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 In high speed-communications, it is desirable to be able to detect small signals 

while maintaining a low bit-error rate.  Conventional receivers for high-speed fiber optic 

networks are Amplified Direct Detectors (ADDs) that use erbium-doped fiber amplifiers 

(EDFAs) before the detector to achieve a suitable sensitivity.  In principle, a better 

method for obtaining the maximum possible signal to noise ratio is through the use of 

homodyne detection. 

 The major difficulty in implementing a homodyne detection system is the 

generation of a suitable local oscillator signal.  This local oscillator signal must be at the 

same frequency as the received data signal, as well as be phase coherent with it.  To 

accomplish this, a variety of synchronization techniques have been explored, including 



 

  

Optical Phase-Lock Loops (OPLL), Optical Injection Locking (OIL) with both Fabry-

Perot and DFB lasers, and an Optical Injection Phase-Lock Loop (OIPLL). 

 For this project I have implemented a method for regenerating a local oscillator 

from a portion of the received optical signal.  This regenerated local oscillator is at the 

same frequency, and is phase coherent with, the received optical signal.  In addition, we 

show that the injection locking process can be electronically stabilized by using the 

modulation transfer ratio of the slave laser as a monitor, given either a DFB or Fabry-

Perot slave laser.  We show that this stabilization technique maintains injection lock 

(given a locking range of ~1GHz) for laser drift much greater than what is expected in a 

typical transmission system.  In addition, we explore the quality of the output of the slave 

laser, and analyze its suitability as a local oscillator signal for a homodyne receiver. 
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I. CHAPTER 1 - Introduction 

 In high speed-communications, it is critical to be able to detect the smallest 

possible signals while maintaining a low bit-error rate.  This permits data transmission 

across longer distances without the aid of repeaters or optical amplifiers.  This effectively 

lowers the cost, noise and potential delays of the optical communication network.  

Currently, the most popular method to achieve this is through the use of Amplified Direct 

Detection (ADD).  However, it is possible to achieve greater sensitivity with the use of a 

homodyne receiver [1, 2]. 

 The major difficulty in implementing a homodyne detection system is the 

generation of a suitable local oscillator signal.  This local oscillator signal must be at the 

same frequency as the received data signal, as well as be phase coherent with it.  To 

accomplish this, a variety of synchronization techniques have been explored, including 

Optical Phase-Lock Loops (OPLL) [1, 34, 35, 36, 37, 38], Optical Injection Locking 

(OIL) with both Fabry-Perot [42, 43, 44] and DFB [18, 45, 46] lasers, and an Optical 

Injection Phase-Lock Loop (OIPLL) [19]. 

 Several studies demonstrate the effectiveness of OPLL for locking heterodyne 

[34, 35, 36] and homodyne [1, 37, 38] signals to within acceptable limits.  However, 

previous work has also shown that, to minimize the laser phase noise (i.e. the variation in 

the phase difference between the two synchronized optical signals) the loop delay must 

be kept as small as possible [19].  For wideband lasers (i.e. laser linewidths >10MHz), 

the maximum loop delay must be less than ~100ps (the exact value depends on the 

particular loop filter used in the OPLL), assuming a reliable operation time of 10 years 

(estimated time until a cycle-slip occurs) [19].  As such, OPLLs may not be physically 
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realizable with Commercial Off-The-Shelf (COTS) components for wideband lasers, and 

were not seriously considered for generating a local-oscillator signal in this experiment. 

 Alternatively, OIL provides a low-noise output signal that is phase coherent with 

the received signal [18, 19, 42, 43, 44, 45, 46].  However, OIL output becomes chaotic 

for large injected powers [39, 40].  Additionally, for small injection (i.e. the injected 

signal is ~30dB below the OIL output signal), OIL requires a slave laser whose optical 

frequency differs from the received optical signal by at most 1GHz, and as little as the 

linewidth of the received optical signal.  As such, frequency drift (due to either glitches in 

the laser controller or environmental drifts) makes this method ineffective in real 

systems.  OIPPL integrates an OPLL into OIL in order to overcome this limitation [19].  

However, OIPLL has only been proven to work for low data-rate optical signals (10-

100Mb/s).  In addition, this method is intolerant to phase noise due to the thermal drift of 

the optical path length of the interferometer used in the OPPL. 

 Thus, I have explored a method for regenerating a local oscillator from a portion 

of the received optical signal that improves upon OIPLL to accommodate received 

signals with higher data rates.  Specifically, a portion of the received signal will be 

optically pre-filtered, and used to injection lock a slave laser.  When locked, the output of 

this slave laser will be at the same frequency and phase coherent with, the received 

optical signal.  Thus it can be used as a suitable local oscillator signal. 

 In addition, we demonstrate that the injection locking process can be 

electronically stabilized by using the modulation transfer ratio of the slave laser as a 

monitor.  Specifically, the modulation transfer ratio of an injected laser is at a minimum 

at the center of the locking range, and increases as the difference between the frequencies 



 

3  

of the injected and free-running signals increase.  This holds true for both Fabry-Perot 

lasers and DFB lasers.  This effect was also modeled with the use of the laser rate 

equations. 

 Both Distributed Feedback (DFB) lasers and Fabry-Perot lasers are tested for use 

as an appropriate slave laser for the local oscillator generator.  In addition, stabilized 

injection locking utilizing the modulation transfer function of the slave laser was 

developed and tested for both laser types.  For this, the effectiveness of both digital and 

analog feedback systems were explored.  Finally, the quality of the local oscillator signal 

that is generated by the injection locked Fabry-Perot laser was explored. 

 

1.1 Optical Receivers 

 Optical receiver sensitivity is effectively specified by the input optical power that 

is required to achieve a particular maximum bit-error rate.  Specifically, if a certain bit-

error rate is desired, this will determine the minimum received power that is necessary to 

obtain it at a given data rate and optical wavelength.  Although receivers demand a 

greater power than this to overcome Johnson noise, dark noise, and detector inefficiency, 

it is not necessary to consider these additional terms when determining the physical 

limits. 

 For a given data rate, the bit-error rate is defined as the sum of the probability that 

an intended 1-bit is interpreted as a 0-bit and the probability that a 0-bit is interpreted as a 

1-bit [3].  The bit-error rate of a fiber optic communication system depends on both the 

particular transmission scheme and the type of receiver used to detect the transmission.  
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1.1.1 Direct Detection 

1.1.1.1 Ideal Direct Detection of Amplitude Shift Key (DD-ASK) Transmissions 

 The most basic way of detecting and interpreting an incident optical signal is with 

a direct detection system.  A direct detection system that is designed to decode ASK 

transmissions is depicted in Figure 1.01.  The first component in a direct detection system 

may either be a reversed-biased photodiode or an Avalanche Photodiode (APD).  This 

device effectively converts an incident optical signal into electrical current.  The detector 

is then followed by a trans-impedance amplifier (often packaged with the detector), 

which amplifies the incident electrical current into a larger electrical voltage.  This 

resulting voltage is then compared to an electrical threshold voltage, which determines if 

the incident signal is to be interpreted as a 0-bit or a 1-bit. 

Optical

Signal In (λ)
Electrical

Signal OutPIN Diode 

Detector

Transimpedence

Amplifier

Logical

Comparator

Electrical Threshold (Sth)  

Figure 1.01 - Direct Detection System for ASK Transmissions 

 

 For an ideal detector and electronic amplifier, the thermal noise is considered to 

be negligible.  As such, the noise on the detected signal can be attributed to shot noise.  

Shot noise is due to the inherent randomness in the arrival time of the individual photons, 

and thus can be modeled as a Poisson random variable.  In general, the probability of a 

Poisson random variable of mean m being equal to k is [5]: 
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[ ] m
k

e
k

m
kP −=

!
 (1.01) 

In this case, it is assumed that the bit-error rate is equal to the probability that zero 

photons (k=0) are received for a 1-bit (it is assumed that the probability of a 0-bit being 

misinterpreted is zero).  As such, if a bit-error rate of 10
-9
 for example is desired, then the 

minimum number of photons/bit that are required for the direct detection of an ASK 

encoded transmission is: 

( ) 2010*2ln 9 ≅−= −m   (1.02) 

Thus, if a BER of 10
-9
 is desired then 20 photons/mark are required for the direct 

detection of an ASK transmission, which translates to an average of 10 photons/bit.  

Using the definition of photons per bit given above, the average power for a transmission 

can be found, given the number of photons/bit, the optical wavelength, and the data rate 

by: 
























=
sec

bits

bit

photons

λ
hc

P  (1.03) 

Thus for an optical wavelength of 1550nm and a bit-rate of 10Gb/s, the average power 

that is required to obtain a BER of 10
-9
 is approximately -49dBm. 

 

1.1.1.2 Non-Ideal DD-ASK 

 In a non-ideal direct detection system, Johnson and detector noise are normally 

represented as the Noise Equivalent Power (NEP) of the receiver.  NEP is defined as the 

radiant power that produces a signal-to-noise ratio of unity at the output of a given optical 

receiver, given the data-rate, frequency, and effective noise bandwidth of the incident 

optical signal. 
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 For systems where the NEP is normally greater than the shot noise, it may still be 

possible to achieve a shot noise limited, non-amplified direct detector.  This would be 

accomplished by cryogenically cooling the detector and electronic amplifier so that the 

Johnson noise is an order of magnitude lower than the shot noise [4].  However, this 

technology is not currently available at a practical cost for deployment on a large scale 

optical network. 

The BER for an equal probability of transmitting a 0-bit and a 1-bit can be 

calculated from: 

( ) ( )

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


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
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 −
−+
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




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 −
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∞− th

th

S 0

0

0
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1

1
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σ
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σ
BER

2

2

2

2

2
exp

2

1

2
exp

2

1

2

1

σπσπ
 (1.04) 

where S1 is the electrical current after the detector that is due to an optical 1-bit, S0 is the 

current due to a 0-bit, σ1 is the noise (standard deviation of the signal) in the 1-bit, σ0 is 

the noise in the 0-bit, and Sth is the threshold level (in terms of electrical current) that is 

used to differentiate between a 0-bit and a 1-bit [5].  This equation can also be written in 

terms of the complimentary error function as: 
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



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

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




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 −
=

0

0th

1

th1
ASK

SSSS
BER

σσ 2
erfc

2
erfc

4

1
 (1.05) 

 For the ideal case, we assume an infinite S/N on the input of the detector and no 

optical signal during a 0-bit.  Using (1.03), the signal current is: 

hc

Pq
S sλη

=1  (1.06) 

Furthermore, σ1 is equal to a combination of Shot, dark and Johnson noise, while 

σ0 is equal to a combination of just dark and Johnson noise.  Shot noise, also known as 

quantum noise, is due to the optical signal being quantized.  In general, shot noise is 
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given by the product of quantity, current, and bandwidth: qIB.  This is valid for any 

discrete quantity where q is the quantity, I is its current, and B is the bandwidth.  In this 

case, q is electronic charge and I is the photoelectron conversion current.  Optical shot 

noise current is described by [7] again using (1.06) to obtain the current: 

esS BP
h

q
qσ 







=
ν

η
= eBqS1  (1.07) 

where η is the quantum efficiency of the detector, h is Planck’s constant, Ps is the signal 

power, ν is the frequency of the optical signal, and Be is the noise bandwidth (which is 

assumed to be equal to twice the signal bandwidth).  As such, σ1 is equal to (σs+NEP), 

while σ0 is simply equal to the NEP.  Given this, the BER can be determined from (1.05) 

and (1.06).  

 

1.1.1.3 BER for ideal ADD for ASK Transmissions  

Optical amplifiers may be added before the detector in cases where the NEP of 

the receiver is greater than the shot noise of the incident optical signal.  This effectively 

increases the power of both the received optical signal and optical noise that is detected 

such that the shot noise is greater than the NEP, ensuring that shot noise will be the 

limiting noise on the system. 

For the ideal direct detection of an amplified ASK encoded transmission, the 

receiver noise can be modeled as a Gaussian random variable with a 3dB degradation to 

the signal to noise ratio.  This 3dB degradation is the direct result of the ASE generated 

by the optical amplifier [6, 13].   
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 Thus, if it is assumed that there is an equal probability of transmitting a 0-bit and 

a 1-bit, then the bit-error rate is given by (1.05).  If amplifier and thermal noise after the 

detector are considered to be negligible, the noise on the detected signal can be attributed 

to shot noise and a minimum 3dB noise figure (F3dB) due to ASE.  Thus, from (1.07), the 

noise on the detected signal during a 1-bit is equal to: 

esesdB BP
h

q
qBP

h

q
qFσ 







=






=
ν

η
ν

η
231  (1.08) 

In addition, the detected signal during a 1-bit can be expressed as: 

1D1 P
h

q
S 







=
ν

η
 (1.09) 

where P1 is the optical power associated with a 1-bit. 

 For this system, the limiting noise during a 1-bit is shot noise that is due to the 

signal power.  Additionally, since we are considering an ideal system, we assume that the 

power and noise during a 0-bit is negligible.  The modulation is ASK, thus from (1.05) 

the bit-error rate can be expressed as: 










 −
=−

D1

thD1
DASK

SS
BER

σ2
erfc

4

1
 (1.10) 

Also, since the noise during a 0-bit is assumed to be negligible, the threshold value (Sth) 

is set close to zero.  Thus the equation for the bit-error rate can be written as: 











=−

e

1
DASK

Bh

P
BER

ν
η

2

1
erfc

4

1
 (1.11) 

In an ideal detector, the quantum efficiency is equal to 1 and the bandwidth is 

equal to the bit-rate.  From this, the bit-error rate can be written as: 
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
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2
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4

1 N
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where N is the number of photons per bit, which can also be expressed by the equation: 



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
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
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
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e
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P

h

TP
N

1
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 (1.13) 

 Given this, if a bit-error rate of 10
-9
 is desired then the value of N can be 

numerically determined.  From this numerical analysis it is found that 72 photons/bit are 

required for the pre-amplified direct detection of an ASK transmission, which is very 

close to the accepted value of 80 photons/bit [8].  If it is assumed that the optical 

wavelength is 1550nm and the bit-rate is 10Gb/s, the average power that is required to 

obtain a BER of 10
-9
 is approximately -43.4dBm. 

 

1.1.1.4 Non-Ideal ADD for ASK Transmissions 

 The uncertainty principle dictates that the minimum degradation to the signal to 

noise ratio by a linear amplifier is 3dB.  However, the actual value is greater in real 

amplifiers.  This degradation, expressed as a Noise Figure, is typically in the range of 

3dB-5dB for low-noise optical pre-amplifiers, and 6dB-8dB for power amplifiers. 

 Given incomplete population inversion of the optical amplifier, the equivalent 

noise power at the input to the optical amplifier is equal to: 

BFhPN ν=  (1.14) 

where B is the bandwidth of the optical amplifier, ν is the optical frequency of the 

injected signal, F is the noise figure, and h is Plank’ constant (≈6.626*10-34 J*s) [13].  

The noise figure serves as a practical value to offset the degradation to the S/N ratio due 
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to internal loss within the amplifier and the less than full population inversion, and is 

derived experimentally from the measured noise power and gain.  Thus, the S/N at the 

output of an optical amplifier is given by: 

ASEshoti

i

o

o

PPNEPGN

GS

N

S

+++
=  (1.15) 

where Pshot is the shot noise power, which produces a current of σs in an ideal detector. 

 Thus, if it is assumed that there is an equal probability of transmitting a 0-bit and 

a 1-bit, then the bit-error rate is given by (1.05).  For the non-ideal case, σ1 is equal to a 

sum of Shot, dark, Johnson, ASE, and ASE-shot noise, while σ0 is equal to a sum of just 

dark, Johnson, ASE, and ASE-shot noise.  The signal is given by (1.06), the signal shot 

noise is given by (1.07), the ASE-shot noise also given by (1.07); with the ASE power 

substituted for the signal power, the ASE power is given by (1.14)., and the Johnson and 

dark noises are given by the NEP. 

 From (1.14), it can be seen that the ASE noise that is added by the optical 

amplifier is proportional to the bandwidth.  An optical filter to limit the effective 

bandwidth at the output of the amplifier can reduce this noise, as long as this bandwidth 

is still greater than the data rate of the received optical signal.  For example, if we assume 

a 10Gb/s transmission on a 1550nm optical carrier, then the input noise power that is 

added to the signal by the optical amplifier will be at least -59dBm.  This value will be 

greater if the amplifier is not operating at full population inversion (effectively increasing 

the noise figure), or if the received data was transmitted at a higher data rate (requiring a 

filter with a larger bandwidth). 
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1.1.2 Coherent Detection 

 In a coherent detection system, the received optical signal is mixed with a more 

intense “local oscillator”.  The electric fields of these two signals interfere with each 

other, provided that the two fields are in the same polarization state.  Since detectors 

measure optical power (which is proportional to the square of the magnitude of the total 

electric field), the two signals are effectively mixed at the detector [9].  This signal is 

given by: 

( ) ( )tttPP
h

q
S mlololo1coherent ωφωω

ν
η

sincos2 1 +−






=  (1.16) 

where ω1 is the signal frequency, ωlo is the local oscillator frequency, ωm is the 

modulation, and φlo is the phase of the local oscillator signal relative to the received 

signal.   

 After the detector, the electrical signal is amplified by a trans-impedance 

amplifier.  The signal from the trans-impedance amplifier is electronically filtered in 

order to limit the bandwidth of the detected signal to that of the data and noise.  This 

effectively minimizes the noise on the electronic signal. 

  

1.1.2.1 Heterodyne Detection 

When the frequency of the received optical signal is different from the local 

oscillator signal, then the coherent receiver is known as a heterodyne system (Figure 

1.02).  As seen from (1.16), for a heterodyne detection system Scoherent is proportional to: 

( ) ( )tttS mlolocoherent ωφωω sincos~ 1 +−  (1.17) 
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and that φlo is indeterminate.  The difference between ω1 and ωlo is an intermediate 

frequency whose bandwidth must be at least twice the signal bandwidth.  Thus, the 

bandwidth of the bandpass filter (Figure 1.02) is equal to the IF bandwidth.  The 

magnitude of the detected signal can be expressed as: 

lohet1 PP
h

q
S 12







=
ν

η
 (1.18) 

Note that this power refers to the peak power, not the average power (the average power 

would be equal to 2het1S ).  For ideal Heterodyne, we assume that the signal during a 

0-bit is approximately zero and thus is ignored and that the dominant noise during both 

the 1-bit and 0-bit is shot noise due to the local oscillator. 

 Bandpass

Filter

90

10

Received Signal

LO Signal

Detector

RF Amp
Square

Lowpass

Filter

Threshold

Threshold Level

Data

 

Figure 1.02 – Heterodyne Receiver for ASK Transmissions 

 

 The (shot) noise during both the 1-bit and 0-bit is equal to: 

hetlohet BP
h

q
qσ 







=
ν

η
 (1.19) 

(Because the noise bandwidth, set by the bandpass filter,  is equal to twice the signal base 

bandwidth).  If an ASK transmission is incident upon the heterodyne receiver, then from 

(1.05), (1.18) and (1.19) the bit-error rate can be expressed as: 
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Using  (1.13) and assuming that η=1, the BER can be written in terms of the number of 

photons per bit as: 
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If a bit-error rate of 10
-9
 is desired, then a numerical analysis of this equation can 

be used to determine the appropriate values of Sth and N.  From this, it was found that 72 

photons per bit are required to obtain a 10
-9
 bit-error rate with a heterodyne receiver.  If it 

is assumed that the optical wavelength is 1550nm and the bit-rate is 10Gb/s, the average 

power that is required to obtain a BER of 10
-9
 is approximately -43dBm. 

 

1.1.2.2 Homodyne Detection 

A coherent receiver is known as a homodyne system when the frequency of the 

received optical signal is the same as that of the local oscillator signal (Figure 1.03).  As 

seen from (1.16), for a homodyne detection system Scoherent is proportional to: 

( ) ( )tS mlocoherent ωφ sincos~  (1.22) 
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Figure 1.03 – Homodyne Receiver for ASK Transmissions 

 

As opposed to heterodyne, where the difference between ω1 and ωlo is at an 

intermediate frequency, the signal is now in the base-band.   Thus, the bandwidth of the 

lowpass filter (Figure 1.03) is equal to the signal bandwidth.  In addition, φlo is now 

critical, and directly affects the magnitude of the detected signal.  Specifically, this 

magnitude can be expressed as 

( )lolo1homo1 PP
h

q
S φ

ν
η

cos2






=  (1.23) 

As such, the phase difference between the received and local oscillator signals must be 

equal to zero in order to maximize the output from the homodyne receiver.  In this case, 

the signal from a homodyne receiver reduces to (1.18). 

The signal during a 0-bit is approximately zero and thus is ignored.  Thus, if the 

intensity of the local oscillator signal is strong enough such that the shot on the signal 

dominates the other noise sources in the system (Johnson noise, dark noise, etc), the 

(shot) noise during both the 1-bit and 0-bit is equal to: 

elohomo BP
h

q
qσ 







=
ν

η
2

1
 (1.24) 

Because the signal is at base-band, the filter bandwidth is equal to the signal bandwidth.  

Note that this equation differs from (1.19) by a factor of 2 .  This difference is due to 
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the fact that the use of a homodyne detection system reduces the bandwidth of the 

detector from 2Be to Be [10].  This is the origin of the homodyne 3dB advantage over 

heterodyne. 

 If an ASK transmission is incident upon the homodyne receiver, and we assume 

that the phase difference between the received and local oscillator signals is zero, then 

from (1.05), (1.18) and (1.24) the bit-error rate can be expressed as: 
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which, when given (1.13) and the assumption that η=1, becomes: 
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As before, if a bit-error rate of 10
-9
 is desired, then a numerical analysis of this 

equation can be used to determine the appropriate values of Sth and N.  From this, it was 

found that 36 photons per bit are required to obtain a 10
-9
 bit-error rate with a homodyne 

receiver.  If it is assumed that the optical wavelength is 1550nm and the bit-rate is 

10Gb/s, the average power that is required to obtain a BER of 10
-9
 is approximately -

46dBm. 

 To maximize the output of a homodyne receiver, the difference between the 

phases of the received and local oscillator signals must be minimized.  The two ways to 

accomplish this are with either a phase diversity system, or a phase tracking system.  In a 

phase diversity system, the received optical signal is first split by 50/50 splitter.  At this 
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point, one half of the signal (one of the outputs of the splitter) is mixed with the local 

oscillator signal, while the other half is mixed with a local oscillator signal that has been 

phase shifted by 90°.  These two signals are then detected separately and the outputs of 

the detectors are summed electronically [14].  Although this method effectively allows 

for a signal with an arbitrary phase to be detected with a homodyne receiver, the use of 

the 50/50 splitter decreases the final signal to noise ratio by 3dB, which in turn 

effectively doubles the photons/bit that are required for this detection method. 

 The alternative to a phase diversity system is a phase tracking system.  In this, an 

electronic feedback loop is set up to compensate for any detected phase difference.  This 

system does not decrease the signal to noise ratio by 3dB (as was the case for a phase 

diversity system).  However, a phase tracking system will not effectively minimize the 

phase difference between the received and local oscillator signals if the phase drift of 

these two signals is faster than the response time of the feedback loop. 

 

1.1.2.3 Polarization Effects 

 In order to maximize the output signal for any coherent detection scheme, the 

polarization of the local oscillator signal must be aligned with the received signal.  The 

two ways to accomplish this are with either a polarization diversity system, or a 

polarization tracking system.  In a polarization diversity system, the received optical 

signal is first split by a polarizing beam splitter into two orthogonal polarization states.  

These two polarization states can them be separately detected.  However, this effectively 

doubles the complexity of the receiver, since a separate coherent receiver must be 

assembled for each output of the beam splitter. 
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 The alternative to a polarization diversity system is a polarization tracking 

system.  In this, the received signal is transmitted through a polarization rotator, while an 

electronic feedback loop is used to maximize the output from the detector.  This system 

adds significantly less optical path complexity to the overall receiver design.  However, a 

polarization tracking system will be incapable of maximizing the output of the polarizer 

if the polarization drift of the received signal is faster than the response time of the 

feedback loop. 

 

1.2 Overview of Project 

 In this section, DD, ADD, heterodyne, and homodyne detection will be discussed 

and their merits compared.  The required number of photons/bit for each detection 

scheme are summarized in Table 1.  From this, it can be seen that the most sensitive 

receiver is a non-amplified direct detector.  However, such a system would need to be 

cooled to sub-zero temperatures [4].  The next two most practical methods for detecting a 

low intensity received optical signal are amplified direct detection and homodyne 

detection. 

Receiver Photons/Bit Average Power (Bit Rate = 10Gb/s) [dBm]

Non-Amplified Direct Detection 20 -48.9

Pre-Amplified Direct Detection 72 -43.4

Heterodyne Detection 72 -43.4

Homodyne Detection 36 -46.4  

Table 1 – Number of Photons per Bit that is Required for Various Detection Schemes 

 

1.2.1 Implementation of DD 

 A direct detection system simply consists or a detector, and must exhibit low 

detector noise and high optical sensitivity.  Direct detection can be employed if the 
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received signal is high power and low bandwidth or if the detector exhibits low Johnson 

and dark noise (e.g. Cryogenically-cooled PIN diodes).  Currently, APDs are employed at 

moderate data rates, due to their high sensitivity.  However, current APDs cannot detect 

data-rates higher than 3Gb/s.  In addition, cryogenically cooling a PIN diode detector is 

not a practical solution for large optical networks.  

 

1.2.2 Implementation of ADD 

 As was discussed in the previous section, an amplified direct detection system 

consists of a detector that is preceded by an optical amplifier (Figure 1.04).  Although 

this appears to be an effective receiver design, there are two major problems.  First, the 

ASE noise that is generated by the optical amplifier will decrease the effective S/N ratio 

of the detected signal.  This in turn limits the minimum signal power that the detector is 

capable of receiving. 

 

Figure 1.04 – Amplified Direct Receiver 

 

1.2.2.1 ADD Example 

 Earlier, we calculated that in order to obtain a BER of 10
-9
, we need an average 

signal strength of 36 photons/bit (assuming that the noise bandwidth is twice the signal 

bandwidth).  Given a data rate of 10Gb/s and an optical wavelength of 1550nm, this 

translates to a signal power of approximately -46dBm.  We assume that the amplified 
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optical signal is incident on a NewFocus detector (Model #1544), over a bandwidth of 

10GHz.  The NEP of this detector is approximately -24.8dBm.  If we assume a threshold 

of ½ the signal strength and solve (1.05) for S1 (assuming S0 = 0 and σ1 = σ0 = - 24.8dBm) 

we find that the peak signal required to obtain a BER of 10
-9
 at the detector (given the 

Johnson noise) is -14dBm.  This translates to an average power of -17dBm.  Thus, given 

that the optical filter imposes at least a 3dB loss on the amplified signal, a gain of at least 

29dB is required from the optical amplifier. 

 One parameter that must be addressed when designing an amplified receiver is the 

number of optical amplifiers that will be required to obtain a desired total gain.  Any 

optical amplifier has a maximum allowable gain.  This maximum gain is determined by 

the point at which the amplifier is saturated by both the amplified signal, and the ASE 

that is generated by the amplifier.  Figures 1.05a and 1.05b show the maximum allowable 

gain from an EDFA (Figure 1.05a) [15] and an SOA (Figure 1.05b) [16], for various 

lengths of the amplifying medium.  From this, it can be seen that, for a typical EDFA or 

SOA, the maximum gain that can be provided is 36dB or 34dB respectively [15, 16].   

 

  (a) (b) 

Figure 1.05 – Maximum Allowable Gain for an EDFA (a) [15] and an SOA (b) [16], for 

Various Lengths of the Amplifying Medium 
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 However, losses within the system may require addition gain, which in turn may 

require the use of additional amplifiers. 

 

1.2.3 Implementation of a Heterodyne Receiver 

 As with any coherent receiver, a heterodyne receiver mixes the received signal 

with a strong local oscillator signal.  The benefit of this is that it makes shot noise the 

dominant noise, while shifting the frequency to an intermediate value, where RF 

technology can provide low-noise amplifiers and narrow filters.  However, at current 

optical data-rates, optical filters are as narrow, and have comparable bandwidth 

characteristics as their RF counterparts. 

 Its advantage over homodyne detection is that it is phase insensitive (with a 3dB 

penalty).  This receiver does not require a tight phase tracking feedback loop, but (in 

many cases) does require a frequency control feedback loop to keep the beat-note within 

the IF band-pass filter. 

 

1.2.4 Implementation of a Homodyne Receiver 

 If we assume that the coherence length of the received optical signal is such that 

its linewidth is much less than the envelope of the optical data, then an effective 

alternative to a direct detection system is a homodyne receiver.  From Table 1, it can be 

seen that a homodyne receiver is capable of higher sensitivities than an amplified direct 

detector.  However, any homodyne receiver requires a local oscillator signal that is 

synchronized (phase coherent) with the received signal.  Such a local oscillator signal can 
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be regenerated from a portion of the received signal.  This will ensure that the local 

oscillator is at the same frequency, and is phase locked with, the received optical signal.  

There are three main methods that may be utilized to generate a local oscillator signal.  

First, a small portion of the received signal may be filtered and amplified for use as the 

local oscillator signal.  Second, a small portion of the received signal may be injected into 

a slave laser, the output of which can be used as the local oscillator signal.  Finally, an 

Optical Phase-Locked Loop (OPLL) may be used to force the frequency and phase of an 

independent laser to mimic the frequency and phase of the received signal. 

 There have been several studies work that demonstrate the effectiveness of OPLL 

for locking narrowband heterodyne [34, 35, 36] and homodyne [1, 37, 38] signals to 

within acceptable limits.  However, previous work has also demonstrated that, in order to 

effectively lock two wideband homodyne signals together, the loop delay must become 

very small, typically less than 0.1ns for lasers with linewidths >10MHz, depending on the 

loop filter implemented in the setup [19].  As such, OPLLs may not be physically 

realizable with Commercial Off-The-Shelf (COTS) components and were not seriously 

considered for generating a local-oscillator signal in this experiment. 

 

1.2.4.1 Homodyne Receiver with an Amplified Local Oscillator 

 The most obvious approach to generate this local oscillator signal is to use a 

narrow Fabry-Perot pre-filter to strip the data from the diverted portion of the received 

optical signal.  After this, the stripped signal can be amplified and re-filtered to remove 

the added ASE from the signal.  The layout of this method is depicted in Figure 1.06. 
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Figure 1.06 – LO Generator Utilizing an Optical Amplifier 

 

 The primary advantage of this method over an amplified direct detector is that, 

since only the local oscillator signal needs to be amplified, the ASE noise that is present 

on the detected signal can be reduced by limiting the bandwidth on the output of the 

optical amplifier.  For the direct detector the minimum allowable bandwidth was 10GHz, 

limited by the data rate of the received optical signal.  However, since only the local 

oscillator signal needs to be amplified in the case of a homodyne receiver, the bandwidth 

on the output of the optical amplifier can be limited to the linewidth of the carrier, 

typically less than 10MHz.  This effectively reduces the magnitude of the ASE noise that 

is present on the detected signal by 30dB (compared to filtered ADD).  It should be noted 

that this is lower than was predicted for the BER calculations in the previous section, 

since those were calculated assuming a bandwidth comparable to the data-rate. 

 However, there is a problem with this method.  To demonstrate this by specific 

example, we first assume that the received signal is -43.4dBm (as in the example for the 

amplified direct detector to achieve a BER of 10
-9
 at a date rate of 10Gb/s and an optical 

wavelength of 1550nm), and that 10% of the received signal is diverted for generating the 

local oscillator signal.  Additionally, we assume that we are mixing the received and local 

oscillator signals in a detector whose equivalent input noise (due to Johnson noise) is 

approximately -24.8dBm as in the ADD example (Section 1.2.2.1).  As previously 
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mentioned in section 1.2.1, this detector requires an average signal power of -17dBm to 

achieve the conditions assumed above.  Since the detected signal from a coherent receiver 

is effectively the geometric average of the signal and local oscillator powers, the 

homodyne receiver requires a local oscillator power of approximately: 

( ) ( ) dBm9dBm43dBm172
1

2

−=−−−×==
P

P
Plo  (1.27) 

to reach the shot noise limit.  Given this, it follows that a total gain of 44dB is required 

from the system.  Since this system already incorporates two Fabry-Perot filters, whose 

minimum loss is 3dB per filter, the total gain that is required from the optical amplifier is 

50dB. 

 However, and was discussed in section 1.2.1, the maximum gain that a typical 

optical amplifier can provide is approximately 35dB.  Thus, multiple amplifiers are 

required.  As such, we must adopt the configuration that is depicted in Figure 1.07.  In 

this, the diverted potion of the received optical signal is pre-filtered and amplified, just as 

in the previous case.  However, after this the signal is then re-filtered and diverted into a 

second optical amplifier.  The purpose of this is to remove the ASE that is outside the 

bandwidth of the filter before re-amplifying the signal.  This will prevent the second 

amplifier from saturating, increasing the overall signal gain.  After the second amplifier, 

the remaining ASE is removed from the local oscillator signal by a third optical filter. 
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Figure 1.07 – LO Generator Utilizing Multiple Optical Amplifiers 
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 The drawback to this method is that it is even more expensive than the amplified 

direct detector.  This is due to the need for multiple optical amplifiers and narrow-band 

Fabry-Perot filters.  As such, a different, less costly method for generating a local 

oscillator signal is desired. 

 

1.2.4.2 Homodyne Receiver with an Injection Locked Local Oscillator  

 A local oscillator generator, similar to the one discussed in the previous section, 

may be obtained by placing an amplifying medium within a cavity.  In this case, instead 

of passing through multiple optical amplifiers, the received optical signal will make 

multiple passes through a single amplifying medium.  This process is known as 

"Regenerative Amplification" [11].  In fact, unless there is an isolator on each side of the 

gain media in the previous design, regenerative amplification will occur in that design as 

well.  In general, a regenerative amplifier provides high-gain for a received signal 

(relative to the single-pass gain) over a narrow bandwidth.  If the gain of the amplifying 

medium within the regenerative amplifier is greater than or equal to the cavity loss, the 

regenerative amplifier will self-oscillate.  Amplifier chains without isolators are prone to 

runaway self lasing.  When no input signal is provided, the regenerative amplifier will be 

seeded by the noise generated by the amplifying medium.  This noise-seeded optical 

regenerative amplifier (the case in which the ratio of gain to loss is greater than 1) is a 

laser oscillator.  Such a laser will emit a coherent signal whose center frequency is the 

point at which the in-band (as determined by the optical path length of the cavity) gain of 

the amplifying medium is at a maximum. 
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 Let us assume that a laser is injected with a low-intensity optical signal (as 

opposed to noise generated by the amplifying medium within the cavity) that is detuned 

from the center frequency of the cavity by a small amount.  If this injected signal is weak 

enough, it can circulate within the cavity and be regeneratively amplified by the laser 

medium.  As such, this injected signal will be amplified, independent of any other signals 

currently oscillating within the cavity. 

 Given both an injected optical frequency that is close to the free-running 

frequency of the oscillator and a sufficiently intense injected signal, the amplified 

injected signal will approach the free-running oscillation intensity of the laser cavity.  

Once this occurs, the injected signal will steal enough of the available gain from the 

amplifying medium so that the free-running signal is effectively suppressed.  At this 

point, the injected laser (commonly known as the "slave laser") will emit a signal that is 

at the same frequency as the injected signal, but at the intensity of the free-running signal. 

 The ability for these injection locked lasers to produce local oscillator signals has 

been previously explored [18, 19, 20].  Since this method is based on regenerative 

amplification, it is similar to the "amplifier-filter chain" method described in the previous 

section.  However, this method is significantly less expensive since it only requires a 

single slave laser. 

 Although injection locking is an effective means to generate a local oscillator 

signal, there may be additional concerns that must be addressed, depending on the 

intensity of the injected signal.  Previous research has shown that the output of the slave 

laser becomes non-linear for high-powered injection [39, 40].  The cause of this non-

linearity can be attributed to both the suppression of free-running oscillation due to light 
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injection in the slave laser, and to the change of the active layer index due to the high 

intensity of the injected signal [40].  To avoid this issue, we ensure that the injected 

signal is approximately 20-30dB lower than the output of the slave laser.  However, the 

locking range of the slave laser will be <1GHz given this condition.  As such, a feedback 

loop will be required to maintain the injection lock. 

 The methodology that we use to generate a local oscillator signal is based on the 

approach described in [19].  In [19], a DFB laser is injection locked with a portion of the 

received signal.  An optical phase-locked loop is then used to maintain the injection lock 

(required to compensate for the narrow locking range, as described in the previous 

paragraph).  However, this method has only been proven to work for low data-rate optical 

signals (10-100Mb/s).   

 In my implementation, depicted in Figure 1.08, a 90/10 splitter is used to divert a 

portion of the received optical signal into a narrow Fabry-Perot bandpass filter.  The 

purpose of this filter is to average over the modulation on the received signal.  The 

injection locking process will suppress the incident modulation by 10-30dB (depending 

on the intensity of the injected signal and the properties of the slave laser used).  If the 

injected signal is On-Off Keyed (OOK), then the resulting local oscillator will still have a 

0.1%-10% modulation on it at the data frequencies.  Without the input filter, this high-

frequency residual modulation may interfere with the received data, effectively 

increasing the BER of the receiver. 
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Figure 1.08 – Layout of Local Oscillator Generator 

 

 The filtered signal is then used to injection lock a slave laser.  The output of the 

slave laser is a CW signal at the frequency of the received optical signal.  In addition, it is 

expected (and will be shown) that this CW signal is also phase coherent with the received 

optical signal [21].  This regenerated CW signal can then be used as the local oscillator 

for a homodyne receiver.  

 From this, I will demonstrate that a suitable local oscillator for a high-speed 

homodyne receiver can be generated using either a DFB or a Fabry-Perot slave laser that 

is injected with a portion of the received optical signal.  In addition, I will show that the 

injection locking process can be stabilized by monitoring the modulation transfer ratio of 

the slave laser.  Specifically, the modulation transfer ratio of an injected laser is at a 

minimum at the center of the locking range, and increases as the difference between the 

frequencies of the injected and free-running signals increase.  This effect will be shown 

in both Fabry-Perot lasers and DFB lasers.  I will also show that this effect can be 

modeled with the 1
st
 order approximations of the laser rate equations. 
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 The suitability of both Distributed Feedback (DFB) lasers (Chapter 3) and Fabry-

Perot lasers (Chapter 4) will be discussed for use as an appropriate slave laser for the 

local oscillator generator.  In addition, a novel method for stabilizing the detuning within 

the injection lock that utilizes the modulation transfer function of the slave laser will be 

discussed for both slave laser types.  Finally, in Chapter 5, the quality of the local 

oscillator signal that is generated by the injection locked Fabry-Perot laser will be 

explored. 

 

1.2.5 Relative Merits 

 The advantage of DD is that it has the highest inherent sensitivity (as seen on 

Table 1).  However, DD is also impractical at high data-rates, due to the unavailability of 

high-frequency APDs, and the impracticality of cryogenically-cooling PIN diode 

detectors.  Also, in most cases, a DD will not be shot noise limited. 

 The next most sensitive detection system is the homodyne receiver.  Due to this, it 

is the detection method that is currently being considered for this project.  In addition to 

being a sensitive method of detection this method is shot noise limited.  Unlike ADD and 

heterodyne, the homodyne signal is in the base-band.  This allows for a low-pass filter to 

limit the noise bandwidth that is equal to the signal bandwidth.  The disadvantage of this 

method is that is requires a phase tracked local oscillator signal. 

 Heterodyne detection is not being considered as a viable alternative to ADD, 

since both methods require a filter that is twice the signal bandwidth, and because a 

heterodyne receiver is much more complex than an ADD while offering no increase to 

measurement sensitivity.



 

29  

II. CHAPTER 2 – Passive Optical Filtering 

2.1 Background 

 As previously mentioned, an optical pre-filter will be placed at the input of the 

slave laser.  The purpose of this pre-filter is to average over the modulation on the 

received signal.  This will effectively reduce the residual modulation on the final local 

oscillator signal beyond what could be obtained by the slave laser alone. 

 A Fabry-Perot filter was chosen for use as the pre-filter, due to its availability 

(other filter types, such as microrings, would also serve as suitable pre-filters).  A Fabry-

Perot filter, illustrated in Figure 2.01, is a resonant optical cavity.  If an optical signal is 

incident normal to one facet of this cavity, the ratio of the transmitted signal (It) to the 

incident signal (I0) can be expressed as [22]: 

( )
( ) ( )2sin41

1
22

2

0 δRR
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I t

+−

−
=  (2.01) 

where R is the power reflectance of each facet of the optical cavity, and δ is the phase 

difference between successive round trips of the optical signal within the cavity.  From 

(2.01), it can be seen that the transmission ratio is equal to one when δ=0.  This occurs 

when the frequency of the light is approximately 

nl

mc
f

2

0=ν  (2.02) 

where n is the index of refraction of the optical cavity, l is the length of the optical cavity, 

c0 is the speed of light, and m is a positive integer. 
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Figure 2.01 – Fabry-Perot Filter with Piezoelectric Spacer 

 

 The phase difference between successive round trips can be expressed as 

approximately 

( )
0

4

c

nl mννπ
δ

−
=  (2.03) 

where ν is the optical frequency of the incident signal.  If the optical frequency of the 

received signal is close to the center frequency of the filter (the phase difference between 

successive round trips is small), then this equation can be rewritten as 

2

22

0 1

1

π
δFI

I t

+
=  (2.04) 

where F is the finesse of the filter, and is defined as 

R

R
F

−
=
1

π
 (2.05) 

  

Incident Signal Transmitted Signal 

Facets

Piezoelectric Spacer 

Oscillating Signal
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The bandwidth of this filter is defined by the FWHM of the Lorentzian function, (2.04).  

Thus, from (2.03) and (2.04), the bandwidth of the optical filter is 

nlF

c
f

4

0=∆ν  (2.06) 

 From (2.02), it can be seen that the center frequency of the filter can be varied by 

adjusting the optical path length (nl) of the cavity.  This is done by varying the spacing by 

using a piezoelectric spacer (Figure 2.01).  The size of this spacer varies due to a voltage 

that is applied across it.  Thus, the center wavelength of this filter can be adjusted by 

changing the applied voltage via a filter controller.  It should be noted that the change in 

the optical path length is assumed to be much smaller than the overall length of the 

cavity.  This is so we can neglect the effect of adjusting the optical path length on the 

bandwidth of the filter. 

 

2.2 Feedback Control of Filter 

 Due to laser drift (which typically does not exceed a drift rate of 0.1Hz over a 

range of not more than 0.2nm over the laser lifetime [33]), as well at thermal drift of the 

fiber as well as of the filter itself (whose drift rate is typically sub-kHz), it is necessary to 

have a feedback system that controls the center frequency of the filter.  Specifically, the 

feedback system is required to lock one of the modes of the Fabry-Perot filter to the 

incident optical signal in order to obtain maximum transmission. 

 If the voltage applied by the filter controller is harmonically dithered, the center 

frequency of the filter is also dithered.  Thus, the magnitude of the amplitude modulation 

at the dither frequency will be proportional to the derivative of the (Lorentzian) transfer 

function of the filter. 
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 Given this, an amplitude locking loop, as shown in Figure 2.02, can be created.  

This system starts by detecting a small portion of the output of the dithered filter.  The 

output of the detector is then used as the input to a lock-in amplifier whose reference is 

the frequency at which the filter is dithered.  The real component output (X) of the lock-

in amplifier is effectively the derivative of the transfer function of the filter, depicted in 

Figure 2.03.  From this figure, it can be seen that the derivative is nearly linear in the 

region where |ν-νm | < 10MHz.  This is the range in which the feedback loop will be able 

to maintain the filter lock.  It should be noted that a feedback loop that utilizes a lock-in 

amplifier is not the only suitable feedback control method.  Since the feedback signal is 

simply the intensity of the detector output, any feedback system that monitors (and 

maximizes) the signal from the detector is acceptable.  A lock-in amplifier is only needed 

for a feedback loop if a phase-sensitive measurement is required. 

 

Figure 2.02 – Example of Feedback System for a Fabry-Perot Optical Bandpass Filter 
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Figure 2.03 – Derivative of Transfer Function of Fabry-Perot Filter 

 

 For this feedback system, a 2kHz dither (chosen to be at least 10x faster than the 

drift rate of the filter) was added to the output of the lock-in amplifier and applied to the 

piezoelectric controller of the filter.  In addition, the lock-in amplifier was set to have a 

300ms integration time across a 6dB/octave low-pass filter. 

 In order to test the feedback loop, the output from the detector was monitored 

over a period of 10 seconds, while the filter bias was randomly varied.  From this, it was 

observed that the feedback loop successfully adjusted a mode of the Fabry-Perot laser so 

that it was approximately equal to the center frequency of the received optical signal.  
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III. CHAPTER 3 – Injection Locking a DFB Semiconductor 

Laser 

3.1 Background 

 “Injection Locking” is the process of injecting a weak seeding optical signal into a 

more powerful free-running oscillator, in order to lock the frequency of the free-running 

oscillator to approximately the same frequency as the seed.  The output of the locked 

oscillator will then be coherent (in frequency and phase) with the injected signal. 

 We assume that the particular laser that is being injection locked is a Distributed 

Feedback (DFB) laser.  A DFB laser is fabricated such that a periodic grating is etched 

close to the active region of the laser, throughout much of the gain region (Figure 3.01) 

[23].  Since only wavelengths that match the grating spacing will oscillate within the 

laser structure, unwanted modes will be effectively suppressed in a DFB laser. 

 

Figure 3.01 – Structure of a GaAlAs Double Heterojunction DFB Laser [23] 
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 To model this system, we assume that the laser can be approximated as an 

effective two-level system, consisting of a ground state and an excited state for the gain 

medium.  This medium excitation dynamic is modeled as a simplified rate equation 

which ignores  non-radiative excitation.  Furthermore, the excitation of the photon field 

can be described by a rate equation. 

 

3.1.1 Rate Equation for the Photon Field 

 For the purposes of developing an injection locking theory for a DFB 

semiconductor laser it will be assumed that the free-running oscillator is operating in 

single-mode, and the optical frequency of the injected signal is close to the frequency of 

the free-running oscillator. 

Ecir

Einj

Erefl

~

~

~

 

Figure 3.02 – Phasor Picture of Laser Cavity 

 

 To further explore the behavior of this system, we use the phasor picture depicted 

in Figure 3.02.   In this, cirE
~

 represents the total phasor amplitude of the optical wave that 

is circulating within the cavity.  cirE
~

 is comprised of both the portion of the circulating 



 

36  

field that is reflected off of the left mirror ( reflE
~

) and the injected field ( injE
~

) .  As such, 

cirE
~

 can be expressed as 

injreflcir EEE
~~~

+≡  (3.01) 

In addition, reflE
~

 can be expressed as: 

( )[ ] ( )01
~~ ωωδδ −−−−= RTcm jT

RTcirrefl eTtEE  (3.02) 

where TRT is the round-trip transit time, δm is the round-trip gain of the cavity, δc is the 

roundtrip loss of the cavity, and ω1 and ω0 are the frequencies of the injected electric field 

and the electric field inside the slave laser (respectively).  From these two equations, the 

total field at the first mirror can be expressed as: 

( )[ ] ( )
inj

jT

RTcircir EeTtEE RTcm
~~~

01 =−− −−− ωωδδ
 (3.03) 

If we assume that TRT is small, then we can use a 1
st
 order time series expansion of the 

time-delay and exponential terms of the equation to rewrite it as: 

( )
RT

inj

circir

RT

cmcir

T

E
EjE

Tdt

Ed
~

~~
~

01 =−+
−

− ωω
δδ

 (3.04) 

If we define the single-pass carrier lifetime (τc) and the unsaturated gain to loss ratio (r) 

as: 

c

RT
c

T

δ
τ

2
≡  (3.05) 

c

mjrrr
δ
δ

=+= 21  (3.06) 

then (3.04) can be written as: 
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( )
RT

inj

circir

c

cir

c

cir

T

E
EjE

r
jE

r

dt

Ed
~

~~

2

~

2

1
~

01
21 =−+−

−
− ωω

ττ
 (3.07) 

Note that r has been defined as a complex value in (3.06).  The real portion of r 

represents the unsaturated gain-to-loss ratio, while the imaginary portion represents the 

phase shift that occurs at the edge of the laser cavity.  Given this, (3.07) can be separated 

into amplitude and phase components by expressing cirE
~

 and injE
~

 as: 

0
~ φj

cir EeE =  (3.08) 

1

1

~ φj
inj eEE =  (3.09) 

where E and E1 are the magnitudes of the circulating and injected fields, and φ and φ1 are 

the phases of the circulating and injected fields, respectively.  Given this, we can express 

the change in the amplitude of the circulating electric field as: 

φγ
τ

cos
2

1
1

1 EE
r

dt

dE
e

c

=
−

−  (3.10) 

and the change in the phase of the circulating field as: 

( ) φ
γ

ωω
τ

φ
sin

2

1

01
2

E

Er

dt

d e

c

=−+−  (3.11) 

where φ is the phase difference between the injected electric field and the electric field 

inside the slave laser (φ = φ1 - φ0), γe is the photon loss rate due to external coupling 

(γe=1/TRT) 

 

3.1.2 Rate equation for two level population dynamics 

 To determine the change in the unsaturated gain, we assume that the laser is 

operating in a state of near-full population inversion.  In this case, the rate equation for 
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the excited energy level of the laser (N2) can be expressed as (ignoring non-radiative de-

excitation): 

2

2

1

22 N
I

E

T

N

dt

dN

sat

∆−−= ρ   (3.12) 

where ρ is the pump rate, T1 is the cavity lifetime, and Isat is the saturation intensity.  In 

this equation, -N2/T1 represents the change in the excited energy level of the laser due to 

spontaneous emission, and -(E
2
/Isat)∆N2 represents the change due to stimulated emission.  

If we assume a two-level system with full population inversion, then the overall gain of 

the cavity can be expressed as: 

22 NLm ∆= σδ  (3.13) 

where L and σ are the is the length and stimulated emission cross-section of the cavity, 

respectively.  Since δm is proportional to N2 and δc is independent of N2, then from (3.06) 

the unsaturated gain to loss ratio (r) is also proportional to N2.  Given (3.12), this allows r 

to be expressed as: 









+−=

satI

E

T
r

dt

dr 2

1

1
1

ρ  (3.14) 

Equations (3.10), (3.11), and (3.14) can be used to approximately describe the behavior 

of the injection locked DFB laser. 

 

3.1.3 Phase Stability Range 

 The steady-phase solution of (3.11) can be used to solve for the detuning of the 

injected optical signal with respect to the optical signal generated by the locked oscillator 

[50]: 
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( )φαφγωωω φ cossin
0

1
01 −=−=∆

P

P
e  (3.15) 

where αφ is a phase factor whose value is comprised slow thermal refractive effects and 

the linewidth enhancement factor due to high-frequency electronic effects, and P1 and P0 

are the injected and slave laser output powers, respectively (P1=E10
2
, P0=E0

2
). 

 Since these effects have opposite effects on the laser, the value of αφ is less than 

the linewidth enhancement factor of the laser.  Experimentally, it was found that αφ is 

negligible for our DFB laser and ~2 for the Fabry-Perot laser. 

 As the injected signal is detuned, the output of the slave oscillator remains at the 

frequency of the injected signal, but the phase difference between the signals varies over 

a range of -π/2 to π/2 [50].  From (3.15) and this phase limitation, the detuning must be 

within the range [50]: 

2

0

1

0

1 1 φαγωγ +<∆<−
P

P

P

P
ee

 (3.16) 

in order to maintain injection lock. 

 

3.1.4 Phase Shift of a Tracking Oscillator 

 The steady-phase solution of (3.11) can also be used to solve for the phase 

difference between the injected optical signal and the optical signal generated by the 

locked oscillator.  For cases where the value of αφ is negligible, this phase difference can 

be expressed as: 

( )







−= −

01

1

1sin ωω
γ

φ
E

E

e

 (3.17) 
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As the injected signal is detuned, the output of the slave oscillator remains at the 

frequency of the injected signal, but the phase difference between the signals varies over 

a range of -π/2 to π/2. 

 

3.2 Feedback Control of an Injection Locked DFB Semiconductor 

Slave Laser 

 In order for the regenerated local oscillator to lock in frequency with the received 

optical signal, the difference between the frequency of the received optical signal and the 

free-running frequency of the slave laser must be within a narrow range (i.e. the locking 

range).  However, due to thermal drift, the free-running frequency of the slave laser will 

vary (given a stable laser controller, this typically does not exceed a drift rate of 0.1Hz 

over a range of not more than 0.2nm over the laser lifetime [33], although circuit glitches 

may cause a temporary, rapid "drift").  In order to compensate for this drift, as well as for 

the normal frequency drift that is associated with the received optical signal (due to 

environmental drift, whose drift rate is typically sub-kHz), a feedback system to match 

these two frequencies is required. 

 In order to create this feedback system, a method of determining the difference 

between the free-running frequency of the slave laser and the frequency of the received 

optical signal is required.  As previously mentioned, when the difference between these 

two frequencies is within the locking range, the frequency of the output of the slave laser 

is equal to the frequency of the received optical signal.  Thus, there is no obvious, simple, 

direct way of determining this difference.  From (3.17), we see that the detuning can be 

indirectly measured by monitoring the phase difference between the injected signal and 
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slave laser output (assuming that αφ is negligible).  However, since a coherent receiver is 

essentially an interferometer, this phase difference can be due to either detuning, or to 

drift in the interferometer arms.  Thus, a new method for monitoring the detuning is 

required. 

 

3.2.1 Generation of a Feedback Signal 

 In order to determine a new method for generating an appropriate feedback signal, 

we must first delve deeper into the theory of injection locking.  Once we do this, we will 

find that if an amplitude modulated signal is injected into the slave laser, the resulting 

transmission ratio can be used to determine the difference between the free-running 

frequency of the slave laser and the frequency of the received optical signal. 

 

3.2.1.1 MTR as a Measure of Detuning 

 We shall show that the Modulation Transfer Ratio (MTR) is a good way to 

measure detuning.  For this, MTR is defined as the ratio of the output and input 

modulation indices, where the modulation index is defined as the ratio of the modulation 

on a given signal to its CW power.  This will be defined below as (∆E0/E0)/(∆E1/E1).  To 

calculate the MTR as a function of detuning, we must first assume that a small 

perturbation is applied to E1, E, r, and φ.  From this, we can express E1, E, r and φ as: 

1101 EEE ∆+=  (3.18) 

EEE ∆+= 0  (3.19) 

1101 rrr ∆+=  (3.20) 

2202 rrr ∆+=  (3.21) 
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φφφ ∆+= 0  (3.22) 

 Substituting E1, E, r, and φ into (3.11): 

( ) ( ) ( )φφ
γ

ωω
ττ

φφ
∆+

∆+

∆+
=−+

∆
−−

∆
+ 0

0

110

01
220 sin

22 EE

EErr

dt

d

dt

d e

cc

 (3.23) 

Expanding the sine term: 

( ) ( ) [ ]φφφφ
γ

τ
φ

ωω
τ

φ
∆+∆

∆+

∆+
=

∆
−

∆
+




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


−+− sincoscossin

22
00

0

1102
01

20

EE

EEr

dt
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d e

cc

 (3.24) 

If we assume that ∆φ and ∆E are very small, we can take the first order approximations of 

the trigonometric terms and of the denominator of the right side of the equation: 

( )

( ) ( )00

0

110

0

2
01

20

cossin1

22
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φ
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e
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 (3.25) 

Expanding the right side of the equation: 
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 (3.26) 

Regrouping in order of powers of ∆φ and using (3.11) to simplify this equation: 
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 (3.27) 

Dropping the higher order terms and letting αφ=∆r2/∆r1: 
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
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 (3.28) 

 Similarly, from (3.10) and (3.18-3.22): 

( ) ( ) ( )φφγ
τ

∆+∆+=∆+
−∆+

−
∆

+ 01100

1100 cos
2

1
EEEE

rr

dt

Ed

dt

dE
e
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 (3.29) 

Following the method for deriving (3.28), we get: 

( )01001

10

0
1 sincos
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1

2
φφφγ

ττ
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−

∆
−

∆
EEE
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E
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Ed
e
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 (3.30) 

 Additionally, from the real part of (3.14) and (3.19-3.21): 

( ) ( )









 ∆+
+∆+−=
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+

satI

EE

T
rrP

dt
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2
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1

110
110 1

1
 (3.31) 

Once again following the method for deriving (3.28), we get: 








 ∆+∆
+∆−=

∆

satI

rEErE
r

Tdt

rd 1

2

0100

1

1

1 21
 (3.32) 

 Equations (3.28), (3.30), and (3.32) describe a set of linearized equations that are 

approximately equivalent to equations (3.11), (3.12), and (3.14) to the 1
st
 order.  Given 

these equations, and the assumption of a harmonic driving force, we shall derive an 

expression for the MTR, correct to the first order.  Thus, if a harmonically modulated 

signal is injected into a free-running oscillator, the perturbation on its electric field can be 

given as: 

tjAeE Ω=∆ 1  (3.33) 

where A and Ω are the magnitude and frequency of this perturbation, respectively.  From 

this, it can be assumed that resulting perturbation on E, φ, and r1 is of the form: 

tjBeE Ω=∆  (3.34) 
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tjCe Ω=∆φ  (3.35) 

tjDer Ω=∆ 1  (3.36) 

where B, C, and D are the magnitudes of the 1
st
 order component of the perturbation on 

E, φ, and r1 respectively.  Note that the MTR is simply (B/A)*(E1/E).   

 Substituting the results from (3.34-3.36) into (3.28), (3.30), and (3.32) results in 

the following three equations: 


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
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−Ω  (3.39) 

 

3.2.1.1.1 Solving for 1
st
 Order Perturbation on r 

 If we solve for D using (3.37), we get: 
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This equation can then be rewritten as: 
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3.2.1.1.2 Solving for 1
st
 Order Modulation Transfer Ratio of Locked Oscillator 

 If we solve for C using equation (3.38), we get: 
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Additionally, solving (3.39) for C results in: 
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Equating (3.42) and (3.43) gives us: 
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Rearranging this equation results in: 
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which can be further rearranged to: 
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 (3.46) 

Then, if we make the substitution in (3.41), we get: 
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which can be further simplified with the steady-state solution of (3.10): 
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From this, the 1
st
 order MTR can be stated as: 
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If it can be assumed that γe>>Ω (typically γe  ~10
11
) and that the modulation frequency is 

sufficiently low so that T1Ω<<1 (typically true for modulation frequencies below 

10MHz), (3.48) can be simplified: 
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which can be further simplified with (3.15):  
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Also, for the case of a DFB semiconductor laser, it was experimentally found that the 

value of αφ≈0.  As such, the MTR for the DFB semiconductor laser can be further 

simplified to: 
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 (3.51) 

 

3.2.1.1.3 Numerical Modeling 

 Given the equation for MTR, we numerically simulate the behavior of this system 

and present the results graphically.  For this, we assume typical constraining values.  
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Specifically, we assume that the effective saturation intensity of the slave laser is 0dBm, 

the perturbation on the injected intensity is 10%, the unsaturated cavity gain to loss ratio 

(r when E=0) is 2, the cavity lifetime (τc) is 150p
 
s, the carrier lifetime (T1) is 1ns, the 

photon loss rate (γe) is 8*10
9
 s
-1
, the pump rate (ρ) is equal to 2*109 s-1, and the phase 

factor (αφ) is equal to 0 (experimentally determined). 

 Additionally, in order to perform these simulations, values for E0 and r1 must be 

determined from the steady state solutions of (3.10) and (3.14).  The steady state solution 

of (3.14), after some rearrangement, results in: 
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 Substituting this into the steady state solution of (3.10) results in: 
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From (3.53), E0 can be solved numerically.  r0 is determined by (3.14) using the 

numerical value obtained for E0: 
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 Figure 3.03 depicts: 
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over the locking range of the slave laser.  This ratio was plotted for various modulation 

frequencies (Ω).  From this figure, a distinctive “U” shape can be seen over the locking 
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range.  Additionally, it should be noted that when this “U” shape was plotted at various 

modulation frequencies (below 10MHz), all of the curves were found to be graphically 

indistinguishable from each other.  This indicates that, as was predicted by (3.51), the 

MTR of the slave laser is weakly dependant of the modulation frequency. 

 

Figure 3.03 – 1
st
 Order Modulation Transfer Ratio vs. Frequency Offset (At Various 

Modulation Frequencies [Hz]) 

 

 Figure 3.04 depicts this ratio for various injected intensities.  As can be seen from 

this figure, although the minimum of the “U” shape is less than one (indicating a 

suppression of the modulation of the injected signal) it does not go to zero.  Instead, this 

minimum value is approximately proportional to the intensity of the injected master 

signal (at low modulation frequencies). 
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Figure 3.04 – 1
st
 Order Modulation Transfer Ratio vs. Frequency Offset (At Various 

Injected Powers) 

 

3.2.1.1.4 Experimental Verification of the Injection Locking Theory 

 Figure 3.05 depicts the experimental setup used to monitor the magnitude of 

modulation on the optical signal that is emitted from the slave laser.  In this setup, a CW 

signal from a tunable laser is externally modulated via a Mach-Zehnder Interferometer, 

the modulation depth of which is ~7% (chosen to model the modulation suppression due 

to an optical pre-filter).  This provides the signal to which the slave laser will be locked.  

The DC bias of the external modulator is adjusted so that no detectable higher order 

harmonics are present on the output (2
nd
 harmonic is <50dBm).   The signal is directed 

into the slave laser via a circulator, and the circulator redirects the signal from the slave 

laser to an optical detector. 
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 The signal generated by the detector is lock-in amplified and referenced to the 

modulator’s drive signal.  The lock-in amplifier filter was integrated over 0.3ms by a 

24dB/octave low-pass filter.  The amplitude of the amplified signal is then recorded by an 

oscilloscope.  In order to detect the change in the magnitude of the modulated signal over 

the entire locking range, the free running frequency of the slave laser is sinusoidally 

swept across the locking the entire locking range at a frequency of 20Hz.  This is 

accomplished by modulating the current source of the slave laser. 
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Figure 3.05 – Layout of Injection Locking Experiment 

 

 Figures 3.06 and 3.07 depict the change in the magnitude of the modulation out 

over the locking range, as seen on the oscilloscope following the lock-in amplifier.  From 

this, it can be seen that the lock-in amplifier/oscilloscope combination shows the same 

behavior as was predicted by the theory.  It should be noted that the curvature of the “U” 

shape remains fairly constant for modulation frequencies below 5MHz. 



 

52  

Modulation Transfer Function vs. Frequency Offset
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Figure 3.06 – 1
st
 Order Modulation Transfer Ratio vs. Frequency Offset (At Various 

Modulation Frequencies) 

Modulation Transfer Function vs. Frequency Offset
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Figure 3.07 – 1
st
 Order Modulation Transfer Ratio vs. Frequency Offset (At Various 

Injected Powers) 
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3.2.2 Varying the Free-Running Frequency of the Slave Laser  

 Before the MTR’s dependence on detuning can be utilized by a feedback loop, a 

method for adjusting the free-running frequency of the slave laser is required.  This 

frequency adjustment can be done in one of two ways.  First, adjusting the temperature of 

the slave laser will affect the length of the optical cavity, due to thermal expansion.  

However, since the peltier cooler that is used to control the temperature is coupled to the 

slave-laser casing, the entire package needs to achieve thermal equilibrium before the 

free-running frequency of the slave laser can stabilize.  Since the package has a huge heat 

capacity, changing the free-running frequency of the slave laser in this way is a slow 

process.  This effectively limits the frequency at which the free-running frequency of the 

slave laser can be dithered. 

 The other way to adjust the free-running frequency of the slave laser is to change 

its drive current.  As the drive current of the slave laser increases, the free electron 

concentration also increases.  Since the index of refraction of a material is dependant on 

its free electron concentration [25], changing the free electron concentration of the laser 

medium effectively changes its optical path length, thereby changing the free-running 

frequency of the of the slave laser.  This is a much faster process than varying the 

temperature, since its speed is only limited by the rate at which carriers can be generated.  

However, changing the drive current of the slave laser will also change the output power 

of the slave laser.  This may not be desired, since the locking range is proportional to the 

square root of the ratio of the slave laser intensity to the intensity of the received optical 

signal.  Thus, if the free-running frequency of the slave laser is dithered by modulating 

the drive current of the slave laser, the amplitude of this modulation must be kept small 



 

54  

enough to ensure that the change in the output power of the slave laser is much smaller 

than this output power. 

 

3.2.3 Creating the Feedback Control System for the Injection Lock 

 As shown in Sections 3.2.1.1.3 and 3.2.1.1.4, the modulation transfer ratio of a 

laser that is locked to a modulated optical signal is essentially “U” shaped.  If the free-

running frequency of the slave laser is then dithered by modulating its drive current, then 

similar to the filter feedback loop presented in 2.2, the amplitude of the modulation on 

the output from the slave laser at the dither frequency will be proportional to the 

derivative of the “U” shape (depicted in Figure 3.08). 
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Figure 3.08 - Derivative of “U”-shape 
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3.2.3.1 Analog feedback control 

 The simplest feedback control loop is an analog control loop, depicted in Figure 

3.09.  For this, the received optical signal is modulated (with a modulation depth of M, 

typically ~0.1), and injected into the slave laser.  If we allow the modulation transfer ratio 

of the slave laser to be defined by F(ν) (where ν(t) is the total detuning at a given time t), 

then the modulation intensity on the output of the slave laser will be PoutMF(ν), where 

Pout is the output of the slave laser (typically ~1mW).  This signal is then detected (the 

product of the detector sensitivity and any associated transimpedance gain, D, is ~2*10
4
 

V/W) and diverted to lock-in amplifier #1.  The output of lock-in amplifier #1 is the 

magnitude of the modulation on the input signal, multiplied by a constant gain g1 

(typically 30-40dB).  As such, the output of lock-in amplifier #1, denoted as y(t) can be 

expressed as: 

( ) ( )νFDMPgty out ⋅⋅⋅⋅= 1  (3.56) 

The output of lock-in amplifier #1 is diverted to lock-in amplifier #2, whose output 

(denoted as x(t)) can be expressed as: 

( )
( )

( ) ( )( ) ττττ
τ

dyegtx lod

t

T

t

−Ω= ∫
∞−

−−

sin2  (3.57) 

where g2 is the gain of lock-in amplifier #2 (typically 40-60dB), Tl is the integration time 

of lock-in amplifier #2, and τlo is a delay set by the lock-in amplifier to match the phase 

of the modulation on the input. 



 

56  

Optical Signal Slave 

Laser

Laser 

Controller
K

Lock In Amp

Lock In Amp

Detector 

(D)

Modulator 

(M)

Bias (V0)

V

+

Pout

( )

( ) ( )( ) τττττ
τ

dyeg lo

t

T

t

−Ω−∫
∞−

−−

sin22

( )( )tFg ν1

x(t)

y(t)

Magnitude Out

In-Phase Out

 
Figure 3.09 – Layout of Analog Feedback Loop 

 

 The output of lock-in amplifier #2 is added to both a bias voltage and dither 

signal, and this combined signal is used to drive the slave laser.  For the purposes of 

modeling this system, the effect of the components within the dashed box in Figure 3.09 

are treated as a constant K [41] (whose value is experimentally found to be ~10
9
 Hz/V).  

As such, ν(t) can be defined as: 

( ) ( ) ( ) ( )00 sin τνν −−Ω+= tKxtatt d  (3.58) 

where ν0 is the detuning due to the drift of the laser, a is the detuning due to the dither, 

and τ0 is the loop delay.  Combining (3.56) and (3.58) results in: 
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 (3.59) 

If we then combine (3.57) and (3.59), assume ν0(t)>>a, and define g=g1g2 (overall gain 

due to lock-in amplifiers), we get: 
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If we assume that ν0 and x vary slow compared to the dither period and τlo is set equal to 

zero: 
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For a small ∆t, and assuming that ν0(t) is nearly constant over a time Tl (Tl>>τ0>>∆t): 
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Substituting with (3.61): 
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Expanding the exponentials to the 1
st
 order: 
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Let G=PoutMDKga/2: 
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If τ0 is small, then: 
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Combining (3.69) and (3.70): 
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As ∆t→0, and assuming T>>τ0: 
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3.2.3.1.1 Modeling the Analog Feedback Loop 

 To model the behavior of the analog feedback loop we must first observe that 

equation (3.51) may be approximated by the inverse of a second order polynomial, i.e.: 
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Thus, (3.72) can be expressed as: 
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If we then define z(t), such that: 

dt

d
z

ν
=  (3.75) 

(3.74) can be expressed by a set of two first order equations: 

( ) 













++

+
+








+++








+−=

22
00

00

0

2

0

2

00

21

CBA

BAG

Tdt

d

dt

d

T

z

dt

dz

νν

ν
ττ

νν
τ

ν
τ
ν

τ
 (3.76) 

z
dt

d
=

ν
 (3.77) 

This set of equations can be solved in MatLab, given an assumed function for ν0. 

 To test the effectiveness of the analog feedback system, we first assume that the 

free-running frequency of the slave laser is drifting at a constant rate (i.e. d
2ν0/dt

2
=0, 

dν0/dt=constant).  Given this, we can determine the detuning of the injection lock over 

time.  The detuning over time of the slave laser is depicted in Figure 3.10, given various 
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drift rates and for g=70dB and g=100dB (the typical range for g).  From these plots, it can 

be seen that the analog feedback loop can only maintain the detuning to within 10MHz 

given drift rates of less than 40MHz/ms.  As such, analog feedback is only appropriate 

for systems that are very stable.  However, if drift rates >40MHz/ms are expected, either 

due to thermal instability in the slave laser or electrical glitches in the laser controller, an 

improved feedback control system is required. 

 

Figure 3.10 – Simulated Performance of Analog Feedback 

 

3.2.3.2 Digital feedback control 

 To improve the analog feedback system, we implement a digital feedback system, 

as depicted in Figure 3.11.  This feedback system is similar to the analog feedback 

system, except that the output of lock-in amplifier #2 is used by a digital control circuit to 

set the digital bias to the slave laser.  This digital control circuit consists of a threshold 
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circuit, which controls a counter circuit.  The output of the counter circuit is used by a 

D/A converter, whose output is used to bias the slave laser. 
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Figure 3.11 – Layout of Digital Feedback Loop 

 

 With the addition of the digital control circuit, detuning over time can be 

expressed as (assuming small a): 

( ) ( ) ( ) ( ) ( )( )( )12 000 −−∆−−=∆+−∆+ τννννν txUtttttt sss  (3.78) 

where ∆ts is the clock period of the digital circuit (typically 100ns), ∆νs is the step size of 

the digital offset applied by the circuit (typically 1MHz), and U(x) is a step function that 

returns 0 if x≤0 and 1 if x>0.  From (6), this becomes: 
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The output of the digital circuit is constant over a range of m∆ts<t<(m+1)∆ts, such that 'm' 

is an integer.  If we then let t=n∆ts, then (3.79) can be expressed as: 
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If we let ∆ts>>τ0 (typically T/10 <∆ts<T and T>>τ0), we can express this as a discrete 

function: 
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Since U(x) is a step function, (3.82) can be simplified to: 
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If ∆ts is small, or if the frequency drift is linear (i.e. dν0/dt is constant), (3.83) can also be 

expressed as: 
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 To test the effectiveness of the digital feedback system, we first assume that the 

free-running frequency of the slave laser is drifting at a constant rate (i.e. d
2ν0/dt

2
=0, 

dν0/dt=constant).  Given this, we can determine the detuning of the injection lock over 

time.  The detuning over time of the slave laser is depicted in Figure 3.12 for both the 
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analog and digital feedback loops.  The analog feedback loops were tested for drift rates 

ranging from 0.1MHz/ms to 1GHz/ms.  The digital feedback loop was tested at 

1GHz/ms, since the digital feedback loop is equally effective for all drift rates that do not 

exceed ∆νd/∆td.  From this figure, is apparent that the digital feedback system is capable 

of maintaining the detuning to within the digital step size (i.e. 1MHz). 

 

Figure 3.12 – Comparison of Performance for Analog and Digital Feedback 

 

 The advantage of the digital feedback loop is its ability to track large drift rates.  

In addition, the effectiveness of the digital feedback loop is independent on the overall 

gain of the feedback loop (due to lock-in amplifier gains and other amplifiers).  However, 

this benefit comes at the cost of time added complexity to the feedback system (although 

the overall design is simple, and can be assembled with COTS components).  Also, the 

digital feedback loop will always maintain detuning to within the digital step size, with a 
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mean error of ∆νs/2.  As such, an analog feedback system may be a more effective 

solution if large drift rates are not expected.  However, the error of the digital feedback 

system may also be improved by using a variable step size, in which the value of ∆νs is 

automatically decreased as detuning decreases.  This improved digital feedback system 

will be explored in more detail for future projects. 

 

3.2.3.3 Implementation of a Digital Feedback Loop 

 Since we use COTS components for the implementation of this LO generator, it 

may susceptible to both thermal instability or electrical glitches.  As such, the feedback 

system explored for this experiment is the digital feedback loop, as depicted in Figure 

3.13.  Similar to the setup depicted in Figure 3.05, a modulated CW signal 

(approximately a 5% modulation depth at a frequency of 1MHz) is directed into the slave 

laser via a circulator.  A 50Hz sinusoid is applied to the bias port of the slave laser 

controller that effectively tunes the free-running frequency of the slave laser over ~10% 

of the locking range.  
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Figure 3.13 –Layout of Automated Injection Lock 

 

 A second lock-in amplifier operated as a saturating comparator and a digital level 

crossing counter are added to implement non-linear feedback.  This second lock-in 

amplifier, whose reference signal is the 50Hz sinusoid that was used to modulate the free-

running frequency of the slave laser, integrates the signal over 1.0s across a 6dB/octave 

band-pass filter, and is set to maximum sensitivity (300nVrms).  Thus, instead of 

producing the derivative of the “U”-shape, the in-phase output of this lock-in amplifier 

will be a large, positive (negative) voltage when the difference between the free-running 

frequency of the slave laser and the frequency of the master laser is positive (negative).  

This signal is then directed to the control circuit (a similar circuit is depicted in Figure 

6.06), which utilizes a binary counter to keep track of the offset that it applies to the laser 

controller.  The counter will be incremented (decremented) if the input from the 2
nd
 lock-
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in amplifier is greater (less) than zero volts.  The output of this counter is then converted 

to an analog voltage, via a D/A converter.  This analog voltage is then added to the bias 

port of the slave laser controller. 

 In order to test the stability of the feedback loop, the output from Lock-In 

Amplifier #1 was monitored over a period of 5 minutes.  The output from this lock-in 

amplifier is a function of frequency difference between the received optical signal and the 

free-running frequency of the slave laser, and thus is a good indicator of the effectiveness 

of the feedback loop. 

 The DFB laser used in this experiment is thermally unstable.  As such, it’s free-

running frequency will randomly drift in and out of the locking range.  Thus, the 

unlocked output of Lock-In Amplifier #1 over the course of 5 minutes will look like what 

is depicted in Figure 3.14.  Figure 3.15 shows this same output, with the feedback loop 

activated.  From this, it can be seen that the feedback loop successfully adjusts the free-

running frequency of the slave laser so that it is consistently within the locking range.  
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Figure 3.14 – Output of Lock-In Amplifier #1 Without Feedback 
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Figure 3.15 – Output of Lock-In Amplifier #1 With Feedback 

 

 From this it was found that, for a -31dBm injected signal with a modulation 

frequency of 1MHz, the difference between the free-running frequency of the slave laser 

and the frequency of the master laser was maintained within ~40% of the full locking 

range.  As a result, the phase difference between the injected signal and the output of the 

slave laser was approximately ±22º (calculated by monitoring the output voltage from the 

first lock-in amplifier and assuming a one-sided locking range of 90º).  This also 

translates to a modulation depth ratio that ranges from ~3.75*10
-5
 to ~9.38*10

-4
.  Since 

this phase variation is slow (verified later in Section 5.2.2.5 as sub kHz), it can be 

compensated for with a phase lock loop. 
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IV. CHAPTER 4 – Injection Locking a Fabry-Perot  

Semiconductor Laser 

4.1 Background 

 An alternative to using a DFB semiconductor laser for the slave laser is to use a 

Fabry-Perot laser.  A Fabry-Perot laser differs from a DFB laser in that a Fabry-Perot 

laser can have multiple modes oscillating within the cavity [23, 26]. 

 There are two distinct advantages for using a Fabry-Perot semiconductor laser, as 

opposed to a DFB, as the slave laser.  First, a Fabry-Perot laser is capable of 

accommodating a much larger range of master laser wavelengths than a DFB laser. 

Second, Fabry-Perot lasers generally are much simpler to fabricate than DFB lasers, and 

therefore much cheaper to produce. The tuning range of a DFB laser is limited by the 

range of the Bragg-grating reflectors, typically only 2nm.  Whereas, a Fabry-Perot laser 

can be injection locked to any frequency that is within the gain region of the laser (typical 

width is 5-10nm), as long as it is tuned close to one of its modes.   

 

4.2 Modeling an Injection Locked Multi-Mode Slave Laser 

 When modeling the behavior for an injection locked DFB semiconductor laser, it 

was assumed that only one laser mode was allowed to oscillate within the cavity.  

However, in the case of a Fabry-Perot semiconductor laser, this is no longer always the 

case.  Therefore, the multi-mode system can be described by the following four rate 

equations: 
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Three of these equations have been adopted from Chapter 3, and (4.03) has been added to 

describe the unwanted modes.  EL is the amplitude of the combined electric fields of the 

unwanted modes and EL1 is the injected electric field due to ASE (either from the slave 

laser, or from an external EDFA).  Otherwise (4.03) is identical to (4.02) in form. 

 Since the equation for (4.01) is the same as (3.11), the previously derived 

equation describing the locking range, (3.16), is the same for the case of a multi-mode 

slave laser.  Also, equation (3.17) still accurately describes the behavior of the phase 

difference between the injected signal and the optical signal generated by the locked 

oscillator as the injected signal is tuned across the locking range. 

 

4.3 Feedback Control of an Injection Locked Fabry-Perot 

Semiconductor Slave Laser 

4.3.1 Generation of a Feedback Signal 

 As was the case for the DFB laser, the modulation transfer characteristic for the 

Fabry-Perot laser can be used as a feedback control signal. 

 In order to determine the modulation transfer function for a multi-mode slave 

laser, we introduce a small perturbation onto E1, E, EL1, EL, r, and φ.  Following the 
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method used in Section 3.2.1.1, E1, E, r, and φ are still represented by (3.18-3.22), and 

EL1, EL, can be expressed as: 

1101 LLL EEE ∆+=  (4.05) 

LLL EEE ∆+= 0  (4.06) 

 Since equations for E1, E, r, and φ remain unchanged, then d∆φ/dt is described by 

(3.28), and the regenerated field (d∆E/dt), is described by (3.30).  Additionally, (4.03) 

yields to the first order, after simplification: 
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Also, from (4.04), the equation for d∆r/dt has become: 
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 A harmonically modulated signal is injected into the free-running Fabry-Perot 

oscillator.  As such, one can assume that the perturbation on its electric field can be given 

as: 

tjAeE Ω=∆ 1  (4.09) 

where A and Ω are the magnitude and frequency of the driving perturbation, respectively.  

From this, it can be assumed that resulting perturbation on E, φ, and r is the same was 

defined in (3.34-3.36), and the perturbation on EL is of the form: 

tj

LL eBE Ω=∆  (4.10) 

where BL is the magnitude of the 1
st
 order component of the perturbation on EL.  

Additionally, it is assumed that there is no perturbation on the ASE (∆EL1=0). 

 Thus, the equivalent set of equations for D, C, B, and BL are: 
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 The equation for D differs from (3.37) in that it is now a function of BL and ELO, as 

well as of B and E0.  The equations for B and C remain unchanged from (3.39) and (3.38), 

respectively. 

 

4.3.1.1 Establishing a Relationship Between the Electric Fields of the Main and 

Unwanted Modes 

 If we solve for the steady-state solutions of (4.02) and (4.03), we get: 
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These two equations can then be combined to yield: 
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4.3.1.2 Solving for the 1
st
 Order Perturbation on r 

 If we solve for BL using (4.14), we get: 
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If we then substitute this equation into (4.11), we get: 
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which can be re-written as: 
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Note that when the amplitude of the electric fields of the unwanted modes (ELO) is equal 

to zero, this equation reduces to (3.41). 

 

4.3.1.3 Solving for the 1
st
 Order MTR of the Injection Locked Fabry-Perot Laser 

 As before, we can determine the expression for MTR by substituting the 

expression for D/B into (3.46): 
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If it can be assumed that γe>>Ω (typically γe  ~10
11
) and that the modulation frequency is 

sufficiently low so that T1Ω<<1 (typically true for modulation frequencies below 

10MHz), (4.22) can be simplified: 
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In addition, if the slave laser is strongly locked, the effect from the unwanted modes 

becomes negligible.  For this case, (4.23) can be restated as: 
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 (4.24) 

which can be simplified with the use of (3.15): 
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4.3.1.4 Numerical Modeling 

 Given the equation for MTR, we numerically simulate the behavior of this system 

and present the results graphically, the code for which is presented in Appendix B.  As 

constraining values, we assume that the effective saturation intensity of the slave laser is 

10dBm, the perturbation on the injected intensity is 10%, the unsaturated cavity gain to 

loss ratio (r when E=0) is 2, the cavity lifetime (τc) is 110ps, the carrier lifetime (T1) is 

1ns, the photon loss rate (γe) is 1*10
10
 s
-1
, and the pump rate (ρ) is 2*109 s-1.  The values 

for E0, EL0, and r are determined from (4.02-4.04).  In addition, it was experimentally 

found that the unwanted modes were sufficiently suppressed for us to assume that EL0≈0, 

and that αφ≈2 for our Fabry-Perot slave laser. 

 Figure 4.01 depicts the MTR of the Fabry-Perot slave laser (over the locking 

range), plotted for various modulation frequencies (Ω).  This figure depicts a limited "U"-

shaped MTR over the locking range.  The limit of the U-shape on the left side of the 

graph is a direct result of the effect of αφ (the MTR is "U"-shaped when αφ=0).  The non-

zero value of αφ also causes the detuning at which the minimum of the U-shape occurs to 

become non-zero.  Additionally, it should be noted that when this “U” shape was plotted 

at various modulation frequencies (below 10MHz), all of the curves were found to be 

graphically indistinguishable from each other.  This indicates that, as was predicted by 

(4.25), the MTR of the slave laser is weakly dependant of the modulation frequency. 



 

75  

 Figure 4.02 depicts this ratio for various injected intensities.  As can be seen from 

this figure, although the minimum of the “U” shape is less than one (indicating a 

suppression of the modulation of the injected signal) it does not go to zero.  Instead, this 

minimum value is approximately proportional to the intensity of the injected master 

signal (at low modulation frequencies and low injected noise levels).  Thus for the case of 

a multi-mode slave laser, other than some differences between the overall “U”-shape (due 

to the effect of αφ), there is no appreciable difference between the behavior as the 

injected power is varied. 

 

Figure 4.01 – 1
st
 Order Modulation Transfer Ratio vs. Frequency Offset (At Various 

Modulation Frequencies) 
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Figure 4.02 – 1
st
 Order Modulation Transfer Ratio vs. Frequency Offset (At Various 

Injected Powers) 

 

4.3.1.5 Experimentally Verifying the Injection Locking Theory 

 To confirm these theoretical results, the setup depicted in Figure 4.03 was 

assembled.  Similar to the setup depicted in Figure 3.05, a CW with a 10MHz modulation 

applied to it (with ~10% modulation depth) is diverted by Circulator #1 into the slave 

laser, which also diverts the output of the slave laser to Circulator #2.  Circulator #2 

directs the output from the slave laser into a Bragg grating, whose center frequency is the 

same as the frequency of the master laser.  The output from the Bragg grating is then 
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directed to an optical detector.  Additionally, the signal reflected by the Bragg grating is 

re-directed by Circulator #2 to another detector. 

 

Figure 4.03 – Layout of Injection Locking Experiment 

 

 The output from the detector that monitors the signal transmitted through the 

Bragg grating is proportional to the intensity of the unwanted modes, while the output 

from the detector that monitors the signal reflected by the Bragg grating (port 3 of 

Circulator #2) is proportional to the intensity of the main mode.  The purpose of 

monitoring the unwanted modes is simply for the purposes of comparison with 

monitoring the MTR of the main mode, and is presented in Section 4.3.4. 

 The output of the detector that monitors the main mode is directed to a lock-in 

amplifier whose reference signal is the same as the modulation frequency that was 

applied to the master laser signal (10MHz).  For this, the lock-in amplifier is at a 
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sensitivity of 30mV[rms], with its filter disabled.  Thus, the real-component ([X
2
+Y

2
]
1/2
) 

output of the lock-in amplifier is proportional to the magnitude of the modulation at the 

10MHz modulation frequency that is on the portion of the output of the slave laser that is 

at the optical frequency of the master laser. 

 In order to detect the change in both the magnitude of the modulated signal and 

the power level of the unwanted modes across the entire locking range, the free-running 

frequency of the slave laser is slowly swept across a 3GHz range, by adding a 50Hz 

sinusoidal modulation to the current source of the slave laser.  This setup allows for both 

the modulation transfer ratio and the power level of the unwanted modes to be measured 

before the laser has a chance to drift. 

 

4.3.2 Varying the Free-Running Frequency of the Slave Laser 

 Before the MTR’s dependence on detuning can be utilized by a feedback loop, a 

method for adjusting the free-running frequency of the slave laser is required.  As was the 

case with the single-mode slave laser, the frequency of the multi-mode slave laser is 

tuned by changing the control current.  However, the Fabry-Perot slave laser that was 

used in this experiment requires 10 times the current required by the DFB laser.  Also, a 

different laser controller was desired in order to allow us to more easily add modulation 

to the drive current.  Thus, a current source needed to be designed and assembled for this 

purpose. 

 The circuit for generating the driving current for the Fabry-Perot slave laser is 

depicted in Figure 4.04.  In this circuit, the current provided by the 5V source is used to 

control the Fabry-Perot laser.  The magnitude of this current is equal to the current 
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entering the collector of the transistor, which in turn is determined by the current leaving 

the emitter of the transistor.  The emitter current is controlled by the output voltage of the 

top-right op-amp, and by the value of the resistors that separate the emitter from ground.  

The output of this op-amp is proportional to the sum of the 50Hz dither signal, the output 

from the lock-in amplifier, and a bias voltage.  The “optional additional modulation” is 

for testing purposes, and will be explained later.  The values of the resistors can be 

changed via a jumper select.  This way, the maximum current that can be provided by the 

circuit can be switched between 40mA and 400mA.  Also, the +5V, +15V, and –15V 

sources are connected to ground via a 0.1uF capacitor and a polarized 4.7uF capacitor in 

parallel.  This filters the ripple from the power supplies, which in turn reduces the 

number of glitches in the circuit. 

+5V In+5V In

GND InGND In

+15V In+15V In

-15V In-15V In

LM348N

1

2

3

4

5

6

7 8

9

10

11

12

13

14

-

+

-

+

+

-

+

-

V
+

V
-

LM348N

1

2

3

4

5

6

7 8

9

10

11

12

13

14

-

+

-

+

+

-

+

-

V
+

V
-

2N6254

56 560

56 560

Jumper Select

Laser Anode

Laser Cathode

50Hz Dither50Hz Dither

Optional Additional ModulationOptional Additional Modulation

Bias VoltageBias Voltage

Lock-In Amplifier OutputLock-In Amplifier Output

1k

1k

1k

1k

1k

0.1uF 4.7uF

0.1uF 4.7uF

_

+

+

_

0.1uF 4.7uF

+

_

 

Figure 4.04 – Fabry-Perot Laser Controller  
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4.3.3 Modeling the Modulation Transfer Ratio of the Slave Laser 

 Figures 4.05 and 4.06 depict the modulation transfer ratio of the slave laser over 

the full locking range, as seen on the oscilloscope following the lock-in amplifier.  

Similar to what is predicted in the theory, the minimum value of this limited “U”-shape is 

approximately proportional to the intensity of the injected master signal (at low 

modulation frequencies).  Also, it should be noted that the curvature of the MTR remains 

fairly constant for modulation frequencies below 5MHz.  The small variation in these 

limited “U”-shapes at the different frequencies is due to noise in the control circuit of the 

slave laser. 

 

Figure 4.05 – 1
st
 Order Modulation Transfer Ratio vs. Frequency Offset (At Various 

Frequencies) 
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Figure 4.06 – 1
st
 Order Modulation Transfer Ratio vs. Frequency Offset (At Various 

Injected Powers) 

 

4.3.4 Suppressing the Unwanted Modes in the Slave Laser 

 Several oscillatory modes may be present in a free-running Fabry Perot Laser.  

Injection locking the Fabry-Perot laser will help to suppress these unwanted oscillatory 

modes, as is seen in Figure 4.07. 
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Figure 4.07 - Frequency Spectrum of Unlocked (left) and Locked (right) Fabry-Perot 

Laser 

 

 Figure 4.08 shows both the modulation transfer ratio and the intensity of the 

unwanted modes across the locking range (normalized to each other).  As can be seen 

from this graph, the intensity of the unwanted modes remains at nearly a minimum while 

inside the locking range.  Additionally, it exhibits a threshold-like transition at the edge 

of the locking range.  Since there is not necessarily a gradual change in the intensity of 

the unwanted modes with detuning, this intensity can be used as a binary indicator to see 

whether or not the slave laser is locked, but not as an alternative to the modulation 

transfer function as a feedback signal. 
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Figure 4.08 - Modulation Transfer Ratio and Intensity of Unwanted Modes Across 

Locking Range 

 

4.3.5 Creating the Feedback System for the Injection Lock 

 Similar to what was seen in the case of a DFB slave laser, the modulation transfer 

ratio of a laser that is locked to a modulated optical signal is essentially “U” shaped.  If 

the free-running frequency of the slave laser is then dithered by modulating its drive 

current, then the amplitude of the modulation on the output from the slave laser at the 

dither frequency will be proportional to the derivative of the “U” shape.  Also, as was the 

case with the DFB laser, this derivative will be used as an input threshold for a digital 

feedback loop. 

 Figure 4.09 depicts the setup of the digital feedback loop.  This setup is very 

similar to the one used to stabilize the DFB slave laser (Figure 3.09).  In this, a modulated 

optical signal (approximately a 10% modulation depth at a frequency of 1MHz) is 

Modulation on Output

Power Level on

Unwanted Modes

Modulation Output and Intensity of Unwanted Modes

across Locking Range (from Oscilloscope)
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amplified by an EDFA before being directed into the slave laser via a circulator.  The 

EDFA is required, since a higher injected signal is required to effectively suppress the 

unwanted modes of the Fabry-Perot slave laser.  A 50Hz sinusoid is applied to the bias 

port of the slave laser controller that effectively tunes the free-running frequency of the 

slave laser over ~10% of the locking range.  
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Figure 4.09 –Layout of Automated Injection Lock 

 

 Circulator #1 redirects the signal emitted from the slave laser to Circulator #2, 

which directs the signal into a Bragg Grating (as was done in the setup depicted in Figure 

4.04).  In this case, the purpose of the Bragg grating is to filter off the background ASE 

emitted by the EDFA (a Fabry-Perot filter could also have been used for this purpose).  
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Also, although not shown in the figure, the signal that is transmitted through the Bragg 

grating may be used to monitor the effectiveness of the feedback control loop. 

 Circulator #2 redirects the signal reflected by the Bragg grating to an optical 

detector, whose output is directed to the input of a lock-in amplifier whose reference 

signal is the signal that is driving the amplitude modulator this lock-in.  The output of the 

amplitude port of the lock-in amplifier is directed to a second lock-in amplifier, whose 

reference signal is the same 50Hz sinusoid that was used to modulate the free-running 

frequency of the slave laser (the setting for both lock-in amplifiers are summarized in 

Table 2).  This second lock-in amplifier is set to maximum sensitivity so that it saturates.  

Thus, the in-phase output of this lock-in amplifier will be a large, positive (negative) 

voltage when the difference between the free-running frequency of the slave laser and the 

frequency of the master laser is positive (negative). 

Lock-In Amplifier #1 Lock-In Amplifier #2

Filter Type 24dB/oct Low Pass 6dB/oct Bandpass

Integration Time 300us 300ms

Sensitivity Variable 300nVrms  

Table 2 – Lock-In Amplifier Settings for Fabry-Perot Feedback 

 

 This signal is then directed to the control circuit, the layout of which is depicted in 

Figure 4.10.  The output voltage of this control circuit will step up (down) if the input 

from the 2
nd
 lock-in amplifier is greater (less) than zero voltage.  The control circuit 

output is then added to the bias port of the slave laser controller. 
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Figure 4.10 – Control Circuit for Fabry-Perot Laser 

 

 In order to test the effectiveness of the feedback loop, the intensity of the 

unwanted modes was monitored over a period of 50 seconds.  As discussed in Section 

4.3.4, the intensity of the unwanted modes can be used to indicate if the slave is locked to 

the injected signal.  Thus, this intensity is a good indicator of the effectiveness of the 

feedback loop. 

 Unlike the DFB laser, the free-running frequency of the Fabry-Perot laser used in 

this experiment is stable over long periods of time.  Thus, in order to test the loop locking 

stability and recovery response, an additional modulation was added to the laser control 
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circuit (Figure 4.05).  The additional modulation periodically forces the slave laser to 

leave the locking range.  Thus, the intensity of the unwanted modes over the course of 50 

seconds will look like what is depicted in Figure 4.11.  Figure 4.12 shows this same 

intensity with the feedback loop activated.  From this, it can be seen that the feedback 

loop successfully adjusts the free-running frequency of the slave laser so that it is 

consistently within the locking range. 

Figure 4.11 – Output of Lock-In Amplifier #1 Without Feedback 
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Figure 4.12 – Output of Lock-In Amplifier #1 With Feedback 

 

 From this it was found that, for a -24dBm injected signal with a modulation 

frequency of 1MHz, the difference between the free-running frequency of the slave laser 

and the frequency of the master laser was maintained within ~60% of the full locking 

range.  As a result, the phase difference between the injected signal and the output of the 

slave laser was approximately ±37º (calculated by monitoring the output voltage from the 

first lock-in amplifier and assuming a one-sided locking range of 90º). 
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V. CHAPTER 5 – Characterizing the Local Oscillator Signal 

5.1 Characteristics of the Fabry-Perot Filter 

 In order to determine the quality of the local oscillator signal, we first focus on the 

filter’s ability to suppress the modulation of the incident optical signal.  Figure 5.01 

depicts the spectrum from an OC48 SONET transmission of random data.  In order to 

determine how well the Fabry-Perot filter is expected to suppress this modulation, the 

setup depicted in Figure 5.02 was assembled.  A CW optical signal is modulated with 

OC48 SONET data using a Mach-Zehnder interferometer.  This signal is then applied to 

the Fabry-Perot optical filter, whose output is monitored by both an optical power meter 

and a detector and RF spectrum analyzer combination. 

 

Figure 5.01 – Spectrum from an OC48 SONET Transmission (Random Data) 
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Figure 5.02 – Layout for Testing Modulation Transfer Ratio of Fabry-Perot Filter 

 

 With this setup, the bandpass of the Fabry-Perot filter can be recorded for 

modulation frequencies ranging from 3-200MHz, as is depicted in Figure 5.03.  From this 

it can be seen that, for modulation frequencies less than 20MHz, attenuation provided by 

the Fabry-Perot filter is approximately 0dB.  As the modulation frequency is tuned to 

frequencies that are greater than 20MHz, this attenuation rapidly increases as the 

modulation frequency increases. 
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Figure 5.03 – MTR of Fabry-Perot Filter for Various Modulation Frequencies 
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 Figure 5.04 depicts the RF spectrum of the OC48 SONET transmission of random 

data, after the Fabry-Perot filter.  As was predicted by the bandpass function of the filter, 

the incident modulation is strongly suppressed at higher frequencies.  

  

Figure 5.04 – Spectrum from an Optically Filtered OC48 SONET Transmission (Random 

Data) 

 

 If we assume that the OC48 SONET transmission is NRZ, the data on the received 

signal is essentially the square of a 2.5GHz sinc function in frequency space.  In addition, 

the modulation transfer function of the Fabry-Perot filter is a Lorentzian lineshape with a 

20MHz bandwidth.  As such, it can be assumed that the modulation on the received 

signal over the bandwidth of the Fabry-Perot filter is constant.  Given this, the fraction of 
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the residual modulation that is present on the filtered signal is equal to the ratio between 

the integral of the normalized Lorentzian lineshape to the integral of the normalized sinc 

function.  From this, it is found that the residual modulation on the filtered signal is 2.5% 

of the initial modulation. 

 

5.2 Quality of the Injection Locked Fabry-Perot Laser 

 Now we investigate the quality of the signal generated by the injection-locked 

Fabry-Perot laser.  One of the main incentives for using a Fabry-Perot laser, as opposed 

to a DFB laser, is its high degree of wavelength acceptability.  A Fabry-Perot laser can be 

injection locked as long as one of its modes can be tuned to the frequency of the received 

optical signal.  Since the bandgap of the semiconductor material that comprises the 

Fabry-Perot laser can be altered by changing the temperature of the material, the gain 

region of the Fabry-Perot laser can be shifted.  Experimentally, it was found that the 

center of the gain region of the Fabry-Perot laser could be tuned over a range of 30nm, as 

can be seen in Figures 5.05a and 5.05b.  As a direct result of this, it is possible to 

injection lock this laser using a wide range of received optical wavelengths, as is shown 

in Figures 5.06a and 5.06b.  From these figures, it can be seen that the Fabry-Perot laser 

can be effectively injected by signals whose wavelengths range from 1520nm to 1560nm.  

The difference in both the peak output power and the power of the unwanted modes vary 

in each case, due to differences in the particular region of the gain region of the Fabry-

Perot laser that we are injecting into. 
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  (a) (b) 

Figure 5.05 – Gain Curve for F-P Laser Temperature Tuned to 1520nm and 1545nm 
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  (a) (b) 

Figure 5.06 – Output of Injection Locked Fabry-Perot Laser Given a Received Optical 

Wavelength of 1520nm and 1560nm 

  

5.2.1 Noise on the Output of the Fabry-Perot Laser 

 As discussed in Section 4.3.1.4, the Fabry-Perot laser will suppress noise on the 

injected signal.  However, the Fabry-Perot laser will also add its own noise to the local 

oscillator signal.  Experimentally, it was found that the majority of this noise is intensity 

noise at the relaxation oscillation frequency. 

 When a laser is disturbed during operation, its output power does not immediately 

return to its steady state, but rather exhibits so-called relaxation oscillations.  The 
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frequency at which these damped oscillations occur is known as the relaxation oscillation 

frequency.  Experimentally it was shown that, when free-running, the relative intensity 

noise (RIN) on the output of the Fabry-Perot laser peaks at approximately 2.5 GHz. 

 Coherent injection induced stimulated emission dominates spontaneous (random) 

emission.  When the slave laser is injected, the relaxation oscillations are more strongly 

damped, and forced to a higher frequency.  Furthermore, the relaxation oscillation 

frequency will shift towards a higher frequency as the intensity of the injected signal is 

increased [29].  This shift can be predicted by the laser rate equations (similar to those in 

Section 3.1), provided that we no longer ignore non-radiative excitation.  For this, we 

would take into account the current pumping term for the slave laser, which can be 

represented by Langevin noise forces [30]. 

 In order to test this phenomenon, the Fabry-Perot laser, whose threshold driving 

current is ~30mA, was driven with a current of 100mA.  Also, the gain curve of the 

Fabry-Perot laser was tuned so that its peak coincided with the wavelength of the injected 

signal (Figure 5.07).  Figures 5.08 and 5.09 show the RF spectrum of the output of the 

slave laser given injected intensities of -6dBm and -12dBm.  These figures demonstrate 

the frequency shift of the RIN as the intensity in the locking signal is varied. 
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Figure 5.07 – Point of Injection for Received Optical Signal 

 

 

Figure 5.08 - RF spectrum on Output of Slave Laser (Injected Intensities = -6dBm) 
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Figure 5.09 - RF spectrum on Output of Slave Laser (Injected Intensities = -12dBm) 

 

 Thus, in order to minimize the noise on the detected signal, the RIN on the local 

oscillator must be shifted to a frequency that is higher than the data rate of the received 

optical signal.  The RIN must be shifted to a frequency that is greater than 2 times the 

data-rate in order to avoid in-band signal-RIN beat noise.  Sufficiently shifted, the RIN 

can then be filtered off of the detected signal with the use of a low-pass filter.   

 To demonstrate RIN shift, we record the center of the RIN peak for various 

injected intensities, and compare this to the S/N ratio (ratio of power to variance), as 

recorded by a detector with a 1GHz bandwidth.  This detector effectively ignores all 

noise at frequencies greater than 1GHz.  Figures 5.10 and 5.11 show the results of this. 
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Figure 5.10 - Center of the RIN Peak for Various Injected Intensities 
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Figure 5.11 – S/N Ratio for Various Injected Intensities (As Seen on 1GHz Receiver) 
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 As can be seen from these figures, a –8dBm injected signal will ensure a S/N ratio 

of more than 20dB (the desired S/N for our experimental system).  This corresponds to a 

RIN peak of ~5GHz.  The 5GHz RIN peak effectively generates 1GHz noise, due to the 

width of the RIN peak, as seen in Figure 5.09.   

 

5.2.2 Modulation Transfer Ratio of the Fabry-Perot Laser 

 As was discussed in Section 4.3.1.4, the Fabry-Perot slave laser is capable of 

further suppressing amplitude modulation on the incident optical signal.  The 

effectiveness of this suppression is dependant on the intensity of the injected signal.  

Figure 5.12 shows the modulation transfer function of the slave laser for various injected 

powers.  For this case, the modulation frequency used is 128MHz, and the current used to 

pump the slave laser is approximately 100mA.  From this, it can be seen that the intensity 

of the modulation on the output of the slave laser decreases as the injected intensity 

decreases.  This indicates, just as the theory described in Section 4.3.1.4 predicted 

(depicted in Figure 4.02), that the Fabry-Perot slave laser is more effective at suppressing 

the incident modulation as the intensity of that incident modulation is decreased.  

However, as the injected intensity is decreased, the overall noise on the output of the 

slave laser, as well as the difficulty in maintaining the injection lock, is increased. 
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Figure 5.12 - MTR of Fabry-Perot Laser for Various Injected Powers (at 128MHz) 

 

5.2.3 Linewidth of Fabry-Perot Laser 

 Before analyzing the output of the injection locked Fabry-Perot laser in further 

detail, it is useful to determine its linewidth.  Since the linewidth of the laser is due to the 

phase variation on the output of the laser, the linewidth can serve as an indicator of how 

well the phase of the injected signal compares to the phase of the local oscillator signal.  

Ideally, the phase variation, and thus the linewidth, of the injected signal will be the same 

as the phase variation of the local oscillator signal.  This implies that the phase of the 

output of the Fabry-Perot laser follows that of the injected signal. 

 The method of delayed-self heterodyne is used to measure linewidth, the setup for 

which depicted in Figure 5.13.  The Fabry-Perot is first injected with a CW signal in 

order to force the slave laser into a single mode.  The single-mode output of the slave 

laser is directed into the input of an Acousto-Optic (AO) modulator.  The AO modulator 

has two outputs, the 0
th
 order output and the 1

st
 order output.  The 0

th
 order output is at 
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the same frequency as the input, while the 1
st
 order output is shifted by the acoustic 

frequency, which in this case is 400MHz.  The first order output is then transmitted 

through a 100km delay line, after which it is beat with the 0
th
 order output from the AO 

modulator at a detector.  The output from the detector is monitored on a RF spectrum 

analyzer.   

 

Figure 5.13 – Layout for Testing Linewidth of Fabry-Perot Laser 

 

 If it is assumed that the lineshape of the output of the Fabry-Perot laser can be 

approximated as a Lorentzian lineshape, then the power spectral density of the output of 

the detector can be expressed as [28]: 
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where P0 is the signal power, tc is the coherence length of the receiver signal, Ω is the 

offset frequency (400MHz in this case), and t is the delay time due to the added length of 

fiber (100km in this case).  Since the coherence length of the Fabry-Perot laser is much 

less than 100km, it can be assumed that the two mixed signals are mutually incoherent.  

In other words, by adding the 100km delay line we ensure that t»tc.  From this (and by 

noting that ω>0), we can reduce (5.01) to: 

( ) 22

22

0

1

2

1

c

c

t

tP

S
Ω−+

=
ω

 (5.02) 

This power spectrum is a Lorentzian function whose FWHM is 2/tc.  From this it can be 

seen that, given sufficient delay, the RF spectrum analyzer of the mixed signal is a 

Lorentzian function whose linewidth is double that of the linewidth of the laser itself [27, 

28]. 

 Figure 5.14 shows a total of three RF spectrums from the detector.  The red curve 

is the spectrum of the signal that is injected into the Fabry-Perot laser.  The blue and 

yellow curves are both spectrums of the output of the injection-locked Fabry-Perot laser, 

where the free-running frequency of the slave laser is either near the center of the locking 

range (yellow) or approximately mid-way between the center and edge of the locking 

range (blue).  The optical spectrums for the yellow and blue RF curves are depicted in 

Figures 5.15a and 5.15b respectively, in which the intensity of the unwanted modes serve 

as an estimate of the difference between the free-running frequency of the slave laser and 

the frequency of the injected signal (as was discussed in Chapter 4).  Additionally, Figure 

5.16 depicts the RF spectrum of the unlocked Fabry-Perot laser.   
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Figure 5.14 – RF Spectra of Heterodyne Mixing.  Red = Injected Signal, Yellow = 

Strongly Locked FP Laser, Blue = Weakly Locked FP Laser 
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  (a) (b) 

Figure 5.15 – Optical Spectrums for Strongly (a) and Weakly (b) Locked FP Laser 
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Figure 5.16 – RF Spectrum of Heterodyne Mixing of Unlocked Fabry-Perot Laser 

 

 As can be seen from Figures 5.14 and 5.16, as the free-running frequency of the 

slave laser approaches the center of the locking range, the output of the slave laser 

effectively tracks the phase of the injected signal, independent of its free-running 

linewidth.  However, the linewidth of the output of the slave laser decreases as it is 

detuned, indicating a reduction in the level of the phase noise.  This is detrimental to the 

generation of a suitable local oscillator, since it indicates that the generated signal is no 

longer phase coherent with the injected signal. 

 The small signal approximations of the laser rate equations predict that the phase 

noise on the output of the slave laser should always equal the phase noise on the injected 

signal.  This discrepancy indicates that these equations are insufficient in predicting this 
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phase reduction effect, and a more detailed model will need to be implemented in the 

future. 

 

5.2.4 Phase Noise Generated by Amplitude Noise 

 As was done in Chapter 3 and 4, if we assume that r (the unsaturated gain to loss 

ratio) is a complex value 

21 irrr +=  (5.03) 

and single-mode operation, then the laser rate equations, as in Chapter 3, can be written 

as: 
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Following the method used in Section 3.2.1.1, small perturbations are applied to E1, E, r1, 

r2, and φ 

1101 EEE ∆+=  (5.07) 

EEE ∆+= 0  (5.08) 

1101 rrr ∆+=  (5.09) 

2202 rrr ∆+=  (5.10) 

φφφ ∆+= 0  (5.11) 

Once again, the phase factor is defined as 
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 Thus, the equations for d∆E/dt, d∆r1/dt, and d∆φ/dt can be written to the 1
st
 order 

as: 
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 From Sections  3.2.1.1.3 and 4.3.1.4, we know that if the perturbations on E, E1, 

φ, and r1 are assumed to be harmonic, then the resulting modulation transfer function is 

only weakly dependant on the modulation frequency for low frequencies.  Thus, we can 

assume that in the limit Ω�0, the perturbations on E, E1, φ, and r1 can be modeled as a 

constant deviation that can be expressed as:  

AE =∆ 1  (5.16) 

BE =∆  (5.17) 

C=∆φ  (5.18) 

Dr =∆ 1  (5.19) 

 Substituting the results from (5.16-5.19) into (5.13-5.15) results in the following 

three equations: 
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 If we then solve (5.22) for D, we get: 
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This equation can then be written as: 
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 In addition, if we combine (5.21) and (5.22) for B, we get: 
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Eliminating D/B with (5.24) yields: 
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from which: 
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 Given this and using (3.51), the magnitude of the phase modulation |C| can be 

plotted.  Figure 5.17 depicts the magnitude of the phase modulation for various saturation 

intensities, while Figure 5.18 depicts this magnitude for various Henry-Alpha factor 

values.  For these plots, the effective saturation intensity of the slave laser is assumed to 

be -10dBm, the perturbation on the injected electric field is assumed to be 5% 

(effectively a 10% perturbation on the intensity of the injected signal), the unsaturated 

cavity gain to loss ratio (r when E=0) is assumed to be 2, the cavity lifetime (τc) is 

assumed to be 5*10
-10 

s, the carrier lifetime (T1) is assumed to be 5*10
-10
 s.  The code for 

generating these plots is located in Appendix C. 
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Figure 5.17 – Magnitude of Phase Noise over Locking Range [αH = 10] for Saturation 

Intensities of -10dBm (blue), -15dBm (red), and -20dBm (green) 
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Figure 5.18 – Magnitude of Phase Noise over Locking Range [IS = -10dBm] for Henry-

Alpha Factors of 3 (blue), 5 (red), and 10 (green) 
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 From this, it can be seen that the phase transfer will be minimal at the center of the 

locking range.  Additionally, the amount of phase noise that is generated by amplitude 

noise can be reduced by selecting a laser with either a low phase factor and/or with a low 

saturation intensity.  

 In order to measure the severity of the phase modulation on the output of the local 

oscillator signal due to suppressed amplitude modulation, we employ the configuration 

depicted in Figure 5.19.  This setup is the same as the one depicted in Figure 5.13, except 

that now a 10%, 25MHz modulated signal is injected into the Fabry-Perot slave laser. 
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Figure 5.19 – Layout for Monitoring Total Modulation on Output of Fabry-Perot Laser 

 

 The resulting spectrum is depicted in Figure 5.20.  In this, the yellow line 

represents the spectrum of the injected signal, while the blue line represents the spectrum 

of the output of the injection locked slave laser (near the center of the locking range).  
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The ratio between the power of the center peak to the power of the sidebands indicates 

the total amplitude and phase modulation on the signal.  In the case of the injected signal, 

all of this modulation is in the form of amplitude modulation.  For the output of the 

injection locked Fabry-Perot laser, the total modulation on the signal is comparable to the 

total modulation on the injected signal.  However, as was discussed in Section 5.2.2.2, the 

amplitude modulation is reduced by approximately 10dB by the injection locking 

process.  This indicates that the phase noise added by the present process is comparable 

in magnitude to the amplitude modulation that was suppressed.  In addition, we observed 

that the amount of phase noise on the output of the slave laser increases with detuning.  

  

Figure 5.20 – RF Spectrums of Heterodyne Mixing.  Yellow = Injected Signal, Blue = 

Strongly Locked FP Laser 
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 The injection-locking process converts much of the incident amplitude noise to 

phase noise.  However, a homodyne receiver is much less sensitive to this type of noise.  

We can see this by first considering the signal from a homodyne receiver: 

( )loslos PPP φφ −= cos  (5.28) 

If it is assumed that the phase differences are small, then this can be re-written as: 

( ) ( )lololos PPPP φ∆∆+= cos  (5.29) 

where ∆Plo and ∆φlo is the amplitude and phase noise on the local oscillator signal, 

respectively.  If it is assumed that assumed that the noise is small, then (5.29) can be re-

written as: 
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Eliminating the 3
rd
 order term yields: 
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Since the phase noise only affects the detected power in the second order, it can be 

neglected (assuming small modulation). 

 

5.2.5 Phase Coherence Between Injected Signal and Fabry-Perot Laser Output 

 One of the requirements of a local oscillator signal is for it to be phase coherent 

with the received signal.  To demonstrate this, an equi-path heterodyne interferometer, as 

depicted in Figure 5.21, was employed.  In this, half of the received optical signal is 

injected into the Fabry-Perot laser.  The output of the Fabry-Perot laser is then shifted by 

400MHz and beat with the remaining portion of the received signal at a detector.  The RF 
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spectrum of the output of the detector is then analyzed.  The 50m delay line is added in 

order to compensate for the added fiber length that was required to generate the local 

oscillator signal. 
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Figure 5.21 – Layout for Determining Phase Coherence Between Injected Signal and 

Fabry-Perot Laser Output 

 

 The linewidth of the resulting RF spectrum indicates the fluctuations between the 

phases of these two signals.  Figure 5.22 shows three of these RF spectrums, given 

injected powers of -16dBm (yellow plot), -44dBm (blue plot), and -62dBm (red plot).  

From the previous section we know that, if the phases of the two signals are incoherent 

with each other, the observed RF linewidth will be approximately 4MHz wide, as was the 

red plot in Figure 5.14.  Instead, the yellow plot of Figure 5.22 shows a linewidth that is 

less than 300Hz.  This indicates that the received and local oscillator signals are strongly 

phase coherent.  The residual phase variation (the phase noise within the 300Hz 

bandwidth) is either due to thermal or acoustic fluctuations in the optical fiber, and can be 

compensated for by implementing a phase tracking feedback loop, by isolating the 

system from thermal and/or acoustic sources, or by reducing the lengths of fiber used in 
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the system.  If a phase tracking system is used, the yellow plot in Figure 5.22 indicates 

that this feedback system will need to track the phase difference between the two signals 

as speeds greater than 3.3ms. 

 

Figure 5.22 – RF Spectrum of Heterodyne Mixing for Various Injected Powers 

 

 By varying the injected power, we are able to determine the minimum input 

power that is required to maintain coherence with the received optical signal.  Figure 5.23 

depicts the peak of the RF linewidth for various injected powers.  From both Figures 5.22 

and 5.23,  we can see that, given injected powers of more than approximately -35dBm 

(yellow plot in Figure 5.22), the received and local oscillator signals are coherent with 

each other.  At an injected power of approximately -40dBm (blue plot in Figure 5.22), the 

slave laser begins to lose coherence with the received optical signal.  At injected powers 
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of less than -50dBm (red plot in Figure 5.22), the local oscillator signal is no longer 

coherent with the received signal.   
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Figure 5.23 – Peak of RF Spectrum of Heterodyne Mixing for Various Injected Powers 

 

5.2.6 Gain of the Fabry-Perot Laser 

 Since we are effectively using the Fabry-Perot laser as a regenerative optical 

amplifier, it is important to know its effective coherent gain.  Assuming that the free-

running frequency of the slave laser is centered in the locking range, it is expected that 

the gain of the Fabry-Perot laser will be strongly dependent on the intensity of the 

injected signal.  Specifically, it is expected for the gain to increase as the injected power 

decreases. 

 In order to determine the gain of the Fabry-Perot laser, the layout depicted in 

Figure 5.21 (from the previous section) was used to monitor the output power of the 

coherent signal.  Figure 5.24 shows this gain for varying injected powers.  In this case, 
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the current used to pump the slave laser is approximately 120mA.  From this it can be 

seen that the gain of the Fabry-Perot slave laser increases as the injected intensity 

decreases.  However, just as in the case of the modulation transfer ratio of the slave laser, 

both the overall noise on the output of the slave laser and the difficulty in maintaining the 

injection lock increases as the injected intensity is decreased. 
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Figure 5.24 - MTR of Fabry-Perot Laser for Various Injected Powers (at 128MHz) 

 

5.2.7 Parasitic Oscillations 

 In order to effectively injection lock the Fabry-Perot laser, the laser must be 

manufactured without internal isolators.  One common problem that can occur as a result 

of this is parasitic oscillations.  Specifically, if a small amount of backscatter is present 
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after the output of the laser, it is capable of creating additional oscillating modes.  This 

effect is illustrated in Figure 5.25. 

 In order to detect the noise due to parasitic oscillatons, we introduce a small point 

of reflection between the slave laser and port #2 of the circulator.  This will create an 

oscillator between this point and the slave laser, which will generate a series of modes 

spaced approximately 70 MHz apart in frequency space. 

 

Figure 5.25 – Source of Additional Oscillatory Modes 

 

 Figures 5.26-5.28 show the optical and RF spectrums from the injection locked 

slave laser, at injected intensities of -20dBm (Figure 5.26), -30dBm (Figure 5.27), and -

40dBm (Figure 5.28).  For this the Fabry-Perot laser, whose threshold driving current is 

~30mA, was driven with a current of 200mA.  Also, the gain curve of the Fabry-Perot 

laser was tuned so that its peak coincided with the wavelength of the injected signal 

(Figure 5.07).  As can be seen from these figures, the intensity of the unwanted modes 

varies inversely with the intensity of the received optical signal.  Also, the 70MHz peaks 

vary by approximately the same amount as the unwanted modes.  Thus, similar to the 
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case of RIN, the effect of this noise on the local oscillator signal can be minimized by 

using a sufficiently strong received optical signal.  In this case, the amplified received 

optical signal power must be greater than -30dBm.  However, this power depends on the 

amount of backscatter present, as well as the magnitude of the electrical current used to 

pump the slave laser. 
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  (a) (b) 

Figure 5.26 – Optical (a) and RF (b) Spectrum from Fabry-Perot laser (pumped at 200mA 

– Injected near peak of gain curve) with an injected power of -20dBm 
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  (a) (b) 

Figure 5.27 – Optical (a) and RF (b) Spectrum from Fabry-Perot laser (pumped at 200mA 

– Injected near peak of gain curve) with an injected power of -30dBm 
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  (a) (b) 

Figure 5.28 – Optical (a) and RF (b) Spectrum from Fabry-Perot laser (pumped at 200mA 

– Injected near peak of gain curve) with an injected power of -40dBm 

 

5.3 Modulation Suppression as a Function of Modulation Frequency 

 As was discussed in Section 4.4, injection locking theory predicts that the 

modulation transfer ratio of the Fabry-Perot laser is weakly dependent on the modulation 

frequency.  In order to confirm this, the modulation transfer ratio of the Fabry-Perot laser 

was recorded at frequencies ranging from 1MHz to 200MHz.  Figure 5.29 shows the 

results of this, given an injected power of –1dBm.  Additionally, Figure 5.30 shows the 

results of this, given an injected power of –10dBm.  From these two graphs, it can be 

seen that, unlike what is predicted by the theory, the modulation transfer ratio of the 

Fabry-Perot laser increases at a modulation frequency of approximately 50MHz. 

 The cause of this breakdown in the theory of the modulation transfer ratio is most 

likely due to the influence of thermal vibrations within the laser cavity.  Previous studies 

have shown that thermal effects will have an effect on frequencies that are below a 

specific threshold, typically between 1MHz and 100MHz [31].  These thermal effects 

most likely aid in the suppression of the incident modulation at lower modulation 

frequencies.  As a result, in order to effectively use the Fabry-Perot laser as an ultra low-
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bandwidth filter, it may be necessary to combine it with a 50MHz Fabry-Perot filter.  

This would be used to uniformly suppress the incident modulation at all modulation 

frequencies.  
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Figure 5.29 – MTR vs. Modulation Frequency (Injected Power = -1dBm) 
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Figure 5.30 – MTR vs. Modulation Frequency (Injected Power = -10dBm)
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5.4 Generating a Local Oscillator Signal 

 Now that the quality of the local oscillator signal has been established, we can 

generate a local oscillator signal.  The layout for the local oscillator generator is depicted 

in Figure 5.31.  In this, 10% of the received optical signal is diverted into an EDFA, 

which is followed by a 20MHz Fabry-Perot optical filter.  In order to lock the center 

frequency of the filter to the received signal, the feedback loop previously described in 

Chapter 2 (Section 2.2) is implemented.  After the filter, the signal is re-amplified via a 

second EDFA, and diverted into an optical modulator.  The purpose of this modulator is 

to apply the 100kHz modulation that will be used to implement the feedback control loop 

for the injection lock, as was discussed in Chapter 3 (Section 3.2.3) and Chapter 4 

(Section 4.3.5).  From the modulator, the signal is directed into the Fabry-Perot slave 

laser via a circulator.  The output of the slave laser can then be used as the local oscillator 

signal. 
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Figure 5.31 – Layout of Local Oscillator Generator (Feedback Loops Omitted) 
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VI. CHAPTER 6 – Design of Homodyne Receiver 

 The primary goal for this project is the creation of a practical homodyne receiver 

for use with high-speed optical transmissions.  Specifically, we are creating a stand-

alone, rack-mountable, receiver.  In order to do this, the feedback loops for both the filter 

and the injection lock must be implemented without the use of rack-mountable lock-in 

amplifiers and laser controllers.  Also, a phase lock should be implemented, so that the 

receiver can be used in an environment that is not as precisely temperature controlled as 

the one in the experiment.  Finally, for a practical homodyne receiver, the receiver itself 

must be capable of initiating itself, automatically obtaining the filter and injection locks. 

 

6.1 Phase Locking 

 The phase of the received and local oscillator signals must be aligned for the 

homodyne receiver to achieve maximum sensitivity.  In order to accomplish this, a 

feedback system will be required to align the phases of these two signals together. 

 

6.1.1 Background 

 As discussed in Chapter 1, the magnitude of the resulting signal from this detector 

is dependant on the phase difference between the two signals.  Specifically, the signal 

from the overall receiver can be described as: 

( )loslos PPP φφ −= cos  (6.01) 

In this, Ps and Plo are the powers of the signal and local oscillator, respectively, and φs 

and φlo are the phases of the signal and local oscillator, respectively. 
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 In order to create the phase locked loop, the setup depicted in Figure 6.01 can be 

created.  In this, a phase shifter is added to one of the arms of the interferometer.  A 

10kHz modulation can then be added to the phase shifter, along with the output of a lock-

in amplifier.  A portion of the received signal from the detector is then input to this lock-

in amplifier whose reference signal is the 10kHz modulation.  The lock-in amplifier will 

effectively filter off the high-frequency data from the received signal, and its in-phase 

output (X) will be the derivative of the sinusoidal signal of (6.01). 
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Figure 6.01 – Layout of Phase-Locked Loop 

 

6.2 Practical Feedback Systems 

 More practical versions of the filter, and injection, and phase lock feedback loops 

are depicted in Figures 6.02-6.04.   These layouts differ from the ones depicted in Figures 

2.02, 4.12, and 6.01 in that a microcontroller has now been added to the systems.  The 

purpose of the microcontroller is to automate the initial lock.  After the microcontroller 
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has found the correct bias to apply to the filter, it will hold that position, and allow the 

lock-in amplifier to maintain the filter lock. 
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Figure 6.02 – Practical Filter Feedback Loop 
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Figure 6.03 – Practical Injection Lock Feedback Loop 
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Figure 6.04 – Practical Phase-Locked Loop 

 

 In addition, the 78kHz modulation used to control the injection lock feedback 

loop is now applied to the Fabry-Perot filter.  This allows modulation of the received 

optical signal without incurring the additional 6dB loss from an additional optical 

modulator. 

 Figures 6.05-6.07 depict the layouts of the circuits that have been designed to 

control the receiver.  Additionally, Figures 6.08-6.10 are photographs of the actual circuit 

boards that have been created.  Board 0 (depicted in Figures 6.05 and 6.08) is responsible 

for adding the electronic signals together, which is controlled by the four LM348N chips 

and their corresponding resistors.  The relay switches in the upper-left of Figure 6.05 are 

used to enable the analog feedback for the optical filter and phase shifter (controlled by 

the lock-in amplifier) once the appropriate bias point has been set.  The feedback control 
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for the injection lock does not require a relay switch, since it can be enabled by toggling 

the hold pin on the digital counter.  The four AD790 chips and AND (7408) gates are 

used to convert the output of the sinusoidal oscillators (generated on Board #2, discussed 

later in this section) to a square wave, which is used by the lock-in amplifiers as a 

reference signal.  Board 0 also has 6 slots, as depicted in Figure 6.08.  These slots are for 

Boards 1 and 2 (discussed later in this section) and the four the lock-in amplifier cards 

used for the feedback loops. 
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Figure 6.05 – Board #0 (Front Board) 

 

 Board 1 (plugs into Board 0), depicted in Figures 6.06 and 6.09, is comprised of 

the control circuit used to stabilize the injection lock (described in Sections 3.2.3 and 

4.3.5).  The clock for this circuit is generated by the 555 Timer.  The output of the 

Threshold Circuit (AD790) is then combined with the output of the clock via the 3 

NAND gates (7400).  This results in two clock outputs, one corresponding to a signal that 
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is greater than zero (ground) and one corresponding to a signal that is less than zero.  

These two clock signals each control either the up or down pin of the Counter, comprised 

of the four 74193 chips.  The digital output of this counter is then converted by the DAC 

(AC669) to an analog output.  In addition, the four LM348N chips to the right of Figure 

6.06 are used to generate the sinusoidal signals that are used in the feedback control 

loops. 
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Figure 6.06 – Board #1 (Slave Laser Control and Oscillators) 

 

 Board 2 (plugs into Board 0), depicted in Figures 6.07 and 6.10, contains the 

microcontroller and corresponding logic used to set the initial bias for the controllers.  In 

this, the three DACs (ADS7812) convert the signals from the detectors that monitor the 
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output of the filter, slave laser, and final signal to a digital value.  The microcontroller is 

programmed to select a particular data source (either the fliter, slave laser of final output 

monitor) via a three-pin output and the logic gates, and use the information from this data 

source to choose an appropriate bias (the code for this is in Appendix D).  This bias is 

then converted to an analog signal via the three ADCs (DAC7611) and sent to Board 0.  

In addition, the three-pin data source selector is also used to control the two relay 

switches on Board 0, as well as the hold pin of the up/down counter on Board 1.  This 

allows the microcontroller to enable the analog feedback loops once it has successfully 

set the bias points.   
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Figure 6.07 – Board #2 (Microcontroller Logic) 
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Figure 6.08 – Photograph of Board #0 (Front Board) 

 

 

Figure 6.09 – Photograph of Board #1 (Slave Laser Control and Oscillators) 
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Figure 6.10 – Photograph of Board #2 (Microcontroller Logic) 

 

 After the button on the front panel in pressed (denoted by the switch in Figure 

6.05), a signal is sent to the microcontroller on Board #2 to begin its routine.  First, the 

microcontroller determines the proper bias for the filter, given the output from the 

detector in Figure 6.02.  After this, the microcontroller sends a signal to a relay switch to 

activate the signal from the lock-in amplifier card, thus maintaining the filter lock. 

 Once the proper bias point for the filter is determined, the microcontroller biases 

the slave laser, given the output of the detector in Figure 6.03.   After the proper bias for 

the slave laser is found, the microcontroller sends a signal to the hold pin of the up/down 

counter.  This allows for the counter to properly track the difference between the free-

running frequency of the slave laser and the received optical signal, as in explained in 

Chapters 3 and 4. 
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 At this point, the microcontroller biases the phase shifter by maximizing the 

average power of the signal from the balanced receiver (Figure 6.04).  Similar to the 

feedback circuit for the filter lock, once the proper bias for the phase shifter is found, the 

microcontroller will activate a relay switch that allows for the lock-in amplifier card to 

maintain the phase lock.   

 

6.3 Future Work 

6.3.1 Polarization Control 

 Up to this point, the topic of polarization control has not been mentioned.  Since 

several of the electro-optic devices in this setup are polarization sensitive, as well as the 

final mixing of the received and local oscillator signals, it becomes necessary to ensure 

that the polarization of the received signal is known.  This can be accomplished in one of 

two ways, polarization feedback or polarization diversity. 

 In the case of polarization diversity, the received optical signal would need to be 

split via a polarizing beam cube into two known polarization states.  The main problem 

with this method is that is effectively doubles the complexity of the system, since we now 

require two local oscillator generators.  Also, the decrease in the effective magnitude of 

the received optical signal may require additional optical amplifiers, which would add 

noise to the local oscillator signal. 

 Thus, a polarization feedback loop would be the more practical solution.  Such a 

system is depicted in Figure 6.11.  In this, the received optical signal is incident on a 

polarization controller, followed by a polarizer, before a portion of the signal is split off 

for local oscillator signal generation.  After this portion is split off, a portion of that signal 
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is diverted to a detector.  This detected signal is directed to a lock-in amplifier, whose 

output (along with a sinusoidal dither) controls the polarization controller.  It should be 

noted that, since a polarization controller usually has at least 3 inputs, it would either be 

necessary to have separate feedback loops for each control, or have a microcontroller 

switch between the input ports in order to maintain the proper polarization. 

 

Figure 6.11 – Layout of Polarization Feedback Control Loop 

 

6.3.2 Final Receiver Layout 

 The overall expected design for the receiver is depicted in Figure 6.12 (the 

feedback loops are not shown in order to simplify the diagram).  In this, 10% of the 

received optical signal is diverted from the received optical signal.  After this, 10% of the 

diverted signal is used for the polarization feedback loop (explained in section 6.2.2).  

The remaining portion of the diverted signal is directed into an EDFA.  From the EDFA, 

the signal goes through the filtering, injection locking, and phase locking stages 

(discussed in section 6.2.1).  After this, a balanced receiver detects the signal.  The 

purpose of the balanced receiver is to reduce the effect of any common-mode noise that is 

present on the local oscillator [32]. 
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Figure 6.12 – Layout of Homodyne Receiver (Feedback Loops Omitted)  

 

 Once assembled, this homodyne receiver should be capable of receiving SONET 

transmissions at data rates up to 10GHz (limited by the bandwidth of the detectors used 

in the balanced receiver).  In addition, this receiver should be capable of effectively 

detecting transmissions whose optical power is less than -30dBm. 

 

6.3.3. Support for PSK transmissions 

 The system described above can be used for homodyne detection or as a pump for 

parametric amplification.  In addition, our previous work has shown that our OIL system 

can be used to generate an acceptable LO signal from a NRZ OC192 SONET 

transmission, provided that the signal is first pre-filtered via a Fabry-Perot optical filter 

(Micron Optics, 20MHz bandwidth) [47]. 
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 It is also desirable to use this LO generator with more complex phase modulation 

schemes, such as PSK [49].  However, because these transmissions do not have a carrier 

to recover, they are not compatible with OIL without additional pre-processing.  As such, 

a method must be developed to generate a Fourier component of the carrier before the 

OIL LO generator can be utilized. 

One possible method to generate a carrier for the PSK signal is depicted in Figure 6.13.  

A two-armed interferometer with a digitally-variable phase shift is used to generate the 

carrier.  The phase shifter is controlled by the output of the interferometer, which is 

proportional to an optical mixing of the received signal and the output of the slave laser.  

The phase shifter will shift the phase of the incident signal by either 0 or π, depending on 

if the input signal is greater or less than a pre-defined threshold value.  Note that an 

optical delay has also been added before the phase shifter to ensure that the bit input into 

the phase shifter is the same as the bit that is mixed with the local oscillator signal used to 

bias the phase shifter at that instance. 

Phase

Shifter

Slave

Laser

Balanced

Detector

Delay

Received Signal

 

Figure 6.13 - Possible layout for retrieving the carrier of the received optical signal 

 

 We assume that the bits that comprise the received signal can be represented as a 

series of values equaling either 1 or -1 (depending on the phase).  If we assume that the 
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round trip time of the slave laser is on the order of the bit period, the output of the phase 

shifter can be modeled as: 

( )( )112 −−+⋅⋅= inloinout BBUBB
 (6.02) 

such that Bin is the bit value of the phase shifter (1 or -1), Blo is the normalized output of 

the slave laser, and U(x) is a step function that returns 0 if x≤0 and 1 if x>0.  Note that if 

that the intensity of the injected signal is much less than the free-running intensity of the 

slave laser, Blo will be approximately equal to the running average Bout. 

 Given this, we can simulate the signal generated by this system, given an input of 

random data.  The result of this is depicted in Figure 6.14.  Note that for this figure, the 

spacing between points is equal to a bit period (which we also set equal to the round-trip 

time of the laser cavity).  In this case, given random data, the output of the phase shifter 

eventually settles on a value of 1 (either 1 or -1 are possible results) for a random input, 

forcing the coherent portion of the LO signal to approach a steady value.  Our future 

work will focus on developing a more robust theory to describe the operation of the PSK 

LO generator, and will experimentally verify the process.  
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Fig. 6.14 - Theoretical LO signal produced from LO generator that utilizes the proposed 

carrier retrieval method (blue: input to carrier retrieval module, green: output of carrier 

retrieval module, red: LO output). 
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VII. CHAPTER 7 – Conclusions 

 It has been shown that a suitable local oscillator for a homodyne receiver can be 

generated from a slave laser that is injected with a filtered portion of the received optical 

signal.  For this, the slave laser can either be a Fabry-Perot laser, or a Distributed 

Feedback laser.  The advantage of using a Fabry-Perot laser is its lower cost and higher 

degree of wavelength acceptability, while the Distributed Feedback laser allows for a 

simpler receiver design.  However, either laser will effectively reduce the amplitude 

modulation on the incident signal, while providing a signal whose intensity is that of the 

free-running slave laser. 

 Additionally, it has been shown that the injection locking process can be 

stabilized by monitoring the modulation transfer ratio of the slave laser.  The modulation 

transfer function of an injected laser is at a minimum at the center of the locking range, 

and increases with detuning.  This behavior can be utilized by a feedback loop to keep the 

modulation transfer ratio of the slave laser to a minimum.  Furthermore, it has been 

shown that this trend holds true for both Fabry-Perot lasers and Distributed Feedback 

lasers.  Finally, it has been demonstrated that this effect is sufficiently well understood, 

and that it can be modeled with simple laser rate equations. 
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Appendix A – Matlab Code for Plotting Results for DFB Injection Locking 

 
%MatLab Code for Ploting Magnitude and Phase of 1st Harmonic 
%for various modulation frequencies 
clear 
fudge=400; 
op=linspace(-pi/2,pi/2,100); 
e1=sqrt(10^-3.0/1000)/sqrt(fudge); 
isat=10^-2.08/1000*fudge; 
runsat=2; 
tc=4e-12; 
T1=.5e-9; 
gammae=-1./(tc); 
P=runsat./T1; 
A=e1*sqrt(.1); 
U=isat.*T1; 
%wp=[1e5,2.5e5,5e5,7.5e5,1e6,2.5e6,5e6,7.5e6,1e7,2.5e7,5e7,7.5e7,1e8,2.
5e8,5e8,7.5e8,1e9,2.5e9,5e9]; 
%wp=logspace(5,10,15); 
wp=[5e5,1e6,2e6]; 
for loop=1:1:length(wp) 
    w=wp(loop); 
    strings(loop,:)=sprintf('Modulation Frequency=%0.2e',w); 
    loop2=0; 
    for o=op 
        loop2=loop2+1; 
        e0(loop,loop2)=solve_e0(isat,tc,gammae,e1,o,P,T1); 
        etemp(loop,loop2)=e1./e0(loop,loop2); 
        r=(P.*T1)./(1+e0.^2./isat); 
        f(loop,loop2)=-gammae.*(e1./e0(loop,loop2)).*sin(o); 
        D=-
(e0(loop,loop2).^2.*r(loop,loop2))./(i.*w.*T1.*isat+isat+e0(loop,loop2)
.^2); 
        k=1./(i.*w+(D+r(loop,loop2)-1)./(2.*tc)); 
        B(loop,loop2)=((gammae.*e1+i.*w.*e0(loop,loop2).*cos(o))... 
            
./((e1.^2./e0(loop,loop2)).*gammae.*sin(o).^2+(i.*w.*e0(loop,loop2))./(
gammae.*k)+(e1.*cos(o))./k)).*A; 
        C(loop,loop2)=((k.*gammae.^2.*e1.*sin(o).*cos(o)-
gammae.*e1.*sin(o))... 
            
./(gammae.*e0(loop,loop2).*e1.*cos(o)+i.*w.*e0(loop,loop2).^2+k.*gammae
.^2.*e1.^2.*sin(o).^2)).*A; 
        B2(loop,loop2)=((-
C(loop,loop2).^2.*e1.*sin(o))./2+A.*C(loop,loop2).*cos(o)... 
            -
(B(loop,loop2).*C(loop,loop2).*e1.*cos(o))./e0(loop,loop2)-
(A.*B(loop,loop2).*sin(o))./e0(loop,loop2)... 
            +(B(loop,loop2).^2.*e1.*sin(o))./e0(loop,loop2).^2.0... 
            +((2.*i.*w.*e0(loop,loop2))./gammae+e1.*cos(o)).*(-
C(loop,loop2).^2./(2.*tan(o))-(A.*C(loop,loop2))./e1... 
            -(-
(isat.*e0(loop,loop2).*B(loop,loop2).^2.*r(loop,loop2).*(i.*w.*T1+1))./
(i.*w.*T1.*isat+isat+e0(loop,loop2).^2).^2.0... 
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+(e0(loop,loop2).*B(loop,loop2).^2.*r(loop,loop2))./(i.*w.*T1.*isat+isa
t+e0(loop,loop2).^2))./(2.*tc.*gammae.*e1.*sin(o))))./... 
            
((e1.*sin(o))./e0(loop,loop2)+((2.*i.*w.*e0(loop,loop2))./gammae+e1.*co
s(o)).*... 
            ((4.*i.*w.*tc-
(e0(loop,loop2).^2.*r(loop,loop2))./(i.*w.*T1.*isat+isat+e0(loop,loop2)
.^2)+r(loop,loop2)-1)... 
            ./(2.*tc.*gammae.*e1.*sin(o)))); 
    end 
end 
 
figure(1) 
plot(f',(sqrt(B'.*conj(B')).*(etemp')./A).^2.*fudge) 
axis([-4e8,4e8,0,1.6e-2]) 
title('Modulation Transfer Function vs. Frequency Offset (1st 
Harmonic)') 
xlabel('Frequency Offset (Hz)') 
ylabel('Modulation Transfer Ratio') 
legend(strings,-1); 
figure(2) 
plot(f',(sqrt(B2'.*conj(B2')).*(etemp')./A).^2.*fudge) 
axis([-4e8,4e8,0,5e-8]) 
title('Modulation Transfer Function vs. Frequency Offset (2nd 
Harmonic)') 
xlabel('Frequency Offset (Hz)') 
ylabel('Modulation Transfer Ratio') 
legend(strings,-1);
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%MatLab Code for Ploting Magnitude and Phase of 1st Harmonic 
%for various injected powers 
 
clear 
fudge=400; 
op=linspace(-pi/2,pi/2,100); 
e1=sqrt(10^-3.0/1000)/sqrt(fudge); 
isat=10^-2.08/1000*fudge; 
runsat=2; 
tc=4e-12; 
T1=.5e-9; 
gammae=-1./(tc); 
P=runsat./T1; 
U=isat.*T1; 
w=1e6; 
e1p=[sqrt(10^-2.6/1000)/sqrt(fudge),sqrt(10^-
2.8/1000)/sqrt(fudge),sqrt(10^-3.0/1000)/sqrt(fudge)]; 
%A=1e-5; 
Ap=e1p./sqrt(10); 
for loop=1:1:length(e1p) 
    e1=e1p(loop); 
    A=Ap(loop); 
    strings(loop,:)=sprintf('Incident Power = 
%2.0fdBm',30+10*log10(fudge*e1^2)); 
    loop2=0; 
    for o=op 
        loop2=loop2+1; 
        e0(loop,loop2)=solve_e0(isat,tc,gammae,e1,o,P,T1); 
        etemp(loop,loop2)=e1./e0(loop,loop2); 
        r=(P.*T1)./(1+e0.^2./isat); 
        f(loop,loop2)=-gammae.*(e1./e0(loop,loop2)).*sin(o); 
        D=-
(e0(loop,loop2).^2.*r(loop,loop2))./(i.*w.*T1.*isat+isat+e0(loop,loop2)
.^2); 
        k=1./(i.*w+(D+r(loop,loop2)-1)./(2.*tc)); 
        B(loop,loop2)=((gammae.*e1+i.*w.*e0(loop,loop2).*cos(o))... 
            
./((e1.^2./e0(loop,loop2)).*gammae.*sin(o).^2+(i.*w.*e0(loop,loop2))./(
gammae.*k)+(e1.*cos(o))./k)).*A; 
        C(loop,loop2)=((k.*gammae.^2.*e1.*sin(o).*cos(o)-
gammae.*e1.*sin(o))... 
            
./(gammae.*e0(loop,loop2).*e1.*cos(o)+i.*w.*e0(loop,loop2).^2+k.*gammae
.^2.*e1.^2.*sin(o).^2)).*A; 
        B2(loop,loop2)=((-
C(loop,loop2).^2.*e1.*sin(o))./2+A.*C(loop,loop2).*cos(o)... 
            -
(B(loop,loop2).*C(loop,loop2).*e1.*cos(o))./e0(loop,loop2)-
(A.*B(loop,loop2).*sin(o))./e0(loop,loop2)... 
            +(B(loop,loop2).^2.*e1.*sin(o))./e0(loop,loop2).^2.0... 
            +((2.*i.*w.*e0(loop,loop2))./gammae+e1.*cos(o)).*(-
C(loop,loop2).^2./(2.*tan(o))-(A.*C(loop,loop2))./e1... 
            -(-
(isat.*e0(loop,loop2).*B(loop,loop2).^2.*r(loop,loop2).*(i.*w.*T1+1))./
(i.*w.*T1.*isat+isat+e0(loop,loop2).^2).^2.0... 
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+(e0(loop,loop2).*B(loop,loop2).^2.*r(loop,loop2))./(i.*w.*T1.*isat+isa
t+e0(loop,loop2).^2))./(2.*tc.*gammae.*e1.*sin(o))))./... 
            
((e1.*sin(o))./e0(loop,loop2)+((2.*i.*w.*e0(loop,loop2))./gammae+e1.*co
s(o)).*... 
            ((4.*i.*w.*tc-
(e0(loop,loop2).^2.*r(loop,loop2))./(i.*w.*T1.*isat+isat+e0(loop,loop2)
.^2)+r(loop,loop2)-1)... 
            ./(2.*tc.*gammae.*e1.*sin(o)))); 
end 
end 
atemp=ones(length(e1p),100); 
for loop=1:1:length(e1p) 
    atemp(loop,:)=atemp(loop,:)*Ap(loop); 
end 
figure(1) 
plot(f',(sqrt(B'.*conj(B')).*(etemp')./atemp').^2.*fudge) 
axis([-4e8,4e8,0,.05]) 
title('Modulation Transfer Function vs. Frequency Offset (1st 
Harmonic)') 
xlabel('Frequency Offset (Hz)') 
ylabel('Modulation Transfer Ratio') 
legend(strings,-1); 
figure(2) 
plot(f',(sqrt(B2'.*conj(B2')).*(etemp')./atemp').^2.*fudge) 
axis([-4e8,4e8,0,5e-8]) 
title('Modulation Transfer Function vs. Frequency Offset (2nd 
Harmonic)') 
xlabel('Frequency Offset (Hz)') 
ylabel('Modulation Transfer Ratio') 
legend(strings,-1); 
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%Matlab Function for solving for e0 
function e0=solve_e0(isat,tc,gammae,e1,o,P,T1) 
start=1; 
step=-.1; 
stop=0; 
for loop=1:1:10 
    flag=1; 
    while flag 
        
s1=sign((start).^3/isat+(2.*tc.*gammae.*e1.*cos(o)./isat).*(start).^2+(
1-P.*T1).*(start)+(2.*tc.*gammae.*e1.*cos(o))); 
        
s2=sign((start+step).^3/isat+(2.*tc.*gammae.*e1.*cos(o)./isat).*(start+
step).^2+(1-P.*T1).*(start+step)+(2.*tc.*gammae.*e1.*cos(o))); 
        if (s1~=s2) 
            flag=0; 
            stop=start+step; 
            step=step/10; 
        else 
            start=start+step; 
            if start<stop 
                disp('No Solution'); 
                return; 
            end 
        end 
    end 
end 
e0=start; 
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Appendix B – Matlab Code for Plotting Results for Fabry-Perot Injection Locking 

%MatLab Code for Ploting Magnitude and Phase of 1st Harmonic 
%for various injected powers 
 
clear 
op=linspace(-pi/2,pi/2,1001); 
 
isatp=10.^(sin(op))/1000; 
%isatp=linspace(10^1/1000,10^1/1000,1001); 
dp=-3; 
loop=1; 
loop2=0; 
for o=op 
    loop2=loop2+1; 
    isat=isatp(loop2); 
    runsat=2; 
    tc=4.4e-12; 
    T1=1e-9; 
    gammae=-1./(tc); 
    P=runsat./T1; 
    U=isat.*T1; 
    w=1e6; 
    e1=sqrt(10^dp/1000); 
    eL1=sqrt(10^-4/1000); 
    A=e1.*sqrt(.25); 
    e0(loop,loop2)=solve_e0_2(isat,tc,gammae,e1,eL1,o,P,T1); 
    eL0(loop,loop2)=(e0(loop,loop2).*eL1)./(e1.*cos(o)); 
    etemp(loop,loop2)=e1./e0(loop,loop2); 
    r=(P.*T1)./(1+e0.^2./isat); 
    f(loop,loop2)=-gammae.*(e1./e0(loop,loop2)).*sin(o); 
    D=-
(e0(loop,loop2).^2.*r(loop,loop2))./(i.*w.*T1.*isat+isat+e0(loop,loop2)
.^2); 
    B(loop,loop2)=((gammae.*e1+i.*w.*e0(loop,loop2).*cos(o))... 
        
./((e1.^2./e0(loop,loop2)).*gammae.*sin(o).^2+((i.*w.*e0(loop,loop2))./
gammae+(e1.*cos(o)))... 
        .*(i.*w-
(e0(loop,loop2).*r(loop,loop2))./(tc.*(i.*w.*T1.*isat+e0(loop,loop2).^2
.... 
        +((1+r(loop,loop2)-2.*i.*w.*tc)./(1-r(loop,loop2)-
2.*i.*w.*tc)).*((e0(loop,loop2).*eL1)./(e1.*cos(o))).^2))+(r(loop,loop2
)-1)./(2.*tc)))); 
end 
f2=(sqrt(B'.*conj(B')).*(etemp')./A).^2; 
plot(f(2:1000)',f2(2:1000)) 
axis([-1e9,3e9,0,.05]) 
title('Modulation Transfer Function vs. Frequency Offset (1st 
Harmonic)') 
xlabel('Frequency Offset (Hz)') 
ylabel('Modulation Transfer Ratio') 
grid; 
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%Matlab Function for solving for e0 
 
function e0=solve_e0(isat,tc,gammae,e1,eL1,o,P,T1) 
start=1; 
step=-.1; 
stop=0; 
K=(1+eL1./(e1.*cos(o))).^2; 
for loop=1:1:10 
    flag=1; 
    while flag 
        
s1=sign(K.*(start).^3/isat+K.*(2.*tc.*gammae.*e1.*cos(o)./isat).*(start
).^2+(1-P.*T1).*(start)+(2.*tc.*gammae.*e1.*cos(o))); 
        
s2=sign(K.*(start+step).^3/isat+K.*(2.*tc.*gammae.*e1.*cos(o)./isat).*(
start+step).^2+(1-P.*T1).*(start+step)+(2.*tc.*gammae.*e1.*cos(o))); 
        if (s1~=s2) 
            flag=0; 
            stop=start+step; 
            step=step/10; 
        else 
            start=start+step; 
            if start<stop 
                disp('No Solution'); 
                return; 
            end 
        end 
    end 
end 
e0=start;
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Appendix C – Matlab Code for Plotting Phase Modulation due to Amplitude 

Modulation on Input 
 
%MatLab Code for Ploting Phase Modulation of 1st Harmonic 
 
clear 
op=linspace(-pi/2,pi/2,1001); 
isat=10^-1/1000; 
 
runsat=2; 
tc=5e-10; 
T1=.5e-9; 
gammae=-1./(tc); 
P=runsat./T1; 
U=isat.*T1; 
wp=0; 
e1=sqrt(10^-2); 
A=.05.*e1; 
C1=pi./100; 
ah=10; 
for loop=1:1:length(wp) 
    loop2=0; 
    for o=op 
        loop2=loop2+1; 
        e0=solve_e0(isat,tc,gammae,e1,o,P,T1); 
        r=(P.*T1)./(1+e0.^2./isat); 
        f(loop,loop2)=-gammae.*(e1./e0).*sin(o); 
        C(loop,loop2)=(cos(o)./((r-1)./2-(r.*e0.^2)./(isat+e0.^2))-... 
            sin(o)./((tc.*gammae.*e1.*sin(o))./e0-
(r.*e0.^2.*ah)./(isat+e0.^2)))./... 
            ((e1.*sin(o))./((r-1)./2-(r.*e0.^2)./(isat+e0.^2))-... 
            (e1.*cos(o))./((tc.*gammae.*e1.*sin(o))./e0-
(r.*e0.^2.*ah)./(isat+e0.^2))); 
end 
end 
plot(f',(sqrt(C'.*conj(C')))) 
axis([-1.5e9,1.5e9,0,10]) 
xlabel('Frequency Offset (Hz)') 
ylabel('Phase Modulation Transfer Ratio') 
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Appendix D – Stamp Basic Code for the Microcontroller 
 
 
' {$STAMP BS2sx} 
' {$PBASIC 2.5} 
 
          sublooper VAR Nib 
          looper VAR Word 
          counter VAR Nib 
          thepoint VAR Word 
          theposa VAR Word 
          theposb VAR Word 
          temp VAR Word 
          temp2 VAR Word 
          thelimit VAR Byte 
 
          thelimit = 100 
 
          'Data Out 
          LOW 0 
          'Output CLK Out 
          LOW 1 
          'Load Out 
          LOW 2 
 
          'Filter Select 
          LOW 3 
          'Injection Select 
          LOW 4 
          'Phase Select 
          LOW 5 
 
          'Error Light 
          LOW 8 
 
          'Filter OK 
          LOW 9 
          'Filter OK 
          LOW 10 
          'Filter OK 
          LOW 11 
 
          'Data In 
          INPUT 12 
          'Input CLK Out 
          INPUT 6 
          'Input Busy 
          INPUT 13 
          'Load In 
          LOW 14 
 
          'Start Switch 
          INPUT 15 
 
          Main: 
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          'Running Light 
          LOW 7 
 
          IF (IN15 = 0) THEN Main 
          HIGH 7 
          LOW 8 
          LOW 9 
          LOW 10 
          LOW 11 
 
          HIGH 3 
          LOW 4 
          LOW 5 
          counter=0 
          filterloop: 
          counter=counter+1 
          thepoint = 0 
          FOR looper = 0 TO 4095 
            SHIFTOUT 0, 1, MSBFIRST, [looper\12] 
            PULSOUT 2, 1 
            PULSOUT 14, 1 
            stillbusy1a: 
            IF (IN13 = 0) THEN stillbusy1a 
            temp = 65535 
            FOR sublooper = 0 TO 4 
              SHIFTIN 12, 6, MSBPOST, [temp2\12] 
              temp2.BIT11 = ~temp2.BIT11 
              IF (temp < temp2) THEN doneavg1a 
              temp = temp2 
              doneavg1a: 
            NEXT 
            IF thepoint >= temp THEN isfine1a 
            thepoint = temp 
            theposa = looper 
            isfine1a: 
          NEXT 
          thepoint = 0 
          FOR looper = 0 TO 4095 
            SHIFTOUT 0, 1, MSBFIRST, [looper\12] 
            PULSOUT 2, 1 
            PULSOUT 14, 1 
            stillbusy1b: 
            IF (IN13 = 0) THEN stillbusy1b 
            temp = 65535 
            FOR sublooper = 0 TO 4 
              SHIFTIN 12, 6, MSBPOST, [temp2\12] 
              temp2.BIT11 = ~temp2.BIT11 
              IF (temp < temp2) THEN doneavg1b 
              temp = temp2 
              doneavg1b: 
            NEXT 
            IF thepoint >= temp THEN isfine1b 
            thepoint = temp 
            theposb = looper 
            isfine1b: 
          NEXT 
          IF (counter<3) THEN continue1 
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          HIGH 8 
          GOTO Main 
          continue1: 
 
          IF (ABS (theposa - theposb)) > thelimit THEN filterloop 
          looper = 0 
          startloop1: 
              SHIFTOUT 0, 1, MSBFIRST, [looper\12] 
              PULSOUT 2, 1 
              PULSOUT 14, 1 
              stillbusy1c: 
              IF (IN13 = 0) THEN stillbusy1c 
              temp = 65535 
              FOR sublooper = 0 TO 4 
                SHIFTIN 12, 6, MSBPOST, [temp2\12] 
                temp2.BIT11 = ~temp2.BIT11 
                IF (temp < temp2) THEN doneavg1c 
                  temp = temp2 
                doneavg1c: 
              NEXT 
              IF ((temp>((thepoint*3)/4)) AND ((looper-
thelimit)<((theposa+theposb)/2)) AND 
((looper+thelimit)>((theposa+theposb)/2))) THEN endloop1 
              IF (counter<3) THEN nofiltererror 
              HIGH 8 
              GOTO Main 
              nofiltererror: 
              IF (looper>(((theposa+theposb)/2)+thelimit)) THEN 
filterloop 
              looper=looper+1 
          GOTO startloop1 
          endloop1: 
          HIGH 9 
 
 
 
          LOW 3 
          HIGH 4 
          LOW 5 
          injectionloop: 
 
          thepoint = 0 
          FOR looper = 0 TO 4095 
          SHIFTOUT 0, 1, MSBFIRST, [looper\12] 
          PULSOUT 2, 1 
          PULSOUT 14, 1 
          stillbusy2a: 
          IF (IN13 = 0) THEN stillbusy2a 
            temp = 0 
            FOR sublooper = 0 TO 2 
              SHIFTIN 12, 6, MSBPOST, [temp2\12] 
              temp2.BIT11 = ~temp2.BIT11 
              IF (temp > temp2) THEN doneavg2a 
              temp = temp2 
              doneavg2a: 
            NEXT 
            IF thepoint >= temp THEN isfine1b 
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            thepoint = temp 
            isfine2a: 
          NEXT 
 
          looper=0 
          counter=0 
          startloop2: 
          SHIFTOUT 0, 1, MSBFIRST, [looper\12] 
          PULSOUT 2, 1 
          PULSOUT 14, 1 
          stillbusy2b: 
          IF (IN13 = 0) THEN stillbusy2b 
            temp = 0 
            FOR sublooper = 0 TO 2 
              SHIFTIN 12, 6, MSBPOST, [temp2\12] 
              temp2.BIT11 = ~temp2.BIT11 
              IF (temp > temp2) THEN doneavg2b 
              temp = temp2 
              doneavg2b: 
            NEXT 
              IF ((temp>(3*(thepoint/4))) AND (counter=0)) THEN 
dothis2a 
              IF ((temp<(thepoint/2)) AND (counter=1)) THEN dothis2b 
              IF ((temp>(3*(thepoint/4))) AND (counter=2)) THEN 
dothis2c 
              dothis2a: 
              theposa=looper 
              counter=counter+1 
              GOTO continue2 
              dothis2b: 
              counter=counter+1 
              GOTO continue2 
              dothis2c: 
              theposb=looper 
              counter=counter+1 
              continue2: 
              looper=looper+1 
          IF ((counter<3) AND (looper<4095)) THEN startloop2 
          IF (counter=3) THEN endloop2 
          HIGH 8 
          GOTO Main 
          endloop2: 
          looper=((theposa+theposb)/2) 
          SHIFTOUT 0, 1, MSBFIRST, [looper\12] 
          PULSOUT 2, 1 
          HIGH 10 
 
 
 
 
          GOTO Main 
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