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Class F fly ash, a by-product of coal-burning power plants, is generated in large 

quantities and occasionally contains significant amounts of unburned carbon (i.e., high 

loss on ignition) as a result of equipping the power plants with the low nitrogen oxide 

burners. The overall goal of this research was to assess the feasibility of using high 

carbon content fly ash (HCCFA) as a stabilizing agent for petroleum contaminated soils 

(PCSs) and as a reactive medium in permeable sorptive barriers (PSBs) for remediation 

of petroleum hydrocarbon contaminated groundwater.  A battery of laboratory tests was 

conducted to evaluate the geotechnical and environmental suitability of stabilized PCSs. 

The test program included batch adsorption, compaction, long-term column leaching, 

column sorption-desorption, and column biodegradation tests. Naphthalene and o-xylene 

sorption onto seven different fly ashes and powder activated carbon (PAC) was studied in 

a series of batch adsorption tests.  A tertiary model non-aqueous phase liquid was used as 



  

the pollutant in column leaching tests conducted on PCS-fly ash mixtures.  Retardation 

performance of HCCFA or PAC mixed with sand was investigated through column 

sorption-desorption and column biodegradation experiments to study the mass transfer 

behavior of the medium in a PRB application. 

Batch sorption tests demonstrated a nonlinear sorption behavior for naphthalene 

and o-xylene onto HCCFA. Sorption was strongly correlated with carbon content of the 

ashes. Compaction test results indicated that the maximum unit weights and optimum 

liquid contents of the stabilized soils satisfy the limits set for highway embankment 

construction.  Column leaching test results indicated that the naphthalene and o-xylene 

concentrations in the effluents collected from the stabilized PCS columns were lower 

than those collected from the control (soil only) columns. Column sorption-desorption 

tests revealed a retardation capacity of 48 to 78% for naphthalene and 15 to 48% for o-

xylene. The biodegradation tests showed that high levels of biodegradation occurred 

when fly ash was employed as reactive medium.  The study indicated that HCCFA can be 

effective in remediation of PCSs, and has good hydraulic and adsorption properties which 

may justify its potential use as a PSB material in remediation of groundwater 

contaminated with petroleum residues.  
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Chapter 1 Introduction 

 Remediation of contaminated soil and groundwater has been an important task for 

engineers and scientists in recent years. As a result, the difficulty of reducing subsurface 

contamination levels has resulted in the research and development of several innovative 

and cost-effective treatment technologies. One of the sources of soil and groundwater 

contamination in the United States is petroleum spills.  Petroleum-based contamination 

contains significant quantities of naphthalene, pyrene, benzene, toluene, and xylenes, 

which are listed as hazardous waste compounds by the U.S. Environmental Protection 

Agency. The presence of such compounds in the subsurface environment presents a 

significant health hazard (Agency for Toxic Substances and Disease Registry 2001).  

Approximately 90% of the coal used in United States is burned to produce 

electricity. As a result, the power plants produce vast quantities of coal combustion by-

products (CCBs) that present another environmental challenge. One of these CCBs, Class 

F fly ash, is generated in large quantities and occasionally contains significant amounts of 

unburned carbon (i.e., high loss on ignition) due to the common use of low nitrogen 

oxides (NOx) burners in recent years.  For instance, twelve power plants in Maryland that 

use the cyclone process to burn coal produce about 600,000 tons of high-carbon content 

Class F fly ash each year.  This fly ash has a carbon content of 12-20% and has no value 

as a concrete additive, as the maximum carbon content allowed in the ASTM C618 is 

6%. Recent data indicate that approximately 68% of this high-carbon content fly ash 

(HCCFA) is placed in landfills, thereby consuming valuable land space and creating the 

potential to impact aquatic resources (Petzrick 2001). Therefore, Class F fly ash 

represents an abundant solid waste for which there is a significant need to find a use.   
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Large-volume use of fly ash in highway applications can aid in solving this waste 

disposal problem as well as providing economic savings to users by replacing more 

costly raw materials. For example, recent investigations indicate that petroleum 

hydrocarbons in the soil will inhibit the cementitious reactions between the petroleum-

contaminated soil and the stabilizing agent, and the pollutant will eventually emanate 

from the stabilized block as a result of leakage or chemical diffusion. One way to retard 

or limit the movement of the petroleum hydrocarbons is to provide a sorptive agent that 

sorbs these pollutants as they move through the soil. The organic carbon in Class F fly 

ashes is ideally suited for this purpose, as its adsorption of various organic contaminants 

such as phenols, dyes, herbicides, and polychlorinated biphenyls has been documented 

(Akgerman and Zardkoohi 1996, Konstantinou and Albanis 2000, Janos et al. 2003, 

Nollet et al. 2003). Attempts have also been made to stabilize petroleum contaminated 

wastes using Class F fly ash for their potential use in highway environments; however, 

this previous work generally included creating a monolithic medium and encapsulating 

the petroleum contaminants rather than adsorbing them (Tuncan et al. 2000). 

Contamination of groundwater with petroleum hydrocarbons is also a commonly 

encountered phenomenon. Pump-and-treat is a traditionally used method for remediating 

these products; however, the technique has various drawbacks: (1) necessity of large 

water volume and long time periods (5-50 years) for effective treatment, (2) difficulty to 

reach drinking water standards, and (3) high operational costs.  These disadvantages 

prompted researchers to develop alternative methods for in-situ remediation of petroleum 

contaminants (Khan et al. 2004). One of the passive remediation technologies gaining 

wide acceptance is the use of permeable reactive barriers (PRB).  In this technology, the 
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pollutants are immobilized permanently or their levels are reduced to the Maximum 

Contamination Limits (MCL) while the plume is passing through an underground barrier 

system. One relatively new variation on the PRB concept is to use an immobilization 

process, in which the organic pollutants are adsorbed onto sorptive surface of the barrier 

material. The reaction mechanism in these PRBs is often adsorption, and a term 

“permeable sorptive barriers (PSB)” has been recently introduced (Woinarski et al. 

2003). Typical compounds of interest treated with such systems are trichloroethylene 

(TCE), petroleum hydrocarbons as well as trace elements and heavy metals. 

Laboratory studies have demonstrated the effectiveness of various natural and 

synthetic sorbents as potential reactive/sorptive medium for treatment of groundwater 

containing both organic and inorganic pollutants. Specific materials tested include such 

as wood chips, limestone, manure (USEPA 2006), peat (Guerin et al. 2002), and lignitic 

coal (Jenk et al. 2003) have been investigated. For example, Schad and Gratwohl (1998) 

reported a successful field application of sorptive barrier using activated carbon as 

sorbent for a groundwater contaminated with petroleum hydrocarbons. Furthermore, 

there is growing interest in the utilization of recycled materials for remediation of 

contaminated groundwater as a part of sorptive barrier investigations. Recycled materials, 

such as waste tires (Kershaw et al. 1997, Kim et al 1997) and foundry sand (Lee et al. 

2004) have also been studied to investigate their feasibility as sorptive medium in these 

barrier systems. Accordingly, HCCFA has the potential to be another PRB medium as 

recent research studies suggest that it posses good sorption characteristics for various 

organic contaminants. 
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The current study had two main objectives: First objective was to investigate the 

geotechnical performance and environmental suitability of HCCFA as a binder for 

stabilization of petroleum contaminated soils. Second one was to address the 

effectiveness of HCCFA as a sorptive medium in a reactive barrier for groundwater 

clean-up. To meet these objectives following tests and numerical analyses were 

performed: (1) Batch adsorption tests were conducted in order to determine the sorption 

capacity and characteristics of the seven different HCCFA, (2) compaction and column 

leaching tests were performed on petroleum contaminated soils stabilized with HCCFA, 

(3) column sorption desorption tests were conducted on HCCFA-sand mixtures to assess 

the organic pollutant sorption and desorption properties of the HCCFA, (4) column 

biodegradation experiments were conducted on inoculated HCCFA-sand mixtures to 

study biodegradation, and (5)  biosorptive barriers were designed using the column-

derived parameters.  

A detailed literature review about remediation of petroleum-contaminated soil and 

groundwater,, sorption isotherm and biokinetic models, and high carbon content fly ash 

are presented in Chapter 2. Chapter 3 provides methodology and results of the batch 

adsorption tests conducted on seven different HCCFA. The utilization of a Maryland 

HCC fly ash in remediating petroleum contaminated soils for highway application is 

presented in Chapter 4. Chapter 5 describes methods and results of column sorption-

desorption experiments conducted on fly ash-sand mixtures.  Chapter 6 provides the 

procedure and results of the column biodegradation experiments. The barrier design 

methodology is also given in Chapter 6.  Summary and conclusions along with future 

recommendations are given in Chapter 7.   
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Chapter 2 Literature Review 
 

Contamination of the subsurface environment by organic pollutants is a growing 

problem that needs to be addressed by environmental and geotechnical engineers. 

Pollutants enter the subsurface directly as a result of accidents, spills during 

transportation, leakage from industrial facilities, waste disposal sites, as well as 

aboveground storage tanks and underground storage tanks (USTs) (Kamnikar 2001).   

Of the sources of subsurface contamination, USTs represent a significant 

contribution. According to U.S. Environmental Protection Agency (USEPA), state 

agencies are spending more than $1 billion annually for the clean-up of 26,000 leakage 

sites (USEPA 2004). In spite of the strict regulatory measures, nearly 30 % of the 

700,000 USTs around the country are not equipped with leak detection and corrosion 

protection systems and, thus, become a continuous source for petroleum hydrocarbon 

release (USEPA 2004). Furthermore, according to a National Cooperative Highway 

Research Program (NCHRP) study in 1996, there were 1000 UST leaking cases reported 

to the state agencies weekly and each leakage contaminated approximately 40 m3 of 

surrounding subsurface soils including vadose zone and soils below groundwater table 

(Friend 1996) as illustrated in Figure 2.1. Many of the USTs contain petroleum products 

and their leachate contaminated drinking water supplies in various cases (Kamnikar 

2001).  

Petroleum products are often called non aqueous phase liquids (NAPLs) due to 

their immiscible nature in water. As a category of contaminants NAPLs are considered to 

present a considerable a threat to subsurface environment because: (1) their low liquid 
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Figure 2.1 Complex nature of  NAPL movements in the subsurface due to UST leakage 
(LNAPL: Light non-aqueous phase liquid, DNAPL: Dense non-aqueous phase liquid) 
(adopted Pankow and Cherry 1996) 

UST 



 7

viscosities enable them to move easily into subsurface, (2) they have relatively high 

solubilities with respect to drinking water limits, which results in significant 

contamination even they dissolve in small quantities, and (3) they exhibit very low 

partitioning behavior in aquifer soils. The toxicity of NAPL related compounds is also 

noteworthy. For example, NAPLs that originated from petroleum hydrocarbons contain 

significant quantities of naphthalene, pyrene, benzene, toluene, and xylenes, which are 

listed as hazardous waste compounds by the U.S. Environmental Protection Agency 

(U.S.EPA). The presence of such compounds in the subsurface environment presents a 

significant health hazard (Agency for Toxic Substances and Disease Registry 2001).    

 The goal of this chapter is to review the remediation technologies available for 

NAPL contamination with a particular emphasis on petroleum hydrocarbon contaminants 

and their remediation via stabilization and permeable reactive barrier. In addition, given 

its key role in these technologies, the topic of sorption is reviewed in detail, as well as the 

innovative use of high carbon content fly ash as sorptive material. Finally, the key points 

of this review are summarized to develop the motivation for the current research.  

2.1  NAPL Remediation Technologies 

 Regulatory agencies and industry recognize the potential dangers that petroleum 

spills and associated organic pollutants pose to human health and the environment. 

Currently, treatment and removal of harmful constituents, such as NAPLs from 

contaminated soils is considered to be preferable to disposal without treatment, e.g., in a 

landfill.  In addition, the availability and cost of landfilling for petroleum contaminated 

soils is constantly changing as many landfills refuse to accept these soils due to strict 

regulations or increase in their dumping fees (Friend 1996).   
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In response to the growing need to address contamination of the subsurface, 

several remediation technologies based on chemical, physical, or biological processes 

have been developed to treat soil and groundwater that is contaminated by petroleum 

hydrocarbon NAPLs (Khan et al. 2004).  Most common technologies for remediation of 

petroleum contaminated soils (PCSs) are: soil washing, soil vapor extraction, soil 

flushing, vitrification, thermal desorption, biopiles, landfarming, bioslurry systems, 

bioventing, encapsulation, and stabilization (Kamnikar 2002). On the other hand, air 

sparging, pump-and-treat, biosparging, groundwater circulation wells, natural attenuation, 

and permeable reactive/sorptive barriers are the technologies that are commonly used for 

the remediation of NAPL-contaminated groundwater. Each of these techniques have 

advantages and disadvantages depending on factors such as site characteristics and 

contamination type.   

Among these methods, the pump-and-treat method is perhaps the one most 

commonly known, in terms of NAPL clean-up from subsurface. However, as an ex-situ 

remediation method, pump and treat has a poor success record. Some of the problems 

associated with conventional ex-situ groundwater treatments are: (1) the need to manage 

large volumes of water containing very low concentrations of contaminants, (2) 

significant disruptions of normal operations for long time periods, and (3) the high cost of 

operating a large-scale project for a long time (Cantrell and Kaplan 1999).  

In recent decades, the problems with the pump-and-treat methods have led to an 

increasing interest in alternative, innovative treatments some of which are outlined above. 

Of these other technologies, of particular relevancy to this research are stabilization of 
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contaminated soils and permeable reactive/sorptive barriers which are reviewed further 

below.  

2.1.1  Stabilization of Petroleum Contaminated Soils  

 Stabilization is the process that reduces the mobility of the hazardous substances 

and contaminants in the environment through both physical and chemical means (FRTR 

1999). Stabilization should be distinguished from solidification, which is the 

encapsulation of waste materials in an inflexible monolithic solid of high structural 

integrity.  

Stabilization of contaminated waste soils (e.g., PCSs) and their beneficial reuse as 

part of landfill caps and highway embankments had been encouraged by the U.S.EPA 

(Meegoda et al. 1998). For example, petroleum contaminated soils have been utilized in 

various stabilization applications such as a substitute for a fine aggregate in concrete 

(Ezeldin et al. 1992), in mixture for asphalt concrete (Meegoda 1999), as well as in 

highway construction as fill material (Meegoda et al. 1998).  

One alternative and cost effective way of stabilizing PCS is through the use of 

coal combustion by products (CCB) as stabilizing agents. According to the American 

Coal Ash Association, more than 70 millions tons of these products are landfilled each 

year; therefore their beneficial use, e.g, in construction, is highly desirable (Kulaots et al. 

2004).  One of the CCBs of current concern is high carbon content (HCC) fly ash, which 

to date has seen liitle use in environmental remediation. Tuncan et al. (2000) did attempt 

to use fly ash in stabilizing petroleum spills; however, their approach relied on creating a 

monolithic medium and encapsulating the petroleum contaminants rather than adsorption 

of the pollutants inside contaminated soils.  Nevertheless, petroleum hydrocarbons can be 
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adsorbed by the available carbon present in high carbon content fly ash, and stabilized 

PCS stabilization using such an approach can be potentially reused in highway 

constructions, as reviewed further in section 2.4 below.  

Even though fly ash is classified as non-hazardous waste by the U.S. EPA, it is 

common to conduct metal leaching tests on soil-fly ash mixtures to evaluate their use for 

engineering applications (Marota-Valler et al. 1999). This mainly due to the fact that 

most of the fly ashes contain traces of heavy metals. The amount and distribution of 

metals in fly ash depend mainly on the type of coal and the burning process.  Bin-

Shafique et al. (2006) addressed the behavior of heavy metal leaching from soils 

stabilized with fly ash. Heavy metal leaching performance of fly ash-stabilized soils was 

evaluated through laboratory water leach and column tests as well as through analysis of 

leachate collected in lysimeters in a field highway test cell. The results indicated that 

concentrations of metals in leachate from soil-fly ash mixtures prepared with various soil 

and fly ashes at different fly ash content tend to be lower (1.5 to 2.5 times) than those 

from fly ash alone. Leaching potential of a metal from a soil-fly ash mixture depends on 

the metal concentration in the fly ash as well as in the soil, pH of the leachate, the cation 

exchange capacity (CEC) of the soil, and type of the fly ash.  

The release pattern of metals from the soil-fly ash mixtures appears to be 

adsorption-controlled. Adsorption of metals is highly dependent on the pH of the pore 

fluid. However, the pH of the soil-fly ash mixtures appears to be persistent, which yields 

a limited leaching for at least 30 pore volumes of flow, which corresponds to at least 30-

years of flow in the field for a roadway application (Bin-Shafique et al. 2006). 
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2.1.2  Permeable Sorptive Barriers for Contaminated Groundwater Clean up 

 Permeable treatment barriers have been increasingly used for groundwater 

remediation in the last decade.  Typical contaminants of concern are chlorinated solvents, 

radioactive isotopes, petroleum compounds, mine waste, or septic discharge (Lee and 

Benson 2002).  The concept of permeable treatment barriers is relatively simple. Reactive 

material is placed in the subsurface where a plume of contaminated groundwater must 

pass through it as it flows, typically under a natural gradient (creating a passive treatment 

system) and treated groundwater comes out the other side.  Composition of the reactive 

zone may vary; however, in all cases the hydraulic conductivity of the zone is designed to 

be greater than or equal to the surrounding aquifer so that the barrier does not impede 

groundwater flow.  Most commonly used treatment barriers are currently permeable 

reactive barriers (PRB), where zero valent iron is employed as the reactive media for 

converting contaminants to non-toxic or immobile species (FRTR 1999).   

Permeable treatment barriers provide a versatile containment option because they 

are a passive means of removing contaminants from groundwater and they can be applied 

to different sites and contaminants by choosing an appropriate reactive media. Reactive 

media are selected based on their effectiveness to treat site-specific contaminants (Lee et 

al. 2004), and constitute the major cost for the PRB application. Cost of the reactive 

material for in-situ barrier technology is particularly important because much larger 

quantities are generally required than ex-situ applications (Cantrell and Kaplan 1999). 

Due to high cost of conventional manufactured filling materials such as zero valent iron 

and activated carbon, current research is underway to investigate the effectiveness of 

alternative reactive materials.   
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The concept of incorporating alternative materials into permeable reactive barriers 

is fairly new, but the compounds of interest treated with such alternative media cover a 

wide range including Trichloroethylene (TCE), petroleum hydrocarbons as well as trace 

elements and heavy metals. The reaction mechanism in these PRBs is typically sorption 

and the term “permeable sorptive barriers” (PSBs) recently been adopted for this as 

innovative clean-up technology (Woinarski et al. 2003).  Like PRBs, PSBs contain media 

that remove contaminants from the groundwater, however, in this case the removal 

mechanism is an immobilization process, in which the organic pollutants are adsorbed 

onto the sorptive medium surface (Khan et al. 2004). 

Laboratory studies have demonstrated the effectiveness of various natural and 

synthetic sorbents in removing contaminants from aqueous solutions. Materials that have 

been investigated as a potential reactive/sorptive medium for treatment of groundwater 

containing both organic and inorganic pollutants in permeable barriers include: ground 

rubber from scrap tires (Kershaw et al. 1997), foundry sand (Lee et al. 2004) and peat 

(Guerin et al. 2002, Ramussen et al 2002), metal oxides, bottom ash, fly ash (Cantrell and 

Kaplan 1999), organic carbon (USEPA 2006a), wood chips, limestone, manure (USEPA 

2006b), paper sludge (Moo-Young and Zimmie 1997), and tire chips (Kim et al 1997), 

lignitic coal (Jenk et al. 2003). 

Of these materials use of ground rubber, foundry sand and peat as a permeable 

sorptive barrier is discussed further below. In a study on ground rubbers shredded from 

scrap tires, Kershaw et al. (1997) examined the ability of ground rubber to remove 

benzene and o-xylene from groundwater.  The results of batch scale sorption tests 

revealed that ground rubber can sorb up to 1.3 and 8.2 mg/g-tire rubber of benzene and o-
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xylene, respectively, mainly due to the interaction of the polymer chains present in the 

rubber with BTEX compounds.  Column tests also indicated that ground tire rubber has a 

high sorption capacity, which makes it a possible sorptive medium for permeable reactive 

barriers (Kershaw et al. 1997).   

Lee and Benson (2002) studied the use of foundry sand as a PRB medium.  

Specifically, batch tests were performed to investigate the applicability of foundry sand 

as a sorptive medium for herbicides such as alachlor and metolachlor as well as a reactive 

media for chlorinated solvents such as trichloroethylene (TCE), 1-1 dicholoroethylene, 1-

2 dicholoroethylene and 1-2 cisdicholoroethylene.  Column tests were performed to 

simulate the field conditions more realistically. The columns had a diameter of 25 mm 

and a height ranging from 200 mm to 450 mm with simulated groundwater flow 

maintained in a range of 20-60 mL/day. Column sorption test results indicated that 

foundry sand a high sorption capacity for all chemicals tested with linear partitioning 

coefficients ranging between 1.0 and 54.8 L/kg. A 25 % difference between the partition 

coefficients obtained from batch and column tests was attributed to the variation of solid 

to solution ratio in two tests.  

Guerin et al. (2002) studied peat as a sorptive medium in a full scale PSB 

application to treat groundwater that was contaminated with petroleum hydrocarbons.  A 

permeable sorptive barrier was constructed in front of a hydrocarbon plume that 

originated from an UST facility.  Peats mixed with cocoa fiber were placed in a 27 m 

long, 0.6 m deep and 0.6 m wide trench.  A 10-month monitoring of the plume suggested 

that the removal efficiency of petroleum hydrocarbons such as BTEX compounds was 

relatively high (i.e., up to 97 % removal of toluene). 
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In a recent study, Doherty et al. (2006) has tested ammonium sorption capacity of 

fly ash from a peat burning power plant. The fly ash produced on a by-product of 

combustion of this organic material, was highly effective in removing the ammonium 

compounds in a field sequential barrier system. The fly ash also did not inhibit the 

microbial medium in this field application.   

2.1.3  Bio-reactive Barriers  

PSBs have great potential for removing the organic compounds from 

contaminated groundwater via sorption; however, they can be improved by incorporating 

the biodegradation (biotransformation) capabilities of the natural microorganism (Kalin 

2004). Accordingly, these barriers combine the two processes in a unique way in that 

they can be engineered to prevent via sorption the contaminant movement across the site 

boundaries before risk receptors are impacted and confine contaminant plume in the 

barrier. Subsequently the pollutants may then dissipate via biodegradation by naturally 

existing microorganisms (Kalin 2004). Several recent studies have shown the potential 

for utilization of an engineered passive barrier in front of contaminated plume to take the 

advantage of potential microbial degradation of the hazardous contaminants. These 

passive biodegradation barriers are often called bioreactive barriers (Kalin 2004).   

For example, Warith et al (1999) conducted a laboratory study on bioreactive 

barriers, in which they simulated the biodegradation process using soil columns 

composed of sand inoculated with non-indigenous microorganism. A contaminated 

groundwater plume was modeled using an aqueous naphthalene solution. After 

determining the optimum biomass concentration and optimum hydraulic conductivity 

through soil column tests, they determined the naphthalene biodegradation potential 
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using non-indigenous bacteria harvested from municipal activated sludge. The results 

indicated a 100% naphthalene removal under aerobic conditions, emphasizing the fact 

that ultimate transport and fate of naphthalene was strongly affected by adsorption to 

barrier medium. A sensitivity analysis conducted on the column test results indicated that 

the parameters like the first order biodegradation rate, sorption retardation factor, 

dispersivity, porosity and hydraulic gradient have an equal effect on the naphthalene 

removal. Hydraulic conductivity, however, had the highest influence on the fate of the 

contaminant in a bioreactive barrier.  

The results from other laboratory and filed studies suggest that PAHs (Ramussen 

et al 2002), MTBE (Salanitro et al. 2001, Liu et al 2006), BTEX (Tiehm et al,2001, 

Lorbeer et al. 2002, Guerin et al 2002), and TCE (Tiehm et al,2001, Lorbeer et al. 2002) 

can be successfully removed from groundwater using bioreactive barriers. Although the 

microorganisms and barrier medium varied depending on the application Table (2,1). All 

these studies rely on the biodegradation capacity of the bioreactive barrier under aerobic 

conditions.  

Activated carbon, a commonly used sorptive medium due to its high adsorption 

capacity, has also been incorporated into bioreactive barriers as a substratum to support 

the growth of microbial population during the biodegradation process. It has been used 

either sequentially (Lohbeer et al. 2002) or mixed (Shirazi et al. 2001) with the 

biodegradation process to extend the life time of the barrier. Recently, Leglize et al. 

(2006) evaluated the applicability of activated carbon as a reactive medium for 

bioreactive barrier applications. In these experiments, phenanthrene was used the model 

contaminant and the microorganism used was a phenanthrene-degrading strain isolated 
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from PAH contaminated soil. They determined that phenanthrene removal via adsorption 

to the activated carbon and studied the biodegradation process. While expressing the 

necessity of dynamic test techniques (i.e. column experiments) in order to determine the 

role of each process, they showed the complementary effect of biodegradation and 

sorption-based removal system for a successful barrier.   

Given the importance of understanding the biodegradation and sorption processes 

for successful optimization and design of bioreactor systems, the next three sections 

review three topics in more detail. First, biodegradation of naphthalene and o-xylene, the 

two model contaminants in this study, is reviewed. Then sorption and fly ash, the sorptive 

material used in this research, are reviewed. 

2.2  Biodegradation  

Naturally occurring microorganism induced biological processes have been 

utilized for mitigation of organic contaminants from subsurface. Biological processes, 

which involve enzymes as catalysts, frequently bring extensive modification in the 

structure and toxicological properties of pollutants. These transformation or 

mineralization processes, commonly known as biodegradation, can be defined as the 

biologically catalyzed reduction in the complexity of the chemical, wherein organic 

molecules converted into basic organic elemental form (i.e., C, N, O, H) or simpler 

organic compounds (i.e., CH4, CO2, H20) during their transport in the subsurface 

(Alexander 1999). 

 In natural systems biodegradation occur in many different of conditions such as 

aerobic, anaerobic, metagenic, sulfate reducing and nitrate reducing conditions. Among 

these aerobic degradation of PAHs like naphthalene has been studied extensively (Wraith 
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et al 1999). Because the bacterial metabolism of naphthalene under aerobic and is of 

importance for this research, it is reviewed in this section. 

 During naphthalene degradation NH4Cl and Na2HPO4 present in the synthetic 

groundwater served as the N and P source, respectively. The overall stoichiometry for 

aerobic naphthalene degradation, including biomass synthesis, with ammonia as the 

nitrogen source, is as follows (McCarty 1987): 

C10H8 + 6O2 + 1.2 NH3    →   1.2 C5H7O2N + 4CO2 +1.6H2O                 (2.1) 

 This equation was used as the for the nutrient requirement calculation based on 

stoichiometry of biological reaction of naphthalene. Similarly, biodegradation of xylene 

isomers is shown below with Equation (2.2) including cell synthesis.  

C6H4(CH3)2 + 4.234 O2 + 1.256 HCO3 + 1.256 NH4
+ → 1.256 C5H7O2N + 2.986 CO2 + 

3.746 H2O (2.2) 

2.3  Sorption 

 Sorption is the process in which the chemicals become associated with solid 

phases.  It is extremely important because it may dramatically affect the fate and impacts 

of chemicals in the subsurface environment (Schwarzenbach 1999).  The term “sorption” 

is used to denote the uptake of a contaminant by soils or sediments without referring to a 

specific mechanism. The term adsorption and absorption are used to define specific 

processes involved (Chiou 2002). Adsorption refers to when molecule attachs to two 

dimensional surfaces, whereas absorption is reserved for the phenomena in which the 

organic molecules penetrate (partition) into three-dimensional matrix of a solid.   

Sorption of organic chemicals in the subsurface is controlled by several factors 

including soil type (e.g.: mineral and organic matter content) and physico-chemical 
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properties of the contaminant(s) (e.g., aqueous solubility, polarity, hydrophobicity, 

lipophilicity and molecular structure) (Semple et al. 2003). Therefore, prediction of the 

fate of the organic compounds in a soil environment is difficult due to the highly complex 

interaction between organic molecules (sorbate) and solid phases (sorbent).  For example, 

a non-polar organic chemical in aqueous solution may escape from water and penetrate 

into the soil organic matter.  Additionally, a nonpolar organic chemical may displace 

water molecules from the region near a mineral surface and be held there by London 

dispersive forces (van der Waals bonds) and by polar interactions (Schwarzenbach et al. 

1993). On the contrary, polar molecules attach to charged surface molecules (i.e., 

negatively charged mineral surfaces) and nonpolar substances may attach to the surface 

or diffuse inside to organic matter in the system. All of these interactions occur 

simultaneously, and the combination that dominates the overall solution-solid distribution 

will depend on the structural properties of the organic sorbate and the solid sorbent of 

interest.   

Previous research indicates that the sorption of organic contaminants in solids occur in 

five different ways: (1) absorption via diffusion through rubbery ”soft” organic matter, 

(2) absorption via diffusion through glassy “hard” organic matter, (3) adsorption on to 

surface of organic matter, (4) adsorption onto mineral surfaces, and (5) adsorption into 

micropores of minerals with porous surface (Luthy et al. 1997). These processes are 

illustrated in Figure 2.2.  The terms refer to phases of solid the solid organic content, 

rubbery or ”soft” and glassy or “hard” both of which phases contain dissolution sites. The 

glassy phase is thought to contain more rigid cavities (holes) than glassy phase where 

contaminants can interact with the organic matter. A contaminant thus diffuses into this  
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Figure 2. 2 Diagram showing five concepts sorption of an organic contaminant sorption 
onto a sorbent (Adapted from Semple et al. 2003) 
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complex structure and is sequestered into the organic matter. The rates of diffusion are 

controlled by radii of soil particles, and shape of the pores (Semple et al. 2003).  

 The reaction kinetics of the organic chemicals also play a significant role on the 

adsorption of the contaminants. Organic contaminants generally exhibit two kinetic 

stages within the solid gepsorbent phases (e.g., sediments, natural soils). Initially, a 

portion of the contaminant can be sorbed quickly (in minutes to a few hours), whereas the 

remaining fraction is sorbed more slowly over weeks or months (Xing and Pignatello 

1997). The initial rapid sorption is generally constitutes the significant proportion and is 

due to hydrogen bonding and van der Waals forces, mechanisms that are expected to 

occur instantaneously upon contact of the organic chemical with the solid surface, 

especially the surface of the organic content (Chiou 2002, Semple et al. 2003).  

2.3.1  Sorption Equilibrium Isotherms 

 In the laboratory, the sorption behavior of the solids and organic chemicals under 

equilibrium conditions is generally studied using sorption isotherms. Isotherms are 

graphic representations of the distribution of a given compound between a liquid phase 

and a solid phase at a constant temperature (Carmo et al. 2000). Sorption isotherms are 

commonly employed in evaluating the organic or inorganic contaminant sorption 

capacity of soils and other geomaterials.  The isotherm type and its degree of nonlinearity 

is consistent with the sorption mechanism(s) prevailing in a given system 

(Schwerzenbach 1993). Experimentally determined sorption isotherms generally exhibit 

different shapes. The first case is the one in which the affinity of the compound for the 

solid remains the same over an observed concentration range (Schwerzanbach et al. 

1993). 
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This type of the isotherm is called a linear isotherm.  It is applicable to the 

conditions where partitioning of the contaminants into the homogeneous organic phase is 

dominating the overall sorption and where the strongest adsorption sites are far from 

being saturated at low concentrations. The general equation for a linear isotherm is: 

fd CKq =                                                        (2.3) 

where q is the sorbed amount at equilibrium (mg/kg), Kd is the partition coefficient (L/kg) 

and Cf is the equilibrium (final) concentration (mg/L).  

Even though linear isotherms are commonly employed, the heterogeneous 

structure of soils may suggest nonlinear sorption behavior. There are four previously 

studied phenomena that cause isotherm nonlinearity: (1) retention by the heterogeneous 

solid organic matter that contains both ”rubbery” (or soft) and “glassy” (or hard) polymer 

like sorption domains, (2) the presence of small quantities of high surface area 

carbonaceous materials such as soot, black carbon (Carmo et al. 2000) (3) the availability 

of different sets of internal pores in organic matter for adsorption of different organic 

chemicals and (4) the presence of specific interactions between polar organics and limited 

active sites in organic matter (Chiou and Kile 1998).  

 The common approaches for accounting this nonlinearity are use of the Langmuir 

and Freundlich isotherms. The Langmuir sorption isotherm is preferred when the sorption 

of chemicals occur on a solid surface that contains a fixed number of identical active 

sorption sites. The equation for Langmuir isotherm is, 

fL

fL

CK
CKQ

q
+

=
1

max                                                         (2.4) 
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where q is the sorbed equilibrium concentration (mg/kg), Qmax is the sorption capacity of 

particular solid (mg/kg), KL is the Langmuir isotherm coefficient (L/kg), and Cf is the 

equilibrium (final) aqueous concentration (mg/L).  One conceptual difficulty of the 

Langmuir isotherm is that, in some cases, the estimated sorption capacity greatly exceeds 

that theoretically allowed by monolayer coverage on solid surface (Xia and Ball 1999).  

The Freundlich equation was developed mainly to account for the empirical 

observation of a variation in adsorption with concentration of the sorbate on an 

heterogeneous surface (Haws et al. 2006). The Freundlich isotherm has the following 

form:  

n
fFCKq =                                                        (2.5) 

where q is the sorbed equilibrium concentration (mg/kg), KF is the Freundlich isotherm 

coefficient (mg/kg)/(L/kg)-n, Cf is the equilibrium (final) aqueous concentration (mg/L), 

and n is the dimensionless parameter that denotes degree of deviation from isotherm 

linearity.  Freundlich isotherm assumes that there are multiple types of sorption sites 

acting in parallel, with each site type exhibiting a different sorption free energy and total 

site abundance (Schwarzenbach et al. 1993).  In case of n=1, the isotherm is linear and 

indicates constant sorption free energies at all sorbate sites, whereas when n<1, the 

isotherm is concave downward and suggests that the added sorbates are bound with 

weaker free energies. The case when n>1 indicates that the isotherm is convex upward 

and suggests that the more sorbate present in the sorbent enhances further sorption.  

 In the case of sorbents with a complex nature, the nonlinearity can not be fully 

described by a Langmuir or a Freundlich isotherm. Therefore, Cooney (1999) and 
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Maurya and Mittal, (2006) have offered a combination of Freundlich and Langmuir 

isotherm. This combined isotherm has three unknowns, and can be defined as, 

    n

n

bCf
bQmCfq

+
=

1
                                                          (2.6) 

where q is the sorbed equilibrium concentration (mg/kg), b is the combined isotherm 

coefficient (mg/kg)/(L/kg)-n, Cf is the equilibrium (final) aqueous concentration (mg/L), n 

is the dimensionless parameter, and Qm is the sorption capacity of particular solid 

(mg/kg).  

 Even though empirical models like the Freundlich isotherm (Equation 2.5), can 

have some qualitative mechanistic relevance assigned to its parameters, more 

theoretically-based models have been increasingly used (Nguyen et al 2004). For 

instance, the Polanyi adsorption model has been successfully implemented by many 

researchers to model the adsorption of non-polar hydrocarbons onto activated carbon 

(Xia and Ball, 1999, Crittenden et al 1999, Kleineidam et al 2002). The theory was first 

applied by Polanyi for gas adsorption. Polanyi adsorption theory explains the adsorption 

as a sorbate molecule (e.g., organic chemical) comes in the close vicinity of a sorbent 

surface. According to the theory, an adsorption potential (ε) exists in this vicinity and 

depends on the distance to the surface and the physical and chemical properties of the 

sorbents (Xia and Ball 1999). More specifically, ε defines equal values that form 

equipotential surfaces that together withhold volume with the solid surface. The 

schematic representation of the Polanyi adsorption theory is shown in Figure 2.3. 

Equation 2.5 defines ε for the gas adsorption: 

)/ln( PPRT o=ε                                                   (2.7) 
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Figure 2. 3 Representation of the pore surface with equipotential surfaces corresponding 
to adsorption potential for lower values with increasing pore size (Manes 1998). 
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where R (J K-1 mol-1)is the ideal gas constant, T (K) is the temperature at equilibrium, 

Po/P is the partial pressure.  

Polanyi describes how the volume of the adsorbed molecules can be plotted 

against the adsorption potential (ε) to a obtain characteristic curve for adsorption (Allen-

King et al. 2002). According to Manes (1998) characteristic curve can be used to provide 

a relationship between the sorbent surface with multiple sorbates by applying a 

correlation divisor or normalization factor to (ε) so that one can obtain a correlation curve 

between adsorbed volume (q’) and adsorption potential for multiple solutes. For example, 

Dubinin and Ashtakhov (1960) further applied the Polanyi theory to sorption of organic 

chemical in highly porous solids via pore filling mechanism by fitting a line through a 

correlation curve: 
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where q’max stands for maximum sorption capacity , d is the characteristic curve fitting 

parameter, and βiEo is normalization factor, which is a characteristic energy of adsorption 

(Allen-King et al. 2002).  

 Manes (1998) further developed the Polanyi theory for aqueous adsorption of 

partially miscible solutes and defined the adsorption potential as: 

)/ln( CfCsRTsw =ε                                                  (2.9) 

 where εsw is the effective adsorption potential (J/L) of partially miscible solutes, Cs is the 

solute solubility (mg/L) and Cf is the equilibrium concentration of the solute (mg/L).  

Manes (1998) modified the normalization factor as molar volume of the sorbate, although 

he suggested using an additional correlation factor (γ).  
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The final version of the Polanyi theory used in this study was developed by Xia 

and Ball (1999). Xia and Ball (1999) named their approach the Polanyi-Manes (PM) 

model; however, in this work this approach to the Polanyi theory is hereafter refered to 

the Polanyi-Dubinin-Manes (PDM) model, consistent with other researchers (Allen-King 

et al 2002, Haws et al 2006).  The characteristic curve equation developed by Xia and 

Ball (1999) is given as follows: 

( )
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where q’ is the adsorbed volume per unit mass of sorbent (L/kg), q’max’ is the adsorption 

volume capacity at the saturation (L/kg), εsw is the adsorption potential (J/L), and N is the 

normalizing factor for weakly polar solutes, which is taken as the molar volume (VS), 

where Vs is the ratio between molecular mass (cm3/mol) and solute density (g/cm3).   c 

and d are the fitting parameters. c corrects for the use of Vs and normalizing sorption 

potential and d reflects the nature of the stochastic distribution of εsw/N (Nguyen et al. 

2007). The molar volume, which represents the molecular size of the organic molecule, 

was determined to be the best method of normalization compared to other factors like 

polarity, and hydrogen-bonding parameters, which are indication of a molecule’s 

hydrophobicity and van der Waals forces predominant during adsorption, respectively 

(Crittenden et al. 1999).  

 The PDM model isotherm has great potential to simulate the equilibrium sorption 

data ion for multiple organic chemical as a single data set by using the appropriate q’max, 

d and c/Nd. Thus the PDM equation has two main potential benefits for environmental 

engineers. First, it predicts the same volumetric loading (q’) for all compounds having the 
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same value of  Cs/Cf, on the abscissa of the characteristic curve. Second, for a reference 

compound at single temperature, the correlation curve can be applicable to predications at 

different temperatures (Allen-King et al. 2002).  

 An improved adsorption model known as the Fritz-Schluender isotherm goes 

beyond the current empirical and mechanistic models, with five fitting parameters, has 

been implemented by Fritz and Schluender (1974), Mollah and Robinson (1996), Yang 

and Al-Duri (2000) and Maurya and Mittal (2006) for sorption of various hydrophobic 

organic compound adsorption onto different sorbents like activated carbon. The model 

equation is given as:  

2
21
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where q is the sorbed concentration at equilibrium (mg/kg), Cf is the equilibrium (final) 

aqueous concentration (mg/L). α1 (mg/g)/(mg/L)β1and α2 (mg/L)β2  are the Fritz-

Schluender isotherm parameters, and  β1, β2 and α1’ are the dimensionless Fritz-

Schluender isotherm parameters, which indicate the sorbent heterogeneity (Yang and Al-

Duri 2000).  

 The Fritz-Schluender isotherm model was selected for evaluation in this work 

because it is a hybrid model between the Freundlich and Langmuir models with a 

substantial number of fitting parameters. Due to the difficulties associated with 

estimating the chemical heterogeneity of the surface and complex sequestration 

processes, a model with greater number of model constants can possibly yield a better 

prediction (Maurya and Mittal 2006).  

 Numerous studies have been conducted to relate the sorption behavior of 

numerous organic and inorganic chemicals with various sorbents using different isotherm 
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models. More importantly, it has been widely investigated whether one isotherm model is 

superior to others for explaining the sorption isotherms by means of physical and 

chemical interactions, such as, the pore structure of the sorbent and the types of the bonds 

between sorbent and sorbate (Malek and Farooq 1996, Crittenden et al 1999, Maurya and 

Mittal 2006). For example, Malek and Farooq (1996) compared seven different nonlinear 

models using equilibrium adsorption data for three alkane hydrocarbons in activated 

carbon adsorption tests. Among the isotherm models analyzed, a combined approach of 

Freundlich and Langmuir isotherms (Equation 2.6 in Section 2.3.1) performed reasonably 

well and provides the better prediction than the other isotherm models.  

 In a more recent study, the applicability of sixteen different equilibrium models 

for sorption of basic dyes on activated carbon and bio-sorptive materials were studied by 

Maurya and Mittal (2006). The study evaluated isotherm models that incorporated 

different number of model parameters, ranging from one independent parameter (the 

linear model) to five independent parameters (the Fritz-Schulender model). There were 

several key conclusions from their study. The first was that the accuracy of the model fit 

to the experimental data improves with the number of model parameters. However, they 

have also concluded that isotherms having two model parameters (i.e., Freundlich and 

Langmuir isotherms) can be used to predict the adsorption process. Secondly, they used 

the theories behind the isotherm models and the data to understand the sorption 

mechanisms of the different sorbents tested. For example, they concluded that 

physicosorption may be responsible for adsorption onto activated carbon, and that 

chemisorption or other mechanisms based on ion exchange, chemical complexation and 

electrostatic forces may be the cause behind the sorption onto biosorptive materials.  
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2.4  High Carbon Content Fly Ash  

 Fly ash is a byproduct of coal-burning electrical power plants.  Fly ash exits in the 

combustion chamber flue gas, and it is captured by air pollution control equipment such 

as electrostatic precipitators, bag-houses, or wet scrubbers (Kalyoncu 2001). According 

to ASTM C- 618 fly ash can be categorized in two general classes: Class C and Class F. 

Class C fly ash has a lignite and sub-bituminous coal source and has a minimum silicon 

dioxide (SiO2) plus aluminum oxide (Al2O3) plus iron oxide (Fe2O3) level of 50 percent. 

In comparison, Class F fly ash has an anthracite and bituminous coal source and with a 

minimum SiO2 plus Al2O3 plus Fe2O3 level of 70 percent (ASTM 2005).   

According to American Coal Ash Association (ACAA), the total ash production 

of 858 power electrical plants in the Unites States is approximately 108 millions tons per 

year. Currently, only 30 % of this ash is being beneficially reused, with the remaining 

having to be landfilled (Kulaots et al. 2004).  The potential for beneficial reuse of fly ash 

is related to the chemical constituents in the ash. These chemical constituents mainly 

depend on the chemical composition of the coal. However, fly ash that is produced from 

the same source and which has very similar chemical composition may have significantly 

different ash mineralogy depending on the coal combustion technology used (Bin-

Shafique 2002).  This highly variable nature of the fly ash defines its utilization rate in 

construction applications as concrete grout, structural fill, cement clinker raw feed and 

road base or sub-base material. The concrete industry is the largest consumer of fly ash, 

and, the ASTM classifications help in understanding the pozzolanic behavior of the ash 

and, therefore, the potential for its reuse as a concrete additive. For example, Class C fly 
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ash with self-cementing properties due to its high calcium oxide –quick lime- (CaO) 

level, is commonly being used as a concrete additive.  

Unfortunately, the beneficial reuse percentage of fly ash in the concrete industry 

has been in a decline due to an increase in the amount of unburned carbon in the fly ash. 

This increase in unburned carbon is a result of the introduction of low nitrogen oxide 

(NOx) burners into the coal combustion system of power plants.  In order to address the 

environmental concerns about NOx emissions, the U.S. Congress passed the Clean Air 

Act Amendments (CAAA) in 1990. With the start of the implementation of Phase II of 

the CAAA, all power plants have to install continuous emission monitoring systems, 

which are instruments that monitor SO2 and NOx emissions (Kalyoncu 2001). In order to 

fulfill the requirements of the CAAA by reducing NOx emissions, many electric utilities 

installed no-NOx burners or retrofitted their current boilers according to the new 

regulations.  The installation of low- or no-NOx burners changes the flame temperature 

profile as well as the flame chemistry. In essence, a hot oxygen rich flame was replaced 

by cooler and longer fuel rich flame (Maroto-Valer et al. 1999).  

As a result, low-or no-NOx burners reduce NOx emissions by yielding a lower 

combustion efficiency, however, they also lead to a significant increase in the unburned 

carbon content in fly ash. In certain cases, the unburned carbon content exceeds the 

ASTM limit of 6%, for use in concrete application. This is due to the fact that the excess 

unburned carbon in concrete-containing fly ash cement reduces the freeze-thaw resistance 

of concrete by capturing the air-entraining agents that are used to modify the 

microstructure through introducing controlled porosity (Kalyoncu 2001). 
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Researchers are looking for innovative ways to utilize the unburned carbon inside 

the fly ash by separating it from the fly ash and using it as a raw material for activated 

carbon (Maroto-Valer et al.2001). Nevertheless, this operation is costly and alternatives 

to directly use high carbon content fly ash in geotechnical and environmental applications 

need to be assessed.   

The Loss on ignition (LOI) value is the most important parameter that controls the 

beneficial reuse of fly ash. For the fly ashes defined as Class F, which are commonly 

derived from Eastern U.S. coals, the LOI value is essentially equal to the unburned 

carbon content (Maroto-Valer et al. 1999). However, it is generally known that the 

ASTM LOI value is not sufficient to identify the suitability of fly ash for beneficial reuse, 

because this value only gives a rough approximation to the carbon content of sample. 

Plus it does not directly correlate with the capacity to adsorb some organic molecules 

such as the air entrainment additives of concrete industry (Maroto-Valer et al. 2001).   

In order to have a better understanding of the adsorption mechanisms between 

organic molecules and the high carbon content fly ash, the physical and chemical 

properties of the carbon have to be identified. In general this necessitates an investigation 

of the effects of surface area, and the chemical nature of the carbon surfaces on sorption 

(Kulaots et al. 2004).  For instance, petrographic analyses of high carbon content fly ash 

conducted in previous studies indicated that carbon in fly ash exists in three different 

forms: i) inertinite particles, ii) isotropic coke and iii) anisotropic coke. These three 

carbon forms have different densities, surface characteristics, pore structure and particle 

size (Maroto-Valler et al. 2001). Therefore, it is anticipated that each carbon forms may 

have specific sorption behavior.   
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Numerous studies are available in the existing literature that confirm the capacity 

of fly ash for removal of organic contaminants from aqueous solutions. For example, 

Banerjee et al. (1995) conducted a study to investigate seven different fly ashes as a 

sorbent material to isolate and immobilize alcohols and ketones from aqueous solution.  

The results of that study indicate that fly ash has a significant adsorption capacity for 

organic compounds. Unburned carbon was the only constituent in the fly ash that 

correlated well with the adsorption capacity.  

Akgerman and Zardkoohi (1996) studied the adsorption capacity of a fly ash with 

a surface area of 1.87 m2 /g. for phenolic compounds. The ash adsorbed 67, 20 and 22 

mg/g phenol, cholorophenol and 2,4-dicholorophenol, respectively. Freundlich isotherms 

were successfully used to model the observed adsorption capacity. Similarly, Banerjee et 

al (1997) found that the Freundlich isotherm describes the removal of o-xylene by fly 

ash. However, the rate of adsorption of o-xylene observed by Banerjee et al (1997) was 

dependent on the size and carbon content of the fly ash used. This “size effect” was also 

evident in the adsorption capacity of fly ash for other organic compounds.  (Kulaots et al. 

2004). Previous research also suggested that high carbon content fly ashes can be 

beneficial for removal of herbicides (Konstantinou and Albanis 2000), PCBs (Nollet et al. 

2003) and dyes (Jonas et al. 2003, Wang et al. 2005a) via adsorption.  

Mott and Weber (1992) investigated the effectiveness of Class F fly ash as a 

sorptive barrier medium in a low permeability slurry wall. Fly ash, containing varying 

amounts of unburned carbon (i.e., 6.5 % to 10.3%), exhibited a significant sorption 

capacity as a barrier medium. Even though numerous studies have been conducted on 

alternative barrier materials as described above, there is still relatively little information 
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available on sorption and reaction properties of CCBs, particularly on Class F fly ash, as 

a sorptive medium for permeable reactive barriers.  

2.5  Synthesis of Previous Studies and Motivation for the Current Research 

 Past research indicates that petroleum spills are one of the most common sources 

of soil and groundwater contamination (Mercer and Cohen 1990). Removal of these 

pollutants from subsurface environment is essential and use of waste and recycled 

materials in remediation technologies is becoming popular due to economic reasons. For 

instance, legislation have been promulgated in many states to incorporate recycled 

materials into engineering applications. One alternative material that is abundant in 

Maryland as well as in various parts of the U.S. is high carbon content (HCC) Class F fly 

ash (Petzrick 2001).  Two potential ways of incorporating HCC fly ash into 

environmental remediation are to: (1) use it as a binder in stabilization of petroleum 

contaminated natural soils (e.g., borrow material)  for their further beneficial reuse in 

highway construction, and (2) use it as part of a PRB medium in remediation of 

contaminated groundwater plumes.    

Traditionally, borrow materials have been derived from natural materials (soil).  

As a result, testing and approval processes are geared to evaluate natural materials.  

Furthermore historically, the natural material approval process has not required an 

environmental review.  However, many producers of recycled soil-based materials use a 

reclamation process to stabilize the contaminants. After the reclamation process, the soil 

may still contain the original contaminant(s), which may, in turn, affect the engineering 

properties of the material. Therefore, normal testing procedures may be inappropriate for 

approval and construction quality assurance. Currently, there are no definitive criteria for 
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determining the suitability of these products for use in a transportation project although 

there is a generic acceptance process for recycled materials. To make progress in this 

area, additional information concerning the geotechnical and environmental properties of 

recycled or reclaimed soil is needed.   

Moreover, although several studies have been conducted on alternate barrier 

materials, as discussed above, limited information exists about the sorption properties of 

CCBs, and particularly the HCC Class F fly ash.  Such information is highly essential if 

these ashes are to be used as part of a permeable reactive barrier. Although fly ash has 

been considered as an alternative material for removal of inorganic heavy metals and 

trace elements from groundwater (Czuda and Has 2002, Komnitsas et al. 2006), further 

research is needed to show its feasibility as a reactive medium in a barrier application. 

For any type of sorptive barrier, the development of a predictive model and further design 

requires accurate characterization of sorption capacity using laboratory column tests 

(Rabideau et al. 2001).  

Bioreactive barriers are gaining momentum as viable alternative to traditional 

remediation techniques, because contaminants are biologically degraded instead of only 

being immobilized via sorption. Incorporation biotransformation processes is also logical 

way of extending the lifetime of permeable reactive/sorptive barriers. Accordingly, 

research efforts are needed to study the behavior of biodegradation processes coupled 

with sorption mechanism, within a bioreactive barrier, and modeling of full-scale 

permeable reactive barrier systems to address the bioremediation and sorption capacities 

in operational parameters.  
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In order to respond to these needs, standard compaction tests and column leaching 

tests were undertaken to evaluate the geotechnical performance and environmental 

suitability of petroleum-contaminated soils stabilized by using HCC fly ash.  For 

adsorption capacity assessments, a series of batch adsorption tests were conducted with 

two petroleum hydrocarbons and seven Maryland fly ashes. A series of composite 

column sorption-desorption were also conducted on the same fly ashes. Finally 

biodegradation processes within the sorptive media was evaluated using column 

biodegradation tests. The results coupled with a numerical model were used to define a 

set of design parameters for a barrier system that is capable of operation for the long 

term, with little or no maintenance.  
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Chapter 3: Batch Adsorption Tests on HCC Fly Ash 
 
 A series of batch adsorption tests were performed to characterize the organic 

contaminant adsorption capacity of the high carbon content fly ash for selected non-polar 

organic compounds specifically, Naphthalene and o-xylene. The batch adsorption 

technique is one of the most commonly used laboratory methods for determining 

adsorption isotherms and estimating partitioning coefficients of geologic materials 

(USEPA 1999).  This test method is generally listed under the category of screening tests 

and is applicable to a large group of pollutants and geomaterials (Kim et al. 1997, Kim et 

al. 2001, Headley et al. 2001, ASTM 2003).  

3.1  Materials 

3.1.1  Physical and Chemical Properties of the Fly Ashes 

 Seven different fly ashes obtained from six different electrical power plants 

located in Maryland were employed in the testing program. The fly ashes were named 

after their plant of origin as follows: Morgantown (MT), Potomac River (PR), Brandon 

Shores (BS), Chalk Point (CP), Paul Smith (PS), Dickerson Precipitator (DP), and 

Dickerson Baghouse (DB) ashes. They were all produced as a result of burning 

pulverized bituminous coal and classified as Class F fly ash according to ASTM C 610.  

The chemical properties of these fly ashes are summarized in Table 3.1.  These 

values are determined in the analytical testing facility of ALS laboratory group Portland, 

Oregon.  In addition, several physical properties of the fly ashes were determined. 

Mechanical sieving and hydrometer analyses were conducted following ASTM D 422. 
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Table 3.1Chemical properties of the Maryland fly ashes employed in the testing program. 
Constituent PS DB DP BS CP MT PR 

SiO2 (%) 50.8 37.73 34.91 45.13 50.16 49.15 52.47 

Al2 O3 (%) 26.88 27.26 24.42 23.06 23.09 25.48 24.9 

Fe2 O3 (%) 5.51 11.53 12.59 3.16 14.51 13.74 6 

CaO (%) 0.73 3.77 3.18 7.82 2.67 2.48 1.47 

MgO (%) 0.57 0.53 0.52 0.83 1.27 0.87 1.28 

Na2O (%) 0.21 0.25 0.26 0.25 0.56 0.58 0.79 

K2O (%) 2.19 1.02 1.05 1.68 2.25 1.86 2.85 

Cr2O3 (%) 0.02 0.04 0.03 0.02 0.02 0.03 0.02 

TiO2 (%) 1.48 1.5 1.29 1.42 1.21 1.37 1.29 

MnO (%) 0.01 0.01 0.01 0.01 0.04 0.02 0.03 

P2O5 (%) 0.17 1.33 1.02 0.09 0.32 0.58 0.23 

SrO (%) 0.03 0.24 0.21 0.06 0.11 0.13 0.15 

BaO (%) 0.05 0.1 0.11 0.06 0.14 0.08 0.17 

LOI (%) 10.7 14.9 20.5 13.4 3.2 3.1 8.3 

Note: LOI=Loss on ignition, i.e., unburned carbon content.  Gs=Specific Gravity, SSA= 
Specific Surface Area, PS=Paul Smith, DB=Dickerson Baghouse, DP=Dickerson 

Precipitator, BS=Brandon Shores, CP=Chalk Point, MT=Morgantown, PR=Potomac 
River. 

 
 

Table 3.2 Physical properties of the Maryland fly ashes employed in the testing program. 

 

Property PS DB DP BS CP MT PR 
Gs  2.20 2.37 2.34 2.17 2.43 2.45 2.29 

SSA(m2/g) 5.15 6.96 11.08 5.46 1.23 1.36 1.67 
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The resulting grain size distributions of these fly ashes are presented in Figure 3.1. 

Attempts made to measure the Atterberg limits (ASTM D 4318) indicated that the fly 

ashes are non-plastic. The measured values for the specific gravity (Gs) (ASTM D 792) 

and specific surface area (SSA) of the fly ashes are provided in Table 3.2. It is known 

that there are relationships between the physicochemical properties of geosorbents and 

SSA (Yukselen and Kaya 2006). The SSA measurements were conducted by Material 

Synergy laboratory in Oxnard CA following five point Brunauer-Emmett-Teller (BET) 

analysis by using a Micromeritic Gemini 2360. The samples were degassed under 

flowing UHP grade nitrogen for two hours at a temperature of 200 before the SSA 

measurements.  

 

3.1.2   Light Microscopy and Petrographic Analyses of Fly Ashes 

 Recent studies conducted by Maroto-Valer et.al. (2001) and Kulaots et. al. (2004) 

have suggested that the type of unburned carbon present in fly ash plays an important 

factor on its sorption characteristics.  Therefore, the formation and presence of carbon in 

the fly ashes collected from Maryland power plants was evaluated using two different 

analysis techniques. First, digital images of the fly ashes were captured using a Zeiss 

polarizing microscope equipped with a Nikon D1 digital SLR camera.  The microscope 

provided a magnification level in a range of 2.5 to 50X.  The captured images had an 

image resolution of 2000 by 1312 pixels, and the corresponding pixel size was 

approximately 2.5 x 10-3 mm. The specimens were illuminated from the top using 

American Optical external light stand providing incident light.  The light intensity was 

adjusted so that the fly ash particles were clearly visible.  Figure 3.2 shows one of the 

digital images of  
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Figure 3.1 Grain size distribution of the materials employed in the batch adsorption tests. 
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Figure 3.2 Different types of particles in Brandon shores fly ash 
A: Carbon particles, B: Inorganic particles . 
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Brandon Shores fly ash captured by this method. The digital images were mainly used to 

provide qualitative comparison of the fly ashes, which are primarily silica (Table 3.1) and 

the carbon particles present. Additional simple measurements conducted on the images 

indicated that the size of the carbon, and inorganic particles (silica and spinel) present in 

Maryland fly ashes varied from 100 to 1500 μm and from 10 to 100 μm, respectively. 

 The second method used to study the carbon type was petrographic analyses.  

These analyses were performed at the University of Kentucky Center for Applied Energy 

Research Laboratories using a Leitz Orthoplan microscope equipped with a 50X oil 

immersion objective.  The system utilized for the analyses employed a reflected-light 

optics technique. The fly ash specimens were impregnated in Sudan Blackdoped epoxy to 

eliminate the subsurface reflections that are common with a non-dyed epoxy (Maroto-

Valer et al. 1999). Previous petrographic studies of fly ashes have identified three distinct 

forms of unburned carbon in fly ash: (i) inertinites, which appeared to be nonfused 

particles; (ii) isotropic coke, which are the particles that extensively reacted and passed 

through a molten stage; and (iii) anisotropic coke, which are the particles more highly 

aligned with carbon particles (Hower and Mastalerz 2001). Inertinite particles were 

identified by morphology while isotropic particles were distinguished from the 

anisotropic particles by their optical activity. A summary of the results obtained from of 

the petrographic analyses is given in Table 3.3. Duplicate specimens of BS and DP fly 

ashes were subjected to petrographic analyses for quality control purposes. Table 3.3 

provides the amounts of the three different carbons as well as other inorganic constituents 

in terms of their percentages by volume. 
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Table 3.3 Inorganic and carbon constitutes of Maryland fly ashes determined through petrographic analysis (all values 
are given in percentages by volume). 

 
1Note: PS=Paul Smith, DB=Dickerson Baghouse, DP=Dickerson Precipitator, BS=Brandon Shores, CP=Chalk  
Point, MT=Morgantown, PR=Potomac River. 
2 Total Carbon = Isotropic carbon + anisotropic carbon 

  

Fly  
ash1 

Glass 
(%) 

Mullite 
(%) 

Spinel 
(%) 

Quartz
(%) 

Isotropic Carbon 
(%) 

Anisotropic Carbon 
(%) 

Inertinite
(%) 

Total Carbon2

(%) 

DP 53.8±3.11 _ 5.4±1.98 _ 2.4±1.13 33.8±7.64 4.6±1.41 40.8±5.1 

BS 88.2±0.85 _ 0.6±0.28 _ 3.8±1.41 6.4±2.26  0.6±0.28 10.8±1.13 

CP 90.4 _ 3.6 _ 1.2 2.8 2.0 6.0 

DB 66.8 _ 2.0 _ 1.2 26.4 3.6 31.2 

MT 85.6 _ 6.8 _ 2.4 4.4 0.8 7.6 

PR 86.4 _ 1.2 _ 1.6 8.4 1.6 11.6 

PS 85 _ 0.4 _ 0.4 12.6 1.2 14.2 
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Reporting these values as percentages by volume is preferable to percentages by weight 

(i.e., loss on ignition, LOI) as the carbon particles typically have lower densities than 

inorganic particles (Maroto-Valler et al. 2001).   

The inorganic particles were counted and classified as glass (solid and non-

crystalline aluminosilicates), quartz (non-melted silicates), mullite (a typical composition 

Al6Si2O13), or spinel (iron oxides) (Maroto-Valler et al. 1999). The petrographic analyses 

showed that the ashes exhibit a structure commonly observed in Class F fly ashes, i.e., 

the ashes were dominated by Al3+ and Si2+ with varying amounts of spinel.  Figure 3.3 

presents the images of the glass and spinel components of the Morgantown fly ash. The 

three different types of carbon (i.e., anisotropic, inertinite, and isotropic) are also clearly 

visible in the petrographic images.  This is illustrated in Figure 3.4, which demonstrates 

the presence of these formations in the Brandon Shores fly ash.  The three different types 

of carbon were present together (Figure 3.5a) or separately (Figures 3.4b through d) in 

the fly ash. 

 It is interesting to look at the relationships between the properties of the fly ashes. 

For example, the relationship between LOI and percent total carbon by volume measured 

in petrographic analyses for all the fly ash is presented in Figure 3.5. The volumetric 

percentages tend to yield higher values than LOI; however, a clear trend is still visible 

between the two sets of measurements. Figure 3.6 reveals the strong correlation exists 

when LOI or total carbon by volume is plotted against SSA. Clearly, the higher LOI fly 

ashes have higher surface area.  These observations are in good agreement with previous 

studies, which indicate that carbon fraction generally increases with increasing specific  
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a) 

 

b) 

Figure 3.3 Inorganic components of Morgantown (MT) fly ash: a) Al-Si (i.e., glass) and  
b) spinel. 
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Figure 3.4 Images from petrographic analysis of Brandon Shores (BS) fly ash a) All three 
carbon forms on one carbon particle, b) anisotropic carbon, c) inertinite, and d) Isotropic 

carbon. 
 

a) b) 

c) d) 
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Figure 3. 5Relationship between loss on ignition (by weight) and percent total carbon 
determined in the petrographic analyses. 
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Figure 3. 6Correlation curves between a) percent LOI and specific surface area b) Total 
carbon from petrographic analyses of the Maryland Fly ashes 
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surface area of the fly ash due to unburned carbon particles, regardless of the type and 

source of the coal (Baltrus et al. 2001). 

 

3.1.3  Reference Soil 

 A natural soil was employed as a reference material in the adsorption tests.   The 

soil utilized in the current study is commonly used as a borrow material in construction of 

highways in the state of Maryland.  The soil was classified as clayey sand (SC) according 

to the Unified Soil Classification System (USCS) and A-2-4 according to the American 

Association of State Highway and Transportation Officials (AASHTO) Classification 

System.  Grain size distribution analyses indicated that the soil had approximately 34% 

particles passing the U.S. No. 200 sieve.  The fines content (particle size smaller than 2 

μm) of the borrow material was 10%.  Specific gravity (Gs) of the material was 2.65, and 

it had very low plasticity (PI = 5).  Based on an analysis performed using a SHIMADZU 

500 carbon analyzer, the soil had a total organic content (TOC) of about 0.5% by weight. 

The cation exchange capacity (CEC) and pH of the material were 2.9 meq/100g and 7.2, 

respectively, as determined by Agri Analysis Inc. (Leola, Pennsylvania). 

 

3.1.4  Powdered Activated Carbon (PAC) 

 Activated carbon, strong sorbent, which is commonly used for experimental and 

practical purposes, was used in this work as a control sorbent. Specifically, powdered 

activated carbon (PAC) HYDRODARCO B from Norit Americas Inc. was chosen due to 

its comparable grain size distribution with fly ashes. The specific surface area of this 

PAC range from 500 to 600 m2/g (Norit Inc. 2007).  
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3.1.5  Contaminants 

  Refined petroleum products (e.g., diesel fuel) typically contain more than 100 

chemical compounds (Lee et al. 1992).  Therefore, to avoid analytical and data analysis 

complications, naphthalene, a representative polycyclic aromatic hydrocarbon (PAH), and 

o-xylene, a compound from the benzene-toluene- ethylbenzene-xylene (BTEX) group, 

were selected as the target model contaminants for the batch adsorption tests.  A PAH 

was chosen as the target compound in this study mainly for two reasons.  First, aromatic 

hydrocarbons, including PAHs represent a significant fraction of the hydrocarbons in 

diesel fuels.  Second, PAHs have relatively low solubility, high sorption, and low 

volatility which facilitate sorption and leaching studies.  Furthermore, naphthalene is 

listed as one of the pollutants in the U.S. EPA priority list (Schwarzenbach et. al. 1999).  

O-xylene was included in testing because the BTEX group compounds are commonly 

encountered as subsurface pollutants, and are also included in the U.S. EPA’s priority 

pollutant list. The physical and chemical properties of naphthalene and o-xylene are listed 

in Table 3.4.  The naphthalene and o-xylene used in this research were purchased from 

VWR Scientific, Inc. (99% purity). 

 

3.2  Experimental Methods 

 Three different series of batch sorption tests were conducted. The first series of 

preliminary batch tests was conducted on one of the fly ashes, Brandon Shores  
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Table 3.4 Physical and Chemical properties of naphthalene and o-xylene (Schwarzenbach 
et al. 1999). 

 
 Naphthalene O-xylene 

Chemical Formula C10H8 C8H10 

Molecular Weight 128.2 106.16 

Melting Point 80.5 ºC -25 ºC 

Boling Point 218 ºC 144.4 ºC 

Density at 20 ºC 1.145 g/mL 0.88 g/mL 

Solubility 31.7 mg/L 178 mg/L 

Log Kow 3.29 3.12 

Vapor Pressure 0.087 mmHg 5 mmHg 

Henry’s law Constant 4.6 10-4 atm-m3/mol 5.19 10-3  atm-m3/mol 
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(BS) fly ash, to study the solid-to-solution ratios, i.e., the ratio of the weight of the solid 

to the volume of the aqueous naphthalene or o-xylene solution, and to identify the 

optimum ratio for further testing.  Second, a series of batch kinetic tests were conducted 

on the Brandon Shores fly ash to study the reaction kinetics with the two organic 

compounds. Finally, the optimum solid-to-solution ratio and equilibrium time defined by 

these two series of tests were used for the batch adsorption tests conducted on the 

remaining fly ashes. The method of concentration analyses was selected considering the 

initial concentration of the organic compound and detection limit of the equipment.   

 

3.2.1  Batch Adsorption Tests to Optimize Solid to Solution Ratios 

 To perform these batch adsorption tests, three different amounts (0.5 g, 1 g, and 2 

g) of fly ash were placed in duplicate 60 mL glass centrifuge tubes.  A 20 mg/L 

naphthalene or 10 mg/L o-xylene aqueous solution was prepared 24 hours before the test, 

and 60 mL were mixed with the fly ash at room temperature (24 ± 2 ºC).  These fly ash 

masses and solution volume corresponded to solid-to-solution ratios of 1/120, 1/60, and 

1/30, respectively. Additionally, two control samples were prepared by adding only the 

aqueous naphthalene or o-xylene solution to the vials. The centrifuge tubes were sealed 

with Teflon® lined caps and then were placed and rotated for 24 hours using the end-

over-end rotator (ATR Scientific-24).  The agitated samples were then separated by 

centrifugation (Beckman GPR centrifuge) at 3000 rpm for 15 min. A 2 mL-sample of the 

supernatant was transferred to a clean 8 mL amber vial and the vial was capped using an 

open-top screw-thread closed with a polytetrafluoroethylene (PTFE)-faced rubber septa 

and saved for analysis of naphthalene and o-xylene concentrations as described in the 
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following section. Amber vials were chosen for sample storage in order to prevent the 

possible photolytic decomposition of the contaminants, which are known to be light 

sensitive (APHA, 1995). A PTFE membrane filter with 0.45 μm opening size was used 

during transfer of the supernatant into the vials to remove any solid phase particles 

remaining in suspension after centrifugation.  

The ASTM D 5285 procedure for recommends a solid-to-solution ratio that would 

result in 20 to 80% sorption of the contaminant.  However, the first series of batch 

adsorption tests conducted on Brandon Shores fly ash indicated that the fly ash specimens 

prepared at high solid-to-solution ratios such as 1/30 and 1/60 resulted in ≈100% sorption 

of the naphthalene and o-xylene (Figure 3.7).  Therefore, the remaining batch kinetic and 

adsorption tests were conducted on specimens prepared at a ratio of 1/120 which gave 

approximately 60-80 % sorption.   

3.2.2  Batch Kinetic Tests 

 Similar to the preliminary batch adsorption tests, Brandon Shores (BS) fly ash 

was used in the batch kinetic tests. A total of thirty fly ash/o-xylene and fly 

ash/naphthalene solutions were prepared at a solid-to-solution ratio of 1/120. An initial 

naphthalene or o-xylene concentration of 20 mg/L was employed in these experiments.  

A series of batch kinetic tests were performed in which, the solutions were equilibrated 

on an end-over-end rotator shaker for 3, 6, 12, 24, and 48 hours.  The procedures for 

specimen preparation and analysis followed those described in section 3.2.1.  The batch 

kinetic test data presented in Figure 3.9 show that the final aqueous concentrations of 

naphthalene measured at the different equilibrium times are comparable.  The results 

suggested an equilibrium time of 24 hours for future tests.  The results presented in  
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Figure 3. 7 Preliminary batch adsorption tests for solid-to-solution ratio determination. 
Bars represent the average of triplicate measurements. 
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Figure 3. 8Batch kinetic tests conducted fly ash and solutions of o-xylene and 
naphthalene (Ci=Initial concentration, Cf=Final concentration). 
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Figure 3.8 also suggest that the sorption of both naphthalene and o-xylene onto fly ash is 

a quick process.   A large percentage of the contaminant was sorbed in a short period of 

time (in minutes to a few hours), whereas the remaining fraction was sorbed more slowly 

within the next few days. The observed trends are meaningful as the initial sorption 

generally occurs by hydrogen bonding and van der Waals forces, and is expected to occur 

instantaneously upon contact of the nonpolar organic chemical with the fly ash (Semple 

et al. 2003).  A separate series of batch kinetic tests were not performed on the reference 

soil; however, the 24-hr period was deemed acceptable based on the equilibrium times 

reported for similar materials (Chiou 2002). 

3.2.3  Batch Adsorption Tests for all Fly ashes 

Based on the results of the first two series of tests, batch adsorption tests were 

performed for all fly ashes, following the procedure of Section 3.2.1, with a solid-to-

solution ratio of 1/120 and an equilibrium time of 24 hrs. The initial concentration of 

naphthalene and o-xylene in this third series of batch adsorption tests ranged from 0.5 to 

25 mg/L and from 0.2 to 85 mg/L, respectively. The reference soil (borrow material) was 

included in the third series of batch adsorption tests. Naphthalene solutions were prepared 

at concentrations of 0.5, 1, 2, 3, 4, 5, 7.5, 10, 15, and 20 mg/L and added in 60 mL 

centrifuge tubes along with 0.5 g of borrow material.  The procedures for centrifuging 

and collecting of supernatant were the same of the ones followed for fly ash. The 

solutions were equilibrated with end-over-end rotator shaker for 24 hours.   
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3.3  Mathematical Methods  

In this work the database was evaluated by six equilibrium isotherm models, 

namely Linear (Henry’s law) model, Freundlich model, Langmuir model, a Combined 

model of Freundlich and Langmuir (CFL), Polanyi-Dubinin-Manes (PDM) model, and 

the Fritz-Schluender model. These six different isotherm models how various numbers of 

model constants, linear isotherm having one, the Freundlich and Langmuir isotherms 

having two, CFL and PDM isotherms having three, and the Fritz Schluender isotherm 

having five model constants. A detailed explanation of the six isotherms models used in 

the current study was given at Section 2.3.1.  For all isotherms except the PDM model, 

the sorbed amount qi (mg/kg) was plotted against the final equilibrium concentration Cf 

(mg/L). In case of the PDM model, qi/density of the sorbate (q’
max) was plotted against 

effective adsorption potential normalized by molar volume of the sorbate (Esw/Vs).  

Parameters such as the surface characteristics of the sorbent or the hydrophobicity of the 

organic molecule have a great influence on the adsorption behavior. Therefore by using 

seven different fly ashes and PAC, two difficult organic contaminants, and applying the 

different isotherm models, the goal was to attempt to provide a better understanding of 

the adsorption mechanism. 

 The adsorption test data were analyzed using a nonlinear regression analysis.  

Specifically, the isotherm models were fit to the collected experimental data using a 

curve fitting method, which employs Levenberg-Marquardt algorithm. The goodness of 

the curve fit was evaluated based on the adjusted value of R2 and the relative standard 

error (RSE), which is the ratio of root mean squared error (RMSE) over standard 

deviation. The isotherm that gave the highest adjusted R2 value and lowest RSE was 
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considered to give the best fit. It is important to note that; both the R2 value and RSE 

were “adjusted” to account the number of independent parameters in the model. 

Therefore, they can be used to provide an accurate relative comparison for the goodness 

of the fit between models with different number of parameters. The adjusted R2 

expression is given Equation 3.1 below, 

)1()1(1 22 R
v

nRAdjusted −⎥⎦
⎤

⎢⎣
⎡ −

−=⋅                                 (3.1) 

where n is the number of data points, v indicates the number of independent model 

parameters. The regular (unadjusted) R2 values which do not account for the degree of 

freedom of the model were also calculated for all models; however, are not presented 

herein as the values are higher than the adjusted ones and provided an unconservative 

estimate. The residual analysis of the best fit results and experimental data were also 

examined for all fits.  

 

3.4  Analytical Methods  

3.4.1  Fluorescence Analysis 

A Shimadzu 5301 Fluorescence Spectrophotometer was utilized to measure the 

final concentrations of naphthalene and o-xylene in the batch adsorption test specimens.  

Excitation and emission wavelengths for naphthalene and o-xylene in aqueous solution 

were 273 and 336 nm, and 267 and 289 nm, respectively. Preliminary investigations 

indicated that the detection limits of the equipment for naphthalene and o-xylene were 

0.0165mg/L and 1.273 mg/L, respectively. Thus, the specimens with initial naphthalene 

and o-xylene concentrations greater than 2 mg/L could be accurately determined using 
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the spectrofluorophotometer.  The supernatants in the amber vials were analyzed with 

fluorescence as follows. First, the supernatant was transferred into a Quartz sample cell, 

and the cell was then immediately placed into the sample compartment of the 

spectrofluorophotometer. Subsequently, the fluorescence intensities corresponding to 

excitation and emission wavelengths of the specimens were measured. 

Fluorescence intensity reading were converted to concentrations based on 

standard curves derived using duplicate standard solutions that were prepared for each 

compound. The concentrations of supernatants were then calculated using the standard 

calibration curves. The standard concentrations for naphthalene were 0, 0.4, 0.8, 1.6, 4.0, 

8.0, and 16 mg/L, while the standard concentrations for o-xylene were 0, 5.63, 10.14, 

11.3, 22.6, 40.6, 45.2, 81.7 mg/L in aqueous solutions.   

3.4.2  Gas Chromatography (GC) Analysis 

 Due to the relatively high detection limits for o-xylene using the fluorescence 

method, low concentrations (<2mg/L) of o-xylene were determined using a gas 

chromatograph (GC).  Gas chromatography is an analytical method for separation and 

identification of chemical compounds. The details of the GC analysis employed in the 

current study are provided in the following paragraphs.  

First, 10 μl of 500 mg/L acenaphthene in methanol internal standard solution were 

spiked into the 2mL supernatant sample using a 100 μl Hamilton gas-tight syringe that 

was inserted into the sample vial through the septum in the cap. The internal standard 

acenaphthene was used to minimize the sensitivity of the o-xylene concentration to the 

extraction procedure (Hong 2003). After addition of the internal  
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standard, the vial was shaken by hand for one minute to thoroughly mix the solution. 

Subsequently, a liquid-liquid extraction procedure was applied before the GC analysis.  

The extraction solvent was GC grade hexane (Fisher Scientific, Inc., 99% purity). 

Following the internal standard mixing process, 1 mL of hexane was introduced into the 

vial and the vial was shaken for 10 minutes using an end-over-end rotator. The vial was 

then allowed to sit for at least two minutes to allow the liquid phases to separate. The GC 

analysis of o-xylene in hexane was performed as soon as possible after the extraction. If 

the samples could not be analyzed immediately, they were stored at 4°C up to 3 days to 

eliminate any possible volatilization or biological degradation.    

Analysis of o-xylene in the hexane extracts was performed using a Hewlett 

Packard (HP) Model 6980 GC equipped with a flame ionization detector (FID). A 

software program Chemistation Version 6.03 was used for analysis.  The GC column was 

a 30-m long HP-5 (crosslinked 5% phenyl/metyl siloxane) column with an internal 

diameter of 0.32 mm and a film thickness of 0.25 μm.  The GC system and operating 

conditions used in the analysis of o-xylene and acenaphthene were adopted from Hong 

(2003). A summary of the system and operating conditions is provided in Table 3.4. The 

mode of operation was splitless injection and the septum purge time was 0.75 minutes. 

The running time for each injection was 10 minutes, because the retention times for the o-

xylene and acenaphthene were 4.8 and 8.9 minutes, respectively (Figure 3.9).  

A 1 μl aliquot of the hexane extract was manually injected into the GC using a 10 

μL Hewlett Packard analytical syringe. Any air bubbles in the syringe were  
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Table 3.5 Operating conditions for GC analysis of o-xylene 
 

Gas Flowrates Carrier Gas 

Septum Purge 

Column Flow rate 

Make up Gas (Nitrogen) 

Flame Oxidant (Air) 

Flame Combustible(Hydrogen) 

Helium 

60 mL/min 

8.2 mL/min 

17.7 mL/cm 

400 mL/min 

40 mL/min 

Oven Initial Temperature 

Initial Hold Time 

Temperature Increase 

Hold Time 

Final Temperature 

40 ºC 

4 min 

30 ºC/min 

1 min 

215 ºC 

Injector Temperature 250 ºC 

Detector Temperature 300 ºC 
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Figure 3 9 A typical GC plot for o-xylene and acenaphthene as an internal standard. 
 

 

O-xylene peak at 
4.173 min 

Acenaphthene peak at 8.903 min 
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manually removed before the injection.  The syringe was rinsed with extract three times 

before and five times after each injection. Injections were performed in duplicate for 

every sample to ensure good reproducibility.  

  This GC method adopted herein was calibrated for each set of experiments with 

standard solutions of o-xylene and acenaphthene in hexane.  Calibration was performed 

by using three different concentrations of acenapthene and four different concentrations 

of o-xylene as summarized in Table 3.5. Each Standard was injected in triplicates. The 

linear regression equations that best defined the relationship between the GC peak area 

and the measured concentrations of the o-xylene and acenaphthene in hexane, 

respectively, are also provided in Table 3.5.  Preliminary analyses indicated that the 

higher concentration points of a given standard calibration curve had a weighted effect on 

the overall standard curve when range in the concentrations covered greater than one 

order of magnitude. This adverse effect was eliminated by using a weighted linear 

regression (Relative Least Squares, RLS) analysis, for the o-xylene standard curve. 

However, an unweighted linear regression (Absolute Least Squares, ALS) was found to 

be acceptable for the analyses of acenapthene in hexane.  The detailed explanations of the 

two regression analyses are provided by Berthouex and Brown (2000). By following this 

method, detection limits for naphthalene and o-xylene are 0.0216 mg/L and 0.0656 mg/L 

respectively.  

The aqueous concentration of o-xylene was calculated from the measured 

concentration in hexane by using the following equation: 

 

[ ] [ ]
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Acehex

oxhex
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C
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=                                  (3.2) 



 63

 
 
 
 
 
 
 
 
Table 3 6 Standard solutions and equations used for o-xylene and acenapthene in hexane 

 

Compound Standard Solutions 

used (mg/L) 
Curve Equations R2 

o-xylene 0.1442, 1.442,  
3.605,  36.05 

Aox = 35.318 [C hex]ox + 3.377 (a) 0.999 

Acenaphthene 0.5,  5,  10 
AAce = 29.476[C hex]Ace – 

4.599(b) 
0.994 

 
Note: Aox – area of the o-xylene peak in the chromatogram, AAce – area of the 
acenaphthene peak in the chromatogram, [C hex]ox - the o-xylene concentration in hexane, 
[C hex]Ace - the acenaphthene concentration in hexane  
(a)- calculated by RLS  (b) - calculated by ALS   
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where [Caq]ox is the concentration of o-xylene in the aqueous sample, [C hex]ox and [C 

hex]Ace are measured concentrations of o-xylene and acenaphthene in hexane, respectively, 

Vis is volume of the internal standard solution (10 μL), Vsam is the volume of aqueous 

sample, and [Cis]Ace is the concentration of the internal solution (500 mg/L in this case).  

The amount of the adsorbate (i.e., naphthalene or o-xylene) sorbed on the solid 

phase per dry unit weight of solid (qi) was then calculated by using the mass balance 

approach: 

 
( )

solid

oxaqoxiw
i M

]C[]C[V
q

−
=                                              (3.3) 

 
where qi is in (mg/g), Vw is the volume of the solution (mL), [Ci]ox is the initial 

concentration of o-xylene (mg/L), [Caq]ox is the concentration of o-xylene in aqueous 

solution after sorption (mg/L), and Msolid is the dry mass of solid particles (g).   

 

3.5  Results and Discussions  

 The results of the batch adsorption test using the seven HCCFAs and PAC are 

presented in two sections first looking at naphthalene sorption, and the o-xylene. It is 

common to relate qi (mg of sorbed contaminant per kg of sorbent), to the final 

equilibrium concentration Cf (mg/L) of the contaminant in solution by using sorption 

isotherm models.   
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3.5.1 Naphthalene Adsorption onto Maryland Fly Ashes and Activated Carbon 

 
 The parameters and regression statistics for the fly ash/PAC-naphthalene isotherm 

models are given in Table 3.6. None of the data sets for the sorbents could be fit using the 

linear model. This appears to be reasonable. Chiou et al. (2000) reported that the linear 

isotherm is an indication of partitioning of the non-polar organic chemical with humic 

substances of the sorbent, and that highly thermally altered materials, like HCCFA, could 

deviate from a linear isotherm. They noted that even small amounts of thermally altered 

carbonaceous material can cause substantial nonlinearity in the sorption isotherm.  

 The sorption data and best fit sorption isotherm models for naphthalene on all fly 

ashes and PAC are plotted on the standard basis (qi (mg/kg) versus Cf (mg/L))(Figure 

3.10). Note that the data for two fly ashes (DB and CP) and PAC are also plotted in this 

figure for comparison purposes, although the PDM model was the best model these 

sorbents as discussed below. 

 The nonlinearity in the naphthalene sorption data could be explained by the 

heterogeneous structure of the HCCFA. It is well known that thermally altered materials 

(e.g., fly ash) have non-polar surfaces with potentially high surface area and porosity, 

which were created by thermal alteration processes at extremely high temperatures 

(>1000 °C degree). These changes in the chemical and physical of structure of the 

material promote adsorption, and possibly result in nonlinear sorption isotherms that are 

characterized by a high sorption capacity at low concentrations (Allen-King et al 2002). 

Such nonlinearity was also reported by Kleinidam et al. 
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Table 3 7 The isotherm parameters and goodness of fit statistics for the applied adsorption isotherm models from naphthalene 
adsorption tests. 

 
  BS DP DB PR 

Isotherm 
type 

Isotherm 
parameters 

 R2 RSE  R2 RSE  R2 RSE  R2 RSE 

Linear Kd (L/kg) N/A N/A N/A N/A N/A N/A 381.6 0.10 0.958 N/A N/A N/A 

Freundlich 
 

Kf (mg/kg)(mg/L)-n 637.1 0.87 0.386 1416 0.94 0.249 873.2 0.97 0.173 454.4 0.87 0.369 n (-) 0.195 0.194 0.3179 0.314 
Langmuir Qmax (g/kg) 885.9 0.83 0.414 1332 0.80 0.458 1411 0.94 0.256 933.1 0.78 0.474 KL (L/kg) 5.274 60.96 2.484 0.966 
CFL 
 

Qm (mg/kg) 1117 
0.88 0.360 

115400 
0.93 0.269 

2250 
0.99 0.138 

2206 
0.84 0.396 b (mg/kg)(mg/L)-n 1.592 0.013 0.699 0.265 

n (-) 0.512 0.196 0.521 0.423 

PDM 
 
 

q’max (L/kg) 0.849 
0.87 0.001 

3.394 
0.93 0.275 

1.512 
0.99 0.014 

0.98 
0.85 0.395 c (mL/J) 0.001 0.113 0.005 0.021 

d (-) 2.007 0.757 1.681 1.302 
Fritz-
Schluender 
 

α1(mg/kg)/(mg/L)β1 2.851 

0.82 0.436 

420.5 

0.91 0.309 

9.823 

0.98 0.158 

19.52 

0.73 0.524 
α2(mg/L)β2 0.004 -0.025 0.011 -1.217 

α1’ (-) 4.10-4 0.319 0 1.26 

β1(-)  0.885 0.174 4.138 0.253 

β2(-) 0.770 2.385 3.841 0.002 

Linear Isotherm: qi=Kd Cf, Freundlich Isotherm: qi=Kf Cf
n, Langmuir Isotherm: qi=(KL Qmax Cf)/(1+ KL Cf) 

CFL Isotherm: qi=(KL Qmax Cf
n)/(1+ KL Cf

n)  PDM Isotherm: q’i= q’max exp [© (Esw/Vs)d] 
Fritz-Schluender Isotherm: qi=(α1 Cf β1)/(α1

’+ α2Cf β2) 
N/A: Not available  
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Table 3.7. (continued)  

 
 

  CP MT PS PAC 

Isotherm type Isotherm 
parameters 

 R2 RSE  R2 RSE  R2 RSE  R2 RSE 

Linear Kd (L/kg) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Freundlich 
 

Kf (mg/kg)(mg/L)-n 88.43 
0.85 0.361 

102 
0.99 0.096 

696.1 
0.97 0.185 

72570 
0.82 0.439 n (-) 0.174 0.306 0.339 0.169 

Langmuir Qmax (g/kg) 110.9 
0.87 0.337 

194 
0.90 0.321 

1355 
0.91 0.302 

81690 
0.99 0.109 KL (L/kg) 5.189 1.25 1.240 11.65 

CFL 
 

Qm (mg/kg) 124.7 

0.88 0.327 

603.3 

0.99 0.104 

2955 

0.96 0.194 

78820 

0.99 0.096 b (mg/kg)(mg/L)-n 2.723 0.205 0.318 20.99 

n (-) 0.655 0.391 0.469 1.242 
PDM 
 
 

q’max (L/kg) 0.101 

0.88 0.326 

0.225 

0.99 0.105 

1.521 

0.96 0.210 

68.44 

0.99 0.095 c (mL/J) 1.2 10-4 0.028 0.018 1.8 10-8 

d (-) 2.625 1.213 1.367 5.096 
Fritz-
Schluender 
 

α1(mg/kg)/(mg/L)β1 7.145 

0.87 0.334 

15.66 

0.95 0.164 

27.34 

0.87 0.369 

28 105 

0.98 0.116 
α2(mg/L)β2 0.004 0.007 -0.033 38.25 

α1’ (-) 0.075 0.143 0.007 0.533 

β1(-)  0.266 0.398 0.334 1.681 

β2(-) 1.218 1.205 0.007 1.638 
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Figure 3 10 Adsorption isotherms with best fit models after naphthalene adsorption 
experiments. Symbols are from test data. Lines are isotherm from regression results 

(a)  

(b) 
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 (2002) for sorption of heterogeneous sorbents like coal combustion by-products (i.e., fly 

ash) and by Luthy et al. (1997) for sorption of natural soils and sediments. 

 The goodness of fit statistics for the naphthalene sorption for all fly ashes and 

PAC are given in Table 3.7. Table 3.7 show that four of the fly ashes (DP, MT, PR, and 

PS) yielded Freundlich isotherm, two of them (DB, CP) along with PAC yielded PDM 

isotherm model and BS fly ash yielded CFL isotherm. On the other hand, statistically 

insignificant differences (at 95% confidence level) in R2 values of some fits (e.g., CFL 

and PDM isotherm fit for CP fly ash and PAC) suggested that more than one isotherm 

model can possibly be used for the interpretation of the sorption data.  

 The goodness of the fit criteria (R2 and RSE) generally indicated that the 

Freundlich isotherm provided a better fit than the Langmuir isotherm, with the exception 

of CP fly ash and PAC. This is mainly due to the basic assumptions upon which these 

models are based.  The Langmuir isotherm assumes a monolayer surface adsorption with 

a maximum capacity, which limits the capacity of the sorbent. On the other hand, the 

Freundlich isotherm has no limiting capacity, rather than the shape of the curves, it 

depends on the value of the Freundlich exponent “n”. 

 In the Freundlich isotherm “n” is measure of how the affinity of the adsorbate 

changes to the sorbed concentration changes. Table 3.7 shows that the “n” values for 

naphthalene adsorption on DP, PR, PS, and MT fly ashes were significantly lower than 

1.0, indicating a strong nonlinearity and that affinities decrease with increasing sorbed 

concentration. The “n” values for fly ash ranged from 0.194 to 0.339 and were lower than 

an “n” of 0.67 previously reported for sorption of pyrene onto activated carbon (Accardi-

Dey and Gschwend 2002). A highly heterogeneous structure and uneven distribution of 
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the unburned carbon present in the fly ash (i.e., presence of different carbon forms at 

different amounts in a given fly ash) may be responsible for the observed behavior.  

 For one of the fly ashes (BS), the CFL isotherm model provided the best fit to the 

laboratory data. Using three fitting parameters, the CFL model enables the prediction of 

the naphthalene adsorption of CP, BS, and DB fly ashes slightly better than the 

Freundlich and Langmuir isotherms. Naphthalene with the limited data available, it is not 

yet possible to make any claims regarding to the superiority of CFL isotherm to 

Freundlich or Langmuir in predicting the sorption properties of fly ash.   

 Recent studies indicated that the Polanyi-Dubinin Manes –PDM- isotherm model 

provides both mechanistic and modeling advantages, while aiding in identifying the 

adsorption process (Allen-King et al. 2002). For two of the seven fly ashes (DB and CP) 

and PAC, the PDM isotherm provided the best fit data. Similarly, PDM isotherm was 

utilized by Kleineidam et al. (2002) for non-polar organic chemicals tested with various 

geosorbents that had meso and micro-pores (i.e., pore sizes varying between 2 nm and 50 

nm, and smaller than 2 nm, respectively). These range of meso-pore sizes also exist in fly 

ashes (Kulaots et al 1998). Maroto-Valer et al. (2001) reports that more than 50% of the 

pores inside the fly ash can be characterized as meso-pores, regardless of the carbon type. 

They attribute the existence of such large pores sizes to the extensive and rapid 

devolatilization of coal during the combustion process. Accordingly, a pore filling 

mechanism, such ash explained by the PDM isotherm, is believed to be the dominant 

mechanism for adsorption of non-polar organic chemical onto highly heterogonous 

sorbents like fly ash (Kleineidam et al. 2002).  



 71

 It has been suggested that if the number of fitting parameters (degree of freedom) 

of the sorption isotherm is increased, it could yield a better fit (Mauraya and Mittal 

2006). However, the Fritz-Schulender isotherm with five degree freedom did not provide 

a better fit for naphthalene sorption data onto any of the sorbents tested.  The numerical 

complexities stemmed five degree of freedom also reduced the potential for model likes 

Fritz-Schulender. 

 As described above, not all the fly ashes exhibited same type of isotherm (e.g., the 

Freundlich, combined and PDM were among the best fits).  Therefore, in order to 

compare the adsorption performance of the seven fly ashes on a common basis, the 

average amounts of sorbed organic compound per mass of fly ash (qi average) were 

plotted against LOI in Figure 3.11. As expected, the adsorbed amount increases with 

increasing total carbon content. The effect of LOI on adsorption of organic compounds 

has previously been documented for chlorinated benzenes (Mott and Weber 1992), for o-

xylene (Banerjee et al. 1995), for dodecyl benzene sulfonate (Kulaots et al. 2004), and for 

methylene blue (Wang et al. 2005b). 

 There is also the question the contribution of the inorganic portion of the fly ashes 

to the contaminant sorption. Mott and Weber (1992) investigated the sorption properties 

of three bituminous fly ashes, which had a comparable source to the fly ashes tested in 

this work, and concluded that samples with no LOI did not show any adsorption capacity. 

However, raw fly ashes with LOI showed significant adsorption capacity for chlorinated 

solvents. 
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Figure 3.11 The relationship between average sorbed amount qi average (mg/kg) of 
naphthalene and percent LOI (%) of Maryland fly ashes 
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Thus, in this study we attributed the adsorption capacity to the unburned carbon 

constituents of the fly ashes and examined the contribution of each fraction of carbon 

content on the adsorption capacity of the compounds tested.  

 As discussed above, the fly ashes contain three different forms of carbon: 

inertinite, anisotropic carbon and isotropic carbon.  It has previously been well 

documented in the literature that the pollutant sorption properties of coal combustion by-

products are dependent on the anisotropic and isotropic carbons due to soft surface 

structure of these two carbon forms. Conversely, inertinite is known to have low sorption 

properties due to its glassy, hard surface structure (Morata-Valler et al. 1999, 2001).  To 

study the effect of carbon type on naphthalene adsorption properties in the current study, 

qi average was plotted against the percentages of the different carbon forms by volume in 

Figure 3.12.  The trends are clear; with qi average increasing on the total carbon content (by 

vol.) increases.  As expected, the anisotropic and isotropic carbons are somewhat better 

correlated with sorption, as evidenced by the slightly higher coefficient of determination 

(R2) (Figure 3.12b).  This may suggest that soft surface nature of these carbons facilitated 

the adsorption of naphthalene.  It should be noted that the statistical significance level of 

the correlation was more than 95% for the data plotted in Figure 3.12.  Finally as 

expected, there was no correlation between qi average and the inertinite content (% vol.). 

  As illustrated in Figure 3.13, there was also a strong relationship between the 

specific surface area (SSA) for the naphthalene sorption tests. Specifically, fly ashes with 

higher surface area generally have higher sorption capacity. For example, DP fly ash 

(SSA=11.08 m2/g) has an average sorbed amount of 1012.94 mg/kg whereas CP  
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Figure 3.12 The relationship between averaged sorbed amount of naphthalene and a) total 
carbon [inertinite + isotropic + anisotropic carbon](by volume), and b) sum of isotropic 

and anisotropic carbon from petrographic analysis (by volume) 

(a) 
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Figure 3 13 The correlation between average naphthalene sorbed amount qi average  (with 
percent error) (mg/kg) and specific surface area (SSA m2/g). 
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fly ash (SSA=1.23 m2/g) has substantially low average sorbed amount of 86.64 mg/kg. 

This is not surprising, that it was shown above that qi average was highly correlated with 

LOI (%) (Figure 3.11) and that LOI was correlated with SSA (Figure 3.6). Wang et al. 

(2005b) also derived a correlation between SSA and the sorption capacity of fly ashes for 

hydrophobic dyes. 

 Finally the PDM isotherms are plotted for the seven fly ashes and PAC in Figure 

3.14. The PDM isotherms for naphthalene sorption also indicate a trend among the 

sorbent. In particular, the PDM isotherms for the high LOI fly ashes (e.g., DP) lie above 

the ones with relatively low LOI values (e.g., CP) (Figure 3. 14a). PAC, with its superior 

adsorption capacity, lies well above the fly ashes (Figure 3.14b). This trend is examined 

further in Figure 3.15, which relates the maximum adsorption volume capacity at 

saturation (q’max) to LOI. The capacity is generally well-correlated to the LOI. For 

instance, DP fly ash (LOI=20.5%) yielded a q’max of 1562 L/kg, whereas the same 

maximum adsorption volume capacity was 482.48 L/kg for PR fly ash (LOI=8.3%). The 

q’max data are also highly correlated with the total carbon content (R2=0.836) and the 

percent of isotropic and anisotropic carbon (R2=0.840), as shown in Figure 3.16, 

indicating that these carbon forms are likely to play the major role on overall adsorption 

capacity. In addition, there is no correlation between q ‘max and the percent inertinite, 

further confirming the importance of the isotropic and anisotropic carbon.  

 Figure 3.17 shows that q’max is strongly correlated to the specific surface area of 

fly ashes. Kleineidam et al. (2002) have reported a similar increase in the q’max with 

increasing SSA of two different sorbents, activated carbon and bituminous coal. 
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Figure 3 14 PDM isotherms for (a)CP, PR, BS, DP fly ashes, (b)PS, MT, DB fly ashes 
and PAC for naphthalene adsorption. . Symbols are from test data. Lines are isotherm 

from regression results 
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Figure 3 15 The correlation between LOI (%) and q’max(L/kg) for all fly ashes. 
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Figure 3 16 The relationship between maximum adsorption capacity (q’max) of 
naphthalene and a) total carbon [inertinite + isotropic + anisotropic carbon](by volume), 
and b) sum of isotropic and anisotropic carbon from petrographic analysis (by volume) 
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Figure 3 17 Naphthalene q’max from PDM Isotherm versus specific surface area SSA 
(m2/g) of the fly ashes tested 
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3.5.2  O-xylene Adsorption onto Maryland Fly Ashes and Activated Carbon 

 
 A battery of batch adsorption tests using o-xylene were as the adsorbate also 

conducted with the seven Maryland fly ashes and PAC. Nonlinear regression analyses of 

the data were performed by following the same procedures as described above for the 

naphthalene tests. The results from the regression analysis are summarized in Table 3.8. 

Based on the goodness of fit statistics, in the case of o-xylene, the BS and CP fly ash data 

were best fit by the Freundlich isotherm. Interestingly, unlike naphthalene adsorption 

where the Langmuir isotherm never rendered a best fit, the data for o-xylene adsorption 

onto the DB and PR fly ashes was fit by a Langmuir isotherm. For the remaining fly 

ashes, the CFL isotherm was determined as providing the best fit for the DP and PS fly 

ash data, and the PDM isotherm model was best fit for the CP fly ash data. Finally, the 

PAC adsorption results revealed that the CFL isotherm and the PDM isotherm have same 

goodness of fit parameters: the determination coefficient R2 was 0.99, and relative 

standard error RSE was 0.105 for both isotherms.  

 The isotherms providing the best fit are plotted along with the experimental data 

from the o-xylene batch adsorption tests in Figure 3.18. Similar to the naphthalene 

adsorption data, the isotherms for the fly ashes with the high carbon content are located 

above the isotherms of the fly ashes with relatively low carbon content.  This trend is 

further investigated further below by determining unburned carbon fractions and 

adsorption capacity.  
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Table 3 8 The isotherm parameters and goodness of fit statistics for the applied adsorption isotherm models from o-xylene 
adsorption tests. 

  BS DP DB PR 
Isotherm 
type 

Isotherm 
parameters  R2 RSE  R2 RSE  R2 RSE  R2 RSE 

Linear Kd (L/kg) 32.99 0.17 0.911 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Freundlich 
 

Kf (mg/kg)(mg/L)-n 289.7 
0.98 0.172 

803.4 
0.89 0.344 

525.7 
0.75 0.507 

379.4 
0.65 0.599 n (-) 0.387 0.260 0.224 0.209 

Langmuir Qmax (g/kg) 1397 
0.93 0.266 

1983 
0.92 0.283 

1197 
0.85 0.392 

770.2 
0.86 0.385 

KL (L/kg) 0.128 0.396 0.518 0.642 
CFL 
 

Qm (mg/kg) 4401 

0.97 0.178 

2369 

0.93 0.280 

1241 

0.80 0.449 

720 

0.85 0.394 b (mg/kg)(mg/L)-n 0.066 0.410 0.514 0.606 

n (-) 0.474 0.659 0.880 1.426 

PDM 
 
 

q'max (L/kg) 2.09 
0.97 0.195 

2.419 
0.92 0.285 

1.346 
0.80 0.211 

0.812 
0.85 0.390 c (mL/J) 0.039 0.002 8.1 10-5 1.3 10-7 

d (-) 1.212 2.082 2.934 4.911 
Fritz-
Schluender 
 

α1(mg/kg)/(mg/L)β1 1298 

0.96 0.211 

45.39 

0.88 0.339 

19.44 

0.45 0.747 

49.81 

0.75 0.500 
α2(mg/L)β2 4.101 0.029 0.027 0.088 

α1’ (-) 0.377 0.036 0.004 0.091 

β1(-)  0.382 0.822 6.114 2.094 

β2(-) -0.005 0.737 6.012 2.021 

Linear Isotherm: qi=Kd Cf, Freundlich Isotherm: qi=Kf Cf
n, Langmuir Isotherm: qi=(KL Qmax Cf)/(1+ KL Cf) 

CFL Isotherm: qi=(KL Qmax Cf
n)/(1+ KL Cf

n)  PDM Isotherm: q’i= q’max exp [© (Esw/Vs)d] 
Fritz-Schluender Isotherm: qi=(α1 Cf β1)/(α1

’+ α2Cf β2) 
N/A: Not available 
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Table 3.8. (continued)  

  CP MT PS PAC 
Isotherm 
type 

Isotherm 
parameters 

 R2 RSE  R2 RSE  R2 RSE  R2 RSE 

Linear Kd (L/kg) N/A N/A N/A 7.927 0.68 0.569 N/A N/A N/A N/A N/A N/A 

Freundlich 
 

Kf (mg/kg)(mg/L)-n 34.04 
0.97 0.177 

79.08 
0.90 0.327 

305.2 
0.86 0.376 

46940 
0.98 0.142 

n (-) 0.381 0.388 0.3796 0.200 
Langmuir Qmax (g/kg) 176.6 

0.83 0.413 
375.2 

0.84 0.402 
1019 

0.95 0.240 
71240 

0.84 0.398 KL (L/kg) 0.090 0.195 0.2993 3.461 

CFL 
 

Qm (mg/kg) 81150 

0.95 0.235 

27030 

0.86 0.377 

861.7 

0.96 0.207 

127600 

0.99 0.105 b (mg/kg)(mg/L)-n 4 10-4 0.003 0.2497 0.604 
n (-) 0.423 0.385 1.571 0.357 

PDM 
 
 

q'max (L/kg) 0.570 
0.98 0.181 

0.927 
0.87 0.413 

0.9788 
0.96 0.225 

108.4 
0.99 0.105 c (mL/J) 0.452 0.213 4.6 10-7 0.004 

d (-) 0.532 0.735 4.689 1.675 
Fritz-
Schluender 
 

α1(mg/kg)/(mg/L)β1 41.00 

0.88 0.354 

0.098 

0.58 0.655 

1.6 104 

0.72 0.530 

66.59 

0.98 0.162 
α2(mg/L)β2 1.296 0.002 53.95 0.0013 

α1’ (-) 0.100 0.030 68.22 6 10-6 

β1(-)  57.38 27.76 20.46 1.879 

β2(-) 37.00 27.36 20.07 1.692 

N/A: Not available  
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Figure 3 18 Adsorption isotherms with best fit models for the o-xylene adsorption 

experiments. Symbols are average of triplicate data. Lines are isotherm from regression 
results 
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 Similar to the case for the naphthalene sorption, none of the fly ashes were best fit 

by a linear isotherm probably due to the strongly heterogeneous structure, for the o-

xylene adsorption.  Thermally altered materials, like fly ash, do not contain constituents 

that hydrophobic organic chemicals could easily partition into (AllenKing et al. 2002).  

 The Freundlich isotherm, which is provided the best fit for BS and MT fly ashes, 

is one of most commonly employed isotherms for nonlinear sorption modeling. The best 

fit values for the Freundlich coefficient (n) which can be taken as indication of how the 

affinity of the adsorbate changes sorbed concentration increases, were 0.387 and 0.388 

for BS and MT, respectively. Being smaller than 1.0 these number indicated the highly 

nonlinear nature of the o-xylene adsorption, and the affinity of the fly ashes for the o-

xylene decrease with increasing sorbed o-xylene concentration, as was observed for 

naphthalene. Similarly, Mott and Weber (1992) presented “n” values ranging from 0.267-

0.498 for fly ashes with comparable LOI and SSA values during BTEX adsorption. 

 The o-xylene data for the PR and DB fly ashes, which have a relatively high LOI 

(8.3% and 14.9%, respectively) were best fit with a Langmuir isotherm. Similar 

observations were made by Bartelt-Hunt et al. (2005) when benzene and o-xylene were 

tested with organophilic clays.  Organophilic clays are clayey soils modified with 

hydrophobic surfactants and, as a result, exhibit very high hydrophobic (sorptive) 

chemical structure.  Even though the chemistry of sorption in organophilic clays and high 

LOI fly ashes are different, the trends in sorption are the same in both cases.  

 The CFL isotherm, with three degree of freedom, was determined as to provide 

the best fit for the DP and PS fly ash data, and yielded the same fit statistics as obtained 

with the PDM model for PAC. Interestingly, the fit statistics for the CFL isotherm was 
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similar to other models, indicating that the numerical difficulties added by introducing 

one more fit parameter were not justified.  The PDM model, in addition to providing the 

best fit to the PAC data along with the CFL model, also provided the best fit to the CP fly 

ash data. The PDM model fits are describeb in more detail below.  

 Based on the goodness of the fit statistics, none of the o-xylene adsorption data 

sets were fit best by the Fritz Schulender isotherm. The naphthalene adsorption results 

also revealed the same trend. Considering the available data from the o-xylene and 

naphthalene tests, it can be inferred that an isotherm model with a higher degree of 

freedom will not necessarily perform better than models with a low degree of freedom 

contrary to expectation.  

 Consistent with the naphthalene data no matter what isotherm model provided the 

best fit to the data, when all of the o-xylene data are compared, the adsorbed amount 

increases with the carbon content of the fly ash.  This is illustrated for the o-xylene data 

by the plot of the averaged sorbed amount (qi average) against LOI (%) in Figure 3.19, 

which demonstrates the strong correlation between these values.  Consistent with this 

trend, qi average is also highly correlated with the total carbon amount (by volume) (Figure 

3.20a) and qi average, and with the sum of isotropic and anisotropic carbon amounts (by 

volume) (Figure 3.20b). However, no correlation is observed with qi average and inertinite 

(% vol.). Similar trends were observed with  
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Figure 3 19 The correlation between the averaged sorbed amount versus loss on ignition 

from o-xylene adsorption experiments. 
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Figure 3 20 The relationship between averaged sorbed amount of o-xylene and a) total 
carbon [inertinite + isotropic + anisotropic carbon](by volume), and b) sum of isotropic 

and anisotropic carbon from petrographic analysis (by volume) 
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naphthalene adsorption, as discussed above. Additionally, as with naphthalene, the 

correlation of qi average with the sum of the isotropic and anisotropic carbon amounts 

yielded a slightly better R2 value than the correlation with the total carbon amount. This 

is probably because the reactive carbon types like isotropic and anisotropic carbons are 

more available for adsorption than the carbon forms like inertinite.   

 As observed with naphthalene, there is a strong correlation between qi average and 

the specific surface area (SSA) (Figure 3.21). This is consistent with the observation 

discussed with the naphthalene data that LOI is correlated with surface area of the fly 

ashes. Thus, fly ashes with a high SSA may have a higher capacity for sorption of organic 

chemicals than ones have a low SSA. Same observation was made for naphthalene 

adsorption.  

 PDM isotherms for all the fly ashes and the PAC are shown in Figure 3.22. As 

discussed above for naphthalene adsorption, the PDM isotherms were evaluated in detail 

for a better understanding of o-xylene adsorption. The PDM isotherms for o-xylene 

uptake demonstrated similar trends as the naphthalene data when examined as a function 

of the sorbent characteristics. These of trends were evaluated by assessing the correlation 

between the maximum adsorption volume capacity (q’max) from PDM isotherm 

parameters and the unburned carbon amounts and Figure 3.23 shows the correlation 

between q’max (L/kg) and LOI (%). The determination coefficient (R2) value of 0.746 

indicates a good correlation between q’max and LOI(%). Figures 3.24a and 3.24b depict 

the relationship between q’max and the total carbon by volume and q’max and the sum of 

the isotropic and anisotropic carbon, respectively. 
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Figure 3 21 The correlation between the averaged sorbed amount versus specific surface 

area SSA (m2/g) from o-xylene adsorption experiments. 
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Figure 3 23 O-xylene q’max from Polanyi Isotherm versus loss on ignition LOI (%) of the 

fly ashes tested 
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Figure 3 24 The relationship between maximum adsorption capacity (q’max) of o-xylene 

and a) total carbon [inertinite + isotropic + anisotropic carbon](by volume), and b) sum of 
isotropic and anisotropic carbon from petrographic analysis (by volume) 
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Similar to the naphthalene results, o-xylene sorption capacity is well correlated with the 

sum of the isotropic and anisotropic carbon with a slightly better correlation in the latter 

case. Figure 3.25 shows the correlation between q max and SSA, which yielded a 

correlation with a R2 of 0.666. 

3.5.3 Effect of Adsorbate on Adsorption to Maryland Fly ashes and PAC  

 
 By running batch adsorption tests with different organic compounds is possible to 

assess the sorption affinity of compounds that have different chemical properties. For 

example, the octanol water partition coefficient (Kow) is often taken as a good indicator of 

the hydrophobicity of non-polar organic chemicals. Chiuo et al. (2000) has reported the 

effect of hydrophobicity on sorption of organic compounds onto geo-sorbents and 

indicated that compounds with a higher log Kow have higher sorption affinity than 

compounds with a lower log Kow. Based on these results and others, log Kow widely used 

to quantify the sorption affinity for organic chemicals. On this basis, naphthalene with 

log Kow of 3.29, is more hydrophobic than o-xylene which has log Kow of 3.12 

(Schwarzenbach et al. 1999).  Another chemical property commonly used as a measure of 

hydrophobicity and sorption affinity is water solubility. Here it is also important note that 

the water solubility of o-xylene (Cs=178 mg/L) is substantially higher than naphthalene 

(Cs=31 mg/L), again indicating a greater hydrophobicity of naphthalene. Accordingly, it 

is expected that naphthalene should have slightly higher sorption affinity for the fly ash 

than o-xylene. 
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Figure 3 25 O-xylene q’max from Polanyi Isotherm versus specific surface area SSA 

(m2/g) of the fly ashes tested 
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 The influence of the hydrophobic nature of the non-polar organic chemicals was 

determined using the naphthalene and o-xylene data for the seven fly ashes and PAC 

sorption. Figure 3.22 shows the adsorption isotherms for selected fly ashes and PAC for 

naphthalene and o-xylene. The data in Figure 3.26 suggests that for relatively low 

concentrations, naphthalene was sorbed more than o-xylene molecule as expected. For 

example DP fly ash sorbed 240 mg/kg of o-xylene at 0.11 mg/L, however at 0.13 mg/L 

final concentration naphthalene was sorbed at the amount of 929.68 mg/kg. 

 Another factor that needs to be considered when adsorption of two non polar 

compounds having different molecular sizes is the level of comparing the adsorption 

nonlinearity. Malek and Farooq (1996) explicitly studied the effect of molecular size on 

the adsorption nonlinearity by comparing the Freundlich isotherm exponents “n” from 

separate adsorption tests using various organic compounds. They reported that for given 

sorbate compounds with larger molecular weights had best fit Freundlich isotherm 

exponents “n” that were smaller than also 1.0 and smaller relative to “n” values obtained 

for from compounds with smaller molecular weights. In this study, naphthalene has larger 

molecular weight (MW=128.6 g/mol) than o-xylene (MW=106.17 g/mol). In order to 

examine the effect of molecular size on the level of nonlinearity for the fly ashes, the 

Freundlich isotherm exponents were compared for naphthalene and o-xylene adsorption. 
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Figure 3 26 Adsorption isotherms for comparison of sorption nonlinearity. Solid symbols 

are for o-xylene. Open symbols are for naphthalene. 
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In general, the results of this research were consistant with the conclusions of Malek and 

Farooq (1996), with all n values for naphthalene, and 5 out of 7 values less than the 

corresponding n value for o-xylene. For example, for the BS fly ash, the naphthalene data 

yielded an “n” value of 0.195 which is smaller than 1, and smaller relative to the “n” 

value of 0.387 obtained for o-xylene adsorption. Similarly, MT fly ash with relatively 

low unburned carbon (LOI=3.1 %) has yielded “n” value of 0.306 for the naphthalene 

and 0.388 for o-xylene adsorption. However, for DB and PR, the “n” value for the 

naphthalene was greater than the value to o-xylene. 

 

3.5.4 Discussion on PDM Isotherm  
 
 PDM model explicitly accounts for the role of molar volume in determining the 

adsorption capacity, while also accounting for the effect of temperature and solubility and 

chemical size through the definition of the adsorption potential by normalization using 

those properties (Nguyen et al. 2007). Here it is important to note that when using 

sorbates that are solid at the test temperature, the subcooled liquid solubility could be 

used inplace of with the water solubility. However, previous studies have indicated that 

the PDM parameters calculated using sub-cooled liquid solubility are only “slightly 

better” than the PDM isotherm parameters taken from the results calculated using the 

water solubililty (Kleineidam et al 2002). Allen King et al. (2002) also discussed the 

usage of water solubility instead of subcooled liquid solubility for solid compounds. They 

reported non-detectable differences in the results, within the precision of the experiment 

for sorbents tested. There were also similar efforts to detect the influence of the 
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crystalline phase adsorption by accounting for the sub-cooled liquid solubility by Xia and 

Pignatello (2001), who observed insufficient precision to confirm or refuse the expected 

effect when sub-cooled liquid solubility was used. Most recently, Nguyen et al. (2007) 

suggested a change of 10% to 50% between the PDM parameters when sub-cooled liquid 

solubilities of the solid compounds were replaced with water solubility. In their study, 

naphthalene was in the lower end of their spectrum (10% change), therefore for practical 

purposes in this study, the water solubility of naphthalene was used during PDM isotherm 

parameter analysis.  

 
 One of the practical advantages of using PDM model is the ability to derive the 

isotherm by normalizing the aqueous concentration to the water solubilities and 

molecular sizes of the organic compounds. This provides a unified sorption isotherm for a 

group of similar organic compounds and a specific sorbent material (e.g., activated 

carbon, fly ash). By using such a normalized PDM isotherm (usually referred to as a 

correlation curve when used for multiple sorbates), the sorption capacity of one sorbent 

for a group of chemical can be determined. This approach has been successfully 

employed by many researchers for numerous organic compounds and wide variety of 

sorbent types (Manes 1998, Xia and Ball 1999, Kleineidam et al. 2002, Allen King et al. 

2002, Nguyen et al. 2007).  

 In order to follow a similar approach, the batch adsorption test data of 

naphthalene and o-xylene were combined (unified) for all the fly ashes and the PAC. The 

correlation curves were then plotted using the combined data (Figure 3.27). The PDM 

model parameters for the combined adsorption data were calculated using the  
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Figure 3 27 Correlation curves from PDM isotherm using naphthalene and o-xylene data. 

Open symbols are from naphthalene tests Solid symbols are from o-xylene 
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same nonlinear regression technique as was described earlier. The results of the 

regression analyses are given in Table 3.9.  Clearly, the combined data can be described 

well by a single best-fit regression for each sorbent. 

The exponent “d” in PDM isotherm model has been used as an indicator of the 

dependence of the adsorbate distribution on the adsorption energy with values usually 

reported between 1 and 5 (Allen King et al. 2002). For example, widely used Dubinin-

Raduskevich equation assumes “d” equals 2 by relating it to the complete Van der-waals 

interaction between the non-polar organic compound and a particular sorbate (Mauraya 

and Mittal 2006). Similarly, Xia and Ball (1999) has obtained d values between 1.4 and 

2.7 when correlation curves were fitted to nine individual sorbates.  

 Examining the “d” values obtained in this work from the PDM isotherms 

(correlation curves) using the combined naphthalene and o-xylene sorption data, it 

appears that they are in good agreement with the recently cited values from literature. All 

of the d values range between 1.031 and 2.547 with the exception of the MT and CP fly 

ashes. The “d” values for these two fly ashes, which are 0.1594 and 0.2633 for the CP 

and MT fly ashes, respectively, are substantially lower compared to ones from other fly 

ashes results. The reasons behind these low values are not clear. However, the relatively 

low unburned carbon contents of these fly ashes (LOICP = 3.2 % and LOIMT = 3.1 %) may 

cause these low distributions of the adsorption energies along the adsorption surfaces.  
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Table 3 9 PDM model parameters from nonlinear regression analysis using combined 
naphthalene and o-xylene batch adsorption data 

 

Sorbent q’max 
(L/kg) c (mL/J) d (-) R2 RSE 

DP 3.311 0.0464 1.031 0.92 0.192 

BS 1.657 0.0434 1.095 0.75 0.506 

PR 0.845 5.7 10-4 2.319 0.72 0.558 

CP 7.867 2.925 0.1594 0.90 0.323 

DB 1.481 0.0031 1.824 0.96 0.213 

PS 1.291 0.023 1.987 0.93 0.268 

MT 8.957 1.9 0.2633 0.93 0.277 

PAC 82.6 1.2 10-4 2.547 0.84 0.412 
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 Based on this analysis, we can suggest that the PDM isotherm could potentially be 

used to simulate adsorption of multiple organic compounds onto one particular sorbent. 

In turn, the PDM isotherm can be used to estimate the same volumetric adsorption 

capacity (q’max) for all compounds having similar abscissa values on PDM isotherm 

(Allen King et al. 2002). Additionally, PDM isotherms at a single temperature can be 

employed to predict adsorption volume capacity at other temperatures.  

 Like all isotherm models, the PDM isotherm is strictly constrained by the 

concentration range for which it was determined. However, environmental engineers and 

scientists can model the concentration-dependent sorption of similar chemical 

compounds by determining the PDM isotherm for a single compound. By this approach, 

substantial simplicity can be provided in sorption capacity assessments. Similar 

recommendations were also provided by Critenden et al. (2000), and Allen King et al. 

(2002).    

3.6 Conclusions 

Based on the results of the analysis on seven Maryland fly ashes with high carbon 

content, it was determined that the loss on ignition (LOI) of the Maryland high carbon 

content Class F fly ashes varied between 3.1% and 20.5% and contained three distinct 

carbon forms, namely anisotropic, isotropic and inertinite. Batch adsorption tests 

indicated that the naphthalene and o-xylene adsorption capacity of these fly ashes was 

strongly correlated with LOI and total amount of carbons forms by volume. Correlation 

with more reactive carbon forms (i.e. anisotropic and isotropic) resulted in higher R2 

values.  
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A solid-to-solution ratio of 1/120 was determined as optimum value for batch tests. 

Batch kinetic tests revealed the quick adsorption process and 24 hours of equilibrium was 

maintained during the course of batch tests. The results of the series of batch adsorption 

tests on seven fly ashes with naphthalene and o-xylene revealed that the chemical and 

physical of structure of the fly ash promoted adsorption and yielded nonlinear sorption 

isotherms that are characterized by high sorption capacity at low concentrations. This 

nonlinear sorption trend was supported by the Freundlich isotherm coefficient “n” values 

that are ranging between 0.194 and 0.339 for naphthalene sorption and between 0.381 

and 0.387 for o-xylene sorption. Furthermore, fly ashes with higher surface area 

generally exhibited high sorption capacities.  Batch adsorption test data revealed that 

naphthalene was sorbed more than o-xylene when same fly ash data was compared, and 

this was explained by the relatively high hydrophobicity of naphthalene.  

The goodness of fit for six different isotherm models to batch adsorption data was 

assessed using coefficient of determination and RMSE as the fit criteria. Isotherm models 

with five fitting parameters did not show superiority over other models with lower fit 

parameters. Among the adsorption isotherm models used to evaluate adsorption test data. 

Polanyi-Dubinin-Manes (PDM) model posed great potential for explaining the petroleum 

contaminant adsorption on to fly ash. Pore filling mechanism, explained by PDM 

isotherm, was believed to be the dominant mechanism for adsorption of non-polar 

organic chemical onto highly heterogonous sorbents like fly ash. One of the practical 

advantages of the PDM model is the normalization of the aqueous concentrations to 

water solubilities of the organic compounds. This provides unified sorption isotherm for a 

group of similar organic compounds for specific sorbent material (i.e, activated carbon, 
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fly ash). By use of PDM isotherm (usually referred to as correlation curve when used for 

multiple sorbates), sorption capacity of a particular sorbent can be determined for a group 

of chemicals.  
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Chapter 4  Stabilization of Petroleum Contaminated Soils Using  

  High Carbon Content Fly Ash 

 
 Reclamation of soils contaminated by petroleum spills has been a challenge for 

state agencies during the last two decades. In the late 1980s and early 1990s, cleanup 

philosophies emphasized excavation of large volumes of petroleum-contaminated soils 

(PCSs) from sites, frequently attempting to achieve total removal and landfilling of those 

materials. Regulatory agencies departed from this philosophy in the mid-1990s. As a 

result, some ex-situ treatment methods such as landspreading, thermal treatment and 

bioremediation, as well as in situ methods like bioventing and soil vapor excavation have 

been applied in recent years (Kamnikar 2001).  Remediation of contaminated waste 

materials and their beneficial reuse as part of landfill caps and highway embankments 

have also been encouraged by the United States Environmental Protection Agency 

(U.S.EPA) (Meegoda 1999). One alternative remediation method is to stabilize these 

soils by adding a binder to adsorb the pollutant(s) while maintaining its good engineering 

properties.  Materials stabilized in such a manner could be reused in highway 

construction, and the most common application being their use as a borrow fill material.   

Traditionally, borrow materials have been derived from natural materials (soil).  

As a result, testing and approval processes are geared to evaluate natural materials.  

Historically, the natural material approval process has not required an environmental 

review.  Many producers of recycled soil-based materials use a reclamation process to 

stabilize the contaminants.  After the reclamation process, the soil may still contain the 

original contaminant(s), which might, in turn, affect the engineering properties of the 
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material.  Therefore, normal testing procedures may be inappropriate for approval and 

construction quality assurance.  Currently there are no definitive criteria for determining 

the suitability of these products for use in a transportation project, although there is a 

generic acceptance process for recycled materials being developed by a national center, 

the Recycled Materials Resource Center.  To make progress in this area, additional 

information concerning the geotechnical and environmental properties of recycled or 

reclaimed soil is needed (Ezeldin et al. 1992, Meegoda and Ratnaweera 1995).  In order 

to respond to this need, a study was undertaken to evaluate stabilization of petroleum 

contaminated soils by using high carbon content fly ash (HCCFA). This section explains 

preparation and testing of PCSs in the laboratory, and presents and discusses the results 

of a series of geotechnical (i.e., compaction) and environmental tests (column leaching 

tests) conducted on PCSs stabilized with HCCFA. 

4.1 Materials 

4.1.1 Borrow Material  
 
  The reference soil employed in the compaction and leaching tests was a borrow 

material commonly used in embankment construction in Maryland. The borrow material 

was classified as clayey sand (SC) according to the Unified Soil Classification System 

(USCS) and A-2-4 according to the American Association of State Highway and 

Transportation Officials (AASHTO) Classification System. Grain size analyses indicated 

that the soil had approximately 34% particles passing through the U.S. No. 200 sieve, and 

10% particles that were smaller than 2 μm in diameter. Based on an analysis performed 

using a SHIMADZU 500 carbon analyzer, the borrow material had a total organic content 
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(TOC) of about 0.5% by weight. The cation exchange capacity (CEC) and pH of the 

material were 2.9 meq/100g and 7.2, respectively, as determined by Agri Analysis, Inc. 

located in Leola, Pennsylvania. PCSs were prepared by mixing borrow material with 

contaminants in a laboratory setting.  The water-density relationship of the borrow 

material was determined by running standard Proctor compaction tests following the 

procedures outlined in ASTM D 698 (Figure 4.1).  The tests indicated that the maximum 

dry density and optimum water content were 20.1 kN/m3 and 10%, respectively.  

4.1.2 Fly ash  

The fly ash used in the current study was obtained from the Brandon Shores (BS) 

Power Plant located in Baltimore, Maryland. It was produced as a result of burning 

pulverized bituminous coal and classified as Class F fly ash according to ASTM C 610.  

According to the grain size distribution, it has 92 % fines passing through #200 sieve. 

Detailed physical and chemical properties of BS fly ash are in given in section 3.1.1.  

4.1.3 Contaminants  

 Diesel fuel was chosen as the contaminant for the compaction tests, because it is 

one of the most commonly encountered pollutants in sites contaminated with petroleum 

residues.  The diesel fuel was purchased from a local gas station and added to the borrow 

material at 1% to 2% by weight. These percentages were selected because soils exhibiting 

higher concentrations, e.g., greater than 3% by weight, are accepted as hazardous waste 

and are generally disposed in hazardous waste landfills (Kamnikar 2001).The chemical 

composition of diesel fuel can be variable and is highly dependent on the source of the 

crude oil and the degree of chemical modification.  A chemical analysis was not 

conducted on the diesel fuel employed in the testing program; however, in general diesel 
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Figure 4. 1 Standard proctor compaction curve for the borrow material 
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fuels have been reported to contain about 40% n-alkanes, 40% iso-and cycloalkanes, 20% 

polycyclic aromatic hydrocarbons (PAH), and a few percent isoprenoids, sulfur, nitrogen, 

and oxygenated compounds (Lee et al. 1992). 

The contaminant used during the column leaching tests was a simplified tertiary 

model nonaqueous phase liquid (NAPL) that consisted of naphthalene and o-xylene 

dissolved in dodecane.(described further below) These three compounds represented the 

PAH, monocyclic aromatics, and n-alkane groups, respectively.  Detailed description of 

the chemicals of interest is given Section 3.1.5. The NAPL concentration was designed to 

give nominal aqueous equilibrium concentrations of 5 mg/L and 10 mg/L for naphthalene 

and o-xylene, respectively.  The former value is higher than the reported aqueous 

equilibrium concentration of naphthalene in diesel fuel (Lee et al. 1992), but was selected 

mainly due to analytical and experimental constraints.   

 

4.2. Methods  

4.2.1 Laboratory Preparation of Contaminated Soils 
 

 The borrow materials are contaminated with petroleum hydrocarbons  by 

following spiking procedure which the compounds were introduced into the soil medium 

(Doick et al. 2003). Spiking is defined by the ASTM E1676 as “the experimental addition 

of a test material such as a chemical or mixture of chemicals, sewage sludge, oil, 

particulate matter or highly contaminated matter sediment/soil to a clean negative control 

or reference sediment/soil to determine the toxicity of the material added.” Preliminary 

investigations indicated that interpretation of test data is highly dependent on the spiking 
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procedure. Therefore, in order to prepare homogenous and reproducible soil–diesel fuel 

mixtures, the protocol explained by Doick et al. (2003) was adopted  A stainless steel 

spoon was used, which has been reported to produce good spike homogeneity and  to be a 

more reliable approach as compared to other spiking methodologies (e.g., using a blender 

or a modified bench drill) (Doick et al. 2003). The spiking protocol applied during both 

compaction and column leaching tests is briefly discussed below:  

As part of the methodology, 3500 g of soil (borrow material) was hydrated by 

adding 3% water by weight.  A 700 g of this hydrated soil was then placed into a stainless 

steel bowl. Diesel fuel or NAPL solution for column tests were added at 1% and 2% by 

weight in compaction tests and 0.5% and 2% in column leaching tests. The mixture was 

blended by hand using the stainless steel spoon for about 90 seconds. The remaining 

2800 g of hydrated soil was divided into four aliquots equal in weight.  Each aliquot was 

contaminated and blended for about 90 seconds following the same procedure. The 

spiked sand samples were then placed into 2L amber glass jars with no headspace and 

kept in 4 °C room for 30 days before starting the tests as discussed further below.  

4.2.2  Model NAPL Design, Preparation and Equilibrium Concentration Tests 

 The model NAPL was composed with naphthalene, o-xylene as main constituents 

of interest and using dodecane as the main solvent. The mole fractions of naphthalene in 

the NAPL mixture were back-calculated using the Raoult’s law described by the 

following equation: 

 Pure
S

L
Pure
eqNNAPLNNAPLNN

f
fCXeqC )()()()()( γ=                          (4.1) 
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where (CN)eq is the equilibrium concentration of naphthalene in the aqueous phase, 

(γN)NAPL is activity coefficient for naphthalene in NAPL mixture, (XN)NAPL is the mole 

fraction of naphthalene in NAPL mixture, 
Pure
eqNC )(  is the aqueous thermodynamic 

equilibrium concentration of naphthalene in the pure solid form (aqueous solubility) and 

is equal to 31 mg/L, and (f L/f S) is the ratio of naphthalene fugacities in the subcooled 

liquid and solid state and is equal to 3.53 (Schwarzenbach et al. 1999). In this formula, 

the activity coefficient for naphthalene in the aqueous phase, (γN)aq. is assumed to aqual 

to 1, i.e., the aqueous solution behaves ideally. The design equilibrium concentration of 

naphthalene in the aqueous phase (CN)eq of naphthalene was set at 5 mg/L.  Using this 

value, the following two assumptions were made in order to calculate the mole fraction of 

naphthalene in the NAPL mixture; (1) the solute- solute interactions in the aqueous phase 

are small, and (2) NAPL phase is ideal, therefore (γN)NAPL  is unity.  

Following the same assumptions, the o-xylene mole fractions in the aqueous 

phase was also back-calculated using the equation below: 

Pure
eqONAPLONAPLOO CXeqC )()()()( γ=                                (4.2) 

where (CO)eq is the equilibrium concentration of o-xylene in aqueous phase, (γO)NAPL is 

the activity coefficient for o-xylene in NAPL mixture, (XO)NAPL is the mole fraction of o-

xylene in NAPL mixture, Pure
eqOC )(  is the aqueous thermodynamic equilibrium 

concentration of o-xylene in the pure solid form (aqueous solubility) and is equal to 170 

mg/L.  The design equilibrium concentration of o-xylene in the aqueous phase (CO)eq was 

set at 10 mg/L in Equation (4.2), and corresponding mole fraction calculated by assuming 

that (γN)NAPL is equal to 1.  
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After calculating the required mole fractions of naphthalene and o-xylene in 

dodecane based on Equations (4.1) and (4.2), the corresponding testing NAPL solution 

was prepared. Subsequently, experiments were conducted to determine the aqueous 

equilibrium concentrations of each compound , by following a two-stage nested sampling 

design described by Mendenhall and Sincich (1984). The experimental procedure was as 

follows. First, 30 mL of the aqueous solution and a 10 mL of the NAPL mixture were 

placed in 40 mL amber vials and capped using screw caps with Teflon® septa. The 

volumes of aqueous phase and NAPL phase were selected such that NAPL phase 

concentration of the tertiary naphthalene, o-xylene and dodecane mixture would not 

significantly change when at equilibrium with aqueous phase (Seagren et al. 1994). Five 

replicate NAPL-aqueous solution mixtures were prepared and the inverted vials were 

shaken for three days on the horizontal shaker at a moderate speed. After shaking, they 

were kept at controlled temperature (22 ± 2 ºC) for five days to allow for phase 

separation.  Two aqueous samples were then withdrawn from each of the shaken vials by 

using a 2.5 mL gastight syringe.  To dose, 1 mL air was first pulled into the syringe, the 

syringe was inserted through the septum, and the air inside the syringe was injected into 

the vial to prevent NAPL intrusion into the syringe. Afterwards, 2.5 mL of aqueous 

solution was slowly withdrawn and 2 mL of this solution was subjected to liquid-liquid 

hexane extraction, followed by analysis using gas chromatography, as explained in detail 

in Section 3.3.2.  

The measured aqueous equilibrium concentrations of each compound in the 

samples from the batch equilibrium test were different than expected based on Equation 

(4.1) and (4.2), with the sated assumptions.  It is well known that when more than one 
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organic compound is present in aqueous solution, cosolvent effect may cause changes in 

their chemical properties.  In order to investigate the cosolvent effect of o-xylene and 

naphthalene, the Yalkowsky model was applied (Schwarzenbach et al. 1999). The results 

indicated that a cosolvent effect was not present mainly due to presence of low volumes 

of naphthalene and o-xylene in the aqueous solution. Therefore, it was concluded the 

assumption of ideality in the aqueous phase was correct, but the assumption of ideal 

NAPL phase [(γN)NAPL  = 1] was not valid. Similar observations were made by Seagren 

and Moore (2003). Therefore, the measured equilibrium concentrations were used in 

Equation (4.1) and (4.2) to back calculate activity coefficients of 1.77 and 1.21 for 

naphthalene and o-xylene, respectively.  Correspondingly, the mole fractions of each 

compound in the NAPL mixture used in the column tests, described below, were 

prepared considering the new activity coefficients. The equilibrium concentrations of o-

xylene and naphthalene in the aqueous phase were successfully maintained at the nominal 

target value of 10 mg/L and 5 mg/L, respectively, with the new activity coefficients after 

performing a second set of equilibrium tests by following the same procedure described 

above. 

 

4.2.3  Aging of Contaminated Soils 

 Previous research indicated that contact time between soil and contaminant has a 

significant effect on the laboratory test results. This contact time is often called aging and 

is defined as the diffusion of organic contaminants into the nano and micro-scale pores of 

the soil.  As a result of aging, often physical entrapment and partitioning into soil organic 

matter or its organic carbon fraction occurs (Doick et al. 2003). The generally 
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recommended aging time ranges from 2 to 4 weeks to replicate these effects in laboratory 

prepared spiked soils (Reid et al. 1998, Northcott and Jones 2000, Brinch et al. 2002). In 

the current study, soil-contaminant combinations were aged at 4°C for a period of  two 

and four-week(s) to investigate the effect of aging on geotechnical properties (i.e, 

compaction) as well as to select the optimal chemical equilibrium time for further testing. 

Additionally, a set of one-year aged samples were tested in order to understand the long-

term aging effects on the geotechnical properties of soils.  Column leaching specimens 

were aged for 4 weeks at 4°C.  

4.2.4  Compaction Tests 

4.2.4.1 Water Content and Liquid Content Determination 

 Laboratory compaction tests were conducted on soils and soil-fly ash mixtures 

following the procedures outlined in ASTM D 698.  Standard Proctor effort was used 

during compaction.  However, instead of the term “water content” commonly used in 

interpreting the compaction test data, a term “liquid content” was adopted.  Liquid 

content herein represents the total amount of water and diesel fuel inside a specimen 

(Meegoda 1995). To determine the liquid content, two separate techniques were studied 

before the compaction tests: surfactant desorption and thermal method.  

The surfactant desorption technique was performed using the TX-100 nonionic 

surfactant, [C14H22O(C2H4O) n, MW= 625 g/mol ] (99% purity) was used. Surfactants can 

enhance the water dissolution of nonionic organic compounds, and increase the 

desorption of organic pollutants from contaminated soils.  For example, nonionic 

surfactants have been commonly employed in testing the desorption characteristics of 

soils contaminated with PAHs (Zhu et al. 2004) and pesticides (Mata-Sandoval et al. 
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2002).  For this study, an aqueous solution of TX-100 was first prepared at a 

concentration of 10 mM.  An 80 mL aliquot of this solution was mixed with 20 grams of 

diesel fuel-spiked soil, which was then placed in a 125 mL amber bottle equipped with a 

Teflon® septum cap. The bottles were shaken for 24 hours and the solution was allowed 

to sit for about two hours. After the sedimentation, decantation of the supernatant was 

performed by a glass pipette, taking care not to remove the emulsion. The remaining 

sample (emulsion plus soil) was then kept in the oven at 105 °C for 24 hours. The dry 

weight of the emulsion plus soil mixture was determined, and the difference between that 

dry weight and the initial soil weight (20 g) was used to calculate the liquid content. The 

results indicated that this particular nonionic surfactant might not be the best compound 

for desorption of diesel fuel from the borrow material. A similar conclusion was reached 

in a study conducted by You and Liu (1996) in which TX-100 first adsorbed onto the soil 

through hydrophobic interactions and increased the hydrophobicity of soil; however, it 

then acted as an additional organic component on the soil surface and enhanced organic 

pollutant partitioning. Further trials with different concentrations of TX-100 or different 

types of surfactants were not carried out, because it was beyond the scope of the current 

project.   

Ultimately, the thermal method was chosen for determining the liquid content. As 

part of the thermal method, the contaminated soil was kept in an oven at 105 °C for 48 

hours and its gravimetric water content was determined.  However, the boiling points of 

the organic constituents inside the diesel fuel did not allow accurate determination of the 

total liquid content at 105 °C and higher temperatures were necessary.  Considering the 

reported boiling temperature of 250 °C for diesel fuel as well as the observations made by 
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Meegoda et al. (1998), a temperature of 400 °C was selected in the current study to burn 

the organics present inside the soil medium.  The specimens were kept in the oven at 400 

°C for 24 hours. It was assumed that all the organic material was combusted at 400 °C, 

and the liquid content was calculated by using the following equation : 

LC = TO – TOC                                           (4.3) 

where LC is the liquid content (% by weight), TOC is the total natural organic content of 

the borrow material (% by weight), and TO is a total content of natural organic matter in 

the borrow material (TOC), plus diesel fuel and the gravimetric water content.  For all 

practical purposes, LC represents the summation of the diesel fuel and gravimetric water 

content. However, calculating the liquid content by simply adding the initial water and 

diesel fuel contents, for instance, may not be accurate since there may have been small 

deviations in the diesel fuel content during specimen preparation.  This procedure can be 

helpful to the practicing engineers, and the organic contaminant level can be identified by 

the thermal technique if the natural organic content of the soil is known a priori. 

4.2.5  Column Leaching Tests 

 Soils contaminated with petroleum hydrocarbons can be stabilized by using 

binders that exhibit significant sorptive capacity; however, the long-term leaching of 

undesired constituents from the stabilized end-product must be studied. Leaching is the 

process by which inorganic or organic contaminants are released from the solid phase 

into the water phase under the influence of mineral dissolution, desorption, or 

complexation processes.  The water that contains the dissolved and desorbed (removed) 

hazardous constituents, which is often called leachate, can potentially contaminate the 

groundwater or surface water (Bin-Shafique 2002).  Laboratory leaching tests have 
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traditionally been used to evaluate the leachability of various hazardous compounds.  

Leaching test results are often used to define the transport properties of chemical 

pollutants in a soil medium under controlled conditions, e.g., hydraulic gradient, climatic 

stresses. Column tests have been used to determine the leaching performance of PAHs 

from sewage farm soils (Reemtsma and Mehrtens 1997), VOC’s from clay liners (Kim et 

al. 2001), and TCE and pesticides from foundry sand (Lee and Benson 2002). 

 Column leaching tests performed in this study consisted of continuous flow of 

liquid through a solid matrix (i.e., the petroleum-contaminated soil).  A schematic 

diagram of the column leaching test set up is shown in Figure 4.2. Stainless steel was 

used to fabricate the column cylinders and top and bottom plates. The column cylinder fit 

into grooves in the top and bottom plates, which were equipped with Viton O-rings, and 

the entire assembly was hold together by 4 threaded rods over with nuts and knobs on 

each end. When assembled, the column reactor had an inside diameter of 101.6 mm and 

height of 177.8mm. The borrow material and borrow material/fly ash mixture specimens 

were spiked with the model NAPL, as discussed above, and then compacted in the 

column using standard Proctor energy giving the test specimen height of 114.3 mm. The 

remaining upper 63.5 mm-section inside the column was used as an influent reservoir for 

sampling.  A supply (influent) tank containing DI water was placed above the columns, 

and the influent was provided at a nominal flow rate of 10 μL/min. This rate was selected 

based on the desired hydraulic gradient of 4 to 5.  The specimen was underlined by a 

glass fiber filter and stainless steel screen.  An effluent reservoir was located between the 

bottom of the specimen and lower base of the column.  The effluent leaving the specimen  
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Figure 4.2 Schematic of column leaching Test Set-up (Not to scale). 
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was collected in Teflon® effluent bags.  All of the tubing was Teflon® and the fittings 

were Teflon® or brass. As part of the current research study, two sets of column leaching 

tests were conducted. In the first set of experiments, the model tertiary  NAPL, a mixture 

of naphthalene, o-xylene and dodecane, as described in Chapter 4, was added to the 

borrow material at 2%, and in the second set, the model NAPL was added at 0.5% by 

weight. 

Each set of experiments included four columns, for a total of eight columns. One 

of the four columns in each set was a control column filled contaminated borrow material 

only. Duplicate control columns were performed in the second set of experiments to test 

for reproducibility.  In the other three columns in each set, the contaminated borrow 

material was amended with 5%, 10%, and 20% Brandon Shores (BS) fly ash by weight, 

respectively. The physical and chemical properties of BS fly ash are given in Chapter 3. 

The NAPL-contaminated column specimens were prepared by following the same 

spiking procedure as used for the compaction tests, with the exception that the spiking 

was performed using the naphthalene- and o-xylene-in-dodecane model NAPL mixture 

instead of the diesel fuel used in compaction tests. The spiked specimens were aged for a 

total of 4 weeks.  Control column specimens were prepared by compacting the 4-week 

aged NAPL-spiked borrow material in the columns.  For the remaining column 

specimens, NAPL-spiked and 4-week aged borrow material was amended with 5%, 10% 

or 20% BS fly ash and kept in closed amber glass containers for 2 days to achieve an 

equilibrium. After 2 days, the mixtures were compacted inside the test columns.  

As discussed previously, based on a fugacity model, the naphthalene and o-xylene 

in dodecane mole fractions of 0.026 and 0.0472 in the NAPL mixture provided nominal 
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naphthalene and o-xylene aqueous equilibrium concentrations of 5 and 10 mg/L, 

respectively.  Thus, the maximum possible aqueous contaminant concentrations expected 

in the column leaching tests were the same as for the batch adsorption tests.  The model 

NAPL was used in these experiments to simplify the analysis of the leachate collected 

from the specimen and focus on evaluation of the dissolution and sorption/desorption 

characteristics of the specific target organic compounds (i.e., naphthalene and o-xylene).  

As mentioned before, there are several different types of compounds in diesel fuel and it 

would be difficult to define the leaching behavior and the effect of binder on the 

stabilization of all of the pertinent organic pollutants.  

 The hydraulic properties of all columns are given in Table 4.1. Falling head 

hydraulic conductivity tests conducted on the borrow material compacted with the 

standard Proctor effort indicated that the material had an average hydraulic conductivity 

of 5x10-6 cm/sec. The measured hydraulic conductivities, coupled with the selected 

hydraulic gradient, resulted in the actual flow rates provided in Table 4.1. The columns 

were terminated after ensuring the stabilization of the flow and a steady-state effluent 

concentration of the contaminants.   

Using the sampling port attached to the base of column, the effluent was 

monitored daily for the first two months of the tests.  Due to relatively stabilized flow 

rates, weekly monitoring was adopted after two months. The aqueous effluent samples 

were collected using a luer-lock gas-tight syringe (VWR 60375-522) and a syringe pump 

(Harvard Apparatus 22). A constant extraction rate equal to the flow rate (10 μL/min) 

was used in order not to cause a disturbance in the continuous flow. The collected 

samples were  
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Table 4. 1 Hydraulic conductivity and flow rate of the columns employed in the current 
study 

 

Contamination 
Level Column Type Hydraulic Conductivity 

(cm/sec) 
Flow Rate 
(�l/min) 

2 % NAPL 

Control 4.1 10-7 ± 2.4 10-7 8.74  ± 3.4 

Column with 5% fly 
ash 

2.1 10-7  ± 3.2 10-8  10.50 ± 1.6 

Column with 10% 
fly ash 

3.3 10-7  ± 5.4 10-8  14.90  ± 6.2  

0.5 % NAPL 

Control 1c 4.2 10-6  ± 1.8 10-7  9.8  ± 0.4  

Control 2c 2.9 10-6  ± 7.8 10-8  6.5  ± 0.1  

Column with 5% fly 
ash 

3.9 10-6  ± 7.1 10-7  8.6  ± 0.1  

Column with 10% 
fly ash 

5.1 10-6  ± 1.3 10-6  11.4  ± 2.9  
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subjected to liquid-liquid hexane extraction, and the naphthalene and o-xylene 

concentrations in the hexane extracts were determined via GC analysis, as described in 

Section 3.3.2.  The NAPL present inside the soil specimens were extracted and analyzed 

as discussed in the following section. 

 

4.2.6 Analytical methods 

4.2.6.1 Extraction of NAPL Compounds from Column Specimens 

 A mass balance analysis of the NAPL-contaminated borrow materials, as well as 

the fly ash-amended ones, required an assessment of the organic compound loss during 

each step of the laboratory preparation procedure.  The losses occurred as a result of mass 

reduction of organics inside the column specimen, because the contaminated specimens 

were exposed to the atmosphere during the spiking, fly ash addition, compaction and 

aging. The losses are primarily attributed to volatilization, in particular for the o-xylene, a 

BTEX compound well-known for its relatively high volatility.   

 Another potential reason for loss during spiking is the sorption of the 

contaminants onto the stainless steel bowl or the stainless steel spoon used for the 

spiking, or onto the amber glass jars that the NAPL spiked soils were kept in for aging. In 

order to quantify these losses as well as to measure the concentrations of each organic 

compound that remained in the columns after the leaching test, an extraction of the soil 

specimens by means of a mechanical shaking extraction method was employed.   

 
4.2.6.2  Extraction of Contaminants from the Soil 

Two highly hydrophobic solvents, namely acetone and hexane were utilized to 

extract the NAPL mixture from soils after each step. Extraction of petroleum 
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hydrocarbons from soils has commonly been conducted through Soxhlet extraction 

method (ASTM 2002).  However, there are three main problems associated with the 

Soxhlet method: (1) the soil sample is static during the extraction process, which may 

limit contact between solvent and soil microspores, (2) the method requires a long testing 

time of up to 24 hours and specialized apparatus, which may be prohibitive for large 

number of samples, and (3) high moisture content in soil samples may increase the 

variability due to difficulties associated with obtaining representative sub-samples 

(Schwab et. al. 1999).  Because of these disadvantages, a more practical and efficient 

method, the mechanical shaking extraction method was adopted, using acetone as the 

main solvent. The details of the technique were described by Schwab et al. (1999).  The 

objective of the mechanical shaking extraction was to remove and measure the 

contaminant mass in soil samples after each step of column specimen preparation, as well 

at the termination of the column tests.  

As part of the extraction procedure, 1-g soil samples were collected and placed 

into 15-mL round-bottom glass vials.  The vials were weighed before and after placement 

of the soil specimens to determine the wet soil mass. A 10 mL aliquot of solvent (hexane 

or acetone) was then added immediately to each vial containing 1 g of soil sample and the 

vials were capped using open-top caps with PTFE septum. The solvent amended vials 

were shaken using a reciprocal horizontal shaker at the maximum speed for 30 minutes. 

Then, the extracts were centrifuged for 10 min at 200 g, and the extraction solvent was 

decanted and transferred to amber glass vials capped with Teflon® septum.  This process 

completed the first cycle of the extraction procedure.  The soil samples were then 

subjected to two more extraction cycles following the same procedure and using fresh 
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solvent during each cycle.  The extracts were combined and then kept at 4 ºC until it was 

possible to determine the concentrations of each compound in the extract. 

 Hexane was used as the solvent during extraction of NAPL from soil samples 

after the spiking, aging and post-compaction steps.   There were two reasons for using 

hexane as solvent: (1) the analytical determination of the compound concentrations in the 

aqueous phase was performed using a hexane extraction, and (2) hexane is an effective 

solvent for most of the organic chemicals used in this study.  However, the extraction 

efficiency of hexane, as a nonpolar solvent, was not satisfactory for extraction of the soil 

inside the column at the end of leaching tests due to the presence of high amounts of 

water (Schwab et al. 1999). Specifically, the nonpolar nature of hexane caused the 

formation of clumps rather than dispersion of soil particles, which prevented the removal 

of all the entrained hydrocarbons. Therefore, a polar solvent, acetone, was chosen for 

extractions of the compounds in the soil after the first set of columns were dismantled, 

and for extraction from the aqueous as well as solid phase samples for the second set of 

column experiments (at 0.5 %).  Because acetone has both nonpolar and polar properties 

(it is fully miscible in water), its use as a solvent overcomes the problems associated with 

the hydrophobicity of hexane.  Schwab et al. (1999) compared the extraction efficiencies 

of the mechanical shaking method using acetone and the ASTM Soxhlet extraction 

procedures and concluded that the efficiencies were comparable for clayey sandy soils, 

similar to the borrow material used in this study.  Specifically, acetone extraction yielded 

a recovery efficiency of above 95% and was considered acceptable.   
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4.2.6.3.  GC Method for Naphthalene, O-xylene and Dodecane Mixture 

 Because of the use of the testing model NAPL mixture, in the column tests, it was 

necessary to determine the aqueous concentrations of each compound of the model 

NAPL (i.e., o-xylene, naphthalene and dodecane). A GC procedure similar to that for o-

xylene was utilized to analyze these components. Hexane or acetone was used as the 

main solvent during extraction, as described above. The same GC method was employed 

for both of the solvents; however, separate standard curves were prepared for each 

compounds (o-xylene, naphthalene, dodecane, and acenaphthene) in each solvent. The 

GC analyze of o-xylene, naphthalene, dodecane, and acenaphthene in the hexane and 

acetone were performed as follows: the oven temperature was held at 40 ºC for 4 minutes 

after injection of 1 μL of the extracted sample in hexane or acetone, and then the 

temperature was increased at a rate of 40 ºC/min up to a final temperature of 220 ºC. The 

retention times for the o-xylene, naphthalene, dodecane and acenaphthene were 4.27, 

7.23, 7.37 and 8.9 minutes, respectively. The example chromatogram is shown in Figure 

4.3. 

Standard calibration curves of all three compounds and the internal standard in 

hexane, as well as acetone, were prepared. Tables 4.2 and 4.3 summarize the results of 

the calibration tests.  When the difference between concentrations of the standard 

solutions was greater than 2 orders of magnitude, the higher points had dominant effect 

on the standard curve. Elimination of the adverse effect of one point to the overall curve 

was made by using weighted linear regression (Relative Least Squares- RLS) analysis, 

except an un- weighted linear regression (Absolute Least Squares - ALS) was used for 

the analyses of acenapthene in both solvents and naphthalene in acetone. 
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Figure 4.3 The GC plot for the o-xylene, naphthalene, dodecane and acenaphthene 
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Table 4.2 Standard solutions used for NAPL Compounds and equations for hexane 
 

Compound Standard Solutions Used 
(mg/L) Curve Equations 

O-xylene 0.1442 – 1.442 – 3.605 – 

36.05 
AOx = 34.476 [C hex]Ox + 0.9412 (a) 

Naphthalene 0.1 – 1 – 4.21 – 10.025 ANaph = 46.012 [C hex]Naph + 0.2 (a) 

Dodecane 0.218 – 4.375 – 8.75 ADod = 50.788 [C hex]Dod + 6.377 (a) 

Acenaphthene 0.5 – 5 – 10 AAce = 38.154[C hex]Ace – 8.93(b) 

Notes: A – area of the peak of compound in the chromatogram [C hex] - the naphthalene 

concentration in hexane.  (a) calculated by Relative Least Squares (RLS);  (b) - calculated 

by Absolute Least Squares, ALS.   
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Table 4. 3 Standard solutions used for NAPL Compounds and equations for acetone 
 

Compound Standard Solutions Used 
(mg/L) Curve Equations 

O-xylene 0.107 – 1.072 – 10.72 – 

107.2 
AOx = 35.318 [C Acet]Ox + 3.377 (a) 

Naphthalene 0.12 – 0.61 – 2.44 – 4.88 – 

12.2 
ANaph = 41.20 [C Acet]Naph + 4.272 (b) 

Dodecane 
0.072 – 0.748 – 3.744 – 

7.48- 74.88 – 187.2 - 1872 
ADod = 33.706 [C Acet]Dod + 1.5733(a) 

Acenaphthene 1.6 – 8 – 16 AAce = 29.476[C Acet]Ace – 4.599(b) 

Notes: A – area of the peak of compound in the chromatogram [C Acet] - the naphthalene 

concentration in acetone.  (a) calculated by Relative Least Squares (RLS);  (b) - calculated 

by Absolute Least Squares, ALS.   
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 4.2.6.4 Measurement of NAPL Degraders 

The occurrence of biodegradation during the column leaching experiments was 

evaluated as a possible cause for the reduction in the organic contaminant concentrations 

in contaminated soils. To monitor for biodegradation in the contaminated soils, microbial 

numbers in the leachate was measured on a periodic basis in the column effluent. 

Changes in the bacterial populations were taken as an indication of the level of 

biodegradation i.e., whether it is increasing or decreasing by the time.  To enumerate 

the NAPL degrader bacterial populations in the column effluent samples, a 96 well 

microtiter plate most probable number (MPN) method was employed (Haines et al. 1996, 

Hong et al. 2006). A 180 μL sterilized Bushnell-Hass medium (Difco, No. 0578-17) was 

aseptically added to each well except the first row.  Extraction of 2 mL of effluent 

samples from the columns was conducted by using syringe pump at a rate of 10 μL/min.  

200 μL of effluent sample was then added to each well in the first row, whereupon 10-

fold dilutions were performed from the first through 11th row, leaving the 12th row empty 

of sample as a sterile control.  After the dilution procedure, 2 μL of filter sterilized model 

NAPL was added to each well in the plate (enough to cover the surface of each well) as 

the sole hydrocarbon source for enumeration.  The plates were then sealed, covered from 

light in an plastic bag, and incubated for 7 days at the same temperature as the columns 

(24 ± 2 °C).   

 After 7 days of incubation, 50 μL of filtered 2-(p-iodophenyl)-3-(p-nitrophenyl)-

5-phenyl tetrazolium chloride (3 g/L)  (INT, Sigma No. I-1040-6) was added as an 

indicator to each well.  The INT competes with O2 for electrons from the respiratory 

electron transport chain, and once the INT is reduced to an insoluble formazan that 
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deposits a red precipitate in the presence of active respiring microorganisms (Hong 

2003).  Wells were scored as positive for NAPL-degrading organisms if the well turned a 

red or pink color.  The total numbers of positive wells for each dilution row (each row 

except theoretically the last sterile row) were then counted and input into the computer 

program to calculate the most probable number (MPN). 

 To enumerate the number of NAPL-degrading colonies in the sample, a computer 

program, developed by the U.S. EPA Risk Reduction Engineering Laboratory was used. 

Inputs to the program include the number of dilutions, number of tubes per dilution, size 

of the initial volume, and dilution factor used (10-fold in this case).  The program 

estimated the MPN using a maximum likelihood method assuming that the microbes 

exhibit an independent Poisson distribution. However, the estimation is biased for a small 

number of tubes, and even the 96-well plate has significant bias within.  Thus, a bias-

corrected MPN was calculated and used as the MPN of the effluent sample.  In addition,  

95% confidence intervals were calculated for each plate count to quantify the reliability 

of the MPN data. Due to intense laboratory work and labor, MPN measurements were 

conducted weekly during the course of the experiments on selected columns. These 

included the 0.5% NAPL-contaminated control column, and the 0.5% and 2% NAPL-

contaminated 20 % fly ash amended columns.  
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4.3  Results  

4.3.1  Compaction Tests Results.  

4.3.1.1  Effect of Diesel Fuel Content on Compaction Tests 

 Compaction tests were performed on specimens spiked with 1% and 2% diesel 

fuel. As shown in Figure 4.4, the compaction curve shifts to the right and downward with 

increasing diesel fuel content. As a result of this shift, the maximum dry unit weight 

decreases and optimum liquid content increases for both 1% and 2% diesel fuel-spiked 

borrow material. Visual observations after the compaction tests indicated that the soil 

particles were coated by diesel fuel as a result of spiking and a clod-type porous matrix 

was visible. Due to this structure, it is speculated that unconnected voids increased the 

porosity of the soil matrix.   The increase in porosity decreased the dry unit weight and 

increased the optimum liquid content. with increasing diesel fuel content. Attachment of 

NAPL to the soil phase, formation of clumps, and an increase in porosity were also 

reported in the studies conducted by Schwab et al. (1999) and Schwartz and Krizek 

(2006).   

 
4.3.1.2  Effect of Aging on Compaction of Contaminated Borrow Material  

 Compaction tests were performed on specimens aged for two weeks, four weeks 

and one year.  The aging process undertaken in this study was aimed at simulating field 

conditions by providing sufficient time for partitioning of the organic contaminants 

within the borrow material. This partitioning mechanism has an effect on the 

environmental fate of these compounds, discussed further below. 
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Figure 4.4 The effect of diesel fuel inside the contaminated soils from compaction tests 
(DF= Diesel fuel) Expected compaction curves were in solid lines. 
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The compaction curves for soils contaminated with 2% or 1% diesel fuel, and aged for 2 

weeks, 4 weeks, and 1 year are presented in Figure 4.5.  There was almost no change in 

the compaction parameters when the samples were tested after 2 and 4 weeks of aging. 

On the other hand, when the aging period is increased to one year, the maximum 

dry weight of the compacted specimens slightly decreases (about 2%) with almost no 

significant change in the optimum liquid content. Similar observations were made for 

soils contaminated with 1% as well as 2% diesel fuel. Considering these factors, and 

testing limitations associated with relatively longer aging periods (e.g., one year), a 4-

week aging period was adopted in the current study.    

4.3.1.3  Effect of Fly Ash on the Contaminated Borrow Material  

 Based on the compaction test results summarized in Figures 4.4 and 4.5, a diesel 

fuel content of 1% and an aging time of 4 weeks were selected for preparation of fly ash-

amended specimens.  The fly ash was added at 5, 10 and 20% by weight to the diesel-fuel 

spiked and aged borrow material.  Compaction curves developed for mixtures with 

varying fly ash contents (See Figure 4.6) indicate that dry unit weight decreases, and 

optimum water content increases, with increasing fly ash, i.e., the compaction curve 

shifts to down as well as right. This is a trend generally observed for soils with increasing 

fines content consistent with addition of the finer fly ash to  
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Figure 4.5 Compaction tests results on (a) 2%, and (b) 1% diesel fuel spiked soils after 1 
week, 2 weeks and 4 weeks of aging 
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Figure 4. 6 The effect of fly ash content on the compaction properties (a) 1% DF 

contaminated soils mixed with different fly ash ratio, and (b) 2% DF contaminated soils 
(DF= diesel fuel, FA=fly ash) 
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the borrow material. Similar trends were also reported in previous studies conducted on 

fly ash-soil mixtures (Indraratna 1992, Senol et al. 2002). The trend in Figure 4.6 is more 

visible when the fly ash content was increased from 5% to 20%.   These curves suggest 

that the mixtures can be used as either a common borrow or a select borrow material in 

construction of roadway embankments in Maryland because their maximum unit weight 

values satisfy the requirements of Section 916 of the Maryland State Highway Standard 

and Specification for Construction and Materials (MDSHA 2001).  

4.3.2  Column Leaching Tests Results  

4.3.2.1  Determination of Contaminant Mass inside the Columns during Specimen 

Preparation 

The extraction of the NAPL compounds from the column specimens was 

performed in order to determine the mass of each pollutant that remained inside the 

column specimens to facilitate a mass balance analysis. The mass loss of each compound 

occurred probably primarily due to volatilization during the spiking, aging and 

compaction process as well as possibly some biodegradation and sorption onto testing 

equipment.  Subsequently, the percent loss of naphthalene, o-xylene and dodecane were 

calculated by subtracting the measured compound loss from known initial mass added for 

all three pollutants.   

The amount of losses of each organic compound that occurred from the 2% 

NAPL contaminated soil after the spiking, aging and compaction steps, which were 

performed by using hexane as the extraction solvent, are summarized in. Table 4.4.  The 

results indicate that the mass losses increased going from spiking to compaction.  
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Table 4.4 Percent losses in columns contaminated with 2% NAPL by weight following 

spiking, aging, and compaction 
 

Column Type Extraction Step 
Percent Losses 

O-xylene Naphthalene Dodecane 

Control 

Column 

Post Spiking 43.4 2.3 0.2 

Post Aging 46.4 8.4 4.5 

Post Compaction 56.6 6.3 24.3 

5% Fly Ash 

amended 

Column 

Post Spiking 42.1 2.9 0.0 

Post Aging 46.6 8.0 5.7 

Post Compaction 66.7 32.6 42.3 

10% Fly Ash 

amended 

Column 

Post Spiking 45.5 9.9 7.3 

Post Aging 44.1 6.9 5.8 

Post Compaction 71.8 34.5 46.7 
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This was the case for the control as well as the fly ash-amended soil columns. The post-

compaction losses were significantly higher than the losses experienced after spiking or 

aging for any of the fly ash columns. The same post-compaction losses were also higher 

than the ones experienced during the preparation of the fly ash-amended columns. It is 

believed that the increased optimum water contents of the fly ash-amended soils as 

compared to the borrow material may have contributed to these losses, whereas being 

exposed to air during compaction inevitably increased the losses due to partitioning into 

air.   

 The results presented in Table 4.4 also indicate that naphthalene and dodecane 

losses were much less than the mass losses experienced with o-xylene.  For example, the 

pre-compaction losses ranged from 2.3 to 9.9% and from 0 to 7.3% for naphthalene and 

dodecane, respectively, whereas the same losses remained in a range of 42.1 to 46.6% for 

o-xylene (Figure 4.7 to Figure 4.9).  The values indicate that the highly volatile nature of 

o-xylene promoted losses even under confined conditions (i.e., aging).  The post-

compaction losses changed similarly, with naphthalene and dodecane losses ranging from 

6.3 to 34.5% and 24.3 to 46.7%, respectively, while o-xylene losses ranged from 56.6 to 

71.8%.  

 In all cases, mass losses were greater with the fly ash-amended soil than with 

borrow material alone. The losses due to volatilization were also calculated for the 

columns contaminated with 0.5% NAPL.  However, losses were only calculated after 

compaction in that series of tests because that was the value of interest in terms of the 

mass loading onto the columns.   
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Figure 4.7 Percent losses in a control specimen contaminated with 2% NAPL by weight 

at each experimental step 
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Figure 4.8 Percent losses in a 10% fly ash-amended column at each experimental step 
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Figure 4.9 Percent losses in a 5% fly ash-amended column at each experimental step 
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As mentioned previously, the extractions of the compounds from the second set 

columns were performed by using acetone as the solvent. The results summarized in 

Table 4.5 indicate that addition of fly ash generally increased the amount of mass loss, 

similar to the observations made for the 0.5% NAPL columns, although less dramatically 

than for 2% NAPL.   

 

4.3.2.2 Column Leaching Results 

 The concentrations of naphthalene and o-xylene were measured in the effluent 

samples from the nine test columns. Sample collection began once the full saturation of 

the column specimens occurred, which took about 8 to 10 days due to the low hydraulic 

gradient applied during testing.  The temporal variations in the measured o-xylene and 

naphthalene effluent concentrations for the 2% NAPL contaminated columns are shown 

in Figure 4.10 to 4.12.   

 For both naphthalene and o-xylene, the concentrations released from the control 

column are generally higher than the concentrations released from the columns with fly 

ash-amended borrow material. The fluctuations in the concentrations observed in Figures 

4.10 through 4.12 are attributed to the changes in water head due to refilling of the 

influent tank and their impact on mass transfer process. However, under the applied 

hydraulic gradients (4 to 5), mobilization of o-xylene and naphthalene from the borrow 

material (clayey sand) was expected to be extremely slow (Mercer and Cohen 1990).  

Hence, the fluctuations in the applied hydraulic gradient are believed to have a very 

limited effect on NAPL mobilization.  

The data in Figures 4.10 through 4.12 also reveal that there was a large initial 

release of o-xylene and naphthalene in the control column. Specifically, the initial  
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Table 4.5 Post-compaction percent losses in columns contaminated with 0.5% NAPL by 
weight 

 

 

Column Type Extraction Step O-xylene 
(%) 

Naphthalene 
(%) Dodecane (%)

Control 
Column 1 Post Compaction 78.9 52.4 25.5 

Control 
Column 2 Post Compaction 79.6 51.2 22.1 

5% Fly Ash 
Amended 
Column 

Post Compaction 86 47.3 20 

10% Fly Ash  
Amended 
Column 

Post Compaction 95.2 60 31 

20% Fly Ash  
Amended  
Column 

Post Compaction 99.1 77.8 49.9 
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Figure 4. 10 (a) Naphthalene, and (b) o-xylene concentrations, measured in the effluents, 
collected from control and 10% fly ash-amended column (both columns are contaminated 

with 2% NAPL by weight). 
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Figure 4. 11 (a) Naphthalene, and (b) o-xylene concentrations measured in the effluents 
collected from control and 5% fly ash amended column (both columns are contaminated 

with 2% NAPL by weight). 
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Figure 4.12 (a) Naphthalene, and (b) o-xylene concentrations measured in the effluents 
collected from control and 20 % fly ash-amended column (both columns are 

contaminated with 2% NAPL by weight). 
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concentrations in the control column were measured as 66.04 mg/L and 102.02 mg/L for 

o-xylene and naphthalene, respectively, and dropped to about 5 mg/L within 8 days.   The 

low sorptive capacity of the borrow material is believed to have caused this effect.  The 

fly ash, on the other hand, limited this release and immobilized the contaminants due to 

its high sorptive capacity.  As a result, the initial effluent concentrations from the fly ash-

amended specimens are quite low as compared to those measured in the effluent collected 

from the borrow material. 

The concentrations of o-xylene and naphthalene in the first effluent samples were, 

respectively, 4.2 mg/L and 4.3 mg/L, for the column with 5% fly ash, 4.17 mg/L and 1.58 

mg/L, for the column with 10% fly ash, and 0.92 mg/L and 0.03 mg/L, for the column 

with 20% fly ash.  The differences between the concentration in the control and fly ash-

amended columns, and the very high initial control concentrations indicate that there was 

probably an initial release of NAPL in the control column, because the measured 

naphthalene concentration was much higher than the water solubility of this chemical 

organic chemical.   

 An initial NAPL release from the 2% NAPL control column is also supported by 

the dodecane data (data not shown).  The initial dodecane concentrations were relatively 

high in the effluents of the 2% NAPL columns (533 mg/L and 3 mg/L for control and 

borrow material/fly ash columns, respectively).The quasi-steady state dodecane 

concentrations in the effluent collected from the 2% NAPL columns were also higher 

than expected, based on dodecane’s solubility, suggesting that the source of dodecane 

may have been the NAPL blobs inside the column.  It is believed that these NAPL blobs 

coated the soil particles and caused high organic concentrations in the effluent.  
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Accordingly, the results for the 2% NAPL columns suggest that the high carbon content 

in the fly ash is suitable for immobilization of organic constituents in soils contaminated 

with petroleum residues.  

The effluent concentrations of naphthalene and o-xylene for the 5%, 10% and 20% 

fly ash-amended columns contaminated with 0.5% NAPL are shown in Figures 4.13 4.14, 

and 4.15, respectively. One important effect of lowering the contamination level was that 

no initial NAPL release was observed from any of the 0.5% NAPL columns, based on the 

low initial naphthalene and o-xylene concentrations in the effluent. Furthermore, no 

dodecane was observed in the effluent collected from the 0.5% NAPL columns, which 

supports this conclusion.    

Figures 4.13 through 4.15 show that naphthalene and o-xylene effluent concentrations 

in the 5%, 10%, and 20 % fly ash-amended columns were consistently lower than those 

measured in the control columns.  The results again suggest that the high carbon content 

in the fly ash is suitable for immobilization of organic constituents in soils contaminated 

with petroleum residues especially for lower levels of NAPL contamination. 

 
4.3.2.3  Effect of Biodegradation on Column Leaching Tests 

 During the column leaching tests, the gradual reduction in the contaminant 

concentration by time could have been due to biodegradation of these compounds by 

naturally-occurring microorganism. In order to evaluate the effect of biodegradation on 

the petroleum contaminated soils, petroleum hydrocarbon degrader bacterial populations 

were determined in the effluent from the 0.5% NAPL contaminated columns. The 

effluent samples were collected following the same procedure with the concentration 

determination and bacterial population was determined following the MPN procedure. 
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Figure 4.13 (a) Naphthalene, and (b) o-xylene concentrations measured in the effluents 
collected from control and 5% fly ash amended column (both columns are contaminated 

with 0.5% NAPL by weight). 
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Figure 4. 14 (a) Naphthalene, and (b) o-xylene concentrations measured in the effluents 
collected from control and 10% fly ash amended column (both columns are contaminated 

with 0.5% NAPL by weight). 
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Figure 4. 15 (a) Naphthalene, and (b) o-xylene concentrations measured in the effluents 
collected from control and 20% fly ash amended column (both columns are contaminated 

with 0.5% NAPL by weight). 
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 As mentioned earlier there were two control columns with 0.5% NAPL 

contamination. The MPN numbers that are corrected for bias are shown in Figure 4.16. 

During the first of 175 days of testing, the levels (changing between log 2 to log 5) of 

NAPL degrader population exists in both columns (Haines et al. 1996). On the 175th day, 

to investigate the degree of biodegradation observed in the contaminated soils, 400 mg/L 

mercury chloride (HgCl2) was added to the influent solution of the Control Column 1. 

This concentration level of HgCl2 was chosen by following the recommendations of 

Mihelcic and Luthy (1988). A slight reduction in the MPN numbers after the HgCl2  

application is evident for Control Column 1 (Figure 4.16). In comparison, the MPN 

values were generally greater for the Control Column 2 effluent during the same period. 

Nevertheless, the data suggest that the HgCl2 concentrations were not high enough to 

eliminate the microbial activity in the columns. Consequently, it was not possible to 

distinguish how much of the overall contaminant removal process was due to 

biodegradation versus sorption.  

 In order to better determine effect of biodegradation in the fly ash-amended 

contaminated soils, the 20% fly ash-amended columns contaminated with 0.5% and 2% 

NAPL contaminations were subjected to the HgCl2 addition after 86 days of testing. The 

MPN results corrected for bias during the column leaching tests are shown in Figure 4.17. 

During the first 86 days of the experiments the 2% NAPL column generally had higher 

levels of bacterial populations than the 0.5% NAPL column. This is attributed to the 

higher level of bioavailability of the contaminant compounds, which would have yielded 

higher microbial activity in the column. 
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Figure 4.16 The logarithmic MPN numbers corrected for bias per mL of effluent during 
experiment period from control columns of 0.5 % NAPL contamination (HgCl2 was 

applied to Control Column 1 after 175 days) 
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Figure 4. 17 Logarithmic MPN numbers corrected for bias per mL of effluent during 
experiment period from 20% fly ash-amended column with 0.5% and 2% NAPL 

contaminations 
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 After 86 days of testing, 400 mg/L HgCl2 was added to both columns. The log 

MPN value dropped to 0 (zero) upon application of the inhibitor for the 0.5% NAPL 

column (Figure 4.17). However, same observations can not be made for the 2% NAPL 

column. This continuing biodegradation process is most probably due to the higher 

bioavailability of the NAPL compounds to the microorganisms in the 2% NAPL column. 

As mentioned above, the higher levels of contamination yielded a higher degree of 

microbial activity and, therefore, the applied inhibition was not capable of eliminating it 

completely. On the other hand, a comparison of Figures 4.16 and 4.17 shows that the 20 

% fly ash addition limited the bioavailability of the contaminants, which was confirmed 

by lower microbial levels in the fly ash-amended column compared to the control 

columns. Consequently, the presence (and probably amount) of fly ash and the degree of 

contamination are two important factors that play a major role in the biodegradation 

process during remediation of petroleum contaminated soils.  

 The above mentioned effects of biodegradation are also supported by examining 

the concentrations of the contaminants in the effluent during the test period. Figure 4.18 

shows the aqueous concentrations of naphthalene and o-xylene from the 0.5% and 2% 

NAPL columns with 20 % fly ash addition. As discussed above, before the application of 

HgCl2 to both columns, the hydrocarbon levels in the column effluents strongly depend 

on the levels of contaminations, with the 2% NAPL column having consistently higher 

aqueous naphthalene and o-xylene concentrations. This trend continues after the 

application of the inhibitor. However, in both columns the aqueous concentrations of both 

compounds were elevated due to the inhibition of biodegradation. The increases in  
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Figure 4.18 Naphthalene and o-xylene concentrations from (a) 2% NAPL column with 

20% fly ash addition, and (b) 0.5% NAPL column with 20 % fly ash addition 
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the aqueous phase concentrations were more obvious in 0.5 % NAPL contaminated 

column, consistent with the fact that in this column there is no biodegradation (log MPN 

equal to zero).  

 One of the reasons behind addition an inhibitor with to the control and fly ash 

amended columns was to determine the column behavior under no microbial activity so 

that the difference between the control and fly ash amended column was solely due to 

adsorption of compounds on to fly ash. Unfortunately, the insufficient level of inhibition 

in the control column prevented us from doing so. Nonetheless, the positive effect of fly 

ash addition is clear from comparison of the biodegradation levels (MPN results) and 

compound concentration in the effluent. 

 
4.3.2.4  Comparison of Column Leaching Test Results and Allowable Limits 

 Before the application of the microbial inhibitor, a quasi-steady state period for 

each column test was defined when the effluent solute concentration was relatively 

constant. Therefore, the average effluent concentrations during that period were 

calculated.  A summary of these steady state average effluent concentrations along with 

the groundwater contamination limits set by the Maryland Department of Environment 

(MDE) is presented in Table 4.6 (MDE 2001).  The concentrations of naphthalene 

leached from the columns are above the MDE groundwater protection limits for all cases, 

except for the 0.5% NAPL tests with 10% and 20% fly ash.  On the other hand, o-xylene 

concentrations are constantly below the much higher MDE groundwater protection limit 

for all columns.  These findings suggest that a minimum of 10% high carbon content fly 

ash should be added to the soils contaminated with petroleum residues in order to control 

their leachability.  



 159

The data in Table 4.6 also suggest that the NAPL amounts should be limited to or 

reduced to 0.5% (or less) by weight (e.g., by aging or aerating) before using fly ash for 

chemical stabilization.  This recommendation was also supported when the 

concentrations of the measured pollutants are compared with the limits set by the MDE 

for soil clean-up in residential areas (Table 4.7).  The concentrations are below the limits 

for non-residential areas in all cases (Table 4.8).  

  It should be noted that the fly ash addition does not reduce the mass of 

contaminant in the soil but rather the pollutant is blocked in the material due to high 

sorption capacity of the fly ash. Therefore, it is more appropriate to compare the mass of 

organics with the MDE-based soil limits rather than making comparison with the MDE 

groundwater protection limits provided that successful encapsulation of the organic is 

achieved.    

These findings indicate that the high-carbon content fly ashes can be good 

sorptive agents for remediation of petroleum contaminated soils due to their low cost and 

presence of high carbon content. However, caution should be exercised when extending 

these laboratory results to field conditions, because the level of contamination may have a 

significant effect on leaching properties. For instance, the NAPL was added to the soils at 

2% by weight in the current study, and the observed naphthalene concentrations in the 

effluent were generally higher than Maryland Department of Environment groundwater 

protection limits.  On the other hand, the o-xylene concentrations were lower than those 

limits, and the naphthalene amounts in the effluent were also significantly lower than the 

Maryland Department of Environment soil clean-up limits for non-residential areas.   
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Table 4. 6 Comparison of steady state NAPL compound concentrations with MDE 
groundwater protection limits. 

 

Contamination 
Level 

Column 
Type Compound 

Steady 
State 

Conc. of 
Organic 
(mg/L) 

MDE 
groundwater 
protection 

limits (mg/L) 

Exceed 
MDE 

Standards? 

2% 

Control Naphthalene 3.54 0.01 YES 
o-xylene 4.57 10 NO 

20% Fly 
ash - 

amended 

Naphthalene 0.03 0.01 YES 

o-xylene 0.51 10 NO 

10% Fly 
ash- 

amended 

Naphthalene 1.85 0.01 YES 

o-xylene 3.01 10 NO 

5% Fly 
ash-

amended 

Naphthalene 2.67 0.01 YES 

o-xylene 3.54 10 NO 

0.5% 

Control 1 
Naphthalene 0.43 0.01 YES 

o-xylene 0.94 10 NO 

Control 2 
Naphthalene 0.55 0.01 YES 

o-xylene 0.91 10 NO 

20% Fly 
ash- 

amended 

Naphthalene 0.018 0.01 NO 

o-xylene 0.035 10 NO 
10% Fly 

ash- 
amended 

Naphthalene 0.029 0.01 NO 

o-xylene 0.10 10 NO 

5% Fly 
ash-

amended 

Naphthalene 0.20 0.01 YES 

o-xylene 0.25 10 NO 
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Table 4. 7 Comparison of initial mass of NAPL compounds with MDE residential 
cleanup limits 

 

Contamination 
Level 

Column 
Type Compound 

Initial 
Mass of 
Organic 
(mg/kg) 

MDE 
Residential 

Cleanup limits 
(mg/kg) 

Exceed 
MDE 

Standards 
? 

2% 

Control Naphthalene 367 160 YES 
o-xylene 267 16000 NO 

20% Fly 
ash- 

amended 

Naphthalene 150 160 NO 

o-xylene 124 16000 NO 

10% Fly 
ash- 

amended 

Naphthalene 261 160 YES 

o-xylene 170 16000 NO 

5% Fly 
ash-

amended 

Naphthalene 269 160 YES 

o-xylene 201 16000 NO 

0.5% 

Control 1 
Naphthalene 48 160 NO 

o-xylene 34 16000 NO 

Control 2 
Naphthalene 50 160 NO 

o-xylene 31 16000 NO 

20% Fly 
ash- 

amended 

Naphthalene 23 160 NO 

o-xylene 1 16000 NO 

10% Fly 
ash- 

amended 

Naphthalene 41 160 NO 

o-xylene 6 16000 NO 

5% Fly 
ash-

amended 

Naphthalene 47 160 NO 

o-xylene 14 16000 NO 
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Table 4. 8 Comparison of initial mass of NAPL compounds with MDE non-residential 
cleanup limits 

 

Contamination 
Level 

Column 
Type Compound 

Initial 
Mass of 
Organic 
(mg/kg) 

MDE 
Non-Residential 
Cleanup limits 

(mg/kg) 

Exceed 
MDE 

Standards 
? 

2% 

Control Naphthalene 367 4300 NO 
o-xylene 267 410000 NO 

20% Fly 
ash- 

amended 

Naphthalene 150 4300 NO 

o-xylene 124 410000 NO 

10% Fly 
ash- 

amended 

Naphthalene 261 4300 NO 

o-xylene 170 410000 NO 

5% Fly 
ash-

amended 

Naphthalene 269 4300 NO 

o-xylene 201 410000 NO 

0.5% 

Control 1 
Naphthalene 48 4300 NO 

o-xylene 34 410000 NO 

Control 2 
Naphthalene 50 4300 NO 

o-xylene 31 410000 NO 

20% Fly 
ash- 

amended 

Naphthalene 23 4300 NO 

o-xylene 1 410000 NO 
10% Fly 

ash- 
amended 

Naphthalene 41 4300 NO 

o-xylene 6 410000 NO 

5% Fly 
ash-

amended 

Naphthalene 47 4300 NO 

o-xylene 14 410000 NO 
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The hydraulic gradients applied onto the column specimens in the current study 

varied from 4 to 5.  Although use of such hydraulic gradients were necessary to trigger 

the flow from the low permeability clayey sandy soils in the laboratory, it is known that 

the field hydraulic gradients in embankment applications are typically 3 to 4 times lower 

than these values. Therefore, it is believed that the field concentrations of petroleum 

hydrocarbons in leachate from fly-ash stabilized soils are likely to be below the 

laboratory measured values.    

 

4.3.  Conclusions 

Based on the results of a battery of compaction tests and column leaching 

experiments on petroleum contaminated soils stabilized with high carbon content fly ash 

the following findings can be reported; The laboratory test procedures indicated that the 

traditional approaches undertaken for preparation and testing of soils for their 

geotechnical and environmental analyses may not be applicable to petroleum 

contaminated soils.  Deviations from the standard procedures, such as usage of liquid 

content instead of water content for evaluating the compaction test data, aging of 

specimens before compaction, and proper selection of the solid-to-solution ratio for 

batch-scale adsorption tests, should be considered.  

The column leaching tests performed on the Brandon Shores fly ash-stabilized 

specimens indicate that the naphthalene and o-xylene concentrations in the effluents 

collected from the fly ash stabilized specimens were lower than those collected from the 

control specimen.  The addition of this high carbon content fly ash (LOI= 13.4%) limited 

the initial release of the contaminants from the specimen, compared to a longer release 
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observed from the control column. Finally, the presence of fly ash and the degree of 

contamination were two important factors that played a major role in the biodegradation 

process during remediation of petroleum contaminated soils.  

The findings indicate that the high-carbon content fly ash can be a good sorptive 

agent for remediation of petroleum contaminated soils due to its low cost and presence of 

high carbon content.  However, caution should be exercised when extending these 

laboratory results to field conditions, because the level of contamination may have a 

significant effect on leaching properties. For instance, the NAPL was added to the soils at 

2% by weight in the current study and the observed naphthalene concentrations in the 

effluent were generally higher than the U.S. EPA maximum concentration limits or 

Maryland Department of Environment groundwater protection limits.  On the other hand, 

the o-xylene concentrations were lower than those limits, and the naphthalene amounts in 

the effluent were also significantly lower than the Maryland Department of Environment  

soil clean-up limits for non-residential areas.   
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Chapter 5 High Carbon Content Fly ash as a Reactive Medium in  

  a PRB: Column Sorption Desorption Experiments 

 

 Remediation of groundwater contaminated with petroleum-based products has 

been an important task for engineers and scientists in recent years. The challenges 

associated with reducing subsurface contamination levels have led to research and 

development resulting in several innovative in-situ treatment technologies. One of the 

passive remediation technologies that is gaining wide acceptance is the use of permeable 

reactive barriers (PRB).  In this technology, the pollutants are immobilized permanently 

or their levels are reduced to the Maximum Contamination Limits (MCL) while the 

plume is passing through an underground barrier system.  

 One relatively new variation on the PRB concept is to use an immobilization 

process, in which the organic pollutants are adsorbed onto the sorptive surface of the 

barrier material. The reaction mechanism in these PRBs is often adsorption, and the term 

“permeable sorptive barriers (PSB)” has been recently introduced (Woinarski et al. 2003) 

to describe these systems. Typical compounds that are targeted for treatment with such 

systems include trichloroethylene (TCE), petroleum hydrocarbons, as well as radioactive 

solutes (e.g., Strontium Sr90) (Rabideau et al. 2001). 

 Laboratory studies have demonstrated the effectiveness of various natural and 

synthetic sorbents as potential reactive/sorptive media for treatment of groundwater 

containing both organic and inorganic pollutants. Specific examples of reactive and 

sorptive materials that have been investigated include such as wood chips, limestone, 

manure (USEPA 2006), peat (Guerin et al. 2002), lignitic coal (Jenk et al. 2003), and 
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activated carbon (Schad and Gratwohl 1998). Furthermore, there is growing interest in 

the utilization of recycled materials for remediation of contaminated groundwater as a 

part of sorptive barrier investigations. Recycled materials, such as tire chips (Kim et al 

1997) and foundry sand (Lee et al. 2004) have also been studied to investigate their 

feasibility as sorptive medium in these barrier systems.  

 As discussed in Chapter 3, the batch adsorption data revealed that high carbon 

content fly ash (HCCFA) could potentially be a good sorptive medium for a reactive 

barrier application for mitigation of petroleum hydrocarbon contamination in the 

subsurface. However, batch adsorption tests do not entirely simulate the field conditions, 

and a more quantitative analysis of the sorption-desorption phenomena in the 

environment is expected from the column sorption tests. Column tests have been widely 

used in previous studies to evaluate the sorptive material as a barrier medium, to estimate 

the rate and capacity of contaminant retardation, and to evaluate the working life of the 

barrier (e.g., Cantrell and Kaplan 2001, Patterson et al 2002, Rasmussen et al. 2002, Su 

and Puls 2003, Gusmao et al 2004, Lee and Benson 2004, Rabideau et al. 2005). 

Therefore, to investigate the adsorption characteristics of HCCFA for its potential use as 

a PSB medium for removal of petroleum residues from groundwater, a series of column 

sorption experiments were conducted with three HCCFAs and PAC, and two potential 

groundwater contaminants (naphthalene and o-xylene). A sorptive barrier design is 

described using the column derived parameters and considering the barrier dimensions 

and barrier life expectancies.  
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5.1  Experimental Materials and Methods 

5.1.1. Sorptive Media 

 Column sorption-desorption tests were conducted using three different fly ashes 

and PAC as the reactive media. The three fly ashes were selected so as to cover the whole 

range of LOI in the Maryland fly ashes: Dickerson Precipitator (DP) with 20.5 %LOI, 

Paul Smith (PS) with 10.7 % LOI, and Morgantown (MT) with 3.1 % LOI. The 

properties of these fly ashes were described in detail in Chapter 3.  

5.1.2 Sand  

 The sand used in the reactive medium was #1 Q-Roc silica sand (US Silica, 

Berkeley Springs, West Virginia). The grain size distribution of the sand is given in 

Figure 5.1. The chemical composition of the sand is given in Table 5.1 by the 

manufacturer. The specific gravity, pH and hardness of the sand are 2.65, 6.5 and 7 mohs, 

respectively.  

5.1.3 Synthetic Groundwater and Target Contaminants 

 All the column sorption-desorption experiments were conducted using a dilute 

mineral salt solution. This aqueous solution, here after referred to as the synthetic 

groundwater was adopted from artificial similar groundwater solutions used by Murphy 

et al. (1997) and Song (2005) except for the addition of potassium chloride (KCl) as an 

essential macronutrient for bacterial growth. The synthetic groundwater was prepared 

using deionized water generated by the Hydro Service reverse osmosis ion exchange 

system (model L2PRO-20). The constituents of the synthetic groundwater are given in 

Table 5.2. 
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Figure 5.1 Grain size distribution of the sand used in the column experiments 
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Table 5.1 Chemical composition of the sand used in the study (US Silica, Berkeley 
Springs, West Virginia). 

 

Compound % (by weight) 

SiO2 (Silicon Dioxide) 99.7 

Fe2O3 (Iron Oxide) 0.022 

Al2O3 (Aluminum Oxide) 0.07 

TiO2 (Titanium Oxide) 0.02 

CaO (Calcium Oxide) 0.01 

MgO (Magnesium Oxide) <0.01 

Na2O (Sodium Oxide) <0.01 

K2O (Potassium Oxide) 0.01 

LOI (Loss on Ignition) 0.2 
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 The synthetic groundwater was prepared using three different stock solutions. The 

first was a macronutrient solution, which was prepared at 100 times the final solution 

concentrations by adding 10 mg of FeSO4. 7H2O, 200 mg of MgSO4. 7H2O, 300 mg 

NH4Cl, 60 mg NaH2PO4 H2O, and 60 mg KCl to 1 L deionized water. The second 

solution was the micronutrient solution and was prepared by first dissolving 50 mg each 

of MnCl2, Na2SeO3, H3BO3, Na2MoO4 2H2O, CoCl2. 6H2O, NiSO4 6H2O, CaSO4. 5H2O, 

and ZnSO4. 7H2O into 1 L deionized water, from which 10 ml was taken out and diluted 

into 1 L with deionized water to obtain the trace stock solution. The third stock solution 

was the PIPES (Sigma Chemical Co., 99%) stock buffer solution, which was prepared by 

dissolving 151.2 g PIPES into 2L deionized water, and then adjusting the pH to 6.8 with 

4 N NaOH. The synthetic groundwater was prepared by diluting 10 mL from each of the 

macronutrient and micro nutrient stock solutions, and 40 mL from PIPES stock solution 

in 1 L deionized water. The pH of the prepared synthetic groundwater was recorded and 

set to 6.9. All synthetic groundwater solutions were autoclaved for 20 minutes at 121 0C 

and 21 psi to eliminate any bacterial activity during tests. 

Naphthalene and o-xylene were the target contaminants. Aqueous naphthalene and 

o-xylene solutions were prepared either from methanol stock solutions stock solutions. 

The stock solutions were initially prepared by dissolving solid target contaminant in 

methanol. These methanolic solutions were then used to prepare the aqueous solutions as 

column influent solution by transferring through a 2 mm sterilized syringe PTFE filters 

aseptically. . In all cases, it was ensured that the resulting concentration of methanol in 

the aqueous solutions was lower than 4 % by volume.  
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Table 5. 2 Synthetic groundwater constituents 
 

Macro Nutrient Compounds Concentration (mg/L) 

FeSO47H2O 0.1 

MgSO47H2O 2 

NH4Cl 3 

NaH2PO4H2O 0.6 

KCl 0.6 

Micro Nutrient Compunds Concentration (μg /L) 

MnCl2 5 

Na2SeO3 5 

H3BO3 5 

Na2MoO42H2O 5 

CoCl26H2O 5 

NiSO46H2O 5 

CaSO45H2O, 5 

ZnSO47H2O 5 

Buffer Solution Concentration (mM) 

PIPES 10 
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5.1.4  Column Test Set Up and Procedures 

 
Rabideau et al. (2001) indicated that the characterization of strongly sorbing 

materials can best be accomplished by generating complete contaminant breakthrough 

curves by conducting the column tests in relative short columns, at realistic flow rates 

and long experimental periods. Alternatively, column experiments can be performed so 

as to accelerate the breakthrough by running the tests with artificially high flow rates, 

which may create artifacts due to non-equilibrium sorption, and measuring the sorbed 

contaminant concentration from the solid medium rather than temporal contaminant 

distributions. The latter involves indirect measurement of volatile contaminants (i.e., o-

xylene), which may result in mass balance errors. In this study, the method of realistic 

flow rates with long experimental runs were chosen because of drawbacks mentioned 

above for other type of methods.  

 As described in Chapter 3, the three fly ashes that were used in the column 

sorption-desorption experiments (i.e., MT, PS, and DP fly ashes) have a fine particle size 

distribution. Based on the correspondingly low hydraulic conductivity values of three fly 

ashes (<10-7 cm/sec), a mixture of sand and fly ash was prepared as a reactive medium 

for the column tests. Initially, a commonly adopted mixture ratio of 50% sand and 50 % 

fly ash (by weight) was prepared and constant head permeability tests were conducted to 

measure the hydraulic conductivity of the mixture. The results of these initial tests 

indicated that the hydraulic conductivity was less than 10-5 cm/sec, which is one order of 

magnitude of lower than a typical design value of 10-4 cm/sec for PRBs (Gavaskar et al. 

1998, Lee and Benson 2004). Furthermore, excess pore water pressures were observed 

during the tests indicating an impediment of the flow. Therefore, a mixture of 60% sand 
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and 40% fly ash (by weight) was prepared and subjected to hydraulic conductivity 

testing. As discussed further below, the measured hydraulic conductivity was on the order 

of 10-4 cm/sec, and all column sorption desorption tests were performed using specimens 

prepared with 60% sand and 40% fly ash (by weight). 

 Several issues had to be considered in selecting the column dimensions.  First, the 

column should be large enough to be a representative of the reactive medium in one 

dimensional flow, so the desired parameters can be determined under controlled 

conditions. Second, the column set-up should contain sufficient material to minimize the 

impact of heterogeneity in the fly ash. Third, the column diameter should be sufficiently 

greater than the porous media particle diameter to minimize short circuiting.  

Table 5.3 summarizes the dimensions of columns used in previous studies.  The 

column dimensions and the flow condition vary from one study to another depending on 

the purpose of the study. In order to keep the flow in one dimensional condition, the 

diameter was selected as 48 mm in the current study, an intermediate value compared to 

those used in the literature, and > 20 x diameter of the porous media particles. The height 

of the column was chosen as 300 mm which provided a volume of 543 cm3 and holds 

enough reactive medium to overcome the material heterogeneity. 

 The tests were performed in CHROMAFLEX® glass columns (Kimble-Kontes 

#420830-3020). PTFE bed supports with 50 μm stainless steel screens were placed at the 

bottom and top ends of the columns. Leak-free seals were provided by the screw caps 

which also held flangeless fittings. All the columns were equipped with three sampling 

ports along the column at 70, 150 and 230 mm. The sampling ports were fabricated by 

the Kimble-Kontes custom glass shop using glass tubing with an outer diameter of ¼”,  
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Table 5.3 Column sorption test parameters from recent literature 
 

References Reactive 
Material 

Target 
Comp. 

Dimension 
(ID/H) (cm) 

Column 
Material 

Flow 
rate 

Seepage 
velocity 

Duration 

Lee et al. 
(2004) 

Foundry 
Sand-Sand 
(50%-50%) 

TCE 2.5x20 
2.5x45 

Glass 20-60 
mL/h 

0.8-4.3 
m/day 

 

200 PVE 

Baciocchi 
et al. 

(2003)  

ZVI 100% TCE 5x100 Plexiglass 15 
mL/h 

0.37 m/d 20 PVE 

Su and 
Puls 

(2003) 

Peerless 
Iron -

Sand(50%-
50%) 

Arsenic 2.5x31 Glass 28 
mL/h 

4.3 m/d 1800 PVE 

Gusmao et 
al. (2004) 

ZVI TCE 6x51.5 Acrylic 55.14 
mL/h 

3.79 cm/h 2.7 PVE 

Patterson 
et al. 

(2002) 

Polymer 
mats 

Atrazine
Benzene 

NA/200 NA NA NA NA 

NA= Not applicable, ZVI= Zero valent iron, PVE= Pore volume of equivalent 
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which were sealed with compression fittings from Swagelok Inc. (Part # SS-400-6). A 

PTFE 1/8” female mini-inert septum (Alltech # 631204) was used in the sampling port to 

hold the sampling needless (VWR Cat. # 20068-696).  The sampling needles were 

originally 70 mm long, but were cut down to a length of 40 mm so that the end could be 

positioned at the center of the column. The outer surface of the columns was covered 

with aluminum foil to eliminate photodecomposition and inhibit algae growth.   

The feed reservoir was connected to the column inlet via ¼” Teflon Tubing (Cole 

Parmer Cat. # 31320-50). The columns were operated in an up-flow mode with the 

influent flow from the feed reservoir provided by a peristaltic pump (Cole Parmer Cat. # 

07553-70), which was equipped with a Teflon pump head (Cole Parmer cat. # 078520-

40). The Teflon pump head tubing (Cole Parmer Cat. # 77390-50) was connected to ¼” 

Teflon tubing (Cole Parmer Cat. # 31320-50) by a 4 mm O.D. Teflon tubing (Cole 

Parmer Cat. # 31321-62). Influent and effluent samples were collected from sampling 

ports constructed using mini-inert valves with PTFE septum (Alltech Cat. # 654051).  A 

break tube was fabricated to eliminate the contamination of the aspirator bottle (Sigma 

Aldrich Cat. # Z556017), which was used as a feed (influent) reservoir for the system. On 

the effluent end, PTFE tubing provided the connection between the column and the 

effluent reservoir. All other tubings and valves in the system were made of Teflon. All 

the tubing and sampling port equipment was autoclaved for 20 minutes at 121 ºC and 21 

psi before each test.  The details of the column set-up are shown in Figure 5.2. 

 All the column specimens were packed with 3 layers of porous medium. The 

lower 80-mm of the column was packed with sand only in order to maintain a uniform 

flow and to prevent the very fine fly ash particles from migrating downward due to the  



 176

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 5.2 Column test set up schematic 
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gravitational forces and clogging the influent tubing. A height of 80 mm was chosen so 

that the sand would reach 10 mm above the first sampling port, and help monitoring the 

influent concentration right before it flows into the sorptive medium. The 190-mm 

sorptive medium located above this sand layer was a mixture of 60% sand and 40% HCC 

fly ash by weight overlain by another 30-mm layer of uniform sand. The top sand layer 

was design to prevent the fine and lighter particles from migrating upward and clogging 

the effluent. The 190-mm height of the sorptive medium provided reasonable mass 

between two sampling ports as well as geometrical symmetry between two sampling 

ports in the fly ash sand mixture. This geometrical symmetry will enable to compare the 

results of the two consecutive ports. 

 The media were tamped into the glass column in 5 mm layers by following the 

procedures outlined by Oliviera et al. (1996). Primary objectives of the packing 

procedure were to reproducibly achieve a homogenous porosity and bulk density along 

the column, and a dry density, typical of that expected under field placement conditions. 

Before packing, the sand and fly ash were sieved through a mess with an opening size of 

2 mm, to remove larger size particles. Known quantities of the sieved and well-mixed 

sand and fly ash-sand mixture were prepared before packing. Then, the material was 

added to the column using a funnel, 300 mm in length with an 8 mm inner diameter neck, 

which could hold enough material to form a 5 mm thick layer in the column. Gradually, 5 

mm thick batches of material were added during column packing to prevent the 

segregation and the preferential deposition of larger grained particles. For each layer, the 

funnel was introduced into the column, with the bottom tip resting on the last layer 

formed. Then the funnel was filled to capacity with dry material, which was slowly and 
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uniformly released into the column until the funnel was completely emptied. A heavy, 

stainless-steel flat pestle, with a diameter of 46 mm and weight of 1.5 kg, was 

subsequently used for gentle compaction of each layer with a controlled number of 

tamps. The compaction surface of the pestle was leveled in order to get equal pressure 

input over the freshly deposited layer.  This packing sequence was repeated until the 

column was filled to the top, using the three types of medium described above. The 

uniformity of the packing was monitored after every 50 mm of material was deposited.  

At those points, the material remaining was weighed and mass subtracted from the known 

amount of initial mass, so that the mass of packed material and the bulk density of the 50 

mm layer could be calculated. In this way, a uniform density along the column in the 

medium density was achieved during packing procedure. Typical packed column 

orientation is shown in Figure 5.3.  

 Before the start of sorption-desorption tests, the columns were sterilized by 

gamma irradiation in one of two ways. In most cases, after packing of the medium inside 

the column, the columns were exposed to gamma irradiation at a dose of 30 kGw for 48 

hours at the University of Maryland, Department of Chemical and Nuclear Engineering 

gamma irradiation facility. This dosage was previously reported as being sufficient to 

provide complete sterilization while not changing the physical and chemical properties of 

the exposed medium (McNamara et al. 2003), and a similar dosage was used to sterilize 

reactive media by Ramussen et al. (2002). However, four of the columns were prepared 

using fly ash and sand that had been previously gamma irradiated using the same dosage, 

packed into the column under a laminar flow hood. 
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Figure 5.3 Typical sorption column medium orientations 
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  Sterilized columns were connected to the sterilized influent and effluent 

assemblies. Before starting the sorption-desorption tests, columns were saturated with 

water by applying a 10 mL/hr flow of synthetic groundwater for four pore volume 

equivalents of flow (PVE). Similar low-flow-rate saturation methods were reported for 

soil column tests by Su and Puls (2003). 

 Separate column sorption-desorption tests were conducted for each contaminant 

(i.e., naphthalene and o-xylene) and sorptive material-sand mixtures (MT, PS, and DP fly 

ashes, and PAC). A flow rate of 45-53 mL/hr was selected based on previous column 

studies (Table 5.3) to simulate a typical groundwater flow in up-flow condition. During 

the experiments, column flow rates were measured daily using flow-meters (Cole Parmer 

# 03269-76) and pump speeds were adjusted accordingly if any deviations occurred in the 

flow rate. For tests with long durations (i.e., PAC, naphthalene) the pump head tubing 

was replaced and flow rates were adjusted to the original levels. The step input during the 

column sorption experiments, the contaminant was introduced in the influent as a step 

input in the synthetic groundwater solution. The step input concentrations ranged from 

8.9-9.6 mg/L for the naphthalene experiments between 30.3 and 38.9 mg/L and for the o-

xylene experiments. Influent solutions were prepared in the synthetic groundwater by 

adding naphthalene or o-xylene in methanol stock solutions, as described above. All 

sorption experiments were continued until the effluent organic concentrations reached to 

the input concentrations (i.e., complete saturation of the medium with the tested 

contaminant occurred).  

 During sorption tests, aqueous sampling was conducted through the periodic 

sampling from the three ports using a 2.5 mL luer-lock gas tight syringe (VWR Cat.# 
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60375-522) and a syringe pump (Harvard Apparatus Model 22). Measures were taken to 

ensure that the sampling rate was sufficiently low as not to impact the flow uniformity 

along the column. Specifically, the sampling flow rate was chosen as 5 mL/hr, and 2 mL 

samples were collected for concentration measurements. The frequency of the sampling 

was different for each column, depending on the changes in the sampling concentrations 

of the organics. Columns with high LOI fly ash (i.e., DP fly ash) did not require frequent 

sampling, and daily sampling was usually sufficient. Columns with medium LOI fly ash 

(i.e., PS fly ash) necessitated more frequent sampling at every 6 to 9 hours. Columns with 

low LOI fly ash (i.e., MT fly ash) required sampling every two hours and the tests were 

usually completed in less than two days. The sampling frequency of the ports was 

increased when the contaminant concentrations were higher than zero and less than input 

concentration, which in turn, enabled to capture of the breakthrough curve for that 

particular port.  

 After complete contaminant saturation of the columns, the desorption experiments 

were initiated. For the desorption experiments, the columns were fed with sterilized 

synthetic groundwater solution that contained no organic contaminant. The desorption of 

organics was monitored by periodic sampling from the three ports similar to the 

monitoring conducted during sorption phase, and the samples were again analyzed using 

the spectroflorophotometer. Tests were terminated when the organic contaminant 

concentrations reached an undetectable level (i.e., the detection level of the instrument).  

 The sorption-desorption tests were followed by non-reactive tracer tests in for 

determination of the flow parameters (dispersivity, pore water velocity, hydrodynamic 
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dispersion coefficient). Constant head hydraulic conductivity tests were also conducted 

after the tracer tests. Both sets of measurements are described in the paragraphs below.  

 

5.1.5 Non reactive Tracer Experiments  

 
 A series of non-reactive tracer tests were performed to define the porosity, pore 

water velocity and hydrodynamic dispersion coefficient for each column specimens. The 

influent tracer solution for these tests was a 1000 mg/L sodium bromide (NaBr) solution 

prepared using synthetic groundwater at a concentration approximating the ionic strength 

of infiltrating water in the field. This solution was injected into the up-flow column 

system as a step input at time zero.  The flow rate was kept constant during the tracer 

tests. Aqueous sampling from all sampling ports was conducted for every 15-20 minutes 

to monitor the breakthrough of bromide throughout the depth of the column. The 

measurement of the bromide concentration were performed within 24 hours of sample 

collection using an ion-specific electrode.   

The breakthrough curves were evaluated using an absolute non-linear least-square 

regression to obtain the best fit estimates for the pore water velocity and hydrodynamic 

dispersion coefficient values. Hydrodynamic dispersion in porous media is commonly 

defined as being comprised of mechanical dispersion and molecular diffusion and is 

given as:  

DH= α v + D*                                                        (5.3) 

where DH is the hydrodynamic dispersion coefficient (L2T-1), α is the longitudinal 

dispersivity (L), v is the average pore water velocity (LT-1), and D* is the effective 
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diffusion coefficient in porous media (L2T-1). The longitudinal hydrodynamic dispersion 

coefficients for the reactive medium in the column sorption-desorption tests were 

determined by using the tracer breakthrough curve at the sampling port and the following 

equation (Fetter 1993): 
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where C is the tracer concentration measured down gradient at distance x over time, t, 

until steady state is achieved, and DH is the longitudinal hydrodynamic dispersion 

coefficient. Only v and DH are unknown terms in Equation 5.4. Therefore, the best-fit 

values for V and DH were obtained by using non-linear regression to fit Equation 5.4 to 

the experimental breakthrough curves. 

 The non-linear regression was performed using a FORTRAN program “trafit3d”, 

which calculates the sum of the squares of either the absolute or relative residuals 

between the normalized model predictions and the experimental conservative tracer data. 

The program gives outputs of the best fit longitudinal hydrodynamic dispersion 

coefficient, and the average pore-water velocity and the porosity (Song 2005). The best 

fit v and DH parameters were obtained using a modified Levenberg-Marquardt method to 

minimize the sums of the squares of the residuals between the observed and calculated 

concentrations. Subsequently, αx was calculated from αx =DH/v.  
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5.1.6 Constant Head Hydraulic Conductivity Tests  

 Upon completion of the non reactive tracer tests, the column specimens were 

subjected to constant head hydraulic conductivity tests. Laminar steady-state flow with 

no change in the volume of the saturated specimen was maintained during the tests.  Two 

transparent piezometer tubes were connected to the sampling ports using Teflon sealing 

and compression fittings. Constant flow was maintained, similar to the sorption-

desorption and non-reactive tracer tests, and constant head measurements were made 

through the piezometers. The head readings were taken at different time intervals along 

with the flow rate (Q). Using the head readings, the head loss (Δh) (the difference in the 

piezometer levels) was determined, and the coefficient of hydraulic conductivity (k) for 

each specimen was calculated by using the Darcy’s law:  

 

hA
LQk

Δ
=

.
.                                                               (5.5) 

 

where Q is the flow rate (L3T-1), L is the height between sampling ports (L), A is the cross 

sectional area of the specimen (L2)and Δh is the head loss between the sampling 

ports(LL-1).  

 After all the tests were completed, the homogeneity and the isotropic 

characteristics of the column specimens were visually inspected. This was done after 

draining the specimens and removing them from the column and carefully cutting the 

specimens across their transversal directions. Finally, the column specimens were 

inspected for evidence of segregation of fine particles.  
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5.2 Numerical Modeling Methods 
 

 The laboratory sorption-desorption test data were modeled using a reactive 

transport modeling tool called Modular Three-Dimensional Multi-species Transport 

Model (MT3DMS).  This computer program simulates the reactive multi-species 

transport in groundwater aquifers (Zhang and Wang 1998) and is coupled with a 

groundwater flow program named MODFLOW, which was developed by the U.S. 

Geological Survey (USGS) for computing temporal variations in groundwater heads and 

flow velocities. In this study, a graphical user interface program, Visual MODFLOW 

(VMOD) (Version 2.8.2; Waterloo Hydrogeologic Inc), was selected to operate 

MT3DMS and MODFLOW together. There are two main reasons MT3DMS has selected 

as the numerical modeling tool. First, it includes well-verified numerical algorithms and 

has been widely used by researchers for a variety of applications (e.g, Mehl and Hill 

2001, Elder et al. 2002). Second, its implicit finite difference reaction solver method 

enables the simulation of various types of reactions, including nonlinear sorption.  

5.2.1 Governing Equations  

 
 The general macroscopic advection-dispersion reaction equations describing the 

fate and transport of a single contaminant in three-dimensional, transient groundwater 

flow systems can be written as follows: 
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where C is the dissolved contaminant concentration (ML-3), θ is the porosity of the 

subsurface medium (L3/L3), t is time (T), xi is the distance along the respective Cartesian 
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coordinate axis (L), Dij is the hydrodynamic dispersion coefficient tensor( L2T-1), vi is the 

seepage or linear pore water velocity (LT-1), Cs is the concentration of the source or sink 

flux  (ML-3), q’s is the rate of change in transient groundwater storage (T-1), and ∑ Rn is 

the chemical reaction term (ML-3T-1). vi is related to the specific discharge or Darcy flux 

through the relationship (v =qi/θ), and qs is the volumetric flow rate per unit volume of 

aquifer representing fluid sources (positive) and sinks (negative) (T-1). 

 

5.2.2 Reaction Terms  

The chemical reaction terms in Equation (5.6) includes equilibrium sorption and 

first-order decay for both aqueous and sorbed concentration, which is required for the 

biodegradation reaction modeling (discussed in detail in Chapter 6). After substitution of 

these reaction terms, the equation can be written as:  
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where ρ is the bulk density of the medium (ML-1), q is the concentration of sorbed 

contaminant (MM-1), and λ1 and λ2 are the first order reaction rate constants for aqueous 

and sorbed phase, respectively (T-1).  

 The term 
t
q

∂
∂  in equation 5,7 represents the rate of contaminant adsorbed, and 

))((
t
ql

∂
∂

θ
 gives the corresponding change in this aqueous concentration caused by 

sorption- desorption (Freeze and Cherry 1979). Assuming that the sorption process is in 
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local equilibrium, i.e., sorption is relatively fast when compared to the transport time 

scale, and noting that the sorbed concentration is typically a function of the aqueous 

concentration, where 
t
C

c
q

t
q

∂
∂

∂
∂

=
∂
∂ . Substituting this relationship into Equation 5.7 results 

in the following equation: 
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where R is dimensionless retardation factor and can be defined as:   

 

C
qR

∂
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+=
θ
ρ1                                                              (5.9) 

 

 Equilibrium-controlled sorption mechanisms are often incorporated into 

contaminant transport models through the use of a retardation factor as defined in 

Equation 5.9. The functional relationship between the aqueous and sorbed phases of the 

contaminants at constant temperature is called the sorption isotherm. Among the sorption 

isotherms discussed in Chapter 3, the Freundlich and Langmuir sorption isotherm models 

were considered in the modeling of column sorption desorption experiments described 

herein. As discussed in Chapter 3, these two nonlinear isotherm models are the most 

commonly employed ones for practical purposes. The other isotherm models applied in 

Chapter 3 such as the Polanyi, Fritz Schulender, Freundlich-Langmuir combined models, 



 188

are not available within the MT3DMS solver and were not used in evaluating the column 

data.  

 The Freundlich isotherm is a nonlinear isotherm and can be expressed in the 

following form:  

 

 n
f CKq .=                                                            (5.10) 

 

where Kf is the Freundlich isotherm constant (L3M-1)n and n is the dimensionless 

Freundlich exponent, taking the differential of 
C
q

∂
∂  and substituting into Equation 5.9, the 

retardation factor for a Freundlich sorption isotherm  is defined as: 
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 The nonlinear Langmuir isotherm can be expressed as:  
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where KL is the Langmuir isotherm constant (L3M-1), Qmax is the sorption capacity of the 

solid surface(MM-1). The retardation factor for the Langmuir sorption isotherm is then: 
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 These chemical reaction models as well the advection-dispersion part of the 

model were solved using an Operator-Splitting (OS) strategy embedded in the MT3DMS. 

The advection part was solved by using the Upstream Finite Difference (UFD) method, 

because it is virtually free of numerical dispersion and provides the mass balance 

precisely. The OS strategy and UFD method were described in detail by Zhang and Wang 

(1998). The dispersion and source-sink mixing packages use explicit finite-difference 

approximations, while the reaction package has an improved implicit reaction solver. 

5.3 Analytical Methods 
 

5.3.1 Organic Contaminant Analysis 

 The concentrations of the organic contaminants (i.e., naphthalene and o-xylene) in 

the collected aqueous samples were determined using the spectrofluorophotometry 

technique described in Chapter 3.3.1.  

5.3.2 pH Measurements  

 pH of the fly ashes as-received were determined by following the EPA SW 846 

Method 9045. The fly ashes were first sieved through a No.10 sieve and 20 grams of the 

sieved material was transferred into a 50 mL beaker. Then, 20 mL of deionized water 

were added to the beaker to achieve a solid-to-liquid ratio of 1:1.  The suspension in the 

beaker was mixed using a spatula for 30 minutes with 10-minute intervals between each 

mixing. Then, the suspension was left stagnant to equilibrate for one hour. The pH meter 
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(Cole Parmer Cat. # 05718-76) was calibrated using three standard buffer solutions at pH 

values of 4, 7, and 10. After the equilibration period, the pH of the suspension was 

measured by immersing the pH meter tip and recording the value after the reading 

became constant. All pH measurements were performed at room temperature (24 ±2 °C). 

The mean values of the two replicate measurements were reported as the pH of that 

particular fly ash. 

 The samples extracted from the ports of the columns were also monitored for pH.  

The pH measurements were conducted by following the procedure outlined in ASTM D 

1293. The pH meter used was the smear described above. 

5.3.3 Non-reactive tracer analysis  

 
 During the non-reactive tracer tests, the samples extracted from the effluent port, 

as well as from the ports located along the height of the column, were analyzed for 

bromide concentrations. An aqueous sample volume of 2.5 mL was collected and the 

samples were kept in the refrigerator at 4 °C for 24 hours. The samples were then allowed 

to reach room temperature before performing the bromide measurements using a bromide 

electrode (Cole Palmer # 27502-05) connected to an ion meter (Orion Model 520A). 

Filling solutions were added to inner chamber and outer chamber of the electrode before 

each use. A 5 M NaNO3 solution was prepared as the ionic strength adjustor (ISA) to 

ensure a constant background ionic strength. The calibration of the bromide electrode 

was conducted prior to the sample measurements using standard bromide solution 

concentrations of 0.1, 1, 10 50 and 100 mg/L, which were prepared by appropriate 

dilution of a 1000 mg/L stock solution. Each solution was measured once and a 

logarithmic relationship  between mV and concentration was constructed.  



 191

 In order to perform the bromide analysis, a 1-mL sample was taken using a 

pipette, and then transferred into a 10-mL volumetric flask. The sample was then diluted 

to 10 mL using DI water, and 0.2-mL ISA solution was added to adjust the ionic strength. 

The diluted solution was stirred thoroughly at a moderate speed. The electrodes were 

rinsed with DI water, blotted dry and placed into the beaker containing the diluted 

sample. When a stable reading was displayed, the milivolt (mV) reading was recorded. 

The milivolt readings were converted to Br- concentration using the standard calibration 

curves. 

5.4 Results and Discussion of Column Sorption-Desorption Experiments  

5.4.1  Non-reactive Tracer Experiment Results 

 
 Non-reactive tracer column test data were used to calculate the hydrodynamic 

dispersion coefficients and pore velocities.  Two sets of column tracer tests were 

conducted.  The first set of experiments, named Column Set 1, were performed after the 

testing of naphthalene transport through the three fly ashes and PAC, whereas the 

Column Set 2 experiments were conducted after testing the transport of o-xylene through 

these materials. The breakthrough curves from port B and port C of the fly ash-sand 

mixture columns are shown in Figure 5.3., 5.4, and 5.5 for the MT, PS, and DP fly ash-

sand mixtures, respectively. The best fits to the laboratory data was obtained using the 

“trafit3d” program described above and are shown as solid lines in the figures.  A 

generally close match between the data and the regressed curves suggests successful 

determination of DH and V values by using the “trafit3d” program. The optimization 

algorithm always yielded the same parameter estimates even if different initial estimates  
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Figure 5.4 Breakthrough Curves (BTC) from non reactive tracer test conducted on MT 

fly ash-sand mixture: (a) Column 1 and (b) Column 2. A schematic of typical locations of 
the ports along the column is shown. Symbols represent experimental measurements. 

Lines represent the best-fit model predictions. 
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Figure 5.5 Breakthrough Curves (BTC) from non reactive tracer test conducted on PS fly 

ash-sand mixture: (a) Column 1 and  (b) Column 2. Symbols represent experimental 
measurements. Lines represent the best-fit model predictions. 
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Figure 5.6 Breakthrough Curves (BTC) from non reactive tracer test conducted on DP fly 

ash-sand mixture: (a) Column 1 and  (b) Column 2. Symbols represent experimental 
measurements. Lines represent the best-fit model predictions. 
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Figure 5.7 Breakthrough Curves (BTC) from non reactive tracer test conducted on PAC-

sand mixture: (a) Column 1 and (b) Column 2. Symbols represent experimental 
measurements. Lines represent the best-fit model predictions. 

 

(a) 

(b) 



 196

were inputted; therefore the best fit DH and V values were assumed to be unique. Table 

5.4 summarizes the best fit values of DH and V along with the calculated α (longitudinal 

dispersivity) values per Equation 5.3.  During the numerical modeling of the sorption 

desorption experiments with VMOD-MT3DMS, the average of the pore water velocities 

at ports B and C were used. 

As seen in Table 5.4, the pore water velocities in the fly ash-sand and PAC-sand 

mixtures ranged between 4.96 and 7.40 cm/hr, and 5.32 and 8.48 cm/hr, respectively.  

The variation in the pore velocities are most probably due to distribution of pores within 

each medium. The dispersivity values range between 0.07 and 0.74 cm, and 0.04-0.96 cm 

for fly ash-sand and PAC-sand mixtures, respectively. These values fall in a range typical 

of values reported for sorptive media with relatively high fines content (Rabideau et. al. 

2005). 

As shown in Figure 5.3, the reactive medium in three columns was sandwiched 

between two sand layers to assist with the development of uniform flow through the 

column.  To investigate the effect of the two sand layers on the flow parameters (i.e., DH 

and V), a separate column was filled completely with the PS fly ash-sand mixture, and a 

tracer test was performed.  The breakthrough curves for this test are shown in Figure 

5.8a, and the best-fit estimates for the parameters V and DH obtained using the non-linear 

regression are listed in Table 5.5. Both parameters are very comparable to the ones 

obtained from the columns that included reactive media between two sand layers (Table 

5.4).  Thus, the effect of initial sand layer on flow parameters was limited.  

A fourth column tracer test was conducted on pure sand to further investigate the 

effect of the two sand layers on the flow parameters.  The breakthrough curves from all  
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Table 5.4 Summary of transport parameters obtained from tracer tests 
 

Column set 
number 

Sorptive 
Medium Port Qa(cm3/hr) V (cm/hr) DH 

(cm2/hr) α  (cm) 

Column Set 1 

MT fly 
ash 

B 
45 

7.40 2.51 0.37 

C 5.66 1.54 0.23 

PS fly 
ash 

B 
45 

6.27 1.63 0.26 

C 6.06 4.62 0.74 

DP fly 
ash 

B 
45 

5.68 3.96 0.7 

C 5.19 1.59 0.3 

PAC  
B 

52.2 
8.48 8.19 0.96 

C 6.40 4.69 0.73 

Column Set 2 

MT fly 
ash 

B 
52.9 

6.67 0.45 0.07 

C 7.13 0.77 0.11 

PS fly 
ash 

B 
52.4 

6.69 0.99 0.149 

C 5.74 1.40 0.244 

DP fly 
ash 

B 
53 

6.084 0.56 0.09 

C 4.96 1.22 0.25 

PAC 
B 

52 
5.32 0.32 0.06 

C 5.41 0.20 0.04 

 a-The flow rate during the test 
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three ports of the sand column are shown in Figure 5.8b, and the best fit parameters are 

summarized in Table 5.6. The DH values range from 0.548 to 1.435 cm2/hr, indicating 

that the flow parameters for pure sand are comparable to those determined for the 

columns that included reactive media between the two sand layers (Table 5.4). 

It is well-known that dispersivity is strongly related to the method and scale of 

testing (Gelhar et al. 1992). The commonly reported laboratory-scale longitudinal 

dispersivity values range between 0.1 mm to 1 mm (Song 2005). Generally, such 

laboratory-scale dispersivity values are strongly correlated to the average mean grain size 

diameter of the porous media (Rumer 1962). For the fly ash-sand mixture, it is well-

understood that the dispersivity is controlled by the sand in the mixture. The sand used in 

the current column experiments, has a mean grain size diameter of 0.3 mm.  This is very 

similar to the dispersivity values obtained from the breakthrough curves at port C and the 

effluent port of the sand column, which were 0.249 and 0.243 mm, respectively (Table 

5.4). Therefore, these dispersivity values appear to be reasonable.  

The column Peclet number (PL=vL/DH) is an important parameter that controls 

the flow conditions within a column (Freeze 1999). For all of the columns tested, the PL 

ranged from 12.4 (PAC-sand column for naphthalene) to 249.1 (PAC-sand column for o-

xylene) which indicated that the transport was dominated by advective flow.  Based on 

the results from the tracer experiments, the assumption of negligible diffusion in the 

hydrodynamic dispersion was also evaluated. The effective diffusion coefficient for 

bromide is reported as 2.08 10-5 cm2/sec (Kim et al. 1997). Based on this value, the error 

due to ignoring diffusion is small (1.6-7 % based on Equation 5.3) and indicates that 

diffusive flux does not contribute significantly to contaminant transport. 
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Figure 5.8 Breakthrough Curves (BTC) from non reactive tracer test  conducted on (a) 
PS-sand mixture (b) sand only. Symbols represent experimental measurements. Lines 

represent the best-fit model predictions.  
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Table 5.5 Summary of transport parameters for the PS fly ash sand mixture 
 

Sampling 
Point Q (cm3/hr) Vx 

(cm/hr) 
DH 

(cm2/hr) α (cm) 

Port A 

54 

5.3 0.33 0.062 

Port B 5.5 0.28 0.051 

Port C 6.0 1 .32 0.22 

Effluent 5.3 1.11 0.21 

 

 

Table 5.5 Summary of transport parameters for the sand  

Sampling 
Point Q (cm3/hr) V (cm/hr) DH (cm2/hr) α (cm) 

Port A 

50 

5.99 1.435 0.187 

Port B 6.34 0.548 0.086 

Port C 5.62 1 .398 0.249 

Effluent 5.416 1.317 0.243 
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5.4.2  Constant Head Hydraulic Conductivity Test Results 

 The constant head hydraulic conductivity results are summarized in Table 5.6. 

The hydraulic conductivity of the sand (no fly ash) is 4.5 10-2 cm/sec, which is 

comparable to hydraulic conductivities of 10-1 to 10-3 cm/sec reported for fine to medium 

sands (Bowles 1992). It is clear that the addition of 40% fly ash by weight to the sand 

caused an approximately two order of magnitude decrease in hydraulic conductivity.  

Mixing the sand with 2% PAC by weight also caused a 4.8 to 32 times reduction in 

hydraulic conductivity.  The fine particle size of both the fly ash and the PAC is 

responsible for the observed decrease in hydraulic conductivities. Despite the reduction in 

hydraulic conduction, the measured values of the fly ash-sand mixtures range between 

4.7 x 10-5 and 1.8 x 10-4 cm/sec and these are comparable with the typical field hydraulic 

conductivities reported for PRBs (Gavaskar et al. 1998).  Therefore, it can be concluded 

that the hydraulic conductivity of the fly ash-sand mixture is reasonable for its use as a 

PRB medium.  

5.4.3  pH results 

 Samples were periodically collected from the effluent ports during the sorption-

desorption tests and evaluated for pH.  The observed changes in the effluent pH of the 

MT, PS, and DP fly ashes/sand columns during the naphthalene sorption-desorption tests 

are plotted against PVE in Figure 5.9. Figure 5.9 shows that pH initially remains 

relatively constant and slightly basic for several pore volumes of flow, then decreases at 

the later stages, and eventually drops to a relatively constant level comparable to the pH 

of artificial groundwater solution (i.e, pH =6.9). The pH of the columns reached this 

equilibrium value typically within 15-35 pore volumes of flow. Similar trends were  
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Table 5.6 Hydraulic conductivities one fly ash-sand column specimens. 
 

Fly ash 
Type 

Column set 
number 

Average 
hydraulic 

conductivity  
(cm/sec) 

Sorptive Medium Bulk 
Density (g/cm3) 

MT 

Column Set 1

1.1 10-4  1.701 

PS 9.5 10-5  1.398 

DP 1.3 10-4  1.407 

PAC 1.4 10-3  1.582 

MT 

Column Set 2

4.7 10-5  1.756 

PS 1.8 10-4  1.471 

DP 1.5 10-4  1.408 

PAC 9.4 10-3  1.649 
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Figure 5.9 pH values during the naphthalene sorption-desorption tests for the three fly 
ashes tested. MT: Morgantown fly ash-sand mixture, PS: Paul Smith fly ash-sand 

mixture, DP: Dickerson Precipitator fly ash-sand mixture. 
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observed by Qiao et al (2005) in a study on use of fly ash in waste 

stabilization/solidification systems. 

 It is difficult to relate the shapes of the pH elution curves to any one single factor, 

but rather the curves are influenced by a series of factors, including flow rate, mineral 

composition of the fly ash, and percolating eluant solution. Fytianos and Tsaniklidi 

(1998) attributed the observed decrease in pH with the increasing liquid-to-solid ratio 

(i.e., the increasing pore volumes of flow) to the “depletion of materials controlling this 

parameter”. For example, the elevated values for pH may be due to the buffering 

reactions initiated by the dissolution and/or decomposition of the minerals components of 

the fly ash (McBride et al. 1994 and Genc-Fuhrman et al. 2007). Over the time, the 

buffering capacities of the Maryland fly ashes tested in this study diminished and the pH 

in the system became governed by the PIPES buffer present in the groundwater recipe as 

more pore volumes of flow pass through the column and more fly ash mineral 

components were washed out from the column system.  

 

5.4.4  Column Sorption-Desorption Test Results with Naphthalene 

 A series of column sorption-desorption tests were conducted on the fly ash-sand 

mixtures to determine the sorption parameters for these reactive media.  Prior to these 

columns tests, a sorption-desorption column test was performed on sand (no fly ash) to 

determine sorption-desorption characteristics of sand alone. Figure 5.10 shows the 

relative naphthalene concentrations for sand sorption-desorption experiment. Also shown 

are the breakthrough curve simulations produced using MT3DMS with the transport  
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Figure 5.10 Naphthalene breakthrough in sand column sorption-desorption test. Solid line 

are the results from numerical analysis. 
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parameters obtained from the sand only tracer test and assuming no sorption.  The tailing 

observed at the conclusion of the desorption part of breakthrough curve was probably 

mostly due to pore-scale variations in the sand medium (Fesch et al. 1998).  Other then 

the observed tailing, the measured naphthalene concentrations agree well with those 

predicted through the MT3DMS simulations by assuming no sorption-induced uptake of 

naphthalene during flow. These column test data confirm the observations made in batch 

adsorption tests on sand that the material does not have any significant sorption capacity 

for naphthalene. 

 Following this test, the series of column sorption-desorption tests were conducted 

on fly ash-sand mixtures with naphthalene in the influent.  Initially, the input (influent) 

concentrations were determined through the samples taken from the influent port as well 

as at port A.  Port A was located in the sand portion of the column, 10 mm below the fly 

ash sand mixture (see the inset in Figure 5.11 for the port orientations). Typical 

naphthalene concentrations from the influent port and port A are shown in Figure 5.11, 

and suggest that no significant difference existed in the naphthalene concentrations. Thus, 

further measurements for the influent naphthalene concentrations were made through the 

samples collected at port A, which, because of its proximity to the sorptive medium, 

represented more accurate input concentration for the column data.  

 Upon completion of the column experiments, breakthrough curve simulations 

were first conducted using VMOD and MT3DMS, the transport parameters from the 

corresponding non-reactive tracer studies, and the sorption parameters determined from 

the batch adsorption test isotherm models.   For example, the Freundlich isotherm was the 

best-fit sorption isotherm model for the MT fly ash data, therefore, the MT fly ash-sand  
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Figure 5.11 Typical naphthalene concentrations at the influent port and Port A during 
sorption tests (From PS-sand column) 
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mixture column tests were modeled using the Freundlich isotherm coefficients taken 

from the batch adsorption tests.  The column data for the MT fly ash-sand column, 

generated using the batch parameters, and the breakthrough curves are given in Figure 

5.12. The breakthrough curves determined using the batch parameters are shifted 

rightward implying that the naphthalene sorption is overpredicted by using these 

parameters.  Similar observations were made in some previous studies that compared the 

batch and column sorption isotherms (Maraqa et al 1998, Fesch et al 1998, Allen-King et 

al 2001, Altfelder et al 2001, Maraqa 2001, Rabideau et al. 2001, Lee et al 2002). For 

example, it was reported that batch-determined isotherm coefficients overpredicted the 

column sorption data by 50 to 170% (Maraqa 2001, Rabideau et al. 2001), and in some 

cases the difference was over one order of magnitude (Altfelder et al. 2001).  

 The reasons behind the discrepancy between batch and column data for non-polar 

organic contaminant sorption are not completely understood (Altfelder et al. 2001, 

Maraqa 2001, Alllen-King et al. 2002). Various reasons have been reported to be 

responsible for the discrepancy, including the solid-to-liquid ratio, sorption nonlinearity, 

and nonequilibrium (rate-limited) sorption (Maraqa 2001).  It is possible that a 

combination of these factors caused the observed discrepancy in the current experiments. 

Among these factors, the equilibrium state of sorption during column sorption-desorption 

was evaluated in this study using MOD flow-MT3MS, which is capable of modeling rate-

limited sorption with a linear sorption isotherm.   

In order to investigate the potential effect of sorption rate-limitations in the 

column experiments, the MT fly ash-sand mixture results were compared with 

MODFlow-MT3MS simulations with rate-limited sorption and an equivalent linear 
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Figure 5.12 MT fly ash-sand mixture column breakthrough curves during naphthalene 

sorption. Dotted lines are breakthrough curves modeled with isotherm parameters taken 
from batch adsorption tests. Solid lines are from calibrated isotherm parameters. Symbols 

are from experimental measurements. 
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sorption isotherm.  The equivalent linear isotherm coefficient for the MT fly ash was 

calculated by using the Freundlich isotherm coefficients obtained in the batch sorption 

tests and following the procedure described by Schwarzenbach et al (1999) and Maraqa 

(2007) in which the linear partition coefficient, Kd, is related to the  Freundlich 

parameters as follows: 

  

                                                             Kd=Kf Ce
n-1                                                  (5.12) 

 

where Kd is the equivalent linear partition coefficient (L/kg), Kf  is the Freundlich 

isotherm coefficient (mg/kg)/(L/mg)-n, Ce is the equilibrium concentration, and n is the 

Freundlich isotherm exponent. The mass transfer rate constant was not independently 

estimated in this work; therefore, numerical analyses were conducted with low rate 

constants (<1 hr-1) to ensure nonequilibrium conditions (Miller and Weber et al. 1988).  

Breakthrough curves generated from the rate-limited sorption modeling runs resulted in 

significant tailing in the sorption breakthrough. Similar tailing sorption breakthroughs 

with use of low sorption rate constants were also reported in previous studies (Mansell et 

al. 1977, Cameron and Klute et al. 1977, Liu et al. 1991, Spurlock et al 1995). However, 

as seen the Figure 5.12 the actual breakthrough curve data have relatively sharp fronts 

during the sorption phase. Due to the significant differences in the shape of the rate-

limited sorption breakthrough curves and the experimental data, it was concluded that the 

sorption in the fly ash medium is not a rate-limited process, and a local equilibrium had 

been reached.  Because a sharp front was observed in the sorption breakthrough curves 
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for all fly ashes and PAC (see below), no further investigation was conducted on the rate 

limitation.  

 As illustrated in Figure 5.12, the shape of the breakthrough curves using the batch 

parameters and the column test data had similar shapes, but the experimental data had an 

earlier breakthrough compared to the curves calculated using batch-determined sorption 

parameters.  In other words, the column sorption experiments may yield same nonlinear 

sorption isotherm with lower sorption capacity (i.e., yielding the same shape with a 

rightward shift).  For example, the results of Fesch et al. (1998) also revealed a similar 

breakthrough curve orientation, but the ones from their soil column experiments had 

earlier breakthrough points. Therefore, another possible explanation for the difference 

between the sorption capacities of the two test methods could be due to the fact that the 

number of sorption sites in the column was overestimated. Fesch et al. (1998), Rabideau 

et al. (2001), and Maraqa (2001) reported a similar overestimation when batch-derived 

parameters were used for column data. This overestimation could be due to the limited 

accessibility of carbon sorption sites in the column resulting from relatively denser 

packing as compared to a low solid-to-liquid ratio in the batch equilibrium tests (e.g., 0.5 

g of HCCFA fly ash were tested in 60 mL naphthalene solutions in the batch tests). 

Similar observations were made by Burgisser et al. (1993) and Fesch et al. (1998) in 

comparing in the batch and column tests.  

 In order to determine the sorption isotherm coefficients for the flow through 

column conditions, the calibration procedure described by Fesch et al. (1998) was 

followed. Fesch and coworkers also studied a flow-through sorption column using a 

sorptive medium that was best described with nonlinear batch-determined isotherm 
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models (i.e., Freundlich and Langmuir). Their column results were described by 

nonlinear sorption isotherms with same isotherm coefficients (i.e., “KL“of Langmuir 

isotherm, and n of Freundlich isotherm) as the batch data, but using different sorption 

capacity parameters (i.e., “Qmax“ of Langmuir isotherm and Kf of Freundlich isotherm--

see Chapter 3 for isotherm details). Similarly, Lee et al. (2002) determined Freundlich 

isotherm coefficients from batch and column studies and reported that same Freundlich 

exponents, n, were obtained in both cases, but the column sorption experiments yielded 

lower Kf values. Lee et.al. (2002) and Maraqa (2007) discussed the effect of the 

Freundlich exponent, n, on column breakthrough results. They indicated that a slight 

change in n has a significant effect on the breakthrough curve. Therefore, n can be 

considered to be a sorbent-specific parameter.  

 Following the approach of Fesch et al. (1999), the Freundlich exponent “n” 

obtained from the batch experiments was used to model the column data. However, new 

Freundlich isotherm coefficients, Kf, for column experiments were determined via 

numerical simulation. Specifically, the best estimate of Kf was evaluated via trial and 

error by minimization of the root mean-squared error (RMSE) between the experimental 

and numerical data. The calibrated (new) Freundlich isotherm parameters determined 

from the column breakthrough curves are summarized in Table 5.7.  Freundlich isotherm 

coefficients calculated from the column data are 27.3 to 47.3% lower than the batch-

determined ones. It can be seen in Table 5.7 that the fly ashes with relatively low LOI 

values (i.e,, MT and PS) generally have lower sorption medium efficiency. This 

difference can also be expressed as the efficiency of column sorption capacity. The  
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Table 5.7 Isotherm coefficients from batch and column studies 
 

Sorptive 

Medium 
n 

Batch Kf 

(L/kg) 

Column Kf 

(L/kg) 
RMSE 

KF 

efficiencya 

(%) 

MT 0.3062 102 28.75 0.73 28.2 

PS 0.3389 696.4 190 1.44 27.3 

DP 0.194 1416 670 0.75 47.3 

PAC 0.169 72570 1110 0.89 1.5 
 a (Column Kf / Batch Kf)*100 
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resulting model simulation breakthrough curves using the batch and best-fit column Kf 

values for DP, PS and MT fly ash-sand mixture sorption desorption column results are 

shown in Figure 5.13, 5.14, 5 15, respectively along with the experimental data. 

 The nonlinear sorption of the organic compound was reflected in sharp adsorption 

and tailing desorption fronts of the breakthrough curves (Brusseau 1995).As seen in these 

figures, the MT3DMS simulations in general successfully model the experimental data 

using the new Freundlich isotherm coefficients for the sorption as well as the desorption 

phases. However, there are some discrepancies. For example, the data from the DP and 

PS fly ash-sand mixture columns (Figure 5.13 and 5.14) have relatively sharp sorption 

breakthrough fronts, which were predicted well by the MT3DMS nonlinear equilibrium 

isotherm model. However, the MT fly ash-sand mixture column data (Figure 5.15) 

exhibited a great degree of tailing in the sorption front. As mentioned earlier, a column 

breakthrough curve can indicate the sorption equilibrium based on the shape of the curve 

(Miller and Weber 1998).In this case, given the fact that MT fly ash has a low carbon 

content, equilibrium may not be satisfied at high naphthalene concentrations most 

probably due to the low sorption affinity of the MT fly ash. The effect of non-equilibrium 

sorption on the column breakthrough curves was also mentioned by others (e.g., 

Burgisser et. al. 1993, Miller and Weber 1988, Lee et al. 2002).  

A tailing of the desorption front was observed for DP fly ash-sand mixture 

column (Figure 5.13), which was most probably caused by the nonlinearity of the 

sorption isotherm (Brusseau 1995, Spurlock et al. 1995, Fesch et al 1998). However, for 

both ports B and C, the nonlinear desorption MT3DMS model overpredicts the 

experimental naphthalene desorption data toward the end of the desorption process.  
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Figure 5.13 Breakthrough curves from Port B and Port C of Naphthalene sorption 

desorption column using DP fly ash as sorptive medium. Solid lines are from Numerical 
modeling using MT3DMS. 
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Figure 5.14 Breakthrough Curves from Port B and Port C of Naphthalene sorption 
desorption column using PS fly. Solid lines are from Numerical modeling using 

MT3DMS. 
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Figure 5.15 Breakthrough Curves from Port B and Port C of Naphthalene sorption 

desorption column using MT fly ash. Solid lines are from Numerical modeling using 
MT3DMS. 
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Similar deviations of the model predictions from the experimental data were also 

observed at the lower end of the desorption curve for the PS and MT fly ashes (Figure 

5.14 and 5.15). Although, the Freundlich sorption isotherm is capable of capturing the 

column sorption-desorption processes at low naphthalene concentrations, the desorption 

process occurs faster than the model predictions. This is most probably due to an increase 

in the desorption deriving force created by the higher concentration gradient. It has also 

been reported that if the desorption part of the breakthrough curve has a sharp end (fast 

desorption), mass transfer processes are most likely to reach an equilibrium with a linear 

sorption isotherm (Altfelder et al 2001). In fact, it is well known that non-polar organic 

chemicals (i.e. naphthalene) exhibit equilibrium mass transfer behavior at relatively low 

concentrations (Chiou et al. 1998). 

 The batch test-determined isotherm model parameters for the PAC were also re-

calibrated through the column sorption-desorption tests a using MT3DMS analysis to 

define new isotherm coefficients in the same manner as described above for the fly ashes.  

As discussed in Chapter 3, the PAC batch data were best fit by the Langmuir isotherm 

model. Therefore, first, a new best estimate of Qmax was obtained by trial and error 

minimization of RMSE between the experimental and numerical data, keeping the same 

KL value as from the batch data analysis. Then the PAC-naphthalene sorption desorption 

data from the column tests were compared with the MT3DMS simulations using the new 

Langmuir isotherm coefficient (Figure 5.16).  However, there was not a good match 

between the model prediction and the data set. Similar to the fly ash column 

breakthrough curves, the experimental data for the PAC-sand mixture have a relatively 

sharp sorption front and a slight tailing during desorption. In comparison, the Langmuir  



 218

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

PVE

C
/C

o

Port B

Port C

Freundlich Model Port B

Freundlich Model Port C

Linear Model Port B

Linear Model Port C

Langmuir Model Port B

Langmuir Model Port C

 
 

Figure 5.16  Breakthrough Curves from Port B and Port C of Naphthalene sorption 
desorption column experiment using PAC-sand as the sorptive medium. Lines are the 

numerical modeling prediction using MT3DMS for the Linear, Freundlich and Langmuir 
sorption isotherms. 
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isotherm model, with the relatively slow sorption front, was unsuccessful in predicting 

the test data.  Therefore, the Freundlich isotherm was calibrated to the experimental data, 

as described above for the fly ash data, to obtain new isotherm parameters for the PAC-

sand mixture column data. In addition, an equivalent linear isotherm coefficient for PAC 

was calculated using Equation (5.12).  The re-calibrated Freundlich isotherm parameters 

are presented in Table 5.7. Interestingly, compared to the fly ashes, the efficiency, is very 

low for PAC, a high carbon content material (LOI=99%).  This is probably due to very 

low solid-to-liquid ratio used during batch adsorption tests on PAC (a ratio of 1/6000 for 

PAC as compared to a ratio of 1/120 for fly ashes),, which caused the sorption sites in 

PAC to be fully accessible for naphthalene. 

 It is clear from Figure 5.16 that the numerical simulations using the recalibrated 

Freundlich model provided a good prediction for the experimental data, whereas the 

equivalent linear isotherm coefficient did not. The reasons behind the superiority of the 

Freundlich isotherm model for the column tests predictions can be described as follows. 

First, the PAC-sand mixture exhibits a sorption behavior in the column similar to the fly 

ashes tested. Specifically, there is a sharp sorption front and a tailing desorption end of 

the breakthrough, as discussed for fly ash columns. This nonlinearity is successfully 

captured by Freundlich isotherm, although the model simulations overpredict the 

naphthalene concentration at the end of the desorption front for the fly ashes. Note that 

the difference in the goodness-of-fit for the batch adsorption test Freundlich and 

Langmuir isotherms was very small (RMSE=0.33). Therefore, it is not surprising that the 

PAC-naphthalene sorption can be modeled using a Freundlich isotherm. 
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5.4.5 Naphthalene Retardation from Column Experiments  

 
 In order to determine the retardation of naphthalene during advective-dispersive 

flow in the columns, the sorbed and desorbed masses were calculated.  The area above 

the sorption front of the breakthrough curve was used to calculate the sorbed mass of the 

solute multiplied by the test flow rate (Burgisser et al. 1993, Fesch et al 1998). Similarly, 

the area under desorption breakthrough was used to determine the desorbed mass 

multiplied by the flow rate during desorption phase of the experiment (Figure 5.17). For 

all of the column tests conducted with naphthalene, the areas associated with the sorbed 

and desorbed naphthalene mass were calculated using Newton-Cotes integration methods 

(Chapra and Canale, 2002). These two areas are symmetrical and equal for a non-reactive 

solute (i.e., the injected solute mass is equal to the flushed solute mass).  However, when 

the solute is retarded within the medium, the difference between the two masses provides 

the retarded solute mass in the sorptive medium. Sorbed and desorbed naphthalene 

masses as well as the retarded mass per gram of sorptive medium are given in Table 5.8. 

Several key observations can be made based on the retarded naphthalene mass amounts. 

First, retarded naphthalene mass increases with increasing LOI values (MT< PS< DP fly 

ashes< PAC). This observation is consistent with the hypothesis that the sorption and 

retardation capacity of the fly ashes are strongly dependent on the carbon content of the 

fly ashes. Second, retarded mass per gram sorptive medium calculated from Port C is 

generally higher than the one calculated at port B. This indicates that the retarded mass 

increases along the height of the column. Third, the percent retardation of the input 

naphthalene in the tested fly ashes varies between 48.14 to 77.87%, and this range is very 

comparable to the range observed in this study for retardation within PAC which varied  
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Figure 5. 17 Typical schematic of the area calculated from adsorption and desorption part 
of the column curves (DP-sand mixture naphthalene sorption desorption). 
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Table 5.8 Sorbed and desorbed naphthalene amounts in column tests 
 

Sorptive Medium 
MT 

(LOI=3.2%)

PS 

(LOI=10.7%)

DP 

(LOI=20.5%) 
PAC 

Port B 

Mass Sorbed a(mg) 10.32 47.47 174.36 321.59 

Mass Desorbed b
(mg) 3.87 24.62 48.2 109.15 

Mass Retarded c 
(mg) 6.45 22.85 126.16 212.44 

Mass Retarded / 
Sorptive Medium 
Mass d (μg /g FA-

sand mixture) 

29.94 128.98 725.47 1071.31 

Percent Retarded e
(%) 62.50 48.14 72.36 66.06 

Port C 

Mass Sorbed a(mg) 28.01 103.92 411.57 749.47 

Mass Desorbed b 

(mg) 6.2 45.49 155.19 168.58 

Mass Retarded c 
(mg) 21.81 58.43 256.38 580.89 

Mass Retarded / 
Sorptive Medium 
Mass f (μg /g FA-

sand mixture) 

47.25 153.92 675.57 1350.28 

Percent Retarded e 

(%) 77.87 56.23 62.29 77.51 

a- area calculated from adsorption curve, b-area calculated from desorption curve, c- the 

difference between a and b, d- retarded mass to sorptive medium mass ratio up to Port B, 

e- ratio of (c/a)*100, f- retarded mass to sorptive medium mass ratio up to Port C 
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between 66.06 and 77.51%. This observation further supports the previous findings that 

HCC fly ashes are strong sorbents with sorption properties comparable to a commercial 

PAC product. 

 

5.4.6  Naphthalene Retardation Coefficients from Column Breakthrough Curves 

 
 Retardation coefficients from the column test results were determined for o-

xylene using the column density, porosity, and the Freundlich isotherm parameters.  

These are plotted in Figure 5.18 as function of retardation coefficients calculated using 

the isotherm parameters from the batch adsorption tests. The retardation coefficients 

calculated from column tests are 2.3 to 3.6 times lower than ones calculated from batch 

tests. Altefelder et al. (2001), Maraqa et al. (2001) reported a difference in similar 

magnitude between the column- and batch-based retardation coefficients.  Furthermore, 

both retardation coefficients increase with increasing LOI of the fly ash (Figure 5.19). 

Also the same figure reveals that the correlation for the column-derived retardation 

coefficients is favorable upon batch-derived retardation coefficients due to higher R2 

values. 
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Figure 5.18 The relationship between the naphthalene retardation coefficients calculated 

using column and batch data for three fly ashes. 
 
 
 
 
 
 
 
 
 

RColumn=0.36 RBatch  



 225

 

R2 = 0.94

R2 = 0.58

0

50

100

150

200

250

0 5 10 15 20 25
LOI (%)

R

R Column

R Batch

 

Figure 5. 19 Retardation coefficients for naphthalene from the column and batch data 
versus Loss in Ignition LOI (%)  
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5.4.7 Column Sorption-Desorption Test Results with o-xylene  

 
 Sorption-desorption performance of o-xylene was examined by running column 

experiments with MT, PS, DP fly ash-sand mixtures and PAC-sand mixture. The main 

objective of these tests was to investigate performance of the fly ashes with a less 

hydrophobic, and subsequently a more mobile (due to its high aqueous solubility) organic 

contaminant as compared to naphthalene. 

 In these experiments o-xylene solutions were prepared as step input in a constant 

concentration range of 30.3 to 38.9 mg/L. This range mimics typical concentration levels 

of BTEX compounds observed in contaminated field sites (Kelly et al. 1995). The 

column experiments for o-xylene sorption desorption were conducted following the same 

experimental set-up and conditions as for naphthalene (See Chapter 5.1.3). Similar to the 

experiments with naphthalene, numerical simulations of the experiments were conducted 

using VMOD-MT3DMS. The isotherm parameter estimation for the numerical modeling 

was conducted by following the same procedure as described above for the naphthalene 

tests, i.e., the KF parameters were calculated from the MT3DMS simulations. The best-fit 

isotherm parameters used in the numerical analysis are tabulated in Table 5.9, along with 

the ones taken from batch tests. The experimental breakthrough curves and numerical 

modeling simulations are shown in Figures 5.20 and 5.21 for fly ash-sand and PAC-sand 

mixtures, respectively.  As seen in Figures 5.20 and 5.21, the column performance was 

successfully predicted by the numerical simulations using the column test-derived 

isotherm parameters.  
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Table 5.9 Isotherm coefficients from batch and column studies 
 

Column n Batch Kf Column Kf RMSE 
KF 

efficiency a 

(%) 

MT 0.388 79.08 17.58 3.49 
 

22.3 

PS 0.3796 305.2 85.6 2.18 
 

28.1 

DP 0.26 803.4 284 2.38 
 

35.4 

PAC 0.2 46940 445.8 2.81 
 

1.0 

 a (Column Kf / Batch Kf )*100 
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Figure 5. 20 Breakthrough curves from Port B and Port C for the o-xylene sorption 

desorption column studies using a)MT, and b)PS fly ash as sorptive medium. Solid lines 
are from the numerical modeling conducted using MT3DMS. 

(a) 

(b) 
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Figure 5. 21 Breakthrough curves from Port B and Port C of o-xylene sorption desorption 

column using a)DP fly ash, and  b)PAC as sorptive medium. Solid lines are from the 
numerical modeling conducted using MT3D. 
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Two observations can be made based on a visual comparison of the experimental and 

numerical data. First, similar to the naphthalene tests, o-xylene breakthrough curves have 

sharp adsorption fronts during the sorption phase of the experiments. Fesch et al. (1998) 

speculated that the effect of equilibrium sorption was most evident in the form of self-

sharpened adsorption fronts of the breakthrough curve without any tailing. Thus, the 

sharp-front adsorption curves suggest that sorption equilibrium was achieved during the 

o-xylene adsorption onto all media. Second, a tailing of the conclusion of the desorption 

front was observed in all tests. A tailing front of the desorption breakthrough was also 

observed by several other researchers during column testing of organic contaminant 

transport (e.g., Brusseau et al. 1995, Spurlock et al. 1995, Altfelder et al. 2001, Lee et al. 

2002). Altfelder et al. (2001) discussed several possible explanations for the tailing 

desorption front phenomenon. One possible reason for the observed long tailing is the 

nonlinear sorption characteristic of the sorbent. Fesch et al. (1998) performed column 

sorption-desorption experiments on sand-clay mixtures and also attributed the tailing 

desorption front to the nonlinear sorption characteristic of the medium. Alternatively, 

slow desorption kinetics can cause a tailing during desorption. This hypothesis was also 

supported by Maraqa et al. (1998), who attributed a tailing desorption breakthrough to the 

slow mass transfer processes. Consequently, a combination of non-equilibrium in the 

mass transfer process and nonlinear sorption characteristics could be possible reasons for 

long tailing of o-xylene breakthrough curves.  

 The hypothesis that the nonlinear sorption characteristics are responsible for the 

desorption tailing is supported by a comparison of the Freundlich exponent n of each fly 

ash. As noted by, Accardi-Dey and Gschwend (2002), n describes the degree of sorption 
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nonlinearity for the Freundlich isotherm. Specifically, for n<1, the affinity of the sorbents 

sites for the sorbate decreases as the sorbed concentration increases. The HCC fly ashes 

tested for o-xylene sorption exhibited n values of 0.388, 0.3796, 0.26 for the MT 

(LOI=3.2%), PS (LOI=10.7%), and DP (LOI=20.5%) fly ashes, respectively. It is clear 

from the data that fly ashes with the higher LOI values have lower n values, which, in 

turn, indicate a high degree of nonlinearity. Furthermore, note that PAC has an n value of 

0.20, the lowest n among all the sorbents tested consistent with its higher LOI value 

(99%).  Spurlock et al. (1995) discussed the effect of n on the desorption tailing. 

According to their experimental study, the sorbents with low n values had longer tailing 

during column desorption tests. Consistent with their observation, the sorbents tested in 

this study with lowest n values (i.e., PAC and DP fly ash) exhibited relatively longer 

desorption tailings.  

 

5.4.8 O-xylene Retardation from Column Experiments 

 
 The masses of the sorbed and desorbed o-xylene were calculated following the 

same integration method as used for the naphthalene data, as described in Section 5.6.1. 

The results of the numerical integration are given in Table 5.10. Note that because of the 

long tailing desorption breakthrough curves, observed during o-xylene tests, effluent 

concentrations did not reach to the detection limit before the tests were terminated, which 

resulted in some underestimation of the mass desorbed. However, the desorbing 

concentrations are all around 0.5 mg/L, which is substantially lower than the USEPA 

MCL level for o-xylene (10 mg/L). Several observations can be made based on the data 

in Table 5.10.  
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Table 5.10 Sorbed and desorbed o-xylene amounts from column test results 
 

 Sorptive medium 
MT 

(LOI=3.2%)

PS 

(LOI=10.7%)

DP 

(LOI=20.5%) 
PAC 

Port B 

Mass Sorbed 
a(mg) 20.55 69.63 123.26 372.9 

Mass Desorbed b
(mg) 11.46 37.16 101.64 145.92 

Mass Retarded c 
(mg) 9.09 32.47 21.62 226.98 

Mass Retarded / 
Sorptive Medium 

Mass d (μg /g 
FA-sand 
mixture) 

40.86 176.82 126.74 1123.67 

Percent Retarded 
e (%) 44.23 46.63 17.54 60.87 

Port C 

Mass Sorbed 
a(mg) 44.19 144.63 321.77 689.71 

Mass Desorbed b
(mg) 22.75 111.96 273.39 300.36 

Mass Retarded c 
(mg) 21.44 32.67 48.38 389.35 

Mass Retarded / 
Sorptive Medium 

Mass f (μg /g 
FA-sand 
mixture) 

45.27 82.38 129.22 887.63 

Percent Retarded 
e (%) 48.52 22.59 15.04 56.45 

a- area calculated from adsorption curve, b-area calculated from desorption curve, c- the 

difference between a and b, d- retarded mass to sorptive medium mass ratio up to Port B, 

e- ratio of (a/c)*100, f- retarded mass to sorptive medium mass ratio up to Port C 
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First, the retardation percentages determined for o-xylene are in all cases lower than 

calculated for naphthalene. This is probably related to the somewhat more hydrophobic 

nature of naphthalene compared to o-xylene. Second, as was observed for the 

naphthalene percent retarded o-xylene mass generally increases with increasing LOI 

value with the exception of DP.  

5.4.9 O-xylene Retardation Coefficients from Column Breakthrough Curves 

 
 Following the same approach as for the naphthalene column data, retardation 

coefficients from the column test results were determined for o-xylene using Equation 5.9 

and the column density, porosity, and the Freundlich isotherm parameters. Additionally, 

retardation coefficients using isotherm parameters from batch adsorption tests were also 

calculated. Again, as was observed with naphthalene, The retardation coefficients 

calculated from column tests are 2.7 to 3.6 times lower than ones calculated from batch 

tests (Figure 5.21). As illustrated in Figure 5.22, the batch and column retardation 

coefficients increase with increasing LOI of the fly ash, as expected although there is a 

stronger correlation for the column-derived retardation coefficients with LOI that for the 

batch-derived retardation coefficients based on the higher R2 values.  
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Figure 5.22 The relationship between the retardation coefficients calculated using column 
and batch data for o-xylene 
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Figure 5.23 Retardation coefficients from column and batch data versus Loss in Ignition 
LOI (%) for o-xylene 
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5.5. Conclusions 

The findings of the column sorption desorption tests on the mixtures of sand with 

three fly ashes, DP, PS, and MT, with LOI content of 20.5%, 10.7%, and 3.1%, 

respectively, and PAC have shown that high carbon content fly ashes are strong sorbents 

with sorption properties comparable to a commercially powder activated carbon with 

retardation capacity of 48 to 78% for naphthalene and 15 to 48% for o-xylene. These 

ranges were very comparable to the range observed for retardation within PAC. Retarded 

naphthalene and o-xylene amounts increased with increasing LOI content (MT, PS, DP 

fly ashes and PAC, respectively) in the column tests. For example, the DP fly ash 

exhibited sorption properties comparable to a commercially powder activated carbon 

The measured hydraulic conductivities of fly ash-sand mixtures in the column 

sorption-desorption tests were comparable with the typical field hydraulic conductivities 

reported for PRBs.  The bromide tracer test data indicated that dispersivity values range 

between 0.09 and 0.76 cm, and 0.04-0.96 cm for fly ash-sand and PAC-sand mixtures, 

respectively. These values fall in a typical range of values reported for sorptive media 

with relatively high fines content.  

pH readings during column experiments showed that pH  initially remained 

constant for several pore volumes of flow, then decreased at the later stages, and 

eventually dropped to a level comparable to the pH of artificial groundwater solution 

(i.e., pH =6.9). The buffering capacities of the Maryland fly ashes tested in this study 

were diminished and the pH in the system was governed by the PIPES buffer. 

Numerical simulations conducted on the column sorption desorption data revealed 

that the breakthrough curves determined using the batch parameters shifted rightward 



 237

implying that the naphthalene sorption is overpredicted by using batch adsorption test 

derived parameters.  It is possible that a combination of factors such as solid-to-liquid 

ratio, sorption nonlinearity, and nonequilibrium (rate-limited) sorption caused the 

observed discrepancy between the batch and column-derived parameters. 

Freundlich isotherm coefficients calculated from the column data were 27.3 to 

47.3% lower than the batch-determined ones. Column sorption-desorption data was 

successfully described using a Freundlich isotherm. The areas under the contaminant 

breakthrough curves were used to calculate the retarded contaminant mass during the 

experiment. The calculations revealed that the retarded naphthalene amount increased 

with increasing LOI values (MT, PS, DP fly ashes and PAC, respectively). The retarded 

mass per gram sorptive medium calculated from Port C is consistently higher than the 

one calculated at port B, which indicated that the retarded mass increased along the 

height of the column.  

Similar to the naphthalene tests, o-xylene breakthrough curves have sharp 

adsorption fronts during the sorption phase of the experiments. A tailing of desorption 

front was observed in all tests. Fesch et al. (1998) speculated that the effects of 

equilibrium sorption-desorption was most evident from the self-sharpened adsorption 

fronts of the breakthrough curve without any tailing. Thus, the sharp front adsorption 

curves suggested that the sorption equilibrium was achieved during the o-xylene 

adsorption onto all media.  O-xylene breakthrough curves also exhibited tailing at the 

desorption front. 
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Chapter 6 : Bioreactive Barrier Design: An Integrated Approach  

  Using Aerobic Biodegradation and Sorption 

 
 Biodegradation is the most important destructive mechanism for contaminant 

removal in bioreactive barrier applications. Therefore, prior knowledge of the 

biodegradation kinetics is essential for designing bioreactive barriers. Correctly 

representing the impact of biokinetics on contaminant fate confers several advantages, 

including the minimization of errors in predicting the biodegradation rate, and a more 

complete understanding of the effect of attenuation processes on the contaminant (Bekins 

et al. 1998).  

 The influence of sorption on biodegradation is complex, with a variety of positive 

and negative effects having been observed (Rittmann et al. 1994). For example, if the 

sorption rate is significant, it can reduce the contaminant concentration in solution that is 

available for biodegradation. Furthermore, if the rate of mass transfer from the soil 

particles is slower than the biokinetics, then the biodegradation rate is limited by the 

desorption rate. However, if the solute concentrations are toxic to the microorganisms, 

then sorption may sufficiently lower the contaminant concentration to allow 

biodegradation. Furthermore, in some cases, increased biological growth will occur when 

sorbed substrate is later become available for biodegradation by desorption. Which of 

these effects, if any, occurs, and to what degree depends on the concentration of the 

contaminant, sorbent, and microorganism.  

The effects of sorption coupled with biodegradation in a reactive barrier design 

have been evaluated by several researchers. Consistent with the previous research 
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discussed above, both positive and negative influences have been observed. For example, 

Guerin and Boyd (1992), and Park et al (2001) reported an increase in the biodegradation 

potential when sorptive soils were employed.  Famisan and Brusseau (2002) reported that 

while local bioavailability may have been reduced for the soils tested, the overall 

biodegradation was increased due to sorption. However, McBride et al. (1992) reported 

no change in the biodegradation rate of the sorptive medium tested in the laboratory.  

Relevant to HCC fly ashes studied in this research, with their highly nonlinear sorption 

properties (See Chapter 3), Brusseau (1995) suggested that rate of biodegradation in a 

highly sorptive medium can be affected by the sorption nonlinearity 

 The research presented in this chapter had three objectives: 1) to determine the 

appropriate biodegradation rates for naphthalene, 2) to investigate the biodegradation of 

naphthalene in the fly ash medium in a column set-up, and 3) to evaluate the life 

expectancies of the bioreactive barrier for different barrier dimensions and aquifer 

conditions. In the following section, a brief review of biodegradation kinetics is 

presented. Subsequently, the methodology for the biodegradation-sorption column studies 

is presented, followed by a presentation and discussion of the experimental and modeling 

results. 

6.1.1 Biodegradation Kinetics 
 

 Mathematical description and evaluation of the transport and biodegradation of 

organic compounds in a sorptive medium requires selection of an appropriate model of 

the biodegradation rate (Bekins et al. 1998). Several mathematical expressions have been 

proposed for describing biodegradation kinetics as a function of substrate concentration 
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in subsurface systems. The most commonly used ones are Monod equation, and first- and 

zero-order approximations, of which first two are the focus here. The classical Monod 

equation is given as:  

)(
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CKY
CX

dt
dC

+⋅
⋅⋅

−=
μ                                                          (6.1) 

where μmax is the maximum specific growth rate ( T-1), X is the biomass concentration 

(ML-3), Ci is the contaminant concentration (MsL-3), Y is the yield coefficient of bacteria 

(MMs
-3), and Ks is the half saturation constant (MsL-3). The Monod equation models the 

interdependence of the degradation of rate limiting compound and biomass growth. 

Although many studies have been conducted to determine Monod parameters, the general 

applicability of these parameters are unclear. Furthermore, parameterization of the 

Monod model is challenging due to inherent correlations between μmax and Ks, and the 

impact of culture history and conditions, the experimental data quality, and the regression 

technique on the parameter estimates (Haws et al. 2006).  

 Because of the challenges associated with the Monod model, as well as general 

ease of use, the first-order rate model is the most commonly employed one for both field 

and laboratory biodegradation kinetic determinations (Rifai et al. 1995, Warith et al. 

1999). Specifically, when modeling the biodegradation of an organic compound, if the 

aqueous compound concentration is much lower than the Ks value, (Haws et al 2006) 

then the Monod model reduces to first-order kinetics with respect to C: 
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where the biomass, Xs, is constant, it can be included with the kinetic coefficients into a 

lumped first order degradation constant (λ) that can be defined as follows: 
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YK
X

s ⋅
⋅

= maxμλ                                                           (6.3) 

Therefore, equation 6.2 can be written as: 

 iC
dt
dC

⋅−= λ                                                        (6.4) 

It should be noted that the biomass concentration (Xs) may not be constant and depends 

on the laboratory or field conditions including the availability of the contaminant as a 

growth substrate.  This limits application of the Equation (6.4). 

 Numerical modeling of the biodegradation experiments in this work was 

conducted by using the VMOD-MT3DMS computer program. During this numerical 

modeling of the biodegradation experiments, Equation 6.4 was used as the 

biodegradation sink term in the transport equation (Equation 5.7).  As discussed by 

Brusseau (1995), biodegradation of organic contaminants is conventionally assumed to 

take place only in solute phase, therefore, only biodegradation in the aqueous phase was 

modeled in this study. The first-order kinetic parameters, for microbial degradation of 

naphthalene were estimated in column experiments, as described below. 

 

6.2 Materials and Methods 

6.2.1 Microorganism and Inoculum preparation 

 
 The microorganism used in the column biodegradation experiments was 

Pseudomonas fluorescens Uper-1, which as obtained from Dr. Lueking of the 

Department of Biological Sciences at Michigan Technological University.  Under aerobic 

conditions, this microorganism utilizes naphthalene as a carbon source for growth and 
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requires no other growth factors (Song 2005).  An Uper-1 stock culture was maintained 

by periodically preparing streak plates and transferring existing cultures to freshly 

prepared plates containing nutrient agar (Difco Granulated agar), which were incubated 

in the presence of naphthalene vapor. The plates were subsequently stored in a 

refrigerator at 4 ºC.    

 As a first step in the inoculum preparation, a batch culture of Uper-1 was grown 

in four 50 mL side arm flasks containing 50 ml of basal salt medium (BSM). The BSM 

contained 4 g KH2PO4, 4 g Na2HPO4, 2 g (NH4)2SO4, 0.2 g MgSO47H2O, 0.001 g CaCl2 

2H2O, 0.001 g FeSO47H2O and 1.5 % w/v (0.75g / 50 mL) glycerol (Acros 99+%) (Song 

2005). The inoculum was grown on glycerol first in BSM and followed by growth on 

naphthalene in synthetic groundwater, which was described in Chapter 3. The flasks were 

prepared aseptically by capping with cotton balls wrapped with aluminum foil and 

autoclaving for 20 minutes at 121 ºC. After keeping the autoclaved flasks in room 

temperature for two hours, Uper-1 was transferred ascetically to inoculate triplicate 

flasks. The fourth glass of BSM with glycerol was used as a abiotic control. All the flasks 

were incubated with shaking (110 rpm) in a water bath at 30 ºC for 24 to 48 hours. 

Growth of the batch culture in the side arm flasks was monitored turbidimetrically 

(wavelength = 510 nm) utilizing a Spectronic 21 spectrophotometer (Bausch and Lomb, 

Inc.). A typical growth curve for Uper-1 grown on BMS with glycerol is shown in Figure 

6.1. Once the biomass reached the late exponential phase (around 20 hours), 0.5 mL of 

the primary culture was transferred into three autoclaved side-arm flask contained BSM 

with 1.5 % glycerol (w/v).  These three flasks with one control flask were also incubated 

in the water bath with shaking for 24 hours and, similar to the primary culture, the 
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biomass in the BSM was monitored turbidimetrically. A typical growth curve for the 

secondary culture is shown in Figure 6.2.  When the culture reached the middle 

exponential phase, the biomass in the secondary culture was harvested by centrifugation 

at 3000g for 10 minutes. The supernatant from the centrifuged BSM was decanted and 

the remaining biomass was washed three times using autoclaved synthetic groundwater. 

This washing procedure enabled removal of any residual glycerol from the biomass. The 

washed culture was then aseptically resuspended in a 1000 mL aspirator bottle containing 

autoclaved synthetic groundwater with filter-sterilized solution of naphthalene in 

Dimethylformamide (DMF) to reach the desired concentration of 10 mg/L.  The 

inoculum in the aspirator bottle was incubated for 24 hours at room temperature.  The 

heterotrophic plate count (HPC) at that point was 8x1011 CFU/L. This inoculation 

procedure ensured fully adaptation to growth on naphthalene before inoculating the 

column.  Column inoculation was carried out by pumping the inoculum from the 

aspirator bottle using same pumping set up as described in Chapter 5, at a flow rate of 40 

mL/hr for 25 hours. The inoculated column was allowed to stand stagnant for 24 hours 

after the pumping, to provide the biomass time to attach on sand medium. Similar column 

inoculation techniques were used by Kelly et al. (1996) and Yolcubal et al. (2003).  
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Figure 6.1 Typical Uper-1 growth curves (absorbance versus time) for the primary 
culture grown on BSM with glycerol  
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Figure 6.2 Typical Uper-1 growth curves (absorbance versus time) for the secondary 
culture grown on BSM with glycerol  
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6.2.2  Column Biodegradation Experiments 

 
 In order to investigate the naphthalene biodegradation kinetics of the Uper-1 

culture, column biodegradation tests were conducted on the inoculated column. In these 

experiments, the non-sorptive sand used in the sorption-desorption experiments (Chapter 

5) was the column medium. Thus, biodegradation was the only significant reaction 

mechanism in these experiments 

 The experimental column reactor design used in the sorption-desorption tests, as 

described in Chapter 5, was modified for the biodegradation experiments to allow 

accurate determination of the biokinetic parameters. As discussed by McBride et al. 

(1992), Kelly et al. (1996) and Chang and Rittmann (1987), shorter micro columns (e.g., 

lengths of 10 to 50 mm and for diameters of 5 to 25 mm) are often necessary for 

determination of rate parameters from inoculated soil columns, because of the relative 

rate of reaction. In this work, short column lengths provided for accurate measurements 

of naphthalene degradation with sufficient oxygen availability.  

 To achieve micro-column dimensions, the column reactor design described in 

Chapter 5 was modified by the addition of four new sampling ports near the column 

entrance for total of five ports. The four new ports were fabricated in the same manner as 

described in Chapter 5. The location of the sampling ports in the modified column used in 

biodegradation tests are shown in Figure 6.3.  The first port (Port A) was located 10 mm 

from the column entrance with the distance between each remaining port set as 20 mm. 

Therefore all sampling during the experiments were taken after flow had traveled through 

at least 10 mm of column medium.  Similar to the sorption experiments, sampling was 

accomplished using 25-gauge needles that extended to the center of the column. After  
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Figure 6.3 The column used in the PS fly ash-sand mixture biodegradation experiments 
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modification, the column was filled with sand by following the same aseptic packing 

procedure described in Chapter 5.1.3. The column was saturated with autoclaved 

synthetic groundwater as described in Chapter 5.1.4. Subsequently, the column was 

inoculated as described above. The influent solution was a three mg/L naphthalene in 

synthetic groundwater solution that was prepared aseptically as described in Chapter 5. 

To initiate the experiment, the naphthalene solution was used as a step input.  The flow 

rate of the step input was 55 mL/hr. 

 After initiation of the experiment, the naphthalene concentration was maintained 

at the sampling ports until the system reached a steady-state with respect to naphthalene 

removal.  To evaluate the approach to steady-state, the mean square successive 

differences in naphthalene concentrations were calculated for consecutive PVEs.  

Specifically, naphthalene losses were determined by taking the difference in 

concentration between the influent and sampling ports and dividing by the influent 

concentration. Once the steady state transport was achieved, samples from the ports were 

periodically analyzed for naphthalene, biomass, and dissolved oxygen concentrations. 

 The lumped first-order biodegradation rate constant, l, was determined during 

steady state naphthalene removal by varing method described by Buscheck and Alcantar 

(1995). This method has been commonly used for estimating first-order biodegradation 

rate constants when accurate determination of dispersivity and pore velocity are available 

(Bedient et al. 1999).  Following this methodology, the naphthalene concentration has 

plotted on a logarithmic scale versus distance along column length on a linear scale, 

based on an analytical solution for one-dimensional steady state transport due to 
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advection, dispersion and biodegradation. The first-order biodegradation rate was then 

approximated by:  

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+= 121

4

2

Vx
kVc α

α
λ                                          (6.5) 

 

where λ is first-order rate constant (T-1), Vc is the retarded contaminant velocity (LT-1), α 

is the dispersivity (L-1), and k/Vx is the slope of line formed by making a log-linear plot of 

contaminant concentration versus distance downgradient along the flow path. 

6.2.3 Combined Sorption-Biodegradation Experiments 

 
 Column sorption-biodegradation experiments were conducted using a Paul Smith 

(PS) fly ash-sand mixture in order to investigate the biodegradation performance of Uper-

1 in the sorptive medium. The mixture consisted of 60% sand and 40% fly ash by weight 

and it was packed into the modified column following the procedures outlined in Chapter 

5.1.3.  Following packing, the column was inoculated with Uper-1 following the 

approach described above. The experiments were performed following the same basic 

protocol described for the biodegradation only columns, using a three mg/L naphthalene 

as a step input, with flow rate of 55.6 mg/L.  
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6.2.4 Non-reactive Tracer Experiments  

 
 In a solute transport system, in which biodegradation is coupled with sorption 

processes, the magnitude and rate of biodegradation is influenced by not only properties 

of microorganism and substrate organic compound, but also by hydrodynamic flow 

properties such as residence time and dispersivity (Brusseau et al. 1999). Therefore, non-

reactive tracer (bromide) experiments were conducted after naphthalene concentrations 

reached steady-state levels to determine the hydrodynamic flow properties (average pore 

water velocity, dispersivity) of the medium tested. The bromide tracer solution (1000 

mg/L Br) was autoclaved (20 minutes at 120 ºC) and prepared as described in Chapter 

5.1.4 and. The autoclaved tracer solution was applied as step input with 55 ml/hr, 

following the procedure in Chapter 5. In order to determine the pore water velocities and 

hydrodynamic dispersion coefficients from the biodegradation column test results, the 

FORTRAN program “’trafit1d” was utilized. Details of the program are given in Chapter 

5.1.4. 

 

6.2.5 Analytical Methods 

 
 Performance of the biodegradation and sorption-biodegradation experiments 

required measurement of naphthalene, dissolved oxygen, biomass, and bromide. 

Naphthalene and bromide were measured as discussed in Chapter 5 and not discussed 

here. The methods for dissolved oxygen and biomass are outlined below.  
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6.2.5.1 Dissolved Oxygen Measurements 

  

Dissolved oxygen (DO) concentrations were monitored at the influent and column 

ports using an oxygen microelectrode (Microelectrodes, Inc., Bedford, NH USA), 

connected to an OM-4 oxygen meter. Two sampling techniques were used. In case of the 

influent port, in which the influent solution flowed continuously, by using a 22-gauge 

hypodermic needle with a luer-hub, which was inserted into a female mininert valve on 

the sampling port and connected via a male-luer fitting to a section of Tygon tubing that 

was connected on the other-end to a barbed fitting on the flow cell of the DO 

microelectrode. The other barbed fitting on the flow all was attached via Tygon tubing to 

a syringe. A 0.3 mL of sample was slowly withdrawn using the syringe, the needle was 

disconnected from the mininert valve, and allowed to sit on the bench until a steady 

reading occurred.  

 In order to sample from the ports located along the length of the column, the 

mininert valves were opened and the sample was slowly withdrawn from the port by 

following the same procedure described for sampling from the influent port, except that 

0.6 mL of sample was taken.  The first 0.3 mL sample was discarded as it passed the flow 

cell, flushing the sampling, port, needle, and the sampling line, and the following 0.3 mL 

sample was used for DO measurements.  

 The oxygen percentage was recorded by the OM-4 meter and later converted into 

mg/L using the following equation: 

 

S = (a / 22.414) × ((760 − p) / 760) × (r%/100) × 32000                  (6.6) 
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where S is the solubility of gas (mg/L) mg per liter; a is the  absorption coefficient of gas 

at temperature; p is the  vapor pressure of water at temperature; and r% is the  actual 

reading of DO meter in percent of oxygen. 

 A two-point method was used to calibrate the microelectrode using ambient air as 

well as a sample with zero DO. The calibration with ambient air was performed each time 

when the microelectrode was used during the experiments. The calibration with a sample 

of zero DO was carried out once a week. The zero DO solution was prepared by adding 

excess sodium sulfite, Na2SO3, and a trace of cobalt chloride, CoCl2, to bring the DO to 

zero. The relative accuracy of microelectrode was reported as ±0.04 mg/L at 24°C by the 

manufacturer (Song 2005). 

 

6.2.5.2 Heterotrophic Plate Counts   

 
 Heterotrophic plate counts (HPC) were performed to determine the biomass 

concentration in the aqueous samples during column biodegradation tests. The 

experimental procedures used in this method were adapted from Standard Method 9215 

(APHA et al. 1995). During the HPC steps, aseptic techniques were employed and all the 

equipment used (e.g., test tubes with caps, dilution bottles, pipette tips, and filter papers) 

were autoclaved before use. 

 Agar plates for the HPC, were prepared using sterilized disposable petri dishes 

and R2A agar (Difco No: DF1826-17).  A solution of R2A agar (18 grams in 1 L 

deionized water) was mixed and autoclaved for 20 minutes at 121 ºC.  When the medium 

cooled to 45 to 50 ºC it was aseptically poured into the bottom of the Petri dishes. After 

the solidification of the agar, the plates were pre-dried at 30 ºC for 24 hours before using. 
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The plates that were not used immediately were stored in sealed bags at 4ºC in the 

refrigerator.  

 The dilution of the aqueous samples required for the HPC procedure was 

conducted using the phosphate and magnesium chloride-based dilution water. This 

solution was autoclaved for 20 minutes at 121 ºC before use.  

 Aqueous samples were serially diluted as follows. First, 1 mL of the samples 

taken from during the column tests (including inoculum preparation and column 

biodegradation tests) was asceptically transferred into 9 mL dilution water establishing a 

10-1 dilution and shaken for 15 seconds vigorously using a 140 mini vortexer (VWR 

Scientific Products).  The sample solution was further diluted by transferring 0.1 mL of 

sample from the first test tube into a second test tube containing 9.9 mL of dilution water, 

to prepare a 10-3 solution. The same procedures were followed to obtain a series of test 

tubes with a range of dilutions. Finally, taking 1 mL or 0.1 mL of each suspension and 

spreading it on the agar plate provided the desired dilution, or a one order of magnitude 

lower dilution, respectively. For example, if 1 mL and 0.1 mL of the 10-3 dilution 

solution were spread onto plates, the dilutions were 10-3 and 10-4, respectively. HPC tests 

were conducted in this fashion with dilutions ranging between 10-3 and 10-8. The R2A 

agar plates for each dilution were prepared in duplicates or triplicates. 

The edges of the spread plates were wrapped with parafilm, and the plates 

inverted and incubated at 30°C for 72 hours. After incubation, plates having 30 to 300 

colonies were considered in determining the plate count. All colonies in plates with 

appropriate range were counted and averaged. The bacterial count per milliliter (colony-

forming units (CFU)/mL) was computed by using the following equation: 
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 Upon termination of the column experiments, the attached biomass concentrations 

were determined using the bacterial extraction technique described by Gagliardi and 

Karns (2000). Column media (sand or fly ash-sand mixture) samples were removed from 

the columns and diluted 1:10 in sterile synthetic groundwater (using a solid-to-liquid ratio 

of 10 g /100 mL). Then the attached biomass was extracted by using a Waring blender 

with a 1 L glass container that was operated at the top speed (22,000 rpm) for 2 min.  

After mixing, the contents were allowed to settle for 1 min before HPCs were conducted 

on dilutions of the supernatant collected from the middle fraction of the blender 

container. The blender and all necessary tools were autoclaved at 120 ºC for 20 minutes 

before use. The same extraction technique was used by Kelly et al. (1996) who observed 

a 95% efficiency of cell recovery. 

6.3 Results 

6.3.1 Non-reactive Tracer Results  

 
 The breakthrough curves from tracer experiments for biodegradation only column 

(sand) and combined biodegradation sorption column (PS fly ash-sand) are shown in 

Figures 6.4a and 6.4b, respectively. Note that these measurements were taken from port 

A of the modified column, which is located 10 mm down-gradient of the column inlet.  
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Figure 6.4 Bromide tracer breakthrough curves for (a) sand column, and (b) PS fly ash-

sand mixture column 
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 The results of bromide analysis for all biodegradation columns are shown in Table 

6.1. The dispersivity was calculated by assuming molecular diffusion was negligible 

compared to mechanical dispersion. The hydrodynamic flow properties of the modified 

column (first port located at 10mm) are shown along with the result from a regular 

column (first port located at 70 mm). Previous studies have indicated that the predicted 

performance of any passive barrier systems (i.e., PRBs, bioreactive barriers) is quite 

sensitive to the dispersion coefficient (Rabideau et al. 2006). As seen in Table 6.1, the 

dispersion coefficients as well as dispersivities are very comparable for both the sand and 

sand-fly ash columns, although the biodegradation column with the PS-fly ash-sand 

mixture has slightly lower DH and α values compared to those obtained for sand. 

6.3.2  Column Biodegradation Test Results  

 The naphthalene breakthrough curve for Port A during the biodegradation test in 

the sand medium is shown in Figure 6.5. Once the sorption reached steady-state, the date 

were analyzed using the method of Buscheck and Alcantar (1995). Using the slope of 

0.369, and α 0.24 cm of from Table 6.1 and Vc of 6,84 cm/sec and λ of 2.83 1/h was 

calculated using Equation 6.5.   

  The MT3DMS simulations using the λ value determined using the Buscheck and 

Alcantar method is presented with the experimental breakthrough at Port A in Figure 6.5. 

Three observations can be made based on Figure 6.5. First, a lag period can be observed 

before naphthalene removal starts due to biodegradation, which occurs at about 40 PVE 

(9 hours).  Experiencing an initial lag is typical for most of the organic hydrocarbon 

degraders (Kelly et al. 1996) as the microbes adapt to their new environment, although 

the Uper-1 culture should have been reacclimatized to naphthalene degradation. 
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Table 6. 1 Results determined from Non-reactive tracer tests on biodegradation columns 

 
Column 
Medium 

Type 

Sampling 
Port 

Location 
(mm) 

Q(cm3/hr) V (cm/hr) DH 
(cm2/hr) α  (cm) ρ 

(kg/cm3) 
Porosity 

(n) 

Sand 10 55.6 6.84 1.677 0.24 1.410 0.47 

Sand 70 45.0 6.10 1.630 0.27 1.560 0.41 

PS fly ash-
Sand 

Mixture 
15 55.6 6.45 1.144 0.18 1.570 0.41 
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Figure 6.5 Naphthalene breakthrough at Port A during the naphthalene biodegradation 

test in the sand column. Column sampling length was 10mm. Solid lines are from 
MT3DMS simulation breakthrough using λ of 2.83 1/hr.  
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Second, the numerical simulations overpredict the biodegradation in the initial phase 

(between 55 to 95 PVE). Finally, the numerical simulations successfully predict the 

steady-state naphthalene removal using the biodegradation rate constant in the steady-

state phase determined based on the Buscheck and Alcantar (1995) method.  

 During the biodegradation experiments, aqueous solutions from port A were 

analyzed for any intermediate compounds of naphthalene biodegradation. Fluorescence 

and GC chromatography scans on these samples did not indicate any peak other than 

naphthalene peaks, which in turn, indicated that naphthalene was completely mineralized 

in the degradation process.  

DO concentrations from influent port and sampling ports along the column length 

are shown in Figure 6.6.  The average DO at the influent port was about 6.9 mg/L during 

this experiment. The initial DO concentration at port A, however, was 0.91 mg/L, which 

is mostly due to the consumption of available O2 during the column inoculation. 

Subsequently, the DO levels increased with application of the step input of the 

naphthalene solution to about 5 to 6 mg/L, indicating a low level of biological activity 

during that period although apparently not much naphthalene degradation observed 

(Figure 6.5). Then as the naphthalene levels decreased, the DO levels decreased as well. 

During the steady-state naphthalene removal period (>100 PVE), DO level averaged 

around 2.8 mg/L and, corresponding to a DO removal of 5.0 mg/L. During the same 

period, about 46% of initial naphthalene concentration (3.94 mg/L) was removed due to 

biodegradation (Figure 6.5) resulting in a DO concentration of about 2.2. mg/L, where 

naphthalene concentration was about 1.7 mg/L.  Based on the naphthalene degradation 

stoichiometry including biomass growth (Equation 2.1), 1.5 mg DO is required per mg of  
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Figure 6.6 DO measurements from influent and sampling ports of biodegradation test on 
sand medium. INF: influent port, Port locations for A, C, D, E, F are 15, 55, 70, 90, 150 

mm, respectively. 
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naphthalene mineralized. Assuming a naphthalene concentration of 1.7 mg/L, based on 

this stoichiometry we would predict ~ 2.6 mg/L DO required, which is less than the DO 

amount used up during biodegradation. If biomass sythethisis is ignored the naphthalene 

mineralization can be shown as:  

C10H8 + 12O2        4H20 + 10CO2                                    (6.8) 

where the stoichiometry predicted 3.0 mg DO per mg naphthalene. Based on this, a DO 

loss of 5.1 mg/L is predicted. So the actual DO removal is reasonable given the 

naphthalene degradation observed.  

Interestingly, the DO readings from other ports (Port C, D, E, F) were very close 

(~2.2.mg/L) to the values at port A (Figure 6.6), which indicates that no further 

biodegradation occurred above port A. These DO measurements suggest that the level of 

oxygen in the system may be critical. According to Kelly et al. (1996), DO levels above 

1.3 mg/L in the aqueous samples should be high enough to prevent oxygen limitation 

during contaminant biodegradation and reaction rates in the columns would not be 

limited by availability of dissolved oxygen with this level of DO.   The DO level in the 

sand column was averaged at around 2.8 mg/L, which is similar to but greater than the 

limit of 1.3 mg/L stated by Kelly et al. (1996). Therefore, it is unclear what is the main 

reason behind biodegradation leveling at 0.54 C/Co naphthalene removal and essentially 

stopping by Port A.It may be an oxygen limitation problem, or some other factor may be 

limiting the microbes. Biomass was measured attached to the sand at lower levels at ports 

above A (Figure 6.7), but this would not explain an absence of biodegradation above port 

A. 
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Figure 6.7 Attached biomass concentration along the column length for sand and PS-sand 
mixture column biodegradation experiments 
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The lack of biodegradation after port A is confirmed by the data in Figure 6.8. This figure 

shows the results of another biodegradation experiment using the sand medium, but 

conducted in a regular column (i.e., with Port A located at 70mm) by following the same 

inoculation and experimental procedure with the previously mentioned experiment.  A 

similar lag period and steady state concentration phase were also observed in this 

experiment.  Based on the level of steady state naphthalene degradation with this 

relatively longer column, it is quite clear that biodegradation occurred in the initial parts 

of the column. The Buscheck- Alcantar method derived biodegradation rate constant for 

this column is 3.32 1/hr. This value is close to the rate constant determined from the short 

biodegradation column data, and confirms the biodegradation occurrence at the column 

entrance.  

6.3.3 Combined Sorption-Biodegradation Test Results  

 
 The experimental results of the combined sorption-biodegradation test using PS 

fly ash-sand mixture in the modified columns are shown in Figure 6.9 for port A. Several 

observations can be made based on Figure 6.9. First, a period was observed at the 

beginning of the test during which there was no breakthrough at Port A due to sorption, 

and possibly biodegradation, of the naphthalene on the PS fly ash- sand medium. Next, 

when the available surface of the fly ash was saturated, naphthalene breakthrough started 

to occur around 250 PVE.  . However, as seen from the figure, that naphthalene 

concentration only reached a maximum concentration of 0.16 C/Co which implies  
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Figure 6.8 Breakthrough curve for the naphthalene biodegradation test in a sand column 

with a column sampling length of 70 mm. Solid lines are from MT3DMS simulation 
breakthrough using λ of 3.32 1/hr.  
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that a 84%  naphthalene removal has occurred during the steady state transport period, 

presumably due to a combination of sorption plus biodegradation. 

 Figure 6.9 also presents three MT3MS simulation results.  First, the solid line is 

the modeling result for advection, dispersion with sorption only, and no biodegradation. 

The experimentally-derived column partition coefficients described in Chapter 5 were 

used in this modeling simulation. A visual comparison of the simulated and experimental 

data reveals that the data are comparable before a complete saturation of the PS fly ash-

sand medium occurred. However, the data start to deviate when naphthalene 

breakthrough started and naphthalene became more readily available for the 

microorganisms.  

 The dashed line in Figure 6.9 is the modeling result for the columns with transport 

plus biodegradation and sorption. The biodegradation rate constant (λ) derived from the 

modified sand medium column was used in the modeling (Chapter 6.3.2), along with the 

sorption parameters described above. The trend is initially similar to the one observed for 

the sorption-only column; however, the effect of biodegradation on the solute 

concentration can be observed when the solid and dashed lines are compared. However, 

these model simulations predicted a maximum C/Co value of ~0.44, which is almost 3 

times greater than the actual maximum breakthrough concentration observed. This 

suggests that the amount biodegradation has been underestimated.  Famisan and Brusseau 

(2003) also observed greater magnitude of biodegradation and an absence of lag phase 

before biodegradation begin in the presence of sorptive medium. They attributed this to 

sorption of naphthalene onto sorptive media, and the attendant retardation due to this 
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sorption. Specifically, they suggested that the high level of biodegradation was a result of 

the increased residence time associated with the retardation. This also implies that 

sorption was a key factor affecting dynamics of the biodegradation process. Therefore, 

although that there may be a reduction of the local bioavailability of the substrate due to 

sorption, the residence time associated with biodegradation was enhanced for systems 

undergoing a sorptive transport.  Similar high biodegradation potentials in sorptive media 

were reported by Guerin and Boyd (1992) and Park et al. (2001).   

 Once the steady-state transport of naphthalene was observed, the influent solution 

was switched to contaminant-free synthetic groundwater to study the desorption of 

naphthalene from the medium.  As seen in Figure 6.9, MT3DMS simulations with 

sorption and sorption plus biodegradation overestimates the naphthalene concentrations 

and under estimates the desorption rates. The steep desorption front that was observed 

suggests that as the naphthalene is desorbed, it is rapidly degraded.  

DO measurements were also conducted during the PS-sand mixture sorption-

biodegradation experiment and presented in Figure 6.10. The average DO level in the 

column influent was 7.85 mg/L and stayed within a narrow range during the experiment. 

The DO levels at Port A were depressed compared to the influent from the first 

measurement, suggesting that biodegradation of naphthalene was occurring from early in 

the experiment. DO measurements at port A exhibited more scatter than the influent, 

averaging around 4.2 mg/L.  This indicates a consumption of 3.65 mg/L DO due to 

biodegradation. Meanwhile, 2.2 mg/L of naphthalene was removed due to 

biodegradation. Thus, based on the stoichiometry (Equation 2.1) assuming biomass 

formation, and the 2.2. mg/L naphthalene from the system, a removal of 3.3 mg/L DO is  
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Figure 6.10 DO measurements during PS-sand mixture biodegradation experiments. 
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predicted. If biomass formation is ignored (Equation 6.8), a removal of 6.6 mg/L Do is 

predicted. The former prediction is very comparable to the actual DO consumption 

amount of 3.65 mg/L.  DO measurements at Port B, the port located 20 mm above Port 

A, are also shown in Figure 6.10.  DO readings at Port B are close to the ones measured 

at Port A, indicating that no active biodegradation accruing in the zone above Port A. this 

is consistent with the sand column results. 

 The aqueous biomass concentrations measured from the sampling ports located 

along the height of the PS fly ash-sand column (port A at 10 mm, port B at 35 mm, port 

D at 70 mm) are summarized in Table 6.2. Several observations can be made based on 

these data, First, during the initial stage when no naphthalene was observed in the 

aqueous phase, biomass levels were 6.9 105 CFU/mL, but no biomass was observed in 

the upper ports (Ports B and D). Once the naphthalene breakthrough was observed, the 

aqueous biomass levels increased to 1.66 105 CFU/mL at port A. However, again no 

aqueous biomass was observed at ports B or D. On the other hand, biomass was 

measured from port B and D during the desorption stage suggesting that downgradient 

biomass levels increased as desorbing naphthalene become available for biodegradation.  

 In addition to the aqueous biomass measurement, attached biomass concentrations 

were measured at Ports A, C, D and F of sand and PS-sand column biodegradation tests 

following the completion of the sorption-desorption phase. Figure 6.7 shows these 

concentration measurements along the column moving down-gradient. The biomass 

concentrations were relatively high near the initial of the column (at Port A). In addition, 

the HPC concentrations measured for the PS-sand mixture were one order of magnitude 

higher than the ones measured for the sand column consistent with greater removal of  
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Table 6.2 HPC counts from aqueous samples during PS-sand mixture napahthelene 
biodegradation 

 

Sampling 

PVE 
Port 

HPC 

(CFU/mL) 
Test Stage 

213 

A 6.90E+05 

Sorption   (No 

Biodegradation) 
B 0 

D 0 

704 

A 1.66E+06 

Biodegradation B 0 

D 0 

1016 

A 6.50E+07 

Desorption  B 6.00E+07 

D 5.50E+07 
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naphthalene via biodegradation observed during the mixed sorption- biodegradation 

experiments.  At upper column locations (port C, port E, Port F) relatively low biomass 

concentrations were measured. The accumulation of the attached biomass on sand was 

also reported by Yolcubal et al. (2003). They reported that the majority of the microbial 

activity occurred between the inlet and midpoint of the column and attributed these 

results to the location and size of the bioactive zones which, in turn, influenced the 

substrate and DO availability.  

 

6.4  PRB Design and Sensitivity Analysis 

 The data collected in the experiments were used in designing PRBs.  More 

specifically, model simulation were performed to examine the life expectancies of PRBs 

considering sorption only, and sorption-biodegradation processes. Three assumptions 

were made during these model simulations of barrier behavior: 1) both barrier and aquifer 

are homogenous, 2) groundwater flow is uniform in the longitudinal direction, and 3) a 

barrier length-to-width ratio of 5 is always satisfied (Rabideau et al. 2006).   

To perform these model analyses, a one-dimensional model was prepared using 

VMOD-MT3DMS.  The width and depth of the barrier were set at 30 m and 3 m, 

respectively, in order to capture the plume completely. These dimensions are typically 

used in designing barriers (Gavaskar et al. 1998).  The average pore water velocity and 

barrier thickness (i.e., the barrier dimension in the longitudinal flow direction) were 

considered to be design variables, and the barrier life expectancy was calculated 

accordingly. Dispersivity of the barrier medium was taken as one-tenth of the barrier 

thickness following the suggestions of Gelhar et al. (1992) and Lee and Benson (2004). 
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The sorption-desorption parameters derived from the column tests, and the bulk density 

and porosity determined from the non-reactive tracer tests were also used as model 

inputs. Three fly ash-sand mixtures and PAC were used as the PRB sorptive media.  

 

6.4.1 PRB design based on sorption only 

6.4.1.1  PRB for Naphthalene Mitigation  

 
  Based on the column sorption-desorption test results, a PRB was designed using 

the column test-derived sorption parameters. A contaminant plume originating from a 

creosote source described by Godsy et al. (1992) was used in the design to simulate a 

typical naphthalene contamination scenario in the field. Godsy et al. (1992) reported that 

the naphthalene concentration of the plume varied between 0.93 and 9.38 mg/L, with an 

average field concentration of 3.63 mg/L.  This average concentration was selected as the 

step input concentration for the PRB design.  The reported field groundwater velocities 

ranged from 0.3 m/d to1.2 m/d, and both the lower and upper limits were used in the 

design to account for seasonal groundwater fluctuations.  Barrier life was calculated as 

the time required to first observe a naphthalene concentration of 0.01 mg/L in the barrier 

effluent. This contamination level is the Maryland Department of Environment’s 

maximum contaminant limit (MCL) for naphthalene in drinking water. This value is also 

slightly less than the naphthalene detection limit (0.016 mg/L) of the analytical 

instruments used in this study. Using these conditions, the barrier life expectancies were 

determined. 

The expected barrier life is plotted against the barrier thickness in Figure 6.11 for 

all fly ash-sand and PAC- sand mixtures at the two average pore water velocities. The  
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Figure 6.11 Barrier life expectancies for naphthalene as a function of barrier thickness 
and groundwater velocity for a) for PS and MT fly ash-sand mixtures as reactive 

medium, b) DP fly ash and PAC fly ash-sand mixtures as reactive medium 
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observed trends suggest that a longer time is required for the fly ashes with a high 

sorption potential (i.e., high LOI) to reach the MCL levels in the barrier effluent. 

Furthermore, groundwater velocity has a significant effect on the overall fate of the 

contaminant treated in the barrier. Higher groundwater flows resulted in shorter barrier 

lives.  Note that the design influent naphthalene concentration can be considered as 

relatively high when compared to the allowable limits. However, higher concentrations 

were actually measured at the model site and the magnitude is typical of aqueous 

equilibrium naphthalene concentrations observed at coal tar contamination sites (Lee et 

al.1992). It is also important to note that the plume delineation plays a significant role in 

the design life of a barrier, but these parameters were not varied during these one-

dimensional simulations. 

  

6.4.1.2 PRB for o-xylene Mitigation 

 
PRB life expectancies for o-xylene were determined by following the same basic 

procedures as used for naphthalene.  Three fly ashes and PAC were the sorptive media in 

the design. A contaminant plume originating from a petroleum storage facility described 

by McGovern et al. (2002) was considered in the design to simulate typical o-xylene 

contamination in the field.  The average o-xylene concentration of the plume was 

reported as 2.8 mg/L and this value is used in the PRB design herein. Barrier life was 

calculated conservatively as the time required to observe 0.06 mg/L of o-xylene in the 

barrier effluent after the plume hits the barrier, instead of the U.S. EPA and Maryland 

Department of Environment MCL limit of 10 mg/L. This value is the detection limit of 
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the analytical instrument used in the experiment. Therefore, barrier lives were determined 

with respect to the time when o-xylene would first be observed in the barrier effluent.  

 The expected barrier life is plotted against the barrier thickness in Figure 6.12 for 

all fly ash-sand and PAC-sand mixtures at the two selected average pore water velocities. 

As expected, barrier life increases substantially with higher fly ash carbon contents, 

although barriers with activated carbon and DP fly ash (LOI%=20.5) have very similar 

life times.  Similar to naphthalene, higher groundwater flows resulted in shorter barrier 

lives.   

 

6.4.2 PRB design based on sorption plus biodegradation 

 Passive treatment barriers may have great potential for remediation if right 

biological conditions are present in the environment for natural attenuation. As described 

in Chapter 6.3.3, high carbon content fly ashes not provide a good sorptive medium but 

may also enhance the biodegradation potential of the petroleum hydrocarbons, Therefore 

the modeling for designing PRBs in this section followed the approach outlined for the 

sorption only process above, except that, in addition, biodegradation was modeled using a 

first-order biodegradation constant.   

  The effectiveness of biodegradation is often dictated by the ability of native 

microbial culture to take up and metabolize the contaminant (Haws et al. 2006). For 

example, in this work the biodegradation decay constants determined using the fly ash-

sand column experiments were relatively high compared to the ones obtained with the 

sand only columns.  Such measurement of high biodegradation constants under  
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Figure 6.12 Barrier life expectancies for o-xylene as a function of barrier thickness and 
groundwater velocity for a) for PS and MT fly ash-sand mixtures as reactive medium, 

b)DP fly ash and PAC fly ash-sand mixtures as reactive medium. 
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laboratory conditions is common; however, one must be careful in choosing the 

appropriate biodegradation constant for field conditions. Bekins et al. (1998) states that 

first-order rates measured in the laboratory microcosms are frequently one order of 

magnitude higher than the field rates. This may be due to several reasons, including 

spatial and temporal issues associated with upscaling from a batch or column system to a 

more complex subsurface domain (Haws et al. 2006). The reduction in the field rate 

constants may be obtained solely by fitting first-order models to laboratory and field data 

with different initial concentrations. Therefore, for each contaminant of concern in this 

study (i.e., naphthalene and o-xylene), first-order rate constants reported from field 

related studies were adopted rather than using the laboratory-derived values from this 

study.  

 

6.4.2.1 PRB for Naphthalene Mitigation  

 
 Barrier life expectancies for naphthalene contamination with different barrier 

thicknesses were determined using a first-order rate constant for naphthalene degradation 

of 0.9 1/day.  This rate constant was selected because it is within the range observed by 

several researchers (Nielsen et al. 1996, Warith et al. 1999, Alshafie and Ghoshal 2003).  

 The expected barrier life is plotted against the barrier thickness in Figure 6.13 for 

all fly ash-sand and PAC-sand mixtures and two different average pore water velocities.  

Barrier life time increases substantially with higher fly ash carbon contents. A 

comparison of Figures 6.11 and 6.13 indicates that the influence of groundwater is much 

stronger when biodegradation is considered. Specifically, barriers exposed to slower  
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Figure 6.13 Barrier life expectancies for naphthalene as a function barrier thickness and 
groundwater velocity for a) for PS and MT fly ash-sand mixtures as reactive medium, 

b)DP fly ash and PAC fly ash-sand mixtures as reactive medium. First-order rate constant 
was 0.9 1/day. 
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groundwater velocity will have a better performance when microbial decay is occurring 

in the barrier.  This is consistent with the experimental observation that greater residence 

time leads to greater biodegradation. 

 Figure 6.14 compares the expected barrier life of a DP fly ash-sand PRB with 

sorption plus biodegradation compared to with sorption only. When sorption plus 

biodegradation are active (referred to here as integrated remediation), the barrier has a 

longer life when compared to a sorption only scenario. This effect is most dramatic when 

the barrier has a thickness of 1.5 m and groundwater velocity is 0.3 m/d. As expected, the 

slower groundwater velocity and greater sorption material increased the residence time 

and caused an enhancement in the biodegradation levels. For barriers experiencing faster 

flow rates, the positive effect of biodegradation is relatively insignificant, because under 

these conditions the rate of advection is much greater than the biokinetics. In other words, 

the contaminant is moving through the barrier faster than the microbes can degrade it. 

 

6.4.2.2. PRB for o-xylene Mitigation  

 
 Similar to the approach undertaken for naphthalene, a field derived first-order rate 

constant of 0.08 1/day was used in designing PRBs to mitigate o-xylene. This value was 

reported as a typical rate constant for o-xylene decay in the field (Bedient et al. 1998). 

Figure 6.15 shows the life expectancies for various barrier thicknesses with an o-xylene 

contaminant plume. As observed with naphthalene, fly ash mixtures containing higher 

carbon amounts have longer barrier life expectancies before breakthrough. Again the 

groundwater velocity has a significant effect on the barrier life, with the slower  
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Figure 6.14 The comparison of barrier life expectancies as a function of barrier thickness 
for sorption and sorption plus biodegradation (integrated) barriers containing DP fly ash 

sand mixture 
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Figure 6.15 Barrier life expectancies for o-xylene according to barrier thickness and 
groundwater velocity for a) for PS and MT fly ash-sand mixture as reactive medium, and 
b)DP fly ash and PAC fly ash-sand mixture as reactive medium. First-order rate constant 

was 0.08 1/day. 
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groundwater velocity resulting in the greatest enhancement in contaminant loss via 

biodegradation. 

6.4.3 Sensitivity Analysis 

The analysis above for barriers utilizing sorption and biodegradation processes 

shows that several parameters are likely to have an influence on the performance of a 

PRB. To investigate which of these parameters have the greatest impact on barrier life, 

the sensitivity of the model prediction to several key variables (groundwater velocity, 

input concentrations, first-order rate constant) was evaluated for a DP fly ash-sand PRB.  

Naphthalene was selected as the model contaminant. The barrier life was calculated as 

the time at which the effluent concentration reached the allowable limit defined above.  

Groundwater velocity was varied from 0.075 m/d to 1.2m/d. The resulting 

predictions for barrier life are plotted against the velocity normalized by the design 

velocity (0.3 m/d) in Figure 6.16(a). Clearly, the barrier life is strongly influenced by the 

groundwater velocity. In particular, barrier life increases significantly when the 1m thick 

barrier is compared to a barrier with a 0.5m thickness for the slower velocities. Note that 

the barrier life at 1.5 m thickness has essentially infinite capacity for naphthalene 

mitigation when a relatively slower velocity of 0.075 m/d is considered and this data 

point is not shown in Figure 6.16(a).  

Figure 6.16(b) depicts the effect of input concentration on barrier life 

expectancies. As expected, the barriers exposed to lower input concentrations are likely 

to have longer performance. The influence of input concentration as a function of the 

barrier thickness was diminished when barriers were designed for relatively high input 

concentrations.  Figure 6.16(c) shows the dependence of the barrier life on the first-order  
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Figure 6.16 Sensitivity analysis results for barrier life expectancy as a function of (a) 

groundwater velocity, (b) the input concentration, and (c) the first-order biodegradation 
rate constant. 
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rate constant.  It is clear from the figure that varying the rate constant within the range 

tested does not have a significant effect on barrier life except at relatively high λ values 

and barrier thicknesses. 

 

6.5.  Conclusions  

The results of the biodegradation test revealed high levels of biodegradation 

occurred when fly ash was employed as the reactive medium. These high levels of 

biodegradation were a result of increased residence time associated with retardation of 

the contaminant due to sorption onto fly ash. This finding implies that sorption was a key 

factor in the biodegradation dynamics of the substrates during the biodegradation process. 

Therefore, even though there may be concerns about the reduction of the local 

bioavailability of the substrate due to sorption, the resistance time associated with 

biodegradation was enhanced for systems undergoing a sorptive transport.  Attached 

biomass and DO measurements conducted during the experiments supported that the 

increase in the biodegradation was due to sorption-derived long retention times. 

Life expectancies of the bioreactive barriers were calculated for different barrier 

dimensions and aquifer conditions using a numerical model. Fly ashes with higher 

sorption potential (i.e., higher LOI) performed better as greater amounts of contaminant 

were captured by the barrier.  The groundwater velocity had a significant effect on the 

overall fate of the contaminant treated in the barrier, and higher groundwater flows 

resulted in shorter barrier lives. Barriers exposed to slower groundwater velocities had a 

better performance when microbial decay is occurring in the barrier.  
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Chapter 7 Conclusions and Recommendations 

7.1  Summary and Conclusions 

A research study was conducted to investigate subsurface remediation of 

petroleum hydrocarbons using high carbon content fly ash as a sorptive agent.  The study 

had two components: stabilization of petroleum contaminated soils and remediation of 

groundwater with petroleum hydrocarbons. Conventional in-situ treatment methods (i.e., 

pump and treat) suffer from high operational costs, generation of secondary wastes and 

long time periods of operation. Therefore, the difficulty of reducing subsurface 

contamination levels economically and removing and/or immobilizing the contaminants 

permanently has led to research and development of an innovative technology. In this 

research, the utilization of a waste material was incorporated as reactive medium rather 

than using commercial products (i.e., zero valent iron, activated carbon), which constitute 

the major cost of these structures. Continuous landfilling of high carbon content fly ashes 

is a recent problem that coal burning electrical power plants must confront. These ashes 

are generated in large quantities all around the nation due to the adaptation of the plants 

to new regulatory laws on nitrogen oxide emissions. They contain significant amounts of 

unburned carbon (i.e., high loss on ignition) and cannot be used as a concrete additive. 

The only alternative for this byproduct is to landfill unless no beneficial reuse is offered.  

It was hypothesized that the unburned carbon contained in the fly ash can be used 

as a sorptive medium for petroleum hydrocarbons in the subsurface.  The overall goal of 

this study was to evaluate the effectiveness of high carbon content fly ash as a sorptive 

agent for subsurface remediation of petroleum-contaminated soils and groundwater.  To 



 286

accomplish this goal, experimental and numerical analyses were conducted in three 

primary phases. During these phases, naphthalene and o-xylene were employed as model 

subsurface contaminants.   

First phase of this study started with examining the physical and chemical 

properties of the fly ashes taken from several power plants in Maryland. In the second 

phase, the geotechnical performance and environmental suitability of petroleum 

contaminated soils stabilized with high carbon content fly ash was investigated. A battery 

of laboratory tests that included compaction, batch-sorption and column leaching tests 

were performed on the mixtures to evaluate the effectiveness of the stabilization process. 

The third phase included investigation of the performance of high carbon content as a 

reactive medium in a permeable reactive barrier through column sorption-desorption 

experiments, column biodegradation experiments, and numerical design of reactive 

barriers.  Column sorption-desorption tests were conducted on fly ash-sand mixtures 

(40% fly ash and 60% sand by weight) in sterile conditions. After completion of the 

experiments, the data was modeled using VMOD-MT3DMS. For the column 

biodegradation experiments, an isolated culture was used for inoculation and to simulate 

the biodegradation process in sand and fly ash-sand mixture columns. The results of the 

biodegradation experiments were also numerically modeled in order to assess 

effectiveness of the biokinetic parameters estimated from experiments. Following the 

column experiments, a numerical model of typical PRB was constructed in order to 

investigate the barrier life expectancies. The model output for different fly ash types and 

groundwater velocities were used to develop design charts for practical applications.  The 

following conclusions were drawn from the results of the study: 
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1) The loss on ignition (LOI) of the Maryland high carbon content Class F fly ashes 

varied between 3.1% and 20.5% and contain three distinct carbon forms. Batch 

adsorption tests indicated that the naphthalene and o-xylene adsorption capacity of 

these fly ashes was strongly correlated with LOI.   

2) The chemical and physical of structure of the fly ash promoted adsorption and yielded 

nonlinear sorption isotherms that are characterized by high sorption capacity at low 

concentrations. Furthermore, fly ashes with higher surface area generally exhibited 

high sorption capacities. 

3) Among the adsorption isotherm models used to evaluate adsorption test data. Polanyi-

Dubinin-Manes (PDM) model posed great potential for explaining the petroleum 

contaminant adsorption on to fly ash. Pore filling mechanism, explained by PDM 

isotherm, believed to be the dominant mechanism for adsorption of non-polar organic 

chemical onto highly heterogonous sorbents like fly ash. One of the practical 

advantages of the PDM model is the normalization of the aqueous concentrations to 

water solubilities of the organic compounds. This provides unified sorption isotherm 

for a group of similar organic compounds for specific sorbent material (i.e, activated 

carbon, fly ash). By use of PDM isotherm (usually referred to as correlation curve 

when used for multiple sorbates), sorption capacity of a particular sorbent can be 

determined for a group of chemicals.  

4) The laboratory test procedures indicated that the traditional approaches undertaken 

for preparation and testing of soils for their geotechnical and environmental analyses 

may not be applicable to petroleum contaminated soils.  Deviations from the standard 
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procedures, such as usage of liquid content instead of water content for evaluating the 

compaction test data, aging of specimens before compaction, and proper selection of 

the solid-to-solution ratio for batch-scale adsorption tests, should be considered. The 

column leaching tests performed on the Brandon Shores fly ash-stabilized specimens 

indicate that the naphthalene and o-xylene concentrations in the effluents collected 

from the fly ash stabilized specimens were lower than those collected from the 

control specimen.  The addition of this high carbon content fly ash (LOI= 13.4%) 

limited the initial release of the contaminants from the specimen, compared to a 

longer release observed from the control column. Finally, the presence of fly ash and 

the degree of contamination were two important factors that played a major role in the 

biodegradation process during remediation of petroleum contaminated soils.  

5) The mixtures of sand with three fly ashes, DP, PS, and MT, with LOI content of 

20.5%, 10.7%, and 3.1%, respectively, and PAC were subjected to column sorption-

desorption testing.  The bromide tracer test data indicated that dispersivity values 

range between 0.09 and 0.76 cm, and 0.04-0.96 cm for fly ash-sand and PAC-sand 

mixtures, respectively. These values fall in a typical range of values reported for 

sorptive media with relatively high fines content. Moreover, the measured hydraulic 

conductivities of fly ash-sand mixtures in the column sorption-desorption tests were 

comparable with the typical field hydraulic conductivities reported for PRBs. 

6) pH readings during column experiments showed that pH  initially remained constant 

for several pore volumes of flow, then decreased at the later stages, and eventually 

dropped to a level comparable to the pH of artificial groundwater solution (i.e., pH 
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=6.9). The buffering capacities of the Maryland fly ashes tested in this study were 

diminished and the pH in the system was governed by the PIPES buffer. 

7)  Retarded naphthalene and o-xylene amounts increased with increasing LOI content 

(MT, PS, DP fly ashes and PAC, respectively) in the column tests. The DP fly ash 

exhibited sorption properties comparable to a commercially powder activated carbon. 

Freundlich isotherm coefficients calculated from the column data were 27.3 to 47.3% 

lower than the batch-determined ones.   

8) Numerical simulations conducted on the column sorption desorption data revealed 

that the breakthrough curves determined using the batch parameters shifted rightward 

implying that the naphthalene sorption is overpredicted by using batch adsorption test 

derived parameters.  It is possible that a combination of factors such as solid-to-liquid 

ratio, sorption nonlinearity, and nonequilibrium (rate-limited) sorption caused the 

observed discrepancy between the batch and column-derived parameters. 

9) Column sorption-desorption data was successfully described using a Freundlich 

isotherm. The areas under the contaminant breakthrough curves were used to 

calculate the retarded contaminant mass during the experiment. The calculations 

revealed that the retarded naphthalene amount increased with increasing LOI values 

(MT, PS, DP fly ashes and PAC, respectively). The retarded mass per gram sorptive 

medium calculated from Port C is consistently higher than the one calculated at port 

B, which indicated that the retarded mass increased along the height of the column. 

Furthermore, the percent retardation of naphthalene in the tested fly ashes varied from 

48 to 78%, and this range is very comparable to the range observed for retardation 

within PAC (retardation in PAC varies between 66 and 77.5%).. These observations 
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further supported the previous findings that high carbon content fly ashes are strong 

sorbents with sorption properties comparable to a commercially powder activated 

carbon.  

10) Similar to the naphthalene tests, o-xylene breakthrough curves have sharp adsorption 

fronts during the sorption phase of the experiments. A tailing of desorption front was 

observed in all tests. Fesch et al. (1998) speculated that the effects of equilibrium 

sorption-desorption was most evident from the self-sharpened adsorption fronts of the 

breakthrough curve without any tailing. Thus, the sharp front adsorption curves 

suggested that the sorption equilibrium was achieved during the o-xylene adsorption 

onto all media.  O-xylene breakthrough curves also exhibited tailing at the desorption 

front. 

11) The results of the biodegradation test revealed high levels of biodegradation occurred 

when fly ash was employed as the reactive medium. These high levels of 

biodegradation were a result of increased residence time associated with retardation 

of the contaminant due to sorption onto fly ash. This finding implies that sorption was 

a key factor in the biodegradation dynamics of the substrates during the 

biodegradation process. Therefore, even though there may be concerns about the 

reduction of the local bioavailability of the substrate due to sorption, the resistance 

time associated with biodegradation was enhanced for systems undergoing a sorptive 

transport.  Attached biomass and DO measurements conducted during the 

experiments supported that the increase in the biodegradation was due to sorption-

derived long retention times. 
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12) Life expectancies of the bioreactive barriers were calculated for different barrier 

dimensions and aquifer conditions using a numerical model. Fly ashes with higher 

sorption potential (i.e., higher LOI) performed better as greater amounts of 

contaminant were captured by the barrier.  The groundwater velocity had a significant 

effect on the overall fate of the contaminant treated in the barrier, and higher 

groundwater flows resulted in shorter barrier lives. Barriers exposed to slower 

groundwater velocities had a better performance when microbial decay is occurring in 

the barrier.  

This study represents an important step towards implementation of a currently 

landfilled waste material in an environmental clean-up process. The performance and the 

environmental impact of the material were tested with respect to various applications. 

Experimental and numerical analyses indicated that high carbon content fly ash has a 

great potential as a remediation medium for petroleum-contaminated soils and 

groundwater.   

There is an increasing need in using sustainable technologies in environmental 

remediation, and as a result, recycled materials are increasingly being more incorporated 

into design. This study also increases the understanding of the role of standard testing 

procedures on recycled materials. The current study enhances the understanding of the 

role of standard testing procedures on recycled materials and provides information to 

facilitate sustainable engineering applications.  
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7.2  Recommendations for Future Work  

Although the overall sorption performance of the high carbon content fly ashes 

was satisfactory, the efficiency of the high and medium carbon content fly ashes can be 

enhanced by pre-washing as cleaning the dust on the particle surface is likely to increase 

the available sorption sites. The carbon percent can also be increased by separating the 

carbon by simple means, such as sieving.  A cost analysis should be conducted for pre-

washing of large quantities of fly ash or separating carbon for field PRB applications that 

employ fly ashes.   

Petroleum contamination occurs in a more complex phenomenon in situ than the 

one represented in the current laboratory study. Fate of contaminants can be influenced 

by the presence of other compounds. Limited information is available on the effects of 

competition of multiple solutes during sorption and biodegradation processes. It has been 

known that the multiple solutes can increase the competition for adsorption sites and may 

reduce the intrinsic biodegradation rates of individual compounds (Haws et al. 2006).  

Experimental determination of the co-solutes on specific fate processes can enhance the 

prediction capabilities. Therefore, sorption-desorption experiments using multiple solute 

can be conducted by carefully manipulating the level of co-solutes and measuring them 

using advanced analytical instrumentation (i.e., GC-MS).  

 Finally, a successful implementation of this study at the field scale would help to 

study the effect of others factors, such aquifer heterogeneity, local variabilities in sorption 

and hydraulic conductivity of fly ash, on in situ chemical and microbiological processes.  
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