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Abstract— Process variations result in a considerable spread in the
frequency of the fabricated chips. In high performance applications,
those chips that fail to meet the nominal frequency after fabrication
are either discarded or sold at a loss which is typically proportional
to the degree of timing violation. The latter is called binning. In
this paper we present a gate sizing-based algorithm that optimally
minimizes the binning yield-loss. Specifically we make the following
contributions: 1) prove the binning yield function to be convex, 2) the
proof does not make any assumptions about the sources of variability,
their distributions (Gaussian/Non-Gaussian) or correlation, 3) by using
Kelley’s cutting-plane method for convex programs, we integrate our
strategy with statistical timing analysis tools (STA), without making any
assumptions about how STA is done, 4) if the objective is to optimize
the traditional yield (and not binning yield) our approach can still
optimize the same to a very large extent. Comparison of our approach
with sensitivity-based approaches under fabrication variability shows
an improvement of on average 72% in the binning yield-loss with an
area overhead of an average 6%, while achieving a 2.69 times speedup
under a stringent timing constraint. Moreover we show that a worst-
case deterministic approach fails to generate a solution for certain
delay constraints. We also show that optimizing the binning yield-loss
minimizes the traditional yield-loss (although it is not a direct objective)
with a 61% improvement from a sensitivity-based approach.

I. INTRODUCTION

One of the major challenges of today’s IC design is dealing
with the variabilities caused by the sub-90nm fabrication process.
Fabrication variability diverts the parameters of the devices and
consequently moves the characteristics of the chips away from
their nominal values. In high performance systems, fabrication
variability results in a considerable spread in the frequency of
the chips (about 30% according to [15]). In some cases, the chips
that violate the timing constraint are simply discarded and in other
cases they are sold at a loss. In the latter case, those chips that
fail to meet the nominal frequency after fabrication are binned
based on their speed. Some work such as [2] design hardware to
do speed binning in microprocessor design. For each speed bin
a loss value exists for selling the chips in that bin for a reduced
price. Therefore, depending on the spread in the circuit delay,
there exists a binning yield-loss. In this paper we propose a gate
sizing approach to minimize this binning yield-loss.

Many researchers have investigated the gate sizing problem
from a fabrication-variability perspective [1], [4], [8], [10], [11],
[12], [14]. These approaches could be grouped into worst case
approaches [8], sensitivity-based approaches [1], [4], [12], [10],
and the ones based on a mathematical programming framework
[11], [14]. These approaches try to addresses different objectives
under variability. For example, [8] minimizes area while consid-
ering the worst case uncertainty ellipsoid of parameter variations
in a convex formulation. Others minimize the yield-loss [1], [4]
or leakage power [11], [14] or combination of both [10].

Firstly none of these approaches consider the binning yield-loss
and focus on more traditional definitions of yield (where the chips
are discarded if they fail the timing constraint). Secondly these
approaches they do not guarantee convergence to the optimal
solution in a general case, or at least not from a yield perspective.
Some of these approaches may converge to the optimal for their
own problem specification but that may not lead to the optimal
solution from a yield perspective. For example, the worst case
approaches like [8], although look promising do not guarantee
optimality of the yield function.

The sensitivity-based approaches optimize the cost function in
a neighborhood and do not guarantee convergence to the optimal.
The mathematical programming approaches do consider optimal-
ity but make constraining assumptions like the Gaussian nature
of uncertainty [11] or work with specific models of fabrication
variability [14]. Also the approach of [14] approximates the yield
percentiles by their upper bounds, and thereby it is not provably
optimal.

In this paper, we present a gate sizing approach to optimize the
binning yield. Our specific contributions are enumerated below:

1) We optimize the binning yield and propose an optimal
algorithm to minimize the same using gate sizing. Our
algorithm can be trivially extended to minimize the binning
yield under area/power constraints as well. The core of
our algorithm is based on the proof of convexity of the
binning yield function w.r.t. gate sizes, which allows usage
of various convex optimization schemes.

2) The proof of convexity and consequently the optimality of
the algorithm is not constrained by any assumptions on the
underlying nature of the fabrication variability and/or the
model of correlation used.

3) We use Kelley’s Cutting Plane algorithm [16] to optimize
the binning yield function. Usage of this scheme allows
the integration of our approach with any of the existing
statistical timing analysis (STA) methods (Gaussian [3] or
Non-Gaussian [5], [18]). In fact use of the analytical center
approach for convex optimization [16] will allow us to
minimize the total number of calls to the STA engine,
thereby improving the speed of optimization (since STA
is the slowest part of this framework).

4) In case the objective is optimizing the traditional yield, our
binning yield-based approach could be used as a heuristic
to optimize this objective. We prove that if there exists
a solution in which the traditional yield-loss is 0, our
binning yield-loss approach will find such solution. Also,
if the optimal value of the binning yield-loss is non zero,
then there does not exist a solution to the traditional yield
problem in which the yield loss is 0.
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Fig. 1. Binning Yield-Loss Based on Linear Penalty Function

We have compared our approach to the sensitivity-based ap-
proaches and have shown an improvement of 72% in the binning
yield-loss with a small area overhead of on average 6%, while
achieving a 2.69 times speedup. We also show that optimizing the
binning yield-loss minimizes the traditional yield-loss on average
by 61% when compared to a sensitivity-based approach.

II. OBJECTIVE: MINIMIZING THE BINNING YIELD-LOSS

IN HIGH PERFORMANCE APPLICATIONS

In high performance systems, fabrication variability results in
a considerable spread in the frequency of the chips (about 30%
according to [15]). The chips that have a frequency lower than the
nominal frequency can either be discarded, or be sold at a loss.
For the latter case, the chips that violate the timing constraint
are sorted (binned) according to their speed. [2] is a recent
work which presents the hardware for doing this speed-binning.
Depending on the degree of timing constraint violation for each
bit, the chips are sold at a loss. This loss is defined by a penalty
function; slower a chip, higher its penalty and loss. All the chips
of at least the nominal speed will not have any penalty.

Let t denote the delay of a chip. Let us define a linear penalty
function as follows:

penalty(t) =

{
t − Tcons; t ≥ Tcons

0; else
(1)

where Tcons is the timing constraint (nominal delay) that the
chips are designed for. The chips that have a delay larger than
Tcons have a penalty equal to their delay-offsets from T cons. This
linearity assumption will be relaxed later.

Let fT (t) denote the probability density function (pdf) for the
potential delay values of a design. For the above penalty function,
the overall binning yield-loss (BYL) is defined as follows:

BY L =
∫ ∞
−∞ penalty(t)fT (t)dt =

∫ ∞
Tcons

(t − Tcons)fT (t)dt (2)

In this paper we will minimize the BYL based on the penalty
function of equation 1. We propose an optimal and efficient
algorithm to minimize the same. The optimality of our approach
holds even if the penalty function is convex (and not necessarily
linear).

The delay of a design and consequently our objective can be
expressed in terms of the gate sizes, among other parameters:

BY L(�s) =
∫ ∞

Tcons
(t(�s) − Tcons)fT (t(�s))dt (3)

where �s is a vector of the gate sizes in the design. In this paper
optimization of BY L(�s) is done over �s (using gate sizing).

Most of the exiting related work have focused on gate sizing
to minimize the yield-loss (YL) under fabrication variability [4],
[10], where the YL is given by:

Y L =
∫ ∞

Tcons
fT (t)dt (4)

III. CONVENTIONAL GATE SIZING PROBLEM

A. Problem Formulation

Let si denote the size variable of gate i. The variable s i is
proportional to the channel width of the gates’ transistors as the
channel lengths are usually kept uniform. Let t i denote the arrival
time at the output of gate i from the primary inputs, and d i denote
the delay of gate i. The gate sizing problem is formulated as:

Minimize
∑
∀gate i ci × si

Subject to :

⎧⎨
⎩

tj + di(�s) ≤ ti ∀j ∈ fanin(i); ∀i
ti ≤ Tcons ∀i ∈ PO

smin ≤ si ≤ smax ∀gate i
(5)

These constraints ensure that the delay of any path in the circuit is
at most Tcons. The objective is minimizing the area of the circuit
given as summation of si variables with a ci proportionality factor.
The solution is the set of gate sizes given as �s = {s1; s2; ...; sn}.

Minimizing area while meet a timing constraint is a common
gate sizing objective [8], [12]. Other works optimize the yield-
loss [1], [4], [10], or power [11], [14] using gate sizing. The
formulation could also be written so as to find the feasible solution
for a given timing constraint. The delay of gate i depends on
its size and of its fanouts sizes. In the above constraints, this
dependence is shown as di(�s). Therefore the objective and the
arrival times in the above formulation also depend on �s.

B. Computing Delay of A Gate As A Posynomial

The delay of a gate can be written as a posynomial function of
its transistors sizes using the Elmore delay model [7], [17]. Each
transistor is represented using an equivalent on-resistor (r), and a
capacitor (c) given as a function of its channel width (w) as [9]:

r = kr
1
w

kr = fr(vth, leff , vdd, tox)
c = kcw kc = fc(leff , tox)

(6)

where kr and kc are positive constants that are expressed as func-
tions of parameters such as threshold voltage, effective channel
length, supply voltage or oxide thickness as expressed above.

The delay of each gate is the time to charge/discharge the
capacitors in the resistive path to vdd/ground. Using the Elmore
model, this delay is written as a posynomial function of the
resistors and capacitors in the gate and of the capacitors of the
gates’ fanouts. Given that si is proportional to the channel widths
of the gates’ transistors, the delay of a gate i is expressed as [17]:

di(�s) = a0i + a1i

∑
∀j sj

si
j ∈ fanout(i) (7)

In the above posynomial expression, a0i and a1i are positive
constants that depend on kr and kc values of the transistors. The
inequalities of 5 will therefore be a posynomial formulation.

C. Convex Representation

The presented posynomial formulation is translated into a
convex one by the change of variables s i = exi and ti = eyi [16].
Therefore �s = {ex1; ex2 ; ...}. The formulation in inequalities of
5 is then transformed to:

Minimize
∑

∀gate i ci × exi

Subject to :

⎧⎨
⎩

tj(yj) + di(�x) ≤ ti(yi) ∀j ∈ fanin(i)
ti(yi) ≤ Tcons ∀i ∈ PO

smin ≤ exi ≤ smax ∀gate i
(8)

The above formulation will consequently have an exponential
optimization form, which is convex with respect to �x [16].
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IV. GATE SIZING FOR MINIMIZING THE BYL

In this section, we will show the minimization of the BYL over
the gate sizes can be optimally achieved. Initially we will discuss
the effects of fabrication variability on the traditional formulation,
and then present our approach, and prove its optimality.

A. Effects of Variability on the Traditional Formulation

Fabrication variability randomizes different device parameters
such as Leff or Tox etc.. The resistance and capacitance of a
device expressed in equation 6 will therefore be a random variable
(r.v.), as they are expressed in terms of such varying parameters.

Assume �Ω is a random vector which represents a set of varying
parameters in equation 6 such as {Leff , Tox} etc.. Each sample
vector �ω ∈ �Ω represents a set of samples from the assumed field
of uncertainty (which can have any associated density function
and any correlation).

In equation 7, the coefficients of the delay expression of each
gate become r.v.s, and are represented as a0i(�Ω) and a1i(�Ω). In
equation 5 the delay of gate i also becomes a r.v.:

di(�x, �Ω) = a0i(�Ω) + a1i(�Ω)
∑

∀j e
xj

exi

B. Minimizing BYL: Mathematical Formulation

Under fabrication variability our objective to minimize the BYL
can be formulated in terms of �x (defined in section III-C) as:

Minimize BY L(�x)

Subject to :

⎧⎨
⎩

tj + di(�x, �ω0) ≤ ti ∀j ∈ fanin(i); ∀i
ti(yi) ≤ Tcons ∀i ∈ PO

smin ≤ exi ≤ smax ∀gate i
(9)

In the above formulation �ω0 represents the nominal value of �Ω
assuming no variations. The delay of each gate (d i(�x, �ω0)) is also
at its nominal value. The above formulation therefore ensures that
Tcons is satisfied in the nominal case.

If the goal is to also have a small area, an upper bound on the
overall area can be added as a new constraint:

∑
cie

xi ≤ Amax.

C. A Two-Stage Stochastic Programming Formulation

In the above formulation BYL is a function of �x. To elaborate
the consideration for variability in the objective function, let us
define the following r.v.:

V (�x, �Ω) =

{
T (�x, �Ω) − Tcons; T ≥ Tcons

0; else
(10)

where T (�x, �Ω) is a r.v. that represents the delay of the design. This
r.v. depends on both the gate size vector �x and also the random
field �Ω. The r.v. V (�x, �Ω) represents the degree of violating Tcons.
For a given value of �x, the pdf of V can be written in terms of
the pdf of the delay of the circuit fT (t):

fV (v) =

{
fT (t); v > 0∫ Tcons

−∞ fT (t)dt; v = 0
(11)

Note that both fT (t) and fV (v) are functions of �x. Now the
objective in equation 2 can be expressed in terms of V as:

BY L(�x) =

∫ ∞

Tcons

(t − Tcons)fT (t)dt =

∫ ∞

−∞
vfV (v)dv = E[V ]

(12)
Since both fT (t) and fV (v) are functions of �x, so will BYL
be. Also as illustrated, minimizing the BYL can be thought of
minimizing the expected value of violating the timing constraint.

Now let v(�x, �ω) be the value for V for a given �x and a sample
�ω from the field of uncertainty. Equation 12 can be written as:

BY L(�x) =

∫ ∞

−∞
v(�x, �ω)f�Ω(�ω)d�ω (13)

where f�Ω(�ω) is the pdf of �Ω. Note that this is just another way
of understanding BYL. No approximation has been done and
no assumption has been made on the nature of the variabilities
and their correlations. Therefore equation 13 states that for a
known �x the corresponding BY L(�x) can be found by finding
the E[V (�x, �Ω)] for all values �ω of �Ω.

Conceptually v(�x, �ω) is the degree of violating the delay
constraint for a given choice of �x and a sample �ω. This itself
can be written as a convex program as follows:

v(�x, �ω) = Minimize q

Subject to :

⎧⎨
⎩

tj + di(�x, �ω) ≤ ti ∀j ∈ fanin(i); ∀i
ti ≤ Tcons + q ∀i ∈ PO

q ≥ 0
(14)

Solving this formulation results in the arrival times of the gates
ti with the gate delays di(�x, �ω). The optimal value of q denoted
by q∗ is the degree of delay violation for a fixed �x and �ω.

This falls within the classic formulation of Two-Stage Stochas-
tic Programming [13]. The optimization problem given by 9 is
called the first stage problem and the one given by equation 14 is
called the second stage problem. The region of feasibility for the
first stage problem is a convex set (since it simply comprises of
a set of convex function constraints). The objective BYL is the
expected value of a random variable V which depends on (�x and
�ω) according to the optimization set of 14. In the next subsection
we will prove that E[V ] is a convex function of �x. In doing
so we will extend the classic Two-Stage Stochastic Programming
theory to incorporate convex first and second stage problems. The
traditional theory was valid only for linear programs [13].

Please note that our presented formulation does not make
any specific assumptions about the distribution of �Ω and the
correlation of components of �Ω (such as Leff and Tox).

D. Proof of Convexity of the Optimization Set

In this section we will prove that the formulation of the
inequalities of 9 is convex. To do this it is sufficient to show the
optimization’s objective (BY L(�x)) is convex, as the constraints
in equation 9 can be represented in an exponential form similar
to section III-C and therefore will be a convex set [16].
Theorem: BY L(�x) is convex.
Proof: As shown in equation 13, BY L(�x) = E[V (�x, �Ω)]. The
E[.] can be thought of the weighted summation of all the samples
v(�x, �ω) of V . The weights are the probability values f�Ω(�ω) that
are always positive. Therefore we will show that any v(�x, �ω) is
individually a convex function of �x to conclude that the BY L(�x)
is convex, because the summation of positively weighted convex
functions is convex.

To show v(�x, �ω) is a convex function we need to show for �x1

and �x2, the following inequality holds (for 0 ≤ θ ≤ 1) [16]:

v(θ �x1 + (1 − θ) �x2, �ω) ≤ θv(x1, �ω) + (1 − θ)v( �x2, �ω) (15)

where v(x1, �ω) and v(x2, �ω) are the optimal solutions of the op-
timization set expressed by the inequalities of 14. The constraints
in the inequalities of 14 are written for �x1 and �x2 as:
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⎧⎪⎨
⎪⎩

t
(1)
j + di( �x1, �ω) ≤ t

(1)
i

t
(1)
i ≤ Tcons + q(1)

q(1) ≥ 0

⎧⎪⎨
⎪⎩

t
(2)
j + di( �x2, �ω) ≤ t

(2)
i

t
(2)
i ≤ Tcons + q(2)

q(2) ≥ 0

(16)

Let {�t∗(1), q∗(1)} and {�t∗(1), q∗(2)} be the optimal solutions of
the left and right inequalities respectively. Multiplying the left
inequalities by θ and the right ones by (1 − θ) (for 0 ≤ θ ≤ 1)
and adding the corresponding inequalities we get:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(θt
∗(1)
j + (1 − θ)t

∗(2)
j ) + (θdi( �x1, �ω) + (1 − θ)di( �x2, �ω))

≤ θt
∗(1)
i + (1 − θ)t

∗(2)
i

θt
∗(1)
i + (1 − θ)t

∗(2)
i ≤ Tcons + (θq∗(1) + (1 − θ)q∗(2))

θq∗(1) + (1 − θ)q∗(2) ≥ 0

(17)

Since di(�x, �ω) is convex in �x, we have:
di(θ �x1 + (1 − θ) �x2, �ω) ≤ θdi( �x1, �ω) + (1 − θ)di( �x2, �ω) (18)

Therefore inequalities of 17 can be written as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(θt
∗(1)
j + (1 − θ)t

∗(2)
j ) + di(θ �x1 + (1 − θ) �x2, �ω)

≤ θt
∗(1)
i + (1 − θ)t

∗(2)
i

θt
∗(1)
i + (1 − θ)t

∗(2)
i ≤ Tcons + (θq∗(1) + (1 − θ)q∗(2))

θq∗(1) + (1 − θ)q∗(2) ≥ 0

(19)

Let us introduce �x3 = θ �x1 + (1 − θ) �x2 and {�t(3) = θ�t∗(1) + (1 −
θ)�t∗(2), q(3) = θq∗(1) + (1 − θ)q∗(2)}. By replacing these definitions
in the inequalities of 19 we will obtain:⎧⎪⎨

⎪⎩
t
(3)
j + di( �x3, �ω) ≤ t

(3)
i

t
(3)
i ≤ Tcons + q(3)

q(3) ≥ 0

(20)

This implies that for �x = �x3, the following set:
{�t(3) = θ�t∗(1) +(1−θ)�t∗(2), q(3) = θq∗(1) +(1−θ)q∗(2)} is a feasible
solution to the inequalities of 14. Therefore the optimal solution
at �x = �x3 must be smaller than (or equal to) θq∗(1) + (1− θ)q∗(2).

The optimal solution is nothing but v(θ �x1+(1−θ) �x2). Therefore,
v(θ �x1 + (1− θ) �x2), �ω) ≤ θv( �x1, �ω) + (1− θ)v( �x2, �ω), and therefore
v and consequently E[V (�x, �Ω)] are convex in �x.

V. SOME GENERALIZATIONS

A. Generalized Penalty Function

The proof of convexity of our objective outlined in section IV-
D, assumed that the penalty of violating the timing constraint is
a linear function of the degree of violation (equation 1). If we
redefine this penalty as follows:

penalty(t) =

{
f(t − Tcons); t ≥ Tcons

0; else
(21)

where f is any convex function, then the convexity of the new
BYL still holds and optimality can still be achieved. We omit the
proof for brevity.

B. Minimizing the Yield-Loss

The previous few sections discussed optimal minimization of
BYL. From our experiments we found that there was a high
degree of correlation between optimizing BYL and YL. In fact
our approach could be used as a heuristic for optimizing YL. But
there are some important results that can be proved about the
optimality of YL as illustrated below:

Theorem: The optimal BYL will be 0 iff the optimal YL is 0.
Proof: Let us suppose we have a solution for which BY L = 0.
Referring to equation 12, this can happen only if fV (v) = 0 for
all v greater than (not equal to) 0. This means that the pdf of
the timing of the circuit (for the given gate sizes) lies entirely
within the timing constraint. Thus Y L = 0. Now let BYL be
more than zero, therefore fV (v) must have a positive value for
some v greater than 0. Therefore, some part of the timing pdf
must be greater than Tcons. Thus YL cannot be zero.

This is an important result, since by optimizing BYL we can
1)achieve a solution for which Y L = 0, 2) or by looking at the
optimal value of BYL check if a solution with Y L = 0 exists.

VI. SOLVING THE CONVEX FORMULATION

In the previous sections we proved that our proposed for-
mulation to minimize the BYL is convex. This means that our
formulation is optimally solvable using the convex optimization
techniques. We used the Kelley’s Cutting Plane technique [16]
among other possible methods, which is briefly explained below.
A. Kelley’s Cutting Plane Algorithm

Kelley’s algorithm is an iterative approach. At each iteration a
linear lower bound of the convex objective is generated. This
lower bound together with the lower bounds of the previous
iterations develop a piecewise linear lower bound on the objective
function. As the number of iterations increase, the linear lower
bounds of the previous iterations converge to the accurate ob-
jective. At any iteration k, the objective function represented by
the piecewise linear lower bounds is optimized while satisfying
the feasibility criteria of the constraints. This gives us a solution
vector xk. At this point a new linear lower bound is computed
for the true objective function and the entire process is repeated.
These steps can be summarized in Algorithm 1:

Initially at Step 1 a feasible solution (�x1) is found for the
inequalities of 9. Kelley’s algorithm follows an iterative approach:
In the kth iteration, the lower bound at BY L(�xk−1) found in
the previous iteration is used to generate a new solution �xk.
This lower bound is generated as follows: We find the sub-
gradient αk + �βk.�x of the BYL function such that at �x = �xk−1,
BY L(�xk−1) = αk + �βk. �xk−1 where �βk is conceptually the slope
of the BYL function at �x = �xk−1. By definition this sub-gradient
is the linear lower bound of the BYL function. A new �xk is
now chosen as follows: A new variable lk is incorporated in the
optimization framework which is constrained to be larger than
all the lower bounds found so far. The actual objective is then
replaced by lk which approximates the BY L (Step 4 of Algorithm
1). This gives us a new value for �xk and the entire process is
repeated till the lower bound approximation and the upper bound
are within a user specified range of tolerance (note that each
�xk corresponds to an upper bound BY L( �xk)). This approach
provably reaches the optimal solution in convex optimization [16].

Next we will explain how the statistical timing analysis (STA)
can be integrated as a useful tool in our formulation, and in the
Kelley’s Cutting-Plane algorithm to find the lower bound on BYL.

Please note that in case that the optimization of area and/or
power is necessary, new constraints can be added to our formula-
tion that bound the overall area or power. These can be expressed
as convex constraints which allows the use of Kelley’s Cutting-
Plane algorithm to solve the new optimization formulation.
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Algorithm 1: Kelley’s Cutting Plane Algorithm

Step 1: Initialize
Let ε > 0 and �x1 be a feasible solution satisfying the constraints.
Let k← 0 and define l0(�x) = −∞, u0(�x) =∞.

Step 2: Set k← k + 1
Step 3: Define the Lower Bound at �xk

Evaluate αk and �βk such that lk ≥ αk+ < �βk, �x >:
αk = BY L(�xk)− �βk�xk

�βk =
∂BY L(�x)

∂�x |�xk−1

Step 4: Update the Optimization Set
Add the following to the existing set of constraints:

lk ≥ lk−1 lk ≥ αk+ < �βk, �x >

Update the objective function to Minimize lk .

Step 5: Solve the Optimization to get �xk and Update the Bounds
Let upper bound uk = Min{uk−1, BY L(�xk)} and lower bound lk .

Step 6: Stopping Rule
Stop if uk − lk ≤ ε, otherwise go to Step 1.

B. Integration with STA

1) Computing the BYL: Given a gate-level circuit, statistical
timing analysis can be used to efficiently compute the BYL. In
section IV-C we explained how BYL can be computed para-
metrically over all samples �ω in �Ω and for a particular set of
gate sizes using equation 13. It can also be equivalently obtained
using equation 12. This is equivalent to doing an STA (for a
given choice of gate sizes) on the circuit and then evaluating the
expected value of violating the timing constraint in order to find
the BYL (equation 12). Assuming variability in �Ω, STA provides
the spread of delay at the primary outputs (essentially the pdf
fT (t)) for a given �x. This STA can be done based on any possible
approach such as [5] and [18].

2) Computing the Lower Bound in Kelley’s Algorithm: The
linear lower bound on BYL is expressed as αk+ < �βk, �x > in
Algorithm 1. As expressed in step 3 of the algorithm, �βk is found
by evaluating the slope of the BY L(�x) at �xk−1. The coefficient αk

is found such that BY L(�xk−1) = αk+ < �βk, �xk−1 >. Therefore
in order to find the lower bound, it is sufficient to show the
computation of �βk.

Finding the sub-gradient of a non-differentiable function is an
important research problem. Many techniques have been proposed
that can approximate the sub-gradient. In this paper we will be
using the finite-difference method [16].

The vector �βk = {β1; β2; ...; βn}, where βi is the projection of
�βk with respect to component xi (or βi = ∂BY L(�x)

∂xi
|�xk−1 ). In other

words βi expresses the sensitivity of the objective function with
respect to xi. We approximate this sensitivity as below:

βi =
BY L({x1; ...xi; ...; xn}) − BY L({x1; ...xi + ∆xi; ...; xn})

∆xi
|�xk−1

(22)
Given an �xk−1 vector, the sensitivity βi is found using equation
22. Computation of BY L in the above equation can be done
using STA as explained in the previous subsection. Therefore
computation of βi in the above equation requires doing two
STAs for each component �xk−1 vector, assuming xi for gate i is
slightly changed. The paper [10] proposes ways that allows the
sensitivity to be more efficiently computed. Once �βk is found, αk

and consequently the lower bound are determined.
Note that the STA at any of these stages can be done using

any of the proposed techniques in the literature such as [5] or
[18], and can assume any distribution for �Ω and any correlation
model for its components.
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Fig. 2. Convergence of BYL to its Lower Bound (C1908, Tcons =3500 psec)

VII. RESULTS

Our experiments were conducted on the ISCAS bench suite.
We initially placed each benchmark and generated correlation data
between different gates based on the model of [18]. We assumed a
variability in the Leff of each device with a Gaussian distribution
with a mean equal to the nominal value and a 12% standard
deviation from the mean. We determined the convex expression
for the delay of each gate as a function of its size assuming a
90nm technology (for which we got the information from [19]).

We implemented our proposed method in the SIS framework
and used the MOSEK [6] convex optimization tool. In the
proposed method using the Kelley’s algorithm, we integrated STA
method of [3] to compute BYL as explained in section VI-B.

Figure 2 shows the values of our objective BYL and its lower
bound as iterations progress. At each iteration the value of the
objective corresponds to the upper bound of the optimal. Kelley’s
algorithm iteratively improves the lower bound till the lower and
upper bounds converge. This algorithm guarantees optimality.

In order to make comparison with other methods, we im-
plemented a sensitivity-based approach as well as a worst-case
method. The sensitivity method had a framework as in [1] or [4].
In this method initially all the gates are set to their minimum
size. The sensitivity-based method is a greedy iterative approach,
in which at each iteration the most sensitive gate is determined
and sized up. The most sensitive gate is the one that results in
the maximum change in the objective due to a small change in its
size. For comparison of this method with ours we set the objective
of the sensitivity-based approach to be the BYL.

We also implemented a worst-case deterministic approach. The
worst-case approach had a convex optimization framework similar
to [17]. However the delay expression for each gate was computed
assuming the value of Leff is fixed at its worst (µ + 3σ). In this
approach we set the optimization objective to be minimization
of the arrival time at the primary output nodes. We also added a
new constraint to impose an upper bound on the maximum area
of this approach. In order to make comparison with our proposed
method, we set this maximum area of the worst-case approach to
be the area of the optimal solution generated by our approach.

Table I compares the BYL and area of these three methods for
two different timing constrains for each benchmark. One of these
timing constraints is more stringent than the other one. For the
stringent timing constraint, the deterministic approach could not
generate any solution as it was too pessimistic in approximating
the delay of each gate and consequently of the timing constraint.
For the more relaxed timing, the worst-case approach however
was able to generate solutions of good quality comparable to our
method. Compared to sensitivity-based approach, we achieved an
average of 72% improvement in the BYL with only a 6% area
overhead given the stringent timing constraint. We also generated
better solution when the timing constraint was relaxed.
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bench T1 T2

Tcons Sensitivity Worst-Case Kelley Convex Tcons Sensitivity Worst-Case Kelley Convex
BY L Area BY L Area BY L Area BY L Area BY L Area BY L Area

C17 210 21.60 353 N/A N/A 6.83 369 300 0.00 365 0.00 321 0.00 342
C432 2500 252.47 10446 N/A N/A 45.76 11504 3000 46.58 8908 1.73 8789 1.65 8789
C499 2300 32.73 15279 N/A N/A 32.36 21869 2700 9.59 14408 1.46 13920 1.42 14684
C880 3150 226.05 13502 N/A N/A 19.92 13336 3500 45.82 13935 1.80 13353 1.65 13485
C1355 2050 105.28 15821 N/A N/A 17.79 21410 2300 32.73 15279 2.50 14977 1.59 14977
C1908 3000 327.94 18624 N/A N/A 29.38 21812 3500 101.56 17139 1.95 18009 1.32 18009
C3540 4000 270.00 37547 N/A N/A 76.67 37574 5500 8.66 36778 3.73 36728 3.72 36728
C5315 4000 105.92 50192 N/A N/A 61.19 50138 5500 9.45 49661 8.59 49584 8.32 49596
C6288 15000 323.41 89201 N/A N/A 181.65 88503 23000 8.77 87750 8.77 87750 8.77 87750
Ave. 185.04 27884 N/A N/A 52.35 29613 29.24 27135 3.39 27047 3.16 27151

TABLE I

COMPARISON OF BINNING YIELD-LOSS (IN PSEC) AND AREA

bench Tcons Sensitivity Kelley Convex
#itera. time #itera. time

C17 210 73 0.06 4 1.33
C432 2500 1636 894.18 30 438.13
C499 2300 390 739.27 13 537.60
C880 3150 339 475.48 7 150.11
C1355 3000 390 772.82 7 216.99
C1908 3500 711 1585.47 31 1172.77
C3540 4000 120 2004.22 5 776.28
C5315 4000 164 5127.82 7 1870.41
C6288 15000 138 13616 4 1802.47

TABLE II

COMPARISON OF TOTAL RUN-TIME (SEC) AND NUMBER OF ITERATIONS
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Fig. 3. Binning Yield-Loss vs. Time (C1908, Tcons =3500 psec)

Figure 3 shows the optimization of objective over time us-
ing our approach compared to the sensitivity-based method for
C1908. It can be seen that our approach has clearly a faster
convergence rate. In fact as the run-times are reported in table
II, our method achieves an average of 2.69 speed up due to
fewer number of iterations. Although each individual iteration
takes longer in our method (as a convex optimization set needs
to be solved at each iteration in our case), but due to the very few
number of iterations, the overall run-time will be much smaller.

We also compared the traditional Yield-Loss of the solution
generated by our approach to a sensitivity-based approach in
which the most sensitive gate was defined as the one with
maximum change in Yield-Loss due to the change in its size.
Our method also improves the Yield-Loss on average by 61%.

Finally figure 4 shows the curve generated by our approach
between the area and BYL. Each point corresponds to the solution
of an iteration of Kelley’s algorithm. It can be seen that as the
iterations progress, increase in area results in a decrease in BYL.

VIII. CONCLUSIONS
In this paper we presented a convex formulation to opti-

mally minimize the Binning Yield-Loss in high performance
applications. This optimization is done using gate sizing under
fabrication variability. Our optimal approach results in an average
72% improvement in the BYL with a small area over head of
on average 6% for stringent timing constraints. The solutions
generated by our approach also improves the traditional Yield-
Loss by 61% compared to sensitivity-based methods.

bench Tcons Sensitivity Worst-Case Kelley Convex
C17 210 0.75 N/A 0.40
C432 2500 0.76 N/A 0.28
C499 2300 0.23 N/A 0.23
C880 3150 0.72 N/A 0.15
C1355 2050 0.53 N/A 0.15
C1908 3000 0.82 N/A 0.18
C3540 4000 0.71 N/A 0.24
C5315 4000 0.33 N/A 0.18
C6288 15000 0.64 N/A 0.39

TABLE III

COMPARISON OF YIELD-LOSS
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Fig. 4. BYL vs. Area Generated at Different Iterations of Kelley’s Algorithm
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