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Abstract—We study the epidemic routing scheme with an
immunity mechanism. The immunity mechanism enables more
efficient utilization of limited buffer space at the nodes, by
allowing nodes to remove outstanding copies of messages that
have already been delivered. We develop a new analytical model
for estimating the message delivery ratio (MDR) and the average
delivery delay (ADD) under a variant of epidemic routing with
the immunity mechanism, which we call an immunity routing
scheme (IRS). The proposed model is based on a continuous-time
Markov chain and takes into finite buffer sizes at the nodes.

I. I NTRODUCTION

Recently there have been growing interests in Disruption
Tolerant Networks (DTNs), including military applications
[11], [17], [18]. One of salient features of DTNs is that one-
hop connectivity of the network between nodes is assumed
to be sparse or intermittent. A consequence of this intermit-
tent/sparse connectivity is that an end-to-end route between an
information source and its intended destination is unlikely to
be available when needed. For this reason traditional mobile
ad-hoc network routing protocols (e.g., ad-hoc on-demand
distance vector [22] or dynamic source routing [12]) that
assume the availability of an end-to-end route are no longer
suitable.

In addition to sparse connectivity, in general, a pair of nodes
in a network may never encounter each other. Therefore, even
when infinite delay is allowed, some nodes may never be able
to deliver messages directly to their destinations. Hence,in
some cases nodes may not be able to count on a single source
or relay node to deliver messages to intended destinations,
and multiple relay nodes may be required. For these reasons,
some routing schemes (e.g., epidemic routing [30] and spray-
and-wait routing [27]) allow multiple copies of messages in
the network in order to increase the fraction of messages
successfully delivered to their destinations, called a message
delivery ratio (MDR), and/or to reduce average delivery delays
(ADDs). This is generally done at the expense of increased
storage requirements at the nodes and higher resource needs
necessary to forward multiple copies.

A. A short survey of related work

There are several existing routing schemes for DTNs and
studies on their analysis (e.g., [10], [18], [27], [28], [30], [31]).
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In this section, we limit our discussion to the studies most
relevant to our study and provide a motivation for the study.

It is clear that the achievable performance of a routing
scheme in DTNs depends on (i) the time-varying network
topology (i.e., one-hop connectivity) and (ii) the information
available to the scheme. On one hand, if the mobility of the
nodes is deterministic and the contact times between the nodes
are known in advance, a set of links can be scheduled ahead for
transmission atdifferent times to offer end-to-end delivery of
messages. This is one possible operational mode of original
delay tolerant networks. On the other hand, if the mobility
is stochastic, which is the scenario of interest to us, only
time-varying (local) one-hop connectivity information may be
available to the nodes for forwarding decisions.

In some cases, the random mobility of the nodes may be
(quasi-)stationary or predictable to a large extent. For instance,
Song et al. [26] recently studied the mobility patterns of
cellular phone users and showed thathuman mobility is, for the
most part, very predictable (93 percent potential predictabil-
ity). Another example is theUMass DieselNet [3], which
consists of approximately 40 buses. Since the bus schedules
are fixed, their mobility and resulting meeting times are
largely predictable. In these cases the statistical information
of the mobility processes may be estimated and exploited for
message routing.

In the other scenarios, however, the mobility may be more
unpredictable and/ornon-stationary with time-varying statisti-
cal parameters (e.g., military operations in hostile or uncharted
environments). In these scenarios, it may be difficult to gather
accurate statistical information from the nodes’ mobilityand
the network topology. As a result, the nodes will unlikely be
able to learn and make use of the statistical properties of the
nodes’ mobility. In fact, when the statistical parameters of the
mobility change faster than the nodes can estimate, relyingon
inaccurate and potentially misleading estimates of the mobility
parameters, due to their time varying nature, may be harmful
and can lead to worse performance (than not using them at
all). We assume that this is the case for our study.

When the statistical information regarding nodes’ mobility
is not available for the reasons stated above, a natural approach
to message forwarding is flooding or controlled flooding of
messages, in hopes that one of the copies will reach the
intended destination. It is clear that, if the message drop rates
at the nodes caused by buffer overflows are negligible, the
probability of delivery will increase with the number of relay
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nodes carrying a copy of messages. Therefore, in order to
maximize the MDR, the message forwarding scheme should
attempt to generate as many copies of messages as possible.

At one end of the spectrum, a simple approach to maxi-
mizing the number of nodes carrying a copy is to forward a
copy to every node that comes in contact with another node
with a copy. This is the basic idea behindepidemic routing
[30], which mimics the way an infectious disease propagates
throughout a population. Such a scheme increases storage
requirements at the nodes. Hence, when the buffer size is finite,
it leads to a higher message drop rate at the nodes, thereby
reducing the stay times of the messages at the nodes. This in
turn affects the MDR.

A variant of epidemic routing, calledspray-and-wait [27],
attempts to control the maximum number of copies in the net-
work. The key idea behind the scheme is that once a sufficient
number of nodes carry a copy, the benefits from generating
additional copies are marginal. Limiting the maximum number
of copies curbs the message drop rate at the nodes with a
finite buffer. Consequently, the spray-and-wait routing scheme
allows messages to remain in the buffer for a longer period,
thereby increasing their chances of reaching their destinations
before being dropped by buffer overflows. These observations
suggest that there is a trade-off between the number of copies
of messages produced and their stay times at the nodes when
the buffer sizes are finite. This is explored by the (tunable)
maximum allowed number of copies in the spray-and-wait
routing scheme.

There is another dimension to the problem of designing an
efficient routing scheme for DTNs: The copies of messages
forwarded to other nodesafter the messages have already been
delivered, while they consume resources (e.g., buffer space),
do not improve the MDR or the ADD. Thus, minimizing
the proliferation of messages after their delivery will reduce
unnecessary resource consumption and, in doing so, increase
the stay times of messages without affecting the number of
messages forwardedbefore delivery.

This is the basic observation exploited by theantipackets
proposed by Haas and Small [7] and theimmunity mechanism
[20]. Although these two mechanisms are similar in nature and
goals, to be precise, we study the immunity mechanism studied
in [20]. The immunity mechanism provides a means for the
nodes to propagate the information on the set of messages
that have already been delivered, with the aim of curtailing
wasteful, additional circulation of delivered messages.

B. Motivation for development of analytical models

First, we note that a similar immunity concept has been
introduced earlier: Haas and Small [7] discuss the impact of
deleting obsolete information in the context of an infostation
model for sensor network applications. The identifier (ID)
for a delivered or offloaded packet is called anantipacket,
and they propose several different methods (called IMMUNE,
IMMUNE TX and VACCINE), based on how antipackets are
used. Another closely related study is the work by Zhang et al.
[31] on epidemic routing and its variants, including one similar
to the epidemic routing with immunity. In addition, Matsuda

and Takine [19] analyze the distribution of delivery delays
under a class of(p, q)-epidemic routing schemes, including
the epidemic routing with vaccine.

All of these studies examine delivery delays and/or buffer
requirements, based on either a Markov chain model [7], [19]
or ordinary differential equations (ODEs) for the fluid limits
as the number of nodes increases [31]. When they analyze
the buffer requirements or the delivery delays, however, they
assume that the buffer size is infinite and is not a performance
bottleneck. Thus, they do not explicitly model the message
drops at individual nodes caused by buffer overflows. As a
result, their findings cannot be used to predict the performance
when the buffer sizes are finite and are not large enough to
avoid buffer overflows.

A popular approach to evaluating the impact of finite
buffer sizes, especially when buffer sizes present a resource
constraint, is by simulation (e.g., [11], [23], [24]). Simulation
studies, however, are limited in that the results are valid only
for the scenarios evaluated in the studies, and it is not easy
to extrapolate the findings to otherunexamined scenarios with
different parameters. In addition, in order to obtain the results
that reflect the scenarios of interest, they require appropriate
simulation models with correct statistical properties, which is
not always easy to ensure – simulation results produced with
incorrect models can offer a misleading guidance for network
engineers. Moreover, since we may not know in advance the
exact settings under which routing schemes will be asked to
perform, a wide range of scenarios with varying parameters
must be examined. Unfortunately, running simulation for all
scenarios of potential interest can be time consuming.

Recently, several studies evaluated the performance of ex-
isting and proposed message routing schemes, using empirical
(mobility) traces from a limited set of experimental scenarios
(e.g., [3], [8], [15]). These studies provide a glimpse of how
the evaluated schemes may perform when operating in settings
similar to the experimental settings. However, as mentioned
earlier, some DTN networks are expected to operate in many,
diverse environments, including hostile and/orunanticipated
environments. Unfortunately, it is difficult, if not impossible,
to collect a large number of mobility traces with the right
statistical properties for all scenarios of interest for a mean-
ingful performance evaluation. Furthermore, extrapolating the
performance metrics to other settings for which mobility traces
are not available is difficult.

Another approach to evaluating the performance of routing
schemes is via analytical models; they allow us toestimate
the performance of routing schemes over a range of parameter
settings, without having to run time-consuming simulations or
collecting mobility traces. This is especially important when
the network size is large; large-scale simulation or trace-based
studies are in general difficult, while a scalable model is
often possible to develop and analyze. Moreover, mathematical
models can oftentimes offer additional insights that are hard
to acquire from simulation or trace-based studies. However,
they are in general developed under a set of simplifying
assumptions for tractability. For this reason, when (some of)
the assumptions are violated, the numbers predicted by the
models become less reliable.
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These three approaches described above are complementary
in nature; they have their own pros and cons and can provide us
with valuable information about the performance of different
schemes under varying settings. In this paper, we explore
the last approach and propose a new analytical model for
the epidemic routing scheme with an immunity mechanism.
The model takes into account finite buffer sizes at the nodes
and provides a method to estimate the MDR and the ADD.
In general, finite buffer sizes introduce several challenges
to developing a good mathematical model for performance
evaluation and an estimation of the MDR and the ADD.

The rest of the paper is organized as follows: A detailed de-
scription of the immunity mechanism is provided in Section II.
The mathematical setup and an analytical model of the IRS are
outlined in Sections III and IV, respectively. Sections V and
VI explain how the analytical model can be used to estimate
the MDR and the ADD.

II. D ESCRIPTION OF THE IMMUNITY MECHANISM

In the original epidemic routing, an exchange of messages
between nodes takes place as follows [30]: When two nodes
meet, each node prepares a summary vector with a list of
messages it is currently carrying. They exchange the sum-
mary vectors, and by comparing the two vectors, each node
determines the messages it does not have. They then request
a copy of those messages from the other node.

In the immunity mechanism outlined in [20], following an
encounter between two nodes, each node sends (i) a message
list (m-list), which takes the role of the summary vector in
the epidemic routing, and (ii) an immunity list (i-list). Both
lists consist of message IDs. The m-list holds the IDs of the
messages the node is currently carrying, and the i-list contains
the IDs of the messages that have already been delivered to
their destination.

Using the two lists, the nodes identify the set of messages
to request from the other node. In addition, they identify the
messages to be removed from their buffers, based on the i-list
from the other node. After receiving the requested messages,
they modify their m-list and i-list. We refer an interested reader
to a preliminary simulation study reported in [20].

The purpose of the i-list [20] is to keep track of the
list of already delivered messages, in order to reduce their
proliferation after their delivery and to free up buffer space at
the nodes for future message exchanges. For instance, when
a node, sayi, encounters another nodej with a message
that is on its i-list, nodei does not request the message
even if it does not have a copy of the message in its buffer.
Furthermore, upon receiving the i-list from nodei, node j
removes its copy of the message. Hence, the (exchange of)
immunity information prevents an unnecessary transmission
of the message from nodej to nodei, and also removes the
superfluous copy at nodej, freeing up scarce buffer space.
Note that the epidemic routing would allow the unnecessary
transmission of the message and, barring buffer overflows, the
stay of the unneeded copy of the message at nodej’s buffer.

III. M ATHEMATICAL SETUP

We are interested in estimating the MDR and the ADD
experienced by successfully delivered messages under the
IRS with a finite buffer size at the nodes. To this end, we
first develop a simple analytical model based on a Markov
chain [4]. Rather than attempting to model and keep track of
all the messages in the network, which will likely suffer from
thecurse of dimensionality, we focus on asingle message and
model the evolution of thenumber of outstanding copies of
the message in the network over time.

Let N := {1, 2, . . . , N}, N ≥ 2, be the set of mobile nodes
in the network, which move on a domainD. The location of
node i at time t ∈ IR+ := [0,∞) is denoted byXi(t). The
mobility process of nodei ∈ N is given byXi := {Xi(t); t ∈
IR+}. We assume that the mobility processes of the nodes,Xi, i ∈ N , are mutually independent and stationary for the
purpose of analysis.

For every pair of distinct nodesi andj in N , we introduce
a {0, 1}-valuedreachability process{ζij(t); t ∈ IR+} with
the interpretation thatζij(t) = 1 if node i can communicate
directly to nodej at time t ≥ 0, and ζij(t) = 0 otherwise.
When ζij(t) = 1, we say that the communication link from
nodei to nodej is ‘up’. Otherwise, the communication link
is ‘down’. We assume that the communication links are bidi-
rectional, i.e.,ζij(t) = ζji(t). The process{ζij(t); t ∈ IR+}
is simply an alternating on-off process, with successive up
and down time durations given by the random variables (rvs)
{Uij(k), k ∈ IN} and{Dij(k), k ∈ IN}, respectively, where
IN := {1, 2, . . .}. Note that the rvs{Dij(k); k ∈ IN} denote
the intermeeting times between nodesi andj.

In order to make progress we introduce the following
assumption on the intermeeting times between nodes:

Assumption 1: The intermeeting times{Dij(k); k ∈ IN}
between two nodesi, j ∈ N are given by a sequence of
independent and identically distributed (i.i.d.) exponential rvs
with mean(ν⋆)

−1.
It has been reported (e.g., [5], [16]) that the distributionof

intermeeting times between a pair of nodes can be approx-
imated by an exponential distribution (i) when nodes move
according to a common mobility model, such as the random
direction (RD) [2] and random waypoint (RWP) [13] mobility
models, on a bounded domain or (ii) when the intermeeting
times can be represented as a delayed geometric sum of i.i.d.
rvs [14]. The same assumption was introduced in [31].

For every distinct pairi, j ∈ N , defineMij := {Mk
ij; k ∈Z+}, whereM0

ij = 0, Mk
ij (k ≥ 1) denotes the time at which

thek-th meeting between nodesi andj takes place after time
0+, andZ+ := {0, 1, 2, . . .}. From the meeting timesMk

ij , k ∈Z+, we can define another sequence of rvsIij = {Ik
ij ; k ∈

IN}, whereIk
ij = Mk

ij − Mk−1
ij . When contact timesUi,j(k),

k ∈ IN, (i.e., the amount time during which the communication
link between them is up) are much shorter than intermeeting
timesDij(k), k ∈ IN, from Assumption 1, we can approximate
Ik
ij , k ≥ 2, as i.i.d. exponential rvs with a parameterν ≃ ν⋆.

Assumption 2: The rvsIk
ij , k ≥ 2, are i.i.d. exponential rvs

with a parameterν. Furthermore,Iij , i, j ∈ N , are mutually
independent.
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Assumption 2 implies that a node meets other nodes at the
rate of (N − 1) ν, with the average amount of elapsed time
between two consecutive meetings equal to1/((N − 1) ν).

New messages arrive at nodei ∈ N according to a Poisson
processBi with rateλi.1 For our analysis, we assume that the
new message arrival ratesλi are the same, i.e.,λi = λ for
all i ∈ N for someλ > 0, and that the new message arrival
processesBi, i ∈ N , are mutually independent.

IV. M ARKOV CHAIN -BASED MODEL

As mentioned earlier, we focus on asingle message gener-
ated by some node and examine how the number of outstand-
ing copies of the message evolves over time until either (i) a
copy of the message reaches its destination or (ii) the message
is purged from the network.2 Without loss of generality, we
assume that the message is created at timet0 = 0.

Let YC(t), t ∈ IR+, denote the number of copies of the
message (i.e., the number of nodes carrying a copy of the
message) at timet. In order to develop a tractable model we
introduce following simplifying assumptions:

Assumption 3: (i) An exchange of messages between two
nodes following an encounter takes place instantaneously,and
all transmissions are successful. Further, either node is equally
likely to request messages from the other node first. (ii)
Suppose that two nodesi and j meet at timet ∈ IR+, and
a copy of messagem requested by nodej from nodei causes
a buffer overflow at nodej. Then, every message present in
nodej’s buffer just prior to the meeting is equally likely to
be dropped. (iii) Messages lost to buffer overflows at different
nodes are selected independently. (iv) The buffer is full at
every nodeat steady state.

Assumption 3(i) means that the contact times following
encounters are long enough to complete the exchange of
messages between the nodes. Assumption 3(ii) is introduced
for technical convenience so that we do not have to keep track
of the position of each message in the buffer of every node.
Removal of this assumption, however, leads to an intractable
model because we need to keep track of not only the number
of copies in the network, but also the position ofevery copy
of the message in the buffer of its carrier. When some other
buffer management scheme (e.g., First-In-First-Out (FIFO)) is
employed, this will cause some discrepancy, especially when
the buffer sizes are small. Assumption 3(iv) is a reasonable
assumption when the buffer size is a performance bottleneck,
which is the scenario of interest to us.

Recall from Assumptions 1 through 3 that the intermeet-
ing times between nodes are given by i.i.d. exponential rvs
and new messages are generated by the nodes according to
mutually independent Poisson processes. Thus, we can model
YC := {YC(t); t ∈ IR+} using a continuous-time Markov
chain (MC) [4]. The state space of the MC is given byS :=
{0, 1, . . . , N−1, D}, where (i)YC(t) = k, k = 0, 1, . . . , N−1,
means that the message has not been delivered and there arek

1New messages here refer to the messages generated by nodei, not
including those received from other nodes.

2Keeping track of the number of copies after delivery resultsin an
intractable model because each copy needs to be monitored separately, based
on its position in the buffer of its carrier at the time the message is delivered.

nodes with a copy of the message at timet, and (ii)YC(t) = D
indicates that a copy of the message has been delivered to its
destination. Once the message is eliminated from the network,
i.e., the MCYC(t) reaches state 0, the MC stays there forever.
Similarly, once a copy of the message is delivered to the
destination, the MC remains at stateD for good.

A. Generator of the continuous-time Markov chain

Let us defineq to be the probability that a message present
in the buffer of a node remains in the buffer after the node
encounters another node and exchanges messages. Note from
Assumption 3 thatq is also the average fraction of messages
in the buffer at the time of an encounter, which are not lost
to buffer overflows during the ensuing exchange of messages.
Defineqc := 1 − q.

Denote the buffer size at the nodes byB. Assuming that
each message is destined for a single destination, the off-
diagonal elements of the generator of the continuous-time MC
YC [4], denoted byG = [gk,ℓ; k, ℓ ∈ S], are given by

gk,ℓ =











































































k (N − k − 1) ν q
if k = 1, 2, . . . , N − 2 and ℓ = k + 1,

k ν 1+q
2
if k = 1, 2, . . . , N − 1 and ℓ = D,

k (k−1)
2 ν (qc)

2

if k = 2, 3, . . . , N − 1 and ℓ = k − 2,
λ

(B q)/2 + (N−1) ν qc

2

if k = 1 and ℓ = 0,
k λ

(B q)/2 + k (N−k) ν qc

2 + k (k − 1) ν q qc

if k = 2, 3, . . . , N − 1 and ℓ = k − 1,
0 otherwise.

(1)

The diagonal elements ofG are given bygk,k = −
∑

ℓ 6=k gk,ℓ

for all k ∈ S.
Let us explain the transition rates in (1): Recall from

Assumption 2 that the meetings between a pair of nodes occur
at the rate ofν.

• gk,k+1 – When there arek (1 ≤ k ≤ N − 2) nodes with a
copy of the message, from the assumed mutual independence
of Iij (Assumption 2) the meetings between the nodes with a
copy of the message and other nodes without a copy, excluding
the destination, take place at the rate ofk(N−k−1)ν. Since a
node with a copy, when it encounters a node without a copy,
will successfully deliver a copy to the other node and not
lose its own copy with probabilityq, the transition rategk,k+1

equalsk(N − k − 1)ν q.
• gk,D – Analogous to the previous case, whenk nodes
have a copy of the message, saym, they will meet the
destination of messagem at the rate ofk · ν. When a node
i with a copy of messagem meets the destination, it will
successfully deliver messagem if (i) it delivers the messages
requested by the destination, including messagem, first or (ii)
it first receives new messages it requested from the destination
without dropping its copy of messagem. Since we assume
that either node will request messages from the other node
first with equal probability of 1/2, the probability that node i
will successfully deliver messagem to the destination upon
encounter is given by(1 + q)/2.
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• gk,k−2 – When there arek nodes with a copy, these
nodes meet with each other at rate(k (k − 1) ν)/2, where
(k (k − 1))/2 is the number of different pairs of the nodes
that can meet amongst thek nodes. When two of these nodes
meet, the copy at each node will be lost with probabilityqc,
independently of each other (Assumption 3(iii)). Thus, the
rate at which two copies are lost to buffer overflow equals
(k (k − 1) ν (qc)

2
)/2.

• gk,k−1 – There are two separate cases to consider:
(i) k = 1 – If only a single node has a copy of the message, the
message could be lost in two different ways. First, the copy
may be lost due to a buffer overflow caused by generation
of new messages at the carrier of the copy between meetings
with other nodes. Since we do not know the exact position of
the message in the buffer, we assume that it is in the middle of
theB · q messages that survived the last meeting with another
node (hence,B · q/2) and approximate the rate of the event
asλ/((B · q)/2).

Second, when the node with the only copy meets another
node, it may take on some of the messages being carried
by the other node which are absent in its buffer and, in the
process, drop the only copy in the network in order to free up
enough buffer space for requested messages before it had an
opportunity to deliver the message to the other node. This will
happen with probabilityqc/2 because the probability that the
carrier will request messages from the other node first is 1/2
and, given that it does, the only copy of the message will be
dropped from the buffer with probabilityqc. This yields the
rate ((N − 1) ν qc)/2 for the second case.
(ii) k > 1 – When there arek > 1 copies in the network, the
number of copies can decrease by one in three different ways.
The first two are the same as in the case ofk = 1. The third
case arises when two nodes with a copy of the message meet
(at rate(k (k − 1) ν)/2 as explained earlier) and one of the
two copies is dropped, which happens with probability2 q ·qc

(i.e., one copy is lost to a buffer overflow while the other copy
survives the exchange of message(s)).

B. Embedded discrete-time Markov chain

Let {tn; n = 1, 2, . . .} denote the sequence of times at
which the continuous-time MCYC , starting at state 1 at time
t = 0, makes a transition to another state. Then, we can define
a discrete-time MCYD := {YD(n); n ∈ Z+} with initial
state YD(0) = 1 and YD(n) = YC(t+n ), embedded in the
continuous-time MC with the same state spaceS.

The one-step transition probabilities of the discrete-time MC
YD can be found from the transition rates of the continuous-
time MC in (1): The entries of the one-step transition matrix
P = [Pk,ℓ; k, ℓ ∈ S] of YD are equal to

Pk,ℓ =







gk,ℓ

−gk,k
if gk,ℓ > 0,

1 if k = ℓ = 0 or k = ℓ = D,
0 otherwise.

(2)

The discrete-time MCYD is shown in Fig. 1.
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Fig. 1. Discrete-time Markov chainYD.

V. ESTIMATION OF MESSAGE DELIVERY RATIOS AND

AVERAGE DELIVERY DELAYS

Suppose that the parameters(B, N, Λ, ν, q), where Λ =
N · λ is the aggregate new message generation rate at all
nodes, are known. We describe how we can estimate both the
MDR and the ADD under the IRS, using the continuous-time
and discrete-time MCs described in the previous section. We
denote the MDR bypMDR and the ADD byDavg.

A. Estimation of message delivery ratios (MDRs)

First, note that states 0 andD of the discrete-time MCYD

are the only two absorbing states, and the other states are
transient. This tells us that, starting at state 1, the MC will
reach one of these two absorbing states at some finiten ∈Z+ with probability one. Hence, the probability that a copy
of the message is successfully delivered to its destinationis
the probability that the MCYD, starting withYD(0) = 1,
eventually reaches stateD (instead of reaching state 0).

Let fi, i ∈ S, denote the probability that the MCYD will
reach stateD, starting at statei ∈ S. It is obvious from the
definition thatf0 = 0 andfD = 1, and the MDR is given by
pMDR = f1. For each statek ∈ S, by conditioning on the
first transition out of statek, we obtain

fk =
∑

ℓ∈S

Pk,ℓ fℓ. (3)

Eq. (3) yields the following set of linear equations.

f1 = P1,2 f2 + P1,0 f0 + P1,D fD = P1,2 f2 + P1,D,

fk = Pk,k+1 fk+1 + Pk,k−1 fk−1 + Pk,k−2 fk−2

+Pk,D fD (4)

= Pk,k+1 fk+1 + Pk,k−1 fk−1 + Pk,k−2 fk−2 + Pk,D,

for k = 2, 3, . . . , N − 2, and

fN−1 = PN−1,N−2 fN−2 + PN−1,N−3 fN−3 + PN−1,D fD

= PN−1,N−2 fN−2 + PN−1,N−3 fN−3 + PN−1,D

Note that there areN−1 unknowns{f1, . . . , fN−1} andN−1
linearly independent equations. Hence, we can solve for the
unknowns as follows.

Given a matrixA, we denote the submatrix ofA containing
rows r1 through r2 and columns c1 through c2 byAr1:r2,c1:c2.
When the submatrix contains a single row or a column,
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we simply write Ar1,c1:c2 or Ar1:r2,c1. We can rewrite the
relationship in (4) in the following simpler matrix form:

f = P1:N−1,1:N−1 f + P1:N−1,D ,

wheref = (f1, f2, . . . , fN−1)
T , andP is the one-step transi-

tion matrix of the discrete-time MC in (2). Hence, we obtain

f = (IN−1,N−1 − P1:N−1,1:N−1)
−1P1:N−1,D , (5)

whereIN−1,N−1 is an (N − 1) × (N − 1) identity matrix.

B. Estimation of average delivery delays (ADDs)

We define the end-to-end delivery delay of a successfully
delivered message (i.e., a copy of the message reaches its des-
tination) to be the amount of time it takes after the generation
of the message for the destination to receive a copy of the
message. Then, the ADDDavg experienced by successfully
delivered messages is equal to the expected amount of time it
takes for the continuous-time MCYC , starting at state 1, to
reach stateD, conditional on the event that it reachesD. This
expected delay can be computed using the MCs in a similar
way we computed the MDR.

First, since we are dealing only with the messages that are
successfully delivered, the MC must reach the absorbing state
D (instead of state 0). Hence, we need to modify the transition
probabilities of the discrete-time MC as follows:
When the MCYD(n) is at state 1, it jumps either to state 2
with probability (N − 2) q/((N − 2) q + 1) or to stateD
with probability 1/((N − 2) q + 1). Note that these are the
conditional probabilitiesP1,2/(1−P1,0) andP1,D/(1−P1,0),
respectively. Similarly, when the MC is at state 2, it is not
allowed to jump to state 0 and we need to modify the transition
probabilities out of state 2 accordingly.

Let us define anN × N matrix P⋆ = [P ⋆
k,ℓ; k, ℓ ∈ S⋆],

whereS⋆ := S \ {0}, and

P ⋆
k,ℓ =

{

Pk,ℓ/(1 − Pk,0) if k = 1, 2 and ℓ ∈ S⋆,
Pk,ℓ otherwise.

(6)

Define d(k) = − (gk,k)
−1, k = 1, 2, . . . , N − 1, to be the

expected amount of time the continuous-time MC spends at
statek after it enters the state till the next jump out of the
state. Suppose thatED(k), k = 1, 2, . . . , N − 1, denotes the
expected delivery delay till a copy of the message is delivered,
starting withk copies of the message in the network, minus
d(k). It is clear thatED(D) = 0 by definition. Then, by
conditioning on the first transition out of the state under
consideration, we obtain, for everyk ∈ S⋆,

ED(k) =
∑

ℓ∈S⋆

P ⋆
k,ℓ ED(ℓ) + d(k). (7)

Define ED = (ED(1), . . . , ED(N − 1))T and d =
(d(1), . . . , d(N − 1))T . Then, we can rewrite the relation in
(7) in the following matrix form:

ED = P⋆
1:N−1,1:N−1 ED + d

or, equivalently,

ED = (IN−1,N−1 − P⋆
1:N−1,1:N−1)

−1d . (8)

The ADD experienced by successfully delivered messages is
then given byDavg = ED(1) + d(1).

VI. PERFORMANCE ESTIMATION UNDER THE IMMUNITY

ROUTING SCHEME

Given the parameters(B, N, Λ), if the meeting rate between
a pair of distinct nodes,ν, and the probabilityq are known,
the MDR and the ADD can be computed using (5) and (8),
respectively. However, much of difficulty in estimating these
performance measures under the IRS lies in the calculation of
q. In this section we explain how we can approximateν and
q in order to estimatepMDR andDavg for the IRS.

A. Estimation of probability q

In this subsection we first assume that the meeting rateν
is known and describe how we estimateq. Approximation of
ν is detailed in the following subsection. First, we show that,
given a fixed value ofq, there are two constraints (dependent
on other fixed system parameters) which must be satisfied by
the average message arrival rate at a node. Letχn be the
message arrival rate at a node, including messages generated
by the node and those received from other nodes. We denote
χn that satisfies the first (resp. second) constraint byχ1

n(q)
(resp.χ2

n(q)). We then findq⋆ that satisfies both constraints,
i.e., χ1

n(q⋆) = χ2
n(q⋆), and useq⋆ to estimatepMDR and

Davg.

(i) Constraint 1: Suppose thatα is the probability that a node
with a copy of a message, conditional on the event that the
message is successfully delivered to the destination, willbe
immunized before it loses its copy to a buffer overflow and
thatµn is the buffer overflow rate at a node (i.e., a time average
of the number of messages lost to buffer overflows per unit
time). Then, we have the following relation:

µn = χn (1 − pMDR · α) , (9)

where the right-hand side is the message arrival rate times
the probability that a message will be dropped due to buffer
overflows (i.e., one minus the probability that the message
will be removed successfully via immunization before being
dropped by a buffer overflow).

The average number of messages dropped by a node due to
buffer overflowsper meeting with other nodes, denoted byΣ,
can be computed as follows: As mentioned in Section IV-A,
there are two types of events that cause buffer overflows. First,
when the buffer of a node is full, any message generated by
the node causes a buffer overflow. Secondly, when a node
encounters another node and receives new messages currently
absent in its buffer, it causes buffer overflow(s) if there isnot
enough buffer space for the new messages.

Recall that, by Assumption 3(iv), we assume a buffer is
always full at steady state. Since the overall buffer overflow
rate of a node isµn and the rate at which messages are lost
to the first type of buffer overflow isλ = Λ/N , the buffer
overflow rate due to the second type equalsµn−λ. Obviously,
the rateµn − λ is equal to the average number of messages
dropped by a node per meeting, namelyΣ, times the rate at
which the node meets other nodes,(N − 1) ν. Therefore,

Σ (N − 1) ν = µn − λ or Σ =
µn − λ

(N − 1) ν
. (10)
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From (10), the fraction of messages in a buffer lost during
an exchange of messages following a meeting,qc, is given by

qc =
Σ

B
=

µn − λ

(N − 1) ν B
. (11)

Substituting (9) in (11) forµn and solving forpMDR yields

pMDR =
1

α
−

λ

χn α
−

qc (N − 1) ν B

χn α
. (12)

As explained in the previous section, for a given value ofq,
we can computepMDR from (5). Thus, we are interested in
finding χn andα that satisfy (12). To this end, we first rewrite
α as a function ofpMDR andχn and then solve forχn.

Suppose that a messagem is delivered to its destination at
time tD. The immunization delay of a nodei for messagem
is defined to be the delay incurred until nodei receives the
immunity for messagem aftertD. The expected immunization
delay, denoted byξ−1, can be computed using a simple
continuous-time MC, based on the meeting rates between
nodes. This is explained in Appendix A.

Assume that nodei has a copy of the message at time
tD. The residual life of messagem at nodei refers to the
additional stay time aftertD the message would spend at
nodei till it is removed by a buffer overflowif there were no
immunity. Assume that we can model both the immunization
delay of nodei and the residual life of messagem at nodei
as independent exponential rvs with parameterξ and B/µn,
respectively.3 Then, α is equal to the probability that node
i will be immunized before messagem is lost to a buffer
overflow. This is given by

α =
ξ

ξ + µn/B
=

ξ

ξ + χn (1 − pMDR · α)/B
, (13)

where the second equality follows from (9). We can solve (13)
for α and obtain

α =
ξ B + χn −

√

(ξ B + χn)2 − 4 χn pMDR ξ B

2 χn pMDR
. (14)

Note thatα depends only onχn andpMDR (for fixed B and
ξ). Therefore, givenq (hence,pMDR(q)), we can find a unique
value ofχn that satisfies (12) and (14). We denote this value
by χ1

n(q).

(ii) Constraint 2: Let C⋆ be the average number of copies
generated of messages, including the original copy of the
messages. Similarly,C⋆

D andC⋆
UD denote the average number

of copies generated of successfully delivered messages and
that of undelivered messages, respectively. Then, we have

C⋆ = pMDR C⋆
D + (1 − pMDR) C⋆

UD . (15)

We can writeC⋆
D as the sumCb

D + Ca
D, whereCb

D (resp.
Ca

D) is the average number of copies of successfully delivered
messages generated before (resp. after) they are deliveredto
the destinations.

The aggregate message arrival rate atall nodes must satisfy
N · χn = Λ · C⋆. This, with (15), gives us

χn =
Λ

N

(

pMDR (Cb
D + Ca

D) + (1 − pMDR) C⋆
UD

)

. (16)

3In general, these rvs are not exponential. However, we make this assump-
tion to simplify the computation ofα.

Hence, givenq, in order to calculateχn we need to compute
Cb

D, Ca
D, andC⋆

UD.

1. Computation of Cb
D – We can computeCb

D by following
the same steps used to computeDavg in Section V-B: Let
C∗

k , k = 1, 2, . . . , N − 1, denote the expected number of
copies produced of a successfully delivered messageuntil it
is delivered to the destination, starting withk copies in the
network, andC∗

D = 0. Then, for everyk = 1, 2, . . . , N−1, by
conditioning on the first transition out of the state, we obtain
the relation

C∗
k =

k−1
∑

j=1

P ⋆
k,j C∗

j +

N−1
∑

j=k+1

P ⋆
k,j (C∗

j + 1). (17)

This relation states that the number of copies generated
increases by one with each transition from statek (k =
1, 2, . . . , N − 2) to k + 1.4 In a matrix form, (17) becomes

C∗ = P ⋆
1:N−1,1:N−1 C∗ + p† ,

where C∗ = (C∗
1 , . . . , C∗

N−1)
T , and p† = (P ⋆

1,2, P
⋆
2,3, . . . ,

P ⋆
N−2,N−1, 0)T . Therefore,Cb

D = C∗
1 can be computed from

C∗ = (IN−1,N−1 − P ⋆
1:N−1,1:N−1)

−1 p†.

2. Computation of C⋆
UD – In order to computeC⋆

UD, we
first calculate the expected number of copies produced of a
message (not necessarily successfully delivered) until either a
copy of the message is delivered or the message is eradicated
from the network without being delivered, which we denote
by C⋆⋆. It is clear that

C⋆⋆ = pMDR Cb
D + (1 − pMDR) C⋆

UD . (18)

Let C‡
k, k = 1, 2, . . . , N − 1, denote the expected number of

copies generated of a message till either a copy reaches the
destination or all copies disappear from the network, starting
with k copies in the network. Clearly,C⋆⋆ = C‡

1 . Again, by
conditioning on the first transition out of statek, we have a
relation similar to (17): For everyk = 1, 2, . . . , N − 1,

C‡
k =

k−1
∑

j=1

Pk,j C‡
j +

N−1
∑

j=k+1

Pk,j (C‡
j + 1) (19)

Eq. (19) is equivalent toC‡ = P1:N−1,1:N−1 C‡ + p‡,
where C‡ = (C‡

1 , . . . , C‡
N−1)

T , and p‡ = (P1,2, P2,3, . . . ,
PN−2,N−1, 0)T . Hence,

C‡ = (IN−1,N−1 − P1:N−1,1:N−1)
−1 p‡.

In order to computeC⋆
UD, we use the relationship (18). Note

thatCb
D can be computed as explained above, andpMDR can

be obtained from (5) givenq. Thus, we get

C⋆
UD =

C⋆⋆ − pMDR Cb
D

1 − pMDR
.

3. Computation of Ca
D – Suppose that a copy of message

m is delivered to its destination at timetD and that nodej

4When a node with a copy meets another node without a copy, it ispossible
for a new copy to be generated in our model even when the MC stays at the
same state. We discount these copies in calculation ofC⋆, C⋆

D
, andC⋆

UD
as

they are small compared to the total number of copies generated.
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does not have a copy of messagem at timetD. Without loss of
generality, denote the set of nodes with a copy of the message
at time tD by {1, 2, . . . , K} =: K. To simplify our analysis,
we assume that the immunization delays experienced by the
nodes for messagem can be modeled as i.i.d. exponential rvs
with parameterξ, which are independent ofIij , i, j ∈ N .5 Let
AK := {nodej does not receive a copy of messagem from
theK nodes inK}, assuming that the copies at the nodes inK
can be dropped only by an immunity message (but no buffer
overflow).

Let Θi, i ∈ N , be the time at which nodei receives the
immunity for messagem andM⋆

ij , i ∈ K, the first time nodes
i and j meet aftertD. DefineAi := {min(Θi, Θj) < M⋆

ij}.
Note thatAi is the event that nodej does not request message
m from node i when they meet because either nodei has
dropped its copy after receiving immunity (Θi < M⋆

ij) or
nodej has been immunized (Θj < M⋆

ij) beforeM⋆
ij . Thus,

Pr [AK ] = Pr

[

K
⋂

i=1

Ai

]

= Pr

[

K
⋂

i=1

{

min(Θi, Θj) < M⋆
ij

}

]

.

By conditioning on the immunization delayΘj of nodej,

Pr [AK ]

=

∫

IR+

Pr

[

K
⋂

i=1

{

min(Θi, Θj) < M⋆
ij

}

∣

∣

∣
Θj = t

]

× ξ exp(−ξ t) dt

=

∫

IR+

(

K
∏

i=1

Pr
[

min(Θi, Θj) < M⋆
ij

∣

∣

∣
Θj = t

]

)

(20)

× ξ exp(−ξ t) dt

=

∫

IR+

(

K
∏

i=1

Pr
[

min(Θi, t) < M⋆
ij

]

)

ξ exp(−ξ t) dt ,

where the second equality follows from the assumed
conditional independence ofAi, i ∈ K, given
Θj . Since Θi, i ∈ K, are i.i.d. by assumption,
Pr
[

min(Θi, t) < M⋆
ij

]

, i ∈ K, are the same and we
only need to computePr

[

min(Θ1, t) < M⋆
1j

]

in order to
determinePr [AK ] using (20).

For everyt ∈ (0,∞), let E(t) = {M⋆
1j > t} andEc(t) =

{M⋆
1j ≤ t}. Then, by the law of total probability,

Pr
[

min(Θ1, t) < M⋆
1j

]

= Pr
[

min(Θ1, t) < M⋆
1j

∣

∣

∣
E(t)

]

· Pr [E(t)]

+ Pr
[

min(Θ1, t) < M⋆
1j

∣

∣

∣
Ec(t)

]

·Pr [Ec(t)] .

Clearly, Pr
[

min(Θ1, t) < M⋆
1j

∣

∣

∣
E(t)

]

= 1 andPr [E(t)] =

exp(−νt). Note that

Pr
[

min(Θ1, t) < M⋆
1j

∣

∣

∣
Ec(t)

]

· Pr [Ec(t)]

= Pr
[

{

min(Θ1, t) < M⋆
1j

}

⋂

Ec(t)
]

.

5This assumed independence between the immunization delaysandIij , i, j ∈ N , does not hold in practice as the immunization delays are tied
to the meeting times between nodes.

By conditioning onM⋆
1j,

Pr
[

{

min(Θ1, t) < M⋆
1j

}

⋂

Ec(t)
]

=

∫ t

0

Pr
[

min(Θ1, t) < M⋆
1j

∣

∣

∣
M⋆

1j = τ
]

ν exp(−ντ) dτ

=

∫ t

0

Pr [Θ1 < τ ] ν exp(−ντ) dτ

=

∫ t

0

(1 − exp(−ξτ)) ν exp(−ντ) dτ

= 1 − exp(−νt) −
ν

ξ + ν
(1 − exp(−(ξ + ν)t)) .

Therefore,

Pr
[

min(Θ1, t) < M⋆
1j

]

= exp(−νt) + 1 − exp(−νt) −
ν

ξ + ν
(1 − exp(−(ξ + ν)t))

= 1 −
ν

ξ + ν
(1 − exp(−(ξ + ν)t)) . (21)

The probabilityPr [AK ] can be obtained by substituting (21)
in (20) and carrying out the integration.

We approximate the probability that a node without a copy
of messagem at the time of its delivery will not receive a
copy byPr [AK ] with K = Cb

D and

Ca
D ≃ (N − 1 − Cb

D) ·
(

1 − Pr
[

ACb
D

])

.

In this approximation, we ignore two factors whose contri-
butions to Ca

D tend to cancel each other out. First, other
nodes that receive a copy aftertD can also forward a copy
to nodej. At the same time, although on the averageCb

D

copies are generated before delivery, some of these copies
may have been lost to buffer overflow before the delivery takes
place. The first tends to increase to the probability that node j
will receive a copy, while the latter decreases the probability.
Simulation results suggest that the proposed model tends to
slightly overestimateC⋆ due to these approximations.

Once we obtainC⋆
D = Cb

D+Ca
D andC⋆

UD, we can compute
χn using (16) as a function ofq (throughpMDR(q)), which
we denote byχ2

n(q). Since the correct value ofq must satisfy
both (12) and (16), we can numerically findq⋆ ∈ [0, 1] that
satisfiesχ1

n(q⋆) = χ2
n(q⋆).

B. Estimation of average intermeeting times and a meeting
rate ν between two nodes

In the previous subsection we assumed that the meeting rate
between two nodes, namelyν, was known. In practice, this
quantity may be estimated by individual nodes, for example,
by maintaining a record of meetings with other nodes. In this
subsection, we explain how it can be approximated for our
analysis when the one-hop connectivity between the nodes
is determined by the distances between them: Recall from
Section III that, for every pair of distinct nodesi and j,
{ζij(t); t ∈ IR+} is the reachability process between the nodes
and {Uij(k); k ∈ IN} and {Vij(k); k ∈ IN} are the sequence
of contact times and intermeeting times, respectively, between
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them. When nodes’ mobility is stationary, from elementary
renewal theory [29],

Pr [ζij(0) = 1] =
E [Uij(2)]

E [Uij(2)] + E [Vij(2)]
. (22)

Suppose that the spatial distributionG of the nodes is
known. For example, the spatial distribution of the nodes under
the RWP and RD mobility models has been investigated in the
literature (e.g., [1], [9], [21]). If two nodes can communicate
directly if and only if their distance is not larger than their
transmission rangeγ, the probabilityPr [ζij(0) = 1] is equal
to

Pr [ζij(0) = 1] =

∫D ( ∫D∩Dγ(x)

dG(y)
)

dG(x) ,

where D is the mobility domain, andDγ(x) is the disk
centered atx with a radiusγ. Similar calculation can be
performed under different one-hop connectivity models (e.g.,
the cost-based model [25]).

It is clear from (22) that the meeting rateν, which is given
by ν = (E [Uij(2)]+E [Vij(2)])−1, can be computed if we can
find eitherE [Uij(2)] or E [Vij(2)]. For instance, Han et al. [6]
investigated the distribution and expected valueE [Uij(2)] of
contact times under the RWP mobility model and illustrated
how they can be estimated. The expected valueE [Vij(2)] is
then obtained from (22) as

E [Vij(2)] = E [Uij(2)] ×
1 + Pr [ζij(0) = 1]

Pr [ζij(0) = 1]
.

The meetings rates under the RD model can be calculated in
a similar manner.

APPENDIX

Suppose that a message is delivered at timet0, at which time
the destination receives immunity. Without loss of generality
assume that the destination is node 1 andt0 = 0. Let
NI(t), t ≥ 0, be the number of nodes with immunity at time
t, with NI(0) = 1. Then, by Assumption 2,{NI(t); t ≥ 0}
is a continuous-time MC with state spacẽS = {1, 2, . . . , N}
and the generator̃G = [g̃ij ; i, j ∈ S̃], where

g̃i,j =























i (N − i) ν
if i = 1, 2, . . . , N − 1 andj = i + 1,

−i (N − i) ν
if i = 1, 2, . . . , N − 1 andj = i,

0 otherwise.

This tells us that whenNI(t) = k, the number of nodes with
immunity NI(t) jumps to statek+1 at ratek(N −k)ν, which
is the rate at which one of thek nodes with immunity meets
one of the remainingN − k nodes without immunity. Let
Tk, k = 2, 3, . . . , N , denote the time at whichNI(t) jumps
from k − 1 to k, andT1 = 0. Then, we have

E [Tk] = E [Tk−1] +
1

(k − 1)(N − k + 1)ν

=

k
∑

l=2

1

(ℓ − 1)(N − ℓ + 1)ν
, k = 2, 3, . . . , N.

We denote byΓi, i ∈ N , the time at which nodei receives
immunity with Γ1 = 0. It is plain that{Tk, k = 2, . . . , N} are
the order statistics of{Γi, i = 2, . . . , N} [29]. Therefore,

E

[

N
∑

i=2

Γi

]

= E

[

N
∑

k=2

Tk

]

=

N
∑

k=2

(

k−1
∑

l=1

1

l (N − ℓ) ν

)

,

and the average immunization delay is given byξ−1 =

E
[

∑N
i=2 Γi

]

/(N − 1).
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