
Energy Reduction Techniques for Multimedia Applications
with Tolerance to Deadline Misses ∗

Shaoxiong Hua, Gang Qu, and Shuvra S. Bhattacharyya
Electrical and Computer Engineering Department and Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742, USA

{shua, gangqu, ssb}@eng.umd.edu

ABSTRACT
Many embedded systems such as PDAs require processing
of the given applications with rigid power budget. However,
they are able to tolerate occasional failures due to the im-
perfect human visual/auditory systems. The problem we
address in this paper is how to utilize such tolerance to re-
duce multimedia system’s energy consumption for providing
guaranteed quality of service at the user level in terms of
completion ratio. We explore a range of offline and on-line
strategies that take this tolerance into account in conjunc-
tion with the modest non-determinism in application’s ex-
ecution time. First, we give a simple best-effort approach
that achieves the maximum completion ratio; then we pro-
pose an enhanced on-line best-effort energy minimization
(BEEM) approach and a hybrid offline/on-line minimum-
effort (O2ME) approach. We prove that BEEM maintains
the maximum completion ratio while consuming the prov-
ably least amount of energy and O2ME guarantees the re-
quired completion ratio statistically. We apply both ap-
proaches to a variety of benchmark task graphs, most from
popular DSP applications. Simulation results show that sig-
nificant energy savings (38% for BEEM and 54% for O2ME,
both over the simple best-effort approach) can be achieved
while meeting the required completion ratio requirements.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided
Design; I.2.8 [Problem Solving, Control Methods, and
Search]: Scheduling

General Terms
algorithms, performance, design

Keywords
soft real-time scheduling, low-power design, voltage scaling,
on-line algorithm

∗A portion of this work is supported by the National Science
Foundation under Grant No. 9734275.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

1. INTRODUCTION
Low energy consumption has emerged as one of the most

important design objectives for many modern embedded sys-
tems particularly the battery-operated PDAs. These sys-
tems require the processing of signal, image, and video data
streams in a timely fashion to the end user’s satisfaction.
Such applications are often characterized by 1) the repetitive
processing on periodically arriving inputs, such as voice sam-
ples or video frames; 2) the uncertain execution time of each
input processing; and 3) the tolerance to occasional deadline
misses without being noticed by human visual and auditory
systems. The deadline can be (implicitly) determined by
the throughput requirement of the input data streams. For
example, a 1%-10% loss rate can be tolerated in packet au-
dio applications[4], while tolerance for losses in low bit-rate
voice applications may be significantly lower[11].

We can exploit these characteristics, particularly the tol-
erance to deadline misses, to create slacks when streamlining
the embedded processing associated with such applications.
More specifically, when the embedded processing does not
interact with a lossy communication channel, or when the
channel quality is high compared to the tolerable rate of
missed deadlines, we are presented with the opportunity of
dropping some tasks to introduce slacks in the application
for reduced cost or power consumption.

Note that the slacks here are fundamentally different from
the ones that have been exploited for power/latency mini-
mization. Previously, designs based on worst case execution
time (WCET) guarantee the perfect completion ratio. Slack
occurs, out of designer’s control, when real-time execution
time is less than WCET. We create slack intentionally (e.g.,
by dropping samples) in order to minimize system’s energy
consumption. This becomes possible in multimedia applica-
tions that do not require the completion of each data sample.
However, identifying the best trade-off between performance
and power is hard and requires intensive design space explo-
rations[8, 12].

For many DSP applications, task’s execution information
beyond WCET is also available. Examples include the ex-
ecution times in the best case, with cache miss(es), when
pipeline stalls, or when different conditional branch hap-
pens. More important, it is possible to obtain the prob-
abilities at which these events occur by knowing (e.g., by
sampling technique) detailed timing information about the
system or by simulation on the target hardware[18]. Given
such information, on-line and offline schedulers could make
better decisions towards more energy savings.

In this paper, we develop systematic techniques to lever-

9.3

131

age the information on application’s deadline miss tolerance
and statistical task execution time to perform efficient dy-
namic voltage scaling for energy reduction. This departs
us from the conservative view of over-designing embedded
systems in order to meet deadlines all the time and under
WCET. Our result is an algorithmic framework that inte-
grates considerations of iterative on-line/offline task schedul-
ing, dynamic voltage scaling, non-deterministic computa-
tion times, and quality of service considerations (in terms of
deadline miss rate or task completion ratio), and provides
for robust and power-optimized execution of multimedia ap-
plications. The highlights of our work are two scheduling
algorithms: BEEM that achieves the highest completion
ratio with the provably minimum energy consumption; and
O2ME that can further reduce energy consumption by tak-
ing advantage of the tolerance to deadline misses.

2. RELATED WORK
Although leakage power dissipation is gaining more and

more attention recently, dynamic power still dominates in
most embedded systems. Power is proportional to the square
of the supply voltage, therefore, reducing supply voltage can
result in great power saving. Tiwari et al. analyzed the
power dissipation in high-performance CPU, discussed var-
ious power reduction techniques, and concluded that volt-
age scaling is the most effective and most promising tech-
nique[19]. Early research on voltage scaling is on systems
that have multiple supply voltages available at the same
time. This is due to various design and implementation
concerns of having voltage changing arbitrarily at run-time.
However, such ideal variable voltage systems can be more
energy-efficient because of the flexibility of choosing proper
operating voltages[14]. Hong et al. developed a design
methodology for low power core-based system-on-chip us-
ing hardware that is capable of changing voltages dynami-
cally[7]. Burd et al. reported the implementation of micro-
processor that can adjust its operating speed dynamically[5].

Scheduling techniques have been used at many design
levels for the purpose of power reduction. Raje and Sar-
rafzadeh showed, at behavioral level, how to apply multiple
voltages to function units to reduce power while satisfying
the timing constraints[16]. Johnson and Roy designed an
algorithm that determines the optimal voltages along the
datapaths[10]. At system level, task scheduling techniques
have been exploited to process real-time applications with
hard deadlines. Shin and Choi used fixed priority schedul-
ing method to achieve power reduction by exploiting slack
times in real-time systems[17]. Chen and Sarrafzadeh de-
veloped a provably good lower bound algorithm based on
maximal-weighted-independent-set for the power consump-
tion of dual supply voltage systems[6]. More recently, Quan
and Hu proposed a fixed-priority scheduling policy for real-
time systems[15].

The above scheduling schemes are designed to meet ap-
plication’s deadline at all time. In real-time system society,
there exist several approaches on how to maximize comple-
tion ratio or system utility when the system is overloaded.
For example, Baruah et al. showed that in general any on-
line scheduling algorithm can perform arbitrarily worse than
an offline algorithm[3]. Aydin et al. studied the problem of
how to maximize system’s reward where they proved that
the problem is NP-hard for convex reward functions and
gave an optimal algorithm for concave reward functions[2].

The unique feature in the embedded multimedia system
we address here is its tolerance to certain level of deadline
misses. We propose scheduling algorithms that seek to min-
imize system’s energy consumption under the constraint of
user-level quality of service in terms of completion ratio.

3. PROBLEM FORMULATION
We consider the task graph G = (V, E) for a given ap-

plication. Each vertex in the graph represents one com-
putation and directed edges represent the data dependen-
cies between vertices. For each vertex vi, we associate it
with a finite set of possible execution time {ti1, ti2, · · · , tiki}
and the set of probabilities {pi1, pi2, · · · , piki |

∑ki
l=1 pil = 1}

that such execution time will occur at run-time. That is,
with probability pij , vertex vi requires an execution time
of tij . Assuming that ti1 < ti2 < · · · < tiki , we define

Pil =
∑l

j=1 pij , which measures the probability that the
computation at vertex vi is no longer than til. The com-
pletion time of the task graph G under a fixed execution
order < v1v2 · · · vn >, is the sum of each vertex’s run-time
execution time ei: C(< v1v2 · · · vn >) =

∑n
i=1 ei.

The deadline constraint M specifies the maximum time al-
lowed to complete the application, which is executed period-
ically with its deadline M as the period. We say that an it-
eration is successfully completed if C(< v1v2 · · · vn >) ≤ M.
Closely related to M is a real-valued completion ratio con-
straint Q ∈ [0, 1], which gives the minimum completion ra-
tio that the system has to maintain over a sufficiently large
number of iterations. Alternatively, Q can be interpreted
as a guarantee on the probability with which an arbitrary
iteration can be successfully completed.

Finally, we assume that there exist multiple levels of sup-
ply voltage and corresponding threshold voltages on the sys-
tem. For the simplicity of our discussion, we further assume
that there is no energy/delay overhead for the system to
switch its operating voltage from one level to another. To
consider the energy and delay overhead for voltage switch-
ing, note that we will use no more than two different voltages
for the execution of a vertex[9]. One can easily compare the
energy saving from multiple voltages and the energy/delay
overhead to decide whether multiple voltages should be used
for each vertex. We consider the following problem:

For a given task graph, its deadline, and its com-
pletion ratio constraint, find a scheduling strat-
egy for a multiple voltage system such that the
energy consumed to satisfy the completion ratio
constraint is minimized.

The scheduling strategy consists of determining the execu-
tion order of vertices in the given task graph and select-
ing the supply voltages for the execution of each vertex.
It is well-known that the problem of variable voltage task
scheduling for low power is in general NP-hard[14].Our fo-
cus will be on developing offline/on-line voltage scaling algo-
rithms to determine when and at which voltage should each
task be executed in order to minimize the total energy con-
sumption while meeting the completion ratio requirement.

4. ENERGY-DRIVEN VOLTAGE SCALING
TECHNIQUES

In this section, we present three algorithms: the first one
achieves the highest possible completion ratio, but may con-

132

sume more energy than necessary; the second one maintains
this same completion ratio with the provably minimum en-
ergy consumption; the last one minimizes energy by drop-
ping some completable tasks to avoid achieving a completion
ratio higher than required.

4.1 A Naı̈ve Best-Effort Approach
In this approach, the processor will keep on executing

tasks, at the highest voltage, to the completion of current
iteration or when deadline M is reached. In the latter, if
there is any task remains unfinished, we say the current it-
eration is failed; otherwise, we have a successful completion
or simply completion.

An iteration can only be processed before its deadline and
the processor cannot start an iteration early1. The näıve
best-effort approach operates the processor at the highest
possible voltage, which transfers to the highest processing
speed and therefore the highest possible completion ratio.
Suppose that it gives us k completions over N >> 1 iter-
ations, then k

N
is the highest achievable completion ratio.

Since this näıve approach will not drop any iteration un-
til the deadline M is reached, we know the execution time
for all failed iteration will be M. Let Ci be the completion
time of the i-th completion, we can calculate the energy
consumption for these N iterations by:

E = Pref ·
(

k∑
i=1

Ci +

N−k∑
j=1

M
)

(1)

where Pref is the power dissipation at the reference voltage.
The maximum completion ratio achieved by the näıve ap-

proach and its energy consumption provide us a guideline to
evaluate other approaches in trading completions for energy.

4.2 On-line Best-Effort Energy Minimization
Consider the following two occasions when we could save

energy over the näıve approach: first, if a completion occurs
earlier than the deadline M, we could have operated the
processor at a lower voltage; second, if an iteration eventu-
ally fails at M, we could have terminated it earlier. Appar-
ently, we want to slow down the processing speed as much
as possible and terminate as early as possible to save en-
ergy. We now discuss how to achieve the maximum energy
saving without sacrificing the completion ratio provided by
the näıve approach.

For a given task graph with execution order (e.g., any
topological order) v1, v2, · · · , vn, we define vertex vi’s latest
completion time Tli and earliest completion time Tei :

Tln = Ten = M (2)

Tli = Tli+1 − ti+1,1 (3)

Tei = Tei+1 − ti+1,ki+1 (4)

where ti+1,1 and ti+1,ki+1 are the BCET (best case execution
time) and WCET of vertex vi.

Tli represents the latest time, or a hard deadline to com-
plete vertex vi to guarantee a completion with a non-zero
probability. That is, if its completion time t > Tli , then the
current iteration can never be completed before the deadline

1A common reason for this is that the starting time of an
iteration, which is the deadline for the previous iteration,
corresponds to the arrival times of successive data samples
in the input data stream.

M. To see this, let us consider the best case when all the
successors of vi have their BCET. The completion time in
this case will be:

t +

n∑
q=i+1

tq,1 > Tli + ti+1,1 +

n∑
q=i+2

tq,1

= Tli+1 + ti+2,1 +

n∑
q=i+3

tq,1

= · · ·
= Tln−1 + tn,1 = Tln = M

Similarly, we can show that any completion time t < Tei

will result in a completion earlier than deadline M, which
is not energy-efficient. The operating voltage for vi can be
reduced as long as vi’s completion is not after Tei , the soft
deadline.

1. current time t = 0;
2. for each vertex vi (i = 1, 2, · · · , n)
3. tij = the execution time of vi;
4. if (t + tij > Tli)
5. terminate the current iteration;
6. if (t + tij < Tei)
7. scale voltage so vi is finished at t = Tei ;
8. else
9. run vi at the reference voltage to finish vi at t = t + tij ;

Figure 1: Best-effort energy-minimization schedul-
ing algorithm.

Figure 1 depicts the proposed on-line best-effort energy-
minimization (BEEM) scheduling algorithm after comput-
ing the soft/hard deadline pair {Tei , Tli} for each vertex.
The scheduler scales the operating voltage at run-time when
the execution time of each vertex is available in order to
save energy with a guaranteed best completion ratio. More
specifically, we have

Theorem 1. BEEM guarantees the highest completion
ratio with the minimum energy consumption.

4.3 Offline/On-line Minimum-Effort Approach
Both the näıve approach and BEEM achieve the best pos-

sible completion ratio. If the application requires lower
completion ratio, a simple way to conserve energy is to
shut the system down once sufficient iterations have been
completed2. The proposed offline/on-line minimum-effort
(O2ME) algorithm leverages the available task execution
time information beyond BCET and WCET to further re-
duce energy consumption. It consists of an offline execution
time allocation phase, where each vertex vi is assigned a
pair (Si, Ti), and an on-line voltage scaling phase as shown
in Figure 2.

Let Eij(Si) be the minimum energy to complete the work-
load tij required by vertex vi in time Si. On an ideal variable
voltage processor, Eij(Si) is the energy consumed by run-
ning at voltage Videal throughout the entire assigned slot Si,

2One drawback of this scheme is that there will not be any
completion after the system is shut down. However, the
deadline misses will be tolerant only when they are evenly
distributed so human will not notice. Therefore, a practical
way is to divide the entire N iterations into smaller groups,
shut down the system once we have completed sufficiently
many iterations in a group, and restart executing for the
next group.

133

/*offline part */
1. for each vertex vi, li = ki /* assign WCET to vi*/
2. Q = 1;
3. while (Q > Q0)

4. { pick vj that has the maximum
tjlj

−tj(lj−1)

Pjlj
· Pj(lj−1);

5. Q = Q · Pj(lj−1)

Pjlj

;

6. if (Q > Q0)
7. lj = lj − 1;
8. }
9. C =

∑
tili ; /* calculate the completion time C */

10. if (C > M) exit; /* Q0 cannot be met */
11. for each vertex vi

12. Ti = tili ; Si = tili · M
C ;

/* on-line part */
13. current time t = 0;
14. for each vertex vi

15. tij = the execution time of vi;
16. if (tij > Ti) terminate the current iteration;
17. else scale voltage so vi is completed at t = t + Si;

Figure 2: Offline/on-line minimum-effort approach.

where Videal is the voltage level that enables the processor
to accumulate the workload tij at the end of the slot[14].
On a multiple voltage processor with only a finite set of
voltage levels V1 < V2 < · · · , Eij(Si) is the energy con-
sumed by running at Vk for a certain amount of time and
then switching to the next higher level Vk+1 to complete tij ,
where Vk < videal < Vk+1 and the switching point can be
conveniently calculated from Si and tij [9].

Recall that pij is the probability that vertex vi requires

execution time tij and Pil =
∑l

j=1 pij is the probability
that vi can be completed within time til. The completion
of an iteration requires the completion of all the vertices.
Therefore, if we execute vertex vi only when it has a real
execution time less than or equal to Ti, then the probability
that an iteration can be completed is

Q =

n∏
i=1

Pili =

n∏
i=1

li∑
j=1

pij (5)

where li satisfies tili ≤ Ti < tili+1. Further, if we assign
Si(≥ Ti) CPU units to vi, expected energy consumption for
a completion is:

Ecompletion =
n∑

i=1

li∑
j=1

pij · Eij(Si) (6)

An early termination at vq implies a failed iteration with
the successful execution at vertices v1, v2, · · · , vq−1. These
“wasted” computation consumes energy in the amount of

Efailure(vq) = (1 − Pqlq)

q−1∑
i=1

li∑
j=1

pij · Eij(Si) (7)

Hence, the expected energy consumption for an iteration is

E({(S1, T1), · · · , (Sn, Tn)}) = Ecompletion +

n∑
q=2

Efailure(vq)

The goal of the offline part in the O2ME approach is to
minimize E({(S1, T1), · · · , (Sn, Tn)}) by finding pairs (Si, Ti)

such that Ti ≤ Si,
n∑

i=1

Si ≤ M, and Q ≥ Q0. The first in-

equality guarantees that the task is completable at step 17;
the second one requires total allocated CPU units not to
exceed the deadline M; and the last one enforces that the
required completion ratio Q0 is met. Obviously, energy will
be minimized only when minimum effort is paid. That is,
the scheduler should not attempt to achieve completion ra-
tio higher than the required Q0. We develop a heuristic
algorithm to solve this offline problem as shown in the first
part of Figure 2.

O2ME distinguishes itself from the best-effort approaches
in the following: 1) each vertex has a fixed execution slot
while execution slot in the best-effort approach is deter-
mined by the on-line scheduler at run time. This makes
O2ME simple to be implemented into the RTOS. 2) O2ME
approach takes into account both the statistical execution
time information and the completion ratio requirement. This
might give us additional energy savings over the best-effort
approaches. Unfortunately, it is hard to get any analytic
results and we use experimental results to show O2ME’s en-
ergy efficiency in the next section. We summarize our study
on O2ME by the following

Theorem 2. O2ME approach provides a statistical guar-
antee to the completion ratio requirement with the potential
of further energy reduction over best-effort approaches.

5. EXPERIMENTAL RESULTS
We have implemented the proposed scheduling techniques

and validated their energy efficiency and the guarantee to
the required completion ratio over a variety of real-life bench-
mark task graphs extracted from popular DSP applications.
They include Fast Fourier Transform of two different imple-
mentations (FFT1 and FFT2); Laplace transform (Laplace);
a quadrature mirror filter bank (qmf4); the Karplus-Strong
music synthesis algorithm with 10 voices (karp10); a mea-
surement application (meas); an upside down binary tree
representing the sum of products computation (sum1); and
others reported in early literatures[1, 13, 20, 21].

For each task graph, we simulate 100,000 iterations. We
assign each vertex three different execution times e0 < e1 <
e2 with probabilities p0 >> p1 > p2, respectively. One
can treat e0 as the BCET, which happens much more often
than other cases for most of DSP applications. We consider
a processor with four different voltages ranging from 3.3V
to 1.2V and neglect the overhead of voltage switching as we
have discussed earlier in Section 3. The deadline M varies
from the sum of BCET to the sum of WCET, and the re-
quired completion ratio Q varies from 1.0 to 0.4 with a step
of 0.05. For each pair of (M,Q), we simulate the execu-
tion of each application with the näıve, BEEM, and O2ME
approaches respectively and track the completion ratio and
energy consumption. We now report a few representative
sets of results when the four voltages are set at 3.3V, 2.6V,
1.9V, and 1.2V.

We first consider the energy consumption by different ap-
proaches with the same deadline and completion ratio con-
straint. Table 1 gives the number of vertices in each bench-
mark [1, 13, 20, 21] and reports the results from three pro-
posed energy minimization techniques. The deadlines are
set to be around three times of the sum of BCET. The
completion ratio requirement is fixed at 0.800. As we have
mentioned earlier, both the näıve best-effort approach and
BEEM take 100 iterations as a group and stop execution

134

näıve BEEM O2ME
n M Q0 energy energy saving over näıve energy saving over näıve saving over BEEM Q

FFT1 28 2280 0.800 699.69 539.02 22.96% 371.00 46.98% 31.17% 0.8043
FFT2 28 1440 0.800 441.91 259.08 41.37% 199.14 54.94% 23.14% 0.8043

Laplace 16 4320 0.800 1322.2 724.39 45.21% 571.42 56.78% 21.11% 0.8222
qmf4 14 480 0.800 147.65 72.84 50.67% 67.64 54.19% 7.13% 0.832

karp10 21 1782 0.800 547.03 382.83 30.02% 264.57 51.64% 30.89% 0.8229
meas 12 849 0.800 260.10 145.82 43.94% 115.37 55.64% 20.88% 0.8026
sum1 15 261 0.800 80.30 57.08 28.9% 39.60 50.59% 30.63% 0.8192
almu 17 216 0.800 66.03 35.89 45.64% 28.60 56.68% 20.31% 0.8132

DSC-7-7 7 39 0.800 12.18 8.19 32.77% 5.32 56.29% 34.99% 0.809
DSC-7-8 7 39 0.800 12.18 7.65 37.13% 5.18 57.43% 32.28% 0.809

average saving / / 37.86% / 54.13% 25.25% /

Table 1: Average energy consumption per iteration for näıve, BEEM, and O2ME approaches to achieve
Q0 = 0.800 with deadline constraints M. (n: number of vertices in the task graph; Q: the actual completion
ratio achieved by O2ME without forcing the process stop at Q0; energy is in the unit of the dissipation in
one CPU unit at the reference voltage.)

once 80 iterations in the same group have been completed.
BEEM provides the same completion ratio with an average
of nearly 38% energy saving. The O2ME approach, as pre-
dicted in Theorem 2, is more energy efficient. We actually
observe energy reduction of 54% over the näıve approach
and 25% over BEEM by O2ME. Although O2ME does not
provide any absolute guarantee on completion ratio, the last
column shows that the required 0.800 completion ratio is
achieved in all the cases. Note that the O2ME approach does
not count the number of completion but drops iterations if
certain vertex’s execution time exceeds a given amount (Ti

in Figure 2). Although it may complete more iteration than
necessary, we see it still manage to consume significantly less
energy than BEEM. Finally, a small amount of extra energy
(1.8% on average over O2ME) could be saved if we count
the number of completions by O2ME and stop its execution
at the desired completion ratio Q0.

Secondly, we consider the impact of different completion
ratio requirements to energy consumption. Both best-effort
approaches have the counting mechanism (to count the num-
ber of completions), so their energy consumption should de-
crease linearly with the completion ratio requirement. Fig-
ure 3 depicts this effect for the FFT1 benchmark with a
fixed deadline around three times of the sum of BCET. In
this case, the best achievable completion ratio by O2ME is
slightly larger than 0.85. We see that different completion
ratio has much less impact on O2ME’s energy consumption,
which consists of two parts: the portion on complete itera-
tions and the portion on failed iterations as given in Equa-
tions (6) and (7). When the completion ratio requirement
decreases, the first part decreases but the second part in-
creases because more and more iterations are intentionally
dropped. This becomes clear when the completion ratio is
low (around 0.43), O2ME consumes even more energy than
BEEM due to the “wasted energy” on failed iterations. On
the other end, both best-effort approaches are capable of
reaching completion ratio very close to 1 (perfection), which
O2ME cannot achieve. This limitation of O2ME is caused
by its offline execution slot reallocation. When completion
ratio requirement is high, all vertices will compete for exe-
cution slots and O2ME cannot meet the deadline (step 10 in
Figure 2). We conclude that O2ME outperforms best-effort
approaches when the completion ratio is moderately high.

Finally, we discuss deadline’s impact. The näıve approach
operates at the highest voltage till the required Q0 is reached.
Therefore, its energy consumption remains constant regard-

Figure 3: Completion ratio requirement’s impact
to the average energy consumption per iteration on
benchmark FFT1.

less of the deadline. In BEEM, the hard/soft deadline pair
(Equations 2-4) is directly related to the iteration deadline.
Therefore, its energy consumption is highly dependent on
the deadline. Similar to the above, deadline variations have
positive impact to O2ME, but not as dramatic as it does to
BEEM. All these have been verified by simulation as shown
in Figure 4 on the same FFT1 example.

Figure 4: Deadline requirement’s impact to the av-
erage energy consumption per iteration on bench-
mark FFT1.

135

6. CONCLUSIONS AND FUTURE WORK
This paper addresses on-line and offline voltage scaling

techniques that incorporate completion ratio constraints and
uncertainties in task execution times. Our approaches are
based on the facts that many applications, particularly DSP
applications, require repetitive execution on the stream of
data samples and are able to tolerate certain amount of
deadline misses. We consider the problem of how to con-
vert such tolerance to energy saving.

We first give a näıve best-effort approach that provably
optimizes completion ratio (or equivalently minimizes dead-
line misses), but does not involve any energy minimization
process. We then propose a best-effort energy minimiza-
tion (BEEM) approach that achieves the same completion
ratio with the provably minimum energy consumption by
considering execution time bounds. The last technique is
a hybrid offline/on-line minimum-effort (O2ME) approach
that statistically provides the required completion ratio with
reduced energy consumption. Our simulation over popu-
lar DSP applications validates the energy-efficiency of these
proposed approaches. BEEM saves 38% energy over the
näıve approach without missing any additional deadlines,
and O2ME can save 25% over BEEM if the maximum com-
pletion ratio is not required. BEEM’s energy reduction is
greatly affected by, roughly proportional to, the completion
ratio and deadline. O2ME achieves more energy saving un-
der tight deadline and high completion ratio constraint, and
is less sensitive to the change to these requirements.

Our approaches are based on a given execution order, it
will be interesting to investigate different task ordering’s im-
pact to energy reduction. Although the voltage switching
overhead is neglected in the paper, one can model such over-
head and easily integrate it into the proposed techniques. Fi-
nally, it is our goal to build prototype multimedia systems,
measure the overall energy consumption, and evaluate the
quality of service provided at user level.

7. REFERENCES
[1] M.A. Al-Mouhamed. “Lower Bound on the Number of

Processors and Time for Scheduling Precedence
Graphs with Communication Costs”, IEEE
Transaction on Software Engineering, Vol.16, No. 12,
1990

[2] H. Aydin, F. Melhem, D. Mosse, and P.M. Alvanez.
“Optimal Reward-Based Scheduling for Periodic
Real-Time Tasks,” IEEE Transactions on Computer,
Vol. 50, No. 2, pp. 111-130, 2001.

[3] S. Baruah, J. Haritsa, and N. Sharma. “On-line
Scheduling to Maximize Task Completions.” Journal
of Combinatorial Mathematics and Combinatorial
Computing, Vol. 39, pp. 65-78, 2001.

[4] J. Bolot and A. Vega-Garcia. “Control Mechanisms
for Packet Audio in the Internet”, Proceedings of
IEEE Infocom, 1996.

[5] T.D. Burd, T. Pering, A. Stratakos, and R. Brodersen.
“A Dynamic Voltage-Scaled Microprocessor System,”
IEEE International Solid-State Circuits Conference,
pp. 294-295, 466, 2000.

[6] C. Chen and M. Sarrafzadeh. “Probably Good
Algorithm for Low Power Consumption with Dual
Supply Voltages”, IEEE/ACM International
Conference on Computer Aided Design, pp. 76-79,

1999.

[7] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.B.
Srivastava. “Power Minimization of Variable Voltage
Core-Based Systems”, 35th ACM/IEEE Design
Automation Conference, pp. 176-181, 1998.

[8] H. Hsieh, F. Balarin, L. Lavagno, A.L.
Sangiovanni-Vincentelli. “Efficient methods for
embedded system design space exploration”. 37th
ACM/IEEE Design Automation Conference, pp.
607-612, 2000.

[9] T. Ishihara and H. Yasuura. “Voltage Scheduling
Problem for Dynamically Variable Voltage
Processors,” International Symposium on Low Power
Electronics and Design, pp. 197-202, 1998.

[10] M.C. Johnson and K. Roy. “Scheduling and Optimal
Voltage Selection for Low Power Multi-Voltage DSP
Datapaths”, Proceedings of 1997 IEEE International
Symposium on Circuits and Systems, pp. 2152-2155,
1997.

[11] M. J. Karam and F. A. Tobagi. “Analysis of the Delay
and Jitter of Voice Traffic Over the Internet”,
Proceedings of IEEE Infocom, 2001.

[12] R. Marculescu, A. Nandi, L. Lavagno, A.L.
Sangiovanni-Vincentelli. “System-Level
Power/Performance Analysis of Portable Multimedia
Systems Communicating over Wireless Channels”.
IEEE/ACM International Conference on
Computer-Aided Design, pp. 207-214, 2001.

[13] C.L. McCreary, et al. “A Comparison of Heuristics for
Scheduling DAGs on Multiprocessors”, Proceedings of
the International Parallel Processing Symposium,
1994.

[14] G. Qu. “What is the Limit of Energy Saving by
Dynamic Voltage Scaling?” IEEE/ACM International
Conference on Computer-Aided Design, pp. 560-563,
2001.

[15] G. Quan and X. Hu. “Energy Efficient Fixed-Priority
Scheduling for Real-Time Systems on Variable Voltage
Processors,” 38th IEEE/ACM Design Automation
Conference, pp. 828-833, 2001.

[16] S. Raje and M. Sarrafzadeh. “Variable Voltage
Scheduling”, International Symposium on Low Power
Electronics and Design, pp. 9-14, 1995.

[17] Y. Shin and K. Choi. “Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems”, 36th
ACM/IEEE Design Automation Conference, pp.
134-139, 1999.

[18] T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun,
L.-C. Wu, and J.W.-S. Liu. “Probabilistic Performance
Guarantee for Real-Time Tasks with Varying
Computation Times”, Proc. Real-Time Technology
and Applications Symposium, pp. 164-173, 1995.

[19] V. Tiwari et al. “Reducing Power in
High-Performance Microprocessors”, 35th ACM/IEEE
Design Automation Conference, pp. 732-737, 1998.

[20] M. Wu and D. D. Gajski. “Hypertool: A Programming
Aid for Message-Passing Systems”, IEEE Tran. on
Parallel and Distributed Systems, Vol. 1, No. 3, 1990.

[21] T. Yang and A. Gerasoulis. “DSC: Scheduling parallel
tasks on an unbounded number of processors”, IEEE
Tran. on Parallel and Distributed Systems, Vol. 2, pp.
951-967, 1994

136

