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symptom that can be read from X-ray images. In this thesis, we investigate the
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model performance. We quantitatively compare the performance between unified

classifiers and separate classifiers. Third, we design the attention map model for

joints with complex contexts, which filters out noise. The resulting neural network

models show encouraging JSN prediction for Rheumatoid Arthritis.
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Chapter 1: Introduction: Rheumatoid Arthritis and Joint

Space Narrowing

1.1 Overview

Rheumatoid Arthritis (RA) is a long-term autoimmune disorder primarily af-

fecting body joints. The immune system would attack the tissues and joints. As

symmetrical poly-arthritis, RA in its early stage would affect small joints, causing

painful swelling, stiffness, erosion, joint space narrowing (JSN). Although there are

many challenges for early diagnosis, it can be achieved through close monitoring RA

symptoms [1] [2].

This chapter aims to give necessary background information for the RA dis-

ease and JSN task. RA affects a large number of people in the world, and early

RA diagnosis would benefit society greatly. RA diagnosis is carried out partially

through inspecting X-ray scanning since Joint Space Narrowing (JSN, one major RA

symptom) is identified via X-ray images. With the benefits of quantitative imag-

ing, the computer-aided diagnosis would empower doctors with scientific diagnosing

methodologies. In this thesis, we study and develop algorithms to classify JSN ac-

curately. To be specific, we would use hand X-ray images to classify the degrees of
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joint space narrowing.

We give a brief introduction to the deep convolutional neural network (CNN).

With the advent of public datasets and powerful hardware, the convolutional neural

network has revolutionized computer vision tasks like image classification, object

detection, object segmentation. Convolutional layers work in a hierarchical way to

represent shapes and details. Fully connected layers feed on CNN features and make

the final prediction.

This chapter summarizes the research steps taken in the thesis. After giving

the background information, we list the main topics in each chapter and present

chapter focus and conclusions. We also identify reading-related suggestions along

the way.

1.2 RA diagnosis and hand joint space narrowing classification

Rheumatoid Arthritis (RA) shows its symptoms gradually. Joint space grad-

ually narrows down, from wide apart to collapsing onto neighboring bones. Doctors

have a JSN scoring system to judge the severity of Rheumatoid Arthritis through X-

ray images. Hand X-ray images can capture joint attributes such as space, textures,

and erosion. Four types of joints (metacarpophalangeal, proximal interphalangeal,

carpometacarpal, Scaphoid) are labeled in the range of 0-4.

RA diagnosis models [1] give recommended procedures and steps for RA dis-

ease. Early detection and treatment are essential to prevent the disease from dete-

riorating and affecting more joints. There are many aspects of RA diagnosis [2] [3],
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such as morning stiffness, blood test, joint lesion, disease history, and gene inher-

itance. In this thesis, we only focus on one major symptom, the hand joint space

narrowing.

Computer-aided diagnosis (CAD) facilitated by machine learning has drawn

considerable attention, with the hope of reducing human workload and providing

better medical service. For the JSN task, several steps are involved. First, we

need to develop algorithms for hand landmark detection and joint patch extraction.

Second, we need to design data pre-processing steps and model architectures. Third,

we need to collect results and carry out performance analysis.

1.3 Dataset statistics and data preparation

Joint space narrowing degree as an RA severity indicator is influenced by

many factors, such as age, joint moving frequency, nutrition, and other diseases.

Four types of hand joints are investigated (MCP, PIP, CMC, Scaphoid). JSN scores

range from 0 to 4, with 0 meaning no joint space narrowing, 4 meaning severe

joint space narrowing. Expert doctors and radiologists label the JSN score, and we

assume no bias in labeled data.

In Chapter 2, we first show JSN statistics and compare JSN distribution in

different joints. We do data analysis to understand the JSN task. Then we introduce

algorithms to localize joints and to extract joint patches. We use the Curve-GCN [4]

as the joint landmark detection algorithm to obtain joint key points. After that, we

give details about the joint patch extraction algorithm, such as affine transformation
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and coordinates mapping. At the end of Chapter 2, we discuss data augmentation

to see the benefits and limitations. The reader can skip Chapter 2 if you are more

interested in model designing and performance analysis.

1.4 Convolutional neural network and deep learning models

Neural networks use the backpropagation algorithm [5] to change internal pa-

rameters that are used to compute the representation. Convolutional Neural Net-

work (CNN) [6] deals with the variability of 2D shapes and becomes the mainstream

method for computer vision tasks nowadays. Deep learning (DL) [7] has shown ex-

cellent performance improvement in nearly every machine learning area in recent

years. We want to take advantage of CNN and DL advancements for the JSN

classification.

ImageNet competition [8] has brought about many Deep CNN models [9],

such as Alexnet [10], Clarifia [11], VGG-net [12], ResNet [13] and GoogLeNet [14].

Convolutional neural network models have already surpassed human performance

in visual classification tasks, given sufficient training data. The CNN success has

also be introduced into medical imaging area [15]. In this thesis, we are particularly

interested in applying DL CNN models to joint space narrowing classification. Our

models are based on Squeezenet [16] and ResNet [13], with the consideration of RA

JSN characteristics [1][17].

In Chapter 3, we analyze the baseline model that is based on Squeezenet.

In Chapter 4, we introduce the fusion model, which provides information-sharing

4



mechanisms among joints. In Chapter 5, we introduce the attention model for

joints with complex contexts. In each chapter, we would show the design logic, the

training/validation process, experiment results, and performance analysis. For the

convenience of naming, we would call a model without attention module a patch

model, otherwise an attention model. These three chapters would use similar data

preparation, so the readers are suggested to read Chapter 2 if you want to know

more about pre-processing details.

1.5 Data augmentation and training techniques

Along with the flourishing abundance of CNN models come neural network

training techniques. Data augmentation [18], dropout [19], optimizer [20][21], weight

decay [22] are widely used in deep learning models.

It is called overfitting when a trained model could not generalize to the test-

ing set. The lack of labeled data is the leading cause of the overfitting problem.

Data augmentation [18] can be used to expend the training data space. For com-

puter vision tasks, there are many conventional augmentation techniques, such as

random cropping, translation, flipping, shearing, and rotation. We explain data

augmentation with details in Chapter 3.

For all the models, we integrate the data augmentation into the experiments.

Other training techniques such as learning rate, stochastic gradient descent (SGD),

dropout, weight decay are set similarly. These techniques produce consistent performance-

boosting effects on different models. We choose a set of hyperparameters that work
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for all models.

1.6 Performance analysis and result visualization

In Chapters 3, 4, and 5, we summarize the experiment results after giving

design details. Then we would conduct performance analysis. The comparisons

include network backbone, classifier mode, data augmentation, and joint type. For

the Scaphoid joints, patch models and attention models are compared for the per-

formance analysis.

In Chapter 2, we inspect the correct prediction on joint patches, which would

provide the reader with more intuition on model performance. The visual inspection

sheds light on JSN task challenges. In Chapter 3, We use Class Activation Mapping

(CAM) [11] to visualize the learned feature representation. In Chapters 3, 4, and 5,

we use the confusion matrix to visualize the performance. The thesis conclusion is

given at the end of Chapter 5.
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Chapter 2: Joint Space Narrowing Dataset and Data Prepa-

ration

2.1 Overview

Joint space narrowing (JSN) is a major RA manifestation and can be verified

from the X-ray image examination. Hand X-ray images are readily available in hos-

pitals and can be integrated into computer-aided diagnosis working flow. Assuming

we have RA patients’ hand X-ray images, machine learning models can incorporate

doctor/radiologist medical knowledge and make sensible predictions. In this thesis,

we are interested in applying deep learning models to JSN score classification based

on hand X-ray images.

We first conduct a statistical analysis of JSN distribution from labeled data.

Precise JSN prediction requires that the model be trained on precisely labeled data.

Doctors and radiologists should have sufficient working experience on patient disease

diagnosis. Data labels should have consent from all labeling professionals. The

training dataset should introduce no selection bias towards lesion distribution. So

ideally, the datasets must contain all possible lesion appearances, and the lesion

distributions in the dataset should be the same as in real life.
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Secondly, we show algorithms for detecting joint key points. Our landmark de-

tection algorithm is based on the graph convolutional neural network. We show the

affine transformation process to extract joint patches. We also do visual inspections

on joint patches to understand JSN scores better.

In the end, we discuss the strategy for data augmentation. Data augmentation

increases the training data variations and alleviates the overfitting problem. It is

used across all the models in our experiments.

This chapter is the domain foundation for the following chapters since data pre-

processing and augmentation are used for all machine classification models. How-

ever, the reader still can skip this chapter if he/she is more interested in the network

model and performance analysis.

2.2 Obtain, store and transfer medical images

Picture archiving and communication system (PACS) [23] provides the eco-

nomical storage and efficient retrial of medical images. The image format used in

PACS for storage and communication is DICOM (Digital Imaging and Communi-

cations in Medicine). DICOM is the global medical imaging standard designed to

ensure the interoperability of systems. DICOM format is used to produce, store,

display, process, send, and retrieve medical images. Original X-ray images are in DI-

COM format. It contains the scanning conditions and geometry information, which

could be used to do the affine transformation. Hand X-ray images cover all fingers

and the whole wrist.
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Table 2.1: JSN Ground Truth score distribution

Joint
Type

patients X-rays joints JSN=0 JSN=1 JSN=2 JSN=3 JSN=4

MCP 130 239 1195 420 508 246 84 47
PIP 130 257 1285 420 529 201 86 69
CMC 130 258 774 387 160 141 59 36
Scaphoid 130 258 774 327 169 102 60 125

All the images should be obtained in a standard way. The X-ray picturing

systems have the same lighting, field of angle, and resolution. In this chapter, it

is assumed that we have integral and precise data. All the DICOM images in our

experiments are cleaned to eliminate any private information. Files are named with

dates and numbers. Only imaging technology-related information remains. There

is no record for patient name, age, gender, or other personal information.

2.3 Overall data distribution

Currently, we have labeled data for 130 patients. Only for model verification

purpose, we assume the data is representative and sufficient. Each patient has two

hands’ X-ray images. Four types of joints, namely MCP (Meta Carpo Phalangeal),

PIP (Proximal Inter Phalangeal), CMC (Carpo Meta Carpal), Scaphoid, are inves-

tigated for the JSN task. Each joint has a JSN score, ranging from 0 to 4. The

statistics of these joints is in Table 2.1. It should be noted that the data in this

thesis does not represent the real JSN distribution. There are many ways bias could

be introduced, but how to collect medical data scientifically is out of this thesis

scope.
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From Table 2.1, several points can be made concerning JSN score distribution.

MCP and PIP have the same number of joints and similar JSN distribution. CMC

and Scaphoid have the same number of joints and a similar number of JSN=0, 1.

There are substantially more percentages of JSN=4 entry for Scaphoid compared to

other joints.

2.3.1 JSN score correlation among joints

First, we analyze the dependency between joints. We use the dependency

matrix to visualize the correlation between a pair of joints. In Figure 2.1, we show

MCP1 and MCP2 JSN score correlation on the left, MCP2 and MCP3 correlation on

the right. More entries on the diagonal means that the two joints are more correlated

in JSN distribution. There are obvious JSN correlations within each pair of joints.

More than 70% entries are either on diagonal or next to diagonal in the confusion

matrix. This means JSN scores are highly correlated. Similar correlations can be

seen for pairs such as MCP3-MCP4, PIP2-PIP3, PIP3-PIP4, and CMC3-CMC4.

2.3.2 JSN score correlation difference for left and right hands

Now we move on to analyze the correlation differences between left and right

hands. In Figure 2.2, the left is two MCP joints of the left hand dependency matrix.

While the right is for the right hand. The overall patterns are similar in two matrices,

but the entry value at (0, 0) has a discrepancy, which indicates that JSN distribution

is not the same in the left and right hands. Given enough data, it is better to use
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Figure 2.1: MCP JSN score dependency of neighboring joints

Figure 2.2: Left and right hand MCP joint JSN dependency

two separate models for the left and right hands.

2.4 Visual inspection of JSN score on X-ray image

To better understand the JSN labeling, we show different JSN scores on the

input images. We visualize the correct predictions on Figure 2.3 2.4 2.5 2.6. Pre-

dictions are from baseline model in Chapter 2. These visualizations facilitate model

analysis and help gaining insights for improvement.
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Figure 2.3: Correct predictions for MCP JSN

Figure 2.4: Correct predictions for PIP JSN

Now we look at JSN scoring standards. From the correct predictions 2.3 2.4

2.5 2.6, we can get an intuitive sense of different JSN levels. The ground truth labels

come from professional doctors/radiologists. Clear differences between JSN levels

can be spotted. A healthy joint means clear margins between joint bones, little

whitening on the joint bone surfaces, and normal bone aligning directions. From

the figures, GT=0 usually has these characteristics. For GT=3, most healthy joint

characteristics are lost. GT=1 and GT=2 appearances lie in between GT=0 and

GT=3.

The Figure 2.4 depicts different JSN levels of PIP joint. The PIP JSN score

patterns here are very similar to MCP’s. JSN score depends on joint space size

and bone surface quality. But the joint shape in PIP is generally more tight along

the bone margin lines than MCP’s. Figure 2.5 shows that joint space size and
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Figure 2.5: Correct predictions for CMC3 JSN

Figure 2.6: Correct predictions for Scaphoid-C, Scaphoid-Tm, Scaphoid-R

whitening degree determine the JSN severity level for CMC joints. But the CMC

and Scaphoid have more complex surrounding contexts compared to MCP and PIP.

These contexts may hinder the JSN prediction since only the joint area is needed.

Figure 2.6 show different ground truth levels for Scaphoid-C. Because of the complex

surrounding, Scaphoid joints images get more blurred. This can be seen from Figure

2.6. GT=3 indicates it’s hard to identify the joint region. For Scaphoid joints, a

simple patch model may not perform well because the joints have too much blend

with the neighboring context.

2.5 Hand landmark detection

We need to develop algorithms to get accurate joint locations. Joint locations

are necessary during JSN labeling. Doctors or radiologists need to know the exact
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Figure 2.7: Hand X-ray image joint key points with labels

joint location, which should be provided to the labeling tool. Another usage of joint

location is shown during joint patch extraction. We need to extract patches for all

joints since the CNN model feeds on the individual joint patch. In this section,

we develop algorithms to localize joints within the X-ray image. Joint locations

are shown in Figure 2.7. During the labeling process, the tool shows the exact

location for each joint. The user would label joint attributes one by one, following

the navigation provided by the tool. We use the joint landmark detection algorithm

to compute the joint locations before the labeling process.

Now we take a look at the landmark detection algorithm. While the CNN

models have been applied to many tasks in recent years, it is not well suitable

for geometric problems [24]. Although CNN based methods like Deeplab [25] can

segment objects or generate object contours pretty well, the accurate key point is
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different from object contour. We need to find accurate joint keypoint locations in

our scenario. And we should take advantage of the hand X-ray image characteristics.

Inferring keypoint location involves non-Euclidean space calculation, which can be

better represented in the graph. Graph Convolutional Neural network (GCN) can

capture the graph structure, node interactions, and object similarities [24]. So GCN

can be used to refine joint keypoint locations. We use graph convolutional neural

networks to regress and update graph nodes.

2.5.1 Curve-GCN working flow

Our landmark detection algorithm is based on Curve-GCN [4]. Curve-GCN

uses cascaded GCNs to regress landmark locations in multiple steps. It first encodes

each input image into a feature map. Then each landmarks feature is extracted

at the coordinate on feature map by bi-linear interpolation. During each step of

regression, it aims to predict coordinate shifts to be applied to landmarks locations.

We do this by feeding landmark coordinates as well as their corresponding features

into a GCN. Through multiple layers of graph convolutions, GCN outputs two scalar

values, which are the predictions for the current step. After multiple steps of the

same operation, landmarks gradually move to their target locations. Above process

is depicted in Figure 2.8.

Landmark detection steps for Curve-GCN:

Step 1: label the joint key points on all X-ray images

Step 2: normalize the hand outline contour and get the overall shape mean
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Figure 2.8: Curve-GCN working flow. Shape mean is the average location of joints in all
the data under the same boundary condition. Once we have the predicted boundary we
would initialize joint locations using shape mean, and extract initial joint features. Then
we use GCN to repeatedly update joint locations, joint features.

Step 3: use CNN to generate convolutional features for the hand, then predict

boundary and contour.

Step 4: normalize hand shape and coordinates using predicted contour in Step 3,

then initialize the joint location with overall shape mean in Step 2.

Step 5: extract joint convolutional features with initial joint location

Step 6: feed joint location (from Step 4 or Step 7) and features (from Step 5 or Step

7) into graph convolutional neural network, and apply GCN operation to

regress the location

Step 7: get new predicted joint location, then use this new location to get new

corresponding feature.

Step 8: repeat 6 and 7 twice.
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2.5.2 Curve-GCN model mechanism

Multi-layer GCN is used in our experiment. The graph propagation step for

a node cpi at layer l is expressed as:

f l+1
i = wl

0f
l
i +

∑
cpj∈N(cpi)

wl
1f

l
j (2.1)

where N(cpi) denotes the nodes that are connected to cpi in the graph, and wl
0, w

l
1

are the weight matrices. The propagation step at layer l takes the following form:

rli = ReLU(wl
0f

l
i +

∑
cpj∈N(cpi)

wl
1f

l
j) (2.2)

rl+1
i = w̃l

0r
l
i +

∑
cpj∈N(cpi)

w̃l
1r

l
j (2.3)

f l+1
i = ReLU(rl+1

i f l
i ) (2.4)

where w0,w1,w̃0,w̃0 are weight matrices for the residual. On top of the last GCN

layer, the fully connected layer is applied to take the output feature and predict a

relative location shift, (∆xi,∆yi), for each node.

New node location becomes

[x
′

i, y
′

i] = [xi + ∆xi, yi + ∆yi] (2.5)

Then new locations are used to re-extract features for the nodes, and another GCN

predicts a new set of offsets using these features.
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Figure 2.9: Joint patches to extract

2.6 Joint patch extraction

When the correct joint location is available from the landmark detection, we

can extract the image patch for each joint. The original hand X-ray image is stored

in the DICOM file, with both pixel and millimeter coordinates. The target patch

for each joint is also stored in DICOM format, with both pixel and millimeter

coordinates.
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2.6.1 Extraction steps

After we get all the joint locations on the X-ray image, we use affine transfor-

mations to extract joint patches. Extracting patch for each joint involves coordinate

transformations between local coordinate and global coordinate system. We get the

mapping between target patch coordinate and source coordinate. The desired patch

coordinates would be used to crop and interpolate from the original image. After

patch image mapping, we create ground truth files. The ground truth includes the

patch image path, ground-truth label.

The extraction process involves following steps:

Step 1: fill the target patch pixel coordinates with plain increasing x, y values

Step 2: transform the patch pixel coordinate into global millimeter coordinate, using

DICOM image affine transformation matrix (associated with the original

hand X-ray image)

Step 3: align the joint patch center with original hand image origin, translate to

joint keypoint

Step 4: rotate the joint patch according to the joint orientation

Step 5: transform the joint patch coordinates from global millimeter coordinate back

to pixel image (now the new coordinates correspond to joint pixel location

inside the original hand image)

Step 6: fill joint patch image by interpolating from the original image in its pixel
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coordinates

Through the above steps, we can get joint patches. There are multiple transfor-

mation steps doing matrix operation, which can be combined into one transforming

matrix. The overall transformation matrix is calculated before mapping between

the source patch and the target patch to save time.

2.6.2 Joint patch format

As the models work on individual joint patches, we need to define the patch

shape. To contain enough context, the individual joint patch needs to cover an area

bigger than its actual shape. The cropping size is (448, 448) in pixel and (35 mm, 35

mm) in millimeter coordinate. The joint is placed in the center of the patch image.

Affine transformation in the global coordinate system use millimeter as the unit.

The affine transformation between the global millimeter coordinate system and the

local pixel coordinate system takes into consideration of mm unit to pixel unit ratio.

After patch extraction, we create DICOM files for 5 MCP joints, 5 PIP joints,

3 CMC joints, and 3 Scaphoid joints. These patches can be visualized as in Figure

2.9. DICOM images are then converted into PNG files, which could be fed to the

neural network. Image names contain X-ray image id, joint name, joint index. We

create the ground-truth information file for each type so that the program could

find image patches accordingly.
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Figure 2.10: Data augmentation effect on the training & validation curve for PIP patch
model. Left figure exert small augmentation, while right one exert larger augmentation.

2.7 Data augmentation effects

Data augmentation is widely used in convolutional neural network training.

It is generally effective to expend data space. In most cases, data augmentation re-

lieves the overfitting problem. Data augmentation also increases prediction accuracy

sometimes. Discussion in this section is based on experiments in Chapter 4. How-

ever, the conclusions are applicable to all experiments in this thesis. The training

curve in Figure 2.10 illustrates the data augmentation effect on the overfitting prob-

lem. The left figure is the model curve with less data augmentation, whose training

accuracy keeps growing after 20 epochs while validation accuracy stays the same.

The right curve has more data augmentation, and the training curves stay close to

validation curves. It is clear that data augmentation mostly solves the overfitting

problem.

Experiment results in Table 2.2 shows the performance-boosting effect of data

augmentation. It shows the experiment results on Scaphoid patch models, using a
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Table 2.2: Augmentation effect on the baseline model (Scaphoid joints)

Model type Scaphoid Patch Squeezenet UniCls
Model capacity high medium low
Augment level low high low high low high
parameter set 1 0.4896 0.5301 0.4915 0.5368 0.5112 0.5258
parameter set 2 0.4990 0.5348 0.5030 0.5279 0.5105 0.5159
parameter set 3 0.5012 0.5117 0.5181 0.5341 0.4971 0.5239
parameter set 4 0.5129 0.5268 0.5189 0.5264 0.5125 0.5167

unified classifier with Squeezenet backbone. For different model capacities and dif-

ferent hyper-parameter sets, higher-level augmentation would always help increasing

model accuracy. When the augmentation level is higher, it performs better in all

hyper-parameter sets, no matter what the model capacity is. So the proper data

augmentation should be performed whenever possible. All experiments in the fol-

lowing chapters apply a similar amount of data augmentation.

2.8 Chapter summary

In this chapter, we first analyze the JSN score distribution. We see statistical

connections among joints. Secondly, we inspect the joint appearances under different

JSN scores. Thirdly we introduce the landmark detection algorithm. Then we

explain how to extract joint patches. Lastly, we discussed the data augmentation

strategy in this thesis.
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Chapter 3: Baseline Model

3.1 Overview

In this chapter, we review convolutional neural networks and develop the base-

line model. We investigate CNN backbones and training techniques. We also visu-

alize the learned convolutional features to get more intuition.

In chapter 2, we have seen the data preparation steps. We learn how to locate

joint key points, how to extract joint patches, how to make ground truth records. In

this chapter, we focus on the CNN baseline model. The baseline model works on four

types of joints, MCP, PIP, CMC, Scaphoid. To make the analysis more accessible,

we visualize the prediction results on joint images. Through visualization, we see the

model can make informed decisions when input joint image is not severely blurred.

We also give details about data augmentation operations to expend training

space. Given more labeling data, the network could be improved further. The

baseline model produces reasonably good predictions.
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3.2 Convolutional neural network

The convolutional neural network (CNN) has been widely applied in computer

vision tasks. CNN is the mainstream model for general image classification, such

as ImageNet 1000 objects, MNIST 10 digits, CIFAR 10/100, and CUB 200 birds.

The convolutional neural network is also the backbone of object detection models,

such as Faster-RCNN [26]. Convolutional layers can hierarchically capture shape

combinations. And many neural network designing techniques have ensured CNN

capabilities.

When it comes to medical imaging tasks, the convolutional neural network is

also widely adopted. For medical datasets, the number of classes is usually smaller

compared to generic computer vision tasks. And the inter-class variability is not

apparent compared to generic computer vision tasks. What’s more, medical imag-

ing tasks require the models to be explainable. So we are interested in knowing

the function of each model layer. So the learned convolutional features should be

meaningful.

The deep learning era has seen great numbers of convolutional neural network

models. In recent years, Alexnet [10], VGG [12], GoogLeNet [14], ResNet [13]

have revolutionized image classification tasks. These models share many similar

functional components.

Now we look at the model components and working steps. There are two

types of layers in a CNN model based on parameterization status. The parameter-

ized layers include convolutional layers, fully connected layers. Non-parameterized

24



layers include activation layers, pooling layers, softmax layers, dropout layers, and

reshaping layers. For classification tasks, the model input is images with one or three

channels. Then data pass through convolutional layers. The representation at dif-

ferent granularity is generated along the way. Initial layers produce basic features,

while final layers produce high-level features. The feature representation learned

from convolutional layers is fed to the final classifier. And the fully connected layer

converts features into predictions.

3.3 Data augmentation and affine transformation

One reason for the success of deep learning is the availability of large amounts

of data. These datasets give the CNN models enough training materials in the

learning space. However, in many medical tasks, we do not have enough labeled

data. So it is essential to apply data augmentation to increase the quantity and

diversity of training data.

Now we discuss the augmentation strategy. Data augmentation techniques

include random cropping, horizontal flipping, intensity changing, color shifting, and

affine transformations. Affine transformation covers rule-based pixel movements,

which include translation, scaling, rotation, and shearing. Different datasets have

different augmentation policies. The AutoAugment [27] uses reinforcement learning

to find the optimal image transformation policy from the data itself. They argue that

each data set has its characteristics, which results in a unique optimal augmentation

policy. In this thesis, we experiment with several combinations of augmentations to
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find the proper policy.

Although data augmentation operation is included in the Pytorch platform,

we want to dig deep into the details. For the attention map model in Chapter 5, we

need to keep track of the joint location changes during augmentation, because the

same changes must be made on the attention maps. Knowing which transformation

has been applied to the input image is necessary if we need to apply the same

operation on the key points. We use affine matrix transformation for translation,

rotation, scaling, which could keep records of augmentation details. Cropping and

flipping can be achieved by matrix copying.

Affine transformations involve matrix operations. In the following paragraphs,

we give examples of the affine transformation. Now we look at the notations. X

represents the input image, and Y represents the output image. Y has the same

shape as X. The transformation matrix from X to Y is A. Our purpose is to fill Y

with the distorted X in our desired way, so we need to trace each pixel in Y back

into X. So the goal here is to find the corresponding coordinate from Y to X. An

affine transformation matrix can represent the correspondence relationship.

First, we look at scaling. Suppose we want to up-scale the 2D image by

scale x time. The original image would expend, and many parts in the transformed

output is interpolated from the input image. The transformation matrix for scaling

operation is:

Mscale =


scale x 0 0

0 scale y 0

0 0 1

 (3.1)
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Second, we want to add linear translation (trans x, trans y) on the original

image. The transformation matrix for translation operation is:

Mtranslate =


1 0 trans x

0 1 trans y

0 0 1

 (3.2)

Thirdly, we want to rotate the original input by θ degree. The transformation

matrix for rotation operation is:

Mrotate =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (3.3)

Above affine transformations can be combined into one: Mall = Mtranslate ∗

Mscale ∗Mrotate, Mall ∗X = Y .

Last, we apply the affine matrix on input data. For affine transformation, we

don’t operate on the image pixels directly. Instead, we use input image, output

image pixel locations:

X =

x0 x1 x2 x3 ...

y0 y1 y2 y3 ...

 , Y =

x0 x1 x2 x3 ...

y0 y1 y2 y3 ...

 (3.4)

As target patch coordinates, Y is a known matrix (Y is coordinates of all

pixels in the target image). Y ’s corresponding coordinate is in X. So we would use
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X = Inverse(Mall)∗Y to get the locations. If the resulting X has pixel location out

of the boundary, we would linearly interpolate these missing values. In this way, we

get all the pixel correspondences. The image is augmented after applying the pixel

mapping.

3.4 Network architecture

Convolutional Neural Network can capture the shape characteristics of dif-

ferent classes. There are many novel CNN architectures, such as Alexnet, VGG

net, Resnet, and Squeezenet. For the baseline model, we have tried Squeezenet and

Resnet18. Squeezenet could reach Alexnet-level performance on the ImageNet clas-

sification task while only uses a tiny amount of resources. Resnet is the state of the

art backbone for CNN. But Resnet18 has obvious overfitting problems due to the

lack of training data. So Squeezenet is the better option.

The convolutional neural network can recognize object shape patterns. For the

joint space narrowing, the desired distinguishing patterns lie along the joint region.

Convolutional layers are supposed to recognize the joint area pattern and extract

features. After the features are generated, the fully connected layer can classify

them into the JSN scores.

For the baseline model, we use Squeezenet [16] as the backbone. SqueezeNet

is much lighter than Resnet18 and consumes less energy for training. SqueezeNet

architecture achieves AlexNet-level accuracy on ImageNet with 50x fewer parame-

ters. Since limited labeled data causes overfitting problem in large CNN models,
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Squeezenet is the better choice.

Figure 3.1 shows the working flow of Squeezenet and the Fire module. There

are three variants of the baseline model, distinguished by the number of convolu-

tional layers (model capacity). The model input is the joint image patch. The Fire

module [16] is comprised of a squeeze layer and an expand convolution layer. The

inputs to the Fire module first pass through 1x1 filters, then go into an expand layer

that has a mix of 1x1 and 3x3 convolution layers.

Squeezenet has a simple bypass mode and complex bypass mode. The bypass

mode works similarly as Resnet short connection. Once the data scale goes up, we

would use complex backbones (Resnet18) to replace vanilla Squeezenet. So we do

not need to experiment with Squeezenet bypass mode for now.

3.5 Training and validation

Joint patches are extracted from the original X-ray image using algorithms

in Chapter 2. Each joint has its dataset repository containing joint patches and

ground truth. We experiment baseline model on four types of joints, MCP, PIP,

CMC, Scaphoid.

Throughout the experiment, we use cross-validation. We split all available

joint patches into 5 partitions. We use 5 folds to create 5 different ”training set

+ validation set” combinations. We train separate models for each fold, and use

averaged accuracy as the model performance.

During training and validation, the overfitting problem occurs frequently.
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Figure 3.1: Baseline patch model on the top, Squeezenet Fire module on the bottom. We
list three baseline models in different model capacities.
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Overfitting problem can be circumvented or relieved in two ways. The first one

is data augmentation, which can increase the training space. Although data aug-

mentation could solve the overfitting problem, it does not necessarily mean high

performance as we can see this from Figure 2.10. So a proper amount of augmenta-

tion would be enough.

The second way is to decrease model capacity (reduce trainable parameters).

When the amount of parameters is more than necessary for learning invariance in

the training data, the model tends to remember the training data. Mechanically

remembering would result in poor learning processes and overfitting problems. Re-

ducing the model capacity could force the model to use available parameters to fit

the main patterns in data.

There are several ways to reduce model capacity, such as decreasing convolu-

tional kernel size, reducing the convolutional layer channel dimension, and removing

particular layers. We want to keep the model the same as the original Squeezenet to

the most extent. So we remove last fire modules to reduce model capacity. In this

way, all layers before removing location stay the same, which can load pre-trained

weights directly. The baseline and its variations are in Figure 3.1. The leftmost

model is original Squeezenet architecture, the middle one removes one Fire module

from original, and the right one removes two Fire modules. We would train and test

all three models on all the joints.

We train each patch model for 100 epochs, with a learning rate of 0.001. The

models can achieve a decent performance before 50 epochs in most experiments.

Sometimes the training would reach its top performance around 70 epochs, and
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Table 3.1: Baseline model performance

Joint Type
Model
Capacity

Baseline

MCP high 0.618
MCP medium 0.613
MCP low 0.621
PIP high 0.575
PIP medium 0.568
PIP low 0.555
CMC high 0.538
CMC medium 0.535
CMC low 0.546

further training only leads to overfitting. The evaluation of models is based on the

average accuracy of the last 25 epoch performance on the validation data set. We

would average them as the fold model performance.

3.6 Model performance analysis

Model accuracy is calculated according to Equation 3.5.

Model accuracy =
1

5

∑
foldi,i∈[1−5]

1

25

100∑
j=76

Epochj V alidation accuracy (3.5)

Baseline performance on MCP, PIP, CMC, Scaphoid is summarized in Table

3.1. For baseline experiments on MCP, model capacity does not have a certain

effect. But for PIP, higher model capacity results in better accuracy. The reason

is that PIP joints have more variations than MCP joints, so PIP models need more

parameters. However, for the CMC joints, low model capacity brings the best
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Figure 3.2: Deep features of patch model, correct predictions for PIP JSN

performance. This may occur because CMC joints only have 3
5

the training samples

compared to MCP or PIP joints. Less training data makes the model more prone

to overfitting problems.

3.7 Visualization for CNN feature and prediction

Class Activation Mapping (CAM) [28] can produce generic localizable deep

features. We use CAM visualization to understand the CNN discriminating basis.

First we look at the heat map for PIP JSN prediction in Figure 3.2. CAM

visualizes the deep features after the last convolutional layer. We project the heat

map on the input image, and we can see the model learn to focus on the joint region.

The model learns to capture key parts for prediction during training.

We also check the heat map for the wrong predictions in Figure 3.3. Even for

wrong prediction the feature are mapped on joint region.

3.8 Chapter summary

We develop the baseline model for JSN score prediction. The baseline model

is based on Squeezenet architecture, and cross-validation is used during training.
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Figure 3.3: Deep features of patch model, wrong predictions for PIP JSN

We carry out the performance analysis for different types of joints. Feature visual-

ization is done through Class Activation Mapping. Through visual inspection, we

conclude that the baseline model successfully learns deep features. It could provide

a reasonably good JSN prediction on MCP, PIP, CMC joints.
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Chapter 4: Fusion Model

4.1 Overview

When it comes to RA joint space narrowing, hand joints on the same level

(such as MCP2 and MCP3) tend to have similar scores. Joints of the same type

or acting the same functions would have similar lesion condition because of the

autoimmune disease nature. Based on the JSN score similarity observed in the

data, aggregating information from the same type joints would help to predict the

JSN score.

In this chapter, we introduce the fusion model, which provides the information-

sharing mechanism for the same type of joints. We investigate the performance

influence of the fusion module capacity. We also compare the performances between

baseline and fusion models.

We visualized the results of the prediction using the confusion matrix. We

analyze the correct prediction as well as the failure cases. The fusion model can

give better predictions than the baseline model.
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4.2 Statistical foundation for fusion model

From the biological point of view, the RA disease would have similar effects on

neighboring joints. It is an autoimmune body disease where the immune messengers

are carried in the blood. Once the chemical substances reach a certain level, all

neighboring joints would suffer to a similar extent. RA symptom differences on

joints could be attributed to joint size, moving frequencies, and joint shape. Smaller

joints would show symptoms first because of their size.

From a statistics point of view, we make several observations. First, for the

same type joints, JSN scores are highly correlated. The confusion matrix for same

type joints correlation is in Figure 2.1. When there are high percent entries on the

confusion matrix diagonals or near the diagonal, we say the two comparing items

are highly correlated. From JSN dependency of neighboring MCP joints, we can see

a clear correlation between MCP1 and MCP2, between MCP2 and MCP3. Similar

patterns can be seen between PIP3 and PIP4, between CMC4 and CMC5.

Next, we give more explanation for the fusion model. For example, if we

already know 3 MCP joints have severe JSN symptoms, then the remaining two

MCP joints are more likely to have a high JSN score. In clinical diagnosis, doc-

tors would use a similar correlation to make prudent judgments. Incorporating the

information-sharing mechanism in the network ensures the potential to reach or sur-

pass human-level judgment. The fusion model derives from the baseline model but

combines information of the same type joints together. The fusion module would

share information and facilitate the individual JSN prediction.
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4.3 Fusion model design

Taskonomy [29] apply multitask learning and prove that there are structure

bonds among different tasks. Sharing training experience would improve every

model in the end. In our experiments, classifying individual joint is a single task,

and the fusion module provides the sharing vehicle for common structure. We could

use less training data to get a better model.

We show the fusion model architecture in Figure 4.1. The feature extraction

part is the same as the baseline model. The fusion model has an additional fusion

module. The input is five joints of the same type, and they pass through feature ex-

traction layers individually. Five features are then fused. And another convolutional

layer is used for further feature integration. In the end, the integrated fusion feature

is concatenated to each of the five features as classification evidence. These fused

features share one same fully connected layer in Figure 4.1. But separate classifiers

can be used to exploit different joint characteristics further.

4.4 Experiments

Different models prefer different blends of hyper-parameters. Neural network

search [30] shows the benefits of good hyperparameters. Neural architecture search

is categorized into three dimensions, search space, search strategy, and performance

evaluation metric. For our task, the search space is limited to model capacity, learn-

ing rate, dropout, weight decay. While typical NAS methods such as EfficientNet
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Figure 4.1: Fusion model based on Squeezenet
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[31] optimize for both accuracy and FLOPS, medical imaging applications care more

about model accuracy.

CMC and Scaphoid joints have a more complex context. Their inter-joint co-

relationships are different from MCP and PIP. We use the attention map model to

work on Scaphoid joints in Chapter 5. In this chapter, the fusion model experiments

on MCP, PIP. The fusion model increase about 0.7% on MCP joints, and 0.2% on

PIP joints.

Model accuracy =
1

5

∑
foldi,i∈[1−5]

1

25

100∑
j=76

Epochj V alidation accuracy (4.1)

Cross-validation is applied throughout experiments. Patients data is split into

5 different partitions. There are five folds. Each fold contains 4 partitions as the

training set and 1 partition as the validation set. We use the average validation

accuracy of the last 25 epoch as the single-fold model performance. Then we average

5 single-fold model performance as the final model performance. The calculation

process is illustrated in Equation 4.1.

4.5 Performance analysis

We visualize the model prediction accuracy in each fold in Figure 4.2. Each

line connects all performance in 5 folds as well as the final averaged performance.

The baseline model is named net0, while the normal fusion model is named net1, and

the heavier fusion model is named net2. RM1 means removing one Fire module,

RM2 means removing 2 Fire modules, while RM0 keeps original capacity. Aug2
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Table 4.1: Patch model performance, baseline versus fusion net.

Joint Type
Model
Capacity

baseline fusion 1 fusion 2

MCP high 0.618 0.620 0.608
MCP medium 0.613 0.621 0.611
MCP low 0.621 0.628 0.617
PIP high 0.575 0.578 0.575
PIP medium 0.568 0.568 0.575
PIP low 0.555 0.549 0.560
CMC high 0.538 0.527 0.542
CMC medium 0.535 0.542 0.535
CMC low 0.546 0.545 0.535

means a regular amount of data augmentation. WD0.05 means weight decay is

0.05. Drop0.5 means dropout is 0.5. For each fold, the top model accuracy is dotted

in color.

Figure 4.2 shows that fusion model outperforms baseline model in both MCP

and PIP tasks. Although the margin is not impressive, a larger amount of training

data could make a difference. Lack of labeled data hinders the full power of the

fusion model. In both figures, we can see big performance variations among different

folds. This is due to a lack of training data. All the models currently suffer from

the overfitting problem.

Table 4.1 lists the comparison between the baseline model and fusion models.

Fusion 1 has a light fusion module, while fusion 2 has a heavier one. Model capacity

corresponds to the number of convolutional layers. The high capacity model keeps

all Squeezenet Fire module, medium-capacity removes the last Fire module, while

the low capacity model removes the last two Fire modules.

From Table 4.1, we can make several conclusions. For MCP joints, normal
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Figure 4.2: This figure shows patch model performance on MCP and PIP joints.
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fusion (fusion 1) works best. For the PIP JSN task, more fusion (fusion 2) produces

better results. For CMC patch models, fusion architecture does not do better.

This may result from the complex surroundings of CMC joints. CMC joint areas

are closely connected, thus reducing the power of information sharing. Further

improvement on joints of complex context is made in the attention map model.

4.6 Comparison between prediction and ground truth

We experiment with the fusion model on four types of joints. Now we inspect

the prediction results. These four confusion matrix in Figure 4.3 and Figure 4.4

represent the average performance of fusion models on JSN tasks. We split the

dataset into 5 folds, and we combine the statistics of validation data in each fold to

form the confusion matrix. As there are few GT=3 scores, we combine the result

3 and 4 as one. Each column of the confusion matrix represents one ground truth

JSN score, and prediction results scatter in the column. So each column adds up to

1.0.

4.6.1 Prediction on MCP and PIP joints

For the MCP confusion matrix on the left of Figure 4.3, more than half entries

fall along the diagonal. This means the patch model performs well on all JSN levels.

Particularly, for score 0 and score 3, there are 73.8% and 71% correct entries. For

those not on the diagonal, shorter distance to diagonal indicates being closer to

correct prediction. For MCP ground truth label 2, 50.2% are fully correct. 37.2%
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Figure 4.3: Confusion matrix, left: MCP, right: PIP

Figure 4.4: Confusion matrix, left: CMC, right: Scaphoid

predicting result is label 1, which is not far away from the ground truth. Considering

there is no gold standard for the JSN score, near-diagonal entries may not deviate

too far away from the true disease condition.

For the PIP confusion matrix, the patterns are similar to MCP’s. The differ-

ence is that PIP is less intensive on the diagonal. But overall, most entries do not

deviate too far away from the diagonal.
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4.6.2 Prediction on CMC and Scaphoid joints

For the CMC task, model performance on inputs of GT label 0 and inputs of

GT label 3 is acceptable. But when ground truth is 1 or 2, the predictions scatter

so much, which indicates little model predicting ability. This poor performance may

result from the ambiguous labeling and complex context with CMC joints.

For the Scaphoid patch model, the confusion matrix pattern is different from

all the other three. The model tries to output two extremes, 0 and 3, as results for

most samples. For GT=0 and GT=3, this scheme works well. But for GT=1, GT=2,

the predictions are irrelevant. This may happen when the benefit of distinguishing

GT=1, GT=2, is too small during training, and the model is inclined to securing

GT=0, GT=3. This assumption finds clues in Scaphoid JSN score distribution.

There are less Scaphoid scores ((169+102)/774 = 48%) concentrating at GT=1 and

GT=2. By comparison, MCP JSN has ( (508+246)/1195 = 63%) at GT=1 and

GT=2.

The fusion matrix 4.4 provides insight for improvement direction. Although

the model training process already considers the unbalance among different scores

by involving weighed loss updating mechanism, naively predicting extremes still

happens. For GT=3, more prediction goes to score 0 (14.1%) than score 2 (11.9%).

Most of the time, GT=3 means severe RA symptoms, and it is supposed to be

labeled as some level of abnormality. However, for GT=3 inputs, the model only

outputs 3 when the lesion for input image looks extremely bad. Otherwise, it would

predict more score 0 than score 2. This observation informs us how to tune our
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model in the future. We should design the model to avoid extreme binary outputs.

4.7 Classifier mode: unified versus separate

Now let’s look at the influence of classifier modes in Figure 4.5. There are two

classifier modes, separate classifiers, and unified classifier. Theoretically speaking,

given enough labeled data, the separate mode would learn to fit pattern details bet-

ter. But for patch model on Scaphoid joints, unified classifier outperforms separate

classifier models by a large margin. One cause is the lack of training data. The

unified classifier has three times of training exposure. This would happen as long as

different Scaphoid joints have some similarities which could regularize the model.

4.8 Chapter summary

In this chapter, we have discussed the statistical connection within the same

type joints and introduced the fusion model. The information-sharing module pro-

vides a communication channel between joint features. We gain insights from the

prediction confusion matrix. We also analyze the performances using different back-

bones, classifier modes. The fusion model outperforms the baseline patch model in

Chapter 2 on MCP and PIP JSN tasks.
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Figure 4.5: Separate classifier models performance on the left, unified classifier models
performance on the right. For patch models, unified classifier is about 5% better than
separate classifier.
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Chapter 5: Attention Model

5.1 Overview

For CMC and Scaphoid joints, their complex contexts introduce too much

noise. One way to separate critical information from irrelevant surroundings is to

use the attention mechanism. Attention mechanism has been successfully applied

to neural machine translation [32] and image captioning [33]. It directs the network

to focus on the most critical information. SCA-CNN [34] incorporates both spatial

and channel-wise attention to facilitate image caption.

After getting joint landmarks from Chapter 2, there are two ways to apply

attention. First, the Point of Interest (POI) model extracts feature vectors for each

key point. Second, the attention map can operate on the intermediate CNN tensors

to filter out noise. The attention map works on one layer and keeps other model

parts unchanged.

For the attention map model, we experiment with two different backbones.

Resnet18 would outperform Squeezenet in most cases. We investigate the effects

of the classifier modes. The classifier mode has different effects on Squeezenet and

Resnet18. Then we show the attention map shape influence on performance. A

good attention map shape not only lets in enough key information but also shuts
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off unnecessary context.

We carry out extensive attention map model experiments on Scaphoid joints.

We conclude that the attention map method outperforms patch models on complex

joints. As this is the last chapter, we provide several future working directions at

the end.

5.2 Attention creation

We first look at how to create attention for each joint. Joint is an area, so it

is desired to represent a joint by a line of points instead of one central point. So we

need to know the boundary points for each joint. Although we have hand landmarks

from Chapter 2, they are the central points, and they are not enough to specify the

joint area.

For CMC joints, the landmark detection gives us central locations of CMC3,

CMC4, and CMC5. CMC3, CMC4, CMC5 would use their landmarks as anchors.

Since the CMC joints distribute in a linear form, we interpolate linearly from CMC3,

CMC4, CMC5 to get other intermediates and boundary points.

For Scaphoid joints, there is no crucial point from the landmark detection

phase. The current landmark detection algorithm is not trained on S-Tm, S-R,

S-C joints. We get the key points location for three Scaphoid joints (Scaphoid-Tm,

Scaphoid-C, Scaphoid-R) manually. Each Scaphoid joint has 3 marks, and nine key

points are labeled totally.

The first way of attention mechanism is to extract features directly based on
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Figure 5.1: Attention map with Gaussian parameters.

the anchor points of interest (POI). POI is similar to Region Of Interest feature

extraction in Faster-RCNN [26], but we get feature vector for only one point instead

of an area. Point Of Interest assumes that the individual feature vector contains

the necessary classification information.

The second way is to use the attention map to filter out irrelevant regions far

from the joint area. Attention maps of different Gaussian parameters are visualized

in Figure 5.1. The attention map is created by 2D Gaussian distribution, and we

can change sigma value for a different shape. The threshold adjusts weights for

locations away from the joint area. Gaussian distribution would be wider when

Sigma is bigger. Smaller threshold lets through less context.

49



Figure 5.2: Point of interest extraction model working flow

5.3 Point of Interest attention model

Figure 5.2 demonstrates Point Of Interest feature extraction working flow. It

uses extracted feature vector as classification evidence. It assumes that the receptive

field of these points covers the joint area. Its input is the wrist image, with a

resolution of 600 × 600. The input goes through convolutional layers to get the

feature map and stops at the extraction location. The tensor size at the extraction

location is N × 256 × 100 × 100. For Scaphoid joints, nine feature vectors are

extracted for three joints.

The extraction layer is where we extract the features. Before the extraction

layer, it has gone through enough convolution operations to aggregate useful infor-

mation. The receptive field covers all the relevant context. The spacial pixels on the

extraction layer should be distinguishable for original regions. If the field of view

for the extraction point is too large, then different areas get mixed and lost identity

in the feature map.

The feature extraction module gets nine feature vectors, corresponding to nine
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Figure 5.3: Attention map model working flow

attention points 3 for the Scaphoid-R joint, 3 for the Scaphoid-Tm joint, and 3

for the Scaphoid-C joint. Then the classifier concatenates these vectors as joint

features and outputs the predictions. After several POI experiments, we conclude

that the POI method could not be effectively trained. The training accuracy gets

stuck around 42%, while validation accuracy gets stuck around 38%. The remaining

chapter is for the attention map model.

5.4 Attention map model

The attention map model in Figure 5.3 depicts its working flow. The inputs

are wrist image and attention points. The attention map is used as weights during

the filtering process. The input resolution is also 600 × 600, and it goes through

convolutional layers to get the feature map. The tensor size at the filtering location

is N × 256 × 100 × 100.

We do element-wise multiplication at the filtering convolutional layer to apply

the attention map. The attention map is first expended to the same shape as
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the tensor feature. After attention filtering, the tensor continues going through

the remaining convolutional layers. There are two types of classifiers, separate

classifier, and unified classifier. The advantages and disadvantages are discussed in

the performance section.

There are two backbones. Squeezenet [16] provides simplified CNN architec-

ture consuming less computational power. Resnet [13] provides residual connections

between convolutional blocks and can capture complex shapes. Resnet allows for

further improvement, given more training data.

5.5 Experiments

For the point of interest (POI) feature extraction results, the model couldn’t

learn useful information. The training accuracy starts from below 15% and goes

up during the first 20 epochs. Then it gets stuck around 42%. The model gets

the local minimum and could not jump out. The local minimum would occur when

the model’s best guessing is better than the best possible learning result. The joint

feature vector may not contain all the necessary information for predicting the JSN

score.

For the attention map model, we carry out experiments comparing different

settings. We try to search for the best model setting. The search process gets some

inspiration from the neural architecture search (NAS) [31]. The NAS lists setting

dimensions of network width (or channels), depth, resolution. Our search for the

best attention model setting is a little different. The network depth is altered
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by removing convolutional layers at the end of the network. The network width

adjustment is to change the fusion width discussed in Chapter 4. The resolution is

adjusted at the input entrance. Another adjustable component is the attention map

shape. We compare different Gaussian map shapes and make a detailed analysis.

Here we give some basic experiment settings. We carry out experiments for

Scaphoid joints. Scaphoid joints are more complex than CMC joints. Two types

of network backbones are Squeezenet and Resnet18. Two classifier modes are uni-

fied and separate. We stick to the principle of cross-validation and use 5 folds to

train/validate the model. The fold accuracy is averaged from the last 25 epoch val-

idation accuracy. The best model selects highest among 5 folds for all experiments,

while the best average select 5-fold average as model selection standard.

5.6 Performance comparison and analysis

As the attention model can be designed in varied ways, we experiment with

different combinations of Gaussian sigma value, map background threshold, back-

bones, and classifier modes. For the Gaussian sigma, we can either make the Gaus-

sian distribution concentrate on key points by using small sigma values or disperse

the attention in a wider region by using high sigma values. For the background

threshold, we can either let in more context by setting the threshold to be a large

value or prevent neighboring information by setting the threshold to be a small

value. For the convolutional backbone, we can either use a light one (Squeezenet),

or a heavy one with residual blocks (Resnet18). For classifier modes, we can choose
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from the unified classifier and separate classifier. We summarize the performances

in Table 5.1.

5.6.1 Backbone influence on performance

In Table 5.1, the Resnet backboned models outperform Squeesenet backboned

models. For Squeezenet models, unified classifier outperforms separate classifier by

a big margin, while it’s not the case for Resnet18 models.

To get the agreement between prediction and ground truth labels, we calculate

the Cohen-Kappa score [35]. The Cohen-Kappa score is commonly used in radio-

graphic interpretations since the diagnosis often involves subjective interpretations

by observers. Two radiologists or annotators give two sets of results, and we use the

Cohen-Kappa score to see how consistent they are. Cohen-Kappa’s score considers

that two annotators may agree or disagree simply by chance. Kappa score of 1 indi-

cates perfect agreement, while Kappa score of 0 means equivalent to chance. Kappa

score is calculated from Equation 5.1, where po is the observed agreement ratio, and

pe is the expected agreement when both annotators assign labels randomly. pe is

estimated using a per-annotator empirical prior over the class labels.

K =
po − pe
1 − pe

(5.1)
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Table 5.1: Attention map model performance on scaphoid JSN

Attention model type best model best average best kappa
SqueezenetSepCls 0.607 0.543 0.356
SqueezenetUniCls 0.647 0.565 0.374
Resnet18SepCls 0.65 0.58 0.398
Resnet18UniCls 0.64 0.575 0.386

5.6.2 Classifier mode influence on performance

There are two classifier modes, unified classifier, and separate classifier. The

unified classifier assumes that features for different joints have a similar distribution.

It has more training data. While the separate classifier assumes feature vectors for

different joints have distinct distribution. And this bias could not be eliminated

by the fully connected layers. The number of separate classifiers depends on the

number of joints. For the Scaphoid task, the separate classifier only has one third

training sample compared to the unified classifier. For limited training data, the

unified classifier would outperform separate classifiers if the bias is not big enough

to counter the benefit of tripling the training data. If we have an unlimited amount

of labeled data, it is reasonable to see better performance in separate classifiers.

Now we take a closer look at Squeezenet model performance under different

classifier modes. Figure 5.4 list experiment accuracy for Scaphoid attention model

using Squeezenet as backbone. The upper one is for separate classifiers, while the

lower one is for unified classifiers. The unified classifier outperforms the separate

classifier. Particularly, their accuracy distributions on different folds are differ-

ent. This means the model using limited training data is sensitive to data pattern
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Figure 5.4: Squeezenet backbone, separate classifier and unified classifier comparison
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changes.

5.6.3 Attention map shape influence on performance

We experiment with different combinations of Gaussian sigma value, map

background threshold, backbones, classifier modes. We conduct experiments with

variation from above factors, and summarize results in Table 5.2. In the vertical di-

rection, we use soft0, soft1,..., soft20 to represent different combinations of Gaussian

sigma and attention map threshold values. In horizontal direction are the network

architecture variations. We highlight the top three performances in each network

architecture.

As we can see from Table 5.2, Resnet18 Unified Classifier attention map model

perform best on Scaphoid joints. Resnet18 backboned models consistently outper-

form Squeezenet backboned models. To see sigma influence on model performance,

we aggregate different thresholds together and compare sigma values in Table 5.3.

It summarizes statistics along with different sigma values, getting averaged perfor-

mance under all threshold values. From the table, we can conclude, sigma=10 would

perform the best.

To see the threshold influence on model performance, we aggregate different

sigma together and compare threshold value in Table 5.4. It summarizes statistics

along with different thresholds, getting averaged performance under all sigma val-

ues. From the table, we can conclude that threshold=0 or threshold=1 gives poor

performance generally. For Resnet18 separate models, threshold=0.3 gives the best
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Table 5.2: Attention map shape influence on performance

Attention
index

sigma threshold
Squeezenet
UniCls

Squeezenet
SepCls

Resnet18
UniCls

Resnet18
SepCls

soft0 5 1 0.5243 0.4996 0.5415 0.5182
soft1 5 0.7 0.5433 0.5383 0.5468 0.5322
soft2 10 0.7 0.5463 0.5194 0.5746 0.5491
soft3 15 0.7 0.5454 0.5432 0.5741 0.5393
soft4 20 0.7 0.5374 0.5385 0.5754 0.5347
soft5 5 0.5 0.554 0.5374 0.5706 0.5451
soft6 10 0.5 0.5646 0.5274 0.5701 0.5569
soft7 15 0.5 0.551 0.5112 0.5723 0.5385
soft8 20 0.5 0.56 0.5352 0.5737 0.5472
soft9 5 0.3 0.5496 0.5405 0.5745 0.5801
soft10 10 0.3 0.5329 0.5383 0.5591 0.5751
soft11 15 0.3 0.511 0.5282 0.5456 0.5523
soft12 20 0.3 0.5336 0.5127 0.5585 0.5459
soft13 5 0.1 0.5334 0.5427 0.5715 0.569
soft14 10 0.1 0.5227 0.5417 0.586 0.5728
soft15 15 0.1 0.5323 0.522 0.5402 0.5551
soft16 20 0.1 0.5481 0.5115 0.552 0.5454
soft17 5 0 0.513 0.496 0.5236 0.5526
soft18 10 0 0.5225 0.5139 0.5673 0.5502
soft19 15 0 0.5066 0.5 0.5523 0.529
soft20 20 0 0.5245 0.5033 0.5666 0.5406

Best [5-20] [0-1] 0.5646 0.5432 0.586 0.5801
Avg [5-20] [0-1] 0.536 0.5239 0.5617 0.549

Table 5.3: Attention map sigma influence on performance

Attention
index

sigma threshold
Squeezenet
UniCls

Squeezenet
SepCls

Resnet18
UniCls

Resnet18
SepCls

sigma 5 [0-1] 0.5363 0.5258 0.5547 0.5495
sigma 10 [0-1] 0.5378 0.5281 0.5714 0.5608
sigma 15 [0-1] 0.5293 0.5209 0.5569 0.5428
sigma 20 [0-1] 0.5407 0.5202 0.5652 0.5428
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Table 5.4: Attention map threshold influence on performance

Attention
index

sigma threshold
Squeezenet
UniCls

Squeezenet
SepCls

Resnet18
UniCls

Resnet18
SepCls

threshold [5-20] 0 0.5167 0.5033 0.5524 0.5431
threshold [5-20] 0.1 0.5341 0.5295 0.5624 0.5606
threshold [5-20] 0.3 0.5318 0.5299 0.5594 0.5634
threshold [5-20] 0.7 0.5431 0.5349 0.5677 0.5388
threshold [5-20] 1 0.5243 0.4996 0.5415 0.5182

performance. For all other models, threshold=0.7 gives the best performance.

5.7 Conclusion

In this chapter, we first discuss the complex context for CMC and Scaphoid

joints. Then we introduce the attention models. We give details about how to

create attention, where to apply attention mechanism, how to keep attention map

geometrically consistent. We investigate the performance influencing factors, such

as Gaussian sigma value, map background threshold, backbones, classifier modes.

We compare different backbone performances. We discuss Gaussian shape effects

on attention map models. We conclude that the attention model could make good

predictions on joints with a complex context.

At this point, we have given all the procedures and algorithms for the JSN

task. For joints with simple context such as MCP and PIP, the fusion patch models

could give relatively reliable results. For joints with complex contexts such as CMC

and Scaphoid, we have designed the attention model. We conduct performance

analysis and visualize prediction results. Although we have a working pipeline for
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the hand X-ray joint space narrowing task, the predicting ability is far from the

doctor’s diagnosis.

There are several working directions in the future. First, we can enlarge the

fusion scope by incorporating more joints in the X-ray image of the same patient.

JSN correlations exist not only in the same type of joints but also in neighboring

joints. For example, MCP3 and PIP3 have a strong correlation since they are next

to each other. Second, we can do a fine-grained classification on the joint. The

wrong predictions usually have subtle characteristics that can be identified by a

human doctor with care. We need to incorporate the subtle shape details in our

predicting pipeline. Third, we need more labeled data. Current models suffer from

obvious overfitting problems. More training data would improve performance. So

we will continue the JSN task by exploring these three directions.
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