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In the past decades, shortest distance computation methods for road networks

have been developed that focus on how to speed up the latency of a single source-

target pair distance query. Large analytic applications on road networks including

simulations (e.g., evacuation planning), logistics, location-based advertisement, and

transportation planning require methods that provide high throughput (i.e., distance

computations per second) and the ability to “scale out” by using large distributed

computing clusters. Although decreasing the latency time for one source-target

query results in reducing the total response time for a spatial analytic query, it is

far from enough since these methods don’t take into account considerations such as

cache results, query optimization, multi-threads, distributed systems, etc.

This thesis broadly expands on the use of the distance oracle on road networks

to achieve above goals. In the first part, we present a new framework termed the

All-Store Distance Oracle (ASDO) for large road networks and shows how to effi-

ciently compute it for any large road network in a distributed cluster. The ASDO



representation is a well-separated pair decomposition (WSPD) of a road network

using network distance instead of Euclidean distance. The ASDO representation

benefits from the small size of the WSPD which enables the ASDO representation

to answer ε-approximate network distance queries in a high-throughput rate and

can be easily embedded within any database system including RDBMS, Column-

oriented DBMS, and key-value stores. Experimental results show that the ASDO

representation of the USA road network can be computed in a few hours using a

modest size cluster. In comparison, previous database-centric approaches either do

not scale to large road networks or are several orders of magnitude slower than the

proposed ASDO for spatial queries.

In the second part , we show how useful the ASDO representation is in real

applications evaluating two proposed architectures on a variety of spatial analytic

queries in common use such as KNN, distance matrix, and trajectory queries. One

architecture is our ASDO representation embedded in PostgreSQL, and the other

one is a widely used hybrid architecture in industry. Embedding the ASDO repre-

sentation inside PostgreSQL supports the performance of complex analytic queries

on road networks using standard SQL. This makes the results of ASDO simple to

use, yet considerably expressive, compared to traditional methods that require ex-

tensive development effort. Experimental results indicate that our ASDO architec-

ture within PostgreSQL can compute more than 60K road distance operations per

second on a large road network (e.g., USA), which achieves 20× more throughput

compared to the state-of-the-art shortest distance computation methods.

In the third part, as some applications require the ability to scale out on large



distributed computing clusters, a framework called SPDO is presented which imple-

ments an extremely fast distributed algorithm for computing spatial analytic queries

on Apache Spark. The approach extends the ASDO representation which has now

been adapted to use Spark’s resilient distributed dataset (RDD). SPDO improves

the throughput by at least two orders of magnitude, which makes the approach

suitable for applications that need to compute millions of network distances per

second.

Interviews with tens of related companies whom we deemed to be needy of

performing some analytic queries on road networks led us to observe that they

are usually concentrated in a local area spanning several cities, and need a high-

throughput solution such as performing millions of shortest distance computations

per second. In the forth part, we first demonstrate a solution, termed City Distance

Oracles (CDO) to achieve as many as 7 million shortest distance computations per

second per commodity machine on a city road network. Next, we extend CDO to

yield a new distance oracle system (DOS) for general road networks. It can solve

most spatial analytic queries, and its throughput achieves 5M distance computations

per second even on the whole USA road network. In addition, a 10K × 10K origin-

distance (OD) matrix can be computed in 20 seconds.
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Chapter 1: Introduction

1.1 Motivation

The past two decades have seen a steady increase in processing spatial queries.

Such functionality has been implemented in early systems such as QUILT [59,68] and

SAND [38,58] which had a browsing capability to full-fledged mapping applications

such as MapQuest, Yahoo Maps, Google Maps, and Bing Maps. The most common

interactions with a map invokes the shortest route, distance, travel time, or a simple

query such as “finding my k nearest restaurants?” [60] or in a specific region (e.g., [23,

24]). They all require the computation of the distance between two locations x

and y which in our work is more accurately represented as the shortest network

distance dG(x, y) instead of the Euclidean distance ||x− y||, or variants of it such as

a minimum distance to a block boundary (e.g., [56, 62]) or the Hausdorff distance

(e.g., [46]).

To make the discussion more general, we introduce some basic concepts about

the spatial network and the spatial analytic query. A spatial network G is modeled

as a weighted directed graph denoted by G(V,E,w, p), where V is a set of nodes or

vertices, n = |V |, E ⊂ V ×V is the set of edges, m = |E|, and w is a weight function

that maps each edge e ∈ E to a positive real number w(e), e.g., distance or time.
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Without loss of generality, for each node v, p(v) denotes the spatial position of v with

respect to a spatial domain S, which is also referred to as an embedding space (e.g.,

a reference coordinate system in terms of latitude and longitude). In this thesis,

all discussion is for a 2-dimensional space S, but note that it is straightforward

to extend our results to d-dimensional space. Given nodes u and v, we define the

network distance dG(u, v) to be the shortest distance from u to v in the spatial

network, and dE(u, v) to be the Euclidean distance or geodesic distance from u to v.

In addition, we introduce two values γL and γH termed the minimum and maximum

distortions of G as follows.

γL = min
u,v∈V

dG(u, v)

dE(u, v)
γH = max

u,v∈V

dG(u, v)

dE(u, v)
(1.1)

We assume that for some spatial networks (e.g., road networks), γL and γH are two

constants, albeit γH may be large.

Beyond simple navigation queries, location-based web services like Google

Maps repeatedly pose queries on a road network and utilize the results to serve

a user base. For example, Google Distance Matrix offers an API that computes the

distance matrix between a set of origins and a set of destinations. Other exam-

ples include analysts who use OLAP stores to perform complex simulations on road

networks to help answer queries such as determining where to locate an additional

Walmart among a number of potential locations, or the roads where bottlenecks

exist for evacuation planning purposes. Moreover, mobile services frequently in-

teract with write-optimized stores to store the current positions of mobile hosts as

they move about in a road network. These services also frequently compute the
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distances from their mobile hosts to other mobile hosts or landmarks in order to

provide services such as locating the k nearest restaurants or gas stations. We use

the term spatial analytic queries to collectively describe such queries. The challenge

lies in taking note of the realization that each such instance of a spatial analytic

query invariably involves being able to perform hundreds to as many as millions of

computations of distance along a spatial network rather than as the crow flies.

In the face of a massive amount of spatial analytic queries from internet scale

users, for example, Google Maps [8] drastically restricts the number of shortest

distance results per query (e.g., a limit of 625 (25× 25 origin-destination matrices)

shortest distances per query using the Google Distance Matrix API even to their

paying customers). Most other existing services such as Yelp just use Euclidean

distance instead of network distance. Figure 1.3 illustrates the drawback of using

Euclidean distance in Google Maps and Yelp, respectively. Although Figure 1.3(a)

uses an old version of Google Maps, the ordering problem still exists in the current

version. The geodesic distance ordering of results is very different from the network

distance ordering of results. Figure 1.3(b) shows Yelp’s response to the query: find

the restaurants around River Road, Edgewater, NJ (blue icon) with the distance

filter that they are within a 2 mile biking distance. Obviously, the 5th and 9th

results that lie on the other side of the river are impossible to reach by biking less

than 2 miles. However, they are in the result set (e.g., Flat Top, the 5th result, is

1.3 miles away using Euclidean distance).

Clearly, using geodesic or Euclidean distance to approximate network distance

can produce significant errors. To measure how big the difference is, we tabulated
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ratios of network distance to geodesic distance in some regions in Figure 1.1, termed

the route directness spectrum (RDS). It shows the distortion resulting from approx-

imating network distance with geodesic distance. In particular, a measure that is of

immense interest to transportation planners is the route directness index (RDI) [45].

The RDI of any two locations in the road network is the ratio between the shortest

network distance to the geodesic distance. We proposed the route directness spec-

trum as a distribution of the RDI, which plots as a proportion of the total O(n2)

shortest paths for a road network. Figure 1.1 was produced by bucketing and count-

ing up the O(n2) ratio values of the route directness index located in [x, x + 0.1),

where x is a point on the x-axis. For each bucket, we compute the percentage of

each group as a percentage of the total number of shortest paths. Note that the

route directness index must be larger than 1.0 since the geodesic distance is always

less than or equal to the network distance.

Figure 1.1 shows the route directness spectrum of New York City (NYC), the

Bay Area (Bay), and Salt Lake City (SLC) road networks, respectively, from which

it is easy to see that NYC has a higher road network connectivity than the Bay

Area or SLC as its road directness spectrum is skewed more towards one (i.e., a

larger proportion of the location pairs have a route directness index close to one).

The result comes up to what we expect as we know that most streets in NYC are

laid out on a grid, and the lengths of the side of the blocks are relatively small in

contrast with Salt Lake City that long blocks are made.

However, even for NYC, a well-connected road network, 50% of the distance

queries will have an error of 20% or more by approximating using geodesic distance.
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Figure 1.1: Route directness spectrum (RDS) of New York City (NYC), the Bay

Area (Bay), and Salt Lake City (SLC). In contrast, the maximum RDI, correspond-

ing to the maximum ratio of network distance to geodesic distance, is 10.6 in NYC,

30.4 in Bay, and 26.3 in SLC; the average RDI is 1.213 in NYC, 1.384 in Bay Area,

and 1.475 in SLC.

Considering the ordering example in Figure 1.3 and the results of the route directness

spectrum in Figure 1.1, we conclude that actual network distances are well worth

computing in spatial analytic applications.

1.2 Distance Oracle Representation

Reviewing previous research work, we find none that are concerned with gen-

eral spatial analytic queries. Instead, they focus on speeding up one specific type

of query, e.g., KNN search queries [32, 36, 47, 50], CNN queries [31], and distance

matrix [41]. However, these algorithms are not easy to extend to include general

spatial analytic queries. On the other hand, most state-of-the-art methods such as
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HL [21], TNR [25], CH [39], etc, focus on decreasing the latency time for a single

source-target (s-t) query, which is the basic unit of a spatial analytic query. Al-

though decreasing the latency time for one s-t query results in reducing the total

response time for a spatial analytic query, it is far from enough since these meth-

ods don’t take into account considerations such as cache results, multi-threads, and

distributed systems that can be used to speed up a spatial analytic query.

An alternative approach to speeding up spatial analytic queries is to take

advantage of the query optimizer associated with the database system which makes

use of selectivity factors about the underlying data (i.e., stored in the relations being

operated on). For example, suppose that we want to find the cities with population

greater than 500, 000 within 200 miles of the Mississippi River. We have two options

here. Armed with knowledge about the complexity of executing a within (or buffer)

algorithm as well as the data distribution, the query optimizer can either call for

performing the spatial selection first or the relational selection first where the choice

will depend on the number of cities with such a population and and the size of

the spatial area in question. As another example, suppose that we want to find all

stores within 25 driving miles of a warehouse. Here, armed with knowledge of the

complexity of finding entities within a given driving distance as well as the data

distribution, the query optimizer can either call for a solution based on finding the

nearby stores vis-a-vis the individual warehouses or on finding the nearby warehouses

vis-a-vis the individual stores where the choice depends on the number of warehouses

and the number of stores. The important thing to note about these examples is that

the query optimizer requires knowledge about the complexity of an external module
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or algorithm that is executed outside the database. Unfortunately, such knowledge

is usually not present and thus users cannot rely on it.

The first attempts to answer spatial queries within a database system are

the ε-distance oracle (ε-DO) [64] and PCPD [67] methods, the previous work of our

research group, for approximately estimating the network distance and path between

any two vertices of a spatial network. It proposed the distance oracle representation

such as Figure 1.2 based on the notion of spatial coherence, which can be described

intuitively as follows. Consider two cities A (e.g., Washington, DC) and B (e.g.,

Boston, MA) which are really the sets of vertices that are in the cities such that A

and B are far away from each other but the diameters of A and B (i.e., the maximum

distances between two locations in Washington, DC) are significantly smaller than

the distance between the two cities A and B. If this property holds, then the network

distance between any vertex in A and any vertex in B will be more or less similar,

and hence can be approximated by a single value. Furthermore, all the shortest

paths between a source in A and a destination in B will likely pass through a single

common vertex.

Formally, both ε-DO and PCPD describe a well-separated pair decomposition

(WSPD) [28] of a road network in order to produce well-separated pairs (e.g., (A,B)

with particular network distance or shortest path properties). Two sets of vertices

A and B are said to be well-separated if the minimum distance between any two

vertices in A and B is at least s · r, where s > 0 is a separation factor and r is

the larger diameter of the two sets. The pair (A,B) is termed a well-separated pair

(WSP).
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Figure 1.2: A dumbbell pair of the distance oracle representation in Silver Spring,

MD, which shows the notion of spatial coherence. It includes the shortest paths

between all pairs of vertices in A and B are marked in a darker shade. The 30, 000

shortest paths pass through a single vertex.

The WSPD can be implemented as a PR quadtree where the decomposition

rule is such that a block is split until all of the vertices within it are in the same

element of a well-separated pair WSP. In particular, ε-DO specifies an approximate

network distance oracle of size O( n
ε2

) of WSPs (A,B, dε(A,B)) such that A and B

are the blocks in a quadtree with the property that for any pair of vertices (s, t),

s ∈ A and t ∈ B, dε(A,B) provides an approximate network distance that satisfies

the condition

(1− ε) · dε(A,B) ≤ dG(s, t) ≤ (1 + ε) · dε(A,B) (1.2)

Blocks A and B must be at the same level of the quadtree and represented by their

Morton codes. To obtain the network distance between a pair (s, t) of vertices, the

ε-DO finds a WSP (A,B, dε(A,B)) where s ∈ A and t ∈ B and returns the approx-

imate distance dε(A,B). An important property, called the uniqueness property,
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is that every pair (s, t), s, t ∈ V is contained in one unique WSP, which can be

determined in O(log n) time.

PCPD produces a path oracle of WSPs (A,B,Ψ) such that A and B are blocks

in a quadtree with the property that for any pair of vertices (s, t), s ∈ A and t ∈ B,

the shortest path between them passes through Ψ. In other words, Ψ is a common

vertex or edge to all the shortest paths between any vertex in A to any vertex in

B. In PCPD, the exact shortest path between any two vertices s, t ∈ V can be

computed as follows. First, retrieve the unique path oracle (A1, B1,Ψ1) that covers

s and t. Without loss of generality, Ψ1 is a vertex in V , and by the above property

of PCPD, Ψ1 should lie on the shortest path from s to t. Therefore, Ψ1 decomposes

the shortest path between s and t into two components: the shortest path from s to

Ψ1 and the shortest path from Ψ1 to t. This enables PCPD to further decompose

each component into two smaller parts. Applying the above procedure recursively

enables computing the shortest path from s to t with O(k) lookups in PCPD, where

k is number of vertices in the shortest path.

1.3 Contribution and Organization

However, there are two essential weaknesses with these two methods, ε-DO

and PCPD. First, many subsequent papers (e.g., Wu et al. [74]) claim that ε-DO

and PCPD are not scalable since computing the distance oracle representation is

too slow, thereby making them feasible only for cities of moderate size (e.g., 80, 000

vertices). It means that ε-DO is not available even for a city road network such
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as New York City with 264, 346 vertices. Second, both of these methods require

modifications to the comparison function of the B-tree in a database, which signifi-

cantly reduces the efficiency, and is not available for all types of databases. Besides,

an additional shortcoming of PCPD is that it requires posing k SQL queries for

retrieving a single exact shortest path, where k is the length of the shortest path.

For the full USA dataset, k could be as high as 15, 000.

Thus, we first propose a new framework called ASDO that overcomes the two

drawbacks of ε-DO and PCPD by making the following improvements.

1. We developed an infrastructure to resolve the scalability issue of ε-DO by

making it possible to compute the ASDO representation for much larger road

networks. Our experimental results show that the pre-processing needed to

form the oracle for the entire USA road network can be achieved in 7.1 hours

when using a modest size cluster of 20 Amazon EC2 machines incurring less

than $50 in AWS charges.

2. We designed the ASDO representation to be store-independent which means

that it does not require any modification to the database or any special indices.

The ASDO representation is now available for popular RDBMS systems such

as PostgreSQL, MySQL, Oracle, and SQL Server; For column-oriented DBMS

like MonetDB [26]; For key-value stores such as Berkeley DB [48], HBase [29],

and Redis [16]; and even for the in-memory distributed framework Apache

Spark [75].

Secondly, we show how to use our ASDO representation in real applications on
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popular RDBMS [52]. Two architectures, one is the integrated architecture (using

our ASDO representation) within PostgreSQL and the other one is a widely used

hybrid architecture, are evaluated for solving spatial analytic queries. In order to

make our ASDO more powerful, in this part, we develop more efficient solutions. In

particular, here we present SQL solutions for KNN and trajectory queries. These

two types of queries serve as building blocks to enable people to easily write SQL

solutions for more complex queries. In our examples, each spatial analytic query is

expressed by just a few lines of SQL that utilize pre-defined functions. In contrast,

the situation is far more complicated if for each of the queries users would have

to devise efficient programs in Java (or other high level programming languages)

to obtain the necessary query results. Experimental results indicate that our inte-

grated architecture within PostgreSQL can compute more than 60K road distance

operations per second on a large road network (e.g., USA), which achieves 20×

more throughput compared to the state-of-the-art shortest distance computation

methods.

Thirdly, to achieve an extreme high-throughput performance, we develop a dis-

tributed framework called SPDO (pronounced speedo denoting Spark and Distance

Oracles) using Apache Spark [75]. We extend our ASDO work [52] to map the dis-

tance oracle representation to a distributed key-value store (i.e., hash abstraction)

which we choose to be Spark. Combining Spark and the ASDO representation is a

good match. In essence, Spark provides a highly scalable fault-tolerant distributed

framework with the ability to cache large datasets in memory using RDD [75], while

the ASDO representation provides a compact representation of network distances
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that requires very little computation at real-time. Furthermore, Spark is a popular

open-source distributed framework for general purposes, which can be used as a key-

value store. We can easily develop functions in Spark combining distance oracles

and other techniques that are not efficient in a key-value store. In particular, we

use the IndexedRDD library on Spark which is a memory resident, key-value store.

The high-throughput of our proposed framework is achieved due to the ability to

spread query processing across multiple machines in a Spark cluster as well as the

in-memory representation of distance oracles.

Fourthly, after discussions with representatives of tens of related location-

based service companies, we observed that some analytic queries on road networks

usually focus in a local area spanning several cities. We first demonstrate a solution,

termed City Distance Oracles (CDO) [53] to achieve as many as 7 million shortest

distance computations per second per commodity machine on a city road network.

Next, we extend the CDO solution to a new distance oracle system (DOS) for

general road networks using some industrial techniques such as FlatBuffers [6]. It

can solve most spatial analytic queries, and its throughput achieves 5M distance

computations per second even on the whole USA road network. In addition, a

10K × 10K origin-distance (OD) matrix can be computed in 20 seconds.

The rest of the thesis is organized as follows. Chapter 2 presents the ASDO

framework to compute the ASDO representation. Chapter 3 describes efficient SQL

solutions using our ASDO representation and also presents a detailed comparison

between the performance of our ASDO method and the state-of-the-art methods for

a variety of spatial analytic queries. Chapter 4 proposes the distributed framework
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SPDO and the extreme high-throughput performance. Chapter 5 demonstrates the

CDO solution with spatial queries from related companies. Chapter 6 introduces

the implementation of DOS with a detailed evaluation. Chapter 7 concludes the

thesis.
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(a)

(b)

Figure 1.3: Using a geodesic distance ordering of results instead of network distance

ordering: (a) Google Maps results for the query: find the Moroccan restaurants near

to Broadway St & W Grant St, Bayonne, NJ. The ordering A −H is the geodesic

distance ordering provided by Google Maps and the ordering 1− 8 marked by green

is the network distance (the values in blue) ordering we computed. (b) Yelp results

for the query: find the restaurants around River Road, Edgewater, NJ that are

within a 2 mile biking distance. The ordering 1− 9 is the biking distance ordering

provided by Yelp. Obviously, restaurant #5 must be more than 1.3 miles by bike

as it needs to cross the river. 14



Chapter 2: ASDO: An All-Store Oracle for Fast, Approximate Short-

est Distances on Road Networks

2.1 Overview

During the analyst’s exploration, each query can potentially involve thousands

to millions of network distance computations being issued on a road network. Spatial

analytic queries on road networks are typically performed by analysts who prefer to

pose such queries using SQL. Since these queries combine existing database relations

and perform network distance computations, one requirement is that these road

network queries be executed entirely in a database system. This is attractive as it

allows the analyst to leverage the power of a database language to create new types of

online services resulting in easy programming, customization, and maintenance [52].

In this thesis, our goal is to develop a method with superior throughput while

not sacrificing latency and to be able to work inside any database system with no

additional software or hardware.

As an example of a use-case, consider an analyst working for a real-estate

company (e.g., Zillow) who is looking for the top 100 houses in an area that are both

affordable (i.e., list price of less than $500, 000) and that have several highly ranked
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schools within a 1 mile network distance from them. To respond, the analyst would

issue the following query that performs hundreds of thousands of network distance

computations on a road network. The two tables of House and School are existing

tables in a relational database system that are joined on the fly and filtered based

on the network distance, house price, and school ranking.

SELECT House.id, COUNT (∗) as count

FROM House as H, School as S

WHERE dist(H.lat, H.lon, S.lat, S.lon) ≤ 1 mile

AND House.price ≤ $500, 000

AND School.ranking ≥ 9

GROUP BY House.id

ORDER BY count DESC

LIMIT 100;

The clause dist(H.lat, H.lon, S.lat, S.lon) ≤ 1 mile checks if the network distance

between the house and school is within 1 mile, where lon and lat refer to the lat-

itude and longitude, respectively, of the houses and schools. In our case, the dist

function queries a lookup table to obtain the network distance between pairs of

houses and schools rather than computing the network distances on the fly. Note

that the database automatically optimizes the query by pushing the application of

the predicate on price and ranking before the join operator in order to reduce the

cardinality of the join.

There are only two methods that provide such kind of functionality, both
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of which resort to precomputing and storing, as a database relation, the network

distances between all pairs of vertices in the road network. Queries use this relation

as a lookup table during query processing to estimate the network distance either

accurately or to a great amount of accuracy during query processing. The first

method is our prior work ε-DO [64], which computes ε-approximate network distance

and compresses it to be stored as an oracle relation in the database requiring O( n
ε2

)

space for n vertices and an ε error bound. As noted in [74], this method is not

scalable to road networks with more than 80, 000 vertices. It means that ε-DO is

not available even for a city road network such as New York City with 264, 346

vertices. Furthermore, ε-DO requires modification to the database in terms of a

Morton Index [64] on the oracle relation. The second method is HLDB [20] from

Microsoft. It attempts to overcome both of these drawbacks of ε-DO, although

HLDB requires an additional join operator, which can be expensive as shown by our

experimental evaluation in Section 2.3.4.

In this chapter, we propose a new framework called ASDO whose main work

flow is shown in Figure 2.1. It overcomes the main drawbacks of ε-DO. We also

present a detailed evaluation of the execution time to compute the ASDO represen-

tation and of the accuracy of ASDO in our experiments. In addition, we provide

the basic SQL solutions for some example queries. They show the ease with which

analysts can devise SQL solutions for more complex queries using ASDO without

having to worry about query performance.

In addition, we set up an ASDO demo 1 and provide some use cases in our

1http://sametnginx.umiacs.umd.edu/
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Figure 2.1: The work flow for obtaining the ASDO representation: First, extract

any road network from OpenStreetMap [11]. Next, precompute the ASDO repre-

sentation using our distributed framework illustrated in Figure 2.5. Finally, embed

it into a database.

blog site 2. They link to a free precomputed ASDO which we put in AWS S3. It

needs just a few lines of code to be incorporated in an existing relational database.

When compared with HLDB [20] in a hard disk drive (HDD) storage, ASDO

is about 100 times faster for network distance queries as we show later in the ex-

perimental results. Compared to methods that are optimized to compute a single

network distance (e.g., the fastest one, DisLand [43], has an average latency of 0.28

ms on the road network of the USA), ASDO has a similar latency (about 0.25 ms

on the average). However, when comparing throughput, we find that ASDO can an-

swer 65, 000 queries per second, while the throughput of DisLand [43] is only 3, 571

queries per second. This enables us to achieve our goal of developing a method

with superior throughput and capable of dealing with very large road networks. Of

course, the price is that the results of ASDO are approximate. However, the errors

2http://roadsindb.com/
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are bounded and significantly low.

The rest of this chapter is organized as follows. Section 2.2 presents our

distributed framework and the ASDO representation. Section 2.3 contains a detailed

experimental evaluation of our framework including disk usage, latency, throughput,

and accuracy. Section 2.4 summarizes related work. Section 2.5 contains the basic

SQL queries using ASDO in a database. Section 2.6 draws concluding remarks and

describes directions for future work.

2.2 ASDO Framework

At the beginning, we introduce the Morton (Z) order space-filling curve [57]

that provides a mapping, Z2 → Z, of a multidimensional object (e.g., a vertex or a

quadtree block) in a 2-dimensional embedding space to a positive number. Given an

object o, let mc(o) be the mapping function that produces the Morton representation

of o by interleaving the binary representations of its coordinate values.

Given a spatial domain S, the Morton order of blocks in S can be obtained

by subdividing the space into 2L × 2L equal sized blocks named unit blocks, where

L is a positive integer named the maximal decomposition depth. Each unit block

i is referenced by a unique Morton code mc(i). Figure 2.2 shows how a Morton

order of quadtree blocks in a two-dimensional space with L = 2. A spatial network

G(V,E,w, p) on the domain S can also be divided into 2L × 2L unit blocks. Given

vertex v in the unit block i, the Morton code mc(v) is mc(i). All vertices located

in the same block have the same Morton code. Besides the unit blocks, every
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Figure 2.2: Examples of Morton codes in a 4× 4 space: (a) Example of the number

representation and the string representation of Morton codes in a domain space

when Depth = 0, 1, and 2, respectively; (b) Example of the key representation of

our ASDO.

larger block b has a unique Morton code, which is the longest common prefix of

all unit blocks contained in b, e.g., the Morton code of the upper left quadrant

(1000, 1001, 1010, 1011) is 10. In this thesis, given blocks A and B, we define the

relation A ≺ B if and only if block A is contained in block B, and thus mc(B) is

a prefix of mc(A) denoted as PREFIX(mc(B), mc(A)). Once the data is sorted

using this order, the resulting blocks can be stored using any one-dimensional data

structure such as, but not limited to, a B-tree.

In the rest of this section, we describe the details of a new framework ASDO

which overcomes the deficiencies of ε-DO. Instead of precomputing all the shortest

distance pairs in ε-DO [64], ASDO computes only the distances between a few

carefully selected representative vertices. We provide a deterministic way of choosing

the representative vertices that will enable us to dramatically reduce the number
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Head Pointer End Pointer

… …

Figure 2.3: Example queue Q: it shows the processing order of the ASDO precom-

putation.

of shortest distance information that needs to be calculated. Furthermore, we can

decompose the ASDO precomputation into a number of smaller parallel tasks, thus

enabling the oracle to be computed using a cluster of machines. We explain the

construction of our ASDO in Section 2.2.1, our distributed framework in 2.2.2,

and our ASDO representation that obviates the need to modify the database in

Section 2.2.3.

2.2.1 Encoding Network Distances

To compute ASDO, we first build a PR quadtree [57] on V based on the

spatial position of the vertices. For quadtree block A, its Morton representation

is given by mc(A). The Morton code 0 represents the root block which spans the

entire spatial domain S. The ASDO construction algorithm is a top-down approach

that starts with the WSP decomposition [28] of the block pair (S, S), which is the

largest potential oracle. A potential oracle is a pair of blocks that have not yet

been examined, denoted as (A,B), where blocks A and B must be at the same

depth of the PR quadtree and represented by their Morton codes. For example, a

potential distance oracle denoted by (01, 10) in Figure 2.2(b), where “01” denotes
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rb	  

Figure 2.4: A potential oracle containing blocks A and B in Silver Spring, MD

showing representative vertices pa, pb and the blocks’ radius ra and rb.

the bottom-right 2× 2 unit blocks, “10” denotes the upper-left 2× 2 unit blocks.

Starting with (S, S) as the first entry, a queue Q holds all current potential

oracles such as Figure 2.3. The algorithm pops a potential oracle (A,B) from the

head of the queue. Figure 2.4 shows a potential oracle containing blocks A and B

overlaid on the road network of Silver Spring, MD. The potential oracle (A,B) is first

given to CheckOracle(A,B) described in Algorithm 1, which returns true if the

network distances between all pairs of vertices in (A,B) can indeed be approximated

by a single approximate value, in which case the potential oracle becomes an accepted

oracle and we add it to the result set of ASDO. In addition, we also terminate the

process if the quadtree blocks A and B are too small, i.e., their depth exceeds a

given threshold. If CheckOracle() returns false, then we subdivide the potential

oracle (A,B) into 4 × 4 new potential oracles by subdividing A and B once into

their children quadtree blocks. The resulting potential oracles are inserted into Q

and the algorithm continues.

We now describe the process by which we check to see if a potential oracle
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Algorithm 1: CheckOracle(A, B)

Data: A, B: quadtree block; Nodes: an array of road vertices ordered by

the Morton codes; h: a hash map storing the information of computed

quadtree blocks; Depth: the depth of the quadtree blocks A and B

Result: True or False; d: network distance of (A, B)

1 if h contains mc(A) then

2 pA ← h[mc(A)].p;

3 rA ← h[mc(A)].r;

4 else

5 pA ← ChooseRep(A, Nodes);

6 rA ← MaxDistance(A, Nodes, Astart, Aend);

7 h[mc(A)].insert( pair(pA, rA) );

8 if h contains mc(B) then

9 pB ← h[mc(B)].p;

10 rB ← h[mc(B)].r;

11 else

12 pB ← ChooseRep(B, Nodes);

13 rB ← MaxDistance(B, Nodes, Bstart, Bend);

14 h[mc(B)].insert( pair(pB, rB) );

15 d← GetDistance(pA, pB);

16 if (Depth >threshold) or (d! = 0 and rA+rB
d
≤ ε) then

17 return True, d;

18 else

19 return False, d;
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can be an accepted oracle in Algorithm 1. In order to run CheckOracle(A,B),

we first introduce some auxiliary information. Since every vertex v has a unique

latitude and longitude, mc(v) is also unique. We first sort all vertices by their Morton

codes and place them in an array Nodes. For any block b in the PR quadtree, we

calculate the minimum and maximum Morton code values bmin and bmax in O(1)

time by computing the Morton codes for the bottom left and upper right corners.

We then perform a binary search in Nodes to get the index range [bstart, bend] such

that Nodes[i], i ∈ [bstart, bend], corresponds to a sub-array that contains all vertices

whose Morton codes contained in the range denoted by [bmin, bmax]. An equivalent

way of describing Nodes[i] is that it contains all vertices in Nodes whose prefix is

mc(b).

For any block b, h[mc(b)] returns the pair (pb, rb), where pb is the representative

vertex of b and rb is the network distance of the farthest vertex in block b from pb

(i.e., radius). The representative vertex pb is chosen using a method discussed later.

By reusing the representative vertex pb for all blocks b, we significantly reduce the

computational complexity of the computation of ASDO with respect to a method

such as ε-DO [64] that chooses a representative point each time at random. If a block

does not already have a representative vertex, then we choose a new representative

vertex by invoking ChooseRep(), and then compute the radius of the block using

MaxDistance().

A simple and efficient way to choose a representative vertex (i.e., ChooseRep()

algorithm) is to pick the closest vertex to the geographic center of block b, termed

pgeob . Since we know the Morton code of block b, we can compute pgeob by scanning
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every vertex in b. This takes O(|b|) time where |b| is the number of vertices in b,

i.e., |b| = bend − bstart + 1.

MaxDistance() is implemented by using Dijkstra’s algorithm starting at pb

and terminating once all vertices in b have been visited. Note that if we model the

road network as a directed graph, for a potential oracle (A,B) under consideration,

rA is the maximum distance from all the other vertices in A to pA, while rB is the

maximum distance from pB to all the other vertices in B.

GetDistance() obtains the network distance d between pA and pB (i.e., d =

dG(pA, pB)). The CH method is a good choice to obtain these values and we use it

here. Of course any other network distance method such as [21, 25, 43] could have

also been used.

After we obtain the radius of the two blocks, rA for A and rB for B, and the

distance d between the representative vertices, we test if rA+rB
d
≤ ε. If so, then we

know that for any of vertices pair (s, t), s ∈ A, t ∈ B, recalling that d = dG(pA, pB),

we have that

dG(s, t) ≤ dG(pA, pB) + rA + rB ≤ (1 + ε) · d (2.1)

dG(s, t) ≥ dG(pA, pB)− rA − rB ≥ (1− ε) · d (2.2)

which it is consistent with Equation 1.2.

Reusing the representative vertices has a significant impact on the total cost

of the precomputation. Theorem 2.2 below shows that the total time complexity for

ChooseRep() and MaxDistance() as a result of reusing representative vertices

is O(n log2 n). In contrast, choosing the representative vertices at random results
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in an algorithm with a time complexity of O(n2). This is one of the reasons for the

scalability of the method of ASDO over ε-DO [64].

Lemma 2.1. Assuming γH
γL

is a constant for the given spatial network, the number

of accepted oracles and the potential oracles examined by Algorithm 1 are both O( n
ε2

).

Proof. The developers of ε-DO proved that given a spatial network with constant

ratio γH
γL

, they can construct an oracle of size O( n
ε2

) [64]. Similar to their proof, the

number of accepted oracles for ASDO is also O( n
ε2

). In our construction process, one

failed oracle produces 16 potential oracles. Since the number of accepted oracles is

Nac = O( n
ε2

), the number of potential oracles examined by Algorithm 1 is: Ntot =

Nac + 1
16
Nac + 1

162
Nac + ... = 16

15
Nac

Theorem 2.2. Assuming that given a spatial network, the maximum depth of the

PR quadtree is O(log n), and the time complexity of ChooseRep() is less than

or equal to O(|A| log |A|) for every quadtree block A, then the time complexity of

precomputing ASDO is bounded by O(n log2 n+ n
ε2
· Time(CH)), where Time(CH)

is the average response time for a single exact network distance query.

Proof. As we see, Algorithm 1 calls three external functions: ChooseRep(), MaxDistance(),

and GetDistance(). For each quadtree blockA, ChooseRep() and MaxDistance()

are only calculated once. So, we analyze these two functions first. Since MaxDistance()

is Dijkstra’s algorithm, its time complexity is O(|A| log |A|). So, if the time complex-

ity of ChooseRep() is less than or equal to the time complexity of MaxDistance(),

then MaxDistance() would dominate the time consumption among these two func-

tions.
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Without loss of generality, here we assume that the maximum depth of the

PR quadtree is bounded by O(log n), since if in a road network input there are two

vertices that are infinitesimally close to each other thus causing the depth of the PR

quadtree to be arbitrarily large, then they are typically due to errors in the dataset,

which can be cleaned up by a preprocessing step that merges such vertices. We first

obtain the time complexity of MaxDistance() for each depth. Note that we only

invoke MaxDistance() for a quadtree block A if the number of network vertices

in A is larger than 0, i.e., |A| > 0. At depth l, suppose that there are Kl quadtree

blocks that |Ai| > 0, i ∈ [1, Kl]. Since each vertex of the spatial network must be

located in one of the Kl quadtree blocks, we have
∑Kl

i=1 |Ai| = n. Then, the upper

bound of the total time complexity of MaxDistance() at depth l is

Tl(n) =

Kl∑
i=1

|Ai| log |Ai| ≤
Kl∑
i=1

|Ai| log n = n log n (2.3)

Thus, the upper bound of the time complexity of MaxDistance() in the whole

process is

T (n) =

O(logn)∑
l=1

Tl ≤ O(n log2 n) (2.4)

On the other hand, the lower bound can be obtained by considering the total time

complexity of MaxDistance() in the best case scenario that the number of vertices

in one quadtree block is always 1
4

that of its parent block. The total time complexity

T ∗(n) of MaxDistance() in this case is given by the Master theorem:

T ∗(n) = 4 · T ∗(n
4

) +O(n log n) = O(n log2 n) (2.5)

Thus, the lower bound of MaxDistance() in this process is also

T (n) ≥ T ∗(n) = O(n log2 n) (2.6)
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From the inequalities (2.4) and (2.6), we know that T (n) = O(n log2 n) when the

maximum depth of the PR quadtree is O(log n).

In the second part of this process, GetDistance() is invoked for each poten-

tial oracle. Based on Lemma 2.1, it would result in Ntot invocations of a network dis-

tance algorithm (e.g., the CH algorithm), where Ntot is O( n
ε2

) as well. Since this invo-

cation is to a module that is essentially a black box to our algorithm and furthermore

we have multiple instances of the algorithm running on different machines to hide

latency, the time complexity of GetDistance() is essentially O( n
ε2

) · Time(CH).

Note that since most latency methods such as CH have a pre-processing stage, their

latency time, e.g., Time(CH), is far less than O(n).

In summary, the total time complexity of computing ASDO is O(n log2 n) for

ChooseRep() and MaxDistance(), plus O( n
ε2
·Time(CH)) for GetDistance().

Next, considering function ChooseRep(), there are many ways of implement-

ing the ChooseRep() function to compute the representative vertex of each block.

An efficient way is to choose the pgeoA for a block A. It can be calculated in a single

scan, which takes O(|A|) time. In fact, if we build a spatial index for the vertices,

then we can compute pgeoA in O(log n) time. Later, refer to this method as the Geo

method.

From our experiments, we found that pgeo is a time-efficient choice but not

a space-efficient choice in the sense that it is possible to choose the representative

vertex in a different way to further reduce the size of the resulting oracle.
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The rationale for choosing the geographic center is because pgeoA tends to make

rA smaller, hence rendering rA+rB
d
≤ ε easier to achieve. However, the geographic

method is just a heuristic approximation of a method that identifies a vertex pcA that

minimizes the distance to the farthest vertex from it, i.e., rA(pcA). This vertex is

known as the graph center (or Jordan center) [73]. Using pcA and pcB means that we

minimize rA and rB as well as their sum, making rA+rB
d
≤ ε more likely. We found

that using the graph center reduces the number of oracles by 35–55% compared

to the geographic method. Unfortunately, there is no efficient way to compute

the graph center other than the O(|A|2 log |A|) method, which essentially results in

running Dijkstra’s algorithm |A| times. As a way of keeping this cost under check,

we use the graph center algorithm sparingly. In particular, only use it if |A| is small

(i.e., less than 2, 000 vertices in our case); otherwise we use the geographic method

for lager blocks. We found this approach to be also much more space-effective than

the geographic method in our experiments since most accepted oracles consist of

medium or small size blocks. We refer to this method as the Hybrid method in the

experiments section.

2.2.2 Task Partition and Parallelism

As the size of the computation becomes larger, we need a distributed archi-

tecture to compute ASDO since it takes a long time with a single machine. The

quadtree structure that we use to represent the oracles lends itself to partition the

workload. From Algorithm 1 and Figure 2.3, we observe that the task of examining
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Figure 2.5: Distributed architecture for computing the ASDO representation

each potential oracle is essentially a data-independent task. Based on this observa-

tion, we design and implement a distributed architecture for ASDO precomputation

showed in Figure 2.5.

Since precomputation takes a bit of time, we employ the Hadoop framework

to benefit from its in-built fault recovery feature. There is a bank of machines

that handle network distance queries needed during precomputation. As mentioned

before, we run the CH Algorithm [39] (referred to as “CH servers”) in these machines

that are accessed through a load balancer. We also run a caching service on the CH

servers for saving and retrieval of information about (pA, rA). These are essentially

key-value stores where the Morton codes of the blocks form the keys. Finally, we

use a distributed queue (e.g., ActiveMQ) for task assignment.

We decompose the precomputation step into two steps. In the first step,

the CH servers load the graph in their main memory and perform extensive graph

operations. The goal here is to load the graph once, use it many times and store
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auxiliary information for later use. In the second step, the map tasks simply query

the CH servers without requiring any graph information. Since in this framework,

the state information is stored in the queue, unless the queue fails, the map process

can terminate and restart.

In the first stage of computing, we compute ChooseRep() and MaxDistance()

for each quadtree block A and save the result to the caching server. As shown in

Figure 2.6, we decompose the road network into 16 quadtree blocks in the Morton

order such that each quadtree block fits in the main memory of the machine. This is

loaded from the HDFS into the main memory where it resides until the first stage is

complete. We then select the representative vertex either by choosing a vertex near

the geographic center of a quadtree block for the Geo method or apply the graph

center algorithm to compute the center for the Hybrid method. Once we have ob-

tained the representative, we compute the radius of the quadtree block by applying

Dijkstra’s algorithm. We save the representative vertex for each quadtree block and

its radius in the caching server. We then subdivide the quadtree block and continue

processing until we reach the leaf blocks. These algorithms are implemented in the

graph algorithm module given in Figure 2.5. At this point, for every block in the

quadtree, we have stored a representative vertex and its radius.

In the second stage of processing, we start by populating the distributed queue

with the potential oracles corresponding to an initially chosen depth. For the US,

we choose a depth of 4 as shown in Figure 2.6, so we initialize the quadtree with 16

blocks and the queue with 162 potential oracles. We do this since starting with the

root potential oracle (S, S) results in a “slow” start for our algorithm as the quadtree
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Figure 2.6: Initial decomposition of the US dataset where each quadtree block fits

in main memory

blocks are really large and these may eventually not participate in any accepted or-

acles. Moreover, the initial depth is chosen as 4 since the graph representation

corresponding to the quadtree block fits in the main memory of the machine. For

larger quadtree blocks than these, we don’t need to compute the representative ver-

tices and the radius. Computing ASDO starts by requesting a potential oracle from

a queue. Then the check process would invoke ChooseRep(), MaxDistance(),

and GetDistance() by making requests to the CH servers. Finally, check if the

potential oracle satisfies the WSP property. If it does not, then decompose the po-

tential oracle into its 4×4 children potential oracles and insert them into the queue;

otherwise, the potential oracle is saved to the HDFS as an accepted oracle. When

the process finishes, ASDO has been computed and can be loaded into a database.

2.2.3 ASDO Representation

Given a source location p1 = (lat1, lng1) and a destination location p2 =

(lat2, lng2), traditionally computing the shortest distance between them requires
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two steps: (1) Find the nearest road vertices s, t to p1 and p2, respectively; (2)

Calculate the network distance between s and t. The first step requires a query to a

spatial index (e.g., k-d tree, quadtree, R-tree, etc.) to obtain the nearest vertex, after

which the network distance can be obtained by traversing the graph information.

Our ASDO method can directly take the source and destination locations to obtain

the network distance, which means that we get step (1) for free.

Once ASDO has been computed, we load it into a table in a relational database

system. The schema of ASDO is given by (code, d), where code is a concise represen-

tation of the accepted oracle and d is the approximate network distance. Although

such a schema is similar to the one proposed in ε-DO [64], our method just uses

the default integer comparator operator instead of redefining the string comparator

operators (i.e., < and =) while searching for a code using the B-tree. This is im-

portant because the default integer comparator saves much time in contrast to the

redefined string comparator.

To illustrate our newer method for packing the code, we first start with a

simpler two-dimensional example (i.e., Z2) and we then describe how to encode

an accepted oracle as a four-dimensional Morton block. Suppose that we have a

number of varying length Morton codes in two-dimensions, which means that the

corresponding quadtree blocks are at different depths. The simpler problem we

want to solve is that we are given a point p, and we need to efficiently find a unique

quadtree block A containing p. Here we assume that the uniqueness property from

the property of WSP [28] is also true in this simpler example. The uniqueness

property here means that there is exactly one quadtree block containing p such as
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in Figure 2.2(b). This search problem is equivalent to finding the unique mc(A)

such that PREFIX( mc(A), mc(p)). This is done in ε-DO [64] by truncating one

of the two comparand Morton codes to be the same length as the other Morton

code and then checking if they are the same value. Truncating the Morton codes

to make them the same length is the reason why ε-DO [64] requires overloading the

comparison operator.

Instead of truncating one of the Morton codes, our approach is to make all

the Morton codes have the same length by padding them with enough zeros, so that

all Morton codes are always the same length, i.e., 2 ·L bits long in two-dimensions.

For any Morton code mc(A), padding with enough zeros is equivalent to choosing

a unit-sized block that is a descendant of A in the quadtree that has the smallest

Morton code. This needs to be done carefully as we illustrate with the following

example. Suppose that our two-dimensional oracles has ten quadtree blocks as in

Figure 2.2(b) whose Morton codes are 0000, 0001, 0010, 0011, 01, 10, 1100, 1101,

1110, and 1111. Only two Morton codes 01 and 10 are not 4 bits long. Thus,

consider the quadtree blocks 01 and 10 in Figure 2.2(b), which we convert to 0100

and 1000 respectively by padding zeros to the right hand side. The codes of our

oracle become: 0000, 0001, 0010, 0011, 0100, 1000, 1100, 1101, 1110, and 1111 in

order. Given a query point p = 0111 that is contained by a unique quadtree block

A. To find A, we need to find a quadtree block in the B-tree such that it is the

largest value that is less than or equal to p, which in this case is 0100 (i.e., quadtree

block 01, which is the correct answer).

Now going back to ASDO, we obtain a four-dimensional Morton code by inter-
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leaving mc(A) and mc(B) two bits at a time. This packing is given by the function

Z4(A,B). Next, we define function Z0
4(A,B) by padding Z4(A,B) with zeros to the

right side. For example for the blocks in Figure 2.2(b), Z4 and Z0
4 should be

Z4(01, 10) = 0110 Z0
4(01, 10) = 01100000 (2.7)

Z4(0000, 1111) = Z0
4(0000, 1111) = 00110011 (2.8)

This packing Z0
4 produces a Morton code of 4 · L bits length. This forms the

code attribute of the relation table which is indexed by a B-tree. At this point,

given a source location p1 and a destination location p2, the approximate network

distance query first calculates key = Z0
4(mc(p1),mc(p2)) in O(1) time which will

be introduced in Section 2.5.1 and then issues the following query that is answered

extremely efficiently by the B-tree index on code.

SELECT code, d SELECT code, d

FROM ASDO FROM ASDO

WHERE code = ( OR WHERE code <=key

SELECT max(code) ORDER BY code DESC

FROM ASDO LIMIT 1

WHERE code<=key)

This scheme works because of the uniqueness property of WSP. For any two

points in the domain S, there is exactly one WSP containing them.

To choose a suitable value of depth L, one consideration is that ideally L

should be less than or equal to 16, so that the Morton code Z4 can fit in a 64 bits

integer. Thus, having a longer Morton code does not affect correctness but increases
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the size of the oracle. For all practical purposes, we can safely truncate the quadtree

at a depth of 16 or less for most road networks. For instance, for the US dataset,

we use a depth of 15 which provides a resolution of 100 meters.

2.3 Experiments

In this section, we first describe our experimental environment in Section 2.3.1.

We give an overview for the previous latency and throughput methods versus ASDO

in Section 2.3.2. Next, we present a detailed evaluation of our approach, which

includes the following two components evaluated in Section 2.3.3 and 2.3.4, respec-

tively, 1) The cost of the pre-computation stage which computes all oracles and

inserts them into a database, 2) The latency time, the throughput performance,

and the accuracy of network distance queries.

2.3.1 Computing Environment

We evaluated two clusters for precomputing ASDO, one in-house and one on

AWS. Our in-house cluster consists of Intel Xeon(R) E3-1225 v3 CPUs @ 3.2GHz (4

cores) with 16 GB RAM. A single machine precomputes ASDO except for the USA

dataset, for which we employed a cluster containing 4 machines. To show scalability,

we use a modest cluster size of 20 Amazon EC2 m3.xlarge instances. Once ASDO

has been precomputed, it is loaded into a PostgreSQL 8.4.18 database which is used

to answer queries. PostgreSQL was installed on a larger server machine, which has

Xeon(R) L5520 CPUs (2.26 GHz and 8 cores), 24GB RAM with a commodity 2TB
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Table 2.1: Dataset Characteristics in ASDO

Name NY FL US *EU

Region NY City Florida USA Western Europe

# of Nodes 264,346 1,070,376 23,947,347 18,029,721

# of Arcs 733,846 2,712,798 58,333,344 42,199,587

Max depth (0.1m) 20 22 25 -

Practical depth (100m) 10 12 15 -

hard disk and a 7200 RPM RPM disk with 64MB Cache.

Table 2.1 provides the characteristics of the road network datasets used in

our evaluation. The first three datasets are from the 9th DIMACS Implementation

Challenge [3]. The last dataset is the Westen Europe (EU) road network which is

used in [20]. We do not use it in our evaluation since, instead, we use the larger US

road network dataset. The latitude and longitude values in the road network have

a resolution of at most 6 decimal place values. The maximum resolution in terms

of the number of bits needed to represent the coordinate values is 20, 22, and 25 for

the NY, FL, and US datasets, respectively. Since we employ a quadtree to discretize

the positions of the vertices on the road network, we need to choose the maximum

depth of the quadtree at which to truncate it. For the experiments in this section,

we terminate the decomposition process in the ASDO computation step at the 100

meter depth. The maximum depth L of the quadtree headed to provide a 100 meter

resolution for the NY, FL, and US datasets is 10, 12, and 15, respectively. This
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means that if the source and the destination are closer than 100 meters, then we

simply return the Euclidean distance between them. If not, ASDO is guaranteed

to provide the ε-approximate network distance. In addition, the length of Z2 for a

unit-size block is (2 · L). Limiting the oracles to this resolution also enabled us to

pack the Morton block of each accepted oracle inside a 64 bits integer for the US

dataset. We need just 40, 48, and 60 bits to represent an accepted oracle for the

NY, FL, and US datasets, respectively.

2.3.2 Network Distance Retrieval

We first compare ASDO and the related methods based on the latency needed

to compute network distances on a road network. Table 2.2 summarizes the results

reported in previous work for the datasets that we use in this chapter. Note that

since ε-DO is not scalable even for the NY dataset, we cannot show the latency

and throughput results of ε-DO here. The first three methods CH [39], TNR [25],

and DisLand [43] are memory-based latency methods. Wu et al. [74] is an exper-

imental survey that separated queries into various groups and tested the average

latency time for each query group. From the experimental survey [74], the response

times of both CH and TNR are different from their response time in [39] and [25].

HLDB [20] is the first practical method inside a database. Comparing these methods

is not straightforward in the sense that the methods differ in terms of their stor-

age and precomputation requirements. The in-memory latency methods compute

network distance values at run-time, while the throughput methods simply retrieve
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the network distance from a precomputed representation. Even among the latency

methods, they differ in the amount of preprocessing requirements before they can

be used. Since we use standard road network datasets, we first take results from

related work to draw broad conclusions from the comparison results in this section.

Then, we only implement CH and HLDB in our later experiments.

Table 2.2: Latency and Throughput Results of ASDO

Name ref. Avg latency time (ms) Avg throughput/sec

[74] 5–20, FL

CH 5–50, US 350, US

[39] 0.2–1.2, EU

[74] 1–10, FL

TNR 1–20, US 2000, US

[25] 0.01–0.3, US

DisLand [43]
0.01–0.1, FL

0.1–0.3, US

3571, US

HLDB [20]
10–30, FL

30–70, EU

-

0.20, NY (HDD)

ASDO - 0.22, FL (HDD) 65000, US

0.24, US (HDD)
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Table 2.2 gives the average latency for a distance query in the various datasets,

and its average throughput per second for the largest dataset, US. Among the latency

methods, the DisLand method is significantly faster than the CH and TNR methods.

As expected, HLDB under a hard disk drive (HDD) environment is slower than

memory-based algorithms. For all methods except ASDO, the latency for a distance

query is given as a time range since the time to compute the network distance

depends on the distance between the source and the destination. For instance, the

latency is higher if the distance between the sources and destinations is large. In

contrast, the latency time of ASDO for a distance query is relatively constant (i.e.,

it does not vary for different shortest distances). ASDO is also significantly faster

than all other latency methods, with the exception of the DisLand method. ASDO

is almost 100× faster than HLDB for the same dataset. The reason for this is that

HLDB performs an expensive join operator in order to retrieve a network distance,

while ASDO performs a B-tree lookup which is the reason that its latency is around

0.20 ms for all three datasets.

The real benefit of ASDO is that it can provide a high throughput rate com-

pared to the latency methods. For instance, by just using a single machine, ASDO

can answer about 65, 000 network distance queries within one second, which is an

order of magnitude higher than any of the latency methods. We discuss the through-

put results in more details in Section 2.3.4. To summarize, ASDO has comparable

latency, while providing significantly higher throughput compared to the state-of-

the-art latency approaches.
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Figure 2.7: Pre-computation performance varying ε

2.3.3 Precomputing ASDO

In this section, we first show how the different strategies for choosing the

representative vertices significantly affect the number of accepted oracles. ASDO-

G-ε denotes the Geo method, where the representative vertex is the one that is

closest to the geographic center, and ASDO-H-ε indicates that the representative

vertex is chosen using the Hybrid method that we discussed earlier.

Figure 2.7(a) shows the time to compute the oracles using a single machine.

ASDO for the NY and FL datasets can be done in less than an hour for a fairly

large ε value of 0.5 and in a little over 10 hours for ε = 0.1. Note that these are large

datasets comprising road networks of states in the US and being able to compute

them within a few hours on a single machine means that computing the oracles is a

practical proposition. Furthermore, we later show for the US dataset that by adding

more machines to the computing infrastructure, we can significantly speed up this

process. Next, for each method, we provide the number of accepted oracles for the
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NY and FL datasets in Figure 2.7(b). Here we let ε vary taking on the values 0.5,

0.25, 0.2, and 0.1. We observe that as ε decreases, the number of accepted oracles

increases. Figure 2.8 plots the ratio of the number of oracles and n
ε2

versus ε. The

relatively horizontal lines in Figure 2.8 confirm that the number of oracles conforms

to C · ( n
ε2

) for the NY and FL datasets, where the value of C ranges between 8 and

14 for the Hybrid method, and between 11 and 18 for the Geo method.

Figures 2.7(a) and 2.7(b) show that the computation time is linear with the

number of accepted oracles since the slope rates of the lines in the two figures are

similar. From Figure 2.7(a), we can see that it is faster to compute ASDO-G than

ASDO-H when ε is large, but is slower as ε decreases. This is because computing

the center of the subgraph dominates the execution time for larger values of ε (e.g.,

0.5), while the time to compute the network distance between representative points

starts dominating as the value of ε decreases.

Next we show scalability results in Table 2.3 for ASDO using the US dataset
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Table 2.3: Precomputation for ASDO on US Dataset

Performance ASDO-H-0.25 ASDO-G-0.25

Cluster Size

4

20

Speed-up

Time

1.2 days

7.1 hours

4.05

Time

1.4 days

7.9 hours

4.25

Number of oracles 4.6 billion 10.4 billion

C = Number of oracles / (n/ε2) 11.9 27.0

with ε of 0.25. For this experiment, we used two clusters: an in-house cluster of

4 machines and an Amazon EC2 cluster with 20 machines. We show the results

for both the Geo and the Hybrid methods. From the table, it can be seen that

precomputing ASDO can reduce the time needed from 1.4 days when using 4 ma-

chines to a little over 7 hours when using 20 machines. This constitutes a speed

of 4.05 and 4.25 for the Hybrid and Geo methods respectively. Note that by going

from 4 machines to 20 machines, we have roughly scaled the computing cluster by

a factor of 5. The speedups we obtained for both methods are very close to 5 which

indicates that our algorithm provides a linear speedup in the number of machines,

which is a desirable property that one expects from parallel algorithms. Moreover,

the cluster compute and storage cost for precomputing the oracle is less than $30

based on AWS December 2015 prices. These results provide powerful support for

our claim vis-a-vis the feasibility of our method since it is cheap to precompute and
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can be further sped up by simply adding more machines. In fact, if need be, the

oracle can simply be recomputed rather quickly if there are large scale changes in

the road network such as major road closures etc.

Table 2.3 shows that the Hybrid method significantly reduces the number of

oracles compared with the Geo method. We see that the value of C is around 12

for the Hybrid method but much higher at 27 for the Geo method. Note that the

value of the constant C depends on the nature of the dataset, but the range is still

narrow thereby enabling us to estimate the expected disk usage. Finally, Figure 2.8

shows that C decreases as ε decreases, which is a good news for applications that

require higher accuracy.

Database Choices and Disk Usage. Once ASDO has been computed, we next

load it into a database system. The structure of ASDO is simple enough so that it

can be loaded into a number of database families – row stores (e.g., PostgreSQL),

column stores (e.g., MonetDB [26] and C-Store [70]), and key-value stores (e.g.,

Berkeley DB [48], HBase [29], and Redis [16]). PostgreSQL takes 285 GB to store

ASDO for the US dataset containing 4.6 billion accepted oracles. This is much

more than what we had expected since we are essentially just storing a bigint for

the Z0
4 value and a float for the network distance value, which should amount to 12

bytes for each tuple, with a total expected storage of 55.2 GB for the US dataset.

The overhead in storage is due to the extra 27 bytes of the fixed-size header for

each tuple as well as the additional space for the B-tree index. Column-oriented

databases are much more space efficient than either row or key-value stores. For

example, MonetDB [26] does not require extra disk storage since it stores by at-
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tributes without requiring additional header information per tuple. In addition,

some column-oriented databases also apply a compression on each column to fur-

ther reduce the disk usage. Berkeley DB [48] with a B-tree index also requires extra

disk usage since it needs header information to record the type of the data and its

value. To quantify the additional space overhead, if the theoretical size of a tuple is

12 bytes, then the actual disk consumption for including an index is roughly 5.1×

on PostgreSQL, 1.0× on MonetDB, and 3.5× on Berkeley DB.

2.3.4 ASDO Query Time and Accuracy

In this section, we evaluate the performance of the query response component

from the perspectives of latency, throughput and accuracy. We have two query types:

basic query and analytic query. Basic query performs a single network distance

query and its corresponding SQL query is given in Section 2.5.2. Analytic query is

expensive including thousands to millions of network distance computations. For

example, suppose a database has a relation of universities and restaurants, and we

want to find the average network distance from each university to its 10 closest

restaurants (see Section 2.5.3 for the SQL query).

Our experiments found very little difference between the the Hybrid and Geo

methods when it comes to query processing. Hence, here we only report the results

of the Hybrid method. Our SQL queries are submitted via JDBC using a Java

program to the PostgreSQL server. To avoid the influence of the network delay

on time-consuming testing, we used the “UNION ALL” operator in PostgreSQL to

45



combine multiple SQL queries into one server roundtrip.

Table 2.4: Average latency time and error for the basic query in ASDO

Datasets ε Avg Time (ms) Avg Error

NY

0.1

0.25

0.5

0.23

0.20

0.19

1.50%

3.55%

5.35%

FL

0.1

0.25

0.5

0.24

0.22

0.21

1.30%

2.89%

4.77%

US 0.25 0.24 2.74%

For every dataset used in the basic query experiments, we randomly generated

100,000 source target pairs to test the performance. Table 2.4 provides the average

latency and the error percentage. The average latency time is stable ranging be-

tween 0.2 to 0.3 ms for a single distance query, which is similar to the amount of

time needed by the fastest memory-based methods. Moreover, since our method is

incorporated into a database, each SQL query just accesses the B-tree index. The

database can batch multiples of these lookups in the B-tree at the same time in

order to obtain a high throughput, e.g., 65, 000 shortest distance pairs within one

second for multiple users or an analytic query.

On the other hand, the average error of ASDO is much smaller than the

46



10
-2

10
-1

10
0

10
1

10
2

1 4 16 64 256 1024 4096

T
im

e
 (

m
s)

Distance (km)

ASDO-0.25-NY

ASDO-0.25-FL

ASDO-0.25-US

CH-US

(a) Comparison to CH

10
-1

10
0

10
1

10
2

NY FL US

T
im

e
 (

m
s)

Dataset

ASDO

HLDB

(b) Comparison to HLDB

Figure 2.9: Latency time comparisons between ASDO, CH, and HLDB: (a) We com-

pare ASDO to CH by grouping results based on the network distance between the

sources and destinations. (b) We compare ASDO to HLDB on three road networks

under the same database and hardware environment.

corresponding error bound ε, which is roughly ( 1
10
· ε). We also observe that ASDO

is much faster than the memory-based methods and HLDB, with a small sacrifice in

accuracy. Below we provide more details on the effect of varying ε and the distance

on the response time and accuracy.

2.3.4.1 Latency Time and Throughput for Basic Query

Figure 2.9 compares ASDO, CH, and HLDB. The HLDB implementation in

our experiments is based on [21] and [20]. We computes the hub labels for each

vertex using the forward CH search and backward CH search with the stall-on-

demand heuristic modification [21]. Figure 2.9(a) tabulates the latency time for a

single distance query using ASDO on a number of different datasets and different

distance values. We use the CH method as the ground truth to compute the resulting
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error in the answer provided by the distance oracle. We report by grouping results

based on the network distance between the sources and destinations. In particular,

we bucket results into ranges given by [2x, 2x+1), where x is an integer and 2x is in

kilometers. Unlike other previous approaches given in Table 2.2, the latency time

for ASDO is relatively constant, taking about 0.2 ms. Furthermore, the retrieval

time is the same across all the three datasets, even for the US dataset which is much

larger than the rest. This is on account of using a B-tree which provides a scalable

behaviour across oracles of different sizes. This is in contrast with the CH method

where the latency increases with the increase of the network distance between the

sources and the destination as well as increases as the road network dataset becomes

larger. Figure 2.9(b) illustrates the performances of ASDO and HLDB on three road

networks in the same PostgreSQL database and HDD environment. As the retrieval

time of HLDB is also independent of the network distance [20], we immediately

compare the average latency time between ASDO and HLDB. ASDO is almost two

orders of magnitude faster than HLDB since HLDB needs a join operator between

forward hubs and backward hubs for each basic query.

As seen in Figure 2.9(a), ASDO is slower than CH for short distance queries.

However, this denotes a case where a single user is posing queries on both CH and

ASDO. The situation becomes quite different when multiple users are posing queries

at the same time. In this case, a method that can deliver a high throughput without

significant degradation of latency is desirable. The throughput of ASDO and CH and

the latency degradation of ASDO are shown in Figure 2.10, while varying the number

of concurrent users. In Figure 2.10, ASDO-US-throughput and CH-US-throughput
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Figure 2.10: Throughput (queries/second) and latency for varying numbers of users

use the left y-axis for the average throughput, while ASDO-US-latency uses the right

y-axis for the average latency. In order to model a workload of concurrent users

submitting concurrent queries, we implemented a JAVA program that repeatedly

generates pairs of vertices at random and submits a query to compute the network

distance between them to a database. We keep varying the number of users between

1 and 45 and measure the latency as well as the number of total queries that the

system can answer in one second (i.e., throughput). The maximum throughput

we obtained was 64,285 queries per second with 45 concurrent users. Increasing

the number of users beyond 45 users results in a small increase to the throughput,

indicating that the system has reached saturation. While the throughput increases

because of more users, the latency time also increases. When the number of users

is less than 16, the increase of the latency is negligible. After 16 users, the latency

increases in a linear rate with the number of users. For reference, we also plot

throughput for CH on the US dataset. As this is a memory-based algorithm that

stores the graph and auxiliary information in memory, we couldn’t run more than
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one instance of CH on a machine, and each instance could only process one query

at a time.

2.3.4.2 Analytic Query Performance

ASDO can efficiently process analytic queries as it can respond to a large

number of network distance queries. Figure 2.11 provides the time performance of

Dijkstra’s algorithm, CH algorithm, and our ASDO algorithm for an analytic query.

Section 2.5.3 provides the KNN SQL query in detail. We have two relations in the

PostgreSQL database. One relation contains 6,070 locations of universities from [7],

and another relation contains 49,573 locations of fast food restaurants from [5]. The

schema of both tables is (id, Z2 code, latitude, longitude), where we precomputed

the Z2 code.

The KNN query with which we experimented obtains the K nearest restau-

rants for each university in Figure 2.11(a), and the K nearest restaurants for each

restaurant in Figure 2.11(b). ASDO first used PostGIS index to retrieve a candidate

set of restaurants that have the potential to be the K nearest neighbors for each

university (or restaurant), then computed the network distances for each university-

restaurant (or restaurant-restaurant) pair. In particular, we restrict the search space

around each university (or restaurant) to a small window. This window ensures that

the K nearest neighbors must be located in the window. Note that the window size

is different for each source location. Dijkstra’s algorithm is implemented using a

heap to speed it up. It starts at each university to search, and stops if the search
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Figure 2.11: Response time for the KNN query, where the destinations of both (a)

and (b) are 49, 573 restaurants.

for this university has visited K restaurants. The CH algorithm finds all pairs of

universities and restaurants, where the restaurant is in the window of the university,

then computes the distances between the pairs, and finally sorts the result to get

the top K restaurants for each university. ASDO computes the query in the same

way as the CH algorithm.

From Figure 2.11, we can see that ASDO is much faster than CH. Although

Dijkstra’s algorithm is considered efficient for the KNN query, it is only faster than

ASDO when K is very small, e.g, 5. For lager values of K, ASDO is at least 5X

faster than Dijkstra’s algorithm. ASDO has the additional advantage that a user

can express complex queries using SQL in a few minutes, while doing the same with

the other methods would require significant programming effort. For example, the

SQL code of ASDO for the KNN query is 30X shorter than the C++ code of the

Dijkstra or CH algorithms.
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Figure 2.12: Percentages of queries along with associated errors: it shows that very

few of queries achieve the error bound ε. Thus, Although ε = 0.25, which is not

very small, it is sufficient for most queries.
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Figure 2.13: The maximum and average errors varying with their exact network

distances

2.3.4.3 Accuracy with varying ε

Figure 2.12 describes the percentage of queries with particular errors for oracles

for different datasets and built with ε values of 0.1 (10%), 0.25 (25%), and 0.5 (50%).

All queries whose error percentage lie between [x, x+1), x ∈ Z are grouped together.

For example, the ASDO-H-0.25 lines in Figure 2.12 indicate that more than 20%

of the queries contain less than 1% errors even though ε = 0.25 (25%). From the

above experiments, we believe that ε = 0.25 is sufficiently accurate for most real

applications as it provides a reasonable balance between decreasing disk usage and

increasing accuracy.
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Figure 2.13 provides another view on errors, which groups together the queries

whose exact network distances lie in [2x, 2x+1) where x is an integer and 2x is mea-

sured in kilometers. For each dataset and ε setting, we plot the maximum and

average errors for every group. The maximum errors are close to the given error

bound ε, but just few of queries attain the error bound. Note that the average error

is relatively independent of the distance. This means that ASDO is good for both

short and long distance queries.

2.4 Related Work

Latency approaches are designed to answer a single or a small number of short-

est path or network distance queries on road networks. The original road network or

a processed representation of it is stored in memory and queries perform operations

on this in-memory representation. The most common latency approach is Dijkstra’s

algorithm [37]. Other methods [21, 22, 25, 30, 34, 39, 40, 43, 55, 61, 76] operate on

the observation that some vertices in a spatial network are more important than

others in answering shortest path queries. These methods offer different trade-offs

between pre-processing time, storage, and query time. RE [40] prunes unimportant

vertices using a bidirectional version of Dijkstra’s algorithm. HL [21] and m-hop [30]

find hub nodes or distance labels such that the network distance between any two

vertices can be computed by just checking their hub nodes or distance labels. Dis-

Land [43] and LLS [55] find landmarks among network vertices to speed up network

distance queries. [22,25,34,39,61,76] build an explicit hierarchy graph to overcome
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the drawbacks of Dijkstra’s algorithm.

Precomputing ASDO requires knowledge of the network distances between

some of the vertices in the road network. To do this, we use the CH method [39],

which is one of the fastest available in-memory methods. CH also has a pre-

processing stage where it computes an importance score for each node and then re-

places some original edges by shortcuts. For a spatial network with n vertices, [39,74]

show that CH takes O(n) additional space to store this auxiliary information. For

the full USA road network data, we found that CH’s pre-processing stage takes

about one hour and generates 24.5 million shortcuts. The response time for a single

path and distance query is in the 0.1–10 ms range.

Other latency methods such as [69, 72] take advantage of the spatial infor-

mation associated with the vertices and edges of a road network and use geometric

techniques. Road Network Embedding (RNE) [69] applies a Lipschitz embedding [42]

to a road network, such that vertices of the spatial network become points in a high-

dimensional vector space. In this method, all operations on the road network hap-

pen in the high-dimensional space. [72] takes advantage of the fact that the shortest

paths from vertex u to all other vertices can be decomposed into subsets based on

the first edges on the shortest paths from u to them. This property is referred to as

spatial coherence in ε-DO [64] and is used by [72] to speed up Dijkstra’s algorithm.

They store a few geometric objects for each vertex in the road network that can

prune searches during run-time.

A characteristic of throughput methods is that the shortest paths and distances

are precomputed so that the query process only requires a lookup as opposed to any
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real computation on the fly. The resulting precomputed representation is large so

that it is stored on disk thereby affecting latency. On the other hand, these methods

are good for obtaining a high throughput since multiple lookups can be batched up

at the same time thus increasing the number of queries that can be answered at the

same time, although each query may take a bit more time.

Among the throughput methods, [64, 65, 67] exploit the spatial coherence of

both sources and destinations in the sense that if a set of vertices are sufficiently

far away, then distances between pairs of points in different clusters are similar.

The Path-Coherent Pairs Decomposition (PCPD) [67] gives one exact shortest path

algorithm, while the ε-DO [64,65] provides an approximate network distance with ε-

error guarantees and O( n
ε2

) space. [52] looks at the task of computing spatial analytic

queries and experimentally compares their performance using the ε-DO architecture,

where query processing is completely handled by an RDBMS, and using a hybrid

architecture, where there are separate modules for the database, the road network,

and a query analysis tool. SPDO [54] is another method of using ε-DO inside a

distributed key value store such as Apache Spark. Another database-centric method

is HLDB [20] which can answer exact network distance queries and full shortest-path

even for an area as large as Europe containing 18 million vertices with complex SQL

queries.

In HLDB [20], the authors mention that most of the memory-based latency

approaches surveyed in [35] are difficult to embed into a database system and to

query using SQL queries. This is because most methods rely on complicated data

structures such as graphs and priority queues, which cannot be incorporated into a
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database system in which the fundamental building blocks are relational operators.

The main contribution of HLDB is the embedding of the memory-based hub labels

(HL) [21] method into a database. The HL method precomputes the hub nodes for

each vertex such that the distance between any two vertices s and t can be obtained

given only their hub nodes. However, compared with the best previous database-

centric oracle methods ε-DO [64, 65] and PCPD [67], HLDB has two drawbacks:

1) HLDB is not efficient if the average number of hub nodes per vertex is large;

2) Each spatial query in HLDB is a complex SQL statement that must perform a

join operator on “forward” and “backward” tables, so that HLDB cannot guarantee

query responses within a time bound. ε-DO uses much simpler SQL statements for

the query but in its original formulation takes quite a lot of time to build. In this

chapter we showed how to dramatically speed up its construction.

Wu et al. [74] evaluate several state-of-the-art methods (i.e., [25,39,64,67]) for

computing road network distance in the same environment. Even though they do not

make the distinction between latency and throughput methods, and only compare

all the methods from a latency perspective, there are some valuable lessons to be

learned from this work. It shows that TNR [25] and CH [39] have fast preprocessing,

low space overhead, support for real time queries, and the ability to easily handle

continental road networks with tens of millions of vertices. This inspired our decision

to use CH [39] for precomputing ε-DO. They also point out that although ε-DO and

PCPD are better for answering queries, they are not practical because they they

are too expensive to precompute. This chapter remedies this perceived deficiency of

ε-DO and enables it to scale to handle continental road networks such as the entire
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USA.

2.5 Querying ASDO in a Database

2.5.1 Function Creation

The function Z2 computes the two-dimensional Morton codes from the latitude

and longitude coordinate values by first normalizing them to real values that lie

between [0, 1). Next, it takes the binary representation of the decimal values, and

converts it to an L digit bits representation. This is following by a bit-interleaving

operation which takes a pair of integers and interleaves the bits to generate a 32-bit

number. In a similar manner, here we provide the shuffle function that takes two

Z2 integer numbers and generates a bit-interleaved 64-bit number Z0
4 . The shuffle

function performs a series of bit masking and shifting operations to interleave the

bits and is very efficient.

CREATE FUNCTION shuffle (x bigint, y bigint)

RETURNS IMMUTABLE bigint AS $$

BEGIN

x := (x | (x<<32)) & X’00000000ffffffff’::bigint;

x := (x | (x<<16)) & X’0000ffff0000ffff’::bigint;

x := (x | (x<<8)) & X’00ff00ff00ff00ff’::bigint;

x := (x | (x<<4)) & X’0f0f0f0f0f0f0f0f’::bigint;

x := (x | (x<<2)) & X’3333333333333333’::bigint;

y := (y | (y<<32)) & X’00000000ffffffff’::bigint;
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y := (y | (y<<16)) & X’0000ffff0000ffff’::bigint;

y := (y | (y<<8)) & X’00ff00ff00ff00ff’::bigint;

y := (y | (y<<4)) & X’0f0f0f0f0f0f0f0f’::bigint;

y := (y | (y<<2)) & X’3333333333333333’::bigint;

IF x > y THEN

RETURN (y << 2) | x;

ELSE

RETURN (X << 2) | y;

END IF;

END;

$$ LANGUAGE plpgsql;

2.5.2 Basic Query Example

We provide two variants of the basic query that retrieves the network distance

for a pair of vertices. ASDO of the US dataset is stored as the oracleusa relation,

which has a schema of (code, d). In the simplest case, the input is a key corresponding

to a four-dimensional Morton code.

CREATE FUNCTION dist (bigint)

RETURNS real LANGUAGE sql IMMUTABLE AS

’SELECT d FROM oracleusa where code <= $1

ORDER BY code DESC LIMIT 1’;

A variant of dist is in the case that the input corresponds to the latitude/-

longitude of the source and destination, respectively. A possible use case here is
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a mobile host on a road network that is computing a network distance to another

mobile host. The inputs to this function are four real values corresponding to two

latitude and two longitude values.

CREATE FUNCTION dist(real, real, real, real)

RETURNS real LANGUAGE sql IMMUTABLE AS

’SELECT dist(shuffle(Z2($1,$2), Z2($3, $4)))’;

2.5.3 Analytic Query Example

Next we illustrate two examples of the analytic query. One is the KNN query,

and the other is the ”walk score” query. More examples are provided online in http:

//roadsindb.com/.

In the KNN example, we have two location tables, named University and

Restaurant with schema (id, code, lat, lon). The KNN task is to find the top K

nearest restaurants for each university in terms of network distance. In order to avoid

computing all pairs of University and Restaurant, we need to compute a candidate

set of restaurants that have the potential to be the K nearest neighbors for each

university. Thus, we decomposed the task into two steps.

Step 1: Create a view named kdn, which computes the Euclidean distance to

the K neighbors using the GiST index and then compute the maximum network

distance amongK neighbors for each university. Note that here we translate distance

d to deg degrees assuming that 1 degree of latitude/longitude roughly equates to a

geodesic distance of 111 km.
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CREATE VIEW kdn AS

SELECT y.id as id, y.lat as lat, y.lon as lon,(

SELECT max(dist)

FROM (

SELECT dist(x.lat, x.lon, y.lat, y.lon)

FROM Restaurant x

WHERE x.gid != y.gid

ORDER BY x.geom<->st_setsrid(y.geom, 4326)

LIMIT K

) as foo

) / 111000 as deg

FROM University y

Step2: Compute all nearest restaurants for each university whose Euclidean

distance is less than or equal to d and then use dist to compute their corresponding

network distances and retain the K closest ones.

SELECT * FROM (

SELECT src, dst, dist, ROW_NUMBER() OVER

(PARTITION BY src ORDER BY dist) AS KNN

FROM (

SELECT kdn.id AS src, R.id AS dst,

dist(kdn.lat, kdn.lon, R.lat, R.lon)

FROM kdn, Restaurant R

WHERE R.lat between kdn.lat - kdn.deg

and kdn.lat + kdn.deg AND

R.lon between kdn.lon - kdn.deg
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and kdn.lon + kdn.deg;

) AS foo1

) AS foo2

WHERE KNN <= K

This method is correct because the Euclidean distance is a lower bound on

the network distance. The lower bound property guarantees that we find the KNN

within the candidate set.

Consider an analytic query that computes a “walking score” for houses. This is

a popular feature that is offered by many real estate websites (e.g., Zillow). Suppose

we have relations House, Mall of shopping malls, and University all with our usual

schema of (id, code, lat, lon). We define the walking score as the length of the shortest

trip that first includes a visit to a mall and then a visit to a university. The task is

to display the walking score for each house. Note that this query is complex since

choosing the closest mall to a house may not produce the smallest trip distance.

We can express such complex queries by writing just a few lines of SQL as we show

below, and which took us less than 10 minutes to write.

SELECT foo1.src, MIN(dist1 + dist2) AS score

FROM (

SELECT x.id AS src, y.id AS dst,

dist(shuffle(x.code, y.code)) AS dist1

FROM House x, Mall y

WHERE y.lat<=x.lat+C AND y.lat>=x.lat-C AND

y.lon<=x.lon+C AND y.lon>=x.lon-C
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) AS foo1, (

SELECT x.id AS src, y.id AS dst,

dist(shuffle(x.code, y.code)) AS dist2

FROM Mall x, University y

WHERE y.lat<=x.lat+C AND y.lat>=x.lat-C AND

y.lon<=x.lon+C AND y.lon>=x.lon-C

) AS foo2

WHERE foo1.dst = foo2.src

GROUP BY foo1.src

ORDER BY score DESC

where C is a rational value to restrict the search space around each house and each

mall to a window with dimensions 2C × 2C. The above SQL query first generates

foo1 where for each house it computes the network distances to a few nearby malls.

Then it generates foo2 where for each mall it computes the network distances to a

few nearby universities. Finally, it joins foo1 and foo2 based on the destination of

foo1 being the same as the source of foo2 (i.e., same mall). Then group the results

based on the house id to get the minimum “walk score” for each house.

2.6 Summary

We presented a new distributed framework, named ASDO, that computes

the ASDO representation efficiently so that it can be done in just a few hours

with a modest size cluster. The ASDO representation resides inside a database

system and can be used. Although our distance results are approximate bounded
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by ε, different applications can choose to balance the accuracy requirement and

disk usage according their own budget. So we offer a more flexible choice. At the

present, we achieve the basic functionality of systems such as Google Maps at a

cheaper cost, and surpass the previous systems since we allow users to create new

types of spatial queries in any declarative language. Our method in contrast to

ε-DO can easily handle a road network of the size of the USA containing more than

24 million vertices. It produces stable results and does not need any modification

to the database in which it is embedded. Compared to HLDB, it is two orders of

magnitude faster since it does not need to perform an expensive join operation that

HLDB performs. The latency of our method is relatively independent of the size of

the underlying road network and even smaller than state-of-the-art memory-based

methods (e.g. the CH method) when the network distance is reasonably long (e.g.,

greater than 30 kilometers). Furthermore, the throughput of our method greatly

outpaces memory-based methods reaching about 65, 000 queries/second with just a

single commodity machine. Thus our method can significantly speed up complex

road network analytic queries in any database system, so that users can create new

types of spatial queries using any declarative language.

Some directions for future work include the following. The first is to measure

the SQL query performance for more complicated spatial queries such as points of

interest (POI) queries which are frequently used in location-based services. The

second is to compare the performance of ASDO under different database systems as

the architecture of each database system provides different but ample opportunities

for optimization. So, a guide for the use of ASDO on different types of databases is
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needed. The third is to allow efficient updates of vertices and edges on ASDO for

incorporating the changes in the road networks due to factors such as road closures.

This requires devising ways of computing the oracle in piecemeal-fashion so as to

avoid having to compute it from scratch as we currently do. A similar problem has

been proposed recently [51], but it only considers the Euclidean distance metric. The

fourth is to develop other related oracles such as ones that deal with travel times

or traffic obstruction times. Addressing such problems would make the underlying

spatial database systems more powerful.
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Chapter 3: An Experimental Evaluation of Two System Architec-

tures for Analytic Queries on Road Networks

3.1 Overview

In this chapter, we present a general efficient solution for spatial analytic

queries. Our contribution is two-fold. The first is the proposal of two architectures,

the hybrid architecture (HY) and the integrated architecture (DO) using our ASDO

representation from the previous chapter, for solving spatial analytic queries. The

second is the formulation of efficient solutions for spatial analytic queries using

ASDO.

We propose the architectures and their modules by reviewing and summarizing

the existing solutions and use cases. Most existing spatial analysis tools use the HY

architecture illustrated in Figure 3.1, which separates the modules into two parts.

The first part deals with point-of-interest (POI) locations, relations, and attributes

in a database system, and while the second part retrieves shortest distance results

on a road network, which are usually processed in memory. Embedding our ASDO

representation into a database system makes the DO architecture in Figure 3.2

possible. Embedding map-based services within a database system is attractive as
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it allows developers to leverage the power of a database language to create new types

of online services resulting in easy programming, customization, and maintenance.

In addition, there are ample opportunities to use optimization to speed up a spatial

analytic query like finding the nearest restaurant for each coffee shop which ends up

making millions of shortest path queries.

In our examples, each spatial analytic query is expressed by just a few lines

of SQL that utilize pre-defined functions. In contrast, the situation is far more

complicated if for each of the queries users would have to devise efficient programs

in Java (or other high level programming languages) to obtain the necessary query

results.

In this chapter, we experimentally evaluate our ASDO solution in a database in

conjunction with a high-performance implementation of Dijkstra’s algorithm with

multi-threads on the entire USA road network. Dijkstra’s algorithm is the most

widely used method for spatial analytic queries (e.g., in Esri [4]) as it is adaptable

for most spatial analytic queries and is efficient for the single source query.

The rest of this chapter is organized as follows. Section 3.2 introduces the ana-

lytic queries and provides an overview of our two architectures. Section 3.3 presents

the traditional hybrid architecture for most existing spatial analysis tools, while

Section 3.4 proposes the integrated architecture using our ASDO representation.

Section 3.5 reports on a detailed experimental evaluation of our solutions, and we

provide our SQL functions and codes online in [17]. Section 3.7 summarizes related

works. We draw conclusions and review lessons learned in Section 3.8.
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3.2 Spatial Analytic Queries and Applications

A spatial analytic query on a road network performs hundreds of thousands or

even millions of shortest distance computations in the process of answering the query.

These types of queries are commonplace in many applications such as logistics, tour

planning, and the determination of service areas. Below, we provide a few sample

use cases gleaned from real user postings on ESRI [4] web boards and those that we

found elsewhere on the Internet.

Use Case 3.2.1. I am a taxi operator running a fleet of taxis. I have a dataset

of taxi trips each with a unique ID such that each trip has a latitude and longitude

values for both a pickup and a drop off point, as well as for way points at irregular

intervals. Such a dataset constitutes the trajectory information for each taxi trip.

I want to obtain the total number of miles travelled by each taxi this month. This

information is useful in computing the actual profit per km of all the vehicles in my

fleet and determining which of my drivers are better performers.

Use Case 3.2.2. I am an operator of a large hospital and have the geocoded address

of my patients and the locations of my clinics. Our hospital has more than 500 clinics

across the country. Each patient is assigned to the nearest clinic. I want to get the

average drive time for patients per clinic. This is an important metric in healthcare

since the further one has to drive, the poorer are the health outcomes. This distance

also informs us of the need to open new clinics or relocate existing ones to better

serve our patients.
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Use Case 3.2.3. I have a trucking company with 10 trucks that deliver thousands of

packages for a popular retailer. A common operation that I run several times during

each day is determining which packages should be loaded on to which truck and the

order in which they should be delivered. This decision process constitutes a complex

tour planning query that tries to minimize the total network distance travelled by all

trucks, as well as to accommodate the priority assigned to each package. For this

purpose, the input is a network distance matrix between the delivery locations of all

current packages. An optimization program would decide how to assign packages to

trucks and the order in which to deliver them. Note that even with 1000 packages,

the query will compute up to 1 million pair-wise network distances.

Use Case 3.2.4. Our company has 2,800 maintenance locations in the state of

Virginia. I want to cluster these locations into 2, 3, or 5 mile groups. For example,

locations in the same 5 mile group can be reached by driving no more than 5 miles

from a center point.

For spatial analytic queries on road networks, there are two common reasons

why such queries end up making a very large number of distance computations.

First, spatial analytic queries are typically used for generating insights into the data

in the form of reports or visual representations. So it is common for these queries

to end up accessing large portions of the data. Second, the queries may join two

or more datasets on the basis of the network distance to other objects on the road

network, such as finding the nearest neighbors from one dataset for each location

in another dataset, or group one or more datasets based on the closest distance
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to objects in another dataset. Executing all of these operations can easily end up

making millions of distance computations on the road network. For instance, just

the simple query that obtains the network distance between all pairs of objects

drawn from a set of 1000 objects to one another ends up making 1 million distance

computations on the road network.

Since the spatial analytic queries are an important use-case whose efficiency

depends on being able to perform millions of network distance computations effi-

ciently on road networks, there is a need to examine which of existing available

architectures are capable of efficiently processing these queries. Most existing tools

for spatial analytic queries have several limitations, or use the basic Dijkstra’s algo-

rithm. For example, the Google Distance Matrix API [8] limits non-paying users to

submit 100 shortest distances (10 origins and 10 destinations) per query, and obtain

2, 500 shortest distances per 24 hour period. For paying customers, the limits are

625 shortest distances per query, and 100, 000 shortest distances per 24 hour period.

Esri [4] also claims that the ArcGIS Network Analyst extension, namely the Route,

Closest Facility, and OD Cost Matrix solvers, are based on the well-known Dijkstra’s

algorithm for finding shortest paths. All these tools are not good enough to solve

spatial analytic queries.

Spatial analytic queries make two distinct kinds of access patterns on road

networks, and make millions of these accesses in the process of answering a query.

The most basic pattern is called one-to-one pattern which computes the distance

between a source and a destination on the road network. Another access pattern

is one-to-many that makes several s-t pair computations from the same source ver-
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tex. For instance, computing the K nearest neighbors for each point from a large

dataset makes one-to-many access patterns. There are opportunities for speeding up

one-to-many patterns even though they are nothing more than multiple one-to-one

access patterns. We use the term scan to describe the actual implementation of the

execution of an access pattern. Note that there can be many options for executing

a scan including Dijkstra’s algorithm, contraction hierarchies (CH) [39], etc.

Any architecture for answering spatial analytic queries must be optimized for

performing a large number of distance queries on the road network. In particular,

we present two such architectures and then compare and contrast their features.

The first architecture is a hybrid architecture that uses a database to store and

query spatial datasets, but then uses an external module that loads the road net-

work in the main memory and performs fast in-memory scans on the road network.

This approach takes advantage of the large amount of available memory in modern

computers as well as the high number of processing cores to be able to compute a

large number of scans quickly. An analysis tool coordinates the data transfer and

the issuance of scans to the road networks. A common example of such an approach

is the process used by the ArcGIS Network Analyst to solve problems such as Use

Case 3.2.2. The information pertaining to both clinics and patients is maintained in

a database system. In order to compute the average driver distance for each clinic,

the ArcGIS Network Analyst first retrieves the related data from the database, and

then scans the network starting at the clinic using Dijkstra’s algorithm which here

is implementing a one-to-many access pattern. The scan process stops when it has

obtained all the network distances of the clinic’s patients.
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Figure 3.1: The HY architecture, which represents most existing spatial analysis

tools

The second architecture incorporates the road network inside the database as

a single relation. The road network is stored as the ASDO relational table indexed

by a B-tree. Scans on the road network become lookups on the B-tree index which

is very efficient to perform. This method relies on being able to perform the queries

entirely inside a database and on using the declarative nature of an RDBMS to

automatically optimize queries.

3.3 Hybrid Architecture

The most common architecture for responding to spatial queries on a road

network is a hybrid (denoted by HY) one consisting of a database to store the spatial

datasets and a module external to the database to execute the actual operations on

the road network. Figure 3.1 shows such a representative architecture that combines
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a database, an analysis tool, and an external module for network processing. An

example of a system that deploys such an architecture is ArcGIS from Esri [4], a

popular platform for performing deep analysis to make informed decisions. The

analysis tool is at the heart of this architecture in the sense that it extracts the

necessary data from the database, pre-processes it, and contacts the road network

scanner to perform the necessary scans on the road network. In this architecture, the

analysis tool partitions the query processing into two parts. The first part queries

the database to access the spatial datasets, such as restaurants, gas stations, real

estate information, warehouses, etc. When the volume of datasets is large (which

is the usual case), this database is usually a conventional off-the-shelf database;

if their volume is small, then they may even be loaded into main-memory from

files (e.g., shapefiles) in which case we have a main-memory database. The second

part uses the analysis tool’s road network module to compute network distances

between the objects. Actually, the network distance computations are incorporated

into the processing and the result is either displayed to the user or stored back into

the database. In this model, the network processing happens entirely outside the

database while the analysis tool serves as the “glue” that coordinates computations

between the database and the road network module.

The road network scanner is an in-memory processing module that implements

the execution of the access patterns on large road networks. It contains at least one

spatial index such as a k-d tree or R-tree to locate the given locations, and one

or more priority queues to speed up the scan process. In order to fully utilize the

computing power of multi-cores, this module also needs to employ several processing
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threads. Each thread responds to one scan process at a time. Its not worth to

parallelize the workload inside one scan process using several threads as previous

work [33,44] has shown that parallelization of Dijkstra’s algorithm and similar scan-

based algorithms with traditional locks and barriers has disappointing performance.

In particular, our implementation of HY built a k-d tree in the main thread which

was pre-loaded with the vertices of the graph. The main thread uses the k-d tree to

locate the source point of a given scan task, while the destination points of the scan

task are obtained from the POI table. Next, our implementation sets up several

scanning threads to process Dijkstra’s algorithm (we could have also used another

method like CH) to obtain distance results. All scanning threads share the graph

representation, and each thread keeps a private scanned queue to store the visited

vertices and a heap (as we are using Dijkstra’s algorithm) to determine the next

vertex to scan. Each time that the main thread is presented with a scan task, the

main thread first locates the source point using the k-d tree, and then assigns the

scan task with its associated source and destination points to a waiting scan thread.

All threads use busy-waiting.

In addition, between the analysis tool and the road network scanner, an op-

timizer module would be useful to automatically optimize the scan plan. However,

often, users dispense with this step as most existing analysis tools rely on the user’s

specification of the scan plan. At the end of Section 3.4, we give an example to see

the importance of having an optimizer.

The road network scanner in Figure 3.1 shows two access patterns for retrieving

shortest distances. The one-to-one access pattern is the commonest, although the
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one-to-many access pattern is also commonly used as it is optimized for multi-

destinations. Note that ideally there should also be a third access pattern of the

form many-to-many. However, very few access pattern implementation algorithms

are designed for a many-to-many access pattern because its effect can be obtained

by resorting to multiple instantiations of the one-to-one and one-to-many access

patterns as in [41].

Each specific algorithm that retrieves the shortest distances and paths imple-

ments one of the two access patterns. For example, Dijkstra’s algorithm is good

for the one-to-many access pattern, while CH [39] is good for the one-to-one access

pattern. The road representation of a specific algorithm is the lowest component

in Figure 3.1, e.g., Dijkstra’s algorithm uses the original graph representation and

TNR [25] uses the hierarchical tree representation.

Below we provide an abstraction of the operation of the scan procedures in-

stead of the details of the algorithms that implement them. In particular, our HY

architecture given in Figure 3.1 implements the following operators on road net-

works:

Definition 3.3.1. The Scan() operator scans the road network in memory using

one of the scan-based algorithms, A. Given G(A), the graph representation of A,

and vertex s, Scan(s) uses A to scan G(A) starting at s.

We now define two operators that are frequently used in the spatial analytic

queries, Scan Until K() and Scan Until Dist(). They inherit the Scan() op-

erator.
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Definition 3.3.2. Scan Until K(k, s, P ) scans the graph starting at vertex s,

and returns the k nearest objects o to s, where o ∈ P and P is the POI set.

Definition 3.3.3. Scan Until Dist(d, s, P ) scans the graph region within net-

work distance d from vertex s, and returns all the objects o, where o ∈ P and P is

the POI set, and o is within network distance d from s.

Scan Until K() stops the scanning when it has visited k objects in P , and

Scan Until Dist() limits the scanning to objects lying within a specified network

distance. The set of P indicates the set of POIs, which is an overlay over the

network graph. It can be a set of restaurants, gas stations, houses, as well as even

all the vertices of the road network. As far as we know, every spatial analytic query

contains at least one set of POIs. After defining the Scan() operators, we can easily

describe the processes of spatial analytic queries using a scan-based algorithm. For

example, a KNN query can be solved by the Scan Until K(k, s, P ) operator, and

a distance matrix query, which has n sources and m destinations, can be solved by

making n calls to Scan Until K(m, si, P ) where si is the ith source.

3.4 Integrated Architecture

The database community desires an integrated architecture, which means that

all components and procedures reside in a database. This makes the architec-

ture more compact and efficient, as the analytic query executes entirely within the

database. The database knows how to optimize such queries, since the road repre-

sentation appears as one or several relations in the database, and thus the query
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appears like any other relational query to the database. The core challenge lies in

how to embed the road representation in the database. For example, pgRouting [13]

extends the PostGIS / PostgreSQL geospatial database to provide geospatial rout-

ing functionality. Oracle Corporation proposed the Network Data Model Graph

(NDM) [49], which persistently manages the network connectivity in the database,

while a Java API provides fast in-memory graph analytics. However, since the road

representation in both pgRouting and NDM is the original graph representation,

they are similar to the HY architecture except for storing the nodes and edges in

their database. HLDB [20] proposed by Microsoft Research is the first practical

system that can answer spatial queries on continental road networks stored entirely

within a database. It stores the vertices of the road network, as well as sets of “for-

ward” and “backward” hub labels (HL) of the vertices [21] in the database. Each

s − t query is solved by performing a JOIN on the corresponding “forward” and

“backward” relational tables of s and t, respectively.

In this section, we propose the integrated architecture that makes use of our

ASDO technology. The ASDO takes a road network as input, and reduces it to a

single database relation that captures the network distances between every pair of

vertices in the road network, which we introduced in Chapter 2. Using a cluster of 20

EC2 machines, it took us about 7 hours to compute the ASDO representation of the

USA road network which contained 24 million vertices. The precomputation process

decomposed the road network with n vertices into O( n
ε2

) triples (A,B, d) stored in

a relational table, such that A and B are denoted by blocks in a PR quadtree and

d is the network distance that approximates the network distance between every
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Figure 3.2: Integrated architecture DO for analytic queries using the distance oracle.

pair of vertices contained in A and B within an ε error tolerance. In particular, d

is also said to be ε-approximate, which means that the resulting error in using d

instead of the exact network distance between the any vertex in A and any vertex

in B is bounded by the ε error tolerance. The resulting representation for the entire

USA was about 55GB in size with an error tolerance ε = 0.25. This is a reasonable

setting for real road networks. In particular, in Section 2.3.4.1, we showed that

although the error tolerance ε is 0.25, the approximate distance value of at least

20% of the vertex pairs has an error of less than 1%. Moreover, the average error

for random queries is just 2.74%. The relational table corresponding to the distance

oracle is indexed by a B-tree representation that allows disk efficient loopkups for

approximate distances.
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Using the distance oracle, we created an integrated architecture illustrated

in Figure 3.2. The key difference from the hybrid architecture is the use of the

distance oracle road representation, which has been embedded in a database as

a simple relational table. To query the distance oracle, we implemented an SQL

function called Dist(), which queries the distance oracle relational table to compute

the road distance between any source and destination. In particular, given two

latitude/longitude pairs, Dist() first computes a unique code which it looks up in

the distance oracle relational table, and then uses a simple SELECT query that

is facilitated by the B-tree index. For example, computing the network distance

between the White House and the US Capitol Building in Washington, DC becomes

as simple as the following query that

-- Road distance between White House and US Capitol

SELECT DIST(38.8977, -77.0366, 38.8898, -77.0091);

-- This produces 2144.7 (meters)

More user-defined functions (UDFs) and complex queries can also be easily

expressed using the distance oracle. Let us consider the following example. Suppose

that we have a relation houses (id, lat, lon) corresponding to the location of

all houses available for sale and another relation parks(id, lat, lon) correspond-

ing to the location of all parks, where lat and lon correspond to the latitude and

longitude values of the corresponding locations. We want to find up to 100 houses

with the maximum number of parks that lie within 0.5 km of road distance from the

houses sorted by the number of such parks. The following code written completely
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in SQL yields an efficient response to this query.

SELECT id, count(*) as count

FROM ( SELECT houses.id as id,

DIST(houses.lat, houses.lon,

parks.lat, parks.lon) as distance

FROM houses, parks

) as foo

WHERE distance < 500 -- 0.5 km in meters

GROUP BY id

ORDER BY count DESC

LIMIT 100;

Here we see how to express a complex query with just a few lines of SQL. Now

contrast this with performing the same query in the traditional setup which uses a

module where the road network would be stored externally as in Figure 3.1. The road

network would typically be accessible through an API such as Scan Until K() and

Scan Until Dist() for computing shortest paths and distances. In this setup,

the hybrid architecture would first obtain a table of houses and parks from the

database. Next, we have two options to obtain the distance results using the

Scan Until Dist(). The first is for each house, to compute the number of parks

within 0.5 km. The second is for each park, to compute the houses within 0.5 km,

and then to group the distance results by the house ids. Finally, for each house,

count the number of parks and order them in descending order of the count.

Although the first option is straightforward for this query, It turns out that
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the second option is more efficient as the number of parks is considerably smaller

than the number of houses, which means the number of scans is lower. This example

demonstrates that we need an optimizer for the hybrid architecture to decide the

order of execution and make the query execution plan. This depends on being able

to do selectivity factor estimation. On the other hand, the integrated architecture

has the bonus of having a query optimizer as part of it although we did not need

it in this example. In summary, the effort to implement a spatial analytic query

as the above example in the hybrid architecture is considerably more complex than

writing a few lines of SQL as in the integrated architecture.

3.5 Experiments

In this section, we present a detailed evaluation of the two architectures in

order to compare and contrast their query performance. Section 3.5.1 describes

the experimental setup and datasets. Sections 3.5.2 and 3.5.3 evaluate the per-

formance of both HY and DO for the region and throughput queries, respectively.

We synthetize the queries in these two subsections from the POI tables that we

used. Next, Sections 3.5.4 and 3.5.5 show our solutions for the KNN and trajectory

queries, respectively, in realistic settings.

3.5.1 Experimental Setup and Datasets

The integrated architecture (DO) is completely self contained in a PostgreSQL

database system, where analytic queries can be expressed in SQL. It exposes a single
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function Dist(lat1, lon1, lat2, lon2) that will return the ε-approximate network

distance between a source and a destination location. The distance oracle for the

whole USA was used for this experiment with ε = 0.25 and is 55GB in size. Although

this number seems large, the fact that the road network has close to 24 million

vertices shows that this number is consistent with our predicted linear storage bound

of O( n
ε2

) space where n is the number of vertices in the road network.

The hybrid architecture (HY) uses an entirely in-memory implementation that

compactly stores the spatial datasets, the USA road network, and the road network

scanner. The road network scanner implements an efficient multi-thread implemen-

tation of Dijkstra’s algorithm and it defines the Scan() functions, Scan Until K()

and Scan Until Dist().

We rented one Amazon RDS db.m3.2xlarge DB instance with PostgreSQL

9.3.5 for the DO architecture. For the HY architecture, we rented one Amazon EC2

m3.2xlarge. Both of these machines have identical hardware specs (8 vCPU and 30

GB memory) and were used in their default settings. The USA road network was

from the 9th DIMACS Implementation Challenge [3], which contained 23, 947, 347

vertices and 58, 333, 344 edges.

We used two POI tables for the evaluation. The restaurant table consists of

49, 573 fast food restaurants obtained from [5], and the university table consists of

5, 964 locations of universities from [7]. The schemas of both tables are identical

and are (id, latitude, longitude, gid, geom), where gid and geom are needed for the

GiST index on the latitude/longitude values.

We also used a taxi trajectory dataset. This taxi dataset was from San Fran-
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cisco Yellow Cab [1] collected by CRAWDAD [2]. It contained 11, 220, 058 GPS

entries for 537 taxis covering a one month period in 2008 comprising 928, 307 trips.

The schema for the taxi trajectory relation is given in Table 3.1.

Table 3.1: Schema for table taxi storing the taxi GPS information.

Attribute Explanation

id crumb id (unique key, we added)

taxiid each taxi has a unique id

tripid globally unique trip id (we added)

lat latitude in degrees

lon longitude in degrees

occupancy does cab have a fare? (1 = occupied, 0 = free)

ts UNIX epoch time when GPS was recorded

An example tuple is as follows: [id, taxiid, tripid, lat, lon, occupancy, time],

e.g.: [112133, 1, 422, 37.75134, -122.39488, 0, 1213084687]. Each taxi periodically

records a GPS record on the server. We assume that each taxi takes the shortest path

between successive GPS crumbs. Therefore, reconstructing the trip involves ordering

the points by their timestamp (ts) (or equivalently by their id since we assigned the

ids in order of increasing timestamp), thereby obtaining the road network distance

between successive points and adding up the distance values.
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Figure 3.3: Time comparison between HY and DO varying with the farthest distance

values for (a) restaurant is destination, and (b) university is destination

3.5.2 Region Query

A distance query returns the destinations lying within a given network distance

of X kilometers around a given location denoted by its latitude and longitude values.

The example query we use for evaluation here is one that for each university, finds

all restaurants lying within X kilometers.

To solve this query, HY invokes the Scan Until Dist() operator that for

each of the universities, scans the graph until obtaining all vertices within X kilo-

meters from the university. This operation is very efficient and limits the scans to

one per university.

In the DO architecture, to avoid computing the distance between all pairs

of universities and restaurants, we need a simple way of reducing the number of

invocations to the distance oracle. One way to do this is to take advantage of the

fact that the Euclidean distance is a lower bound on the road network distance and
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thus we restrict the pairs of objects that we examine to be within their Euclidean

distance. This is achieved by using a query search window of width 2X around

each university and only examining the restaurants lying in it. This translates to a

query window of width 2X/111 degrees assuming that 1 degree of latitude/longitude

roughly equates to a geodesic distance of 111 kms. The SQL statement for this query

is as follows.

SELECT * FROM

(SELECT x.id as id1, y.id,

dist(x.lat, x.lon, y.lat, y.lon) as d

FROM University x, Restaurant y

WHERE y.lat between x.lat-deg AND x.lat+deg

AND y.lon between x.lon-deg AND x.lon+deg

ORDER BY dist

) as foo

WHERE d<X

GROUP BY id1

Figure 3.3 shows the execution time of DO and HY when varying the width

of the query region. For HY, we show the performance of running 1 and 7 scanning

threads using HY-1 and HY-7 respectively. The reasons for using 7 scanning threads

are explained in Appendix 3.5.6. Figure 3.3(a) shows the results of region queries

that find the restaurants within X kilometers of each university, while Figure 3.3(b)

interchanges the sets that form the sources and destinations so that now we find the

universities within X kilometers of each restaurant.
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This experiment is to HY’s advantage in the sense that it can amortize the costs

of the scans from a single source to multiple destinations. Nevertheless, Figure 3.3(a)

shows that for smaller values of the distance X, HY is slightly better than DO but

this advantage vanishes as X increases with DO performing better than HY for

X > 100. The setting of Figure 3.3(a) where we find the restaurants near the

universities represents the worst case for DO as we expect many restaurants to be

clustered around each university compelling DO to query the distance oracle once

for each pair. On the other hand, when we change the setting so that we find the

universities near the restaurants as in Figure 3.3(b), we find that the execution time

of HY is at least one order of magnitude greater than DO since there may not be

too many universities around each of the restaurants thereby greatly reducing the

number of queries to the distance oracle. While this experiment shows that DO is

sensitive to the density of the destinations, in the worst case it still performs as well

as HY, while easily outperforming it in other cases.

To further explore the effect of density on DO’s performance, we performed the

following experiment. Define density to be the ratio of the number of destinations

found to the number of vertices of the road network visited by HY during its scan

around each source point for a given region. In some sense, density controls the work

efficiency of HY vis-a-vis DO in that the larger the density, the greater is the benefit

obtained by HY from amortizing the scans. Figure 3.4 shows the execution times of

HY and DO when performing the region query that finds all synthetically generated

destinations within 50 km of all universities. We created destinations around each

university by generating points with a probability denoted by the density value.
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Figure 3.4: Execution time versus a synthetically varying density of destinations for

5, 964 distance queries (corresponding to the size of the university sources relation

at distance 50 km.

Figure 3.4 shows that the density does indeed affect DO as we had expected but

does not affect HY for the region query. In particular, as the density decreases (i.e.,

the points become sparse), DO improves dramatically as the number of invocations

of the distance oracle is greatly reduced. Note that although DO is slower when the

density is larger than 0.01, it is fairly obvious that for real world datasets, a density

of more than 1 restaurant per 100 vertices is extremely large to be realistic.

3.5.3 Throughput Query

From the previous results we see that DO provides a single Dist() function

that computes the road distance between any pair of source and destination locations

on the road network. HY, on the other hand, is optimized for one-to-many distance
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computations since the scan amortizes the work done for scanning from a single

source to multiple destinations. To better understand the performance of each

architecture we compare them using a distance matrix query.

Table 3.2: Comparison between s-t pair and one-to-many

Query Metric DO HY-7

Distance Matrix
Time 8853.9 sec 20139 sec

Throughput 33392 dist/sec 14680 dist/sec

10k random pairs
Time 0.327 sec 2026 sec

Throughput 30581 dist/sec 4.9 dist/sec

In this query, we use the university dataset as the source locations and the

restaurant dataset as the destination locations. The query computes the distance

matrix from all universities to all restaurants. The query can be executed by either

performing 5, 964 one-to-many queries, or alternatively 5, 964 × 49, 573 one-to-one

queries. While HY is optimized for the former access pattern, DO can only perform

the latter access pattern. Regardless of how the distances are computed, it takes

295.6 million distance computations on the road network to compute this distance

matrix. The following SQL statement computes the distance matrix for DO.

SELECT x.id, y.id,

dist(x.lat, x.lon, y.lat, y.lon) as dist

FROM University x, Restaurant y

Table 3.2 shows the performance of the DO and HY architectures. DO com-
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putes the distance matrix in 8853.9 seconds, while HY does it in 20139 seconds. The

throughput for DO is 33.3k distances/second while it is 14.6k distances/second for

HY. Note that this is in spite of choosing a query workload that is favorable to HY.

This shows that for a practical real query, DO is still 2.4× better than HY in terms

of throughput.

The next question is how would HY perform if restricted to only use the one-

to-one access pattern. To provide this comparison, we randomly pick 10, 000 source

university and destination restaurant pairs from the tables. While DO takes 0.327

seconds to compute the distances, HY takes 2026.4 seconds which amounts to just

less than 5 distances/second, while DO can computer over 30, 000 distances/second.

This shows that HY is only appropriate if the query results can be obtained using

a one-to-many access pattern as its performance for a one-to-one access pattern is

prohibitively slow.

3.5.4 KNN Query

Next, we compare the performance of DO and HY for KNN queries where the

inputs are two datasets S and R, and the goal is to find the K nearest neighbors

of each point in S from points drawn from R. The workload for this subsection

includes performing 5, 964 KNN queries for each of the universities returning K

nearest restaurants.

The HY architecture invokes Scan Until K(), which uses an in-memory

graph representation and stores the 49, 573 restaurants relation in a k-d tree data
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structure. During processing, HY uses 7 threads to scan the road network. Each

thread starts scanning from one of the university locations and for each vertex it

performs a lookup on the k-d tree to determine if there are any restaurants in its

vicinity within a certain distance range. If yes, then they are enqueued with the

appropriate network distance if they have not been visited before. This check is not

necessary if while building the k-d tree, each restaurant is associated with its nearest

vertex. This process is entirely in-memory and extremely efficient to perform.

The DO architecture computes Dist() between each university and each restau-

rant in a candidate set of restaurants that have the potential to be the K nearest

neighbors. This candidate set is obtained by first using the GiST spatial index in

Postgres to compute the K Euclidean nearest restaurants from the restaurant re-

lation for each university and then using Dist() to compute their corresponding

network distances. Let d be the maximum of these network distances for the uni-

versity being processed. Next, again use GiST to compute all nearest restaurants

for each university whose Euclidean distance is less than or equal to d and then use

Dist() to compute their corresponding network distances and retain the K closest

ones.

This method is correct because the Euclidean distance is a lower-bound on

the network distance. The lower bound property guarantees that we find the K

network neighbors within the candidate set. The following SQL query captures the

steps indicated above. In the subquery kdn, we compute the Euclidean distance to

the K neighbors using the GiST index and then compute the maximum network

distance among K neighbors for each university.
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SELECT kdn.id as id1, R.id as id2,

dist(kdn.lat, kdn.lon, R.lat, R.lon)

FROM (

SELECT y.id as id, y.lat as lat, y.lon as lon,

( SELECT max(dist)

FROM (

SELECT dist(x.lat, x.lon, y.lat, y.lon)

FROM restaurant x

WHERE x.gid != y.gid

ORDER BY x.geom<->st_setsrid(y.geom, 4326)

LIMIT K

) as foo

) / 111000 as deg

FROM university y

) AS kdn, restautant R

WHERE R.lat between kdn.lat - kdn.deg

and kdn.lat + kdn.deg AND

R.lon between kdn.lon - kdn.deg

and kdn.lon + kdn.deg;

Figure 3.5 shows the execution time of the KNN queries for different values of

K. We see that HY has nearly identical performance compared to DO for smaller

values of K less than 500. It becomes 2−3 times worse for larger values of K such as

for K = 49, 573. At K = 49, 573, the query degenerates to computing the distance
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Figure 3.5: The execution time of 5, 964 KNN queries where K = 50, 500, 5000,

and 49573.

matrix between the source and destination tables.

Figure 3.6 illustrates the effect of the density on the execution time of DO

and HY for the KNN queries. In particular, each point in the figure corresponds to

the performance of one KNN query for either HY or DO. Here we use a real world

dataset and thus for the values of K that we used, the density of most scans is less

than 0.01. Compared to the region query discussed in Section 3.5.2, the effect of

varying the density has a different effect on the execution time of DO and HY. In

particular, for the KNN query, the execution time of HY increases significantly as

the density decreases, while the execution time of DO does not change much. This is

because the number of Dist() invocations for DO is proportional to K in real world

datasets. On the other hand, Scan Until K() for HY needs to scan further to

visit at least K destinations when the density of the nearby destinations is sparser.
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Figure 3.6: The execution time of the KNN query as a function of the density for

(a) K = 500 and (b) K = 5000.

3.5.5 Trajectory Query

We now examine a simple trajectory query implemented on both the HY and

DO architectures. The goal of the query is to compare the time performance on a

real trajectory dataset consisting of GPS readings. GPS devices are becoming com-

monplace and are now deployed on many different commercial and non-commercial

vehicles. A company operating a fleet of taxis usually has a GPS installed in all of

its vehicles, which enables an operator to know the locations of its vehicles. For in-

stance, when a customer requests a ride, the taxi operator uses the current locations

of all of its vehicles to send the nearest vehicle to the customer. Of course, there are

more complex analyses that an operator may want to perform from historical (i.e.,

a day/week/month/year) worth of GPS information collected from vehicles which

can shed light on several aspects of their businesses.

For example, consider a query that seeks the execution time of computing the
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total trip distance of each taxi. More SQL queries can be found in Section 3.6.

Executing it using DO involves a few simple steps as detailed below.

1. Extract all points of a given trajectory denoted by tripid

2. Create an ordering of the points

3. Compute road network distance between consecutive points

4. sum the distances to produce the trajectory distance

5. sum the trajectory distances to produce the taxi trip distance

On the other hand using HY to respond to this query involves sorting all GPS

records according to the ts attribute in the initialization. Next, defining a segment

as two consecutive GPS locations on the same trip, we compute the distance of

each segment by assigning it to one scanning thread. Thus, one segment contains

one source and one destination location. Intuitively, each segment query is better

described as a one-to-one access pattern, so that DO should be better than HY

in this case. However, since the GPS sensors report their locations frequently, the

distance between two consecutive GPS reports is very short, which benefits HY.

Prior experiments for one-to-many access pattern queries showed that HY is as

good as DO for short scanning distances.

Figure 3.7 demonstrates that DO is much better for the trajectory query. Each

point in Figure 3.7 corresponds to one taxi. The x-axis is the number of segments

for each taxi. For each method, we first sorted the 537 taxi points by the number

of segments, and then connected the 537 taxi points with a line. DO computed the

travel distance of one taxi within 0.2 to 0.5 seconds when the number of segments is
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Figure 3.7: The execution time of computing the total travel distance of each one

of 537 taxis.

around 10, 000. It is at least one order of magnitude faster than HY with 7 scanning

threads, and two or more orders of magnitude faster than HY with just 1 scanning

thread.

3.5.6 HY Performance Tuning: Number of Threads

The reason we use 7 scanning threads in our experiments is that the EC2

machine only has 8 cores. In our implementation, Dijkstra’s algorithm in HY starts

T threads for scanning. Figure 3.8 shows the execution time for the distance matrix

query as the number of threads started by the main thread is varied. From the

figure we observe that the execution time for 7 scanning threads is between 1
4

and

1
3

of the time when we have just one scanning thread. As we expected, in order

to utilize all of the available computing power, the optimum number of threads is
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Figure 3.8: Execution time of a multi-thread Dijkstra’s algorithm implementation

for 5, 964 Scan Until K() with K = 49, 573

equal to the number of cores minus one. This means that one core runs the main

thread, and the remaining cores run the remaining threads, one thread per core.

3.6 Trajectory Solution Examples

Q1. List of all trips made by a taxi.

SELECT tripinfo(tripid) FROM taxi where taxiid = 1

GROUP BY tripid;

Q2. How many kilometers did each of the cars travel with passengers?

SELECT sum(foo.tripdist)/1000 as distance_in_km

FROM

(SELECT (tripinfo(tripid)).tripdist as tripdist
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FROM taxi WHERE taxiid = 1 and occupancy = 1

GROUP BY tripid) as foo;

Q3. Average distance they travel without passengers?

SELECT avg(tripdist) FROM

(SELECT tripdist(tripid) as tripdist FROM

(SELECT tripid from taxi

WHERE occupancy = 0

GROUP BY tripid) as foo

) as foo1;

Q4. Did my driver take a huge detour?

To see if the driver has been taking detours, we need to first figure out how to

compute the direct distance between the first and last points in the trajectory. We

define the following function, tripdist sd.

CREATE FUNCTION tripdist_sd (which_trip_id bigint)

RETURNS TABLE(

tripdist float

) IMMUTABLE AS

$$

BEGIN

RETURN QUERY

SELECT dist(t1.code, t2.code) FROM

(SELECT * FROM trip(which_trip_id) as t

order by (t).id LIMIT 1) as t1,
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(SELECT * FROM trip(which_trip_id) as t

order by (t).id DESC LIMIT 1) as t2;

END;

$$ LANGUAGE plpgsql;

Now we can compute the difference between direct from source to dest vs. driver’s

routing. For instance, we can compute the detour for tripid = 500. In this case, the

direct distance 2104.6 vs. the driver’s route is 2325.1 meters. In other words, the

driver drove 200 more meters . This begs the question, are there some drivers take

many circuitous routes. In particular, we are not interested in 200 meter detours

but rather routes that are more than 5 kms longer than the direct path from source

to destination. We use the following query to obtain the top 100 routes with the

maximum detour. We limit the trips to those that are at most 50 kms.

SELECT taxiid, tripid, tpsd, tp, (tp - tpsd) as diff

FROM

(SELECT tripdist(tripid) as tp,

tripdist_sd(tripid) as tpsd,

taxiid, tripid

FROM taxi

WHERE occupancy = 1

GROUP BY taxiid, tripid

) as foo

WHERE tp is not null AND tpsd is not null

AND tp < 50 * 1000 AND tpsd < 50 * 1000
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ORDER BY diff DESC

LIMIT 100;

We immediately realize by looking at the output of this query is that drivers make

many loops. In particular, the taxi makes a huge loop and comes back to the same

point, just like airport shuttles. So which are the taxis that detour too much? Also

what is the average length of a detour?

SELECT taxiid, count(*) as num_trips,

avg(tp-tpsd) as average_detour

FROM

(SELECT tripdist(tripid) as tp,

tripdist_srcdst(tripid) as tpsd,

taxiid, tripid

FROM taxi

WHERE occupancy = 1

GROUP BY taxiid, tripid

) as foo

WHERE tp is not null AND tpsd is not null

AND tp < 50 *1000 AND tpsd < 50 * 1000

AND tp >= tpsd

GROUP BY taxiid

ORDER BY average_detour desc;

The result shows that Taxi 518 had 1082 trips and had a average detour of 14 Kms.

After further examination, we know that this is the taxi with a buggy GPS. Besides
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Taxi 518, Taxi 19 made 594 trips 2.978 kms detour, which is roughly 1800 kms more

than direct routes. Maybe this driver has many carpool rides.

Q5. Where is the nearest taxi?

Finding a taxi involves finding a taxi in terms of both distance and time. In a

live system the time is the current epoch timestamp. The following query finds the

nearest taxi to the hard coded location (37.75, -122.4) for the customer and time

when the customer requested (1211840888). This query extracts taxi’s position with

in a 10 minute time window.

SELECT * from (

SELECT taxiid,

last(occupancy) as taxi_occupancy,

last(lat) as taxi_lat,

last(lon) as taxi_lon,

last(code) as taxi_code, dist(last(code),

Z2(37.75, -122.4)) as taxi_distance

FROM (

SELECT * FROM taxi

WHERE ts BETWEEN 1211840888 - 10 * 60

AND 1211840888

ORDER BY TS

) as foo

GROUP BY taxiid

) as foo1
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WHERE foo1.taxi_occupancy = 0

ORDER BY taxi_distance

LIMIT 10;

3.7 Related Work

It is well-known that Dijkstra’s algorithm [37] is very efficient for single source

queries such as finding the nearest K restaurants to a given location. However, for

an s-t query, Dijkstra’s algorithm has to scan many irrelevant vertices to reach the

given target vertex. A number of techniques have been proposed to overcome the

drawbacks of Dijkstra’s algorithm for s-t queries on road networks. They fall into

two main categories: memory-based methods and database-centric methods.

Memory-based methods: Most of the state-of-the-art approaches are memory-

based, They can be subdivided into two groups. The first group are graph-based,

which are based on the observation that some vertices in a spatial network are

more important for shortest path queries, while offering different trade-offs between

pre-processing time, storage usage, and query time. Goldberg et al. [40] prunes

unimportant vertices using a bidirectional version of Dijkstra’s algorithm. The

Construction Hierarchy (CH) [39] assigns an importance score to each node and

replaces some original edges by shortcuts. [21, 30, 43, 55] precompute the shortest

distances between landmarks or hub nodes and other vertices, and then answer the

shortest distance queries by assuming that the shortest path passes through one

landmark or hub node. [22, 25, 34, 61, 76] build an explicit hierarchy graph to over-
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come the drawback of Dijkstra’s algorithm. The second group are spatial based

methods, which overcomes the drawback of Dijkstra’s algorithm by using geomet-

ric techniques. RNE [69] applies a Lipschitz embedding [42] to a spatial network

so that vertices of the spatial network become points in a high-dimensional vector

space. [60, 62, 72] use the fact that the set of shortest paths from vertex u to all

other vertices can be decomposed into subsets based on the first edges on the short-

est paths from u to them. SILC [60, 62, 63] stores these subsets in a variant of a

region quadtree where all vertices stored in a quadtree block are in the same subset.

Database Centric methods. On the other hand, approaches rooted in databases

mainly focus on database-centric methods. [64, 65, 67] exploit the spatial coherence

so that if two clusters of vertices are sufficiently far away, then distances between

pairs of points in different clusters are similar. PCPD [67] gives one exact shortest

path algorithm, while the ε-distance oracle [64,65] propose an approximate shortest

distance algorithm, which balances the tradeoffs between accuracy and storage.

HLDB [20] is a recent practical database-centric method that is based on hub labels

(HL) [21], which is a popular memory-based method. HLDB [20] claims that most of

the memory-based approaches surveyed in [35] are difficult to embed into a database

system and to use with SQL queries since they rely on complicated data structures

such as graphs and priority queues. One of the main contributions of HLDB is

embedding the memory-based HL method into a database.

On the other hand, there are also a few approaches that focus on speeding up

specific spatial analytic queries. Some are based on the techniques that speed up

the s-t queries. Knopp et al. [41] explain how to use highway hierarchies [61] for
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computing many-to-many shortest distances. Shahabi et al. [69] and Samet et al. [60]

show how to speed up the K nearest neighbor search by using different source-target

techniques. Delling et al. [36] utilize partition-based algorithms developed for s-t

queries to handle POI queries. Cho et al. [31] propose UNICONS for continuous

nearest neighbor queries, and then propose ALPS [32] for top-k spatial preference

search.

3.8 Summary

The HY architecture represents a procedural way of performing spatial analytic

queries since the analysis tool is the “glue” that coordinates computations between

the database and the road network module. The DO architecture represents another

end of the spectrum where the spatial analytic query is expressed in a declarative

manner. The declarative nature of queries means that the user expressed what

the query should do and the database automatically figures out how the query

should be executed. On the other hand, HY by being procedural represents a

custom development effort where most of the responsibility for optimization lies

with the analysis tool. This can be viewed as a drawback of the architecture since

an optimization opportunity may be lost in the processing of the spatial analytic

queries that is outside the database system.

From the perspective of ease of use, DO is better than HY since users can easily

express complex queries using SQL. There is no need for much of a learning curve

since we only extended SQL by one function (i.e., Dist()). DO can be implemented
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on any database system as it requires no modification to the database system which

means that now road networks can be incorporated with any legacy database that

is already hosting spatial datasets.

DO is far superior to HY when it comes to a one-to-one access pattern, which

is commonplace in trajectory queries, where GPS crumbs are recorded periodically

and the road distance between them needs to be computed by applying a one-to-one

access pattern. On the other hand, HY is better than DO for some one-to-many

access patterns such as the region query in the case of a high density of destinations

vis-a-vis the visited vertices of the graph, as well as when the maximum scanned

distance is not large.

Our synthetic experiment for the region query showed that once the density

became less than 1 object in 100 vertices, DO is a better choice. To put this in

perspective, if there are more than 240k objects (e.g., restaurants) in a dataset on

the USA road network (recall it consisted of 24 million vertices), then HY could be

slightly faster than DO. However, if the query applied a predicate on the objects

(e.g., only Indian Restaurants) then the density may be far lower again thereby

rendering DO more suitable.
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Chapter 4: SPDO: High-Throughput Road Distance Computations

on Spark Using Distance Oracles

4.1 Overview

Some spatial analytic queries that use distance along a road network require

performing millions of shortest distance computations [66]. As an example, consider

the heat map in Figure 4.1 that shows the average commute distance in kilome-

ters for residents of California. This query is of immense interest of transportation

planners and was computed using the LEHD data [10] from the US Census Bu-

reau by performing 13, 645, 807 road network distance computations. Such analytic

queries that compute millions of network distances are commonplace in logistics,

route planning, and spatial business intelligence. Existing solutions usually use the

geodesic distance (Euclidean distance) instead of the network distance, which makes

their results inaccurate [52]. For instance, a delivery company that delivers 1000

packages would compute a distance matrix that captures the distance between ev-

ery pair of destination locations to plan the routes. Using geodesic distance is easy

but only the shortest distance on the road is optimal. We need a framework to

perform tens of millions of distance computations on road networks quickly to cater
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to the requirements of delivery companies such as AmazonFresh, Google Express,

UberRush etc., that seek to respond quickly to the dynamic supply-demand arising

in their business.

A distributed framework is used to achieve a high throughput. It relies on

the simplicity of the underlying computation task but as this task becomes more

complex, the greater the difficulty in embedding it in a distributed framework. In

particular, most methods that focus on reducing the latency time rely on compli-

cated data structures such as graphs and priority queues. These methods don’t take

into account the difficulty of using them in a distributed framework. A compro-

mise solution for a spatial analytic query is to partition the query workload across

multiple, say M , machines as shown in Figure 4.2(a), which is a common way of ap-

proaching this problem. In this case, each task machine’s memory is preloaded with

the same datasets and graph. The gateway machine is responsible for partitioning

the query workload, assigning the sub-queries to the individual task machine, and

collecting the results from the task machines. The drawbacks of this solution are:

1. Any update for the datasets or graph needs to be processed M times.

2. Since the distribution of the workload is not automatic, developers who use

this solution need to manually maintain the connection between the gateway

machine and each task machine, detect the failures during computing, and

re-execute the sub-queries if any failure occurs.

3. If the size of the graph and datasets are greater than the amount of available

memory, then users need to increase the amount of memory in each of the
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M machines, or place the graph and datasets on disk which greatly sacrifices

processing time.

Thus, we need a more general distributed framework to handle spatial analytic

queries.

In this chapter, we develop a distributed framework called SPDO (pronounced

speedo denoting Spark and Distance Oracles) using Apache Spark [75] which is op-

timized for high-throughput network distance computations (see [71] for another

approach). We extend our work on ASDO which precomputes and stores a com-

pressed version of shortest distances between all pairs of vertices in a road network

within an error tolerance ε. The resulting representation takes O( n
ε2

) space, where

n is the number of vertices in the road network and ε is an approximation error

bound on the result. Previously, [52] showed how to map the distance oracle rep-

resentation to an RDBMS system and how to solve complex analytic queries on a

road network. Here we show how to map distance oracles to a distributed key-value

store (i.e., hash abstraction) which we choose to be Spark. Combining Spark and

distance oracles is a good match. In essence, Spark provides a highly scalable fault-

tolerant distributed framework with the ability to cache large datasets in memory

using RDD [75], while distance oracles provide a compact representation of network

distances that requires very little computation at run time. Furthermore, Spark is

a popular open-source distributed framework for general purposes, which is more

than a key-value store. We can easily develop functions in Spark combining dis-

tance oracles and other techniques that are not efficient in a key-value store. In

particular, we use the IndexedRDD library on Spark which is a memory resident,
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key-value store. The high-throughput of our proposed framework is achieved due to

the ability to spread query processing across multi-machines in a Spark cluster as

well as the in-memory representation of distance oracles.

Mapping distance oracles to a distributed key-value store is challenging as

it requires converting any source-target distance query (s-t query for short) into

a small number of lookups into the distributed key-value store. It also requires

being able to partition the work between the master and task machines in Spark.

Finally, the network communication can be a significant bottleneck if the access to

the distributed key-value store storing the distance oracles is not well designed.

The main contributions of this chapter are: 1) A high-throughput architecture

using distance oracles and Spark for a large set of spatial analytic queries; 2) Three

variants of distributed key-value algorithms for our architecture; 3) An analysis of

the time and space complexity of our methods, and a detailed comparison with

state-of-the-art methods for realistic datasets and applications. We released the

SPDO codebase and associated precomputed distance oracles in GitHub 1. SPDO

needs just a few lines of code in order to be incorporated with an existing Spark

project that needs to compute large number of network distances. The use-case

shown in Figure 4.1 makes 13.6 million distance computations in 13 seconds on 5

machines, which roughly works out to more than 200K distance computations/sec

per machine. In contrast, one of the fastest latency methods took more than 20

minutes for the same query on 5 machines as well, which is at least two orders of

magnitude slower than our approach.

1 https://github.com/shangfu/SPDO.git
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The rest of this chapter is organized as follows. Section 4.2 explains the the-

oretical grounds for mapping work about distance oracles to a hash structure, and

Section 4.3 presents three variants of our distributed key-value algorithms, denoted

as Basic, BS, and WP, respectively. Section 4.4 describes a detailed experimen-

tal evaluation of our methods, and also provides two real applications using our

methods. Section 4.5 reviews the related work. Concluding remarks are drawn in

Section 4.6.

4.2 Hash Access for Distance Oracles

Table 4.1: Notation Summary of SPDO

Symbol Meaning

n the number of vertices in the graph

N the number of s-t queries

ε the error bound of the ASDO representation

mc() Morton code function

D the maximum depth of the DO-tree

M the number of task machines

Table 4.1 summarizes the notation that we use in this chapter. Recalling

Figure 2.2(a) in Chapter 2, given a spatial domain S, the Morton order of blocks

in S can be obtained by subdividing the space into 2D × 2D equal sized blocks
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called unit blocks, where D is a positive integer called the maximal decomposition

depth. Figure 2.2(a) shows Morton codes in the same domain when D is equal

to 0, 1, and 2, respectively. Each unit block i is referenced by a unique Morton

code mc(i). There are two ways to represent Morton codes, numeric representation

and string representation. As in Figure 2.2(a), the number representation cannot

distinguish the number 0 at depth 1 from the number 0 at depth 2. So the completed

numeric representation should also contain the corresponding depth information.

For instance, (0, depth 2) is equivalent to “0000”, and (0, depth 1) is equivalent to

“00”. Later, we use the string representation to explain ideas, while we use the

numeric representation in practice since it is more efficient.

In the past several years, many key-value stores appear such as Berkeley

DB [48], HBase [29], Redis [16], etc. In the distributed environment, a key-value

store supports the hash access model well, which is like a HashMap data structure

in Java, so that users can find a given key and its value in O(1) time. Note that

although some key-value stores also support sorting keys in order, the hash access

model is better for parallel processing the workload.

Spark [75] is not a pure key-value store, but a general-purpose cluster comput-

ing framework. IndexedRDD [9] supports almost all the features of a key-value store

for Spark. The cluster of Spark has one master machine and M task machines.

In contrast to Hadoop’s two-stage disk-based MapReduce framework, Spark’s in-

memory primitives provide performance up to 100 times faster for certain applica-

tions. Recalling that each well-separated pair is a key-value pair, our scheme for

storing ASDO works seamlessly on any key-value store. Thus, we can load all well-
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separated pairs in Spark’s distributed memory. Even for the ASDO of the USA

road network, several machines with 32 or 64GiB memory are enough. Embedding

ASDO in Spark is the best solution so far for the spatial analytic queries, which

have millions or billions of source-target pairs.

However, if the distributed key-value framework is a hash access model, we

can neither build an ordered index like in RDBMS nor redefine the comparison

operator as in [64]. Thus, given a batch of s-t pairs, how to efficiently find the

unique well-separated pair for each s-t pair is the core problem in a distributed

key-value framework.

In this section, we show how the distance oracle can be mapped to a hash

structure which will be implemented on top of Spark using RDD. The ASDO of [52]

stores the Morton codes in sorted order inside a RDBMS by using a B-tree index

structure and redefines the comparator operator. Each source-target query performs

a tree lookup in the B-tree which takes O(log n) I/O operations. This method is

ideal for disk-based systems that store the distance oracles on disk pages but we

want to develop the necessary theory in order to be able to map the distance oracle

to a hash structure which is memory resident. This is in contrast with a B-tree

which is typically good for disk-based access.

110



>=150KM
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Figure 4.1: Geographical heat map for the average drive distance from living place

to workplace for people in California: a pixel’s color in this figure denotes the

average drive distance of people residing in the pixel’s region. The query workload

is 13, 645, 807 shortest distance computations, and our distributed key-value method

on a Spark cluster with 5 task machines took 13 seconds. In contrast, state-of-the-

art methods, e.g., CH [39], running on the same 5 machines in parallel, needed more

than 20 minutes.
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IndexedRDD

Query

Workload Partition

Gateway Machine

Graph and datasets are copied M times

Task 
Machine 1

Algorithm

Datasets

… …

Query

Master

Spark Cluster

Graph

Task 
Machine M

Algorithm

Datasets

Graph DISTANCE ORACLE

Loaded in distributed memory

(a) (b)

Figure 4.2: (a) The architecture of most traditional analysis tools, where all the task

machines are the same; (b) The architecture of our key-value distributed methods

using Spark. Note that any distributed framework that supports key-value opera-

tions can be substituted for the Spark cluster.
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The construction of a distance oracle creates a tree structure, referred to as the

DO-tree such that its leaves form the block pairs which make up the distance oracle.

Figure 4.3 shows the DO-tree, which has several properties that we develop to build

a theoretical foundations for our hash data structure. Recall that the distance oracle

is constructed by taking a PR-quadtree on the spatial positions of the vertices. We

start with a block pair formed by the root of the PR-quadtree. This block pair forms

the root block of the DO-tree. At each step of the distance oracle construction, we

test to see if a block pair forms a WSP. We do this by checking the ratio of the

network distance between two representative vertices, one drawn from each of the

block pairs, to the network radius of the blocks. If the block pairs form a WSP by

virtue of the ratio being greater than 2
ε
, then we halt further decomposition. This

block pair forms a leaf block of the DO-tree. If the block pair is not a WSP, then

we decompose the block pair into 16 children block pairs and continue to test them

for the satisfaction of the WSP condition. The block pairs that do not form a WSP

correspond to the non-leaf blocks in the DO-tree. Due to the nature of how the

DO-tree is constructed, each non-leaf node of the DO-tree has 16 children nodes.

Furthermore, the maximum depth D of a leaf node in the DO-tree is the same as

the input PR-quadtree. A block pair at depth D in the DO-tree corresponds to

leaf blocks in the PR-quadtree, each containing a single vertex. These block pairs

trivially form a WSP since we record the exact network distances for these cases. It

can also be noted that not all the leaf blocks in the DO-tree are at depth D.

We can define the uniqueness property of the DO-tree which serves as the

basis of being able to find a block pair from a hash structure that we will define
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later. Uniqueness means that given any pair of vertices denoting a source s and a

destination t, there exists exactly one leaf node in the DO-tree that contains the

source and destination vertices. This property is due to the original property of the

distance oracle that there is exactly one WSP containing any source and destination

pair as well as the mapping of WSP to leaf blocks in the DO-tree. We state this as

a property below.

Property 4.2.1. Given a source-target query (s, t), there is exactly one leaf node

that contains both s and t, although note the subtle distinction that there may be

several non-leaf nodes in the DO-tree (e.g., the root of the DO-tree) that contain

s and t. This leaf node in the DO-tree is the only node that can provide the ε-

approximate network distance between s and t.

From Property 4.2.1, we know that there exists exactly one leaf block that

contains the source and the destination. Finding it requires generating all possible

leaf nodes that can possibly contain the source and destination starting with the

smallest possible leaf node.

Lemma 4.1. A hash table H1 of size O(n/ε2) can be constructed that enables the

retrieval of the network distance between any pair of vertices in O(D) lookups.

Proof. The hash table H1 is constructed using only the leaf nodes of the DO-tree.

Since the leaf nodes correspond to different blocks in the PR-quadtree, they form

a unique four-dimensional Morton code. The hash table uses the four-dimensional

Morton codes as the key and the approximate network distance as the value. A

simple way to find the desired leaf node using such a hash table is to perform
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(D+1) lookups. Given a source s and destination t, we start out by forming a four-

dimensional Morton code mc(mc(s),mc(t)) at depth D containing both s and t. We

test to see if H1 contains this key, and if so, then we can obtain the approximate

network distance of s and t. If H1 does not contain the key, then we check to see if

H1 contains the parent of the block pair. We can obtain the parent by performing a

bit-shift operation in O(1) time. For example, if the initial four-dimensional Morton

code is 001100101100, then the parent block is obtained by left bit shifting 4 times

to obtain 00110010. We are guaranteed that the search process will find a key

within D + 1 lookups by virtue of the satisfaction of Property 4.2.1.

The advantage of looking up values in H1 is that the O(D) lookups can be

performed concurrently as opposed to performing them sequentially. The reason

is that exactly one of the D keys that can be generated from a given source and

destination vertices will be found in the hash table, as we do not store the non-leaf

nodes of the DO-tree in H1. This property can be useful in designing a lookup

function for querying H1. Although querying H1 D+ 1 times in parallel may result

in a lesser response time, querying H1 in sequence can result in higher throughput

as it takes far fewer lookups.

We can further improve the performance of the hash structure by storing both

the leaf and the non-leaf nodes in the hash table, which dramatically reduces the

number of lookups needed. In order to do this, we first show that the number of

non-leaf nodes in the DO-tree is also O( n
ε2

). From the nature of distance oracle

construction, we know that the total number of leaf nodes is O( n
ε2

) since each leaf
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node corresponds to exactly one WSP. To compute the number of non-leaf nodes,

we use a similar approach to that taken in [28,64]. One internal node that is not a

WSP produces 16 nodes. Since the number of WSPs is Nwsp = O( n
ε2

), the number

of examined nodes is: Ntot = Nwsp + 1
16
Nwsp + 1

162
Nwsp + ... = 16

15
Nwsp. Another way

of showing this is pointing out that the DO-tree is a tree with out-degree of 16. The

number of non-leaf nodes for any such tree is the same order of magnitude as the

number of leaves. Hence, the total number of nodes in the DO-tree is also O( n
ε2

).

Lemma 4.2. A hash table H2 of size O(n/ε2) can be constructed that can retrieve

the network distance between any pair of vertices in O(logD) lookups.

Proof. The hash table H2 stores both the leaf and non-leaf nodes of the DO-tree.

Our goal is to find the leaf node containing a source and a destination but to use non-

leaf nodes in order to guide the search process. We find the leaf node by performing

a binary search on the depths of the DO-tree. Given a source s and a destination t,

we generate a four-dimensional Morton code of s and t at depth D/2. If the hash

table contains the key, then one of two options is possible. In particular, the key

corresponds to a non-leaf node in the DO-tree or it could be a leaf node but we

are not sure which is the case unless we make sure that no other node exists at a

deeper depth. To ensure this, we generate another Morton code at a depth between

(D/2, D]. We continue doing this till we find a case where a node exists but we

cannot find any children block in H2. Since this process is a binary search on the

depths of the DO-tree, the number of lookups is O(logD).

It is important to note that in contrast to H1 which could support concurrent
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lookups, the hash table H2 can only perform sequential lookups. The reason for this

is that finding or not finding nodes in the hash table indicates how the search would

proceed in the next step. However, H2 can result in far fewer lookups compared to

H1 since the number of lookups has been reduced to O(logD) from O(D). Note that

in almost all cases D is bounded by O(log n) [64], which means that H1 provides

O(log n) access while H2 provides O(log log n) access to the distance oracle.

4.3 Implementation in Spark
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We first describe the setup of the Spark processing framework at a conceptual

level before describing the different ways in which we implemented the distance

oracles. The Spark computing cluster consists of a single master machine and M

task machines. Our goal in this chapter is to evaluate a large number of network

distance queries which are posed as a large set containing N source-target pairs.

This workload can be generated by an analytic query such as in Figure 4.1 but for

the sake of exposition, for our setup here the workload is available as a CSV file of

source and destination locations stored in HDFS. The distance oracle for a large road

network has also been precomputed and is stored on the HDFS. Associated with

each task machine is an in-memory high performance key-value store abstraction

called IndexedRDD [9], which caches part of the distance oracle in its memory. The

keys in our case are the four dimensional Morton codes corresponding to the node

in the DO-tree and the value is the corresponding approximate network distance.

Spark uses an arbitrary hash partitioning method to distribute the nodes of the

DO-tree uniformly across all M task machines. IndexedRDD is implemented by

hash-partitioning the entries by key and maintaining a radix tree index called PART

within each partition. It has been shown that PART [12] achieves good throughput

and space efficiency that is on par with a mutable hash table. Hence, for all practical

purposes any lookup operation into the IndexedRDD can be considered as taking

O(1) time.

A Spark program consists of a master and a task programs. Algorithm 2

provides an abstraction of the master program, while the workload in the task

program of each task machine is the key search in its corresponding IndexedRDD,
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Algorithm 2: Master Program in Spark

1 DO ← load distance oracle from HDFS as an RDD and specify partitioner;

2 hash← IndexedRDD(DO).cache();

3 Q← List of source-target pairs;

4 result← GetDist (hash, Q);

where the keys are assigned by the master machine. In the remaining section, we

discuss three variants of Algorithm 2 that only differ by the variant of GetDist()

that they use.

4.3.1 Basic Method

Algorithm 3: GetDist(hash, Q) for Basic

Data: hash: IndexedRDD; Q: Batch of s-t queries.

Result: Result: Network distances for each s-t in Q

1 codes← compute D Morton codes for each pair in Q;

2 result← hash.multiget(codes); /* runs in task program */

3 return result;

The simplest way to implement a distributed hash table H1 is to expand each

of the N source-target pairs into their D four-dimensional Morton keys. This relies

on the concurrent aspect of H1 which ensures that all the D accesses can be made

concurrently but only one of the keys will find a key in the hash table. The master

machine reads N source-target pairs from HDFS, forms (N ×D) keys, and assigns

the keys to M task machines through a hash partitioning method. Note that the
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hash partitioning method is the same as the one used to distribute the nodes of the

DO-tree uniformly across all M task machines. Next, each task program checks if

the assigned sets exist in its local hash map (i.e., IndexedRDD). Next, it reports the

keys that it found along with their corresponding values (i.e., approximate network

distances) to the master. Finally, the master collects the results from the M task

machines, and returns to the user. There is really no need to check if the master

obtained two distance values for a source-distance pair or if it missed finding one

since Property 4.2.1 of H1 ensures that they cannot occur.

Figure 4.4(a) illustrates the flow plan of the Basic method in Spark with one

master machine and M task machines. In particular, after the precomputation of

ASDO, we have O( n
ε2

) WSPs. In the set-up stage, we define an arbitrary Hash

Partitioner in Spark, denoted as HP, to randomly partition the WSPs into M task

machines. Each task machine loads the corresponding WSP set into its memory,

and then builds a local HashMap for the WSP set using IndexedRDD. In the query

stage, when the master machine receives N source-target pairs, it forms (N × D)

keys and scatters the keys through HP.

4.3.2 Binary Search Method

The binary search (BS) method is an implementation of H2 which can retrieve

a shortest network distance using O(logD) operations as shown in Algorithm 4 and

Figure 4.4(b). The task program in BS is exactly the same as it is in the Basic

method, except that the HashMap (i,e. the IndexedRDD) contains both the leaf
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Algorithm 4: GetDist(hash, Q) in Master for BS

Data: hash: IndexedRDD; Q: Batch of s-t queries; D: the max depth of

DO-tree

Result: Result: Network distances for Q

1 for i← 0 to Q.length do

2 minD[i]← 0;

3 minD[i]← D;

4 code[i]← compute Morton Code at depth D;

5 for j ← 0 to logD do

6 result ← hash.multiget(code);

7 for i← 0 to Q.length do

8 Update minD[i] or maxD[i] based on result[i]; /* Binary Search */

9 code[i]← compute Morton Code at depth minD[i]+maxD[i]
2

;

10 return result;
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and non-lead nodes in the OD-tree. When the master program receives the N

source-target pairs as inputs it first generates the Morton codes corresponding to

depth D. These N Morton codes are provided to the M task programs by the

hash partitioning method that checks for their existence. If a key is found in the

hash table, then the search process is performed since any node found in the hash

table at depth D in the DO-tree is a leaf node. The value of the key found is the

approximate network distance.

If a key is not found at depth D, then a Morton code corresponding to depth

D
2

is generated for the source-target pair. If the task program finds the key in the

hash table, then it returns the success of finding and the value of the key. The

master program in turn issues a new query with a key corresponding to Morton

code at depth 3D
4

. In general, the new depth is the middle value of the depths that

we tried in the prior two iterations such that one search resulted in success and the

other in failure. The search continues until finding a depth d present in the hash

table and a depth d + 1 not present. This process can continue logD times as we

are performing a binary search on the D depths of the OD-tree.

4.3.3 Wise Partitioning Method

Both the Basic and the BS methods have a common problem which is that the

workload of the master machine is much higher than that of the task machines. In

the BS method, each task machine receives N
M

keys at each iteration but the master

needs to collect N keys and issue more queries. As each task machine simply looks
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Algorithm 5: GetDist(hash, Q) for WP

Data: hash: IndexedRDD; Q: Batch of s-t queries; d,D: min, max depths of

DO-tree in hash

Result: Result: Network distances for Q

1 code← compute the Morton code for each s-t pair at depth D;

2 result← hash.logSearch(code, d,D); /* Binary search happens at each

task machine */

3 return result;

up a local hash map, its computational workload is much smaller than that of the

master machine. For the Basic method, the master machine needs to generate D ·N

keys and process N results, while each of the task machines simply processes 1
M

of

the workload.

To make the workload more balanced (i.e., to increase the workload of the task

machines), we replace the default hash partitioner HP with a partitioning method

that we developed which we term the wise partitioner (WP). The wise partitioner

improves up on the BS method by moving the logD iterations into the tasks as shown

in Figure 4.4(c). In particular, in the BS method, the default hash partitioner HP

randomly (and uniformly) scatters the queries among the M tasks during the task

setup stage. The HP function is meant to uniformly distribute the keys among the

M task machines and in that sense it does not preserve any locality in the data.

Because of this, considering one s-t pair, the D keys in the Basic method and the

logD keys in the BS method would likely be present on different task machines.
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This is also why the master machine takes on a heavy workload in the Basic and BS

methods. Recall that the BS method must coordinate the search among multiple

task machines, collect results from all task machines, and even generate new keys.

To move all of the logD iterations into the task machines, each task machine

needs to ensure that all of the D keys for a given s-t query must be contained in

its local HashMap or none of it should be present in the local hash map. The wise

partitioner algorithm achieves the partitioning of O( n
ε2

) WSPs into M task machines

such that all of the D keys for each s-t query are hashed to the same task machine.

The WP takes advantage of the presence of the non-leaf nodes in the DO-tree

which help find the leaf nodes corresponding to WSP nodes. WP is constructed

as follows. First, truncate the DO-tree at a depth d so that we obtain a forest of

subtrees. d is chosen so that there are no leaf nodes at a depth less than d. All the

non-leaf nodes that are at a depth less than d are discarded. We require that the

number of subtrees in the forest is greater than M and typically it is much greater

than M because larger blocks at lower depths tend not to form a WSP with other

larger blocks. If the value of d results in fewer subtrees than M , then we simply

choose a larger value of d but subdivide those leaf blocks further until they reach a

depth of d. Although choosing a value of d appears to be a trial and error process,

the key idea here is to make sure that we decompose the DO-tree into at least M

subtrees. We found this not to be a problem for any road network dataset that we

used in our experiments.

Once the DO-tree has been decomposed into subtrees, we assign an entire

subtree to the same task machine while the subtrees themselves are assigned using
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HP. Each subtree is stored in a local hash map and the BS method now finds the

leaf nodes and its ancestors in the same task machine. Task machines perform a

binary search as before except that the depth range is [d,D] instead of [0, D]. The

task machine checks to see if there is a key for a source-target pair at depth D. If it

is not found, then it checks at depth d+D
2

and so on, until log(D − d+ 1) iterations

have been performed. Now, communicate the distance value to the master machine.

4.3.4 Analysis of Methods
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Table 4.2 summarizes our time and space complexity analysis of the three

variants of GetDist used in the master program. However, there are couple of im-

portant considerations we need to keep in mind before embarking on our analysis.

First, in distributed memory environments, network communication is a significant

bottleneck greatly exceeding the CPU and IO since most of the dataset is mem-

ory resident. Second, Spark retains data in memory across iterations so multiple

iterations in BS are not much of a bottleneck.

When it comes to the amount of work performed by the master machine, it is

clear that WP outperforms BS, but both of these methods are significantly better

than Basic. In terms of space complexity, WS and BS are identical and both are

better than Basic. From the perspective of the task machines, since both BS and

WS implement H2, they take up a bit more space than Basic which implements H1.

Assuming that all N queries are uniformly distributed in space, each task machine

is expected to obtain the same number of keys during the query stage. Thus, Basic

needs additional O(N ·D
M

) space for queries, and both BS and WP need additional

O(N
M

) space. Since the lookup time for a HashMap is O(1), the relationship between

the time complexity of each task machine is WP= BS < Basic. As we see, in terms

of big O, the time complexity of BS and WP in the task machines is the same.

However, BS invokes the task machines logD times, while each task machine in WP

makes logD iterations. This makes WP much more efficient than BS as there is a

significant decrease in the network communication cost. Note that during network

communication, the sending cost for the master machine dominates the cost. Note

also that the Basic, BS, and WP methods need to send O(N · D), O(N · logD),
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and O(N) keys respectively. Therefore, so far, it seems that WP is better than BS,

and that BS is better than Basic in general. However, some analytic queries may be

very local in nature as they query a large number of proximate source-target pairs.

For example, suppose that Spark has loaded the distance oracle of the entire USA

road network in memory, and a user wants to know the distance matrix between

the hospitals in San Francisco and the locations of their patients. In this case, it

could be that all N queries are in the same subtree of the DO-tree, which means

that they will be assigned to the same partition by WP. The result is that the time

complexity of the working task in WP is O(N · logD) and its extra space is O(N)

for queries. This is the worst case of WP, while both Basic and BS keep the same

time complexity, which are O(N ·D
M

) and O(N ·logD
M

), respectively.

The bottleneck of both Basic and BS is network communication, where the

total time complexity of Basic is O(N ·D), and the total time complexity of BS is

O(N · logD). WP is better than BS only when the N s-t queries can be assigned

to the task machines so that they each have approximately the same number of s-t

queries, in which case the total time complexity of WP is max( O(N), O(N ·logD
M

)).

If the N s-t queries are assigned to the same task machine or to just a few task

machines, then the task machines may become the bottleneck. In addition, since in

real applications, the master machine is usually much more powerful than the task

machines, BS is a better choice in general.
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4.4 Evaluation

In this section, we present a detailed evaluation of our distributed key-value

solutions in comparison with the CH method [39] which is a state-of-the-art al-

gorithm for finding a single shortest path in a road network, the distance oracle

implementation from [64], and an efficient implementation of Dijkstra’s algorithm.

The comparisons are detailed in in Section 4.4.2. We evaluate our experimental

results on a variety of datasets including a dataset corresponding to the entire USA

road network and provide the details in Section 4.4.2. Our comparisons use four

workloads: a batch of s-t pairs in Section 4.4.3, distance matrix queries in Sec-

tion 4.4.4, and job accessibility map in Section 4.4.5. We provide both a local and a

distributed implementation of the methods, where in the local mode we use a single

machine to study relative performance without network communication, and in the

distributed mode we use a cluster with large number of task machines.

4.4.1 Comparison Methods

We compare the performance of three implementations of our distributed key-

value method on the Spark framework. In particular, we compared the Basic method

discussed in 4.3.1, the binary search method (BS) in 4.3.2, and the wise partitioning

method (WP) discussed in 4.3.3.

DO. We compare against our ASDO method as it is representative of methods

that can perform network distance computations inside a database. In this case, we

load ASDO as a relational table in PostgreSQL and index it using a B-tree. In the
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local mode, we use a single instance of PostgreSQL, while in the distributed mode

each machine in the cluster runs an identical copy of the ASDO. Load balancing

is achieved using a Java middleware program in the master machine that evenly

distributes the query workload to the task machines and later combines the result.

CH. We use the CH method proposed in [39] for comparison as a representative

of methods that optimize the execution of single source shortest paths. Note that

CH optimizes latency which is the result of computing a single s-t query as quickly

as possible, while our approach optimizes throughput. In the local mode, the query

is processed using a local CH server implemented in C++, while in the distributed

mode, a Java middleware program in the master machine distributes the query

workload among the CH programs running on each task machine and later combines

the results.

Dijkstra. We compare our method with a high performance implementation

of Dijkstra’s algorithm [37] from [52], denoted as Dijkstra later, since it is a repre-

sentative of traditional shortest path methods. As in the DO and CH cases, we use

a Java middleware to distribute the workload when comparing the performance of

algorithms for the distributed mode.

In the case of DO, PostgreSQL is process-based (not threaded) in the sense

that each database session is a single system process. In other words, a database

connection cannot utilize more than one CPU [14]. To make the comparisons fair,

we restrict all methods (i.e., our Spark-based, CH method, and Dijkstra) to utilize

just one CPU in each machine.
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4.4.2 Datasets and Cluster Setup

Table 4.3: Dataset Characteristics in SPDO

Name NYC Bay US

Region NYC Bay Area USA

# of Nodes 264,346 758,104 23,947,347

# of Arcs 733,846 1,663,662 58,333,344

Maximum Depth (0.1m) 20 21 25

Practical Depth D (100m) 10 11 15

# of WSPs with ε = 0.25 55M 278M 4.6B

Table 4.3 provides the characteristics of the road network datasets used in our

evaluation. The NYC and US road networks are from the 9th DIMACS Implementa-

tion Challenge [3], and the Bay road network is from OpenStreetMap [11] extracted

using the TAREEG [19] tool. The distance oracles that we used in our experiments

provide a resolution of 100 meters, which means that the maximum depths D of the

DO-tree for the NY, Bay, and US datasets are 10, 11, and 15, respectively. This

means that if the source and the destination are closer than 100 meters, then we

simply return the geodesic distance between them. We did not take the query time

for such queries into consideration in our evaluation. For the rest of the queries

where sources and destinations are farther than 100 meters, the ASDO is guaran-

teed to provide the ε-approximate network distance. The length of the Morton code
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for a leaf node of a DO-tree is (4 ·D). Therefore, we need at most 40, 44, and 60 bits

to represent an individual WSP for the NYC, Bay, and US datasets, respectively.

Besides the road network, we use three location datasets in our evaluation.

The Restaurant dataset consisting of the locations of 49, 573 fast food restaurants

in the entire USA was obtained from [5]. We use the LEHD dataset [10] from the

US Census Bureau which provides detailed origin-destination employment statistics

as pairs of census blocks. Each census block pair has the count of how many people

live in one census block and commute to another census block for work. We use

two datasets from LEHD, one for the state of New York, called NY-JOB consisting

of 6, 834, 157 location pairs and another for the state of California called CA-JOB

consisting of 13, 645, 807 location pairs. The local mode experiments on a single

machine ran on an Intel Xeon(R) E3-1225 v3 CPUs @ 3.2GHz (4 cores) with 16 GB

RAM. The distributed mode experiments ran on a cluster with one master machine

and 25 task machines. Each machine consists of 2 × 6-core Intel Xeon E5-2620 v3

CPUs with 64GB RAM and 10GbE ethernet network. Our implementations use

Spark 1.3.0, while for the DO method, each task machine has PostgreSQL 9.3.5

installed.

4.4.3 Source-Target Pairs Workload

In this section, we generate a large workload of sources and targets on the

road network by uniformly sampling the location pairs from NY-JOB restricted

to New York City. Such a workload measures the throughput of our and other
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Figure 4.5: Execution time in local mode in NYC for 100, 10 thousand, 1 million,

and 9 million s-t pairs. The y-axis is logarithmic showing that our BS and WP

methods are significantly faster than other methods.

comparative methods on a workload where there may not be significant commonality

across different queries. Section 4.4.4 compares these methods on another workload

where network distances from one source to multiple targets with the goal of taking

advantage of location commonality.

Since our Spark-based method is a solution that can run on multiple task

machines, we want to understand the bottleneck due to the network computation.

In order to study this effect, we must first study the performance of our method

on a single machine in this section since this represents the case when there is no

network communication. Later in this section, we show experimental results on a

cluster of task machines. We vary the number of task machines to study its effect

on the performance of our Spark-based methods.
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Figure 4.6: Execution times of computing a batch of s-t queries in New York City

using the Spark cluster when varying the number of task machines. The case of

0 task machines corresponds to local mode. As the y-axis is linear scale and the

performance of BS and WP is similar while we increase the number of task machines,

we see that the bottleneck of our BS and WP methods is the master machine.

4.4.3.1 Local Mode

In the local mode, all experiments are performed on a single machine, so that

there are no network communication issues. For this set of experiments, we use the

NYC dataset and the s-t queries sampled from NY-JOB. We use the smaller NYC

dataset since all the WSPs for our Spark method must fit in memory, which would
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not be possible using a much larger dataset such as the US dataset.

Figure 4.5 shows the execution time of our Spark-based methods and other

competing methods for varying the number of s-t queries. In particular, we vary

the size of our workload from 100 to 9 million network distance queries. The result

in Figure 4.5 shows that the both the BS and WP methods are better than Basic

method, and WP is slightly better than BS since it pushes the logD searches into

the task machines. In terms of throughput in the local mode, BS and WP achieves a

throughput as high as 1.125 million and 1.363 million distance computations/second

in NYC, respectively. A reason for similar performance of BS and WP is that

without network communication costs, there is little difference between a binary

search performed at the master program or at the task program.

Not surprisingly, Dijkstra’s algorithm performed the worst since it needs to

invoke a best-first scans [52] for each query in the workload, which can be expensive.

Both DO and CH are better than our methods for the workload of size 100, because

our methods have the fixed overhead of job setup and scheduling in Spark, which is

the dominant cost for the small query workload. Both WP and BS are significantly

better than competing methods (orders of magnitude for larger query workload for

1M and 9M cases) as the size of the workload increases. Even the Basic method

outperforms all the competing methods for the query workload larger than 100 s-

t pairs. These results show that for a single machine and a small road network

dataset, our methods are significantly better than all the other competing ones in

the absence of network communication issues.
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4.4.3.2 Distributed Mode

In this section, we study the effect of adding more task machines on the perfor-

mance of our Spark-based methods. We first show in Figure 4.6 how the number of

task machines influences the time performance of our methods. The query workload

here is exactly the same as one in the local mode in the previous section. The case

of 0 task machines corresponds to local mode. In this figure, BS is only slower than

Basic when the number of distance computations in the workload is very small (e.g.,

100 and a pair of instances of 10K). This means that the Basic algorithm’s strategy

of generating D keys per query still does not blow up the space for such smaller

datasets. However, as the datasets get larger than 10K, this turns out to be a bad

strategy since BS is far superior to Basic for the remaining cases. Comparing BS

and WP in Figure 4.6, we see that both have very similar performance with WP

being always better than BS. The improvements that we see here are due to the

decrease in communication costs between the task machines and the master as well

as the reduced load on the master.

Another key observation is that increasing the number of task machines does

not necessarily result in better performance. This is especially true for BS and

WS. It is consistent with our analysis in Section 4.3.4, which indicates that the

bottleneck of BS and WP is the master machine. We recommend that the number

of task machines in a Spark cluster be set so that the total size of the distance

oracles fits in the total distributed-memory of the Spark cluster. Therefore, 1-3,

1-5, and 20-25 task machines be utilized in a Spark cluster for the NYC, Bay, and
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US datasets, respectively. In order to process more distance computations with a

Spark cluster consisting of M task machines, people can also build M
20

sub-clusters,

where each sub-cluster can now load the distance oracles of the entire US dataset.

Table 4.4: Throughput of the 6 methods for the US dataset running on 20 task

machines in SPDO

Method Basic BS WP DO CH Dijkstra

dist/sec/machine 5.0K 25.0K 73.8K 18.8K 385 1.6

We now analyze the performance of our methods and competing approaches in

terms of throughput. Table 4.4 summarizes the throughput of the 6 methods running

on a cluster of 20 machines for the random s-t queries for the US dataset. WP is the

best one, which achieves a throughput as high as 74K distance computations/second

per machine, which is nearly 4× better than the DO approach. Note that the total

throughput of WP in the cluster is 1.47 million distance computations per second.

The throughputs of Basic and BS methods are much lower than the one of WP

due to the network communication of the master machine is the bottleneck. CH

and Dijkstra methods have lower throughputs since computing the network distance

using CH and Dijkstra is much slower especially if the source and target are far from

each other.

4.4.4 Distance Matrix Workload

The distance matrix query is the simplest form of an analytic query that

takes a set of n locations on a road network and computes the network distance
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between every pair of locations. In other words, it computes an n × n matrix

as the output which requires computing n2 network distances. Typically, these

distance matrices find use in logistics queries where the network distances between

all pairs of objects (e.g., locations of packages to be delivered) on a road network are

computed which in turn forms the input to complex optimization problems. In the

following experiments, we use the distance matrix construction query to evaluate

the performance of various methods.
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Figure 4.7: Distance matrix computation queries for various methods on US dataset

with 20 task machines

Figure 4.7 corresponds to the distance matrix query using the road network of

the US for randomly chosen 10, 100, 1000 and 3000 locations from the Restaurants.

dataset and compute a distance matrix for these inputs. For this experiment, we

use the USA road network dataset and 20 task machines. For Dijkstra’s algorithm,

our implementation automatically optimizes any n× n distance matrix queries into

n one-to-many best-first scans. See [52] for details of this optimization.

The BS and WP methods are clearly superior to every other method, DO

included, whenever the size of the matrix becomes 1000 × 1000 or larger. In the
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3000× 3000 distance matrix, WP achieved a total throughput of nearly 1.5 million

distance computations per second for the 20 node cluster or close to 75K distance

computations/second per machine. For smaller queries, we found that the cost of

setting up the query dominates the computation times for the Spark methods.

We use the above experiment to shed light on another performance tuning

aspect of the Basic, BS and WS methods. The distance oracles of the USA road

network take up about 330GB so each task machine needs much memory to main-

tain a local hash map, i,e, IndexedRDD. In this environment that consumes so much

memory, we found that the number of partitions of the distance oracles in the task

machines also influences the performance of Spark. For example, in the above exper-

iment, the distance oracle of the US is partitioned into 5000 parts by IndexedRDD.

Decreasing the number of partitions of the distance oracle, e.g., 1000, results in a

lower time cost in the best case, but worse fault tolerance, which means Spark is

more frequent to rerun some sub-tasks of a job because of failure.

4.4.5 Job Accessibility

An important application that performs millions of network distance compu-

tations is the analysis of how far people travel to work. The State Smart Trans-

portation Initiative (SSTI [18]) pointed out that measures of accessibility can reveal

if a transportation system meets peoples needs [18], not to mention revealing the

economic vibrancy of a census block. The dataset that is used for such an analysis

is the LEHD dataset [10] from the US census which first subdivides the map into
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(b) Using the CH method

Figure 4.8: Average drive distance from home to workplace in the Bay Area region,

which contains 2.1 million source-target pairs from CA-JOB: (a) results computed

by WP with 3 task machines in 2 secs; (b) results computed by CH with 3 task

machines in 5 mins. Results in (a) are almost the same as (b). Although the

distance values yielded by the distance oracles are ε-approximate, with ε = 0.25,

they are definitely sufficient for such analytic queries.

census blocks and for each block pair tabulates the number of people that commute

from one block (where they live) to another block (where they work). A natural

query is one that seeks for each census block the average distance traveled to work

by each of its inhabitants. Such a query requires computing millions of shortest

path queries. For instance, CA-JOB has more than 13 million such census block

pairs and a visualization of such a query using this dataset was shown in Figure 4.1.

Our WP method generated Figure 4.1 in 13 seconds using 5 task machines, while
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using the same number of task machines CH needs 20 minutes. Figure 4.8 shows the

result for a small section of California, i.e., San Francisco Bay Area. Figures 4.8(a)

and 4.8(b) show the results of using the WP and CH methods, respectively.

4.5 Related Work

The methods for computing shortest distances fall into two main categories:

scan-based methods and lookup-based methods. Scan-based methods are usually

memory-based, which require many data structures to keep the scan information

such as the graph and priority queues. Lookup-based methods have precomputed

and stored many shortest distances result, and then just retrieve and merge the

distance result for online queries. In our experience, lookup-based methods are

more likely to be embedded in a distributed framework.

The most famous scan-based method is Dijkstra’s algorithm [37], which is very

efficient for single source queries named one-to-many pattern in [52], e.g., find the

nearest K destinations around a given source. However, for an s-t query, Dijkstra’s

algorithm has to scan many unneeded vertices to reach the given target location. To

address the deficiency of Dijkstra’s algorithm on road networks for the s-t queries,

a variety of scan-based techniques have been proposed based on noting that some

vertices in a spatial network are more important for shortest path queries, while

offering different trade-offs between preprocessing time, storage usage, and query

time. In particular, [40] prunes unimportant vertices using a bidirectional version

of Dijkstra’s algorithm. Contraction Hierarchies (CH) [39] assigns an importance
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score to each node and replaces some original edges by shortcuts. [22, 25, 34, 61, 76]

build an explicit hierarchy graph to overcome Dijkstra’s algorithm’s drawback.

The lookup-based methods usually need to store some precomputed results.

[21, 30, 43, 55] precompute the shortest distance between landmarks or hub nodes

and other vertices, and then answer the shortest distance queries by assuming the

shortest path is through one landmark or hub node. HLDB [20] based on hub labels

(HL) [21] is a recent practical method that embeds the shortest distance compu-

tation into an RDBMS. Road Network Embedding (RNE) [69] applies a Lipschitz

embedding [42] to a spatial networks, so that vertices of the spatial network become

points in a high-dimensional vector space. [72] takes advantage of the fact that the

shortest paths from vertex u to all other vertices to decompose the vertices into

subsets based on the first edges on the shortest paths from u to them. Spatially In-

duced Linkage Cognizance (SILC) [60] is based on the observation mentioned in [72]

which decomposes vertices into multiple quadtree blocks for each vertex u so that

the shortest paths from u to all vertices in a block are reachable from the same

outgoing edge from u. Our previous work [64, 67] exploit the spatial coherence so

that if two clusters of vertices are sufficiently far away, then distances between pairs

of points in different clusters are similar. The Path-Coherent Pairs Decomposition

(PCPD) [67] gives one exact shortest path algorithm, while the ε-Distance Oracles

(ε-DO) [64] proposes an approximate shortest distance algorithm, which balances

between accuracy and storage.

A few other approaches focus on speeding up specific analytic queries. Knopp

et al. [41] explain how to use highway hierarchies [61] for computing many-to-many

144



shortest distances. [60] and [69] show how to speed up the K nearest neighbor

search by their s-t techniques, respectively. Delling et al. [36] utilize partition-based

algorithms developed for s-t queries to handle POI queries. Cho et al. propose

UNICONS [31] for continuous nearest neighbor queries, and ALPS [32] for top-k

spatial preference search. Our recent paper [52] proposes an integrated architecture

that embeds the distance oracles into an RDBMS, and develops many SQL solutions

for solving a variety of spatial analytic queries.

4.6 Summary

We presented SPDO, a framework for computing road network distances using

Apache Spark and ε-approximate distance oracles. We described three algorithms

for mapping a distance oracle into a distributed hash structure, which we imple-

mented using Spark’s RDD abstraction. Our methods produced at least an order

of magnitude higher throughput compared to existing methods that are optimized

for latency, and up to 1.5 million distance computations per second in both NYC

and US road networks. Using our framework, one can perform millions of distance

computations on a road network using just a few machines. We also showed how

SPDO can significantly speed up complex spatial analytic queries and discussed two

complex use-cases, namely the route directness spectrum and job accessibility.

145



Chapter 5: CDO: Extremely High-Throughput Road Distance Com-

putations on City Road Networks

5.1 Overview

Some analytic queries on road networks, usually concentrating in a local area

spanning several cities, need a high-throughput solution such as performing millions

of shortest distance computations per second. However, most existing solutions

achieve less than 5, 000 shortest distance computations per second per machine

even with multi-threads. We demonstrate a solution, termed City Distance Oracles

(CDO), using our previously developed ε-distance oracle to achieve as many as 7

million shortest distance computations per second per commodity machine on a city

road network, i.e., 10K × 10K origin-distance (OD) matrix can be finished in 14

seconds.

Browsing of spatial data is becoming increasingly important [27, 38, 58, 59].

During the spatial analyst’s exploration, some types of spatial queries, termed spa-

tial analytic queries, can potentially involve thousands to millions of road network

distance computations. Examples of such analyses include complex scenarios such

as how to assign and deliver 10, 000 packages for UPS in a city, how much traffic
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congestion could be reduced if build a new bridge, where to locate the next su-

permarket among a number of potential locations taking into account a variety of

factors like demography, distance to a warehouse, etc., identifying bottlenecks in a

road network for evacuation planning, or distance join queries on road networks [63].

Our focus here is on throughput which is how to compute a spatial analytic

query as quickly as possible. Note that although decreasing the latency time for a

single shortest distance query results in reducing the total response time for a spatial

analytic query, it is far from enough since these latency methods don’t take into

account considerations such as multi-users, multi-threads, reused results, and query

optimization [52]. Our recent work [54] discussed how to obtain high throughput

performance using the ε-distance oracle (ε-DO) [64, 65] in a distributed key-value

store such as Apache Spark for spatial analysis on continental road networks such as

the entire USA. However, the reaction of a number of companies that make use of

such queries was that typical queries are concentrated in a small local region rather

than the whole continental region, termed the spatial concentration property. As an

example of such a use-case is a delivery company that needs to plan the delivery

route for each truck every day, where the route of each truck must be restricted

into a local region, i.e., the region near to the package warehouse. In particular,

each such warehouse handles 1, 000 to 10, 000 packages per day, and each truck can

deliver a maximum of 150 packages per route per day. In order to efficiently assign

the packages to trucks and plan routes, the delivery company computes a distance

matrix that captures the distance between every pair of destination locations of the

packages, This is a common spatial analytic query which makes between 1 million
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Figure 5.1: The work flow of demo CDO: First extract any city road network such as

New York City from OpenStreetMap [11] and TAREEG [19]; Then precompute the

ε-DO [64]; Finally load the results in memory and implement multi-thread version

to process query workload.

and 100 million distance computations. Here, the spatial concentration property

means that in the general case, all destination locations of packages must be in

proximity to the warehouse, say within 100KM.

Now we demonstrate an extremely efficient solution to solve spatial analytic

queries where the spatial concentration property holds. In particular, we will show

how one can compute large origin-distance (OD) matrix, say of size 10K × 10K

in a few seconds. The main work flow is shown in Figure 5.1. We extend our

prior work on ε-DO [64, 65], which precomputes and stores approximations of the

shortest distances between all pairs of vertices in a road network. The resulting

representation takes O( n
ε2

) space, where n is the number of vertices in the road

network and ε is an approximation error bound on the result. Our contributions in

this demo are:

1. An efficient implementation of using ε-DO in memory instead of in a database [64,
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66] with multi-threads and query optimization illustrated in [52]. As a result,

we achieve 7 million distance computations per second on the Bay Area road

network in latitude/longitude region [37.173, 38.019] × [−122.678,−121.571]

with 755K vertices.

2. The design of a new key representation of the ε-DO which enables doing a

binary search to retrieve the road network distance on the ε-DO without re-

quiring any special indices. It greatly speeds up the query time.

3. An application of CDO is illustrated, and an evaluation of time performance

is provided for CDO, HLDB [20], and CH [39].

In addition, we set up the CDO demo for the Bay Area and New York City 1

and provide some use cases in our blog site 2.

5.2 Preliminaries and Examples

Recall the two concepts we previously introduced, Morton code in Figure 5.2

and well separate pairs in Figure 5.3. We use the Morton (Z) order space-filling

curve [57] that provides a mapping, Z2 → Z, of a multidimensional object (e.g., a

vertex or a quadtree block) in a 2-dimensional embedding space to a positive number.

Given an object o, let mc(o) be the mapping function that produces the Morton

representation of o by interleaving the binary representations of its coordinate values.

Figure 5.3 illustrates the theoretical WSP example and a real WSP on road network.

1http://sametnginx.umiacs.umd.edu/

2http://roadsindb.com/
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(a) (b)

Figure 5.2: (a) Morton code and ordering in a 4×4 space. (b) Example to illustrate

the key representation of distance oracle.

A B… …

(a)

A

B

pa	  

pb	  

ra	  

rb	  

(b)

Figure 5.3: A well-separated pair example: (a) A theoretical WSP example. (b) A

potential oracle containing blocks A and B in Silver Spring, MD showing represen-

tative vertices pa, pb and radius ra and rb.
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5.3 Method

CDO is based on ε-DO on a city road network, e.g., the number of vertices n

is less than one million. Note that on a commodity machine, immediately loading

O(n2) distance results in memory is infeasible when n is larger than 50 thousand.

As a result, the ε-distance oracle method generates O( n
ε2

) well-separated pairs,

denoted as (A,B, dε(A,B)). Both A and B are a pair of PR quadtree blocks [57]

at the same depth. In order to make a well-separated pair easy to embed in a

database as a key-value pair, the ε-distance oracle uses the Morton (Z) order space-

filling curve [57] to map a quadtree block in a 2-dimensional embedding space to

a positive number. Thus, each well-separated pair (A,B, dε(A,B)) is considered as

a key-value pair (mc(mc(A),mc(B)), dε(A,B)), where the value is the distance and

the key is mc(mc(A),mc(B)).

5.3.1 Storing and Querying CDO

Here we illustrate how to obtain the network distance in CDO, given a source

location p1 = (lat1, lng1) and a destination location p2 = (lat2, lng2). Once ε-DO has

been computed, CDO loads all well-separated pairs, which the schema is (code, d),

in memory as an array sorted by code, where code is a succinct representation of

the well-separated pair and d is the approximate network distance. Although such a

schema is similar to the one proposed in ε-DO [64], our method just uses the default

integer comparator instead of redefining the string comparator operators (i.e., <

and =) while doing binary search. This is important because the default integer
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comparator saves much time in contrast to the redefined string comparator.

To illustrate our method for packing the code, we first start with a simpler two-

dimensional example (i.e., Z2) and we then describe how to encode a well-separated

pair as a four-dimensional Morton block. Suppose that we have a number of var-

ious length Morton codes in two-dimensions, which means that the corresponding

quadtree blocks are at different depths. The simpler problem we want to solve is

that we are given a point p, and we need to efficiently find a unique quadtree block

A containing p. Here we assume that the uniqueness property from the property of

WSP [28] is also true in this simpler example. The uniqueness property here means

that there is exactly one quadtree block containing p such as in Figure 5.2. This

search problem is equivalent to finding the unique mc(A) such that p ≺ A.

Our approach is to make all the Morton codes have the same length by padding

them with enough zeros, so that all Morton codes are always the same length, i.e.,

2 ·L bits long in two-dimensions. For any Morton code mc(A), padding with enough

zeros is equivalent to choosing a unit-sized block that is a descendant of A in the

quadtree that has the smallest Morton code. This needs to be done carefully as

we illustrate with the following example. Suppose that our two-dimensional oracles

has ten quadtree blocks as in Figure 5.2 whose Morton codes are 0000, 0001, 0010,

0011, 01, 10, 1100, 1101, 1110, and 1111. Only two Morton codes 01 and 10 are not

4 digits long. Thus, consider the quadtree blocks 01 and 10 in Figure 5.2, which we

convert to 0100 and 1000 respectively by padding zeros to the right hand side. The

codes of our oracle become: 0000, 0001, 0010, 0011, 0100, 1000, 1100, 1101, 1110,

and 1111 in order. Given a query point p = 0111 that is contained by a unique
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quadtree block A. To find A, we need to find a quadtree block in the B-tree such

that it is the largest value that is less than or equal to p, which in this case is 0100

(i.e., quadtree block 01, which is the correct answer).

Algorithm 6: GetDist(lat1, lng1, lat2, lng2)

Data: A: Sorted array containing all well separated pairs

Result: Result: Network distances between (lat1, lng1) and (lat2, lng2)

1 code← Z0
4( Z2((lat1, lng1)), Z2((lat2, lng2)) );

2 left← 0;

3 right← A.size();

4 while left ≤ right do

5 mid← (left + right)/2;

6 if A[mid].code ≤ code then

7 left← mid + 1;

8 else

9 right← mid - 1;

10 return A[left− 1].d;

Now going back to CDO, we obtain a four dimensional Morton code by inter-

leaving mc(A) and mc(B) two digits at a time. This packing is given by the function

Z4(A,B). Next, we define function Z0
4(A,B) by padding Z4(A,B) with zeros to the

right side. For example for the blocks in Figure 5.2, Z4 and Z0
4 should be

Z4(01, 10) = 0110 Z0
4(01, 10) = 01100000 (5.1)

Z4(0000, 1111) = Z0
4(0000, 1111) = 00110011 (5.2)
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This packing Z0
4 produces a Morton code of 4 · L bits length. This forms the code

attribute. At this point, given a source location p1 and a destination location p2,

the approximate network distance query first calculates key = Z0
4(mc(p1),mc(p2))

in O(1) time using bitwise operations and then issues the following binary search

function, Algorithm 6, to obtain the network distance.

The reason this scheme works is because of the uniqueness property of WSP.

For any two points in the domain S, there is exactly one WSP containing them.

5.3.2 Multi-threads

As most memory resources in Algorithm 6 are only processed by read-only

operations, parallel processing should increase the throughput a lot. Without loss

of generality, we show how to obtain the network distances of a batch of source-target

pairs with multi-threads in Algorithm 7.

5.4 Demo scenario

We extracted and prepared a CDO of the Bay Area road network with 781K

vertices and one for the New York City road network with 407K vertices from

OpenStreetMap [11]. The demo is set up at http://sametnginx.umiacs.umd.

edu/.

We implemented three methods: our solution CDO with ε = 0.05, HLDB [20],

and CH [39], in C++. All of them are processing in memory with multi-threads,

and in the same environment, a Macbook Pro 15-inch, 2.8 GHz Quad-core Intel
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Algorithm 7: GetBatchDist(Q)

Data: Q: Query array where each element is a source-target pair; nthread:

Number of threads

Result: Result: Network distances for Q

1 len← Q.size()/nthread;

2 ans← initial a float array with Q.size() elements;

3 for i← 0 to nthread do

4 thread[i]← initial thread i, process Q[j], j ∈ [i · len, (i+ 1) · len) by

Algorithm 6 in thread i, and store distance results in corresponding ans[j]

;

5 for i← 0 to nthread do

6 thread[i].join();

7 return ans;
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Core i7, 16 GB memory.

Figure 5.4 shows the time performance of the three methods on the Bay Area

road network. CDO is the fastest one, which takes 0.16 seconds with 8 threads for

1 million distance computations.
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Figure 5.4: Time consumption for 1 million random source-target pairs on the Bay

Area road network, varying with number of threads.

In addition, here we provide an application that can be efficiently solved by

our demo. It is to measure the accessibility of jobs, i.e., how many job opportunities

exist nearby each census block. We use the LEHD dataset [10] to obtain the job

locations around the Bay Area. This workload shown in Figure 5.5 makes 120 million

distance computations, where CDO only takes 18 seconds. Obviously, based on our

solution, many analytic queries could be solved and visualized in a much quicker

way, such as showing the influence of building a bridge from two arbitrary Bay Area
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Figure 5.5: Nearby job opportunities (e.g., within 10 kms) for each census block in

the Bay Area, requiring 120 million distance computations, where CDO finished it

within 18 seconds.

locations. Future work involves investigating the use of distributed data structures

in the application (e.g., [71]).
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Chapter 6: DOS: A Spatial System Offering Extremely High-Throughput

Road Distance Computations

6.1 Overview

Our previous work discussed how to process graph distance computations in a

PostgreSQL database on a general road network, e.g., 60K distance computations

per second per machine; how to “scale out” by using a Spark cluster to achieve 73.8K

distance computations per second per machine; and how to obtain a extremely high-

throughput solution in memory for city-sized road networks, e.g., 6.7M distance

computations per second. However, there is no solution that could achieve more

than 1M throughput for general road networks. In an industrial setting, most state-

of-the-art solutions yield 5K − 10K shortest distance computations per second per

machine even with multi-threads. In this chapter, we propose a new distance oracle

system (DOS) for general road networks. It can solve most spatial analytic queries,

and its throughput achieves 5M distance computations per second even on the whole

USA road network. In addition, a 10K × 10K origin-distance (OD) matrix can be

computed in 20 seconds.

Beyond simple navigation queries, location-based web services like Google
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Maps repeatedly pose queries on a road network and utilize the results to serve

a user base. For example, the Google Distance Matrix product offers an API that

computes the distance matrix between a set of origins and a set of destinations.

Other examples include complex scenarios such as how to assign and deliver 10, 000

packages for UPS in a city, how much traffic congestion could be reduced if a new

bridge is built, where to locate the next supermarket among a number of potential

locations taking into account a variety of factors such as, but not limited to, de-

mography, distance to a warehouse, etc., identifying bottlenecks in a road network

for evacuation planning, or distance join queries on road networks [63]. We use the

term spatial analytic queries to collectively describe such queries. The challenge

lies in taking note of the realization that each such instance of a spatial analytic

query invariably involves being able to make hundreds to as many as millions of

computations of distance along a spatial network rather than as the crow flies.

In the face of a massive amount of spatial analytic queries from internet scale

users, for example, Google Maps [8] drastically restricts the number of shortest

distance results per query (e.g., a limit of 625 (O-D matrices of size 25×25) shortest

distances per query using the Google Distance Matrix API even to their paying

customers). Most other existing services such as Yelp just use the Euclidean distance

instead of the network distance. Figure 1.3 illustrates the drawback of using the

Euclidean distance in Google Maps and Yelp, respectively.

Reviewing previous research work, we find none that are concerned with gen-

eral spatial analytic queries. Instead, they focus on speeding up one specific type

of query, e.g., KNN search queries [32, 36, 47, 50], CNN queries [31], and distance
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matrix [41]. However, these algorithms are not easy to extend to include general

spatial analytic queries. On the other hand, most state-of-the-art methods such as

HL [21], TNR [25], CH [39], etc, focus on decreasing the latency time for a single

source-target (s-t) query, which is the basic unit of a spatial analytic query. Al-

though decreasing the latency time for one s-t query results in reducing the total

response time for a spatial analytic query, it is far from enough since these meth-

ods don’t take into account considerations such as cache results, multi-threads, and

distributed systems that can be used to speed up a spatial analytic query [52].

Our focus here is on throughput which is how to compute a spatial analytic

query as quickly as possible. The first attempt uses our fundamental theory work

ε-distance oracle (ε-DO) [64] and PCPD [67] methods. It computes ε-approximate

network distance based on the oracle representation of a road network requiring

O( n
ε2

) space for n vertices and an ε error bound. As noted in [74], this method is

not scalable to road networks with more than 80, 000 vertices. It means that ε-DO

is not available even for a city road network such as New York City with 264, 346

vertices. Our previous work SPDO [54] discussed how to obtain high throughput

performance using ε-DO in a distributed key-value store such as Apache Spark

for spatial analysis on the continental road networks such as the entire USA. Our

previous demo work CDO [53] utilized the spatial concentration property to obtain

an extremely high-throughput, e.g., 6.7M distance computations per second for

city-sized road networks. Note that the spatial concentration property only holds

for some specific companies such as delivery companies, but not for general.

In this chapter, we propose a system called DOS (denoting Distance Ora-
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cle System) for spatial analytic queries on general road networks. Its throughput

achieves 5M distance computations per second, which is very close to the perfor-

mance of CDO [53] on a city-sized road network, but is also available for large road

networks. Contributions of DOS are:

1. We developed an infrastructure to precompute the oracle representation for

large road networks. Our experimental results show that the preprocessing

needed to form the oracle for the entire USA road network can be performed

in 5.1 hours when using a modest size cluster of 45 Amazon EC2 machines

incurring less than $50 in AWS charges.

2. DOS extends our demo work CDO, which garnered a best demo award at

the SIGSPATIAL’16. It is an efficient implementation of using ε-DO on disk

and cached in memory instead of in a database [64, 66] with multi-threads

and query optimization illustrated in [52]. As a result, we achieve 5 million

distance computations per second for both city-sized road networks, e.g., the

Bay Area road network, and the country-sized road networks, e.g., the USA

road network.

3. DOS utilizes FlatBuffers [6] to serialize distance oracles to binary files. It

greatly reduces the required space for storage. Then DOS uses mmap to load

binary files in program. It makes the preloading time instant even for large

size of distance oracles.

4. We show how to solve some representative industrial queries in DOS, and

provide a detailed execution time evaluation for DOS, CDO [53], DO [64],
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HLDB [20], and CH [39].

In addition, all applications mentioned in this chapter are provided in our

distance oracle demo 1 and in our blog site 2.

The rest of this chapter is organized as follows. Section 6.4 summarizes related

work. Section 6.2 presents our DOS framework and techniques in detail. Section 6.3

contains a detailed experimental evaluation between our DOS and other solutions.

Section 6.5 draws concluding remarks.

6.2 Method

Table 6.1 summarize the notations used latter in this chapter. DOS includes

two parts, precomputing and querying. The first part is precomputing the DO(G),

and the other one is processing spatial analytic queries utilizing DO(G). In this

section, we first show the main picture of DOS. Next, explain how we speed up

precomputing the DO(G). Finally, discuss each component of the querying part of

DOS, and how we process some spatial queries.

6.2.1 DOS framework

Our previous chapters discussed how to utilize DO(G) in different queries and

settings. In SPDO [54], we proposed a general distributed framework to achieve a

high throughput relying on the distance oracle of the whole USA road network. In

contrast, when presenting the CDO [53], we claimed that the reaction of some com-

1http://sametnginx.umiacs.umd.edu/

2http://roadsindb.com/
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Table 6.1: Notation Summary of DOS

Symbol Meaning

n the number of vertices in the graph

N the number of s-t queries

ε the error bound of the ε-DO

mc() Morton code function

dG(s, t) the shortest distance/time from s to t

dE(s, t) the Euclidean/geodesic distance from s to t

dε(s, t) the approximate distance/time from s to t bounded by ε

DO(G) the distance oracle representation of a road network G

panies, such as UPS, Uber, PlaceIQ, etc, was that typical queries are concentrated

in a small local region rather than the whole continental region, termed the spatial

concentration property. Such applications with the spatial concentration property

require an extremely high-throughput solution such as CDO, which optimizes our

distance oracle technique on a small road network (city-sized road network) with

limited computing resources (a commodity machine) to achieve millions of distance

computations per second.

Speeding up precomputing DO(G) and extending the CDO solution, we pro-

pose the DOS system, illustrated in Figure 6.1, for general road networks, not limited

to a city. In the preparation stage, which was described in Section 2.2 in detail, we
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Figure 6.1: The DOS framework

first extract the road network for any given region such as the whole USA road

network from OpenStreetMap [11] and TAREEG [19], and then precompute the

DO(G). The distance oracle result is ordered and partitioned by the Z4 code and

stored in several text files. The number of text files depends on the size of the road

network. In particular, this partition is the same as the WP method in SPDO [54],

which puts the nearby WSPs in the same text file to preserve the locality of WSPs.

Each text file stores around 100 million WSPs because of the limit of Flatbuffers [6]

(explained in detail in Section 6.2.2). In this way, given a pair of two locations

(p1, p2) and its Z4(p1, p2) code, we can quickly know which text file contains the
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WSP for Z4(p1, p2). Next, each text file is compressed and serialized by Flatbuffers

to a binary file. The Flatbuffers binary file reduces the disk size significantly, and

enables the program to flexibly access WSPs during the querying stage. The details

of using Flatbuffers are given in 6.2.2.

In the querying stage, our program preloads the required dataset other than

distance oracles in memory, e.g., all delivery locations for delivery tasks, restaurant

positions for nearby search, or home and work places for traffic analysis. In order to

use distance oracles, we formalize queries as hundreds to millions one-to-one distance

queries [52]. Each one-to-one distance query could be answered by binary search

in time O(log n
ε2

) [54], which means that each one-to-one distance query would visit

at most O(log n
ε2

) WSPs. Thus, at the beginning, all WSPs are in the Flatbuffers

binary file on disk, and our program only has the iterator pointers of the binary files.

While querying, our program caches the visited WSPs in memory to speed up the

binary search of further queries. Our experiments in Section 6.3 prove that using

Flatbuffers is an efficient way for both storage size and querying time. Furthermore,

our experiments show how powerful our system is while utilizing multi-threads,

efficient query plans, and indices.

6.2.2 Flatbuffers Binary Representation

Recall back to CDO, we obtain a four dimensional Morton code by interleaving

mc(A) and mc(B) two digits at a time. This packing is given by the function

Z4(A,B). Next, we define function Z0
4(A,B) by padding Z4(A,B) with zeros to the
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right side. For example for the blocks in Figure 5.2, Z4 and Z0
4 should be

Z4(01, 10) = 0110 Z0
4(01, 10) = 01100000 (6.1)

Z4(0000, 1111) = Z0
4(0000, 1111) = 00110011 (6.2)

This packing Z0
4 produces a Morton code of 4 · L bits length. This forms the code

attribute. At this point, given a source location p1 and a destination location p2,

the approximate network distance query first calculates key = Z0
4(mc(p1),mc(p2))

in O(1) time using bitwise operations and then issues a binary search call to obtain

the network distance.

Algorithm 8: Oracle.fbs for Flatbuffers in C++

1 namespace MyOracle.Sample;

2 struct Wsp {

3 code:long;

4 d:float;

5 }

6 table Oracle {

7 wsps: [Wsp];

8 }

9 root type Oracle;

Obviously, each WSP is a bigint for the Z0
4 value and a float for the network

distance value, which should amount to 12 bytes. The CDO [53] stores all WSPs as

an array in memory. However, the size of distance oracles of some road networks is
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too large to fit in the memory of a commodity machine. For example, the distance

oracles for the USA road network contains 4.6 billion WSPs with ε = 0.25. If each

WSP requires 12 bytes, it is expected at least a storage of 55.2GB. To solve it, our

previous work [52] stored such big distance oracles in PostgreSQL, and SPDO [54]

enables it to work in a distributed memory system. Both these methods have a

heavy overhead in storage due to the extra bytes of the data header, plus the space

for index. In fact, these two methods need more than 300GB to store 4.6 billion

WSPs, and the throughput performance is less than 100K distance computations

per second per machine. Although these methods are faster than all other state-of-

the-art methods, they are much lower than 6.7M per second in CDO because of the

heavy I/O cost,

In order to enable distance oracles for large road networks to also fit in a

commodity machine without sacrificing time performance, we need to find a way to

serialize and compress distance oracles on disk and cache the WSPs during query-

ing. After investigation, we use FlatBuffers to serialize distance oracles. FlatBuffers

is an efficient cross platform serialization library for performance-critical applica-

tions [6]. Although Protocol Buffers [15] is indeed relatively similar to FlatBuffers,

since FlatBuffers does not need a parsing/ unpacking step before we access data,

FlatBuffers is faster than Protocol Buffers in our setting.

The way of using FlatBuffers is as follows: (1) Take the oracle representation of

a road network and represent each WSP as a proto; (2) Use FlatBuffers to compress

the representation; (3) Load FlatBuffers into through mmap; (4) Use their support

for binary search.
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Algorithm 9: oracle serialize.cpp for serialization preparation

1 #include ”oracle generated.h”

2 using namespace MyOracle::Sample;

3

4 std::vector¡Wsp¿ wsp vector;

5 Void PrepareSerialization{

6 flatbuffers::FlatBufferBuilder builder;

7 foreach text file f storing WSPs do

8 wsp vector.clear();

9 wsp vector load all WSPs from file f ;

10 sort(wsp vector), order by code;

11 auto wsps = builder.CreateVectorOfStructs(wsp vector);

12 auto oracle = CreateOracle(builder, wsps);

13 builder.Finish(oracle);

14 std::ofstream filew(”f oracle flatbuffer.out”);

15 filew.write(builder.GetBufferPointer(), builder.GetSize());

16 filew.close();

17 }
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Algorithm 10: oracle run.cpp for the querying stage

1 #include ¡thread¿

2 #include ¡sys/mman.h¿

3 #include ”oracle generated.h”

4 using namespace std;

5 namespace ofb = MyOracle::Sample;

6 const int N = number of binary files;

7 const flatbuffers::Vector¡const ofb::Wsp *¿ *wspsdata[N];

8 Void Process{

9 foreach binary FlatBuffers file f do

10 long long filesize = getFileSize(f);

11 int fd = open(f , O RDONLY, 0);

12 void* mmappedData = mmap(NULL, filesize, PROT READ,

MAP PRIVATE , fd, 0);

13 auto result = ofb::GetOracle(mmappedData);

14 wspsdata[f ] = result→wsps();

15 Load all one-to-one distance queries;

16 Partition queries to m threads;

17 for i← 0 to mthread do

18 thread[i]← initial thread i, process distance queries using function

GetDist(p1, p2) in Algorithm 11;

19 for i← 0 to mthread do

20 thread[i].join();

21 } 169



Algorithm 11: GetDist(lat1, lng1, lat2, lng2)

1 code← Z0
4( Z2((lat1, lng1)), Z2((lat2, lng2)) );

2 f ← which file would have the WSP of code;

3 left← 0;

4 right← wspsdata[f ]→size();

5 while left ≤ right do

6 mid← (left + right)/2;

7 if wspsdata[f ]→Get(mid)→code() ≤ code then

8 left← mid + 1;

9 else

10 right← mid - 1;

11 return wspsdata[f ]→Get(l − 1)→d();
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We use FlatBuffers in C + +. To generate our distance oracle C + + header

called oracle generated.h, we define a schema, say Oracle.fbs in Algorithm 8, and

use the compiler (e.g. flatc -c Oracle.fbs) to generate oracle generated.h. After that,

we use Algorithm 9 to serialize each distance oracle text file to a binary Flatbuffers

file.

In the querying stage illustrated in Algorithm 10, we use mmap from sys/m-

man.h to virtually load all binary files in program, and thread library to enable

multi-thread processing similar to CDO [53].

Recall that each distance oracle text file stores around 100 million WSPs. This

is because Algorithm 9 needs to load all WSPs in memory for one text file and then

serialize it to a binary file. Storing 100 million WSPs usually takes 7.4GB in a plain

text file. After using FlatBuffer, each WSP is represented as 12 bytes, and the total

size of the binary file on disk is 1.6GB. Note that it is not 12 bytes for each WSP

because of the extra header. In this way, for the whole USA road network, the 4.6

billion WSPs are separated into 46 binary files, and each binary file occupies around

1.6GB on disk.

6.2.3 Querying and Applications

Algorithm 11 explains how to process the basic query that retrieves the network

distance for a pair of vertices. Our previous work [52,54] illustrated how to process a

batch of source-target queries, distance matrix query, and trajectory query based on

the basic query and user-defined functions. In this section, we describe two common
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industrial use-cases using our DOS. One is the delivery query, which is demoed in

http://sametnginx.umiacs.umd.edu/maryland , and the other one is the KNN

query. More examples are provided online in http://roadsindb.com/.

6.2.3.1 Delivery

As we discussed in Section 6.1, delivery services frequently need to compute

a distance matrix and a relatively optimal route for each truck. A distance matrix

is easy to compute by partitioning into a batch of basic query, and the relatively

optimal route could be achieved by many approximate algorithms as it is an NP-

complete problem. However, the reality is often more complex than the theory. In

delivery services, there are two problems that must be considered: 1) Trucks take

a lot of time to turn left or turn back, but are not allowed in some turns; 2) The

delivery locations lie on road segments other than road vertices;

For the first problem, we construct a graph G′ for G with the penalty of turns,

then precompute the distance oracles for G′. In particular, if the road edge (a, b)

has a big turn penalty to edge (b, c), then G′ would add a virtual vertex b′ for b, and

vertex b can only go to vertex c through b′. The weight of edge (b, b′) is equivalent

to the turn penalty. Certainly, we need to add some edges to connect b′ to other

adjacent vertices.

For the second problem, we have an extra table for the information of delivery

locations. Without loss of generality, each delivery location is represented as follows.

(id, lat, lon, edgeid, vid1, vid2, d1, d2) (6.3)
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vid1 and vid2 are the endpoints of the edge, and the d1 and d2 are the distances

from the delivery location to vid1 and vid2 respectively. Note that, sometimes,

one delivery location may have more than two nearby road vertices such as in an

apartment with several entrances. In this case, we can extend the two vertices to a

list of nearby vertices, termed vid(·). The delivery distance should be

dist(id1, id2) = min
a∈vid(id1),b∈vid(id2)

GETDIST (a, b) + da + db (6.4)

6.2.3.2 KNN

In the KNN example, we have two location tables, named University and

Restaurant that each record is (id, Z2 code, lat, lon). The KNN task is to find the

top K nearest restaurants for each university in terms of network distance. In order

to avoid computing all pairs of University and Restaurant, we need to compute a

candidate set of restaurants that have the potential to be the K nearest neighbors

for each university. Thus, we decompose the task into two steps.

The first step is to compute the candidate restaurants for each university. In

particular, for each university u, compute the K neighbors in the Euclidean distance

using the GiST index or k-d tree, and then compute the maximum network distance

dG(u) among the K neighbors using DOS. Now the candidate set of a university u

is the restaurants what the Euclidean distance is within dG(u).

In the second step, obtain the IDs of all candidate restaurants using the GiST

index or k-d tree for each university u whose Euclidean distance is less than or equal

to dG(u), and then use DOS to compute their corresponding network distances and
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retain the K closest ones.

This method is correct because the Euclidean distance is a lower bound on

the network distance. The lower bound property guarantees that we find the KNN

within the candidate set.

6.3 Experiments

From OpenStreetMap [11], we extracted the Bay Area road network with

758K vertices, the New York City road network with 407K vertices, and the whole

USA road network with 2.4M vertices ignoring the vertices not bidirectionally con-

nected to the main graph. In addition, we add the Florida road network from

the 9th DIMACS Implementation Challenge [3]. A demo is set up at http://

sametnginx.umiacs.umd.edu/. Table 6.2 provides the characteristics of the road

network datasets used in our evaluation.

Table 6.2: Dataset Characteristics in DOS

Name NY Bay FL US

Region NYC Bay Area Florida USA

# of Nodes 407,582 758,104 1,070,376 23,947,347

# of Arcs 977,106 1,663,662 2,712,798 58,333,344

# of WSPs with ε = 0.25 84.6M 146M 199M 4.6B

# of WSPs with ε = 0.1 431M 765M 929M -

From our past experiments and previous theoretical work, we conclude that
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the value of ε greatly influences the size of the distance oracles, but it does not have

much of an influence on the querying time as the time complexity is just O(log n
ε2

).

Thus, for the small road network, we set ε = 0.1, but let ε = 0.25 for the whole USA

road network. We implemented four methods as follows for distance computations.

All of them are implemented in C++, and are processed with multi-threads, and

in the same environment consisting of a Macbook Pro 15-inch, 2.8 GHz Quad-core

Intel Core i7, 16 GB memory.

1. DOS. We implement our DOS framework with FlatBuffers. The representation

of WSPs in FlatBuffers is in binary files on disk. Loading binary files through

mmap is instant as DOS does not actually load binary files in memory, but

still on disk. During querying, DOS caches the block containing visited WSPs

to reduce further I/O cost.

2. CDO. We implement the CDO solution from [53] in memory. But it is only for

small road networks. The time of preloading WSPs in memory is not counted

in any querying time.

3. DO. We compare against the distance oracle DO method of [64] In this case,

we load distance oracles as a relational table in PostgreSQL and index it using

a B-tree.

4. CH. We implement the CH method proposed in [39] as a representative of

methods that optimize the execution of single source shortest paths.

5. HLDB. We implement HLDB [20] in memory for small road networks same as
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Figure 6.2: Precomputation performance varying ε

in the CDO demo [53], but in PostgreSQL for the USA road network.

6.3.1 Precomputing DO(G)

First of all, we show the performance of precomputing the DO(G) for different

road networks and ε settings.

Figure 6.2(a) shows the time to compute the DO(G) using a single machine.

DO(G) for the NY, BAY, and FL datasets can be computed in less than an hour

for a fairly useful ε value of 0.25 and in a little over 7 hours for ε = 0.1. Note that

these are large datasets comprising road networks of states in US and being able to

compute them within a few hours on a single machine means that computing the

oracles is a practical proposition. Furthermore, we later show for the US dataset

that by adding more machines to the computing infrastructure, we can significantly

speed up this process. Next, Figure 6.2(b) plots the ratio of the number of oracles

and n
ε2

versus ε. Here we let ε vary taking on the values 0.5, 0.25, 0.2, and 0.1. As

all values are between 8−15 in Figure 6.2(b), it confirms that the number of oracles
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conforms to C · ( n
ε2

) for the NY, BAY and FL datasets, where the value of C ranges

between 8 and 15. Moreover, Figure 6.2(b) shows that C decreases as ε decreases,

which is a good news for applications that require higher accuracy.

Table 6.3: Precomputation for DO(G) on US Dataset

Performance DOS-0.25

Cluster Size

4

45

Speed-up

Time

1.8 days

5.1 hours

8.47

Number of oracles 4.6 billion

Number of oracles / (n/ε2) 11.9

Next we show scalability results in Table 6.3 for the DO(G) of the US dataset

with ε of 0.25. For this experiment, we used two clusters running on the distributed

framework in Figure 2.5: an in-house cluster of 4 machines and an Amazon EC2

cluster with 45 m4.xlarge machines. From the table, it can be seen that precom-

puting DO(G) can reduce the time needed from 1.8 days when using 4 machines

to a little over 5 hours when using 45 machines. This constitutes a speed of 8.47.

Note that by going from 4 machines to 45 machines, we have roughly scaled the

computing cluster by a factor of 11. The speedup 8.47 we obtained is very close to

11 which indicates that our algorithm provides a linear speedup in the number of

machines, which is a desirable property that one expects from parallel algorithms.
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Figure 6.3: Time performance by varying the number of a batch of queries : (a)

results for a single thread; (b) results for sixteen threads. As DOS is cold-start

and caches WSPs during querying, the performance of DOS is close to CDO as the

number of queries increases.

Moreover, the cluster compute and storage cost for precomputing the oracle is less

than $50 based on AWS August 2017 prices. These results provide powerful support

for our claim vis-a-vis the feasibility of our method since it is cheap to precompute

and can be further sped up by simply adding more machines. In fact, if need be,

the oracle can simply be recomputed rather quickly if there are large scale changes

in the road network such as major road closures etc.

6.3.2 Querying Performance

There are two groups of comparison methods. One is DO and HLDB for large

road networks, which their variant representations of the graph for distance com-

putations are stored in a PostgreSQL database. The other group is CDO, CH, and

HLDB for small road networks, for which their graph representations are preloaded
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Figure 6.4: Time performance for processing a batch of source-target queries by

varying the number of threads: (a) results for one million; (b) results for ten million

source-target queries. Remember that only DOS is cold-start as it loads WSPs in

the FlatBuffers format from disk. All of the other methods are after preloading the

variant representation of the graph in memory, and the time of preloading is not

counted in the query time.

in memory. Among this group, CDO and HLDB in memory are only available for

small road networks, e.g., the number of vertices is less than one million, and CH

in memory is applicable for large road networks as well.

Figures 6.3 and 6.4 show the time performance of DOS in a small road network,

e.g., the NY road network, and compare it with CDO, CH, and HLDB in memory.

The memory and cache were cleaned every time before running the code. Figure 6.3

shows the influence of the number of queries for DOS and CDO. Note that our DOS

is an extension of CDO, and is available for large road networks as well. When

the number of queries is small, DOS is much slower than CDO. This is because

DOS needs to search WSPs from disk, but CDO does the binary search in memory
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directly without taking tens of seconds to preload WSPs. As the number of queries

gets larger, DOS cached more blocks containing visited WSPs, so that the query

performance of DOS gets closer to CDO. Especially for the first 10M queries, DOS

takes 4.07 seconds with 16 threads, and the throughput of DOS could be 2.45M

distance computations per second. Moreover, the throughput of DOS for the next

10M queries increases to 5.01M per second. Thus, after the cold-start stage, DOS

would be very close to CDO, e.g., 6.7M per second.

Figure 6.4 describes the time performance varying with the number of concur-

rent threads for DOS, CDO, HLDB, and CH. Figure 6.4(a) is under 1M distance

computations, and Figure 6.4(b) is under 10M distance computations. From Fig-

ure 6.3, we know that DOS is under cold-start stage during the first 1M distance

computations, e.g., in Figure 6.4(a). This is the reason that DOS is even slower

than HLDB in Figure 6.4(a), and its time performance does not significantly de-

crease when using more threads. On the other hand, in Figure 6.4(b), DOS performs

better than HLDB and gets closer to CDO as it passes the cold-start for last several

million distance computations.

Figure 6.5 shows the time performance for the methods that are available for

large road networks, e.g., the US. Note that our previous work CDO is not available

here. To generate the source-target queries, as the source-target queries do not

distribute uniformly in the whole domain, we randomly pick one road vertex and

randomly select the other road vertex within 200km. From Figure 6.5, DOS performs

much better than DO, HLDB, and CH, especially after the cold-start stage.
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Figure 6.5: Time performance for DOS, DO, HLDB, and CH for the whole USA

road network: DOS and CH is running with 16 threads, while DO and HLDB are

running in PostgreSQL. In order to make the queries reasonable, each source-target

query is generated by randomly picking one road vertex and the other road vertex

within 200km.

6.3.3 Spatial Analytic Queries

DOS can efficiently process analytic queries as it can perform a large number

of network distance queries. The querying performance of DOS in the following

experiments is after the cold-start stage. Figure 6.6 compares the time performance

of Dijkstra’s algorithm, the CH algorithm, the HLDB in PostgreSQL, DO in Post-

greSQL, and our DOS for a common spatial query, KNN, which is described in

Section 6.2.3. One location list contains 6,070 locations of universities from [7], and

another location list contains 49,573 locations of fast food restaurants from [5]. The

format of each record in both lists is (id, Z2 code, latitude, longitude), where we
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precomputed the Z2 code.

The KNN query with which we experimented obtains the K nearest restau-

rants for each university in Figure 6.6. DOS first used a k-d tree index to retrieve a

candidate set of restaurants that have the potential to be the K nearest neighbors

for each university (or restaurant). Next, it computed the network distances for

each university-restaurant pair (or restaurant-restaurant). Dijkstra’s algorithm is

implemented using a heap to speed it up. It starts at each university to search, and

stops if the search for this university has visited K restaurants. The CH algorithm

finds the restaurant candidate set using a k-d tree as well, then computes the dis-

tances between the pairs, and finally sorts the result to get the top K restaurants

for each university. Both HLDB and DO used the GiST index in PostgreSQL to

find the restaurant candidate set.

From Figure 6.6, we can see that DOS is much faster than Dijkstra’s algorithm,

CH, HLDB, and DO. Although Dijkstra’s algorithm is considered efficient for the

KNN query, it is not faster than DOS yet even when K is very small, e.g, 5.

In addition, here we provide an application that can be efficiently solved by

DOS. It is to measure the accessibility of jobs, i.e., how many job opportunities exist

nearby each census block. We use the LEHD dataset [10] to obtain the job locations

around the Bay Area. This workload, shown in Figure 6.7, contains 120 million

distance computations, where DOS takes 22 seconds for only the Bay Area road

network, while CDO needs 18 seconds. In a general setting, i.e., DOS for the whole

USA road network, this task can also be finished in 25 seconds. This is because of

the spatial concentration property that make most WSPs in the Bay Area be usually
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Figure 6.6: Response time for the KNN query including 6, 070 university sources

and 49, 573 restaurant destinations.

in one or two FlatBuffers binary files. Then after the cold-start stage, these WSPs

in the Bay Area would all be in memory, so that the hit rate of cache in DOS is

much higher than random queries. It makes the performance of DOS more similar

to CDO for the small road networks.

Obviously, using DOS, many analytic queries could be solved and visualized

in a much quicker way. All applications implemented in our previous work [52–54]

and in our blog site 3 could be set up in DOS as well to obtain better performance.

Moreover, DOS could be also sped up by using multi-machines as it is easy to copy

one set-up machine to many.

3http://roadsindb.com/
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Figure 6.7: Nearby job opportunities (e.g., within 10 kms) for each census block in

the Bay Area, requiring 120 million distance computations, which DOS finished in

22 seconds for just the Bay Area road network, and in 25 seconds for the whole USA

road network.

6.4 Related Work

Figure 6.8 illustrates the problem domain in three dimensions: query time

complexity, space complexity, and result accuracy. Reviewing previous research

work, most focus on the trade-off between time complexity and space complexity

with exact shortest distance/time results. However, most spatial analytic queries

in industrial settings allow approximate results such as when using the Euclidean

distance.

The state-of-the-art methods for computing shortest distances fall into two

main categories: latency methods and throughput methods. However, there is no

method that could achieve more than 1M throughput for general spatial road net-
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works.

Latency approaches are designed to answer a single or a small number of short-

est path or network distance queries on road networks. The original road network,

or a processed representation of it, is stored in memory and queries perform op-

erations on this in-memory representation. The most common latency approach is

Dijkstra’s algorithm [37]. Other methods [21,22,25,30,34,39,40,43,55,61,76] operate

on the observation that some vertices in a spatial network are more important than

others in answering shortest path queries. These methods offer different trade-offs

between preprocessing time, storage, and query time. RE [40] prunes unimportant

vertices using a bidirectional version of Dijkstra’s algorithm. HL [21] and m-hop [30]

find hub nodes or distance labels such that the network distance between any two

vertices can be computed by just checking their hub nodes or distance labels. Dis-

Land [43] and LLS [55] find landmarks among network vertices to speed up network

distance queries. [22,25,34,39,61,76] build an explicit hierarchy graph to overcome

the drawbacks of Dijkstra’s algorithm.

Precomputing distance oracles requires knowledge of the network distances

between some of the vertices in the road network. To do this, we use the CH

method [39], which is one of the fastest available in-memory methods. CH also has

a pre-processing stage where it computes an importance score for each vertex and

then replaces some of the original edges by shortcuts. For a spatial network with n

vertices, [39, 74] show that CH takes O(n) additional space to store this auxiliary

information. For the full USA road network data, we found that CH’s pre-processing

stage takes about one hour and generates 24.5 million shortcuts. The response time
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Figure 6.8: The target problem domain we focus on is spatial analytic queries. To

achieve a high throughput performance and meaningful analytic results, it requires

a trade-off among query time complexity, space complexity of storage, and result

accuracy.

for a single path and distance query is in the 0.1–10 ms range.

Other latency methods such as [69, 72] take advantage of the spatial infor-

mation associated with the vertices and edges of a road network and use geometric

techniques. Road Network Embedding (RNE) [69] applies a Lipschitz embedding [42]

to a road network, such that vertices of the spatial network become points in a high-

dimensional vector space. In this method, all operations on the road network occur

in the high-dimensional space. [72] takes advantage of the fact that the shortest

paths from vertex u to all other vertices can be decomposed into subsets based on

the first edges on the shortest paths from u to them. This property is referred to as

spatial coherence in ε-DO [64] and is used by [72] to speed up Dijkstra’s algorithm.
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In particular, [72] stores a few geometric objects for each vertex in the road network

that can prune searches during run-time. The spatial coherence of the destination

vertices is also used to find nearest neighbors in a road network [60,62].

A characteristic of throughput methods is that the shortest paths and distances

are precomputed so that the query process only requires a lookup as opposed to any

real computation on the fly. The resulting precomputed representation is large so

that it is stored on disk thereby affecting latency. On the other hand, these methods

are good for obtaining a high throughput since multiple lookups can be batched up

at the same time thereby increasing the number of queries that can be answered at

the same time, although each query may take a bit more time.

Among the throughput methods, [64, 65, 67] exploit the spatial coherence of

both sources and destinations in the sense that if a set of vertices are sufficiently

far away, then distances between pairs of points in different clusters are similar.

The Path-Coherent Pairs Decomposition (PCPD) [67] gives one exact shortest path

algorithm, while the ε-DO [64, 65] provides an approximate network distance with

ε-error guarantees and O( n
ε2

) space. [52] examines the task of computing spatial

analytic queries and experimentally compares their performance using the ε-DO

architecture, where query processing is completely handled by an RDBMS, and

using a hybrid architecture, where there are separate modules for the database, the

road network, and a query analysis tool. SPDO [54] is another method of using

ε-DO inside a distributed key value store such as Apache Spark. Another database-

centric method is HLDB [20] which can answer exact network distance queries and

full shortest-path even for an area as large as Europe containing 18 million vertices
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with complex SQL queries.

In HLDB [20], the authors mention that most of the memory-based latency

approaches surveyed in [35] are difficult to embed into a database system and to

query using SQL queries. This is because most methods rely on complicated data

structures such as graphs and priority queues, which cannot be incorporated into

a database system where the fundamental building blocks are relational operators.

The main contribution of HLDB is the embedding of the memory-based hub labels

(HL) [21] method into a database. The HL method precomputes the hub nodes for

each vertex such that the distance between any two vertices s and t can be obtained

given only their hub nodes. However, compared with the best previous database-

centric oracle methods ε-DO [64, 65] and PCPD [67], HLDB has two drawbacks:

1) HLDB is not efficient if the average number of hub nodes per vertex is large;

2) Each spatial query in HLDB is a complex SQL statement that must perform a

join operator on “forward” and “backward” tables, so that HLDB cannot guarantee

query responses within a time bound.

Wu et al. [74] evaluate several state-of-the-art methods (i.e., [25, 39, 64, 67])

for computing road network distance in the same environment. Even though they

do not make the distinction between latency and throughput methods, and only

compare all the methods from a latency perspective, there are some valuable lessons

to be learned from this work. Wu et al. [74] show that TNR [25] and CH [39] have

fast preprocessing, low space overhead, support for real time queries, and the ability

to easily handle continental road networks with tens of millions of vertices. This

inspired our decision to use CH [39] for precomputing ε-DO. They also point out that
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although ε-DO and PCPD are better for answering queries, they are not practical

because they are too expensive to precompute. This chapter remedies this perceived

deficiency of ε-DO and enables it to scale to handle continental road networks such

as the entire USA.

6.5 Concluding Remarks

DOS is a practical system that utilizes all of our previous distance oracle

techniques such as ε-DO [64, 65], PCPD [67], SPDO [54], and CDO [53] . DOS is

the first system that achieves 5M distance computations per second per machine for

general spatial analytic queries on any-sized road networks. Although the shortest

distance result is approximate, it is bounded by ε. Our previous work has shown

that ε = 0.25 is enough for most use-cases. As DOS uses mmap to virtually load

distance oracles from disk, it accepts larger sizes of distance oracles, or with smaller

ε, e.g., ε = 0.1 or 0.05, where the only limit is the disk storage. In addition, DOS

has a cold-start stage for querying. It starts at a throughput of 10K per second

without caching any WSP in memory, but achieves a throughput of 5M per second

after ten seconds.

Future work includes incorporating traffic information and changes in the road

networks such as road closures. This requires devising ways for computing the oracle

in piecemeal-fashion so as to avoid doing it from scratch.
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Chapter 7: Conclusion Remarks and Open Problems

7.1 Summary

In this thesis, we investigated in a set of implementations and applications

of the distance oracle representation and spatial analytic queries. We defined the

throughput metric to measure the performance of a spatial system for spatial queries.

We first proposed the ASDO distributed architecture for computing the distance

oracle representation to make it affordable for large road networks. Then in our de-

tailed evaluation, using the distance oracle representation in a traditional database

would obtain a much better throughput performance, e.g., 60K road distance op-

erations per second per database server, for a variety of spatial analytic queries in

common use such as KNN, distance matrix, and trajectory queries, comparing with

a widely used hybrid architecture in industry. Next, SPDO enabled us to embed

our distance oracle representation in a large distributed key-value clusters such as

Apache Spark. It improved the throughput by at least two orders of magnitude, and

made it easier for users to program spatial analytic queries for a mass of spatial data

in a distributed storage. Finally, after communicated with tens of related spatial

companies, we first implemented the CDO demo for a city-sized road network , and

then extended it to DOS for general road networks. This system achieved 5 million
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distance computations per second per commodity machine even on the whole USA

road network.

Although the distance result is approximate, which is not accurate enough for

navigation, its accuracy is far enough for spatial analytic queries. The benefits of

these systems are: 1) saving a huge amount of processing time for spatial analytic

queries, e.g., from one week to ten minutes; 2) significantly reducing the hardware

cost of the computing center for spatial analysis; 3) making some spatial applications

or queries possible to interact with in real time.

7.2 Open Problems

In Chapters 1–6, we have described our work in progress on high-throughput

distance computations on large spatial networks and the subsequent applications.

Finally, we discuss a few interesting related problems to our work on scalable query

processing on spatial networks.

1. High-throughput Solution for In-Path Queries

In-Path queries are another group of popular spatial analytic queries needing

shortest path information instead of only distance information. It is not easy

to obtain a high-throughput solution for them because in almost all state-

of-the-art methods, the time needed to perform the shortest path retrieval is

much longer than the time needed to perform the shortest distance retrieval.

In particular, In-Path queries involve finding points from one set that lie on

the shortest paths (allowing for short detours) between points from another
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set. The problem formulation of the In-Path query involves two sets (a) A

set of landmarks(e.g.,fast food restaurants); (b) A set of mobile users denoted

by starting (sources) and ending (destinations) locations. Then, we have two

basic In-Path queries:

• Query 1: Given a mobile user and a path with a source and destination,

determine what landmarks lie on the shortest path between source and

destination?

• Query 2: Given a landmark, determine which recent mobile users will pass

through it on some shortest path between their corresponding sources and

destinations?

In real applications such as local awareness advertisement, the following as-

sumptions are acceptable: (a) The number of landmarks is much smaller than

the number of mobile users; (b) The identities of mobile users are not known

a priori and they arrive at a high rate; (c) The Landmarks are known a priori

although new landmarks can be added and/or deleted from time to time.

Based on this formulation, we can devise some variant or extension settings

which will make the problem more difficult. Also, we can propose some inter-

esting analytic In-Path queries, which are open problems. We illustrate some

variants of In-Path queries as follows.

• Query 3: Given a mobile user and a path with a source and destination,

determine what landmarks are within r, e.g., 500 meters, for the shortest
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path between source and destination? There are two options for the

queries. One is for radius r to be fixed, or can vary. The other one is

that the distance r can be the network distance or the geodesic distance.

• Query 4: Same as Query 2, but seek the users that pass through the

circular region of the landmark with radius r meters.

• Query 5: Given k users and their paths, find the landmark through which

the most users pass. This query takes place when finding sites for a bus

stop or determining a route for an employee shuttle bus.

• Query 6: Given k users and their paths, partition the k users into the

minimum S groups, where each group’s users pass through the same

landmark. This query can be used for ride-sharing applications, in which

case at times the maximum size of each group is limited to 4.

• Query 7: Given the history paths and current landmark locations,where

to build a new landmark that satisfies the largest number of uncovered

users’ paths. Alternatively, we can analyze which landmark can be re-

moved as fewest users pass through it.

The brute-force approach to in-path queries usually requests n shortest path

computations for n mobile users, which is way too much work, especially n

is more than one million. One approximate solution is that we precompute

the landmarks lying on each distance oracle such as index, which we term the

landmark-DO index and denote as INDEX-1.

INDEX − 1 : (codeA, codeB, dε)⇒ {lm1, lm2, lm3, ...} (7.1)
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where lmi are landmarks lying on the shortest path between representative

vertices pA and pB. Next, build the inverted index denoted as INDEX-2 on

the path oracles that pass through each landmark such as:

INDEX − 2 : landmarki ⇒ {oracle1, oracle2, oracle3, ...} (7.2)

Using these indexes, for Query 1, given a source pA and destination pB, we

find the corresponding distance oracle first (codepA , codepB , dε), and then use

INDEX-1 to retrieve the landmarks for the found distance oracle. Here we just

need two lookups to retrieve the landmarks that are lying on the approximate

shortest path from pA to pB. Also since we only have the approximate shortest

path, we may miss some landmarks, or return some extra landmarks that are

close to the shortest path but not exactly lying on the path.

For Query 2, we use INDEX-2 to retrieve the distance oracle candidates that

pass through or near the given landmarks. Obviously, we can compute one

distance oracle for each user or path. Thus, we just check the distance oracle

of each candidate’s source and destination to see if it is in the distance oracle

candidates of the landmark or not.

Queries 3-7 are more complex. For Queries 3-4 with a fixed radius r, we can

precompute and build the INDEX-1 and INDEX-2 while taking account the

fixed radius r. In particular, the landmarks in INDEX-1 are the landmarks

within r distance of the shortest path. It is not easy to deal with an adjustable

radius r. One possible way is to precompute INDEX-1 with a well-designed ra-

dius set R = {r1, r2, r3, ..., rw} such as {r1 = 10m, r2 = 100m, r3 = 1km, r4 =
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10km}. When a client submits an adjustable radius r = 400m, we can re-

duce the query to r3 = 1km and find the landmarks, and then filter out the

landmarks that are outside of r = 400m. Moreover, Queries 5-7 can be solved

by leveraging Query 1 to quickly retrieve the landmarks of each path. Next,

Query 5 can be solved by counting, Query 6 can be reduced to a matching

problem, and Query 7 can be solved by enumerating the candidate landmarks

and computing the cost function.

2. Dynamic Updates for Time Oracles

Many GIS applications care about travel time more than travel distance.

Changing distance weights to time weights for all edges is not enough for

practical time oracles as the time weights are updated in a high rate due

to factors such as road closures, traffic obstruction times, accidents, etc. A

straightforward solution for time oracles is to generate a time oracle for each

time period, e.g., an hour, based on historical traffic data. It is enough for

most analytic queries. Another solution for time oracles is to allow efficient

updates of vertices and edges on ASDO. This requires devising ways of com-

puting the oracle in piecemeal-fashion so as to avoid doing it from scratch as

we currently do. A similar problem has been proposed recently [51], but it only

considers the Euclidean distance metric. To deal with updates in ASDO, an

important observation is that the significant influence of one update of an edge

is limited in a local region rather than the whole road network. For example,

the travel time from Washington, D.C. to New York City would be slightly
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Figure 7.1: Example illustrates the coloring process of vertices for Silver Spring,

MD. a) Sample vertex u having six outgoing vertices, b) The remaining vertices are

assigned colors based on their shortest path to u through one of the six adjacent

vertices of u. c) Morton blocks in a PR-Quadtree corresponding to the colored

regions in (b).

changed by an accident near to Philadelphia. Ignoring these slightly changes is

acceptable in almost all spatial analytic applications. Addressing this problem

would make the underlying spatial database systems more powerful.

3. SILC-Oracle: Auto Adjusting from ASDO to SILC for a Unified

Framework

SILC [60, 62] is an efficient and unified framework to store a spatial network

with n vertices in O(n
√
n) space for answering shortest path and distance

queries, but requiring precomputing n2 distance pairs to build the individual

shortest path quadtrees. A possible distance oracle of size O(n logn
ε2

) one-to-

many well-separated pairs (OM-WSP) is proposed in [64] that can approxi-

mately answer shortest distance queries within an error bound ε. These two

frameworks have a similar external structure but evolved from different the-
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oretical work. We propose a way to bridge the gap between the O(n logn
ε2

)

distance oracle and SILC.

Figure 7.1 [62] introduces the main idea of SILC. For each vertex u, SILC

generates O(
√
n) quadtree blocks that the first edges of the shortest paths

from u to all vertices in the same quadtree block are the same. It is not

straightforward to generate the SILC framework from O(n log n) distance ora-

cles, although they have similar one-to-many structure. First, we can use the

similar algorithm and distributed framework in ASDO to produce O(n log n)

distance oracles with an ε error bound. For each distance oracle (u, code, dε),

we know the shortest distance from u to any vertex in the block with Morton

code code is bounded by dε) · (1 + ε). Next, two attributes, the first edge (FE)

and the representative vertex (RV ), are added to the schema of O(n log n)

distance oracles. The schema looks the same as the SILC except for the addi-

tional RV attribute. Note that the FE is the first edge in the shortest path

from u to the corresponding RV . So the schema of the new O(n log n) distance

oracles is

(vertex id, code, dε, FE, RV ) (7.3)

This schema can answer all the distance queries or analytic queries same as

ASDO. But one main challenge exists which is how to use this structure to

answer path queries for navigation? Figure 7.2 shows a general situation for

a path query from s1 to t. A is the block containing t in the distance oracle,

pa is the RV , and the FE is (s1, s2). In order to generate a path, we get the
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Figure 7.2: The challenge we meet. The query is the shortest path from s1 to t.

Starting at s1, we know the representative vertex for the block A containing t is pa

and the next vertex in the shortest path from s1 to pa is s2. Then at s2, the block

B containing t may be p1b or p2b .

path from s1 to pa, then from pa to t. In this case, the path is ε-approximate.

However, even for an ε-approximate path, it is not easy to get. Starting at

s1, we know the next vertex is s2. After reaching s2, the new distance oracle

retrieved has three cases in Figure 7.2: 1) the original block A; 2) the smaller

block B1; 3) the larger block B2. The first case is the easiest one. We just

continue the retrieval process.

As we are closing to t, the second case most likely occurs. In this case, the

representative vertex p1b is different from pa. Then we do not know how to

reach pa any more at s2 since the FE is the edge for the shortest path from s2

to p1b , not from s2 to pa. The third case rarely occurs, but it can happen. This

case is caused by the shortest distance from s2 to p2b becoming larger than the
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distance from s1 to p2b . So this would make the following criteria become true.

rb2
dG(s2, p2b)

≤ ε (7.4)

Both the second and the third cases propose the representative vertex jumping

problem. If we continue to go the FE of s2, it is possible that the FE of s2 is

(s2, s1). Then it causes a infinite-loop.

The good news here is that when this event happens, we know that the distance

oracles of s1 or s2 can be have split further to approximate to SILC. SILC has

the property that all vertices in A have the same first edge starting at s1. For

example for the second case, if we hold the SILC property for both (s1, A)

and (s2, B1), we do not need to care about the representative vertex jumping

since no matter how the representative jumps, the first edge we selected is

equivalent to the first edge from s1(s2) to t. So that the infinite-loop problem

would not happen as well.

An additional question is that obviously we can obtain a more accurate path

than the ε-approximate path. In the previous strategy, we will reach pa first,

then from pa to t. If t is at the boundary of the block A, the retrieved path

almost touches the ε bound. A smarter strategy is that when we get closer to

t, we automatically reach the better representative vertex in a smaller block

instead of pa. For example in the second case, at s2, it is better for us to go

to t through p1b directly than through pa.

In summary, we list the challenges here to automatically adjust ASDO to

SILC.
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(a) How to answer path queries, even for approximate path result, avoiding

infinite-loop?

(b) How to detect which blocks need to be split further to achieve SILC?

(c) How to improve accuracy?

200



Bibliography

[1] Cabspotting. http://cabspotting.org/.

[2] CRAWDAD. http://crawdad.cs.dartmouth.edu/~crawdad/epfl/

mobility/.

[3] DIMACS. http://www.dis.uniroma1.it/challenge9.

[4] ESRI. http://www.esri.com/.

[5] Fast food maps. http://www.fastfoodmaps.com/.

[6] Flatbuffers. https://google.github.io/flatbuffers/.

[7] GeoNames. http://www.geonames.org/.

[8] Google Maps API. https://developers.google.com/maps/.

[9] IndexedRDD. https://github.com/amplab/spark-indexedrdd/.

[10] LODES. http://lehd.ces.census.gov/data/.

[11] OpenStreetMap. http://www.openstreetmap.org/.

[12] PART. https://github.com/ankurdave/part/.

[13] pgRouting. http://pgrouting.org/.

[14] PostgreSQL. https://wiki.postgresql.org/wiki/FAQ/.

[15] Protocol Buffers. https://github.com/google/protobuf/.

[16] Redis. http://redis.io/.

[17] SQL Examples of Distance Oracles. http://roadsindb.com/.

[18] SSTI. http://www.ssti.us/events/.

201

http://cabspotting.org/
http://crawdad.cs.dartmouth.edu/~crawdad/epfl/mobility/
http://crawdad.cs.dartmouth.edu/~crawdad/epfl/mobility/
http://www.dis.uniroma1.it/challenge9
http://www.esri.com/
http://www.fastfoodmaps.com/
https://google.github.io/flatbuffers/
http://www.geonames.org/
https://developers.google.com/maps/
https://github.com/amplab/spark-indexedrdd/
http://lehd.ces.census.gov/data/
http://www.openstreetmap.org/
https://github.com/ankurdave/part/
http://pgrouting.org/
https://wiki.postgresql.org/wiki/FAQ/
https://github.com/google/protobuf/
http://redis.io/
http://roadsindb.com/
http://www.ssti.us/events/


[19] TAREEG. http://tareeg.org/.

[20] I. Abraham, D. Delling, A. Fiat, A. Goldberg, and R. Werneck. HLDB:
Location-based services in databases. In ACM GIS, pages 339–348, Redondo
Beach, CA, Nov. 2012.

[21] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A hub-based
labeling algorithm for shortest paths in road networks. In SEA, pages 230–241,
Kolimpari Chania, Greece, May 2011.

[22] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical hub
labelings for shortest paths. In ESA, pages 24–35, Ljubljana, Slovenia, Sep
2012.

[23] A. Amir, A. Efrat, P. Indyk, and H. Samet. Efficient algorithms and regular
data structures for dilation, location and proximity problems. Algorithmica,
30(2):164–187, 2001.

[24] C.-H. Ang, H. Samet, and C. A. Shaffer. A new region expansion for quadtrees.
TPAMI, 12(7):682–686, July 1990.

[25] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to
constant time shortest-path queries in road networks. In ALENEX, pages 46–
59, New Orleans, LA, Jan 2007.

[26] P. A. Boncz and M. L. Kersten. MIL primitives for querying a fragmented
world. VLDBJ, 8(2):101–119, 1999.

[27] F. Brabec and H. Samet. Client-based spatial browsing on the world wide web.
IEEE Internet Computing, 11(1):52–59, Jan/Feb 2007.

[28] P. B. Callahan. Dealing with Higher Dimensions: The Well-separated Pair
Decomposition and its Applications. PhD thesis, The Johns Hopkins University,
Baltimore, MD, Sep 1995.

[29] D. Carstoiu, E. Lepadatu, and M. Gaspar. HBase: Non-SQL database perfor-
mances evaluation. IJACT, 2(5):42–52, 2010.

[30] L. Chang, J. X. Yu, L. Qin, H. Cheng, and M. Qiao. The exact distance to
destination in undirected world. VLDB J., 21(6):869–888, 2012.

[31] H. Cho and C. Chung. An efficient and scalable approach to CNN queries in a
road network. In PVLDB, pages 865–876, Trondheim, Norway, Aug 2005.

[32] H. Cho, S. J. Kwon, and T. Chung. ALPS: an efficient algorithm for top-k
spatial preference search in road networks. KAIS, 42(3):599–631, Mar 2015.

[33] J. R. Crobak, J. W. Berry, K. Madduri, and D. A. Bader. Advanced shortest
paths algorithms on a massively-multithreaded architecture. In IPDPS, pages
1–8, Long Beach, CA, Mar 2007.

202

http://tareeg.org/


[34] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route
planning. In SEA, pages 376–387, Kolimpari Chania, Greece, May 2011.

[35] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning
algorithms. In Algorithmics of Large and Complex Networks, pages 117–139.
2009.

[36] D. Delling and R. F. Werneck. Customizable point-of-interest queries in road
networks. TKDE, 27(3):686–698, Mar 2015.

[37] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[38] C. Esperança and H. Samet. Experience with SAND/Tcl: a scripting tool for
spatial databases. JVLC, 13(2):229–255, Apr. 2002.

[39] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In WEA, pages 319–
333, Cape Cod, MA, May 2008.

[40] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A∗: Efficient point-
to-point shortest path algorithms. In ALENEX, pages 129–143, Miami, FL,
Jan 2006.

[41] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner. Computing
many-to-many shortest paths using highway hierarchies. In ALENEX, New
Orleans, LA, Jan 2007.

[42] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15:215–245, 1995.

[43] S. Ma, K. Feng, H. Wang, J. Li, and J. Huai. Distance landmarks revisited for
road graphs. CoRR, abs/1401.2690, 2014.

[44] U. Meyer and P. Sanders. Delta-stepping: A parallel single source shortest path
algorithm. In ESA, pages 393–404, Venice, Italy, Aug 1998.

[45] A. Mortensen, D. Kostelec, B. Turley, and A. Parast. Evaluating connectivity
projects: Using point-to-point gis routing to measure the benefits of new trans-
portation connections. In Transportation Research Board 90th Annual Meeting,
number 11-2288, 2011.

[46] S. Nutanong, E. H. Jacox, and H. Samet. An incremental Hausdorff distance
calculation algorithm. PVLDB, 4(8):506–517, Aug 2011.

[47] S. Nutanong and H. Samet. Memory-efficient algorithms for spatial network
queries. In ICDE, pages 649–660, Brisbane, Australia, Apr 2013.

[48] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In USENIX, pages
183–191, Monterey, CA, June 1999.

203



[49] Oracle Corporation. Oracle spatial and graph network data model white paper.
Technical report, Mar 2015.

[50] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial
network databases. In VLDB, pages 802–813, Berlin, Germany, Sep 2003.

[51] E. Park and D. M. Mount. Output-sensitive well-separated pair decompositions
for dynamic point sets. In ACM GIS, pages 344–353, Orlando, FL, Nov. 2013.

[52] S. Peng and H. Samet. Analytical queries on road networks: An experimental
evaluation of two system architectures. In ACM GIS, pages 1:1–1:10, Seattle,
WA, Nov 2015.

[53] S. Peng and H. Samet. CDO: Extremely high-throughput road distance com-
putations on city road networks. In ACM GIS, pages 84:1–84:4, Burlingame,
CA, Nov 2016.

[54] S. Peng, J. Sankaranarayanan, and H. Samet. SPDO: High-throughput road
distance computations on spark using distance oracles. In ICDE, pages 1239–
1250, Helsinki, Finland, May 2016.

[55] M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest distance
computing: A query-dependent local landmark scheme. TKDE, 26(1):55–68,
2014.

[56] H. Samet. Distance transform for images represented by quadtrees. IEEE
TPAMI, 4(3):298–303, May 1982.

[57] H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan-Kaufmann, San Francisco, CA, 2006.

[58] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason, F. Morgan,
and E. Tanin. Use of the SAND spatial browser for digital government appli-
cations. Commun. ACM, 46(1):63–66, Jan. 2003.

[59] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. A geographic in-
formation system using quadtrees. Pattern Recognition, 17(6):647–656, Nov
1984.

[60] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance
browsing in spatial databases. In SIGMOD, pages 43–54, Vancouver, Canada,
June 2008.

[61] P. Sanders and D. Schultes. Engineering highway hierarchies. In ESA, pages
804–816, Zurich, Switzerland, Sep 2006.

[62] J. Sankaranarayanan, H. Alborzi, and H. Samet. Efficient query processing on
spatial networks. In ACM GIS, pages 200–209, Bremen, Germany, Nov. 2005.

204



[63] J. Sankaranarayanan, H. Alborzi, and H. Samet. Distance join queries on spatial
networks. In ACM GIS, pages 211–218, Arlington, VA, Nov 2006.

[64] J. Sankaranarayanan and H. Samet. Distance oracles for spatial networks. In
ICDE, pages 652–663, Shanghai, China, Apr. 2009.

[65] J. Sankaranarayanan and H. Samet. Query processing using distance oracles
for spatial networks. TKDE, 22(8):1158–1175, Aug 2010.

[66] J. Sankaranarayanan and H. Samet. Roads belong in databases. Data Engi-
neering Bulletin, 33(2):4–11, Jun 2010.

[67] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial net-
works. PVLDB, 2(1):1210–1221, 2009.

[68] C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic information
system based on quadtrees. IJGIS, 4(2):103–131, Apr–Jun 1990.

[69] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network em-
bedding technique for k-nearest neighbor search in moving object databases.
GeoInformatica, 7(3):255–273, Sep 2003.

[70] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-store: A column-oriented DBMS. In VLDB, pages 553–564,
Trondheim, Norway, Aug 2005.

[71] E. Tanin, A. Harwood, and H. Samet. A distributed quadtree index for peer-
to-peer settings. In ICDE, pages 254–255, Tokyo, Japan, Apr 2005.

[72] D. Wagner and T. Willhalm. Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In ESA, LNCN 2832, pages 776–787, Budapest,
Hungary, Sep 2003.

[73] S. Wasserman and K. Faust. Social network analysis: methods and applications.
Cambridge University Press, 1994.

[74] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path
and distance queries on road networks: An experimental evaluation. PVLDB,
5(5):406–417, 2012.

[75] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. In HotCloud, Boston, MA, Jun 2010.

[76] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path and
distance queries on road networks: Towards bridging theory and practice. In
SIGMOD, pages 857–868, New York, NY, Jun 2013.

205


	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Motivation
	Distance Oracle Representation
	Contribution and Organization

	ASDO: An All-Store Oracle for Fast, Approximate Shortest Distances on Road Networks
	Overview
	ASDO Framework
	Encoding Network Distances
	Task Partition and Parallelism
	ASDO Representation

	Experiments
	Computing Environment
	Network Distance Retrieval
	Precomputing ASDO
	ASDO Query Time and Accuracy

	Related Work
	Querying ASDO in a Database
	Function Creation
	Basic Query Example
	Analytic Query Example

	Summary

	An Experimental Evaluation of Two System Architectures for Analytic Queries on Road Networks
	Overview
	Spatial Analytic Queries and Applications
	Hybrid Architecture
	Integrated Architecture
	Experiments
	Experimental Setup and Datasets
	Region Query
	Throughput Query
	KNN Query
	Trajectory Query
	HY Performance Tuning: Number of Threads

	Trajectory Solution Examples
	Related Work
	Summary

	SPDO: High-Throughput Road Distance Computations on Spark Using Distance Oracles
	Overview
	Hash Access for Distance Oracles
	Implementation in Spark
	Basic Method
	Binary Search Method
	Wise Partitioning Method
	Analysis of Methods

	Evaluation
	Comparison Methods
	Datasets and Cluster Setup
	Source-Target Pairs Workload
	Distance Matrix Workload
	Job Accessibility

	Related Work
	Summary

	CDO: Extremely High-Throughput Road Distance Computations on City Road Networks 
	Overview
	Preliminaries and Examples
	Method
	Storing and Querying CDO
	Multi-threads

	Demo scenario

	DOS: A Spatial System Offering Extremely High-Throughput Road Distance Computations 
	Overview
	Method
	DOS framework
	Flatbuffers Binary Representation
	Querying and Applications

	Experiments
	Precomputing DO(G)
	Querying Performance
	Spatial Analytic Queries

	Related Work
	Concluding Remarks

	Conclusion Remarks and Open Problems
	Summary
	Open Problems

	Bibliography

