first of these quantities was the BRF, 

which is used to determine the amount of observed reflectance due to direct illumination 

of the aquatic background.  The BRDF was also used to compute the direct-hemispheric 

reflectance and hemispheric-direct reflectance.  The direct-hemispheric reflectance is 

used in the vegetation canopy reflectance model to determine the amount of light 

reflected from the direct flux into the diffuse upward flux.  Similarly, the hemispheric-

direct reflectance determines the amount of diffuse downward flux that is reflected 

directly towards the observer.  Both the direct-hemispheric and hemispheric-direct 

reflectances were determined through analytic integration of the diffuse BRDF 

component and numerical integration of the specular BRDF component.  To implement 

the specular BRDF component of the hemispheric reflectances, a look-up of table was 

created from the numerical integration.  Finally, the BRDF was integrated over all 

upward and downward directions to calculate the aquatic background albedo, which in 

the vegetation canopy reflectance model governs the amount of the diffuse downward 

flux is redirected into the diffuse upward flux.  The resulting calculations for all four 

reflectance quantities were implemented in FORTRAN code and integrated with the 

ACRM program to create WCRM.  Details of that implementation are given in Appendix 

E.
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Chapter 3  Effects of the Background on LAI Retrieval

Introduction

 One application of a canopy reflectance model is to retrieve LAI given measured 

canopy reflectance data at various angles, which is done by inverting the model using an 

optimization technique.  This chapter examines the feasibility of such retrievals.  To that 

end, both the ACRM and WCRM models were run for a range of LAI values to relate 

LAI to canopy reflectance at various viewing directions and wavelengths.  This 

establishes conditions where retrieval of LAI from reflectances can potentially be done.  

It is shown that the presence of a low-reflectance substrate reduces the potential of LAI 

retrieval at visible wavelengths, but increases the potential at NIR wavelengths.  It is also 

reported that the inversion technique that is built into the canopy reflectance model can 

dwell indefinitely on the initial guess when the potential to retrieve LAI is low.  An 

example scenario is provided.

Inversion Technique

 To retrieve LAI from reflectance measurements, the canopy reflectance model 

must be inverted.  That is to say, values are found for the model input parameters that best  

explain the measured reflectance values.  The technique employed in this study 

accomplishes this in a fashion analogous to  a nonlinear regression fit of the model to the 

data.  In that sense, the model input values are systematically varied until the difference 

between the model output and measured values are minimized.  This is also known as an 

optimization problem, and is commonly used in remote sensing applications because the 

desired surface parameters are not directly measurable by the sensor, but instead 

determined remotely through the measurement of light.
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 WCRM and ACRM were inverted using the Powell method, as described in Press 

et al. (1992).  As with most optimization techniques, the difference between predicted and 

measured light must be systematically minimized using a quantity that gives the size of 

that difference.  Furthermore, it needs to be weighted to emphasize input parameters that 

are more important or more accurate.  That quantity is determined by following equation, 

also know as a cost function, which was defined by Kuusk (2009) for ACRM:
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where,  
x is the vector of model input parameters, m is the number of measured 

reflectance values ρ j
* , ρ j is the model reflectance value, ε j is the error of the measured 

reflectance value ρ j
* , xi is the ith model input parameter and xi,b is its value on the 

boundary of the given region.  wi is a weight such that wi = 0 in the given region 

xi = xi,min , xi,max{ }  and wi is defined as a constant elsewhere.  xe, i is the expert estimate of 

xi and dxi is a tolerance for xi that controls the sensitivity of the cost function to the 

expert estimate.  Default values for the weight, tolerance, expert values, boundary values, 

and error were used for all input parameters, except for certain exception as will be 

discussed.  This equation was built into the software by its original author to facilitate the 

retrieval of input parameters given measured reflectances.  Analysis of WCRM and 

ACRM showed that both models are more sensitive to LAI than any other input 

parameter.  Thus, the inversion is greatly simplified by using representative values for 

other input parameters and let only LAI vary in the inversion.

Background Spectrum

 Comparisons between ACRM and WCRM demonstrates that the background 

spectrum strongly affects the relationship between LAI and the canopy reflectance.  The 

aquatic background model in WCRM produces a different reflectance spectrum than the 
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embedded soil spectrum model in ACRM, which is generated by a linear combination of 

four Price functions (Price, 1990).  ACRM uses four Price function coefficients to 

describe a variety of background terrestrial soil spectra, and does not take an entire 

spectrum as an input parameter.  By default, the inversion mode of the ACRM model 

allows the coefficients for the first two Price functions to fit the measured reflectance to 

account for a variety of soil types, without a priori knowledge of the target’s soil 

spectrum.  ACRM also can be run using the default expert values for the Price 

coefficients or they can be fixed to match a known soil spectrum.  Figure 3-1 shows 

examples for five background spectra for ACRM and WCRM.  The ACRM includes: 

default expert soil (gray), measured and modeled dry marsh soil (orange and red), 
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Figure 3-1.  The five spectra used in the LAI retrieval test and their corresponding Price 
function fits.  The Default Soil spectrum is the expert guess for the soil spectrum used by 
the default configuration of ACRM.  Dry Marsh Soil and Wet Marsh Soil spectra were 
taken from marsh soil samples, the latter being nearly saturated.  The Turbid Water 
spectrum is the same as the modeled spectrum in Figure D-3.



measure and modeled wet marsh soil (blue and purple), and for turbid water (green and 

turquoise).

 The measured dry and wet marsh soil spectra were from a soil sample taken from 

the Blackwater Marsh, Maryland in 2008.  17.3 g of the soil was left to air dry at room 

temperature for 24 hours.  Most of the organic debris were removed from the soil sample 

by hand.  15 g of tap water was mixed into the soil to produce a nearly saturated soil.  

BRF spectra were taken for both the dry and wet cases with an Ocean Optics USB2000+ 

spectrometer and a Spectralon reference panel.  Illumination and spectrometer probe were 

set at 45° from zenith and rotated azimuthally by 90° to reduce the effects of glint. 

 The Price function coefficients for the each spectrum were derived by multiplying 

the spectrum by a Moore-Penrose inverse of the Price four-vector basis.  The turbid water 

spectrum pertains to a case of the WCRM aquatic background that includes submerged 

vegetation as described in Appendix D.  The fit of Price functions to the WCRM turbid 

water spectrum was poor when compared to the soil spectra fits.  The ACRM background 

also differs from the full WCRM model by the exclusive use of the Walthall soil BRDF 

model (1985) and the omission of the aquatic calculations pertaining to the passage of 

light across the air-water interface found in WCRM.

The Relationship between LAI and Canopy Reflectance

 To understand the feasibility of LAI retrieval, both the WCRM and the ACRM 

models were run for various LAI values and these values were plotted against the SPP 

canopy reflectance for different wavelengths and sensor zenith angles.  The default expert 

soil was used for ACRM (cf. gray curve in figure 3-1).  This produces a spectrum that is 

only slightly higher in blue reflectance when compared to the WCRM aquatic 

background spectrum, but is increasingly much higher with increasing wavelength.  The 

solar zenith was set to a nominal 45°.  The WCRM surface roughness, , was set to a 

nominal value of 0.06, which was derived by a fit to field data.  The aquatic ground 
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Figure 3-2. The ACRM and WCRM modeled relationship between LAI and canopy 
reflectance.  The relationship is shown for several sensor zenith angles along the solar 
principal plane at a) 486 nm and b) 572 nm.  Solar zenith angle was set to 45° for both 
models.  The default soil was used for ACRM.  WCRM was run with  = 1 and  = 0.06.

a.

b.
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Figure 3-3. The ACRM and WCRM modeled relationship between LAI and canopy 
reflectance.  The relationship is shown for several sensor zenith angles along the solar 
principal plane at a) 661 nm and b) 838 nm.  Solar zenith angle was set to 45° for both 
models.  The default soil was used for ACRM.  WCRM was run with  = 1 and  = 0.06.

a.

b.



coverage fraction, , was set to 1, thus causing WCRM to simulate complete coverage of 

water over the substrate.  The SPP reflectance was chosen because the most variation is 

expected along that plane and, hence, the most structure information.  In addition, the 

presence of specular effects strongly affects the reflectance profile in this plane.  Runs at 

other solar zenith angles indicated that the relationship between LAI and reflectance does 

not differ much for smaller solar zenith angles, but the relationship can as the sun gets 

closer to the horizon.  However, as most remote sensing applications currently tend to not 

work well with very large solar zenith angles, such cases are left to future study. Plots of 

the modeled relationship between canopy reflectance and LAI are shown in Figures 3-2 

and 3-3.  Curves were plotted for a nadir view and for sensor zenith angles at 30° 

increments from nadir in the forward and backscatter directions along the SPP.  Both 15° 

sensor zenith angle curves were omitted from each figure as they were not very different 

from the nadir curves and their removal reduced clutter.

 The results show that performance appeared to be driven largely by the contrast 

between the background and foreground reflectance.  In cases where the soil or water is 

more reflective than the vegetation, the LAI increases with decreasing canopy 

reflectance, as demonstrated by the curves in Figures 3-2 and 3-3.  When the background 

is darker than the vegetation, LAI increases with increasing canopy reflectance.  For 

ranges of LAI where these relationships hold, we can expect that the models can retrieve 

LAI.  However, as the vegetation density increases, the influence of the background 

decreases.  Furthermore, both models predict that for increasing vegetation density 

decreases shadowing, thus ultimately increasing canopy reflectance.  Therefore, the 

negative relationship between LAI and reflectance for bright backgrounds can reverse as 

the vegetation becomes denser (i.e., increasing LAI).  This situation leads to curves that 

are neither functions nor invertible.  If it is known a priori that the LAI values being 

retrieved are confined to section of the curve that is invertible, then the model might be 

usable.  So theoretically, retrieval of LAI in the presence of a bright background can be 
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limited to situation when LAI is known to be below or above a certain threshold value.  

However, the threshold would change with zenith viewing angle, thus limiting its 

applicability to most remote sensing applications.  Also, for cases examined in this study, 

this threshold value typically occurred when the curve slope was very high over a large 

range of LAI, undermining predictive performance of the model inversion for most 

possible LAI values.  Most curves became vertical, or nearly vertical, over some range of 

LAI values.  It is mathematically impossible to retrieve a single LAI value for a given 

canopy reflectance value when the curve is vertical.  Even very steep, non-vertical curves 

are limited as the large slope greatly magnifies any uncertainty in reflectance, which can 

be expected to be several percent or more for typical field and remote sensing reflectance 

measurements.

 It can be concluded from Figure 3-2a that retrieval of LAI from the canopy 

reflectance is problematic for both WCRM and ACRM at 486 nm.  The vertical or near 

vertical slope of the curves indicates that a single LAI value above 1.5 cannot be obtained 

for any given canopy reflectance in the blue.  For the WCRM curves pertaining to far off-

nadir LAI retrievals, the slope of the curves change sign over the range of LAI values, so 

the curve is no longer invertible for a larger range of LAI.  The poor performance of these 

models to predict LAI stems from the lack of contrast between the background and the 

vegetation foreground.  The performance of WCRM is slightly worse than ACRM at 

nadir and in the backscatter direction because of the darker background and the lower 

contrast that it affords.  In fact, for very bright soils and sparse vegetation, the lack of 

multi-scatter effects may offer better potential to retrieve LAI, as was demonstrated by 

Chopping (2003) with sparse grasses in arid regions.  However, except for the rare 

presence of a substrate of sand or bright clay, the blue wavelengths are not likely to be 

useful for typical tidal marshes.

 Conversely, potential for LAI retrieval is very good for WCRM near the specular 

reflectance direction in the forward direction, where a very strong contrast is created by 
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the presence of sun glint.  This suggests that sun glint could be used to probe the canopy 

for LAI, and perhaps other structure parameters.  This idea was first suggested by 

Vanderbilt (2002).  However, using WCRM for LAI retrieval using background specular 

reflectance is limited by knowledge of  and .  The values of these parameters may need 

to be known before inverting the model, although the sensitivity of the inversion of 

WCRM to this uncertainty remains to be explored.  Also, in the case of remote sensing 

imaging, it is also not clear whether variation in horizontal distribution of vegetation 

within pixels would not undermine the model assumptions of uniformity and thus 

adversely affect prediction performance.  The potential of the specular reflectance in 

retrieving LAI from canopy reflectance appears at all visible wavelengths.  However, the 

NIR curves in the specular direction are confounded by the bright vegetation foreground, 

causing relationships that are not invertible.

 Figures 3-2b and 3-3a show that the potential retrieval of LAI for the modeled 

marsh is not good for the green band and even worse for the red.  Conversely, the 

comparatively brighter background of dry soil affords better potential for ACRM to 

retrieve LAI values that are known to not exceed much more than a value of 2.  Of 

course, this is subject to the aforementioned limitations regarding knowing that LAI is so 

constrained.  The increased contrast between foreground and background seen for 

modeled terrestrial conditions provides the opportunity for ACRM to retrieve an LAI 

value over a large range of LAI.  Conversely, WCRM curves suggest a lower potential for 

LAI retrievals over marsh canopies, which typically have inundated substrates or wet, 

dark organic soils and peat.  Furthermore, green wavelengths are more subject to 

variation in reflectance contributions from phytoplankton, algae, and submerged 

vegetation in the aquatic substrate.  Thus, these constituents produce considerable 

variation in the shallow water model at this wavelength.  For low productivity water and 

low sediment load, the vegetation foreground should be comparatively brighter than the 

background.  Conversely, productive waters or high sediment load can cause the 
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background reflectance to be closer to the canopy above, decreasing the contrast and 

hence performance in retrieving LAI.

Sensitivity of Model Inversion Technique

 The LAI verses canopy reflectance curves indicate what is theoretically possible 

given the modeled relationship between LAI and canopy reflectance.  However, the 

inversion of the model through the minimization of a cost function (see Equation 27) is 

affected by low contrast between background and foreground in ways that are not 

intuitive and can deceive a casual user of the model inversion.  The inversion is an 

iterative process, which starts with an initial guess for LAI (or any set of one or  more 

input parameters).  This input parameter is then changed slightly and the cost function is 

checked for decrease.  The input parameter continues to be systematically adjusted as 

long as the cost function continues to decrease.  However, when the LAI verses canopy 

reflectance curve is has a very large slope (i.e., near vertical), the cost function does not 

change significantly.  Therefore, the LAI value does not change much from the initial 

guess.  If the initial guess is good, then getting a value near it may seem acceptable.  But, 

what has happened instead is that the model inversion has only returned whatever it was 

given, regardless of the actual LAI value.

 Figure 3-4 illustrates an example of this scenario.  WCRM and ACRM were run 

to retrieve LAI from marsh BRF data sampled from a Spartina alterniflora canopy in 

South Carolina (Schill, et al., 2004), which will be described further in Chapter 4.  The 

initial value for LAI was set to the published measurement of 2.27.  Retrievals based on 

NIR reflectance data yielded LAI values that were significantly lower than the published 

value, but the LAI retrieval based on blue reflectance appeared very accurate for every 

case.  It was later noticed that the overall reflectance values were much lower than other 

similar reflectance measurements found in the literature (Artigas and Yang, 2005; 

Kearney, et al., 2009; Schmidt and Skidmore, 2003).  This brought the published LAI 
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and reflectance values into question.  Although not completely exonerated, no problem 

could be found with the reflectance factors that would lead to about half the expected 

reflectance for a moderately dense canopy.  However, an LAI value of 0.723 was found 

recorded in notes accompanying the data, which may be closer to the actual measured 

LAI value.  As can be seen in Figure 3-4, the inversion based on the NIR reflectance 

values were much closer to the new LAI value, which further supports this as the actual 

value.  Meanwhile, the inversion that was based on the blue reflectance had clearly 

become stuck on the initial guess for LAI, which by design was the target value.
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Figure 3-4. Box-whisker plot for the LAI retrieval for five modeling cases based on 
background spectra shown in Figure 3-1.  The upper and lower extremes of the whiskers 
are the minimum and maximum, respectively.  The bottom and top of the box indicate the 
lower and upper quartiles.  The horizontal line near the center of the box is the median.  
The retrieval base on the blue reflectance has stuck on the initial value for LAI, which 
was set to a possibly questionable value.  The actual value may be closer to the retrieval 
values based on the NIR reflectance.

Probable LAI value

Questionable reported LAI value



 To further emphasis this point, a Monte Carlo experiment was run with WCRM 

model to test the sensitivity of LAI retrieval to random variation of the canopy 

reflectance field.  First, the WCRM model was run to produce canopy reflectances across 

the SPP.  This was done at NIR and blue wavelengths, for a solar zenith angle of 45°, and 

for eleven sensor zenith angles going from 0° to 80° in the forward scatter and 

backscatter directions.  Normal distributed random values (also know as Gaussian noise), 

were added to the simulated reflectances.  This added noise was scaled relative to the 

backscatter reflectance range (i.e., the difference between the maximum and minimum 

reflectances along the backscatter half of the SPP) to simulate variation in vegetation 

density.  The model was then inverted based on the noisy canopy reflectance in attempt to 

recover the original LAI value.  The process of generating a canopy reflectance field, 

introducing noise, and retrieval of LAI through inversion was repeated 1000 times and 

then summary statistics were taken for all recorded deviations from the original LAI 

value.  Figure 3-5 shows the summary statistics as the variation of the introduced noise is 

set to increasingly larger values.  For each increment, the standard deviation of the 

introduced random values, or noise, was set to large values relative to the overall range of 

reflectance along the backscatter portion of the SPP.  The results clearly indicate that the 

inversion based on blue reflectance is far less responsive to random variation in the SPP 

reflectances.  As long as the variation in the reflectance field yields no significant change 

in the cost function, the retrieval cannot move far from the initial value for LAI.

 As a side benefit of this experiment, it was also noticed that introduced noise 

caused no significant bias in the retrieved LAI value based on the NIR reflectance data.  

By the principle known as Jensen’s Inequality (see pg 182 of Casella, 1990), this implies 

that over the range of variation introduced, the inverse of WCRM (with respect to LAI) is 

fairly linear.  This indicates that retrieval of LAI is applicable to data aggregates.  An 

important case of data aggregates are remote sensing pixels, which often contain 

reflectance values averaged over spatial scales much larger than the variation observed in 
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field data.  This implies that although the inversion of WCRM to retrieve LAI from 

reflectance values found in remote sensing imagery would be sensitive to sub-pixel 

variation, as indicated by Figure 3-5, retrieved LAI should also be relatively free of bias.

Conclusion

 The ACRM and WCRM models were used to generate curves that represent the 

theoretical relationship between LAI to canopy reflectance for various viewing 

geometries and wavelengths.  It is was seen that contrast between the background and 

foreground reflectance drives the potential for successful retrieval of LAI from the 

canopy reflectance field.  These curves demonstrated that the visible wavelengths afford 

poor conditions for retrieval of LAI by WCRM.  The exception to that rule are cases that 

involve using specular reflectance, where the glint greatly increases the contrast.  The 

idea of using specular reflectance to probe the canopy structure was originally explored 

by Vanderbilt (Vanderbilt, et al., 2002).  However, lack of knowledge about the surface 

roughness, , and water coverage fraction, , may make it difficult to connect measured 

reflectance to a given LAI value.  Further study is needed to determine the how these 

parameters affect the LAI retrieval by model inversion.

 Conversely, the consistently dark background at NIR wavelengths provides an 

opportunity to retrieve LAI over a fairly large range of possible values.  Retrieval of LAI 

based on specular reflectance is confounded by the high reflectance of vegetation at these 

wavelengths, which hence would probably be a poor choice for such a technique.  For 

marsh surface conditions, the NIR wavelengths may be the best choice for retrieval of 

LAI from canopy reflectance.  Without solid information regarding  and , the viewing 

directions that avoid specular reflectance from the sun would be preferable.  The curves 

in Figure 3-3b indicate that viewing angles in the backscatter direction at a zenith angle 

of 45° or greater may be ideal for retrieval of LAI.
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 When the slope of the curves depicting the relationship between LAI and canopy 

reflectance became near vertical, the inversion technique based on minimization of a cost 

function was also affected.  However, rather than producing any LAI value, as a near 

vertical curve might suggest, it was found that inversion algorithm would tend to produce 

a retrieved LAI that is close to the initial value.  This appearance of convergence on a 

reasonable value can be deceptive, as illustrated in an example scenario.  It was further 

shown that this sluggish response is fairly robust to random variation in the measured 
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Figure 3-5.  Variation in the retrieved LAI in response to variation introduced to the 
reflectance field.  The retrieval of LAI is based on monochromatic, multiangular 
reflectances for two representative wavelengths for blue and NIR.  See text for details of 
the experimental procedure.  Noise level is the standard deviation of the introduced 
random values divided by the overall range of reflectance values along the SPP in the 
backscatter direction.  Each symbol indicates the standard deviation of the relative 
difference between the original LAI value and the retrieved values.  The curves are 2nd 
order polynomial fits.



reflectance field.  As a positive outcome, analysis of this behavior also demonstrated that 

retrieval of LAI based on NIR reflectances are likely not to be biased by the nonlinearity 

of the model when applied to remote sensing applications, like imagery.
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Chapter 4  The Transect Experiment

Introduction

 Reflectance and LAI measurements were collected along transects for different 

marsh canopies to explore whether the model can be applied to remote sensing imaging 

data.  For each transect, reflectance was measured at six angles with a narrow field of 

view and were then averaged to a scale closer to pixels of an airborne or spaceborne 

imager.  This study included three sites, each with mostly monospecific populations (i.e., 

one dominant species).  In each, 30.5 m transects were measured at six different angles.  

Given the potential connection of NIR reflectance and LAI, the data are compared with 

WCRM predictions at those wavelengths given measured LAI values.  The results of the 

comparison suggest that LAI may be retrieved when the canopy has little dead or 

senescent vegetation, while conversely, the reduced reflectance stemming from the 

presence of these materials may cause the vegetation canopy reflectance model to predict 

LAI values that are much lower than what might be measured with a LI-COR LAI-2000.

Data and Methods

 Measurements of LAI and BRF were taken in the Blackwater Marsh, which is 

part of the Chesapeake Marshlands National Wildlife Refuge Complex managed by the 

U.S. Fish and Wildlife Service.  Data were collected along Maple Dam Road, about 20 

km south of Cambridge, Maryland USA (see Figure 4-1).  All measurements were taken 

in mid-afternoon on 1 September 2008.  Most of the equipment used for the transect 

experiments is shown and described in Figure 4-2.  Measurements were made under 

clear-sky conditions to minimize uncertainty stemming from fluctuation in the canopy 

irradiance.  All reflectance measurements were made within a few hours of solar noon 

and LAI measurements were made from late afternoon to dusk.  Equipment, such as the 
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instrument boom, were set up and broken down at one of the gates along Maple Dam 

Road or Shorter’s Wharf parking lot.  Set up and initial calibration took about twenty 

minutes.

 For the late summer measurements of the transect experiment, the sky was 

generally clear with a few small cumulus clouds on the far horizon.  Temperatures were < 

90 °F (32 °C), the relative humidity was 

high, and the surface conditions were 

very wet with relatively high water 

levels.  Table 4-1 summarizes the 

conditions for each site of transect 

experiment.  Site 1 was chosen as 

representative of the highly prevalent 

Schoenoplectus americanus at 

Blackwater Marsh.  Site 2  showed 

lower density cover, including a mix of 

shorter Schoenoplectus americanus and 

Spartina patens.  The landscape around 

Site 2 also had more variable vegetation 

coverage than what was observed at Site 

1, with other more monospecific 

canopies and open water nearby.  Site 3, 

which was in close proximity to Site 2, 

was predominantly Spartina 

alterniflora, with intersperse Spartina 

patens and Distichlis spicata.  

Interestingly, although this mixed-specie 

canopy was shorter, and appeared to 
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Figure 4-1. Transect Study Site. Green and blue 
pennon markers indicate positions of LAI 
measurements for the long transect experiment.  
Yellow curve shows the segment of Maple 
Dam Road traverse during the same 
experiment.  Red boxes indicate where LAI 
and reflectance were measured for three sites 
as part of the short transect experiment, each 
identified with numbered red circles. (Inset: 
Dept of Commerce, via Wikimedia Commons)
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have less foliage than observed at Site 1, the average measured LAI was the highest of 

the three sites.  The surface conditions were better drained, but more variable.

 BRF for all transects used in this study were taken with an Ocean Optics 

USB2000+ spectrometer (OOI) with a 20 m optical fibre cable and a Gersun tube probe 

with a 14° aperture.  The probe was situated on the end of an extendable instrument boom 

and could be set at any zenith angle.  Suspended continuously over the marsh canopy, the 

instrument boom was carried by a motor vehicle down Maple Dam Road, which cuts 

across the marsh.  Although measurements were taken on either side of the road, only 

those taken on the west side are considered in this study because the larger number of 

ponds against the road on the east side significantly reduced the number of canopy 

measurements.  Short transect sites were made only on the west side.  The boom was 

extended about 5 m  from the vehicle.  Taking into account the road side and mowed area 

(~3 m), the instrument probe was deployed about 2.1-2.7 m into the canopy and at a 

height above the top of the canopy of about 1 m for the long transect experiment and 

about 0.3 m for the short transect experiment.  During the long transect experiment, the 
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SIte Hgt
 (m)

LAI
Mean

StdDev
Std Err

Species Cover
Density

Surface

1 1.2
3.7
0.24
0.22

Mostly Schoenoplectus 
americanus, with Spartina 
patens inter-dispersed.

Consistently 
dense coverage.

Surface is soggy. 
Tide appears high.

2 0.9
3.1
0.60
0.38

Mostly Schoenoplectus 
americanus, with some 
Distichlis spicata inter-
dispersed.

Moderately to 
highly dense, 
with patches of 
sparse growth.

Small ponds and 
interstitial water 
present.

3 0.5
3.9
0.60
0.28

Spartina alterniflora with 
occasional patches of 
Spartina patens; some 
Distichlis spicata present.

High with patches 
of moderate 
cover.

Soggy with small 
ponds. Browning of 
S. alterniflora 
observed.

Table 4-1. Conditions observed in the canopy for the short transect experiment by site. 
Hgt indicates the measured canopy height in meters.  LAI was averaged from five 
measurements (in units of m2m-2).  LAI standard deviation and root mean squared 
standard error are given below the average.



BRF was sampled with the instrument probe pointing in the nadir direction; set at 60° and 

45° in the backscatter direction; and then at 45° in the forward scatter direction.  For each 

site of the short transect experiment, the instrument probe was set pointing at nadir; at 

60°, 30°, and 45° in the backscatter direction; and 30° and 45° in the forward scatter 

direction.  Other information, such as marsh conditions and species composition, were 

recorded on predefined forms during collection of LAI point measurements and later 

logged into a spreadsheet.

 The spectrometer was configured with a 200 µm aperture and internal cylindrical 

lens over a 2048 channel CCD array to maximize sensitivity.  This was necessary in order 

to capture light from the darker surface conditions found in the marsh and to compensate 

for signal attenuation caused by the optical fibre.  The instrument sampled the vegetation 

spectrum at 1 nm intervals from 340 nm to 1028 nm, but with spectral resolution of about 

10nm.  The instruments radiometric sensitivity reaches its maximum for wavelengths 

near 400 nm and decreases linearly to near zero just above 1 µm.  Measurements were 

collected using vender software on MacBook Pro laptop via a USB cable.  To get 

reflectance factor measurements, the software processed the ratio of dark-count (DC) 

corrected counts (dn) from the vegetation canopy to that of a reference panel.  DC counts 

were taken by measuring with the cap over the instrument aperture.  The system features 

a continuous electronic DC correction, which was activated during any use of the 

spectrometer.  The spectrometer was set to integrate over 2 ms intervals, and the average 

of 100 samples was recorded to improve the signal-to-noise.  The instrument and data 

collector could only record a measurement every 1 to 2 seconds, varying for unknown 

reasons by a factor of two between transects.

 Calibration of the reflectance factor measurements were done using a gray 

Spectralon™ reference panel.  This panel was also characterized using the spectrometer 

and a stable light source and its reflectance was factored into the BRF data during 

analysis.  A Savitsky-Golay filter (Savitzky and Golay, 1964) was applied to the resulting 
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Figure 4-3. Mean of the reflecance spectra Sites 1, 2, and 3.  The gray region indication 
plus and minus one standard deviation of the reflectance at each wavelength.



calibrated reflectance spectra to reduce the noise as a function of wavelength (Schmidt 

and Skidmore, 2004).

 Positioning of the data was done with a GlobalSat Tech Corp BU353 USB GPS 

mouse receiver.  However, the GPS mouse receiver was not used to geolocate individual 

short transect measurements as they were being sampled at spatial intervals much smaller 

than the uncertainty of the GPS position.  Instead, the reflectance measurements were 

simply averaged over the 30.5 m transect for each sensor angle.

 LAI measurements were made after the site reflectance measurements using a 

LI‑COR LAI-2000 plant canopy analyzer, including one LAI-2050 optical sensor and one 

LAI-2070 data collector.  The fisheye lens of the optical sensor was covered by a cap 

with a 90° section opening.  The opening was oriented to mask the sun and the instrument 

operator (LI-COR, 1992).  Each LAI measurement included two calibration 

measurements, each followed by four in-canopy measurements (i.e., a total of eight 

below-canopy measurements).  For a 1 m canopy height, the sensor samples canopy up to 

3.5 m laterally.  LAI was sampled at 6.1 m intervals along the transect of each site to 

produce several independent measurements along the transect.  Thus, coincident with the 

reflectance measurements of each site were five groups of LAI measurements (a total of 

40 in-canopy measurements).  For hummocky canopies, where vegetation was observed 

to grow in clumps, one in-canopy measurement was within a clump for every in-canopy 

measurement made between clumps, as an attempt to compensate for the stark variation 

in vegetation density within the canopy.  This situation was most notable for poorly 

drained canopies of Schoenoplectus americanus during the various campaigns of 2007 

and 2008.  This technique was only applied conservatively for Site 2 during this transect 

experiment.

 Because these canopies are largely erectophile, light from the zenith reaches more 

deeply into the foliage, causing more signal scatter events in the blue.  As a result, the 

outer ring of the plant canopy analyzer received additional light from the canopy itself, 

61



causing it to underestimate LAI (LI-COR, 1992).  This phenomenon has also been 

reported in the literature for marshes in particular (Stroppiana, et al., 2006).  The 

instrument manufacturer suggested alternatives for addressing this negative bias in LAI, 

including reprocessing the transmittance measurements with the outer ring excluded (LI-

COR, 1992).  In this study, the method developed by Lang (1987) was used, which 

statistically reduces the weight of the outer ring.  Use of either method significantly 

increased the LAI measurements taken in this study.

Results and Discussion

 Figure 4-3 shows the mean reflectance spectrum at nadir for each site.  As was 

observed in the field, the sites varied in the relative amounts of green and dead 

vegetation.  Site 3 was seen to have mostly dense thick grass (Spartina alterniflora), with 

comparatively less detritus than the other sites, which given its spectra the strongest 

reflectance in the green and NIR, and lowest red reflectance, of all three sites.  Site 1 was 

populated with dense sedge (Schoenoplectus americanus), which gave its spectra a strong 

NIR signal, but the large quantity of senescent and dead vegetation in this canopy gave 

higher red and lower green reflectances than Site 1.  Site 2 had more variable coverage, 

including sparse patches.  The Site 2 canopy was populated with mostly the same species 

of sedge as Site 1, but mixed with grass (mostly Spartina patens).  Some large holes (> 

30 cm), where the substrate was visible, could be seen in the Site 2 canopy.  The mixture 

of the senescent and dead vegetation associated with the sedge and the less dense cover 

caused spectra with overall lower reflectance.  In addition, Site 2 spectra have the same 

senescent appearance as Site 1, but with a much flatter NIR plateau.  However, the 

average measured LAI for Site 2 was 3.1.

 The spectra taken at each site were averaged over the three spectral regions, 

including from 440 to 460 nm, from 650 to 670 nm, and from 790 to 810 nm.  These 

arithmetic means are shown in Figure 4-4 for each sensor zenith angle of the transect 
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experiment.  The large amount of variability in the blue and red means suggest that these 

are not useful for LAI retrievals given the sensitivity analysis of Chapter 3.  The NIR 

reflectances as a function of angle seem better behaved, separating out in the order 

expected given the associated LAI values given Table 4-1.  The NIR reflectances produce 

the concave up profile expected for a canopies that tend to erectophile.  The visible 

wavelength measurements are very low, but an upward trend from the forward to 

backscatter directions is significant.  This is likely caused by shadowing, which is more 

visible in the forward scatter direction.  However, the differences in blue and red 

reflectance between sites do not appear significant.

 WCRM was run for the average measured LAI of each site to predict the marsh 

canopy reflectance for the transect 

experiments.  Default values for all 

other model input parameters 

describing the vegetation, except 

the leaf angle distribution 

parameters were set to the 
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Figure 4-4. Average reflectance 
across 30.5 m transects at three 
sites.  Three wavelengths are 
presented for the three sites of the 
short transect experiment.  
Negative sensor zenith angles 
indicate the backscatter direction.  
The transect is near the SPP for 
each site and some limited specular 
reflectance was observed in the 
unaggregated data near 30° in the 
foreward scatter direction, but is 
only noticeable for Site 1.  The bars 
indicate the sample standard 
deviation.  The error in the mean is 
smaller than the plot symbols.



maximum amounts, indicating 

a predominantly erectophile 

canopy.  Solar zenith and 

azimuth angles were 

calculated for the location of 

each site at the time that the 

measurements were taken.  

The modeled canopy 

reflectances along the solar 

principal plane were plotted 

over the averaged reflectances 

at 800 nm.  The plot of these 

two data sets is shown in 

Figure 4-5.  The reflectance 

values in Figure 4-5 were adjusted from those plotted in Figure 4-4 to account for an 

anomalous loss of responsivity in NIR detectors during the reference panel measurements 

at Sites 2 and 3.  To compensate, the reflectance measurement for Site 1 was normalized 

to the solar zenith angles of Site 2 and 3.  This addressed the anomaly for the shorter 

wavelength NIR detectors, including 800 nm, but little to no response could be seen 

above 928 nm (not shown in Figure 4-3).  This improvement, however, removes any 

compensation for changes in atmospheric conditions, but the atmosphere was extremely 

clear and stable during the experiment.  This adjustment also removes any drift in 

repsonsitivity at other wavelengths.  However, at 800 nm, the correction causes only a 

slight change in Site 1, essentially pushing its reflectance values closer to Site 3.  Thus, 

the closeness of these values in Figure 4-5 cannot be connected to their coincidental 

closeness in LAI values.  Site 2 reflectance was lowered very slightly, and not 

significantly in comparison to the in canopy variation.  Again, the reader is advised to 
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Figure 4-5.  Mean and modeled reflectance values.  
Reflectance for 800 nm was averaged across each 
transect at six sensor zenith angles (symbols).  WCRM 
was then used to model reflectance for each transect 
based on average measured LAI (curves).



disregard any apparent relationship between adjusted differences between Site 1, 2 and 3 

reflectance and LAI.

 Instead, what the comparison does indicate is that the model follows the profile in 

the data fairly well, but there is a large offset for Site 1 and especially Site 2.  As a results, 

the inversion of the WCRM model to retrieve LAI values using the multi-angular 

reflectance data at 800 nm produced large underestimates for LAI in comparison to the 

measured values (LAI values of 1.0 and 2.0 for Sites 1 and 2, respectively).  The 

inversion algorithm converged on lower values of LAI to account for the negative offset 

in reflectance.  The drop in reflectance at these sites is mostly attributed to the large 

amount of dead standing stock and detritus.  In attempt to get a more accurate leaf 

spectrum for the canopy, the WCRM was run in inverse mode with fixed LAI values in 

order to retrieve the input parameters for PROSPECT model.  However, both WCRM and 

ACRM failed to produce leaf optical properties that was representative of dead or even 

senescent leaves.

 It was also noticed that the hot spot predicted by the ACRM component seemed 

high for the NIR.  The hot spot effect occurs when shadows are eliminated from view 

because the direct illumination source is exactly behind the observer or sensor (and the 

observer’s or sensor’s shadow is significantly small in the field of view).  With the large 

amount of multi-scatter amongst leaves at NIR wavelengths, however, this effect would 

expected to be softened by the corresponding reduction in shadows by the diffuse flux.  

The strong effect predicted by WCRM (via ACRM) seems to contradict such an intuitive 

result.  The ACRM model employs an empirical profile for the hot spot (Kuusk, 1991), 

which clearly does not depend on leaf reflectance (only leaf size and density).  Further 

investigation of this effect and multi-scattering processes might provide more insight into 

what should happen at NIR wavelengths.
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Conclusions

 Multi-angular, hyperspectral reflectance and LAI measurements were taken along 

linear 30.5 m transects of a marsh canopy at three sites.  Measurements along a 1.5 km 

transect were also taken and compared to the short transect results.  The results show that 

aggregated above-canopy reflectance potentially could be used to retrieve LAI for given 

viewing and illumination directions when the data are averaged spatially.  However, when 

the canopy reflectance in the NIR is influenced by the presence of dead or senescent 

plants, the model inversion underestimates the LAI.  Allowing the PROSPECT 

parameters to vary during the model inversion did not change the results.  Further 

experimentation with PROSPECT demonstrated that the version employed could not 

produce a dead or senescent leaf spectrum given realistic input values.  This can be 

viewed as a limitation of the WCRM model that is inherited from ACRM.  Therefore, this 

area needs to be improved for marsh canopy applications because many species of marsh 

plants retain a dead standing stock in the canopy.

 In addition, this result identifies a distinction between LAI based on above-

canopy reflectance in the NIR and LAI based on below-canopy transmittance in the blue, 

as employed by the LI-COR LAI-2000.  The latter includes all matter obstructing light 

from penetrating the canopy in the estimate of LAI and, in fact, the manufacturer 

suggests that the measurement made by LAI-2000 plant canopy analyzer may be better 

termed a Foliage Area Index (FAI) (LI-COR, 1992).  In other words, the LAI-2000 will 

greatly overestimate the amount of green LAI in canopies populated with many marsh 

species, such as Schoenoplectus americanus, because of the amount of dead vegetation 

present.  Conversely, the above-canopy reflectance is sensitive to the amount of dead 

vegetation and will produce a lower LAI.  Therefore, it can be difficult to get these to 

techniques to agree for such canopies.  Using information from the green wavelengths at 

single or multiple viewing angles may provide information that would improve a green 

LAI estimate above the canopy.
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 Furthermore, unlike the below-canopy approach, the above-canopy approach can 

be influenced by changes in the background.  High sediment loads from disturbances, 

such as strong precipitation events, could change the contrast between the foreground and 

background reflectances in the NIR and decrease the methods accuracy.  This could limit 

the conditions for which this approach is applicable.  More research in this area is 

warranted to understand how surface conditions could affect LAI retrieval using WCRM 

or similar approaches.
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Chapter 5  The Marsh BRF Experiment

Introduction

 In 2000, the reflectance spectrum of an inundated Spartina alterniflora canopy 

was heavily sampled over the entire upwelling hemisphere (i.e., sampling over viewing 

directions) as the sun changes position throughout the day, providing BRF data for 

various illumination directions (Schill, et al., 2004).  This is a unique data set for 

exploring the properties of marsh reflectance for a large varieties of viewing and 

illumination conditions.  This chapter investigates using these data and the WCRM 

model.

 In this study, the marsh BRF data were used to show that WCRM is an 

improvement over the original terrestrial vegetation canopy reflectance model (ACRM).  

Comparison with the original version of the model, ACRM, indicates that WCRM 

reduces biases stemming from specular reflectance, and is thus an improvement over 

ACRM for application to canopies with an aquatic background.  The data are then 

compared to the leaf reflectance spectrum for S. alterniflora to determine what viewing 

and illumination directions were optimal for discerning the vegetation signal.  The 

resulting correlation were compared to similar correlations based on modeling with 

WCRM and ACRM.

Data

 The canopy BRDF was sampled using the NASA Sandmeier Field Goniometer 

(SFG) (Sandmeier, 2000; Sandmeier and Itten, 1999) at two sites in South Carolinian 

marsh over the course of two days in 2000, one day in March and one in October (Schill, 

et al., 2004).  The marsh canopy at both sites were monospecific and populated with 

Spartina alterniflora.  The horizontal base of the NASA SFG was a circular rail, with a 
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radius of 2 m, called the 

azimuthal ring.  Eight PVC 

pipes were sunk into the 

marsh soil to raise the 

azimuthal ring level with the 

top of the canopy.  On top of 

the azimuthal ring sat a half-

circle arc called the zenith 

arc, which could rotate a full 

360° of azimuth.  Figure 5-1 

gives a photograph of the 

SFG deployment at the site of 

interest.  The NASA SFG employed a GER-3700 spectroradiometer (GER, 1997) that 

moved on a sled mounted to the zenith arc (see Figure 5-2).  A Spectralon™ reference 

panel situated at the top of the zenith arc was used to determine reflectance.  The 

reflectance was taken to be the ratio of the dark-count corrected digital numbers (dn) 

taken of the canopy to those of the reference 

panel.  The canopy reflectance spectrum was 

sampled over 704 bands ranging from 

312.71 nm to 2403.81 nm, with a sampling 

varying rate that increased from about 1.2 nm at 

the blue end of the spectrum to about 8.6 nm at 

the NIR end.  When pointed towards nadir, the 

intersection of the GER-3700 field-of-view and 

the top of the canopy was approximately a 10 

centimeter disk.  This was measured from 11 

positions along the zenith arc, with sensor zenith 
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Figure 5-1. The NASA Sandmeier Field Goniometer.  The 
entire system (sans computer) is shown deployed at the 
Boardwalk Site in October of 2000.  Photograph provided 
courtesty of Steven Schill.

Figure 5-2. The GER-3700 spectro-
radiometer on its sled.  The sensor is 
positioned here for a nadir 
measurement.  Note the moveable 
reference panel just below the zenith 
arc.  Photograph provided courtesy of 
Steven Schill.



angles ranging from -75° to 75°, where a negative value indicates the backscatter 

direction.  The first 11 measurements were taken along the solar principal plane (SPP) 

and then along five additional planes rotated from the SPP in a counterclockwise 

direction in increments of 30° of azimuth.  Furthermore, 10 measurements were made at 

2° intervals along the SPP, centered on the backscatter “hot spot.”  Each suite of 

measurements, totaling to 76 spectra, was completed in 8 minutes to minimize the effects 

of changing illumination.   A suite of measurements was made for 13 different times of 

day, starting at 8:00AM EDT and ending at 4:00PM EDT, producing at total of 988 

spectra per site, per day.  In this study, the October data from the Boardwalk Site were 

used because of better data quality (Schill, 2006).

 Figure 5-3 shows the most prominent features of the reflectance along the SPP.  

The spikes seen at the forward scatter direction are fairly coincident with the position of 

the solar specular angle.  In addition, examination of these spikes over time showed they 

increase with solar zenith angle.  That specular reflectance as the source of spikes was 

further supported by the facts that Fresnel reflectance would similarly increase with solar 

zenith angle and that that other reflectance processes, conversely, would decrease with 

growing shadows.

 A remarkable feature is the general increase of reflectance in the backscatter 

direction, especially in the NIR.  This increase largely maintains the upwards concave 

shape of the BRDF that is expected with a grass canopy.  A reasonable hypothesis is that 

the direct illumination of the canopy from below by specular reflectance is brightening 

the entire canopy in the backscatter direction.  Roberts suggested this process as an 

explanation for his observations of greater than expected NIR reflectance for marshes 

along the Gulf of Mexico (Roberts, 2011).  The first principles underlying the WCRM 

model predict that glint is greatly attenuated by the interception of the reflected light by 

canopy leaves and stems.  As a consequence, the same intercepted light would likewise 

be reflected backwards diffusely by the canopy.  Furthermore, this would be more 
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Figure 5-3. SPP reflectance for a Spartina alterniflora canopy taken for thirteen times of 
day, on 12 October 2000 at the Boardwalk Site.  Plot a) gives the reflectance at 446 nm 
and plot b) shows the reflectance at 1028 nm.  The key in upper righthand corner of 
each plot assigns symbols for each time of day.  Each time symbol in the key is 
positioned horizontally to indicate the corresponding solar specular reflectance angle for 
that time on the horizontal axis.  The coincidence between the solar specular angle and 
the spikes in the reflectance data implicates specular reflectance as their source.

a

b



prominent in the NIR, but some would still be observed in the visible, as indicated by the 

data in Figure 5-3.  However, closer analysis of the underlying physics indicates that the 

increase in backward diffuse flux resulting from forward specularly reflected light should 

be limited to what can be produced by Fresnel reflectance off the water’s surface.  That 

would be between 2 and 3 percent for typical viewing and solar zenith angles in remote 

sensing applications.  Furthermore, although higher zenith angles would exhibit a 

noticeable increase in specular reflectance, the canopy transmittance likewise decreases, 

reducing such an effect.  Therefore, an increase in backscatter reflectance by such a 

mechanism is not likely for typical remote sensing configurations.  However, a rise in 

backscatter reflectance for early morning and late afternoon hours might be possible 

where canopy sides are exposed (e.g., on the edges of water bodies).

 Finally, although position of the data indicate a solar specular cause, the relative 

size between the visible and NIR spikes does not.  There appears to be some correlation 

at 60°, but this is less apparent at 45° or 75°.  The spectrum of glint is expected to be 

relatively flat over the corresponding range of wavelengths.  The best explanation for this 

is a matter of scale.  At the scale of this experiment, individual plants can significantly 

affect the measured reflectance.  If fewer plants were in the sensor field of view that 

would increase the likelihood of a glint event near the specular direction.  Conversely, the 

same lack of obscuring plant material in the visible would likewise decrease the overall 

measured reflectance in the NIR.  As the reflectance spikes in the visible are comparable 

to the NIR reflectance, and the glint spectrum is flat, it could be that a similar glint spike 

in the NIR is simply replacing the lost reflectance stemming from correlated gaps in the 

canopy near the specular direction.  The sensor geometry and atmospheric scattering 

could also be a contributor to this effect.  The angular sampling of the sensor 15° 

instantaneous field of view (IFOV) is coarse compared to the 1/2° angular radius of the 

Sun.  Therefore, highlights in the field-of-view could be dominated by the sun or sky 

irradiance near the solar disk, which would be stronger in the blue.  This may have 
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increased the specular spikes in the blue for some cases, particular those seen at the 

higher zenith angles of 45°.  Unfortunately, this effect is not well represented by the first-

principle assumptions made by the WCRM model and further work should be done to 

improved prediction of this phenomenon.

Model Reflectance Comparison

 WCRM and four configurations of ACRM were used to reproduce the canopy 

reflectance field for the SFG data.  The comparison considered visible reflectance values, 

which displayed unambiguous glint effects.  To simulate the canopy reflectance, default 

input parameters were used.  Only LAI was attempted to be retrieved using the model 

inverse, because the actual LAI value for the canopy was unclear.  The quality of such an 

inverse for visible wavelengths is suspect, however the visible reflectance field was 

shown in Chapter 3 to be fairly insensitive to choice of LAI value.  In fact, the resulting 

modeled reflectance fields did fit the data fairly well.  The inversion also facilitated the 

default run of ACRM, which involves retrieving the first two Price function coefficients.

 The different configurations of ACRM included a default case and three other 

cases using different backgrounds (as shown in Figure 3-1).  For the default case, the first 

two Price function coefficients are retrieved through the initial model inversion along 

with LAI.  In this fashion, ACRM attempts to account for the bulk of the background 

reflectance while retrieving the vegetation structure parameter.  In the three other cases, 

LAI was retrieved with a fixed background reflectance, represented by Price function 

coefficients.  These included spectra for dry soil, a wet soil, and turbid water.  ACRM 

only takes four Price function coefficients to describe the background spectrum, and does 

not take an entire spectrum as an input parameter.  Thus, Price function coefficients for 

the each spectrum were derived by multiplying the spectrum by a Moore-Penrose inverse 

of the Price four-vector basis.  In the last case, the modeled turbid water spectrum used in 

the inundation simulation was used for the LAI retrieval test.  Applying the turbid water 
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background to ACRM primarily differs from the full WCRM model only by the omission 

of the aquatic calculations pertaining to the passage of light across the air-water interface 

and the use of the Walthall soil BRDF model (1985).  In examining photographs of the 

SFG site, one can conclude that these three background spectra were progressively closer 

representations of the actual background spectra.

 Each modeling case was run in the forward direction using the input parameters 

from the initial inversion.  The resulting modeled reflectances were then compared with 

the field measurements.  Figure 5-4 shows the mean error and root mean squared error 
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Figure 5-4. The residual bias along the SPP for each modeling case as a function of time.  
For all time periods, the SPP residual bias at 445.76 nm for WCRM, given by the mean 
difference between modeled and measured results, was the smallest of all modeling 
cases.  This is interpreted to mean that WCRM better predicts the marsh reflectance field 
because it can reduce the contribution to the bias due to glint.



(RMSE) along the SPP between the “fitted” and measured reflectance at 445.76 nm as a 

function of time.  For simplicity, all cases are plotted except wet soil, which followed the 

other curves closely.  In nearly every case, WCRM matched the observed reflectance with 

a smaller residual error and bias than the other modeling cases.  The improvement 

WCRM provides for both statistics are most notable along the SPP.  This can be 

explained by the fact that WCRM makes a prediction for specular reflectance, while 

ACRM does not.  Figure 5-5 illustrates how this can lead to biases in the fit of the 

residual.

 Figure 5-6 expands beyond the SPP and considers the mean error for all azimuthal 

planes and all time periods.  WCRM again shows a lower bias, which is likely being 
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Figure 5-5. A comparison of modeled reflectance from WCRM and ACRM.  To better 
illustrate the difference,  was chosen to fit the data spike at 45°.  However, any nonzero 
value above the baseline that is less than twice the difference between spike value and the 
baseline would better fit the data than ACRM.  This means that a range of values for  
exist that would reduce model biases.



dominated by the reduction of the glint spikes along the SPP.  The RMSE did not show 

any appreciable difference between modeling cases for the entire data set.  This is 

interpreted to result from the fact that the modeling cases are all very similar at 

445.76 nm and only differ for the SPP bias from glint, which was reduced by WCRM.
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Figure 5-6. The assemble mean error for an average of residual biases for 445.76 nm 
over all azimuthal planes and all time periods.  Despite the larger data set, which 
includes azimuthal planes with little to no specular reflectance effects, the reduced bias 
afforded by WCRM is still significant.



Spectral Correlation

 Hyperspectral classification is an important analysis tool for studying marsh 

systems.  Tidal salt and high-salinity brackish marshes tend to form monospecific 

canopies, with certain species favoring salinity conditions that change geographically.  As 

a result, the landscape becomes partitioned into zones of plant species that can deal with 

different levels of salinity, a processes called zonation (Adam, 1990; Day, 1989).  

Observing changes in zonation can provide information about how a marsh system is 

responding to changes in hydrologic processes or sea level.  Change in distribution can 

also be caused by invasive species.  Hyperspectral classification techniques are 

commonly applied to map the distribution of marsh species (Adam and Mutanga, 2009; 
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Figure 5-7. USGS Leaf reflectance and trans-mittance data for Spartina alterniflora 
Loisel (Ramsey and Rangoonwala, 2005).



Adam, et al., 2009; Andrew and Ustin, 2008; Artigas and Yang, 2005; Barducci, et al., 

2009; Judd, et al., 2007; Zomer, et al., 2009).

 However, the canopy reflectance spectrum can be affected by background 

reflectance.  Any influence of the background will depend in part on viewing and 

illumination angles (Gemmell, 2000).  To help understand how viewing and illumination 

angles affect the vegetation spectrum, the spectra from the SFG data were compared with 

leaf reflectance for Spartina alterniflora (Ramsey and Rangoonwala, 2005).  Figure 5-7 

shows both the reflectance and transmittance spectra for this species.  Pearson’s 

correlation coefficient is used as the metric to determining closeness of the canopy 

spectrum to the S. alterniflora leaf reflectance.  The correlation coefficient is, when 

applied in this manner, also known as the spectral cross-correlation measure (SCM), 

which is a traditional spectral classification measure for gauging the spectral shape 

similarity between two spectra.  Generally, the SCM is centralized to the spectra’s mean. 

However, if the mean were zero for both spectra considered, then the SCR would equal 

the cosine of another traditional measure for spectral discrimination called the spectral 

angular distance (van der Meer, 2006).  The SCM is defined as,

 ρ s1, s2( ) = Cov s1, s2( )
σ 1σ 2

      Eq. 28

where, s1 and s2 represent the leaf reflectance spectrum and an instance of the SFG 

canopy reflectance spectrum (order is not important), and 1 and 2 are the respective 

standard deviations of these spectra, taken across wavelength.  (s1, s2) was computed for 

each measured spectrum at all the angles taken with the SFG.  Figure 5-8 illustrates the 

distribution of these angles and indicates how they map to the results shown in Figures 

5-9 and 5-10.  The spectra s1 and s2 are considered closer in spectral shape as (s1, s2) 

approaches unity and very different when (s1, s2) approaches zero.
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 It was found that 

when the common NIR values 

were included in the correlation 

calculation, the result was 

consistently very close to unity.  

This is not surprising given that 

the dominant spectral feature 

from about 400 to 1100 nm is 

the reflectance plateau 

beginning just above 700 nm.  

Except in the case of an 

extremely sparse canopy, or 

high water level relative to the overall canopy height, the main effect of water on the 

background is to decrease the plateau with decreasing above water biomass.  As this does 

not strongly affect the overall shape of the spectrum in the 400 to 1100 nm range (except 

for the aforementioned cases) water does not strongly affect the ability to distinguish the 

vegetation canopy from other spectral components.  Effects like glint should in principle 

be spectrally flat, but at the scale of the SFG measurements, it was found that it could 

affect the visible without any discernible effect to the NIR reflectance.  Despite this non-

intuitive result, the presence of sun glint appears to have little to no effect on the 

correlation when the 400 to 1100 nm range is used.

 Much more variation was observed across the SFG measurements in 400 to 700 

nm range, which is also useful for distinguishing between some marsh species (Artigas 

and Yang, 2005).  Figure 5-9a shows the correlation between the SFG spectrum in the 

visible and the S. alterniflora leaf reflectance.  The results show that the backscatter 

direction is preferable for minimizing the spectral influence of the background.  The 

minimum correlation tends to occur for low sensor zenith angles, which goes lower with 
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Figure 5-8.  Distribution of sensor zenith angles for 
Schill BRF data.  This convention pertains to the plots 
in Figures 5-9 and 5-10.
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Figure 5-9. Correlation with the S. alternifora leaf reflectance spectrum.  Each disk gives 
the correlation coefficent for every sensor zenith and azimuth angle (as defined in Figure 
5-8).  Disks are shown for 13 periods of the day for a) Schill canopy reflectance spectrum 
(Schill, et al., 2004), b) WCRM model, and c) ACRM model (the models are symmetrical 
across solar noon).  A sensor azimuth of 0° (and 180°) always pertains to the solar 
principal plane.  Colors scales were applied to highlight angular patterns in correlation.  
Gray circles indicate that no data were taken at the time period indicated.

a b c



the decreasing distance from solar noon (i.e., as the sun is closer to zenith).  This is likely 

because the background becomes more illuminated as sunshine more deeply penetrates 

the canopy at low zenith angles.  The data show that the maximum correlation shifts over 

the day from one side of the solar principal plane to the other.  As the physics demand 

that the reflectance field be symmetrical about the SPP, a possible explanation is that 

there was systematic error in the positioning of the alignment of the SFG zenith arc and 

the solar position.  Taking the average of the SCM over all measurement times produces a 

more symmetric distribution as shown in Figure 5-10.

 The WCRM and ACRM models were run for each zenith and azimuth angle, and 

the correlation was computed between the modeled canopy reflectance spectrum and the 

leaf reflectance spectrum of S. alteriniflora.  The results for each time period can be seen 

in Figure 5-9 and the averages are shown in Figure 5-10.  A low canopy LAI value of 0.9 

was used for both models.  The default expert soil was used for ACRM.  The water 

surface roughness, , was set to 0.06 and the water coverage fraction, , was set to unity 
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Figure 5-10. Correlations of Figure 5-9, averaged over all time periods.  The average 
provides a more consistent, symmetric pattern to emerge in the data.  The model results 
were averaged for comparison of like statistics.



for WCRM.  The shallow water model parameters were set to the values described in 

Appendix D.  All other parameters were set to their default values.

 Both models produced correlation values that were much closer to unity than the 

data.  This is to be expected given that the models are simple representations of the 

canopy and do not have other contributing spectral signals other than the substrate, 

whereas the actual canopy also has senescent vegetation, detritus, and other components 

that could affect the canopy over greater range of directions.  For each measurement time, 

the model correlations are: mirrored across the solar principal plane, symmetric in time to 

solar, and are generally smoother than the data results.  This stems from the simplicity of 

the underlying assumption of homogeneity in the vegetation media, which is probably 

more appropriate at larger scales.  Conversely, the actual data show more variation than 

the models, which likely arises as individual plants and canopy gaps move in and out of 

view as the sensor is repositioned from measurement to measurement.

 However, the resulting pattern in the data still can be related to actual behavior of 

the canopy spectrum across the viewable hemisphere for several solar positions.  Both 

models show that the backscatter direction is better for getting a strong vegetation signal, 

and that high solar zenith angles are also useful.  ACRM more closely agrees with the 

data that the nadir direction grows worse as the sun becomes closer to zenith, while 

WCRM only shows this at the highest solar zenith angles.  An explanation for this would 

be that the submerged leaf reflectance, and perhaps in-water chlorophyll content, creates 

a background that is less distinguishable from the canopy above.  Therefore, for the 

situation modeled by WCRM, the background influence on the canopy produces a 

stronger chlorophyll peak in the green and thus more closely matches the leaf spectrum.  

ACRM, conversely, can be influenced more at the top of the canopy by dry soil at green 

wavelengths.  This suggests the substrate of the measured canopy did not include as 

much submerged vegetation or that the water was more turbid with suspended sediment.  

Photographs of the experiment during measurements suggest that either could be true.
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 WCRM also showed a significant drop in correlation in the solar principal plane 

around the direction of solar specular reflectance.  This was not as apparent in the plots of 

Figures 5-9 or 5-10.  Closer examination of the correlation coefficient along the solar 

principal plane, however, did show that when glint was observable, the correlation 

dropped substantially.  As previously mentioned, local variation in the canopy structure 

caused much variation in the glint when the solar specular direction was observed (cf. 

Figure 5-3).  Moreover, other natural variations in the measured spectra and noise caused 

variations in the correlation coefficient that was comparable to variations in the glint.  

The net effect was of the glint behavior was not remarkably greater than other noise 

sources across the entire observable hemisphere at the scale of the SFG experiment, but 

when it was observable, it did cause the a large drop in correlation.

Conclusions

 WCRM and four configurations of ACRM were used to fit the SFG canopy 

reflectance field.  Each model case was used to retrieve model input parameters, mainly 

LAI, and then run to compute the marsh reflectance.  The use of WCRM was 

demonstrated to reduce biases in the residual reflectance field, which likely stem from 

specular reflectance.  The SFG data also provided insight into the importance of specular 

and spectrum effects of an inundated canopy that suggest areas for future work.

 In comparing the ability of various configurations of ACRM and the WCRM 

model to reproduce the SFG BRF field, WCRM had improved recovery of the observed 

reflectance along the SPP at 445.76 nm, where specular reflectance artifacts are more 

evident.  Furthermore, over all the SFG azimuthal planes the mean error was smaller for 

WCRM than the other ACRM cases.  As soil and diffuse water reflectances were similar 

at this wavelength for all modeled cases the resulting profiles with sensor zenith angles 

were close in agreement (see Figure 3-1).  Moreover, the BRF shape was very flat in all 

cases (cf. Figure 5-5).  Therefore, only WCRM was able to provide a prediction for a 
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spike in the direction of specular reflectance.  The presence of a rise in reflectance in this 

direction reduced the overall error for WCRM in comparison to the modeled cases 

without specular reflectance.  The results for the NIR case did not show any appreciable 

difference in all cases.  For that region of the spectrum, the specular reflectance spikes 

appeared less prominent or nonexistent, even when spikes were evident at visible 

wavelengths.  This might be attributed to the decimeter scale at which the SFG 

experiment was done.  The number of gaps that are observable can vary with changing 

view zenith and azimuth angles.  When a gap occurs that could allow the observation of 

glint, a prominent spike can occur in the low reflectance region of the visible spectrum.  

However, the same gap will cause a decrease in NIR reflectance, which can reduce any 

corresponding increase from specular reflectance through the same gap.  Because the 

specular reflectance tends to be around the same amount as the NIR reflectance, it is 

suggested that one can replace the other at this scale.

 At the scale at which the SFG data was collected, the effect of glint in the 

instrument’s field-of-view is largely a random process.  A glint spike prediction that is 

less than twice the average baseline-subtracted observation would reduce the RMSE and 

bias produced by specular reflection.  Successive trials showed that the error reduction 

could be achieved by values of  greater than about 0.03 with the SFG data.

 The results of these comparisons against the SFG data support the hypothesis that 

the aquatic background model in WCRM affords some improvement in predicting 

specular effects over the original ACRM model.  The analysis also verifies the function of 

the model, but does not quantify its actual predictive power for retrieval of the canopy 

BRF along the SPP.  To achieve a satisfactory quantification of WCRM’s predictive 

capability would require a comparison to sample data taken on a much large scale, one 

commensurate with distribution of random processes leading to glint at the remote 

sensing scales of interest.  Such an investigation is outside of the scope of this study, but 

suggested for future work.
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 Correlation between the SFG data and the leaf reflectance spectrum of the plant 

species populating the target canopy indicate that the general backscatter direction is 

preferable for obtaining the strongest vegetation spectrum in the visible and that this 

preference increases with decreasing solar zenith angle.  This is also true for the 

combination of the visible and NIR wavelengths, but the effect was much more subtle, as 

the dominant NIR plateau lends a remarkably strong feature that is easily identifiable 

from any direction.  For the larger wavelength range, the correlation was consistently 

very close to unity.  Both the ACRM and WCRM model produced the same preference 

for the backscatter direction, especially for azimuth angles closer to the solar principal 

plane.  Both models also predicted stronger correlation near the reflectance hotspot.  

WCRM predicted a substantial decrease in correlation around the direction of specular 

reflectance.  Neither the hotspot or glint effects could be clearly seen in the plots of 

Figure 5-9.  Variations from these effects was similar in magnitude to other sources of 

noise in the data.  Closer examination of measures where these effects were known to 

occur verified that they did affect the correlation in a fashion similar to the model 

predictions.  ACRM predicted that correlations near nadir would be reduced by the 

influence of the background spectrum.  A similar pattern arose in the correlation between 

the SFG data and leaf reflectance.

 WCRM, however, did not predict this decrease in correlation around low solar 

zenith angles.  This is probably because the aquatic background spectrum has a strong 

chlorophyll peak near 550 nm from the presence of submerged vegetation and in-water 

phytoplankton.  This would enhance the aquatic backgrounds correlation with the 

vegetation in the visible region of the spectrum.  However, examinations of photographs 

of the SFG experiment suggest that the presence of turbid water with a high sediment 

load, possibly from disturbances in the substrate during the set up or operation of the 

apparatus.  This would produce an aquatic background with a more soil-like spectrum, 

thus the ACRM correlation better represented the results with the data.  In general, a 
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lower value of  or higher concentration of suspended particular matter (SPM) would 

probably put WCRM in closer agreement with the data and ACRM.  However, this raises 

an interesting point.  The presence of emergent soil or suspended sediment can reduce the 

canopy’s spectral similarity to a vegetation spectrum, so  and SPM are important factors 

to consider when modeling a marsh canopy.  This also further increases the number of 

unknown variables when measuring the marsh reflectance spectrum.  Further work will 

be needed to determine whether use of the NIR can delineate contributions to the green 

peak, as submerged chlorophyll reflects very little out of the water in that region of the 

spectrum.
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Chapter 6  The Inundation Experiment and Simulation

Introduction

 In 1995, an experiment was performed where the canopy reflectance spectrum 

was measured for three monospecific canopies, while the water level was artificially 

increased (Stutzer, 1997).  For the present study, data from the inundation experiment 

were used to demonstrate qualitatively that WCRM can reproduce spectral effects 

observed with increasing levels of inundation.  In addition, information from the shallow 

water component of the WCRM model, offered explanations for spectral features 

observed during high water levels.

 Implications of nonlinear mixing of water and vegetation spectrum in marsh 

canopies is discussed.  The results of that experiment showed that water causes the NIR 

region of the marsh vegetation spectra to drop precipitously with increasing water level.  

As water level increases, the influence of leaf reflectance below the water changes the 

characteristics of the background aquatic spectrum.  In fact, the spectral signature 

changes to a spectral shape that is not easily explained by spectral mixing (i.e., a linear 

combination of vegetation and water spectra).  The WCRM model helps to explain how 

these features arise.

Data

 Spectral reflectance data were collected with a Spectron Engineering SE-590 

spectroradiometer, which was positioned at near solar noon to take a nadir measurements 

for three different monospecific canopies in the Blackwater Marsh National Wildlife 

Refuge (NWR) near Cambridge, Maryland USA in May, 1995 (cf. Kearney, et al., 2009).  

The SE-590 was used to measure the upwelling radiance from the canopy and the 

downwelling irradiance using a reference panel composed of barium sulfate (BaSO4), 
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with the usual assumptions of 

isotropy.  The spectrum was 

sampled from 357 nm to 

1124 nm at around 3 nm 

intervals, but only 214 

samples from 399.6 nm to 

1032.4 nm were processed 

(Stutzer, 1997).  In each case, 

the canopy was surrounded on 

four sides by 1x1 m black 

felt-covered aluminum panels.  

The enclosure was then filled by 

a bilge pump and spectra were recorded at increasing levels of water.  Figure 6-1 shows 

the resulting spectra for an erectrophile canopy of Spartina patens with a height of about 

40 cm.  Measurements were also made for Spartina cynosurides and Schoenoplectus 

americanus, with similar results, especially the change in spectral signature when the 

water level to canopy height was high (cf. Kearney, et al., 2009).

Spectrum Simulation

 To simulate the inundation experiment, WCRM was run successively for 

incrementally decreasing values of above-water LAI.  If the distribution of the marsh 

vegetation canopy can be assumed to be homogeneous in the vertical direction, then 

above-water LAI can be used as a surrogate variable for the inundation level.  Vertical 

homogeneity was supported by the fact that some marsh vegetation has been shown to 

have a strong linear correlation with level of inundation (Kearney, et al., 2009), as 

demonstrated by the fairly even spacing of curves Figure 6-1.   The equally spaced LAI 

values used in the simulation started with a moderately dense canopy with LAI=2.7 and 
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Figure 6-1. Changes in the reflectance spectrum of a 
canopy of Spartina patens as water level increases 
(Kearney, et al., 2009).



ended with complete inundation at LAI=0.0.  Default values were used for the 

PROSPECT model, but the resulting leaf optical properties were not expected to be 

qualitatively different from the field data.  The shallow water model values, including 

Suspended Particulate Matter (SPM), effective depth (H), chlorophyll concentration (Ca), 

and bottom reflectance b were set as described in Appendix D.  Default values were used 

for all other input parameters.  The results can be seen in Figure 6-2.

 Qualitative similarities in the spectra between the simulated results and the 

observations are evident (cf. Figures 6-2 and 6-1).  The peaks that appear near 720 nm 

and 815 nm were formed by absorption features of the aquatic media and reflectance of 

the submerged leaves.  The former peak was produce with a minimum in the combined 

absorption of chlorophyll and water, and was characteristic of a productive water column.  

The latter peak was formed by the edge of a weak water absorption line situated between 
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Figure 6-2. Canopy reflectance predicted by WCRM at nadir for ten different water-
levels.  Following the assumption that the canopy vertical distribution is homogenous, 
LAI used as a surrogate variable for water-level.  The evolving spectral signature 
resulted in variation of the canopy spectral characteristics.



both peaks (Zhang, et al., 2011).  Both peaks were accentuated by the bright reflectance 

of the vegetation below the water’s surface at wavelengths above ~705 nm.  At high 

water-levels relative to the canopy height, the canopy spectral signature would be 

difficult to form using a simple linear combination of a water spectrum and leaf or 

canopy spectrum.  However, WCRM could be a useful tool in non-linearly discriminating 

components within canopies where above-water LAI is low.

 A shift of about 20nm is observed in the red edge for a dense canopy that goes 

from zero to complete submergence, as demonstrated with the first order derivative of the 

simulated spectra in Figure 6-3.  This change in the spectral characteristic could be 

important to studies that make use of the red-edge position, i.e., the wavelengths round 

the region of 700 to 750 nm at which the maximum increase in vegetation reflectance 

occurs.  The red-edge position was proposed as an indicator of leaf properties by Gates et 

90

Figure 6-3. First order derivative with respect to wavelength of the simulated inundated 
canopy spectra show in Figure 3-2.  The light gray, dashed lines indicate the peak value, 
or red-edge position, for the minimum (LAI=2.7 or water level = 0) and maximum water 
level (LAI=0.0 or water level = canopy height).  These two lines are separated by about 
22 nm.



al. (1965), such as chlorophyll content (Horler, et al., 1983).  The red-edge has since been 

used to estimate: biomass, LAI (Mutanga and Skidmore, 2007), species discrimination 

(Adam and Mutanga, 2009), hydric status (Filella and Penuelas, 1994), plant vitality and 

stress (Boochs, et al., 1990), and effects of heavy metals (Clevers, et al., 2004).  The 

variation of the red-edge position in these studies was usually much less than 40nm 

(Adam and Mutanga, 2009).  Thus the variation in red-edge position observed in the 

Stutzer experiment and the WCRM inundation simulation covers a substantial portion of 

the range.  Furthermore, the results illustrated in Figure 6-3 demonstrate that a tidal range 

or flood level that is about two-thirds of the canopy height would cause most of the 

observed shift in the red-edge position, but it is also possible that smaller tidal ranges or 

flood levels could still produce significant effects.  This suggests for inundated or 

emergent vegetation, special consideration of water spectral effects is required for studies 

using the red-edge position.  For some situations, WCRM might provide some utility in 

accounting for these effects, particularly when the in-water optical properties can be 

estimated a priori.

Spectral Differences between Model and Data

 The most notable difference between the modeled and measured values was the 

NIR reflectance.  The top curve in Figure 6-1 pertains to an above-water LAI of around 

1.3 and has a corresponding reflectance in the NIR of about 0.27.  Conversely, the models 

produce a similar reflectance value for an LAI of about 2.1.  This is an anomaly, because 

typically, both models were found to predict higher LAI reflectance than expected for the 

given observed LAI value.  A possible explanation is that the late Spring canopy of S. 

patens is considerably more reflective in the NIR.  This suggests that the model is not 

always biases high for the marsh conditions and plants in all cases.
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Conclusion

 WCRM was used to simulate the nadir reflectance spectrum of a marsh canopy as 

the water level is incrementally increased.  The model and data quantitatively agreed, 

demonstrating the effects of the aquatic background reflectance spectrum and water level 

on the canopy spectral signature. The spectral signature for both the inundation 

experiment and the inundation simulation qualitatively agree, especially for low above-

water LAI.  The field data and model also demonstrated the strong effect that the 

background reflectance spectrum has on the marsh canopy.  According to the discussion 

in Appendix D, the unique features that come to dominate the canopy with increased 

inundation can be describe as a result of the interaction between submerged vegetation 

and the aquatic medium optical properties.  The result is a nonlinear combination of 

spectra (cf. Eq. D-1) depending on the water optical properties and the leaf albedo.  The 

higher frequency variation of the low LAI spectral reflectance signatures with respect to 

wavelength precludes a simple linear combination of water and leaf endmembers.  

Further work to establish WCRM utility in separating these optical components is 

recommended.  It was also discovered that as the above-water LAI varies in response to 

changing water levels. The red-edge position changes significantly and could influence 

wetland studies dependent on that parameter.

 There is a potential to use WCRM to resolve the influence of in-water 

constituents.  However, for general remote sensing applications the water level and in-

water optical properties would need to be known.  The parameters in the simulation were 

set to typical values that emphasized similarity to the observed signature.  But, conditions 

could arise where those parameters could differ significantly in value from those used in 

this study, e.g., high sediment loads.  Such changes could alter the weighting of the three 

peaks seen for mostly submerged vegetation.  In extreme cases where sediment is very 

high and chlorophyll concentration is very low, the resulting background spectrum would 

be closer to the saturated soil spectrum seen in Figure 3-1.  Furthermore, the inundation 
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experiment and simulation consider the case of submerged vegetation, pertaining to high 

tidal ranges or flooding.  For low water levels or well drained marhes, the substrate 

bottom can be soil, peat, or a senescent or decaying mat of vegetation material.  These 

substrate component could alter the spectral signature from that used in the simulation, 

depending on water depth, productivity, and turbidity.
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Chapter 7  Synthesis and Future Work

Project summary

 Coastal wetlands are of great human and ecological value.  Managing and 

protecting these important resources require careful assessment and monitoring.  Remote 

sensing is a very useful tool to that end as it affords large scale assessments that 

otherwise would be hampered by the difficulty of transversing these regions.  However, 

the spectral reflectance properties typically measured in remote sensing techniques are 

influenced by the optical properties of the aquatic background.  In order to understand 

that influence, a canopy reflectance model was modified to account for some of the 

effects of the presence of water beneath the vegetation canopy.  The ACRM model was 

selected for this study because it has many of the key components used in other canopy 

reflectance models found in the literature and that code is publicly available with a built-

in algorithm that supports the inversion of the model.  Both models were used to explore 

the conditions that were favorable for retrieving LAI.  WCRM predictions were 

compared to aggregated transect data, which showed that the presence of dead standing 

stock reduces canopy reflectance, forcing the inversion of WCRM to underestimate LAI.  

Experimental data were used to show that WCRM represented an improvement in 

predicting LAI and in fitting the reflectance field over ACRM by providing some 

prediction of specular reflectance.  WCRM was also used to simulate the spectral effects 

of inundation.  The results showed that the water and chlorophyll absorption features 

strongly influence the canopy reflectance spectrum when water levels are high relative to 

the canopy height.
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WCRM Theory and Development

 WCRM was created by inserting an aquatic background model as a lower 

boundary condition of the ACRM vegetation reflectance model.  This was done by 

forming a linear combination with the embedded soil reflectance model, modulated by a 

fraction of water coverage.  In order to include the various radiative flows of the model, 

the effects of water on the BRDF, the hemispheric reflectances, and the albedo were 

considered.  The aquatic background model included the Cox-Munk model for the 

specular reflectance of a roughened air-water interface (Cox and Munk, 1956) and a 

shallow water model (Lee, et al., 1998; 1999) to account for the diffuse spectral 

reflectance of the water beneath.  Because shallow water model includes an assumption 

of isotropic reflection in this study, the influence of the background on the canopy BRDF 

anisotropy is largely driven by the calculations related to the air-water interface.  

However, as the specular reflectance spectrum is essentially flat across the visible and 

NIR wavelengths, the subsurface shallow water model drives the influence of the canopy 

reflectance spectrum.  The shallow water model also includes the influence of internal 

reflectance by the air-water interface, but the effect to the BRDF can be seen only at high 

illumination or sensor zenith angles.

The Theoretical Relationship between LAI and Canopy Reflectance

 The WCRM and ACRM models were run to create curves relating LAI to canopy 

reflectance for four wavelengths, representing blue, green, red, and NIR, and for different 

sensor zenith angles.  The results indicated that there is a poor functional relationship 

between LAI and canopy reflectance when there is little contrast between the foreground 

canopy reflectance and the background canopy reflectance.  The ACRM runs used a soil 

spectrum for the background and thus showed more potential for retrieving LAI for 

visible wavelengths.  Blue and red wavelengths have much less multi-scatter within the 

canopy and thus these wavelengths are preferable for retrieving LAI from models for 
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most terrestrial landscapes.  Conversely, WCRM was run with the dark background of an 

undisturbed marsh.  This demonstrated that the NIR had the best potential for retrieving 

LAI for such a marsh setting.  The visible wavelengths by contrast yielded a very poor 

theoretical relationship for retrieval of LAI from canopy reflectance.

Field Experiment Results

 The data from three field experiments were explored with WCRM.  The data 

provided some further insight into the radiative processes within a marsh canopy and 

helped to identify strengths and weaknesses in the new model.  The transect experiment, 

WCRM predicted NIR reflectance was compared to reflectance data aggregated along 

transects at six sensor zenith angles.  The BRF experiment showed that WCRM had 

improved performance over the original ACRM when both were applied to a heavily 

sampled marsh BRDF, primarily because of the accounting for specular reflection in 

WCRM.  WCRM and ACRM were also compared to the BRF correlation with leaf 

optical properties to identify optimal viewing directions for minimizing the influence of 

the background.  The inundation experiment and simulation showed that WCRM could 

qualitatively reproduce spectral features observed for an inundated canopy.

Challenges and Future Work

 Several challenges to modeling marsh canopy reflectance were identified 

throughout this project, many of which were mentioned in previous chapters.  Four topics 

in particular seem worth mentioning here:

1. Parameters with Specular Reflectance Effects - The uncertainty in specular 

reflectance stemming from lack of knowledge about surface roughness and water 

cover may undermine the ability to accurately predict marsh BRDF in the 

specular direction or use the specular reflectance to estimate canopy parameters, 

such as LAI.
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2. Parameters with Spectral Reflectance Effects - The input parameters 

required by the aquatic background model can be used to model the background 

reflectance spectrum when known a priori, but may be difficult to determine the 

best values for remote sensing applications when the values for these parameters 

are not known.

3. NIR Contrast Assumption - Occasional dominance of the background 

reflectance in the NIR by high SPM or a highly reflective bottom could 

undermine the use of WCRM when using that region of the spectrum to retrieve 

LAI because of a reduction in contrast between the foreground canopy and 

background substrate.

4. Dead Vegetation and Detritus - The tendency of many marsh species to retain 

standing dead stock or their canopies to have large amounts of detritus reduces 

reflectance in the NIR, causing retrievals of LAI to be underestimated.

 These issues are discussed in detail in the previous chapters.  In this section, 

further issues regarding the model applications at remote sensing and landscape scales is 

discussed.  Following that, the topic of specular reflectance is further considered, 

followed by challenges in retrieval of model input parameters using marsh canopy 

reflectance.  Finally, potential spectral applications of WCRM are then discussed where a 

priori knowledge of input parameters is available.

 During this study, considerable experience was also gained regarding marsh field 

work, especially including taking measurements in support of remote sensing and 

reflectance modeling.  The lack of an established protocol for this type of work was 

apparent.  Future work toward standardizing related marsh measurement methods, and 
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wetlands in general, would benefit the portion of the remote sensing community 

supporting studies of wetlands.  Some discussion of challenges in this area is given in 

Appendix F.

Scaling Up to Remote Sensing Images

 A major consideration for future work is adapting the model to scales that are 

commensurate with aerial and remote sensing imagery, which would provide an 

opportunity for assessments that cover large regions or perhaps even the globe.  To 

achieve that end, application of the WCRM model, or any marsh canopy reflectance 

model, to remote sensing imagery will need to account for proximity of small bodies of 

open water and soil.  Variation in the spatial distribution amongst these different cover 

types and within the marsh vegetation canopy are common.  When the horizontal size of 

openings in the vegetation canopy is much greater than the canopy height (but smaller 

than the area sampled by the instrument’s field-of-view and for relatively moderate zenith 

angles), the spectral BRDF should be a linear combination of the marsh canopy 

reflectance spectrum and the reflectance spectrum of the adjoining cover type.  In this 

case, the WCRM model could be used to model the marsh canopy BRDF, e.g., to 

generate canopy reflectance components for varying levels of inundation or density and 

varying levels of glint.  However, this is not universally true.  At probably any spatial 

resolution, the edges of the vegetation canopy can appear fractal, covering greater 

number of pixels in a remote sensing image than more linear features.  Ponding may 

present a similar problem over a large range of scales for some marshes.  Therefore, the 

first step would be to determine the frequency of occurrence for nonlinear mixing 

between inundated vegetation and other cover types, especially open water.  Finally, it 

was also noted that open water, in the form of channels and ponds, can have sufficient 

fetch length, or exposure, to be strongly affected by wind.  Therefore, the dynamic 

roughening of these surfaces by wind could play a larger role in remote sensing of 
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marshes.  The relationship between wind and surface roughness for these small bodies of 

water is unknown and will also require further research.

Specular Reflectance of Marsh Aquatic Surfaces

 One of the greatest challenges for modeling the marsh BRDF near the specular 

direction is the overall lack of knowledge regarding surface roughness.  Field 

observations suggests that the water surface roughness under the vegetation canopy may 

be constrained to a limited range, as also observed by Vanderbilt et al (2002), but many 

dynamic and static processes are at work.  A nominal value may be sufficient in some 

applications of WCRM, but it may be useful to measure the surface roughness for the air-

water interface in marshes under a variety of conditions.

 Establishing a range of possible values for surface roughness might involve field 

studies where glint patterns are recorded (e.g., photographically) and statistics are used to 

determine the distribution of surface facets, similar to the work of Cox and Munk (1956) 

and others (Kay, et al., 2009).  Given the a possible spread of the solar source in the blue 

from atmospheric scattering, a red wavelength would probably be optimal for studying 

surface roughness, but ideally in a setting where soil reflectance is low (e.g., soils with 

high organic content).  However, there are problems with this approach.  First, it could be 

difficult to capture the glint pattern as one moves off the specular direction because the 

signal would be rapidly attenuated by dense vegetation.  The vegetation canopy model 

would be needed to correct for this attenuation, but this would require good a priori 

knowledge of canopy structure and optical properties.

 The same methodology might work for interstitial channels and ponds.  Similar to 

the open water case that Cox and Munk studied, wind is likely to be the dominate 

influence of the surface roughness of these bodies.  However, very little is known about 

the wind field along such surfaces, especially in the presence of emergent vegetation.  

Furthermore, obtaining wind fields at spatial resolutions useful for studying marshes 
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would be very difficult.  Thus, even if an empirical relationship could be established 

between wind and surface roughness of ponds and channels, without a priori knowledge 

of the wind field at the scale of remote sensing pixels, that relationship could not be used 

to determine the surface roughness when processing satellite remote sensing imagery.  

This might strongly affect using the model to account for sun glint in remote sensing 

applications when the instrument is pointed near the specular direction.

 When pointed in the specular direction, an instrument with field-of-view that is 

more than a few degrees across might be less sensitive to variation in the overall glint 

strength due to surface roughness.  An example might be using a Gershun tube probe a 

short distance above the canopy.  In such cases, a nominal surface roughness parameter 

should be sufficient.  This is because the instrument would smear out the narrow specular 

beam when the surface is exceptionally flat, as if the beam were coming from a rougher 

surface.  If this blurring of specular reflectance is larger than the maximum dispersion 

likely to seen in the sub-canopy water surface, then knowledge of the surface roughness 

is irrelevant.  The strong, penetrating signal of the light from the surface then serves as a 

useful probe for vegetation structure as was demonstrated by Vanderbilt et al. (2002).  

WCRM might offer an opportunity to combine the attenuation of specular reflectance 

with the effects of diffuse radiative flow to obtain a good estimate of LAI, even in fairly 

dense canopies using probes over the canopy.  However, at this stage the diffuse radiative 

flow will require further study before being considered for such an application.

 There also appears to be a difference between the prominence of sun glint spike in 

the visible and NIR wavelengths.  The glint spectrum is expected to be relatively flat over 

all measured wavelengths.  Many times in the SFG data, when a spike in reflectances was 

observed at visible wavelengths, no corresponding increase could be seen in the NIR for 

the same measurement.  It is expected that spikes in reflectance would be more prominent 

at visible wavelengths because the surrounding vegetation reflectance is relatively low, 

while the same glint would be relatively smaller in the NIR when compared to the strong 
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canopy reflectance in that region of the spectrum.  However, in many cases of the SFG 

data, specular reflectance spikes were entirely missing at NIR wavelengths even though 

they were clearly detected at visible wavelengths.

 It is possible that atmospheric scatter could be causing the sky near the sun to be 

much brighter in the blue than the NIR, effectively expanding the illumination source 

beyond the solar disk at blue wavelengths, thus increasing the likelihood that a facet of 

the water's surface will produce a highlight in the sensor's field-of-view.  If so, the 

original sky model inherited from ACRM may need to be improved to better account for 

spectral variation in the distribution of direct and diffuse sky light.  However, whether 

this is a significant contribution to the discrepancy should be verified by experiment in 

future work.

 A more plausible explanation for this discrepancy is related to the scale of the 

measurements taken by the SFG.  At nadir, the sensor projected field-of-view is a circle 

10 cm in diameter at the top of the canopy, which is near the same scale as the plants.  

Furthermore, as the SFG moves the spectrometer across the zenith arc, very different 

portions of the canopy and background move into the sensor’s field-of-view.  In the 

specular direction, if there is a gap between all the plants in the field-of-view then there is 

a chance that the sensor will detect sun glint.  In the visible region of the spectrum, the 

specular reflectance yields a strong response by the instrument in comparison to 

measurements at any other angle, producing a relative spike in reflectance.  In the NIR 

region, the same gap produces a reduction in overall reflectance.  Any specular flux that 

makes it through that gap will offset or exceed that loss, but ultimately will produce a 

spike that can be significantly less prominent to the spike seen in the visible.  This scale 

effect can be addressed in future studies tied to remote sensing scale through the 

aggregation of data taken over greater areas.  This was, in part, the objective of the 

transect experiment.  However, that experiment did not sample at a sufficient angular 
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resolution along the solar principal plane nor had a large enough spatial scale to explore 

glint effects at remote sensing scales.

Future Work in Spectral Applications

 WCRM could be applied to applications based on vegetation canopy reflectance 

spectrum.  As noted in this study, WCRM could provided useful information about the 

canopy reflectance spectrum when much of the vegetation material is below the water’s 

surface.  This includes determining how the vegetation and water spectra are non-linearly 

mixed and also how the red edge is affected by the presence of biologically productive 

water.  WCRM could also be used in a future study to better understand the effects the of 

an aquatic background on various indices that are based on the reflectance spectrum, such 

as the Normalized Difference Vegetation Index (NDVI).  It is known from experiment 

that NDVI can be influenced by the aquatic background (Kearney, et al., 2009; Stutzer, 

1997) and is also affected in particular by spectral variations in the BRDF (Gao, 2002).  It 

would be useful to further study how the aquatic background affects these indices as a 

function of canopy water properties and viewing/illumination geometry.  Finally, WCRM 

could also be used to build a collection of glinted marsh spectra for application in 

techniques that require an expansive and detailed spectral library.  For instance, the 

Multiple Endmember Spectral Mixture Analysis (MESMA) technique has been applied to 

species classification for marshes using data from the Airborne Visible and Infrared 

Imaging Spectrometer (AVIRIS) (Li, et al., 2005; Rosso, et al., 2005).  This technique 

was extended to include glint endmembers to successfully separate the specular 

contribution to the canopy reflectance when data were influence by specular reflectance 

(Roberts, 2011).  WCRM could be run for a variety of geometries and vegetation 

densities to augment the spectral library, from which endmembers could be keyed by 

illumination and viewing directions.  WCRM also could provide spectra for a variety of 
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conditions of the background, varying amounts of submerged vegetation, bottom 

reflectance, SPM, CDOM, and algal concentration.

Model Remote Sensing Retrievals

 Retrieval of LAI using the inverse of WCRM requires using nominal values and 

ranges for all other input values.  It is helpful that WCRM and ACRM were found to be 

considerably more sensitive to LAI then any other input parameter.  Conversely, the 

inverse of ACRM or WCRM is not as strong of a predictor of other vegetation canopy 

parameters, and because of the model’s stronger response to LAI, that parameter may 

need to be fixed a priori.  This situation could possibly pose a challenge for the remote 

sensing of model parameters other than LAI using either ACRM or WCRM for a marsh 

target.  Moreover, the several additional parameters that were added to support the 

aquatic background model would likewise be difficult to retrieve.  Given the typically 

darker signal of the aquatic background, it would be especially difficult to retrieve values 

for background parameters (e.g., concentrations of chlorophyll, CDOM, or SPM).

 Suspended soil and variation in bottom reflectance can also strongly affect the 

reflectance at NIR wavelengths.  The presence of reflective bottoms (e.g., sand) or high 

turbid water with high sediment load, would reduce the useful contrast between 

vegetation and background at NIR wavelengths, which would reduce the accuracy of an 

LAI retrieval (Gobron, 1997).  In addition, for well drained marshes, soil tends to be 

saturated and less submerged.  Therefore the fraction of water coverage, , could play a 

stronger role than the more flooded marshes studied in project.  Future studies need to 

expand the number of cases where WCRM could be applied, including well drained 

marshes with emergent soil and situations when suspended soil concentration are high.
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Conclusions

 The nature of remote sensing applications is to relate radiometric measurements to 

actual surface conditions.  A model, such as WCRM, uses a priori knowledge of the 

radiative transfer processes within the marsh canopy to describe that relationship.  

WCRM, a first of its kind, will continue to improve understanding of how the aquatic 

background affects marsh radiometric measurements.   However, currently the nascent 

model still needs refinement, as prior sections outlined.  Each of these steps will move 

closer to better model applications, whether related to measurements using a sensor on 

the ground or using an airborne or spaceborne imager.  In addition, development of a 

first-principle model can, and in this case has, yielded several results that provide better 

understanding of the processes underlying marsh canopy reflectance.

 First, it was demonstrated that WCRM is an improvement over the original 

vegetation canopy reflectance model in predicting the effects of specular reflectance.  In 

addition, with better information about wetland water surface roughness, the model could 

be used to predict directions to avoid forward scatter directions.  Conversely, if further 

understanding of marsh water surface roughness is obtained and found predictable, then 

specular reflectance could possibly be used to probe marsh structure.

 Second, in a parallel effort to validate one aspect of model performance, a new 

method was demonstrated where Sandmeier Field Goniometer spectral data was cross-

correlated with a leaf spectrum to chose optimal directions for evaluating the spectral 

characteristics of canopy vegetation.  This approach could yield information such as 

species or functional type, offer information about marsh microtopography and 

composition, or provide insight regarding canopy plant stress.  This information could 

also be used to devise a protocol for making spectral reflectance measurements of marsh 

canopies.  Similarly, this information could be used for developing and planning passive 

remotes sensing imaging of wetlands or inundated vegetation.  
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 Furthermore, using the cross-correlation metric for a Spartina alterniflora canopy, 

it was also learned that the backscatter direction was optimal for retrieving hyperspectral 

characteristics in the visible.  Cross-correlation with a leaf spectrum increased with zenith 

viewing angle, suggesting that the optimal zenith viewing angle for any remote sensing 

application would be limited by 1) the instrument field of view and for the case of imager 

applications, and by 2) decreasing atmospheric correction accuracy with increasing zenith 

angle.

 However, SFG measurements are complicated and costly.  Modeling the cross-

correlation would provide a less expensive, easier way to predict optimal measurement 

directions and hence may be able to cover a greater variety of cases.  In comparing model 

predicted cross-correlations to those calculated with the data, the WCRM showed 

improved prediction of these optimal directions over the original vegetation canopy 

model.  This result suggests that WCRM is an improvement towards developing a 

prediction of optimal view and illumination geometry.

 The model was also used to explain the nonlinear influence of the aquatic 

background on the canopy reflectance spectrum.   First, WCRM could qualitatively 

simulate spectral effects of inundation.  The unique spectral signature of heavily 

inundated vegetation could be explained simply using the first principles embedded 

within the shallow water component of WCRM.  Further simulation also demonstrated a 

nonlinear 20 nm shift in canopy red-edge as water went from minimum to maximum 

level, which is a revelation that could affect a number of techniques currently being 

explored by researchers.

 The influence of aquatic and terrestrial backgrounds on LAI retrieval, were also 

explored using model sensitivity analysis.  That analysis showed that the inversion of a 

marsh canopy model would best retrieve marsh LAI using NIR wavelengths because the 

dark background would promote the greatest contrast with the foreground vegetation.  

Conversely, this spectral region is particularly poor for the terrestrial case as dry soils 
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tend to be much lighter at such wavelengths.  However, to pursue LAI retrievals for 

marshes, the canopy multi-scatter must be more accurately predicted and the vegetation 

canopy model must also better account for the complicated matrix of spectral components 

found in a marsh canopy (e.g., dark, senescent and dead vegetation).
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Appendices

Appendix A - Geometric Conventions for Specular Component

 In deriving the specular reflectance model, a small area the air-water is divided 

into smaller, tilted surface facets (see Figure A-1).  A ray of light that is incident on each 

facet forms the angle, , to the direction that is normal to the facet.  By the law of 

reflectance, the light reflected from the facet forms the same angle  with the facet 

normal, but propagates in the direction mirrored across the surface normal on the plane of 

incidence, which is defined by the 

normal and incident directions (see 

Figure A-2).  These three directions are 

represented with the unit vectors   

ξn,   

ξi, 

and   

ξr, which correspond respectively 

for the normal direction and the 

directions of the light source and the 

reflected light, represented by unit 

vectors.  These vectors can be defined 

either in Cartesian coordinates or 

spherical coordinates, the latter being 

more convenient.  Spherical coordinates 

for each unit vector is given by a zenith 

angle, , (angle between the vector and 

the z-axis) and an azimuth angle, , which is measured between a projection of the vector 

on the x-y plane and the x-axis.  These two coordinate systems can be related as follows:

Figure A-1. The surface of the water is 
modeled by dividing it into small tilted 
facets.  A ray of light incident on a facet is 
reflected in a unique direction determined by 
the direction of the light source and the 
direction normal to the facet.
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sinθn cosφn
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cosθn
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⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

1
2cosω

sinθi cosφi + sinθr cosφr
sinθi sinφi + sinθr sinφr

cosθi + cosθr

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 Eq. A-3

where n, i, and r are the zenith angles and n, i, and r are the azimuth angles of unit 

vectors  

ξn,   

ξi, and   


ξr, respectively.  Figure A-2 illustrates the geometric convention being 

used for these vectors and their corresponding directional angles.  For convenience,  

ξr 

will also be used for the direction of observation.
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Figure A-2. Illustration showing the geometric convention used for the unit vectors and 
their zenith and azimuth angles.



Appendix B - Calculation of Fresnel Reflectance

 The reflectivity (and transmissivity) of each facet of the air-water interface is 

governed by Fresnel equations, which can be simplified to give reflectance for light at 

wavelength  incident on a single facet,

 rf ω ,λ( ) = rs ω ,λ( ) + rp ω ,λ( )
2

     Eq. B.1

where, rs ω ,λ( )  and rp ω ,λ( )  indicate the reflectance of light polarized such that the E-

vector is perpendicular and parallel to the plane of incidence, respectively.  These 

quantities are in turn given by

 rs ω ,λ( ) = sin ω −ω t λ( )( )
sin ω +ω t λ( )( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

     Eq. B.2

and

 rp ω ,λ( ) = tan ω −ω t λ( )( )
tan ω +ω t λ( )( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

     Eq. B.3

where ω t λ( ) = sin−1 nr λ( )sinω( ) is the angle of the light transmitted below the surface 

of the facet and its normal.  nr() is the ratio of the index of refraction of air to that of 

water, na()/nw(), 

 nr λ( ) = na λ( )
nw λ( ) ≅

1
nw

       Eq. B.4

which is approximately 0.75 for most of the visible to near infrared wavelengths.  In this 

study, the incident light is assumed to be unpolarized for simplicity and Fresnel 
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reflectance (and transmittance) will be calculated only as the average reflected light given 

by Equation B.1.
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Appendix C - Cox-Munk Slope Density Function: Change of 
Variables

 As described in Chapter 2, the differential radiance value attributed to facets 

reflecting towards the observer from some source is

 
 
dLr ,s = Li

cosω
cosθn cosθr

rf (ω ) ⋅ p2 (zx , zy ) ⋅dzxdzy   Eq. C-1

where, Li is the radiance of the source.  For simplicity, the dependence on wavelength  is 

omitted in this equation.

 To calculate dLr as function of illumination and observation directions, zx and zy 

must be determined as functions of  

ξi or  


ξr ,

 zx θi ,φi ,θr ,φr( ) = − sinθi cosφi + sinθr cosφr( )
cosθi + cosθr

   Eq. C-2

 zy θi ,φi ,θr ,φr( ) = − sinθi sinφi + sinθr sinφr( )
cosθi + cosθr

   Eq. C-3

which puts the probability density function in terms of angles associated with these 

directions, for which the notation  pΩ(θi ,φi ,θr ,φr ) = p
2

zx θi ,φi ,θr ,φr( ), zy θi ,φi ,θr ,φr( )( ) is 

used, where  denotes the probability density function mapped to the unit sphere.  Now, 

the probability that a ray of light passes from the source into the direction of observation 

can be defined as

 P θ −θr < dθr ∧ φ −φr < dφr{ } ≅ pΩ(θi ,φi ,θr ,φr ) ⋅ J ⋅dθrdφr.   Eq. C-4

where the Jacobian matrix, J, is used to change the independent variables of the 

probability density function  p2 (zx , zy ).  The Jacobian matrix is defined as 
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 J =

∂zx
∂θr

∂zx
∂φr

∂zy
∂θr

∂zy
∂φr

      Eq. C-5

so that for transferring from slope space to coordinates on the unit sphere the determinant 

becomes,

  J   =
sinθr 1+ sinθi sinθr cos φi −φr( ) + cosθr cosθi⎡⎣ ⎤⎦

cosθr + cosθi( )3  Eq. C-6

This can be further reduced to more a more compact form using only three angles, so that

 J =
sinθr

4 cosω cos3θn
      Eq. C-7

because

 cosω =
1+ sinθi sinθr cos φi −φi( ) + cosθi cosθr

2
   Eq. C-8

and

 cosθn =
cosθi + cosθr

2cosω
      Eq. C-9

Substituting the transformed probability density function and Equations C-7 through C-9 

into Equation C-1, the small reflected radiance becomes,

 dLr ,s =
Li

4 cos4θn cosθr

⋅ rf (ω ) ⋅ pΩ θi ,φi ,θr ,φr( ) ⋅dΩr   Eq. C-10
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Appendix D - Shallow Water Reflectance Model

 The shallow water reflectance model by Lee et al. (1998; 1999) was described by 

Volpe et al. (2011) as,

 rd = rrs
dp 1− e− Kd+Ku

C( )H⎡
⎣⎢

⎤
⎦⎥
+ ρb
π
e− Kd+Ku

B( )H      Eq. D-1

where,

The absorption and backscatter coefficients are taken as total absorption and backscatter 

coefficients for water and various in-water constituents, respectively.  For absorption,

 a = aw + aNAP + aph + aCDOM       Eq. D-2

H = water depth (m);
ρb = bottom albedo (assuming bottom as an isotropic reflector);
rrs
dp = subsurface remote sensing reflectance for an infinitely deep

water column (sr-1) = (0.084 + 0.17u) u;
u = bb / (a + bb ),  with bb  being the backscattering coefficient (m-1)

 and a being the absorption coefficient (m-1);
Kd = Ddα  = downwelling diffusive attenuation coefficient;
Ku

C = Du
Cα  = upwelling diffusive attenuation coefficient due to the

water column;
Ku

B = Du
Bα  = upwelling diffusive attenuation coefficient due to the

bottom reflectance; 
α = a + bb;
Dd = 1/ cosθw  = subsurface solar zenith angle (rad);
Du

C = 1.03 (1 + 2.4u)0.5

Du
B = 1.04 (1 + 5.4u)0.5
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aw is the absorption due to water, as measured by Buiteveld et al. (1994) from 300 to 

800nm and Kou et al. (1993) for values above 800nm.  The non-algal particle absorption, 

aNAP, is calculated according to Volpe et al. (2011) as

 aNAP = aNAP,443nm0.75e
−0.0128(λ−443)     Eq. D-3

where aNAP,443nm = γ ⋅SPM ,  = 0.041 m2/g, and SPM is the suspended particulate matter.  

The phytoplankton absorption, aph, is derived from Lee et al. (1999) to be

 aph = 0.06 Ca[ ]0.65 ⋅aph,440*      Eq. D-4

where Ca is the concentration of chlorophyll a pigment in mg m-3 and aph,440
* is the 

phytoplankton specific absorption normalized at 440nm (Bricaud, et al., 1995).  The 

absorption due to the presence of chromophoric dissolved organic matter (CDOM) is 

given by aCDOM  and estimated as

 aCDOM = aCDOM,375 ⋅e
−0.0192 λ−375( )      Eq. D-5

where aCDOM,375 is the CDOM absorption at 375nm and is generally taken to be 0.125 m-1 

(Volpe, et al., 2011).  Figure D-1 illustrates the absorption spectra for these components.

 The backscatter coefficient, bb, is the fraction of the total scattering coefficient, b, 

corresponding to light that is scattered at angles greater than 90o.  b is computed from a 

sum of water and in-water constituents,

 b = bw + bp        Eq. D-6
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where, bw is the backscatter of water, taken from Morel (1974) and the scatter due to 

particles, bp, is estimated according to Lee et al. (1999) as

 bp =
550
λ

ℜ⋅Ca
0.62  Eq. D-5

where ℜ is set to 5.0 for the highly turbid 

waters found along coasts.  bb is generally 

taken to be 0.019 times b.  Figure D-2 

illustrates the backscatter spectra for these 

components.

 Typically, when the water optical 

depth is large enough to obscure the 

bottom, which is often the case in a marsh 

setting, submerged leaves can be a strong 

reflector, particularly in the near-infrared.  
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Figure D-2. Total scatter coefficients.  Shown 
are total scatter coefficients for water, bw, and 
particles, bp, and backscatter co-efficient, bb, 
where ℜ  = 5 and Ca = 3.

bw

bb

bp

Figure D-1. Shallow water absorption spectra components.  Shown are total absorption 
and the absoption spectrum for water, aw, phytoplankton, aph, for CDOM, aCDOM, and for 
non-algal particles, aNAP.  As an example, Ca is set to 3 mg m-3 for the calculation of aph.

aNAP

aCDOM

a

aph
aw



Otherwise, soil and decaying vegetation contribute to the reflectance spectrum.  For this 

study, ρb  was set to the leaf reflectance spectrum of marsh vegetation, specifically that of 

the ubiquitous grass Spartina alterniflora (Ramsey and Rangoonwala, 2005), however 

most any species could be used.  Figure D-3 illustrates the resulting spectrum for H = 

25cm, Ca = 3 mg m-3, and SPM = 0.3 g m-3.
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Figure D-3. Reflectance spectra for deep turbid water and and turbid water with 
submerged leaves near the surface.  In this example, H = 25 cm, Ca = 3 mg m-3, and
SPM = 0.3 g m-3.



Appendix E - Aquatic Background Code

 The WCRM model is a variant of the ACRM model, which is an agglomeration of 

models representing different optical components of a vegetation canopy.  A diagram 

illustrating the relationship of these models and their input parameters is given in Figure 

E-1.  WCRM replaces the boundary condition of the radiative transfer model for the 

vegetation canopy with a linear combination of the existing soil BRDF model and an 

aquatic surface reflectance model.  The aquatic surface reflectance model is an 
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Figure E-1. Calculation flow diagram. This diagram shows how the main components 
work together.  The gray area includes components that were originally part of the 
original ACRM model.  Above or below each component are shown its input parameters, 
which are defined in Table E-1.  The parameter Car, the concentration of leaf carotenoid 
pigments, was not included in this study because ACRM uses the PROSPECT 3 model.  
Future updates to the model should include PROSPECT 5, which includes Car.
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Input 
Parameter Use Description

 Soil and Water Fraction of canopy bottom water coverage (unitless).

0 Canopy, Soil, Specular Solar azimuth angle (radians).

s Canopy, Soil, Specular Observation azimuth angle (radians).


Soil, Water diffuse reflectance, 
Leaf reflectance, Sky 
irradiance.

Wavelength (nm) of light propagating through canopy.

0 Canopy, Soil, Specular Solar zenith angle (radians).

s Canopy, Soil, Specular Observation zenith angle (radians).

* Soil reflectance Solar zenith reference angle (radians).

m Canopy light field Modal leaf angle (radians).

 Water specular reflectance Water surface roughness (unitless).

Ca Water diffuse reflectance Water chlorophyll a concentration (mg m-3).

Cab PROSPECT3 leaf optics Concentration of chlorophyll a and b pigments (% 
specific leaf weight).

Car PROSPECT5 leaf optics Concentration of carotenoid pigments (g m-2).

Cbr PROSPECT3 leaf optics Concentration of brown pigments (% specific leaf 
weight).

Cdry PROSPECT3 leaf optics Concentration of dry material (% specific leaf weight).

Cw PROSPECT3 leaf optics Leaf water equivalent thickness (cm).

eL Canopy light field =-ln( 1 -  ),  is the eccentricity of the elliptical leaf 
angle distribution.

H Water diffuse reflectance Effective depth to submerged diffuse reflector (m).

LAI Canopy transmittance Leaf area index, which is the ratio of one-sided leaf 
area to horizontal unit ground area (m2m-2).

n PROSPECT3 leaf optics Number of elementary layers within a leaf (integral 
number).

nr PROSPECT3 leaf optics Ratio of refractive indices of leaf surface wax and 
internal medium.

Table E-1. Defined are the input parameters to WCRM as shown in Figure E-1.  Also 
given is the general aspect of canopy light propagation that each parameter affects.



application of the shallow water model by Lee et al.  In this study, leaf reflectance 

characteristics are used the bottom reflectance, as described in Appendix D.  However, 

other surfaces reflectance spectra, or mixtures of spectra, could also be used for different 

wetland conditions.  In this study, the shallow water model was implemented using Excel 

spreadsheets, and the results were fed to WCRM as an input text file.  However, for 

future use, the shallow water model could be easily be coded for direct application with 

WCRM.

 Like ACRM, WCRM code modules were implemented in the FORTRAN 

language (although, they were prototyped in the IDL language). The following is a listing 

of all FORTRAN code models that were implemented for this study and combined to 

ACRM to created.  Also, included are the code modules in ACRM that were modified to 

facilitate the merger of the two models.  Figure E-2 illustrates the hierarchical 

relationship of these code models.
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Input 
Parameter Use Description

R Water diffuse reflectance Bio-optical parameter relating particulate 
backscatter to water turbidity. 

rb Water diffuse reflectance Submerged surface reflectance.

s1 Soil spectrum 1st Price soil spectrum coefficient (unitless).

s2 Soil spectrum 2nd Price soil spectrum coefficient (unitless).

s3 Soil spectrum 3rd Price soil spectrum coefficient (unitless).

s4 Soil spectrum 4th Price soil spectrum coefficient (unitless).

SL Canopy light field Relative length of leaves. (m m-1).

SLW PROSPECT3 leaf optics Specific leaf weight (g m-2).

SPM Water diffuse reflectance Suspended particulate matter.

Sz Canopy light field Markov parameter (unitless); accounts for 
correlated leaf layers.

Table E-1. - continued.
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c Aquatic Background Subroutines and Functions - KRT - 20110406
c
c-----------------------------------------------------------------------
c
      Subroutine Surface_Conditions( wlgth, beta, rd,  sig )
c
         Implicit None
c
         Integer          LUN,    N_wl,   Stat,
     &                    i,      j,      di,     h
c
         Double Precision wlgth,  pwlgth, BRF,
     &                    beta,   rd,     sig,
     &                    beta_x, rd_x,   sig_x,
     &                    thetv,  phiv,   thets,  phis,
     &                    Max_wl, Min_wl,
     &                    tdaw,   tuwa,   gamma,
     &                    nr,     rho,    m,
     &                    dr,     a,      w,      pi
c
         Double Precision wlarr(2001), rho_msrd(2001)
c
         Double Precision Fresnel_Reflectance
c
         Data a/1.000274d0/, w/1.34d0/, gamma/0.48d0/,
     &        dr/1.745329251994330d-2/, pi/3.14159265358979d0/
c
         Data N_wl/2001/
c
         Common / Aquatic_Surface / beta_x,  rd_x,    sig_x,
     &                              wlarr,   rho_msrd,
     &                              thetv,   phiv,    thets,   phis,
     &                              pwlgth,  N_wl,    Stat
c
         beta = beta_x
         rd   = rd_x
         sig  = sig_x
c
         If (Stat .NE. 1) then
c
            LUN  = 2
            Open( LUN, file = 'aquatic_surface.dat', status = 'old' )
c
            Read( LUN, * )
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            Read( LUN, * ) beta
            Read( LUN, '(/)' )
            Read( LUN, * ) sig
            Read( LUN, '(2/)' )
            Read( LUN, * ) thetv, phiv
            Read( LUN, '(/)' )
            Read( LUN, * ) thets, phis
            Read( LUN, '(/)' )
c
            Do i = 1, N_wl
               Read( LUN, * ) wlarr(i), BRF
               rho_msrd(i) = BRF/100.0d0/pi
            EndDo
c
            Stat = 1
            Close( LUN )
c
            beta_x = beta
            sig_x  = sig
         EndIF
c
         If (wlgth .NE. pwlgth) then
c
            pwlgth = wlgth
c
            Min_wl = wlarr(1)
            Max_wl = wlarr(N_wl)
c
            i  = 1
            j  = N_wl
c
c           Check for wavelength range edge or beyond
            If (wlgth .GE. Max_wl) then
               j = N_wl
               i = j - 1
            EndIf
c
            If (wlgth .LE. Min_wl) then
               i = 1
               j = i + 1
            EndIf
c
c           Perform binary search along index for wavelength:
c
            di = j - i
  100       If (di .GT. 1) then

123



               h = di/2 + i
               If (wlgth .LT. wlarr(h)) then
                  j = h
               Else
                  i = h
               EndIf
               di = j - i
               GoTo 100
            EndIf
c
            m    = (rho_msrd(j)-rho_msrd(i)) / (wlarr(j)-wlarr(i))
            rho  = m * (wlgth-wlarr(j)) + rho_msrd(i)
c
            tdaw = 1.0d0 - Fresnel_Reflectance( thets*dr, a, w )
            tuwa = 1.0d0 - Fresnel_Reflectance( thetv*dr, a, w )
c
            nr   = a/w
            rd   = rho / (nr*nr*tdaw*tuwa/pi + gamma*rho)
c
            rd_x = rd
         EndIf
c
         Return
      End
c
c-----------------------------------------------------------------------
c
      Subroutine Canopy_Bottom( rsl,     beta,    rd,      sig,
     &                          thetv,   thets,   thss,    dphi,
     &                          rsosurf, rsdsurf, rodsurf, rddsurf )
c
         Implicit None
         Double Precision beta,     rsl,      rd,       sig,
     &                    thetv,    thets,    thss,     dphi,
     &                    rsosoil,  rsdsoil,  rodsoil,  rddsoil,
     &                    rsowater, rsdwater, rodwater, rddwater,
     &                    rsosurf,  rsdsurf,  rodsurf,  rddsurf
c
         rsowater = 0.0d0
         rsdwater = 0.0d0
         rodwater = 0.0d0
         rddwater = 0.0d0
c
         Call Water( rd,       sig,
     &               thetv,    thets,    dphi,
     &               rsowater, rsdwater, rodwater, rddwater )
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c
         Call Soil(  rsl,      thetv,    thets,    thss,     dphi,
     &               rsosoil,  rsdsoil,  rodsoil,  rddsoil )
c
         rsosurf = beta * rsowater + (1.0d0-beta)*rsosoil
         rsdsurf = beta * rsdwater + (1.0d0-beta)*rsdsoil
         rodsurf = beta * rodwater + (1.0d0-beta)*rodsoil
         rddsurf = beta * rddwater + (1.0d0-beta)*rddsoil
c
      Return
      End
c
c-----------------------------------------------------------------------
c
      Subroutine Water( rd,   sig,
     &                  th2,  th1,  dph,
     &                  rso,  rsd,  rod,  rdd )
c
         Implicit Double Precision (a-h, o-z)
c
         Data a/1.000274d0/, w/1.34d0/, pi/3.14159265358979d0/
c
c        Calc Fresnel transmittances in and out of water:
         tdaw = 1.0d0 - Fresnel_Reflectance( th1, a, w )
         tuwa = 1.0d0 - Fresnel_Reflectance( th2, a, w )
c
c        Calc BRF=pi*BRDF, Hemispheric Reflectances, and Albedo:
         rso = Aquatic_BRDF  ( rd, tdaw, tuwa, sig, th1,th2, dph ) * pi
         rsd = Aquatic_RH    ( rd, tdaw, sig, th1 )
         rod = Aquatic_RH    ( rd, tuwa, sig, th2 )
         rdd = Aquatic_Albedo( rd )
c
         Return
      End
c
c-----------------------------------------------------------------------
c
      Function Aquatic_Albedo( rd )
c
         Implicit Double Precision (a-h, o-z)
c
         Data a/1.000274d0/, w/1.34d0/
c
c        Air-Water Inteface from numerical integration.
         As  = 0.0267d0
c
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c        Index of refraction ratio
         r   = a / w
c
c        Internal reflectance coeff (Lyzenga 1978), from Lee et al 1998.
         gm  = 0.48d0
c
c        Numerically integrated Fresnel transmittance.
         T   = 0.93255058d0
c
         Ad  = (T*r)*(T*r) * rd / (1.0d0 - gm*rd)
c
         Aquatic_Albedo = As + Ad
c
         Return
      End
c
c-----------------------------------------------------------------------
c
      Function Aquatic_RH( rd, tf, sig, th )
c
         Implicit Double Precision (a-h, o-z)
c
         Data a/1.000274d0/, w/1.34d0/
c
c        Interpolate specular hemispheric reflectance look-up table 
         RHs = Get_Specular_RH( th, sig )
c
         r   = a / w
c
c        Internal reflectance coeff (Lyzenga 1978), from Lee et al 1998.
         gm  = 0.48d0
c
c        Numerically integrated Fresnel transmittance
         T   = 0.93255058d0
c
c        Compute diffuse hemispheric reflectance
         RHd = rd * T * tf * r*r / (1.0d0 - gm*rd)
c
         Aquatic_RH = RHs + RHd
         Return
      End
c
c-----------------------------------------------------------------------
c
      Double Precision Function Get_Specular_RH( th_rad, sig )
c
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         Implicit None
c
         Integer LUN, di, dk, h, i, j, k, l, ns, nt, Stat
c
         Double Precision RH_LUT(91,16), RH_T(91), RH_S(16),
     &                    Min_T, Max_T, Min_S, Max_S, as, at,
     &                    RHa, RHb, RH, pi, dr, th, th_rad, sig
c
         Data dr/1.745329251994330d-2/, pi/3.14159265358979d0/
         Data nt/91/, ns/16/
c
         Common / Specular_RH_LUT / RH_T, RH_S, RH_LUT, nt, ns, Stat
c
         LUN = 2
         th  = th_rad / dr
c
   10    Format( 16F10.7 )
c
         If (Stat .NE. 1) then
            Open( LUN, File = "specular_rh.dat", Status="OLD" )
            Read( LUN, * ) (RH_T(i), i = 1, nt)
            Read( LUN, * ) (RH_S(i), i = 1, ns)
            Read( LUN, 10 ) ((RH_LUT(i,j), j = 1, ns), i = 1, nt)
            Stat = 1
            Close( LUN )
         EndIf
c
         Max_T = RH_T(nt)
         Max_S = RH_S(ns)
c
         Min_T = RH_T(1)
         Min_S = RH_S(1)
c
         i  = 1
         j  = nt
         at = Abs( th )
c
c        Check for table edge or beyond
         If (at .GE. Max_T) then
            j = nt
            i = j - 1
         EndIf
c
         If (at .LE. Min_T) then
            i = 1
            j = i + 1
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         EndIf
c
c        Perform binary search along index for zenith angle, theta:
c
         di = j - i
  100    If (di .GT. 1) then
            h = di/2 + i
            If (at .LT. RH_T(h)) then
               j = h
            Else
               i = h
            EndIf
            di = j - i
            GoTo 100
         EndIf
c
         k  = 1
         l  = ns
         as = Abs( Sig )
c
c        Check for table edge or beyond
         If (as .GE. Max_S) then
            l = ns - 1
            k = l - 1
         EndIf
c
         If (as .LE. Min_S) then
            k = 1
            l = k + 1
         EndIf
c
c        Perform binary search along index for surf roughness parameter, sigma:
c
         dk = l - k
  200    If (dk .GT. 1) then
            h = dk/2 + k
            If (as .LT. RH_S(h)) then
               l = h
            Else
               k = h
            EndIf
            dk = l - k
            GoTo 200
         EndIf
c
         RHa = (RH_LUT(j,k)-RH_LUT(i,k))*(th-RH_T(i)) + RH_LUT(i,k)
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         RHb = (RH_LUT(j,l)-RH_LUT(i,l))*(th-RH_T(i)) + RH_LUT(i,l)

         RH  = (RHb-RHa)/(RH_S(l)-RH_S(k))*(Sig-RH_S(k)) + RHa
c
         Get_Specular_RH = RH * pi
c
         Return
      End
c
c-----------------------------------------------------------------------
c
      Function Aquatic_BRDF( rd, tdaw, tuwa, sig, ths, tho, dph )
c
         Implicit Double Precision (a-h, o-z)
c
         Rdiff = Submerged_Diffuse_Reflector( rd, tdaw, tuwa, ths, tho)
         Rspec = Roughened_Specular_Reflector( sig, ths, tho, dph )
c
         Aquatic_BRDF = Rspec + Rdiff
         Return
      End
c
c-----------------------------------------------------------------------
c
      Function Submerged_Diffuse_Reflector( rd, tdaw, tuwa )
c
         Implicit Double Precision (a-h, o-z)
c
         Data a/1.000274d0/, w/1.34d0/, pi/3.14159265358979d0/
c
         r      = a / w
c
         Gamma  = 0.48d0
         RInt   = 1.0d0 / (1.0d0 - Gamma*Rd)
c
         Submerged_Diffuse_Reflector = rd * tdaw*tuwa * r*r / pi * RInt
c
         Return
      End
c
c-----------------------------------------------------------------------
c
      Function Roughened_Specular_Reflector( sig, ths, tho, dph )
c
c        Uses directionless wind surface roughing model based on
c        Cox & Munk (1954) and Kay,Lavender,and Hedley (2009).
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c
         Implicit Double Precision (a-h, o-z)
c
         Data a/1.000274d0/, w/1.34d0/
c
         Call Reflector_Geometry( ths, tho, dph, zx, zy, cosom, costhn )
         omega = Abs( ACos( cosom ) )
c
         Rf = Fresnel_Reflectance( omega, a, w )
c
         P  = Surface_Slope_Probability( zx, zy, sig ) /
     &        ( 4.0d0*Costhn**4.0d0 * Cos( ths ) * Cos( tho ) )
c
         Roughened_Specular_Reflector = P * Rf
c
         Return
      End
c
c-----------------------------------------------------------------------
c
      Subroutine Reflector_Geometry( thi, thr, dph, 
     &                               zx, zy, cosw, costhn )
c
         Implicit Double Precision (a-h, o-z)
c
         sinthi = Sin( thi )
         costhi = Cos( thi )
c
         sinthr = Sin( thr )
         costhr = Cos( thr )
c
c        Slopes of reflecting facets producing highlights:
         z      = costhi + costhr
         zx     = -( sinthi + sinthr*Cos( dph ) ) / z
         zy     = -sinthr*Sin( dph ) / z
c
c        Cosines of the angle (2w) between I and R,
c                   the angle (w)  between I and the normal vector (I+R),
c                   the zenith angle (thn) of the normal vector (I+R)
c
         cos2w  = sinthi*sinthr*Cos( dph ) + costhi*costhr
         cosw   = SqRt( (1.0d0 + cos2w)/2.0d0 )
         costhn = z/(2.0d0*cosw)
c
         Return
      End
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c
c-----------------------------------------------------------------------
c
      Function Surface_Slope_Probability( zx, zy, sig )
c
         Implicit Double Precision (a-h, o-z)
c
         Data pi/3.14159265358979d0/
c
c        Compute surface slope probability:
c
         sig2 = sig*sig
c        (note: in Cox-Munk, sig2 = 0.003 + 0.00512*W, W is windspeed in m/s)
c
         Surface_Slope_Probability =
     &       Exp( -( zx*zx + zy*zy )/(2.0d0*sig2) ) /
     &                    (2.0d0*pi*sig2)
      End
c
c-----------------------------------------------------------------------
c
      Function Fresnel_Reflectance( t_i, r1, r2 )
c
         Implicit Double Precision (a-h, o-z)
c
c        t_i = incident zenith angle in radians
c
c        Compute ratio of the index of refractions
         rn  = r1 / r2
c
         Rs  = (r1-r2)/(r1+r2)
c
         Rs  = Rs*Rs
         Rp  = Rs
c
         sin_t_t = Sin( t_i ) * rn
c
         If ((t_i .NE. 0.0d0) .AND. (Sin_t_t .LE. 1.0d0)) then
c
            t_t = ASin( sin_t_t )
c
            Rs = ( Sin( t_i - t_t ) /
     &             Sin( t_i + t_t ) )
c
            Rs = Rs*Rs
c
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            Rp = ( Tan( t_i - t_t ) /
     &             Tan( t_i + t_t ) )
c
            Rp = Rp*Rp
         EndIf
c    
         If (sin_t_t .GT. 1.0d0) then
            Rs = 1.0d0
            Rp = 1.0d0
         EndIf
c
         Fresnel_Reflectance = (Rs + Rp) / 2.0d0
c
         Return
      End
c
c-----------------------------------------------------------------------
c
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Appendix F - Challenges of Field Work in Coastal Marshes

 A number of challenges exist when measuring either LAI or spectral reflectance in 

a coastal marsh.  This appendix discusses issues that should be addressed when making 

these measurements in the field.  The intent here is to use experience in the field to set the 

direction for future work that could lead to a marsh remote sensing protocol.  Such a 

protocol would be invaluable to wetland researchers in combining and comparing their 

data.  A protocol would also help guide both novice and veteran researchers with standard 

methodologies that would promote the quality of the data that they collect.

 He et al. (2007) identified three sources of biases in making LAI measurements 

with a LI-COR LAI2000 plant canopy analyzer.  The first is the mentioned LAI 

underestimate from light scattered from leaves lower in an erectophile canopy (LI-COR, 

1992; Stroppiana, et al., 2006).  They also point out that in graminaceous canopies, it is 

impossible to not disturb the canopy with the sensor, causing a further underestimate.  

Finally, they point to the problem of graminaceous canopies being spatially distributed in 

clumps, introducing additional variation in the measurements that affect accuracy.  These 

complications affect the accuracy of LAI measurements and require special attention 

during field work.  In addition, the presence of standing dead vegetation typically found 

with some marsh species complicate the meaningfulness of indirect methods of 

measuring LAI.

 Variation in canopy structure can also be related to variation in plant height, 

structure of individual plants (e.g., leaf angle), and ground distribution.  Plant height and 

structure tended to differ by species, but could be affected by marsh drainage properties 

(e.g., short form and tall form of Spartina alterniflora).  Ground distribution ranges from 

homogeneous cover to hummocky, where plants formed clumps surrounded by water or 

mud filled hollows or even small islands within ponds.  In these cases, it was a challenge 

to devise a sampling scheme for the LAI2000 sub-canopy measurements.  It was decided 
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that half of the measurements would be taken between plant clumps and half would be 

taken within clumps because of their proximity to each other.  However, in areas where 

interstitial changes are larger or clumps are further apart, that scheme might have to be 

adjusted in order to get an unbiased estimate of the LAI for the canopy.

 Above canopy reflectance measurements may likewise be challenged, but Figure 

4-3 suggests that the NIR reflectance might provide sufficient response to change in 

canopy densities for the sites studied during the short transect experiment.  Sensitivity 

analysis of WCRM indicated that the model also continued to have a strong relationship 

between NIR reflectance and LAI.  The primary limitation of using WCRM for this type 

of application is its expectation of a canopy reflectance that is much higher than marsh 

plant species, which is a problem that stems from application of the PROSPECT leaf 

reflectance model.  Improving the control of the PROSPECT model so that it better 

represents these darker canopies would greatly help the LAI underestimate.  Further work 

should be done to determine whether this relationship can be effectively exploited to use 

NIR reflectance to determine LAI for dense marsh canopies using an improved WCRM 

model or some other method.

 The retention of standing dead vegetation in the canopy of some species was 

discussed in Chapters 3 and 6 in terms of its strong influence on the reflectance spectrum 

of the canopy.  The mixture of live and dead plants (and patches of soil and water), 

increases the canopy reflectance variation over small spatial scales.  However, the 

presence of dead vegetation also impacts the meaningfulness of LAI measurements.  

Because the LAI-2000 measurements are based on the canopy gap fraction, any body that 

is opaque at blue wavelength would be included in the estimate of canopy LAI.  

Therefore the LAI-2000 measures a foliage area index (LI-COR, 1992).  Furthermore, 

this means that for plants with high lignin content that kept standing dead stock from 

previous growth cycles, the LAI-2000 is over estimating the “green” LAI.  In the study 

regions this would include species such as Phragmites spp, Spartina cynosurides, 
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Schoenoplectus, and Juncus spp, but probably applies to most large grass species, sedges, 

and rushes.  Such LAI measurements could lead to an overestimate of green biomass or 

productivity.

 Given the observed variation in spectral reflectance, a dense sample was 

necessary to obtain a good estimate canopy structure.  In this study, however, the 

spectrometer sampling rate was only sufficient to obtain dense samples over relatively 

short transects for several angles.  To get greater spatial or angular coverage will require 

higher sampling rates, by at least an order of magnitude.  In addition, having an 

additional sensor to monitor the solar irradiance would save time, providing opportunity 

to make more measurements while in the field.  What is more important, accounting for 

contemporaneous variation in the solar irradiance field would open the opportunity to 

take measurements under less than perfect sky conditions, further increasing the number 

of sites that can be measured during a growing season.

 An import objective of marsh canopy remote sensing is determining the spatial 

distribution of marsh physical and biological properties.  Interestingly, the spatial 

distribution of plants within marsh canopies can pose challenges to obtaining LAI or 

spectral reflectance using light sensing instruments.  The distribution of small open 

bodies of water and open mud flats can further complicate remote sensing imagery.  

Considerable future work needs to be done to account for the effects that can arise from 

the spatial distribution of plants.  This would include a close evaluation of sampling 

methods for ground measurements and the development of a landscape scale canopy 

reflectance model to deal with effects at remote sensing scales.  WCRM could contribute 

to those efforts.

 Graminaceous plants can produce thick canopies with a dense root network, 

which is a useful trait in an environment extremely vulnerable to erosion.  Conversely, 

marsh vegetation that succumbs to stressing conditions, such as relative sea level rise, can 

be quickly replaced by open water (Kearney, et al., 1988).  Examination of aerial photos 
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from 2005 to 2007 and field observations during the 2007 and 2008 visibly showed no 

appreciable change in marsh plant distribution in the Blackwater Marsh study area.  

Therefore that region could be considered relatively stable, at least during the period of 

study, and most marsh plants were in dense expanses or clumps.

 Much of the marsh in study area along the road in the Blackwater Marsh was far 

from the well drained bank marshes.  Inner marshes are subject to stressing conditions, 

such a poor drainage, variable salinity, and low redox potentials.  These conditions can 

give rise to stable hummock-hollow microtopography.  Hummocks consists of clumps of 

dense vegetation with a thick root network situated on a stack of peat and soil.  There is 

evidence that this formation enables the plants to influence the chemical and hydrological 

characteristics of the hummock soil to their advantage (Stribling, et al., 2007; Stribling, et 

al., 2006).  Hollows are lower elevation spaces between hummocks that characteristically 

are unvegetated and often inundated.  Thus, a hummock-hollow microtopography enables 

the plant also keep their local density quite high, while the canopy becomes a complex of 

vegetation clumps separated by interstitial spaces of open water.  Given their general 

distance from banks of the Blackwater River, a large portion of the canopies measured in 

the Blackwater Marsh study area had a hummock-hollow microtopography.  This was 

particularly notable in Sites 1 and 3 of the short transect experiment and most 

measurements taken in canopies of Schoenoplectus americanus in the inner marsh.

 Dense foliage conditions present a number of issues when making measurements 

in marsh canopies.  This decreases effectiveness of the indirect methods explored in this 

study.  The amount of foliage within a single hummock or within a relatively 

homogeneously distributed canopy hummocks can be too high to get an accurate reading 

of LAI.  Marsh canopies examined this study were observed to be densely populated, 

with most of the LAI measurements ranging between 2.5 to 3.5.  This poses a challenge 

for indirect measurements like those taken with an LAI2000 because sensor sensitivity to 

variation in canopy density decreases as LAI becomes high (LAI > 3) and the gap 
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fraction saturates near 4 to 5 (Garrigues, et al., 2008; Gower, 1999).  In addition, 

sensitivity analysis of the retrieval of LAI through inverse of ACRM or WCRM lose their 

ability to respond changes in reflectance as LAI between 3 and 4 for blue wavelengths 

and perhaps higher for the NIR wavelengths, which agrees with theoretical limits 

estimated by Gobron et al. (1997).  Therefore, the natural thickness of fully grown marsh 

vegetation can hamper the measurement of LAI.

 The hummock-hollow microtopography greatly increases the measurement 

variability for LAI and spectral reflectance measurements over small spatial scales.  Such 

conditions also increase the probability of specularly reflected sunlight or skylight 

reaching the sensor.  Heterogeneity of the canopy distribution can confound the 

homogeneity assumption made by the LI-COR LAI-2000 algorithm that converts canopy 

transmittance into LAI, or most canopy reflectance models in predicting BRDF.  

Furthermore, it is known that a sub-canopy transmittance measurement, like those taken 

by a LI-COR LAI-2000 plant canopy analyzer, is subject to underestimate LAI because 

of single scattering off leaves at the bottom of a mostly erectophile canopy (LI-COR, 

1992; Stroppiana, et al., 2006).  The effect could be exaggerated by the lateral position of 

the sensor relative to hummocks.  It would be useful to study what sampling techniques 

are effect for this type of distribution.

 In a natural setting, canopy properties present are subject to high variability, even 

in monospecific canopies.  ACRM has mostly been applied to uniform agricultural 

canopies (Delalieux, et al., 2008; Houborg, et al., 2009; Houborg and Boegh, 2008; 

Weihs, 2008).  Greater uniformity may be found in inundated agricultural canopies, such 

a rice paddies, where growth and background conditions are artificially controlled.  

WCRM may have better performance for such situation, where conditions are more 

homogeneous and similar work has shown promise (Xiao, et al., 2002).  Because the 

model could provide utility for such applications, its performance should be evaluated in 

future work. In addition, measurements of LAI might be more applicable to canopies 
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with less standing dead vegetation present, during the early part of the growing cycle 

when LAI is lower than 3.  Thus, the early growth of species like Spartina altnerniflora 

or Spartina patens would be idea subjects for future work on LAI retrievals from above-

canopy reflectance.

 Special attention is needed to address all of various challenges in making indirect 

measurements of LAI or canopy spectral reflectance.  In particular, if large scale surveys 

are employed to support remote sensing effort (e.g, for satellite or areal sensor 

measurement validation), these sources of bias need to be addressed in a standard and 

consistent fashion.  Therefore, it is recommended that field measurement protocol be 

developed for wetlands.  Using a standard protocol will help guide practitioners in the 

field between teams and between campaigns in assuring that all biases have been 

addressed in a consistent fashion and provide a reference to inform novice instrument 

operators, and remind experienced instrument operators, of the standard techniques that 

should be used for marsh environments.
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