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In high speed-communications, it is desirable to be able to detect small signals
while maintaining a low bit-error rate. Conventional receivers for high-speed fiber optic
networks are Amplified Direct Detectors (ADDs) that use erbium-doped fiber amplifiers
(EDFAs) before the detector to achieve a suitable sensitivity. In principle, a better
method for obtaining the maximum possible signal to noise ratio is through the use of
homodyne detection.

The major difficulty in implementing a homodyne detection system is the
generation of a suitable local oscillator signal. This local oscillator signal must be at the
same frequency as the received data signal, as well as be phase coherent with it. To

accomplish this, a variety of synchronization techniques have been explored, including



Optical Phase-Lock Loops (OPLL), Optical Injection Locking (OIL) with both Fabry-
Perot and DFB lasers, and an Optical Injection Phase-Lock Loop (OIPLL).

For this project I have implemented a method for regenerating a local oscillator
from a portion of the received optical signal. This regenerated local oscillator is at the
same frequency, and is phase coherent with, the received optical signal. In addition, we
show that the injection locking process can be electronically stabilized by using the
modulation transfer ratio of the slave laser as a monitor, given either a DFB or Fabry-
Perot slave laser. We show that this stabilization technique maintains injection lock
(given a locking range of ~1GHz) for laser drift much greater than what is expected in a
typical transmission system. In addition, we explore the quality of the output of the slave

laser, and analyze its suitability as a local oscillator signal for a homodyne receiver.
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L. CHAPTER 1 - Introduction

In high speed-communications, it is critical to be able to detect the smallest
possible signals while maintaining a low bit-error rate. This permits data transmission
across longer distances without the aid of repeaters or optical amplifiers. This effectively
lowers the cost, noise and potential delays of the optical communication network.
Currently, the most popular method to achieve this is through the use of Amplified Direct
Detection (ADD). However, it is possible to achieve greater sensitivity with the use of a
homodyne receiver [1, 2].

The major difficulty in implementing a homodyne detection system is the
generation of a suitable local oscillator signal. This local oscillator signal must be at the
same frequency as the received data signal, as well as be phase coherent with it. To
accomplish this, a variety of synchronization techniques have been explored, including
Optical Phase-Lock Loops (OPLL) [1, 34, 35, 36, 37, 38], Optical Injection Locking
(OIL) with both Fabry-Perot [42, 43, 44] and DFB [18, 45, 46] lasers, and an Optical
Injection Phase-Lock Loop (OIPLL) [19].

Several studies demonstrate the effectiveness of OPLL for locking heterodyne
[34, 35, 36] and homodyne [1, 37, 38] signals to within acceptable limits. However,
previous work has also shown that, to minimize the laser phase noise (i.e. the variation in
the phase difference between the two synchronized optical signals) the loop delay must
be kept as small as possible [19]. For wideband lasers (i.e. laser linewidths >10MHz),
the maximum loop delay must be less than ~100ps (the exact value depends on the
particular loop filter used in the OPLL), assuming a reliable operation time of 10 years

(estimated time until a cycle-slip occurs) [19]. As such, OPLLs may not be physically



realizable with Commercial Off-The-Shelf (COTS) components for wideband lasers, and
were not seriously considered for generating a local-oscillator signal in this experiment.

Alternatively, OIL provides a low-noise output signal that is phase coherent with
the received signal [18, 19, 42, 43, 44, 45, 46]. However, OIL output becomes chaotic
for large injected powers [39, 40]. Additionally, for small injection (i.e. the injected
signal is ~30dB below the OIL output signal), OIL requires a slave laser whose optical
frequency differs from the received optical signal by at most 1GHz, and as little as the
linewidth of the received optical signal. As such, frequency drift (due to either glitches in
the laser controller or environmental drifts) makes this method ineffective in real
systems. OIPPL integrates an OPLL into OIL in order to overcome this limitation [19].
However, OIPLL has only been proven to work for low data-rate optical signals (10-
100Mb/s). In addition, this method is intolerant to phase noise due to the thermal drift of
the optical path length of the interferometer used in the OPPL.

Thus, I have explored a method for regenerating a local oscillator from a portion
of the received optical signal that improves upon OIPLL to accommodate received
signals with higher data rates. Specifically, a portion of the received signal will be
optically pre-filtered, and used to injection lock a slave laser. When locked, the output of
this slave laser will be at the same frequency and phase coherent with, the received
optical signal. Thus it can be used as a suitable local oscillator signal.

In addition, we demonstrate that the injection locking process can be
electronically stabilized by using the modulation transfer ratio of the slave laser as a
monitor. Specifically, the modulation transfer ratio of an injected laser is at a minimum

at the center of the locking range, and increases as the difference between the frequencies



of the injected and free-running signals increase. This holds true for both Fabry-Perot
lasers and DFB lasers. This effect was also modeled with the use of the laser rate
equations.

Both Distributed Feedback (DFB) lasers and Fabry-Perot lasers are tested for use
as an appropriate slave laser for the local oscillator generator. In addition, stabilized
injection locking utilizing the modulation transfer function of the slave laser was
developed and tested for both laser types. For this, the effectiveness of both digital and
analog feedback systems were explored. Finally, the quality of the local oscillator signal

that is generated by the injection locked Fabry-Perot laser was explored.

1.1 Optical Receivers

Optical receiver sensitivity is effectively specified by the input optical power that
is required to achieve a particular maximum bit-error rate. Specifically, if a certain bit-
error rate is desired, this will determine the minimum received power that is necessary to
obtain it at a given data rate and optical wavelength. Although receivers demand a
greater power than this to overcome Johnson noise, dark noise, and detector inefficiency,
it is not necessary to consider these additional terms when determining the physical
limits.

For a given data rate, the bit-error rate is defined as the sum of the probability that
an intended 1-bit is interpreted as a 0-bit and the probability that a 0-bit is interpreted as a
1-bit [3]. The bit-error rate of a fiber optic communication system depends on both the

particular transmission scheme and the type of receiver used to detect the transmission.



1.1.1 Direct Detection
1.1.1.1 Ideal Direct Detection of Amplitude Shift Key (DD-ASK) Transmissions

The most basic way of detecting and interpreting an incident optical signal is with
a direct detection system. A direct detection system that is designed to decode ASK
transmissions is depicted in Figure 1.01. The first component in a direct detection system
may either be a reversed-biased photodiode or an Avalanche Photodiode (APD). This
device effectively converts an incident optical signal into electrical current. The detector
is then followed by a trans-impedance amplifier (often packaged with the detector),
which amplifies the incident electrical current into a larger electrical voltage. This
resulting voltage is then compared to an electrical threshold voltage, which determines if

the incident signal is to be interpreted as a 0-bit or a 1-bit.

Transimpedence
. Amplifier
Optical Electrical
ignal In (A i
Signal In (L) Logical Signal Out
Comparator

Electrical Threshold (S;)——

Figure 1.01 - Direct Detection System for ASK Transmissions

For an ideal detector and electronic amplifier, the thermal noise is considered to
be negligible. As such, the noise on the detected signal can be attributed to shot noise.
Shot noise is due to the inherent randomness in the arrival time of the individual photons,
and thus can be modeled as a Poisson random variable. In general, the probability of a

Poisson random variable of mean m being equal to k is [5]:
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m

P[k]zﬁe"'” (1.01)

In this case, it is assumed that the bit-error rate is equal to the probability that zero
photons (k=0) are received for a 1-bit (it is assumed that the probability of a 0-bit being
misinterpreted is zero). As such, if a bit-error rate of 107 for example is desired, then the
minimum number of photons/bit that are required for the direct detection of an ASK
encoded transmission is:

m=—In(2%10")= 20 (1.02)
Thus, if a BER of 107 is desired then 20 photons/mark are required for the direct
detection of an ASK transmission, which translates to an average of 10 photons/bit.
Using the definition of photons per bit given above, the average power for a transmission

can be found, given the number of photons/bit, the optical wavelength, and the data rate

by:

o
A bit sec

Thus for an optical wavelength of 1550nm and a bit-rate of 10Gb/s, the average power

that is required to obtain a BER of 10” is approximately -49dBm.

1.1.1.2  Non-Ideal DD-ASK

In a non-ideal direct detection system, Johnson and detector noise are normally
represented as the Noise Equivalent Power (NEP) of the receiver. NEP is defined as the
radiant power that produces a signal-to-noise ratio of unity at the output of a given optical
receiver, given the data-rate, frequency, and effective noise bandwidth of the incident

optical signal.



For systems where the NEP is normally greater than the shot noise, it may still be
possible to achieve a shot noise limited, non-amplified direct detector. This would be
accomplished by cryogenically cooling the detector and electronic amplifier so that the
Johnson noise is an order of magnitude lower than the shot noise [4]. However, this
technology is not currently available at a practical cost for deployment on a large scale
optical network.

The BER for an equal probability of transmitting a 0-bit and a 1-bit can be

calculated from:

BER . =1 1 i (Sf_x)z (8 =x) d 1.04
=) o ﬁzﬂJexp o 00 _Iexp 20t & (1.04)

where §; is the electrical current after the detector that is due to an optical 1-bit, Sy is the

current due to a 0-bit, o7 is the noise (standard deviation of the signal) in the 1-bit, oy is
the noise in the 0-bit, and Sy, is the threshold level (in terms of electrical current) that is
used to differentiate between a 0-bit and a 1-bit [5]. This equation can also be written in

terms of the complimentary error function as:

1 S, S, -8
BER .. =—| erfc +erfe| —4—2 1.05
R IEEANEES) o

For the ideal case, we assume an infinite S/N on the input of the detector and no

optical signal during a 0-bit. Using (1.03), the signal current is:

qnP.A

S, =
he

(1.06)

Furthermore, o; is equal to a combination of Shot, dark and Johnson noise, while
oy 1s equal to a combination of just dark and Johnson noise. Shot noise, also known as

quantum noise, is due to the optical signal being quantized. In general, shot noise is



given by the product of quantity, current, and bandwidth: ¢g/B. This is valid for any
discrete quantity where ¢ is the quantity, / is its current, and B is the bandwidth. In this
case, ¢ is electronic charge and / is the photoelectron conversion current. Optical shot

noise current is described by [7] again using (1.06) to obtain the current:

o5 = \/q(%jRBe =\/‘]S13e (1.07)

where 7 is the quantum efficiency of the detector, 4 is Planck’s constant, P is the signal
power, vis the frequency of the optical signal, and B, is the noise bandwidth (which is
assumed to be equal to twice the signal bandwidth). As such, oy is equal to (o;+NEP),
while oy is simply equal to the NEP. Given this, the BER can be determined from (1.05)

and (1.06).

1.1.1.3 BER for ideal ADD for ASK Transmissions

Optical amplifiers may be added before the detector in cases where the NEP of
the receiver is greater than the shot noise of the incident optical signal. This effectively
increases the power of both the received optical signal and optical noise that is detected
such that the shot noise is greater than the NEP, ensuring that shot noise will be the
limiting noise on the system.

For the ideal direct detection of an amplified ASK encoded transmission, the
receiver noise can be modeled as a Gaussian random variable with a 3dB degradation to
the signal to noise ratio. This 3dB degradation is the direct result of the ASE generated

by the optical amplifier [6, 13].



Thus, if it is assumed that there is an equal probability of transmitting a 0-bit and
a 1-bit, then the bit-error rate is given by (1.05). If amplifier and thermal noise after the
detector are considered to be negligible, the noise on the detected signal can be attributed
to shot noise and a minimum 3dB noise figure (F;;5) due to ASE. Thus, from (1.07), the

noise on the detected signal during a 1-bit is equal to:

0, =Fiy \/ q( Zq ]P B, 2\/ q(zq jP B, (1.08)
1%

In addition, the detected signal during a 1-bit can be expressed as:

Spr = (Z—qJPI (1.09)
1%

where P; is the optical power associated with a 1-bit.

For this system, the limiting noise during a 1-bit is shot noise that is due to the
signal power. Additionally, since we are considering an ideal system, we assume that the
power and noise during a 0-bit is negligible. The modulation is ASK, thus from (1.05)

the bit-error rate can be expressed as:

Sy =S
BER o , =— 1 erfc( ”’J (1.10)

\/_(701

Also, since the noise during a 0-bit is assumed to be negligible, the threshold value (S,)

is set close to zero. Thus the equation for the bit-error rate can be written as:

P,
BER ;5 ) =%erfc(%1/—hnvl; J (1.11)

In an ideal detector, the quantum efficiency is equal to 1 and the bandwidth is

equal to the bit-rate. From this, the bit-error rate can be written as:



BER ;¢ , = %erfc{gj (1.12)

where N is the number of photons per bit, which can also be expressed by the equation:

(M
hv hv \ B,

Given this, if a bit-error rate of 10 is desired then the value of N can be
numerically determined. From this numerical analysis it is found that 72 photons/bit are
required for the pre-amplified direct detection of an ASK transmission, which is very
close to the accepted value of 80 photons/bit [8]. If it is assumed that the optical
wavelength is 1550nm and the bit-rate is 10Gb/s, the average power that is required to

obtain a BER of 10 is approximately -43.4dBm.

1.1.1.4  Non-Ideal ADD for ASK Transmissions

The uncertainty principle dictates that the minimum degradation to the signal to
noise ratio by a linear amplifier is 3dB. However, the actual value is greater in real
amplifiers. This degradation, expressed as a Noise Figure, is typically in the range of
3dB-5dB for low-noise optical pre-amplifiers, and 6dB-8dB for power amplifiers.

Given incomplete population inversion of the optical amplifier, the equivalent
noise power at the input to the optical amplifier is equal to:
P, =hvBF (1.14)
where B is the bandwidth of the optical amplifier, v is the optical frequency of the
injected signal, F is the noise figure, and 4 is Plank’ constant (=6.626* 10°34) *s) [13].

The noise figure serves as a practical value to offset the degradation to the S/N ratio due



to internal loss within the amplifier and the less than full population inversion, and is
derived experimentally from the measured noise power and gain. Thus, the S/N at the
output of an optical amplifier is given by:

S GS,
2 = ’ (1.15)
N, GN,+NEP+P,, +P.

o shot

where Py, is the shot noise power, which produces a current of oy in an ideal detector.

Thus, if it is assumed that there is an equal probability of transmitting a 0-bit and
a 1-bit, then the bit-error rate is given by (1.05). For the non-ideal case, oy is equal to a
sum of Shot, dark, Johnson, ASE, and ASE-shot noise, while oy is equal to a sum of just
dark, Johnson, ASE, and ASE-shot noise. The signal is given by (1.06), the signal shot
noise is given by (1.07), the ASE-shot noise also given by (1.07); with the ASE power
substituted for the signal power, the ASE power is given by (1.14)., and the Johnson and
dark noises are given by the NEP.

From (1.14), it can be seen that the ASE noise that is added by the optical
amplifier is proportional to the bandwidth. An optical filter to limit the effective
bandwidth at the output of the amplifier can reduce this noise, as long as this bandwidth
is still greater than the data rate of the received optical signal. For example, if we assume
a 10Gb/s transmission on a 1550nm optical carrier, then the input noise power that is
added to the signal by the optical amplifier will be at least -59dBm. This value will be
greater if the amplifier is not operating at full population inversion (effectively increasing
the noise figure), or if the received data was transmitted at a higher data rate (requiring a

filter with a larger bandwidth).
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1.1.2 Coherent Detection

In a coherent detection system, the received optical signal is mixed with a more
intense “local oscillator”. The electric fields of these two signals interfere with each
other, provided that the two fields are in the same polarization state. Since detectors
measure optical power (which is proportional to the square of the magnitude of the total
electric field), the two signals are effectively mixed at the detector [9]. This signal is

given by:
Scoherent = [Z_qj V 2PI Plo COS(Cl)lt - a)lot + ¢lo )Sln(a)mt) (1 . 1 6)
14

where @ is the signal frequency, @y, is the local oscillator frequency, @, is the
modulation, and ¢, is the phase of the local oscillator signal relative to the received
signal.

After the detector, the electrical signal is amplified by a trans-impedance
amplifier. The signal from the trans-impedance amplifier is electronically filtered in
order to limit the bandwidth of the detected signal to that of the data and noise. This

effectively minimizes the noise on the electronic signal.

1.1.2.1 Heterodyne Detection

When the frequency of the received optical signal is different from the local
oscillator signal, then the coherent receiver is known as a heterodyne system (Figure
1.02). As seen from (1.16), for a heterodyne detection system S,operens 1S proportional to:
S

~ cos(a)lt -, t+¢, )sin(a)mt) (1.17)

coherent
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and that ¢, is indeterminate. The difference between w; and @y, is an intermediate

frequency whose bandwidth must be at least twice the signal bandwidth. Thus, the
bandwidth of the bandpass filter (Figure 1.02) is equal to the IF bandwidth. The

magnitude of the detected signal can be expressed as:

Sper = (%j\/zfa& (1.18)

Note that this power refers to the peak power, not the average power (the average power
would be equal to §,,, / V2 ). For ideal Heterodyne, we assume that the signal during a

0-bit is approximately zero and thus is ignored and that the dominant noise during both

the 1-bit and 0-bit is shot noise due to the local oscillator.

Bandpass Lowpass
RF Amp . )
Filter Square Filter
| Detector | == om
g % Detector Threshold 222
e

LO Signal 10

Threshold Level

Figure 1.02 — Heterodyne Receiver for ASK Transmissions
The (shot) noise during both the 1-bit and 0-bit is equal to:

O = q(Z—‘ijBoBhe, (1.19)

(Because the noise bandwidth, set by the bandpass filter, is equal to twice the signal base
bandwidth). If an ASK transmission is incident upon the heterodyne receiver, then from

(1.05), (1.18) and (1.19) the bit-error rate can be expressed as:

12
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lo=e

P B
1%

P S S
BER i .. = —| erfc o th +erfc th ) (1.20)
4 hvB, 5 (nquB 5 nqj
q hy q

Using (1.13) and assuming that 77=1, the BER can be written in terms of the number of

photons per bit as:
S S
BER o ., S s VN - i +erfc i (1.21)
) 2 (’”jp B 2 (’”jp B
q lo™=e q lo=e
hv hv

If a bit-error rate of 10 is desired, then a numerical analysis of this equation can
be used to determine the appropriate values of Sy, and N. From this, it was found that 72
photons per bit are required to obtain a 10 bit-error rate with a heterodyne receiver. If it
is assumed that the optical wavelength is 1550nm and the bit-rate is 10Gb/s, the average

power that is required to obtain a BER of 10” is approximately -43dBm.

1.1.2.2 Homodyne Detection
A coherent receiver is known as a homodyne system when the frequency of the
received optical signal is the same as that of the local oscillator signal (Figure 1.03). As

seen from (1.16), for a homodyne detection system S;operen: 1S proportional to:

Scoherent ~ COS(¢10 )Sln(a)mt) (1 22)

13
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Figure 1.03 — Homodyne Receiver for ASK Transmissions

As opposed to heterodyne, where the difference between @; and w), is at an
intermediate frequency, the signal is now in the base-band. Thus, the bandwidth of the
lowpass filter (Figure 1.03) is equal to the signal bandwidth. In addition, ¢, is now
critical, and directly affects the magnitude of the detected signal. Specifically, this

magnitude can be expressed as

Shomo] = (%j V 2P1P10 COS(¢10 ) (1 23)

As such, the phase difference between the received and local oscillator signals must be
equal to zero in order to maximize the output from the homodyne receiver. In this case,
the signal from a homodyne receiver reduces to (1.18).

The signal during a 0-bit is approximately zero and thus is ignored. Thus, if the
intensity of the local oscillator signal is strong enough such that the shot on the signal
dominates the other noise sources in the system (Johnson noise, dark noise, etc), the

(shot) noise during both the 1-bit and 0-bit is equal to:

1 (g
o = =g L |P B 1.24
homo 2q[hl/j lo™=e ( )

Because the signal is at base-band, the filter bandwidth is equal to the signal bandwidth.

Note that this equation differs from (1.19) by a factor of V2. This difference is due to
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the fact that the use of a homodyne detection system reduces the bandwidth of the
detector from 2B, to B, [10]. This is the origin of the homodyne 3dB advantage over
heterodyne.

If an ASK transmission is incident upon the homodyne receiver, and we assume
that the phase difference between the received and local oscillator signals is zero, then

from (1.05), (1.18) and (1.24) the bit-error rate can be expressed as:

[2nP S S
BERASK—homn :l erfC 77 = — th +erfC —_— (125)
q o Plo e q o Pl()Bg
which, when given (1.13) and the assumption that 7=1, becomes:
S S
BER ;5 _pomo -1 erfc| V2N — ——2—— |+erf¢| ——2—— (1.26)
4 g nq
q o PloBe q o Pl()Be
hv hv

As before, if a bit-error rate of 107 is desired, then a numerical analysis of this
equation can be used to determine the appropriate values of S, and N. From this, it was
found that 36 photons per bit are required to obtain a 10 bit-error rate with a homodyne
receiver. If it is assumed that the optical wavelength is 1550nm and the bit-rate is
10Gb/s, the average power that is required to obtain a BER of 10~ is approximately -
46dBm.

To maximize the output of a homodyne receiver, the difference between the
phases of the received and local oscillator signals must be minimized. The two ways to
accomplish this are with either a phase diversity system, or a phase tracking system. In a

phase diversity system, the received optical signal is first split by 50/50 splitter. At this
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point, one half of the signal (one of the outputs of the splitter) is mixed with the local
oscillator signal, while the other half is mixed with a local oscillator signal that has been
phase shifted by 90°. These two signals are then detected separately and the outputs of
the detectors are summed electronically [14]. Although this method effectively allows
for a signal with an arbitrary phase to be detected with a homodyne receiver, the use of
the 50/50 splitter decreases the final signal to noise ratio by 3dB, which in turn
effectively doubles the photons/bit that are required for this detection method.

The alternative to a phase diversity system is a phase tracking system. In this, an
electronic feedback loop is set up to compensate for any detected phase difference. This
system does not decrease the signal to noise ratio by 3dB (as was the case for a phase
diversity system). However, a phase tracking system will not effectively minimize the
phase difference between the received and local oscillator signals if the phase drift of

these two signals is faster than the response time of the feedback loop.

1.1.2.3 Polarization Effects

In order to maximize the output signal for any coherent detection scheme, the
polarization of the local oscillator signal must be aligned with the received signal. The
two ways to accomplish this are with either a polarization diversity system, or a
polarization tracking system. In a polarization diversity system, the received optical
signal is first split by a polarizing beam splitter into two orthogonal polarization states.
These two polarization states can them be separately detected. However, this effectively
doubles the complexity of the receiver, since a separate coherent receiver must be

assembled for each output of the beam splitter.
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The alternative to a polarization diversity system is a polarization tracking
system. In this, the received signal is transmitted through a polarization rotator, while an
electronic feedback loop is used to maximize the output from the detector. This system
adds significantly less optical path complexity to the overall receiver design. However, a
polarization tracking system will be incapable of maximizing the output of the polarizer
if the polarization drift of the received signal is faster than the response time of the

feedback loop.

1.2 Overview of Project

In this section, DD, ADD, heterodyne, and homodyne detection will be discussed
and their merits compared. The required number of photons/bit for each detection
scheme are summarized in Table 1. From this, it can be seen that the most sensitive
receiver is a non-amplified direct detector. However, such a system would need to be
cooled to sub-zero temperatures [4]. The next two most practical methods for detecting a

low intensity received optical signal are amplified direct detection and homodyne

detection.
Receiver Photons/Bit | Average Power (Bit Rate = 10Gb/s) [dBm]
Non-Amplified Direct Detection 20 -48.9
Pre-Amplified Direct Detection 72 -43.4
Heterodyne Detection 72 -43.4
Homodyne Detection 36 -46.4

Table 1 — Number of Photons per Bit that is Required for Various Detection Schemes

1.2.1 Implementation of DD
A direct detection system simply consists or a detector, and must exhibit low

detector noise and high optical sensitivity. Direct detection can be employed if the
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received signal is high power and low bandwidth or if the detector exhibits low Johnson
and dark noise (e.g. Cryogenically-cooled PIN diodes). Currently, APDs are employed at
moderate data rates, due to their high sensitivity. However, current APDs cannot detect
data-rates higher than 3Gb/s. In addition, cryogenically cooling a PIN diode detector is

not a practical solution for large optical networks.

1.2.2 Implementation of ADD

As was discussed in the previous section, an amplified direct detection system
consists of a detector that is preceded by an optical amplifier (Figure 1.04). Although
this appears to be an effective receiver design, there are two major problems. First, the
ASE noise that is generated by the optical amplifier will decrease the effective S/N ratio
of the detected signal. This in turn limits the minimum signal power that the detector is

capable of receiving.

EDFA
Feceived Signal To Optical Detector

Figure 1.04 — Amplified Direct Receiver

1.2.2.1 ADD Example

Earlier, we calculated that in order to obtain a BER of 10°, we need an average
signal strength of 36 photons/bit (assuming that the noise bandwidth is twice the signal
bandwidth). Given a data rate of 10Gb/s and an optical wavelength of 1550nm, this

translates to a signal power of approximately -46dBm. We assume that the amplified
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optical signal is incident on a NewFocus detector (Model #1544), over a bandwidth of
10GHz. The NEP of this detector is approximately -24.8dBm. If we assume a threshold
of Y4 the signal strength and solve (1.05) for S; (assuming Sy= 0 and o; = op= - 24.8dBm)
we find that the peak signal required to obtain a BER of 10” at the detector (given the
Johnson noise) is -14dBm. This translates to an average power of -17dBm. Thus, given
that the optical filter imposes at least a 3dB loss on the amplified signal, a gain of at least
29dB is required from the optical amplifier.

One parameter that must be addressed when designing an amplified receiver is the
number of optical amplifiers that will be required to obtain a desired total gain. Any
optical amplifier has a maximum allowable gain. This maximum gain is determined by
the point at which the amplifier is saturated by both the amplified signal, and the ASE
that is generated by the amplifier. Figures 1.05a and 1.05b show the maximum allowable
gain from an EDFA (Figure 1.05a) [15] and an SOA (Figure 1.05b) [16], for various
lengths of the amplifying medium. From this, it can be seen that, for a typical EDFA or

SOA, the maximum gain that can be provided is 36dB or 34dB respectively [15, 16].

4 0 a0 |
a5 . .
L ) -+ - . -
N 32 J
_ . -lu . g
= E |
in 152 g = *
i 3 o
1% [ =
] o 16
i (=% y
5 8 4
A 1
Al 1 15 pi} 25 W W3 0 1 . . N N
L 0 400 800 1200 1600 2000 2400
cavity length, pm
(a) (b)

Figure 1.05 — Maximum Allowable Gain for an EDFA (a) [15] and an SOA (b) [16], for

Various Lengths of the Amplifying Medium
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However, losses within the system may require addition gain, which in turn may

require the use of additional amplifiers.

1.2.3 Implementation of a Heterodyne Receiver

As with any coherent receiver, a heterodyne receiver mixes the received signal
with a strong local oscillator signal. The benefit of this is that it makes shot noise the
dominant noise, while shifting the frequency to an intermediate value, where RF
technology can provide low-noise amplifiers and narrow filters. However, at current
optical data-rates, optical filters are as narrow, and have comparable bandwidth
characteristics as their RF counterparts.

Its advantage over homodyne detection is that it is phase insensitive (with a 3dB
penalty). This receiver does not require a tight phase tracking feedback loop, but (in
many cases) does require a frequency control feedback loop to keep the beat-note within

the IF band-pass filter.

1.2.4 Implementation of a Homodyne Receiver

If we assume that the coherence length of the received optical signal is such that
its linewidth is much less than the envelope of the optical data, then an effective
alternative to a direct detection system is a homodyne receiver. From Table 1, it can be
seen that a homodyne receiver is capable of higher sensitivities than an amplified direct
detector. However, any homodyne receiver requires a local oscillator signal that is

synchronized (phase coherent) with the received signal. Such a local oscillator signal can
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be regenerated from a portion of the received signal. This will ensure that the local
oscillator is at the same frequency, and is phase locked with, the received optical signal.
There are three main methods that may be utilized to generate a local oscillator signal.
First, a small portion of the received signal may be filtered and amplified for use as the
local oscillator signal. Second, a small portion of the received signal may be injected into
a slave laser, the output of which can be used as the local oscillator signal. Finally, an
Optical Phase-Locked Loop (OPLL) may be used to force the frequency and phase of an
independent laser to mimic the frequency and phase of the received signal.

There have been several studies work that demonstrate the effectiveness of OPLL
for locking narrowband heterodyne [34, 35, 36] and homodyne [1, 37, 38] signals to
within acceptable limits. However, previous work has also demonstrated that, in order to
effectively lock two wideband homodyne signals together, the loop delay must become
very small, typically less than 0.1ns for lasers with linewidths >10MHz, depending on the
loop filter implemented in the setup [19]. As such, OPLLs may not be physically
realizable with Commercial Off-The-Shelf (COTS) components and were not seriously

considered for generating a local-oscillator signal in this experiment.

1.2.4.1 Homodyne Receiver with an Amplified Local Oscillator

The most obvious approach to generate this local oscillator signal is to use a
narrow Fabry-Perot pre-filter to strip the data from the diverted portion of the received
optical signal. After this, the stripped signal can be amplified and re-filtered to remove

the added ASE from the signal. The layout of this method is depicted in Figure 1.06.
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Figure 1.06 — LO Generator Utilizing an Optical Amplifier

The primary advantage of this method over an amplified direct detector is that,
since only the local oscillator signal needs to be amplified, the ASE noise that is present
on the detected signal can be reduced by limiting the bandwidth on the output of the
optical amplifier. For the direct detector the minimum allowable bandwidth was 10GHz,
limited by the data rate of the received optical signal. However, since only the local
oscillator signal needs to be amplified in the case of a homodyne receiver, the bandwidth
on the output of the optical amplifier can be limited to the linewidth of the carrier,
typically less than 10MHz. This effectively reduces the magnitude of the ASE noise that
is present on the detected signal by 30dB (compared to filtered ADD). It should be noted
that this is lower than was predicted for the BER calculations in the previous section,
since those were calculated assuming a bandwidth comparable to the data-rate.

However, there is a problem with this method. To demonstrate this by specific
example, we first assume that the received signal is -43.4dBm (as in the example for the
amplified direct detector to achieve a BER of 10” at a date rate of 10Gb/s and an optical
wavelength of 1550nm), and that 10% of the received signal is diverted for generating the
local oscillator signal. Additionally, we assume that we are mixing the received and local
oscillator signals in a detector whose equivalent input noise (due to Johnson noise) is

approximately -24.8dBm as in the ADD example (Section 1.2.2.1). As previously
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mentioned in section 1.2.1, this detector requires an average signal power of -17dBm to
achieve the conditions assumed above. Since the detected signal from a coherent receiver
is effectively the geometric average of the signal and local oscillator powers, the

homodyne receiver requires a local oscillator power of approximately:

2
P =L ok (~17dBm)— (- 43dBm) = ~9dBm (1.27)

lo
1

to reach the shot noise limit. Given this, it follows that a total gain of 44dB is required
from the system. Since this system already incorporates two Fabry-Perot filters, whose
minimum loss is 3dB per filter, the total gain that is required from the optical amplifier is
50dB.

However, and was discussed in section 1.2.1, the maximum gain that a typical
optical amplifier can provide is approximately 35dB. Thus, multiple amplifiers are
required. As such, we must adopt the configuration that is depicted in Figure 1.07. In
this, the diverted potion of the received optical signal is pre-filtered and amplified, just as
in the previous case. However, after this the signal is then re-filtered and diverted into a
second optical amplifier. The purpose of this is to remove the ASE that is outside the
bandwidth of the filter before re-amplifying the signal. This will prevent the second
amplifier from saturating, increasing the overall signal gain. After the second amplifier,
the remaining ASE is removed from the local oscillator signal by a third optical filter.

Signal Out

Received Signal ) . .
90 FP Filter FP Filter FP Filter

(20MHz) (20MHz) (20MHz)
o > >

Figure 1.07 — LO Generator Utilizing Multiple Optical Amplifiers
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The drawback to this method is that it is even more expensive than the amplified
direct detector. This is due to the need for multiple optical amplifiers and narrow-band
Fabry-Perot filters. As such, a different, less costly method for generating a local

oscillator signal is desired.

1.2.42  Homodyne Receiver with an Injection Locked Local Oscillator

A local oscillator generator, similar to the one discussed in the previous section,
may be obtained by placing an amplifying medium within a cavity. In this case, instead
of passing through multiple optical amplifiers, the received optical signal will make
multiple passes through a single amplifying medium. This process is known as
"Regenerative Amplification" [11]. In fact, unless there is an isolator on each side of the
gain media in the previous design, regenerative amplification will occur in that design as
well. In general, a regenerative amplifier provides high-gain for a received signal
(relative to the single-pass gain) over a narrow bandwidth. If the gain of the amplifying
medium within the regenerative amplifier is greater than or equal to the cavity loss, the
regenerative amplifier will self-oscillate. Amplifier chains without isolators are prone to
runaway self lasing. When no input signal is provided, the regenerative amplifier will be
seeded by the noise generated by the amplifying medium. This noise-seeded optical
regenerative amplifier (the case in which the ratio of gain to loss is greater than 1) is a
laser oscillator. Such a laser will emit a coherent signal whose center frequency is the
point at which the in-band (as determined by the optical path length of the cavity) gain of

the amplifying medium is at a maximum.
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Let us assume that a laser is injected with a low-intensity optical signal (as
opposed to noise generated by the amplifying medium within the cavity) that is detuned
from the center frequency of the cavity by a small amount. If this injected signal is weak
enough, it can circulate within the cavity and be regeneratively amplified by the laser
medium. As such, this injected signal will be amplified, independent of any other signals
currently oscillating within the cavity.

Given both an injected optical frequency that is close to the free-running
frequency of the oscillator and a sufficiently intense injected signal, the amplified
injected signal will approach the free-running oscillation intensity of the laser cavity.
Once this occurs, the injected signal will steal enough of the available gain from the
amplifying medium so that the free-running signal is effectively suppressed. At this
point, the injected laser (commonly known as the "slave laser") will emit a signal that is
at the same frequency as the injected signal, but at the intensity of the free-running signal.

The ability for these injection locked lasers to produce local oscillator signals has
been previously explored [18, 19, 20]. Since this method is based on regenerative
amplification, it is similar to the "amplifier-filter chain" method described in the previous
section. However, this method is significantly less expensive since it only requires a
single slave laser.

Although injection locking is an effective means to generate a local oscillator
signal, there may be additional concerns that must be addressed, depending on the
intensity of the injected signal. Previous research has shown that the output of the slave
laser becomes non-linear for high-powered injection [39, 40]. The cause of this non-

linearity can be attributed to both the suppression of free-running oscillation due to light
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injection in the slave laser, and to the change of the active layer index due to the high
intensity of the injected signal [40]. To avoid this issue, we ensure that the injected
signal is approximately 20-30dB lower than the output of the slave laser. However, the
locking range of the slave laser will be <1GHz given this condition. As such, a feedback
loop will be required to maintain the injection lock.

The methodology that we use to generate a local oscillator signal is based on the
approach described in [19]. In [19], a DFB laser is injection locked with a portion of the
received signal. An optical phase-locked loop is then used to maintain the injection lock
(required to compensate for the narrow locking range, as described in the previous
paragraph). However, this method has only been proven to work for low data-rate optical
signals (10-100Mb/s).

In my implementation, depicted in Figure 1.08, a 90/10 splitter is used to divert a
portion of the received optical signal into a narrow Fabry-Perot bandpass filter. The
purpose of this filter is to average over the modulation on the received signal. The
injection locking process will suppress the incident modulation by 10-30dB (depending
on the intensity of the injected signal and the properties of the slave laser used). If the
injected signal is On-Off Keyed (OOK), then the resulting local oscillator will still have a
0.1%-10% modulation on it at the data frequencies. Without the input filter, this high-
frequency residual modulation may interfere with the received data, effectively

increasing the BER of the receiver.
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Figure 1.08 — Layout of Local Oscillator Generator

The filtered signal is then used to injection lock a slave laser. The output of the
slave laser is a CW signal at the frequency of the received optical signal. In addition, it is
expected (and will be shown) that this CW signal is also phase coherent with the received
optical signal [21]. This regenerated CW signal can then be used as the local oscillator
for a homodyne receiver.

From this, I will demonstrate that a suitable local oscillator for a high-speed
homodyne receiver can be generated using either a DFB or a Fabry-Perot slave laser that
is injected with a portion of the received optical signal. In addition, I will show that the
injection locking process can be stabilized by monitoring the modulation transfer ratio of
the slave laser. Specifically, the modulation transfer ratio of an injected laser is at a
minimum at the center of the locking range, and increases as the difference between the
frequencies of the injected and free-running signals increase. This effect will be shown
in both Fabry-Perot lasers and DFB lasers. I will also show that this effect can be

modeled with the 1* order approximations of the laser rate equations.
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The suitability of both Distributed Feedback (DFB) lasers (Chapter 3) and Fabry-
Perot lasers (Chapter 4) will be discussed for use as an appropriate slave laser for the
local oscillator generator. In addition, a novel method for stabilizing the detuning within
the injection lock that utilizes the modulation transfer function of the slave laser will be
discussed for both slave laser types. Finally, in Chapter 5, the quality of the local
oscillator signal that is generated by the injection locked Fabry-Perot laser will be

explored.

1.2.5 Relative Merits

The advantage of DD is that it has the highest inherent sensitivity (as seen on
Table 1). However, DD is also impractical at high data-rates, due to the unavailability of
high-frequency APDs, and the impracticality of cryogenically-cooling PIN diode
detectors. Also, in most cases, a DD will not be shot noise limited.

The next most sensitive detection system is the homodyne receiver. Due to this, it
is the detection method that is currently being considered for this project. In addition to
being a sensitive method of detection this method is shot noise limited. Unlike ADD and
heterodyne, the homodyne signal is in the base-band. This allows for a low-pass filter to
limit the noise bandwidth that is equal to the signal bandwidth. The disadvantage of this
method is that is requires a phase tracked local oscillator signal.

Heterodyne detection is not being considered as a viable alternative to ADD,
since both methods require a filter that is twice the signal bandwidth, and because a
heterodyne receiver is much more complex than an ADD while offering no increase to

measurement sensitivity.
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II. CHAPTER 2 — Passive Optical Filtering

2.1 Background

As previously mentioned, an optical pre-filter will be placed at the input of the
slave laser. The purpose of this pre-filter is to average over the modulation on the
received signal. This will effectively reduce the residual modulation on the final local
oscillator signal beyond what could be obtained by the slave laser alone.

A Fabry-Perot filter was chosen for use as the pre-filter, due to its availability
(other filter types, such as microrings, would also serve as suitable pre-filters). A Fabry-
Perot filter, illustrated in Figure 2.01, is a resonant optical cavity. If an optical signal is
incident normal to one facet of this cavity, the ratio of the transmitted signal (/;) to the

incident signal (/y) can be expressed as [22]:

It (1 _R)2
2o 2.01
I, (1-R)* +4Rsin*(5/2) (0

where R is the power reflectance of each facet of the optical cavity, and Jis the phase
difference between successive round trips of the optical signal within the cavity. From
(2.01), it can be seen that the transmission ratio is equal to one when 6=0. This occurs
when the frequency of the light is approximately

me,
v, =
: 2nl

(2.02)

where 7 is the index of refraction of the optical cavity, / is the length of the optical cavity,

co 1s the speed of light, and m is a positive integer.
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Figure 2.01 — Fabry-Perot Filter with Piezoelectric Spacer

The phase difference between successive round trips can be expressed as

approximately
S = M (2.03)
S

where vis the optical frequency of the incident signal. If the optical frequency of the
received signal is close to the center frequency of the filter (the phase difference between

successive round trips is small), then this equation can be rewritten as

1
L L (2.04)
I, F°o
1+—
V4
where F'is the finesse of the filter, and is defined as
=" JR (2.05)

T 1-R
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The bandwidth of this filter is defined by the FWHM of the Lorentzian function, (2.04).

Thus, from (2.03) and (2.04), the bandwidth of the optical filter is

vV, = %
T AnlF

(2.06)

From (2.02), it can be seen that the center frequency of the filter can be varied by
adjusting the optical path length (n/) of the cavity. This is done by varying the spacing by
using a piezoelectric spacer (Figure 2.01). The size of this spacer varies due to a voltage
that is applied across it. Thus, the center wavelength of this filter can be adjusted by
changing the applied voltage via a filter controller. It should be noted that the change in
the optical path length is assumed to be much smaller than the overall length of the
cavity. This is so we can neglect the effect of adjusting the optical path length on the

bandwidth of the filter.

2.2 Feedback Control of Filter

Due to laser drift (which typically does not exceed a drift rate of 0.1Hz over a
range of not more than 0.2nm over the laser lifetime [33]), as well at thermal drift of the
fiber as well as of the filter itself (whose drift rate is typically sub-kHz), it is necessary to
have a feedback system that controls the center frequency of the filter. Specifically, the
feedback system is required to lock one of the modes of the Fabry-Perot filter to the
incident optical signal in order to obtain maximum transmission.

If the voltage applied by the filter controller is harmonically dithered, the center
frequency of the filter is also dithered. Thus, the magnitude of the amplitude modulation
at the dither frequency will be proportional to the derivative of the (Lorentzian) transfer

function of the filter.
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Given this, an amplitude locking loop, as shown in Figure 2.02, can be created.
This system starts by detecting a small portion of the output of the dithered filter. The
output of the detector is then used as the input to a lock-in amplifier whose reference is
the frequency at which the filter is dithered. The real component output (X) of the lock-
in amplifier is effectively the derivative of the transfer function of the filter, depicted in
Figure 2.03. From this figure, it can be seen that the derivative is nearly linear in the
region where |v-v;, | < 10MHz. This is the range in which the feedback loop will be able
to maintain the filter lock. It should be noted that a feedback loop that utilizes a lock-in
amplifier is not the only suitable feedback control method. Since the feedback signal is
simply the intensity of the detector output, any feedback system that monitors (and
maximizes) the signal from the detector is acceptable. A lock-in amplifier is only needed

for a feedback loop if a phase-sensitive measurement is required.
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Figure 2.02 — Example of Feedback System for a Fabry-Perot Optical Bandpass Filter
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Figure 2.03 — Derivative of Transfer Function of Fabry-Perot Filter

For this feedback system, a 2kHz dither (chosen to be at least 10x faster than the
drift rate of the filter) was added to the output of the lock-in amplifier and applied to the
piezoelectric controller of the filter. In addition, the lock-in amplifier was set to have a
300ms integration time across a 6dB/octave low-pass filter.

In order to test the feedback loop, the output from the detector was monitored
over a period of 10 seconds, while the filter bias was randomly varied. From this, it was
observed that the feedback loop successfully adjusted a mode of the Fabry-Perot laser so

that it was approximately equal to the center frequency of the received optical signal.
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1. CHAPTER 3 — Injection Locking a DFB Semiconductor

Laser

3.1 Background

“Injection Locking” is the process of injecting a weak seeding optical signal into a
more powerful free-running oscillator, in order to lock the frequency of the free-running
oscillator to approximately the same frequency as the seed. The output of the locked
oscillator will then be coherent (in frequency and phase) with the injected signal.

We assume that the particular laser that is being injection locked is a Distributed
Feedback (DFB) laser. A DFB laser is fabricated such that a periodic grating is etched
close to the active region of the laser, throughout much of the gain region (Figure 3.01)
[23]. Since only wavelengths that match the grating spacing will oscillate within the

laser structure, unwanted modes will be effectively suppressed in a DFB laser.
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Figure 3.01 — Structure of a GaAlAs Double Heterojunction DFB Laser [23]
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To model this system, we assume that the laser can be approximated as an
effective two-level system, consisting of a ground state and an excited state for the gain
medium. This medium excitation dynamic is modeled as a simplified rate equation
which ignores non-radiative excitation. Furthermore, the excitation of the photon field

can be described by a rate equation.

3.1.1 Rate Equation for the Photon Field

For the purposes of developing an injection locking theory for a DFB
semiconductor laser it will be assumed that the free-running oscillator is operating in
single-mode, and the optical frequency of the injected signal is close to the frequency of

the free-running oscillator.

Figure 3.02 — Phasor Picture of Laser Cavity

To further explore the behavior of this system, we use the phasor picture depicted

in Figure 3.02. In this, EW represents the total phasor amplitude of the optical wave that

is circulating within the cavity. EW is comprised of both the portion of the circulating
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field that is reflected off of the left mirror (Ereﬂ) and the injected field ( £ ) - As such,

E, can be expressed as

~

E,+E, (3.01)

In addition, E - Can be expressed as:

By =By (6= Ty Yo r ) (3.02)
where Tgr is the round-trip transit time, J,, is the round-trip gain of the cavity, ¢. is the
roundtrip loss of the cavity, and @; and @y are the frequencies of the injected electric field
and the electric field inside the slave laser (respectively). From these two equations, the
total field at the first mirror can be expressed as:

o | L (3.03)

inj
. t . . .
If we assume that Tkr is small, then we can use a 1% order time series expansion of the

time-delay and exponential terms of the equation to rewrite it as:

tn

dE, 65,-6, ~ ~
- . Ecir + .](a)l - a)O )Ecir = : (304)
dt Ty Ty

If we define the single-pass carrier lifetime (z.) and the unsaturated gain to loss ratio (7)

as:
TRT
== 3.05
=y (3.05)
r=r +jr2 :i—m (306)

c

then (3.04) can be written as:
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tn

dE 7"1 —1 ~ 7”2 ~ ~ inj
T - j—=2E_ +jlo -0 )E. =—- 3.07
dt 22’ cir ] ZT cir .]( 1 0) cir ; ( )

-3

Note that 7 has been defined as a complex value in (3.06). The real portion of »
represents the unsaturated gain-to-loss ratio, while the imaginary portion represents the

phase shift that occurs at the edge of the laser cavity. Given this, (3.07) can be separated

into amplitude and phase components by expressing Ea., and E w88

~

= Ee'® (3.08)

E, =Ee’ (3.09)
where E and E; are the magnitudes of the circulating and injected fields, and ¢ and ¢; are
the phases of the circulating and injected fields, respectively. Given this, we can express
the change in the amplitude of the circulating electric field as:

dE_r-
dt 2T

c

E=y,E cos¢g (3.10)

and the change in the phase of the circulating field as:

d r v.E .
7?—2—;_C+(a)l—a)0)=T151n¢ (3.11)

where ¢ is the phase difference between the injected electric field and the electric field

inside the slave laser (¢= @ - @), 1 is the photon loss rate due to external coupling

(%ZI/TRT)

3.1.2 Rate equation for two level population dynamics
To determine the change in the unsaturated gain, we assume that the laser is

operating in a state of near-full population inversion. In this case, the rate equation for

37



the excited energy level of the laser (NV,) can be expressed as (ignoring non-radiative de-
excitation):

dN N, E?
dt2 =,0—TZ—I—AN2 (3.12)
1

sat
where p is the pump rate, 7} is the cavity lifetime, and I, is the saturation intensity. In
this equation, -N,/T; represents the change in the excited energy level of the laser due to
spontaneous emission, and -(Ez/lsa,)AN , represents the change due to stimulated emission.
If we assume a two-level system with full population inversion, then the overall gain of
the cavity can be expressed as:

S, =20LAN, (3.13)
where L and o are the is the length and stimulated emission cross-section of the cavity,
respectively. Since 9, is proportional to N, and ¢, is independent of N,, then from (3.06)
the unsaturated gain to loss ratio () is also proportional to N,. Given (3.12), this allows r

to be expressed as:
dr 1 E?
—=p-r—|l+— (3.14)

Equations (3.10), (3.11), and (3.14) can be used to approximately describe the behavior

of the injection locked DFB laser.

3.1.3 Phase Stability Range
The steady-phase solution of (3.11) can be used to solve for the detuning of the
injected optical signal with respect to the optical signal generated by the locked oscillator

[50]:
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P /.
Av=0 -0,=7y, /F‘(smqb—% cos¢) (3.15)
0

where a4 1s a phase factor whose value is comprised slow thermal refractive effects and
the linewidth enhancement factor due to high-frequency electronic effects, and P; and Py
are the injected and slave laser output powers, respectively (P/=E;¢*, Py=E/).

Since these effects have opposite effects on the laser, the value of o is less than
the linewidth enhancement factor of the laser. Experimentally, it was found that oy is
negligible for our DFB laser and ~2 for the Fabry-Perot laser.

As the injected signal is detuned, the output of the slave oscillator remains at the
frequency of the injected signal, but the phase difference between the signals varies over
a range of -n/2 to m/2 [50]. From (3.15) and this phase limitation, the detuning must be

within the range [50]:

P [P 2
—7. = <Ao<y, |t l+a
7/6 PO 7/6 PO ¢

in order to maintain injection lock.

(3.16)

3.14 Phase Shift of a Tracking Oscillator

The steady-phase solution of (3.11) can also be used to solve for the phase
difference between the injected optical signal and the optical signal generated by the
locked oscillator. For cases where the value of oy is negligible, this phase difference can

be expressed as:

¢=sin1(yb;5 (o, —a)O)J (3.17)
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As the injected signal is detuned, the output of the slave oscillator remains at the
frequency of the injected signal, but the phase difference between the signals varies over

a range of -n/2 to m/2.

3.2 Feedback Control of an Injection Locked DFB Semiconductor

Slave Laser

In order for the regenerated local oscillator to lock in frequency with the received
optical signal, the difference between the frequency of the received optical signal and the
free-running frequency of the slave laser must be within a narrow range (i.e. the locking
range). However, due to thermal drift, the free-running frequency of the slave laser will
vary (given a stable laser controller, this typically does not exceed a drift rate of 0.1Hz
over a range of not more than 0.2nm over the laser lifetime [33], although circuit glitches
may cause a temporary, rapid "drift"). In order to compensate for this drift, as well as for
the normal frequency drift that is associated with the received optical signal (due to
environmental drift, whose drift rate is typically sub-kHz), a feedback system to match
these two frequencies is required.

In order to create this feedback system, a method of determining the difference
between the free-running frequency of the slave laser and the frequency of the received
optical signal is required. As previously mentioned, when the difference between these
two frequencies is within the locking range, the frequency of the output of the slave laser
is equal to the frequency of the received optical signal. Thus, there is no obvious, simple,
direct way of determining this difference. From (3.17), we see that the detuning can be

indirectly measured by monitoring the phase difference between the injected signal and
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slave laser output (assuming that o, is negligible). However, since a coherent receiver is
essentially an interferometer, this phase difference can be due to either detuning, or to
drift in the interferometer arms. Thus, a new method for monitoring the detuning is

required.

3.2.1 Generation of a Feedback Signal

In order to determine a new method for generating an appropriate feedback signal,
we must first delve deeper into the theory of injection locking. Once we do this, we will
find that if an amplitude modulated signal is injected into the slave laser, the resulting
transmission ratio can be used to determine the difference between the free-running

frequency of the slave laser and the frequency of the received optical signal.

3.2.1.1 MTR as a Measure of Detuning

We shall show that the Modulation Transfer Ratio (MTR) is a good way to
measure detuning. For this, MTR is defined as the ratio of the output and input
modulation indices, where the modulation index is defined as the ratio of the modulation
on a given signal to its CW power. This will be defined below as (AEy/Ey)/(AE/E). To
calculate the MTR as a function of detuning, we must first assume that a small

perturbation is applied to E;, E, r, and ¢. From this, we can express £/, E, r and ¢ as:

E, =E,, +AE, (3.18)
E=E,+AE (3.19)
no=1,+An (3.20)
v, =y +Ar, (3.21)
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p=¢,+A¢ (3.22)
Substituting £, E, r, and ¢ into (3.11):

de, N dAg 1,  Arn +(0)1 —0)0): 7@(E10 +AE1)Sin(¢O +A¢) (3.23)

dada dt 2, 2t E, +AE

c c

Expanding the sine term:

dg 7 dAg Ar VA\E,, +AE )r . )
{7;—2—;C+(a)1 - o, )}r P 2rj = (EOlOJrAE 1)[sm¢0 cos Ag + cos @, sin Ag] (3.24)

If we assume that Ag and AE are very small, we can take the first order approximations of

the trigonometric terms and of the denominator of the right side of the equation:

-0 02

dt 2t dt 2r,
(3.25)
:Q(EIO+AE1 1—E (sin¢0+A¢cos¢0)
EO EO
Expanding the right side of the equation:
d A
T2 (i —,) |+ FBP B2
dt  2r, dt 2t
) E,,sing, + E,jA¢cos @, + AE, sin @, + AE, A¢cos @, (3.26)
=—| E,AE E AE AEAE AEAE
E, | -—%—sing, -—>—Agcos ¢, — Lsing, — LAgcosd,
EO 0 EO EO
Regrouping in order of powers of A¢g and using (3.11) to simplify this equation:
dAg _Ar,
dt 2t
, E\,Agcosg, + AE, sin g, + AE Adcosd, (3.27)
=—| E,AE E AE AEAE AEAE
E,|-—X—sing, ——>—Agcos ¢, — Lsing, — LAgcosd,
0 0 0 0

Dropping the higher order terms and letting ars=Ar:/Ar;:
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A
dAp _  An 7.

E AE
R et E,,Agcosd, + AE, sin g, — 1;5 sin ¢0} (3.28)
c 0 0

Similarly, from (3.10) and (3.18-3.22):

dE, dAE r1,+Arn -1
Oy =0 "1 "(E,+AE)=y,(E, +AE, )cos(¢, + Ap) (3.29)
dt dt 27,
Following the method for deriving (3.28), we get:

o —1

27,

A
dAE_ A p o AE = y.(AE, cos¢, — E,,Adsin g, ) (3.30)

dt 2r,

Additionally, from the real part of (3.14) and (3.19-3.21):

ﬂ+—dN1 =P—(r, +An, )L[l +

dt  dt T,

Grse) | 31

sat

Once again following the method for deriving (3.28), we get:

(3.32)

dAr, (A, 4 2EAER +EJAr,
dt T\

sat
Equations (3.28), (3.30), and (3.32) describe a set of linearized equations that are
approximately equivalent to equations (3.11), (3.12), and (3.14) to the 1* order. Given
these equations, and the assumption of a harmonic driving force, we shall derive an
expression for the MTR, correct to the first order. Thus, if a harmonically modulated

signal is injected into a free-running oscillator, the perturbation on its electric field can be
given as:

AE, = 4e’™ (3.33)
where A and (2 are the magnitude and frequency of this perturbation, respectively. From

this, it can be assumed that resulting perturbation on E, ¢, and r; is of the form:

AE = Be’™ (3.34)
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Ag = Ce’™ (3.35)

Ay, = De’ (3.36)
where B, C, and D are the magnitudes of the 1** order component of the perturbation on

E, ¢, and r; respectively. Note that the MTR is simply (B/A)*(E/E).

Substituting the results from (3.34-3.36) into (3.28), (3.30), and (3.32) results in

the following three equations:

2E,Br, +E;D
jQD:—i(D+ oPio T 2o j (3.37)
]11 sat
a ) E, .
jQC——¢BB: Ve CE,, cos@, + Asing, — B—Lsin g, (3.38)
27, B . E,
E, b +7,, —1
JOB - 332— =7.(-CE,, sing, + Acosg, ) (3.39)
TC
3.2.1.1.1 Solving for 1* Order Perturbation on
If we solve for D using (3.37), we get:
2E,B
D=- 0 1”10 = (3.40)
Elvat JQ + -+ 0
A 1 Tvllsat
This equation can then be rewritten as:
2n,E
b__ Tio 0 (3.41)
B , E,
]1113611‘ .]Q + -+
]11 T'l[sat
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3.2.1.1.2  Solving for 1** Order Modulation Transfer Ratio of Locked Oscillator

If we solve for C using equation (3.38), we get:
E o, E
Asing, — B~ sing, +_* 0 D p
E 2r.y, B

C= z . (3.42)
J=FQ—-E, cosd,

e

Additionally, solving (3.39) for C results in:

E02+r10—1
Ay, cosd, + Bz——jQ B
T

c

C= - (3.43)
Y Esing,

Equating (3.42) and (3.43) gives us:

E, b +7,—1
Ay,cosy+| ————jQ|B
a E }/e 0 J
Asin(zﬁo—B&sin(zﬁoJr 20 D p 2z,
E, 2.y, B 344
E - E, sing, (349)
j Y Q- E, cosg, VLo 0
Rearranging this equation results in:
yocosd,  sing,
i E
}/eEIO sin ¢0 Ji()Q _EIO CcOS ¢0
B= Ve - 4 (3.45)
E,—+r,—1
a. E E 0 10
AQ_ 10 Sln¢0 B—_]Q
2r.y, B E, B 27,
E X
JELQ—E,, cosd, 7. E\psing,

e

which can be further rearranged to:
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B= JEQcosd, —y E,,

E, D E, D , E,
O E\ycosdy+ > Ega,sing, ——
2r, B

10

2Tc B c 0 c
D
2
2 Ey | e Eq E
-Q°——jQ E,+ + E,,cosd,
Ve 27,7, 27,7,

Then, if we make the substitution in (3.41), we get:

JEQcosg, -y, E\

B= A
EE E .
-0 uLel) (cos¢0+a¢sm¢o)
T 1 E;
° T, jO+—+—2
LTI,
E, .
S 7351n2¢0+ > 10
0 Tc
—Qzﬁ—jﬂ r“)_lE - ik E,’ +E,, cosd
y Ty 0 1 EX \2r.y 10 0
‘ o n[vat ]Q+7+ g e
‘ Tvl ]llsat

which can be further simplified with the steady-state solution of (3.10):

P,
l—jg FOCOS%
B: 73 1 A

Mo F, .
CcOS + a, Sin +
rye]QTLm+I +P)( b+ o %)

"o — oo +cos g,
}/e 2T }/E T}/e ]QTIYat—’_[sat-l_PO)

From this, the 1% order MTR can be stated as:

R
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P

p l—jg Focos%

MTR:%xEl: . 7. - (3.48)

4+ o ‘ 0 —O(cos¢0+a¢sin¢0)
vy, UQT L, + 1, +PB)\ P

sat

2 .
) A QR R "ok +cos g,
v.) By, B\2ty, ry.(QTI,+1,+P) ’

If it can be assumed that 3,>> (typically % ~10'") and that the modulation frequency is

sat

sufficiently low so that 7,02<<1 (typically true for modulation frequencies below
10MHz), (3.48) can be simplified:

MTR = ! (3.49)

P P, .
1+ o | T —O(cos¢0+a¢sm¢0)
ch/e ]sat+P0 Pl

which can be further simplified with (3.15):

MTR - 1 (3.50)

2
ch/e ]sat+P0 Pl ye

Also, for the case of a DFB semiconductor laser, it was experimentally found that the

MY

value of a~0. As such, the MTR for the DFB semiconductor laser can be further

simplified to:

MTR,,, = ! (3.51)

2
1+r170 i & 1— %
77\ L + B )\ P 7.

Y

3.2.1.1.3 Numerical Modeling
Given the equation for MTR, we numerically simulate the behavior of this system

and present the results graphically. For this, we assume typical constraining values.
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Specifically, we assume that the effective saturation intensity of the slave laser is 0dBm,
the perturbation on the injected intensity is 10%, the unsaturated cavity gain to loss ratio
(r when E=0) is 2, the cavity lifetime (7.) is 150p s, the carrier lifetime (77) is 1ns, the
photon loss rate (3) is 8*10° s, the pump rate (p) is equal to 2*10° s™', and the phase
factor (o) is equal to 0 (experimentally determined).

Additionally, in order to perform these simulations, values for £, and »; must be
determined from the steady state solutions of (3.10) and (3.14). The steady state solution

of (3.14), after some rearrangement, results in:

E,=—u (3.52)

Substituting this into the steady state solution of (3.10) results in:

f_g_zrc}/eflo COS¢O Eé-‘r(l

sat sat

—pT,)E, —27,7,E,, cosg, =0 (3.53)

From (3.53), E can be solved numerically. 7y is determined by (3.14) using the

numerical value obtained for Ej:

T

r =L (3.54)
E
1+

sat

Figure 3.03 depicts:

o[ 1B/l
MTR (0, - o) 7/ E (3.55)

over the locking range of the slave laser. This ratio was plotted for various modulation

frequencies (£2). From this figure, a distinctive “U” shape can be seen over the locking
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range. Additionally, it should be noted that when this “U” shape was plotted at various
modulation frequencies (below 10MHz), all of the curves were found to be graphically
indistinguishable from each other. This indicates that, as was predicted by (3.51), the

MTR of the slave laser is weakly dependant of the modulation frequency.

Modulation Transfer Function vs. Frequency Offset (15t Harmonic )
0.016
! ' ' —— Madulation Frequency=5 O0e+005

—— Modulation Freguency=1.00e+006
—— Modulation Freguency=2.00e+J06

0014 - —

0mz2 - —

0.008 - —

Muodulation Transfer Ratio

0.006 - —

0.004 B

0.002 B

Figure 3.03 — 1** Order Modulation Transfer Ratio vs. Frequency Offset (At Various

Modulation Frequencies [Hz])

Figure 3.04 depicts this ratio for various injected intensities. As can be seen from
this figure, although the minimum of the “U” shape is less than one (indicating a
suppression of the modulation of the injected signal) it does not go to zero. Instead, this
minimum value is approximately proportional to the intensity of the injected master

signal (at low modulation frequencies).
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Madulation Transfer Function vs. Frequency Offset (15t Harmanic)
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Figure 3.04 — 1* Order Modulation Transfer Ratio vs. Frequency Offset (At Various

Injected Powers)

3.2.1.1.4 Experimental Verification of the Injection Locking Theory

Figure 3.05 depicts the experimental setup used to monitor the magnitude of
modulation on the optical signal that is emitted from the slave laser. In this setup, a CW
signal from a tunable laser is externally modulated via a Mach-Zehnder Interferometer,
the modulation depth of which is ~7% (chosen to model the modulation suppression due
to an optical pre-filter). This provides the signal to which the slave laser will be locked.
The DC bias of the external modulator is adjusted so that no detectable higher order
harmonics are present on the output (2" harmonic is <50dBm). The signal is directed
into the slave laser via a circulator, and the circulator redirects the signal from the slave

laser to an optical detector.
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The signal generated by the detector is lock-in amplified and referenced to the
modulator’s drive signal. The lock-in amplifier filter was integrated over 0.3ms by a
24dB/octave low-pass filter. The amplitude of the amplified signal is then recorded by an
oscilloscope. In order to detect the change in the magnitude of the modulated signal over
the entire locking range, the free running frequency of the slave laser is sinusoidally
swept across the locking the entire locking range at a frequency of 20Hz. This is

accomplished by modulating the current source of the slave laser.

DC Power Supply

Photonetics
A=1550nm P=-3dBm DG It
CW Tunable |()Y(100O) OO0 Sine Wave
Laser Generator
RF I\ (20Hz)
Sélne Watve o
enerator
(300kHz-100MHz) Laser
Controller
Ref NewFocus 1811 ¢

L kllh DC-125MHz vy 1
Oscilloscope |« An(zgli;‘ier <— Detector 43—@3—> Slave Laser

Figure 3.05 — Layout of Injection Locking Experiment

Figures 3.06 and 3.07 depict the change in the magnitude of the modulation out
over the locking range, as seen on the oscilloscope following the lock-in amplifier. From
this, it can be seen that the lock-in amplifier/oscilloscope combination shows the same
behavior as was predicted by the theory. It should be noted that the curvature of the “U”

shape remains fairly constant for modulation frequencies below SMHz.
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Modulation Transfer Function vs. Frequency Offset
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Figure 3.06 — 1** Order Modulation Transfer Ratio vs. Frequency Offset (At Various
Modulation Frequencies)
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Figure 3.07 — 1* Order Modulation Transfer Ratio vs. Frequency Offset (At Various

Injected Powers)
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322 Varying the Free-Running Frequency of the Slave Laser

Before the MTR’s dependence on detuning can be utilized by a feedback loop, a
method for adjusting the free-running frequency of the slave laser is required. This
frequency adjustment can be done in one of two ways. First, adjusting the temperature of
the slave laser will affect the length of the optical cavity, due to thermal expansion.
However, since the peltier cooler that is used to control the temperature is coupled to the
slave-laser casing, the entire package needs to achieve thermal equilibrium before the
free-running frequency of the slave laser can stabilize. Since the package has a huge heat
capacity, changing the free-running frequency of the slave laser in this way is a slow
process. This effectively limits the frequency at which the free-running frequency of the
slave laser can be dithered.

The other way to adjust the free-running frequency of the slave laser is to change
its drive current. As the drive current of the slave laser increases, the free electron
concentration also increases. Since the index of refraction of a material is dependant on
its free electron concentration [25], changing the free electron concentration of the laser
medium effectively changes its optical path length, thereby changing the free-running
frequency of the of the slave laser. This is a much faster process than varying the
temperature, since its speed is only limited by the rate at which carriers can be generated.
However, changing the drive current of the slave laser will also change the output power
of the slave laser. This may not be desired, since the locking range is proportional to the
square root of the ratio of the slave laser intensity to the intensity of the received optical
signal. Thus, if the free-running frequency of the slave laser is dithered by modulating

the drive current of the slave laser, the amplitude of this modulation must be kept small
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enough to ensure that the change in the output power of the slave laser is much smaller

than this output power.

323 Creating the Feedback Control System for the Injection Lock

As shown in Sections 3.2.1.1.3 and 3.2.1.1.4, the modulation transfer ratio of a
laser that is locked to a modulated optical signal is essentially “U” shaped. If the free-
running frequency of the slave laser is then dithered by modulating its drive current, then
similar to the filter feedback loop presented in 2.2, the amplitude of the modulation on
the output from the slave laser at the dither frequency will be proportional to the
derivative of the “U” shape (depicted in Figure 3.08).

x 10°

0.8

0.4+

0.2+

Derivative of Modulation Transfer Ratio
o

1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Frequency Offset (Hz) 9

Figure 3.08 - Derivative of “U”-shape
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3.2.3.1 Analog feedback control

The simplest feedback control loop is an analog control loop, depicted in Figure
3.09. For this, the received optical signal is modulated (with a modulation depth of M,
typically ~0.1), and injected into the slave laser. If we allow the modulation transfer ratio
of the slave laser to be defined by F(v) (where U(¢) is the total detuning at a given time ¢),
then the modulation intensity on the output of the slave laser will be P,,,MF(v), where
P, s the output of the slave laser (typically ~ImW). This signal is then detected (the
product of the detector sensitivity and any associated transimpedance gain, D, is ~2*10*
V/W) and diverted to lock-in amplifier #1. The output of lock-in amplifier #1 is the
magnitude of the modulation on the input signal, multiplied by a constant gain g;
(typically 30-40dB). As such, the output of lock-in amplifier #1, denoted as y(¢) can be
expressed as:
W)=g P, -M-D-Flv) (3.56)

The output of lock-in amplifier #1 is diverted to lock-in amplifier #2, whose output

(denoted as x(7)) can be expressed as:

¢ —(t-7)
x(t)=g, J-e T y(c)sin(Q, (r — 7, )t (3.57)

where g is the gain of lock-in amplifier #2 (typically 40-60dB), 77 is the integration time
of lock-in amplifier #2, and 7, is a delay set by the lock-in amplifier to match the phase

of the modulation on the input.
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Figure 3.09 — Layout of Analog Feedback Loop

The output of lock-in amplifier #2 is added to both a bias voltage and dither
signal, and this combined signal is used to drive the slave laser. For the purposes of
modeling this system, the effect of the components within the dashed box in Figure 3.09
are treated as a constant K [41] (whose value is experimentally found to be ~10° Hz/V).

As such, 1(¢) can be defined as:
v(t)=v,(t)+asin(Q,¢)- Kx(t -z, ) (3.58)
where vy is the detuning due to the drift of the laser, a is the detuning due to the dither,
and 7 is the loop delay. Combining (3.56) and (3.58) results in:
v(t)-v,(t)-asin(Q,1) = —Kx(t —z,)

o dern) (3.59)

—Kog e T lemn)sin@, e -o s

If we then combine (3.57) and (3.59), assume vy(¢)>>a, and define g=g;g, (overall gain

due to lock-in amplifiers), we get:
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-1y —(t-1-7,)
v()-vit)=-K-g [ e T P, -M-D-F(c)sin(@,(r -7, )z (3.60)

If we assume that vy and x vary slow compared to the dither period and 7, is set equal to

Z€10:

M-D-K.o.qi 50 =)
(t)=v, (¢) = = Lo M 12) Rga e peus (3.61)

—00

For a small Az, and assuming that vj(¢) is nearly constant over a time 7; (77>>>>Af):

dv _dv, _ (v(t)— v, (t))— (V(t - At)— v, (t - At))

dt dt At

M-D-K-g-a'§ )

__k Y [e ™ F()yr (3.62)

—00

. . . .o . Ay m
+Pom MzDAtK £4 e T F(vo)dr
dl/ dv PZMDK ,at*TO ~(t-7-7,) '
dt dto Y : e T F(vr)dr
P M-D-K-g-q s o) (3.63)
p e [ e T Pl
dv dv P, -M-D-K- g o) '
PRy el A )%
. . . Lo At 1-T¢ —(t-7-7,)
v leth e [ T (e (3.64)
Pout.M'D'K'g'a % =7 M

.[e T F'((r)dr

t—13—At

e
2At

. .D-K.o. Atz —(1-r-7)
dv_dv, =—P‘”” M-D-K-g a(l—eTJJ- e T F'(V(T))dr

e dt 2At ]
Lo M DR g eATt{ tfo e(t;TO)Fv(v(r))df] o
2At D
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S\ b D Kee g e
dv dVO _ 1 (l—eT]Pom M-D-K g-a J‘ e T F'(V(T)VT

dt dt At 2 e
At
Pom MlzjK g aQTF'(V(t—To))

Substituting with (3.61):

dv dv,

dt dt

At

:L(l_ef]'w(t)—vo(z»— w AT P ()

Expanding the exponentials to the 1* order:

v _dv, _L(l-(lﬁjj-(v(f)—vo(t))

dt dt At T

DKl W)

2

Let G=P,,,MDKga/2:

dv_dvy Lo ()= —G(l . %j(F'(v(z -7,)

dt dt T

If 7yis small, then:

dv _d’v, l(dv dvoj
> dt* T

0

Combining (3.69) and (3.70):

i dv, +[l+LJ[ﬂ_%j+L(V(t)—v0(t)):

> d* \T t, \ar dr) T

—%(G(l+%)(F'(v(t)))J

0

As At—0, and assuming 7>> 1.
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d*v d’v, dv dvy) 1 G F
o e o 2 L)) =60 67)

3.2.3.1.1 Modeling the Analog Feedback Loop
To model the behavior of the analog feedback loop we must first observe that

equation (3.51) may be approximated by the inverse of a second order polynomial, i.e.:

1
Flv)s —————— 3.73
(V) Avi+Bv+C ( )

Thus, (3.72) can be expressed as:

2 2 B
d l/_d 1:0 +i[ﬂ_d‘/0}+v vo _ G 24v+B 2 (3.74)
dt dt o\ dt dt Tr, 1, (A P2 +BV+C)

If we then define z(t), such that:

dv
=— 3.75
Z=— (3.75)

(3.74) can be expressed by a set of two first order equations:

2
d2_fz v [dv%, Ldv v, | G| 24v+B (3.76)
dt r, Tz, e, dt Tr,) 7, (Av2+Bv+C)
dv
v _ 3.77
- (3.77)

This set of equations can be solved in MatLab, given an assumed function for vy.

To test the effectiveness of the analog feedback system, we first assume that the
free-running frequency of the slave laser is drifting at a constant rate (i.e. d” vy/d’=0,
dvp/dt=constant). Given this, we can determine the detuning of the injection lock over

time. The detuning over time of the slave laser is depicted in Figure 3.10, given various
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drift rates and for g=70dB and g=100dB (the typical range for g). From these plots, it can
be seen that the analog feedback loop can only maintain the detuning to within 10MHz
given drift rates of less than 40MHz/ms. As such, analog feedback is only appropriate
for systems that are very stable. However, if drift rates >40MHz/ms are expected, either
due to thermal instability in the slave laser or electrical glitches in the laser controller, an

improved feedback control system is required.

IntegralingTime=1e-Dms, LoopDelay=1e-009s, InitFreq=0e+000Hz, TotalGain=100dB, DigStep=1e+006Hz, DigPeriod=1e-007s
10 T T T T T T T T T

3| — Drift Rate = 0.1MHz/ms

] Drift Rate = 1MHz/ms

1| — Drift Rate = 10MHz/ms
3 Drift Rate = 100MHz/ms

LUy 3| — Drift Rate = 1000MHz/ms

Solid:  Gain = 70dB
Dashed: Gain = 100dB

10

Frequency Offset (MHz)

1 Il 1 1 Il 1
0 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0.45 0.5
time (ms)

Figure 3.10 — Simulated Performance of Analog Feedback

3232 Digital feedback control

To improve the analog feedback system, we implement a digital feedback system,
as depicted in Figure 3.11. This feedback system is similar to the analog feedback
system, except that the output of lock-in amplifier #2 is used by a digital control circuit to

set the digital bias to the slave laser. This digital control circuit consists of a threshold

60



circuit, which controls a counter circuit. The output of the counter circuit is used by a

D/A converter, whose output is used to bias the slave laser.

@

Optical Signal ,| Modulator | : | Slave |Peut! | Detector ,| LockinAmp
(M) Lafer (D) g, F(v(2))
Magnitude Out
| Laser |
: : y(t)
| Controller :
i K \ 4
V Lock In Amp
(F) 0= e[ s psntete o,
In-Phase Out
Digital Control | x(t)
Circuit )
2U(x(¢))-1

Figure 3.11 — Layout of Digital Feedback Loop

With the addition of the digital control circuit, detuning over time can be
expressed as (assuming small a):
v(t+At)=vy(e+A)=v(e)-v, (1) Av,QU(x(t - 7,))-1) (3.78)
where At is the clock period of the digital circuit (typically 100ns), Av; is the step size of
the digital offset applied by the circuit (typically IMHz), and U(x) is a step function that

returns 0 if x<0 and 1 if x>0. From (6), this becomes:

v(t+Az)—v,(t+At)

v(t)-v,()- AV{ZU(G je‘(;‘ T)F' . ))drj ) IJ (3.79)

—00
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The output of the digital circuit is constant over a range of mAt,<t<(m+1)At,, such that 'm'
is an integer. If we then let =nAt,, then (3.79) can be expressed as:

vit+ AL )—v (t+At,)~

n Atk —(nAt;—7)

v(t)-v, (t)—AvS[2U(G- > e T FPW-r, ))dr]—l}

k== At (k-1)

(3.80)

If we let At>>1) (typically 7/10 <At,<T and 7>>1), we can express this as a discrete
function:
a Atk —(nAt,-7)

v[n+1]zv[n]+(v0[n+1]—V0[n])—AvS(2U(G-z [e T F'(V[k])df]—l] (3.81)

k==o0 At (k1)

v[n+1]z

—At

vin]+ (vo[n+1]-v,[n])-Av, [2U[G : T(l e T j : kip(v[k])ew ] B IJ (3.82)

Since U(x) is a step function, (3.82) can be simplified to:

k=—c0

vin+1]=v[n]+(v,[n +1]-v,[n])-Av, [2U( Zn:F'(v[k])e e J - 1] (3.83)

If At 1s small, or if the frequency drift is linear (i.e. dvy/dt is constant), (3.83) can also be

expressed as:

d n At (kfn)
v[n+1]=v[n]+ At thO - Avs(2U( S FW[k)e © |-1 (3.84)
k=—0
To test the effectiveness of the digital feedback system, we first assume that the
free-running frequency of the slave laser is drifting at a constant rate (i.e. d* vy/d*=0,

dvy/dt=constant). Given this, we can determine the detuning of the injection lock over

time. The detuning over time of the slave laser is depicted in Figure 3.12 for both the
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analog and digital feedback loops. The analog feedback loops were tested for drift rates
ranging from 0.1MHz/ms to 1GHz/ms. The digital feedback loop was tested at
1GHz/ms, since the digital feedback loop is equally effective for all drift rates that do not
exceed Av,/At;. From this figure, is apparent that the digital feedback system is capable

of maintaining the detuning to within the digital step size (i.e. IMHz).

. IntegrationTime=100ms, LoopDelay=1ns, InitFreq=0Hz, DigStep=1MHz, DigPeriod=100ns
10 T T T T T T T T T

—— Drift Rate = 0. 1MHz/ms
Drift Rate = 1MHz/ms
— Drift Rate = 10MHz/ms
3 Drift Rate = 100MHz/ms
oy 9| — Diift Rate = 1000MHz/ms
—— Digital Feedback (1000MHz/ms)

Solid = T0dB Gain
E Dashed = 100dB Gain

10 b

Frequency Offset {MHz)

10- 1 1 L 1 1 L 1 1 1
0 0.05 01 015 02 025 03 0.35 04 045 05
time {ms)

Figure 3.12 — Comparison of Performance for Analog and Digital Feedback

The advantage of the digital feedback loop is its ability to track large drift rates.
In addition, the effectiveness of the digital feedback loop is independent on the overall
gain of the feedback loop (due to lock-in amplifier gains and other amplifiers). However,
this benefit comes at the cost of time added complexity to the feedback system (although
the overall design is simple, and can be assembled with COTS components). Also, the

digital feedback loop will always maintain detuning to within the digital step size, with a
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mean error of Avy/2. As such, an analog feedback system may be a more effective

solution if large drift rates are not expected. However, the error of the digital feedback
system may also be improved by using a variable step size, in which the value of Av; is
automatically decreased as detuning decreases. This improved digital feedback system

will be explored in more detail for future projects.

3233 Implementation of a Digital Feedback Loop

Since we use COTS components for the implementation of this LO generator, it
may susceptible to both thermal instability or electrical glitches. As such, the feedback
system explored for this experiment is the digital feedback loop, as depicted in Figure
3.13. Similar to the setup depicted in Figure 3.05, a modulated CW signal
(approximately a 5% modulation depth at a frequency of 1MHz) is directed into the slave
laser via a circulator. A 50Hz sinusoid is applied to the bias port of the slave laser
controller that effectively tunes the free-running frequency of the slave laser over ~10%

of the locking range.
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Figure 3.13 —Layout of Automated Injection Lock

A second lock-in amplifier operated as a saturating comparator and a digital level
crossing counter are added to implement non-linear feedback. This second lock-in
amplifier, whose reference signal is the 5S0Hz sinusoid that was used to modulate the free-
running frequency of the slave laser, integrates the signal over 1.0s across a 6dB/octave
band-pass filter, and is set to maximum sensitivity (300nV,,s). Thus, instead of
producing the derivative of the “U”-shape, the in-phase output of this lock-in amplifier
will be a large, positive (negative) voltage when the difference between the free-running
frequency of the slave laser and the frequency of the master laser is positive (negative).
This signal is then directed to the control circuit (a similar circuit is depicted in Figure
6.06), which utilizes a binary counter to keep track of the offset that it applies to the laser

controller. The counter will be incremented (decremented) if the input from the 2" Jock-
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in amplifier is greater (less) than zero volts. The output of this counter is then converted
to an analog voltage, via a D/A converter. This analog voltage is then added to the bias
port of the slave laser controller.

In order to test the stability of the feedback loop, the output from Lock-In
Amplifier #1 was monitored over a period of 5 minutes. The output from this lock-in
amplifier is a function of frequency difference between the received optical signal and the
free-running frequency of the slave laser, and thus is a good indicator of the effectiveness
of the feedback loop.

The DFB laser used in this experiment is thermally unstable. As such, it’s free-
running frequency will randomly drift in and out of the locking range. Thus, the
unlocked output of Lock-In Amplifier #1 over the course of 5 minutes will look like what
is depicted in Figure 3.14. Figure 3.15 shows this same output, with the feedback loop
activated. From this, it can be seen that the feedback loop successfully adjusts the free-

running frequency of the slave laser so that it is consistently within the locking range.

Output of Lock-In Amp #1 Without Feedback
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Figure 3.14 — Output of Lock-In Amplifier #1 Without Feedback
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Output of Lock-In Amp #1 With Feedback

1.6

1.4

1.2

1.0

0.8

0.6

0.4 <— Locking

Range
N W\WNMMMAWWVMWW

0.0 0 50 100 150 200 250 300 350
time (s)

Lock-In Amplifier #1 Output (V)

Figure 3.15 — Output of Lock-In Amplifier #1 With Feedback

From this it was found that, for a -31dBm injected signal with a modulation
frequency of 1MHz, the difference between the free-running frequency of the slave laser
and the frequency of the master laser was maintained within ~40% of the full locking
range. As a result, the phase difference between the injected signal and the output of the
slave laser was approximately £22° (calculated by monitoring the output voltage from the
first lock-in amplifier and assuming a one-sided locking range of 90°). This also
translates to a modulation depth ratio that ranges from ~3.75%10 to ~9.38*10*. Since
this phase variation is slow (verified later in Section 5.2.2.5 as sub kHz), it can be

compensated for with a phase lock loop.
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IV. CHAPTER 4 — Injection Locking a Fabry-Perot

Semiconductor Laser

4.1 Background

An alternative to using a DFB semiconductor laser for the slave laser is to use a
Fabry-Perot laser. A Fabry-Perot laser differs from a DFB laser in that a Fabry-Perot
laser can have multiple modes oscillating within the cavity [23, 26].

There are two distinct advantages for using a Fabry-Perot semiconductor laser, as
opposed to a DFB, as the slave laser. First, a Fabry-Perot laser is capable of
accommodating a much larger range of master laser wavelengths than a DFB laser.
Second, Fabry-Perot lasers generally are much simpler to fabricate than DFB lasers, and
therefore much cheaper to produce. The tuning range of a DFB laser is limited by the
range of the Bragg-grating reflectors, typically only 2nm. Whereas, a Fabry-Perot laser
can be injection locked to any frequency that is within the gain region of the laser (typical

width is 5-10nm), as long as it is tuned close to one of its modes.

4.2 Modeling an Injection Locked Multi-Mode Slave Laser

When modeling the behavior for an injection locked DFB semiconductor laser, it
was assumed that only one laser mode was allowed to oscillate within the cavity.
However, in the case of a Fabry-Perot semiconductor laser, this is no longer always the

case. Therefore, the multi-mode system can be described by the following four rate

equations:

dg¢ r, v.E .

— ——+|w, —®, )=—-sIn 4.01
i 2 H@ @)= " sing (4.01)
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dE_n-1

E =y E cos 4.02
dt 2TC 7(3 1 ¢ ( )
dE, r—1
dtL - lzf E, =y E, (4.03)
dt p l]11 Isat p l]11 Isut ' '

Three of these equations have been adopted from Chapter 3, and (4.03) has been added to
describe the unwanted modes. E is the amplitude of the combined electric fields of the
unwanted modes and E;; is the injected electric field due to ASE (either from the slave
laser, or from an external EDFA). Otherwise (4.03) is identical to (4.02) in form.

Since the equation for (4.01) is the same as (3.11), the previously derived
equation describing the locking range, (3.16), is the same for the case of a multi-mode
slave laser. Also, equation (3.17) still accurately describes the behavior of the phase
difference between the injected signal and the optical signal generated by the locked

oscillator as the injected signal is tuned across the locking range.

4.3 Feedback Control of an Injection Locked Fabry-Perot

Semiconductor Slave Laser
4.3.1 Generation of a Feedback Signal
As was the case for the DFB laser, the modulation transfer characteristic for the
Fabry-Perot laser can be used as a feedback control signal.
In order to determine the modulation transfer function for a multi-mode slave

laser, we introduce a small perturbation onto £, E, E;;, E;, r, and ¢. Following the
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method used in Section 3.2.1.1, E;, E, r, and ¢ are still represented by (3.18-3.22), and

Ey;, Er, can be expressed as:

E,=E,+AE, (4.05)

E, =E,,+AE, (4.06)
Since equations for £, E, r, and ¢ remain unchanged, then dA@/dt is described by

(3.28), and the regenerated field (dAE/dt), is described by (3.30). Additionally, (4.03)

yields to the first order, after simplification:

dAE, ArE; +AE;n, —AE,
dt 27

c

=V AL, (4.07)

Also, from (4.04), the equation for dAr/dt has become:

4.08
PR (4.08)

sy 1 ( s (2E,AEr, + E2Ar, +2E, AE, 1, + E2 Ar; )j
1
I

sat
A harmonically modulated signal is injected into the free-running Fabry-Perot
oscillator. As such, one can assume that the perturbation on its electric field can be given

as:
AE, = Ae’™ (4.09)
where 4 and (2 are the magnitude and frequency of the driving perturbation, respectively.

From this, it can be assumed that resulting perturbation on E, ¢, and r is the same was
defined in (3.34-3.36), and the perturbation on £ is of the form:

AE, =B, e (4.10)
where By is the magnitude of the 1* order component of the perturbation on E;.
Additionally, it is assumed that there is no perturbation on the ASE (AE;;=0).

Thus, the equivalent set of equations for D, C, B, and B, are:
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op—-(p+ (2E,1,B +2E, 1B, + EXD+ EZ,D) @11
]-i Isat
e D p Yol g cosg + Asing, — B sing (4.12)
27, B E, 10 0 0 E, 0 :
E, 2 +7,—1
jQB—BBT:yC(— CE,, sing, + Acosg,) (4.13)
JQB, - DE,+B,1y~B, _ 0 (4.14)

27,
The equation for D differs from (3.37) in that it is now a function of B, and E;, as
well as of B and Ey. The equations for B and C remain unchanged from (3.39) and (3.38),

respectively.

43.1.1 Establishing a Relationship Between the Electric Fields of the Main and
Unwanted Modes

If we solve for the steady-state solutions of (4.02) and (4.03), we get:

_no =l By 008y (4.15)
22—0?/8 EO

_no__lzh (4.16)
2Tc}/e ELO

These two equations can then be combined to yield:

_ EoEuo

= 4.17
0T E cosg, (4.17)
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43.1.2 Solving for the 1** Order Perturbation on r

If we solve for B, using (4.14), we get:

B —— P (4.18)
-7, +j2Qr,
This equation can be written as:
2E,,’r,D

2E, 1B, = Lo’ (4.19)

-7, +j2Qr,
If we then substitute this equation into (4.11), we get:

2E,,’r,D
QD =-— | pr_42EyB+—2En D pp g2 p (4.20)
17 sat A 1_V0+jZQZ'C
which can be re-written as:
D 2F
D__ 2;; 0 (4.21)
jQT'lIsat +]sat + £ ro +E02 +EL20
-7, +j2Qr,

Note that when the amplitude of the electric fields of the unwanted modes (E.0) is equal

to zero, this equation reduces to (3.41).

43.13 Solving for the 1% Order MTR of the Injection Locked Fabry-Perot Laser

As before, we can determine the expression for MTR by substituting the

expression for D/B into (3.46):
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Q (P
1—7== =% cos
J p ¢0

MTR =§x%= Ve V00
P P
14 o ' 0 —O(cos¢0 +a, sin¢0)
Tc}/e ]ijl]sat +Isat Pl
2E, )’
+ Lo "o +E; +E;,
1—r, + 201,

(4.22)
+£& g =1 . tig + cos ¢,
}/e Pl 2Tc}/e .]ijl]sat +Isat
.7, 2E,,’
4 4Pl +E; +E;,
-7, + j2Qr,

If it can be assumed that 7>> (typically 7 ~10'") and that the modulation frequency is

sufficiently low so that 7,02<<1 (typically true for modulation frequencies below

10MHz), (4.22) can be simplified:

MTR = P ! E (4.23)
14+ 10 - P°(cos¢0 +a, sin¢0)
Ve 2F
! [+ g |
1=+ j2Qr,

In addition, if the slave laser is strongly locked, the effect from the unwanted modes
becomes negligible. For this case, (4.23) can be restated as:

MTR = ! (4.24)

7, P P )
1+ rcl;e (Im iPO)\/;T(cos P, + a,sin ¢0)

which can be simplified with the use of (3.15):
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MTR = (4.25)

4.3.1.4  Numerical Modeling

Given the equation for MTR, we numerically simulate the behavior of this system
and present the results graphically, the code for which is presented in Appendix B. As
constraining values, we assume that the effective saturation intensity of the slave laser is
10dBm, the perturbation on the injected intensity is 10%, the unsaturated cavity gain to
loss ratio (» when £=0) is 2, the cavity lifetime (z.) is 110ps, the carrier lifetime (77) is
1ns, the photon loss rate (3) is 1*10'° s™', and the pump rate (p) is 2*10° s™". The values
for Ey, Ery, and r are determined from (4.02-4.04). In addition, it was experimentally
found that the unwanted modes were sufficiently suppressed for us to assume that £;~0,
and that ag~2 for our Fabry-Perot slave laser.

Figure 4.01 depicts the MTR of the Fabry-Perot slave laser (over the locking
range), plotted for various modulation frequencies (£2). This figure depicts a limited "U"-
shaped MTR over the locking range. The limit of the U-shape on the left side of the
graph is a direct result of the effect of a4 (the MTR is "U"-shaped when «,;=0). The non-
zero value of ¢y also causes the detuning at which the minimum of the U-shape occurs to
become non-zero. Additionally, it should be noted that when this “U” shape was plotted
at various modulation frequencies (below 10MHz), all of the curves were found to be
graphically indistinguishable from each other. This indicates that, as was predicted by

(4.25), the MTR of the slave laser is weakly dependant of the modulation frequency.
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Figure 4.02 depicts this ratio for various injected intensities. As can be seen from
this figure, although the minimum of the “U” shape is less than one (indicating a
suppression of the modulation of the injected signal) it does not go to zero. Instead, this
minimum value is approximately proportional to the intensity of the injected master
signal (at low modulation frequencies and low injected noise levels). Thus for the case of
a multi-mode slave laser, other than some differences between the overall “U”-shape (due
to the effect of ay), there is no appreciable difference between the behavior as the

injected power is varied.
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Figure 4.01 — 1** Order Modulation Transfer Ratio vs. Frequency Offset (At Various
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4.3.1.5  Experimentally Verifying the Injection Locking Theory

To confirm these theoretical results, the setup depicted in Figure 4.03 was
assembled. Similar to the setup depicted in Figure 3.05, a CW with a 10MHz modulation
applied to it (with ~10% modulation depth) is diverted by Circulator #1 into the slave
laser, which also diverts the output of the slave laser to Circulator #2. Circulator #2
directs the output from the slave laser into a Bragg grating, whose center frequency is the

same as the frequency of the master laser. The output from the Bragg grating is then

76



directed to an optical detector. Additionally, the signal reflected by the Bragg grating is

re-directed by Circulator #2 to another detector.
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Figure 4.03 — Layout of Injection Locking Experiment

The output from the detector that monitors the signal transmitted through the

Bragg grating is proportional to the intensity of the unwanted modes, while the output

from the detector that monitors the signal reflected by the Bragg grating (port 3 of

Circulator #2) is proportional to the intensity of the main mode. The purpose of

monitoring the unwanted modes is simply for the purposes of comparison with

monitoring the MTR of the main mode, and is presented in Section 4.3.4.

The output of the detector that monitors the main mode is directed to a lock-in

amplifier whose reference signal is the same as the modulation frequency that was

applied to the master laser signal (10MHz). For this, the lock-in amplifier is at a
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sensitivity of 30mV[rms], with its filter disabled. Thus, the real-component (XY

output of the lock-in amplifier is proportional to the magnitude of the modulation at the
10MHz modulation frequency that is on the portion of the output of the slave laser that is
at the optical frequency of the master laser.

In order to detect the change in both the magnitude of the modulated signal and
the power level of the unwanted modes across the entire locking range, the free-running
frequency of the slave laser is slowly swept across a 3GHz range, by adding a 50Hz
sinusoidal modulation to the current source of the slave laser. This setup allows for both
the modulation transfer ratio and the power level of the unwanted modes to be measured

before the laser has a chance to drift.

432 Varying the Free-Running Frequency of the Slave Laser

Before the MTR’s dependence on detuning can be utilized by a feedback loop, a
method for adjusting the free-running frequency of the slave laser is required. As was the
case with the single-mode slave laser, the frequency of the multi-mode slave laser is
tuned by changing the control current. However, the Fabry-Perot slave laser that was
used in this experiment requires 10 times the current required by the DFB laser. Also, a
different laser controller was desired in order to allow us to more easily add modulation
to the drive current. Thus, a current source needed to be designed and assembled for this
purpose.

The circuit for generating the driving current for the Fabry-Perot slave laser is
depicted in Figure 4.04. In this circuit, the current provided by the 5V source is used to

control the Fabry-Perot laser. The magnitude of this current is equal to the current

78



entering the collector of the transistor, which in turn is determined by the current leaving
the emitter of the transistor. The emitter current is controlled by the output voltage of the
top-right op-amp, and by the value of the resistors that separate the emitter from ground.
The output of this op-amp is proportional to the sum of the S0Hz dither signal, the output
from the lock-in amplifier, and a bias voltage. The “optional additional modulation” is
for testing purposes, and will be explained later. The values of the resistors can be
changed via a jumper select. This way, the maximum current that can be provided by the
circuit can be switched between 40mA and 400mA. Also, the +5V, +15V, and -15V
sources are connected to ground via a 0.1uF capacitor and a polarized 4.7uF capacitor in
parallel. This filters the ripple from the power supplies, which in turn reduces the

number of glitches in the circuit.
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Figure 4.04 — Fabry-Perot Laser Controller
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433 Modeling the Modulation Transfer Ratio of the Slave Laser

Figures 4.05 and 4.06 depict the modulation transfer ratio of the slave laser over
the full locking range, as seen on the oscilloscope following the lock-in amplifier.
Similar to what is predicted in the theory, the minimum value of this limited “U”-shape is
approximately proportional to the intensity of the injected master signal (at low
modulation frequencies). Also, it should be noted that the curvature of the MTR remains
fairly constant for modulation frequencies below SMHz. The small variation in these
limited “U”-shapes at the different frequencies is due to noise in the control circuit of the

slave laser.
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Figure 4.05 — 1* Order Modulation Transfer Ratio vs. Frequency Offset (At Various

Frequencies)
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434 Suppressing the Unwanted Modes in the Slave Laser
Several oscillatory modes may be present in a free-running Fabry Perot Laser.
Injection locking the Fabry-Perot laser will help to suppress these unwanted oscillatory

modes, as is seen in Figure 4.07.
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Figure 4.07 - Frequency Spectrum of Unlocked (left) and Locked (right) Fabry-Perot

Laser

Figure 4.08 shows both the modulation transfer ratio and the intensity of the
unwanted modes across the locking range (normalized to each other). As can be seen
from this graph, the intensity of the unwanted modes remains at nearly a minimum while
inside the locking range. Additionally, it exhibits a threshold-like transition at the edge
of the locking range. Since there is not necessarily a gradual change in the intensity of
the unwanted modes with detuning, this intensity can be used as a binary indicator to see
whether or not the slave laser is locked, but not as an alternative to the modulation

transfer function as a feedback signal.
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4.3.5 Creating the Feedback System for the Injection Lock

Similar to what was seen in the case of a DFB slave laser, the modulation transfer
ratio of a laser that is locked to a modulated optical signal is essentially “U” shaped. If
the free-running frequency of the slave laser is then dithered by modulating its drive
current, then the amplitude of the modulation on the output from the slave laser at the
dither frequency will be proportional to the derivative of the “U” shape. Also, as was the
case with the DFB laser, this derivative will be used as an input threshold for a digital
feedback loop.

Figure 4.09 depicts the setup of the digital feedback loop. This setup is very
similar to the one used to stabilize the DFB slave laser (Figure 3.09). In this, a modulated

optical signal (approximately a 10% modulation depth at a frequency of IMHz) is

83



amplified by an EDFA before being directed into the slave laser via a circulator. The
EDFA is required, since a higher injected signal is required to effectively suppress the
unwanted modes of the Fabry-Perot slave laser. A 50Hz sinusoid is applied to the bias
port of the slave laser controller that effectively tunes the free-running frequency of the

slave laser over ~10% of the locking range.
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Figure 4.09 —Layout of Automated Injection Lock

Circulator #1 redirects the signal emitted from the slave laser to Circulator #2,
which directs the signal into a Bragg Grating (as was done in the setup depicted in Figure
4.04). In this case, the purpose of the Bragg grating is to filter off the background ASE

emitted by the EDFA (a Fabry-Perot filter could also have been used for this purpose).
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Also, although not shown in the figure, the signal that is transmitted through the Bragg
grating may be used to monitor the effectiveness of the feedback control loop.

Circulator #2 redirects the signal reflected by the Bragg grating to an optical
detector, whose output is directed to the input of a lock-in amplifier whose reference
signal is the signal that is driving the amplitude modulator this lock-in. The output of the
amplitude port of the lock-in amplifier is directed to a second lock-in amplifier, whose
reference signal is the same 50Hz sinusoid that was used to modulate the free-running
frequency of the slave laser (the setting for both lock-in amplifiers are summarized in
Table 2). This second lock-in amplifier is set to maximum sensitivity so that it saturates.
Thus, the in-phase output of this lock-in amplifier will be a large, positive (negative)
voltage when the difference between the free-running frequency of the slave laser and the

frequency of the master laser is positive (negative).

Lock-In Amplifier #1 Lock-In Amplifier #2
Filter Type 24dB/oct Low Pass 6dB/oct Bandpass
Integration Time 300us 300ms
Sensitivity Variable 300NV s

Table 2 — Lock-In Amplifier Settings for Fabry-Perot Feedback

This signal is then directed to the control circuit, the layout of which is depicted in
Figure 4.10. The output voltage of this control circuit will step up (down) if the input
from the 2™ lock-in amplifier is greater (less) than zero voltage. The control circuit

output is then added to the bias port of the slave laser controller.
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Figure 4.10 — Control Circuit for Fabry-Perot Laser

In order to test the effectiveness of the feedback loop, the intensity of the
unwanted modes was monitored over a period of 50 seconds. As discussed in Section
4.3.4, the intensity of the unwanted modes can be used to indicate if the slave is locked to
the injected signal. Thus, this intensity is a good indicator of the effectiveness of the
feedback loop.

Unlike the DFB laser, the free-running frequency of the Fabry-Perot laser used in
this experiment is stable over long periods of time. Thus, in order to test the loop locking

stability and recovery response, an additional modulation was added to the laser control
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circuit (Figure 4.05). The additional modulation periodically forces the slave laser to

leave the locking range. Thus, the intensity of the unwanted modes over the course of 50

seconds will look like what is depicted in Figure 4.11. Figure 4.12 shows this same

intensity with the feedback loop activated. From this, it can be seen that the feedback

loop successfully adjusts the free-running frequency of the slave laser so that it is

consistently within the locking range.
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From this it was found that, for a -24dBm injected signal with a modulation
frequency of 1MHz, the difference between the free-running frequency of the slave laser
and the frequency of the master laser was maintained within ~60% of the full locking
range. As aresult, the phase difference between the injected signal and the output of the
slave laser was approximately +37° (calculated by monitoring the output voltage from the

first lock-in amplifier and assuming a one-sided locking range of 90°).
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V. CHAPTER 5 — Characterizing the Local Oscillator Signal

5.1 Characteristics of the Fabry-Perot Filter

In order to determine the quality of the local oscillator signal, we first focus on the
filter’s ability to suppress the modulation of the incident optical signal. Figure 5.01
depicts the spectrum from an OC48 SONET transmission of random data. In order to
determine how well the Fabry-Perot filter is expected to suppress this modulation, the
setup depicted in Figure 5.02 was assembled. A CW optical signal is modulated with
OC48 SONET data using a Mach-Zehnder interferometer. This signal is then applied to
the Fabry-Perot optical filter, whose output is monitored by both an optical power meter

and a detector and RF spectrum analyzer combination.

-15dBm

-30dBm

-45dBm

Figure 5.01 — Spectrum from an OC48 SONET Transmission (Random Data)
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Figure 5.02 — Layout for Testing Modulation Transfer Ratio of Fabry-Perot Filter

With this setup, the bandpass of the Fabry-Perot filter can be recorded for
modulation frequencies ranging from 3-200MHz, as is depicted in Figure 5.03. From this
it can be seen that, for modulation frequencies less than 20MHz, attenuation provided by
the Fabry-Perot filter is approximately 0dB. As the modulation frequency is tuned to
frequencies that are greater than 20MHz, this attenuation rapidly increases as the

modulation frequency increases.

o
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Figure 5.03 — MTR of Fabry-Perot Filter for Various Modulation Frequencies
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Figure 5.04 depicts the RF spectrum of the OC48 SONET transmission of random
data, after the Fabry-Perot filter. As was predicted by the bandpass function of the filter,

the incident modulation is strongly suppressed at higher frequencies.

-30dBm

-45dBm
0GHz

Figure 5.04 — Spectrum from an Optically Filtered OC48 SONET Transmission (Random

Data)

If we assume that the OC48 SONET transmission is NRZ, the data on the received
signal is essentially the square of a 2.5GHz sinc function in frequency space. In addition,
the modulation transfer function of the Fabry-Perot filter is a Lorentzian lineshape with a
20MHz bandwidth. As such, it can be assumed that the modulation on the received

signal over the bandwidth of the Fabry-Perot filter is constant. Given this, the fraction of
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the residual modulation that is present on the filtered signal is equal to the ratio between
the integral of the normalized Lorentzian lineshape to the integral of the normalized sinc
function. From this, it is found that the residual modulation on the filtered signal is 2.5%

of the initial modulation.

5.2 Quality of the Injection Locked Fabry-Perot Laser

Now we investigate the quality of the signal generated by the injection-locked
Fabry-Perot laser. One of the main incentives for using a Fabry-Perot laser, as opposed
to a DFB laser, is its high degree of wavelength acceptability. A Fabry-Perot laser can be
injection locked as long as one of its modes can be tuned to the frequency of the received
optical signal. Since the bandgap of the semiconductor material that comprises the
Fabry-Perot laser can be altered by changing the temperature of the material, the gain
region of the Fabry-Perot laser can be shifted. Experimentally, it was found that the
center of the gain region of the Fabry-Perot laser could be tuned over a range of 30nm, as
can be seen in Figures 5.05a and 5.05b. As a direct result of this, it is possible to
injection lock this laser using a wide range of received optical wavelengths, as is shown
in Figures 5.06a and 5.06b. From these figures, it can be seen that the Fabry-Perot laser
can be effectively injected by signals whose wavelengths range from 1520nm to 1560nm.
The difference in both the peak output power and the power of the unwanted modes vary
in each case, due to differences in the particular region of the gain region of the Fabry-

Perot laser that we are injecting into.
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Figure 5.06 — Output of Injection Locked Fabry-Perot Laser Given a Received Optical

Wavelength of 1520nm and 1560nm

5.2.1 Noise on the Output of the Fabry-Perot Laser

As discussed in Section 4.3.1.4, the Fabry-Perot laser will suppress noise on the
injected signal. However, the Fabry-Perot laser will also add its own noise to the local
oscillator signal. Experimentally, it was found that the majority of this noise is intensity
noise at the relaxation oscillation frequency.

When a laser is disturbed during operation, its output power does not immediately

return to its steady state, but rather exhibits so-called relaxation oscillations. The
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frequency at which these damped oscillations occur is known as the relaxation oscillation
frequency. Experimentally it was shown that, when free-running, the relative intensity
noise (RIN) on the output of the Fabry-Perot laser peaks at approximately 2.5 GHz.

Coherent injection induced stimulated emission dominates spontaneous (random)
emission. When the slave laser is injected, the relaxation oscillations are more strongly
damped, and forced to a higher frequency. Furthermore, the relaxation oscillation
frequency will shift towards a higher frequency as the intensity of the injected signal is
increased [29]. This shift can be predicted by the laser rate equations (similar to those in
Section 3.1), provided that we no longer ignore non-radiative excitation. For this, we
would take into account the current pumping term for the slave laser, which can be
represented by Langevin noise forces [30].

In order to test this phenomenon, the Fabry-Perot laser, whose threshold driving
current is ~30mA, was driven with a current of 100mA. Also, the gain curve of the
Fabry-Perot laser was tuned so that its peak coincided with the wavelength of the injected
signal (Figure 5.07). Figures 5.08 and 5.09 show the RF spectrum of the output of the
slave laser given injected intensities of -6dBm and -12dBm. These figures demonstrate

the frequency shift of the RIN as the intensity in the locking signal is varied.
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Figure 5.08 - RF spectrum on Output of Slave Laser (Injected Intensities = -6dBm)
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-50dBm
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Figure 5.09 - RF spectrum on Output of Slave Laser (Injected Intensities = -12dBm)

Thus, in order to minimize the noise on the detected signal, the RIN on the local
oscillator must be shifted to a frequency that is higher than the data rate of the received
optical signal. The RIN must be shifted to a frequency that is greater than 2 times the
data-rate in order to avoid in-band signal-RIN beat noise. Sufficiently shifted, the RIN
can then be filtered off of the detected signal with the use of a low-pass filter.

To demonstrate RIN shift, we record the center of the RIN peak for various
injected intensities, and compare this to the S/N ratio (ratio of power to variance), as
recorded by a detector with a 1GHz bandwidth. This detector effectively ignores all

noise at frequencies greater than 1GHz. Figures 5.10 and 5.11 show the results of this.

96



Center of RIN Peak (GHz)

-20 -15 -10 -5 0 5
Injected Power In (dBm)

Figure 5.10 - Center of the RIN Peak for Various Injected Intensities
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Figure 5.11 — S/N Ratio for Various Injected Intensities (As Seen on 1GHz Receiver)
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As can be seen from these figures, a —8dBm injected signal will ensure a S/N ratio
of more than 20dB (the desired S/N for our experimental system). This corresponds to a
RIN peak of ~SGHz. The 5GHz RIN peak effectively generates 1GHz noise, due to the

width of the RIN peak, as seen in Figure 5.09.

522 Modulation Transfer Ratio of the Fabry-Perot Laser

As was discussed in Section 4.3.1.4, the Fabry-Perot slave laser is capable of
further suppressing amplitude modulation on the incident optical signal. The
effectiveness of this suppression is dependant on the intensity of the injected signal.
Figure 5.12 shows the modulation transfer function of the slave laser for various injected
powers. For this case, the modulation frequency used is 128MHz, and the current used to
pump the slave laser is approximately 100mA. From this, it can be seen that the intensity
of the modulation on the output of the slave laser decreases as the injected intensity
decreases. This indicates, just as the theory described in Section 4.3.1.4 predicted
(depicted in Figure 4.02), that the Fabry-Perot slave laser is more effective at suppressing
the incident modulation as the intensity of that incident modulation is decreased.
However, as the injected intensity is decreased, the overall noise on the output of the

slave laser, as well as the difficulty in maintaining the injection lock, is increased.
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Figure 5.12 - MTR of Fabry-Perot Laser for Various Injected Powers (at 128MHz)

523 Linewidth of Fabry-Perot Laser

Before analyzing the output of the injection locked Fabry-Perot laser in further
detail, it is useful to determine its linewidth. Since the linewidth of the laser is due to the
phase variation on the output of the laser, the linewidth can serve as an indicator of how
well the phase of the injected signal compares to the phase of the local oscillator signal.
Ideally, the phase variation, and thus the linewidth, of the injected signal will be the same
as the phase variation of the local oscillator signal. This implies that the phase of the
output of the Fabry-Perot laser follows that of the injected signal.

The method of delayed-self heterodyne is used to measure linewidth, the setup for
which depicted in Figure 5.13. The Fabry-Perot is first injected with a CW signal in
order to force the slave laser into a single mode. The single-mode output of the slave
laser is directed into the input of an Acousto-Optic (AO) modulator. The AO modulator

has two outputs, the 0" order output and the 1** order output. The 0™ order output is at
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the same frequency as the input, while the 1* order output is shifted by the acoustic
frequency, which in this case is 400MHz. The first order output is then transmitted
through a 100km delay line, after which it is beat with the 0" order output from the AO

modulator at a detector. The output from the detector is monitored on a RF spectrum

analyzer.
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Figure 5.13 — Layout for Testing Linewidth of Fabry-Perot Laser

If it is assumed that the lineshape of the output of the Fabry-Perot laser can be
approximated as a Lorentzian lineshape, then the power spectral density of the output of
the detector can be expressed as [28]:

1
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where Py is the signal power, 7. is the coherence length of the receiver signal, £2is the
offset frequency (400MHz in this case), and ¢ is the delay time due to the added length of
fiber (100km in this case). Since the coherence length of the Fabry-Perot laser is much
less than 100km, it can be assumed that the two mixed signals are mutually incoherent.
In other words, by adding the 100km delay line we ensure that t»t.. From this (and by

noting that @>0), we can reduce (5.01) to:

;Pztc2
S:
1+(0-Q)t,’

(5.02)

This power spectrum is a Lorentzian function whose FWHM is 2/¢.. From this it can be
seen that, given sufficient delay, the RF spectrum analyzer of the mixed signal is a
Lorentzian function whose linewidth is double that of the linewidth of the laser itself [27,
28].

Figure 5.14 shows a total of three RF spectrums from the detector. The red curve
is the spectrum of the signal that is injected into the Fabry-Perot laser. The blue and
yellow curves are both spectrums of the output of the injection-locked Fabry-Perot laser,
where the free-running frequency of the slave laser is either near the center of the locking
range (yellow) or approximately mid-way between the center and edge of the locking
range (blue). The optical spectrums for the yellow and blue RF curves are depicted in
Figures 5.15a and 5.15b respectively, in which the intensity of the unwanted modes serve
as an estimate of the difference between the free-running frequency of the slave laser and
the frequency of the injected signal (as was discussed in Chapter 4). Additionally, Figure

5.16 depicts the RF spectrum of the unlocked Fabry-Perot laser.
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Figure 5.14 — RF Spectra of Heterodyne Mixing. Red = Injected Signal, Yellow =
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Figure 5.15 — Optical Spectrums for Strongly (a) and Weakly (b) Locked FP Laser
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Figure 5.16 — RF Spectrum of Heterodyne Mixing of Unlocked Fabry-Perot Laser

As can be seen from Figures 5.14 and 5.16, as the free-running frequency of the
slave laser approaches the center of the locking range, the output of the slave laser
effectively tracks the phase of the injected signal, independent of its free-running
linewidth. However, the linewidth of the output of the slave laser decreases as it is
detuned, indicating a reduction in the level of the phase noise. This is detrimental to the
generation of a suitable local oscillator, since it indicates that the generated signal is no
longer phase coherent with the injected signal.

The small signal approximations of the laser rate equations predict that the phase
noise on the output of the slave laser should always equal the phase noise on the injected

signal. This discrepancy indicates that these equations are insufficient in predicting this
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phase reduction effect, and a more detailed model will need to be implemented in the

future.

524 Phase Noise Generated by Amplitude Noise

As was done in Chapter 3 and 4, if we assume that » (the unsaturated gain to loss
ratio) is a complex value
r=r +ir, (5.03)

and single-mode operation, then the laser rate equations, as in Chapter 3, can be written

as:

dp r, v E .

— -2 +(w, —w,)=—-""Lsin 5.04

dt2rc(lo)E¢ o
-1

dE nolp (y.—7,)E cos¢ =y E, cos ¢ (5.05)

dt 2t,

d 2

izp_,,li 1+L :P_’”li 1+E_ (5.06)

dt T] Isat Tl Isat

Following the method used in Section 3.2.1.1, small perturbations are applied to E;, E, 7,

ry, and @

E =E, +AE, (5.07)
E=E,+AE (5.08)
r=r,+An (5.09)
r, =1, +Ar, (5.10)
b=+ (5.11)

Once again, the phase factor is defined as
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_Ar

= 5.12
Ar, ( )

a,

Thus, the equations for dAE/dt, dAr;/dt, and dA@/dt can be written to the 1% order

as:

A +Ar —1 .

dAE | A E, + o TN TR = 7.(AE, cos g, — E,,Apsin g, ) (5.13)
dt 2r, 27,
dA 2E,AEr, + E_A

o L[ g 2EeAER By A (5.14)
dt ]71 sat
dA¢ (Z¢Arl Ve . E AE .
— =22 | AE sin +E, A¢cos - sin 5.15
i =g | Al )+ Eagcos(g )= sin(d,) (5.15)

From Sections 3.2.1.1.3 and 4.3.1.4, we know that if the perturbations on E, E;,
@, and r; are assumed to be harmonic, then the resulting modulation transfer function is
only weakly dependant on the modulation frequency for low frequencies. Thus, we can
assume that in the limit Q->0, the perturbations on E, E;, ¢, and »; can be modeled as a

constant deviation that can be expressed as:

AE, = A (5.16)
AE =B (5.17)
Ag=C (5.18)
Ar, =D (5.19)

Substituting the results from (5.16-5.19) into (5.13-5.15) results in the following

three equations:

2E,Br, +E.D
oz—i(DJr 0 rl“’ 0 ] (5.20)
1

sat

105



DE
o, B %j
i ( B) vy,

E
0o=—— 2 CE, cosd, + Asind, — B—%sin 5.21
2TCE0 EO |: 10 ¢0 ¢0 E ¢0:| ( )

0

DE%'H% -1 .
B - = ;/e(— CE,, sin g, +Acos¢0)

(5.22)
If we then solve (5.22) for D, we get:
2E,B
=0T (5.23)
[sat + EO
This equation can then be written as:
2n,E
2 = _LOZ (5.24)
B I, +E,

In addition, if we combine (5.21) and (5.22) for B, we get:
v,CE,,cos@, +y,Asing,
DE%
a, B
27

c

_—Cy.E\ sing, + Ay, cos ¢,

(DE %j - (5.25)

2T

c

7.Ey .
+ sin
E, 2
Eliminating D/B with (5.24) yields:

7,CE,, cos@, + 7, Asin g, - Cy,E,,sing, + Ay, cos g,

> = 5 (5.26)
r10E0a¢ T.7.E, . B nokEyg ’”170_1
- o+ sin ¢, — 5t
Isat +E0 EO ]sat +E0 2 2
from which:

106



cos @, sin ¢,
1o —1 noEs T.7 Ly sin g, — rlOEga¢
2 [sat+Eg 0 ’ Isat—‘rE(?
C= A (5.27)
E,, sin g, N E,, cos ¢,
o — 1 _ rloEoz r.7.E, ing, — r10E02a¢
2 Isat+E§ EO ’ Isat+E(?

Given this and using (3.51), the magnitude of the phase modulation |C| can be
plotted. Figure 5.17 depicts the magnitude of the phase modulation for various saturation
intensities, while Figure 5.18 depicts this magnitude for various Henry-Alpha factor
values. For these plots, the effective saturation intensity of the slave laser is assumed to
be -10dBm, the perturbation on the injected electric field is assumed to be 5%
(effectively a 10% perturbation on the intensity of the injected signal), the unsaturated
cavity gain to loss ratio (» when £=0) is assumed to be 2, the cavity lifetime (z.) is
assumed to be 5*107'%s, the carrier lifetime (7)) is assumed to be 5*107' s. The code for

generating these plots is located in Appendix C.
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Phase Modulation Transfer Ratio

Frequency Offset (Hz) x 10°

Figure 5.17 — Magnitude of Phase Noise over Locking Range [ay = 10] for Saturation

Intensities of -10dBm (blue), -15dBm (red), and -20dBm (green)

Phase Modulation Transfer Ratio

Frequency Offset (Hz) x 10°

Figure 5.18 — Magnitude of Phase Noise over Locking Range [Is=-10dBm] for Henry-

Alpha Factors of 3 (blue), 5 (red), and 10 (green)
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From this, it can be seen that the phase transfer will be minimal at the center of the
locking range. Additionally, the amount of phase noise that is generated by amplitude
noise can be reduced by selecting a laser with either a low phase factor and/or with a low
saturation intensity.

In order to measure the severity of the phase modulation on the output of the local
oscillator signal due to suppressed amplitude modulation, we employ the configuration
depicted in Figure 5.19. This setup is the same as the one depicted in Figure 5.13, except

that now a 10%, 25MHz modulated signal is injected into the Fabry-Perot slave laser.

25MHz
DC Power
Supply
DC In* RF In

o

@ T
3
Oth Order Out o @_) RF Spectrum

Analyzer

1st Order Out 50

100km
of fiber

Figure 5.19 — Layout for Monitoring Total Modulation on Output of Fabry-Perot Laser

The resulting spectrum is depicted in Figure 5.20. In this, the yellow line
represents the spectrum of the injected signal, while the blue line represents the spectrum

of the output of the injection locked slave laser (near the center of the locking range).
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The ratio between the power of the center peak to the power of the sidebands indicates
the total amplitude and phase modulation on the signal. In the case of the injected signal,
all of this modulation is in the form of amplitude modulation. For the output of the
injection locked Fabry-Perot laser, the total modulation on the signal is comparable to the
total modulation on the injected signal. However, as was discussed in Section 5.2.2.2, the
amplitude modulation is reduced by approximately 10dB by the injection locking
process. This indicates that the phase noise added by the present process is comparable
in magnitude to the amplitude modulation that was suppressed. In addition, we observed

that the amount of phase noise on the output of the slave laser increases with detuning.

-50dBm
360MHz 400MHz 440MHz

Figure 5.20 — RF Spectrums of Heterodyne Mixing. Yellow = Injected Signal, Blue =

Strongly Locked FP Laser
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The injection-locking process converts much of the incident amplitude noise to
phase noise. However, a homodyne receiver is much less sensitive to this type of noise.

We can see this by first considering the signal from a homodyne receiver:

P=\P,P, cos(¢, ~ ¢,) (5.28)
If it is assumed that the phase differences are small, then this can be re-written as:
P=P,(P, +AP,)cos(Ag,,) (5.29)
where AP, and Ag), is the amplitude and phase noise on the local oscillator signal,

respectively. If it is assumed that assumed that the noise is small, then (5.29) can be re-

written as:

P=PP, (1+ ﬁ?o j(l—A;é]j) (5.30)

lo

Eliminating the 3 order term yields:

1 AP,
P= psplo(na Pl —A¢,jj (5.31)

lo
Since the phase noise only affects the detected power in the second order, it can be

neglected (assuming small modulation).

525 Phase Coherence Between Injected Signal and Fabry-Perot Laser Output

One of the requirements of a local oscillator signal is for it to be phase coherent
with the received signal. To demonstrate this, an equi-path heterodyne interferometer, as
depicted in Figure 5.21, was employed. In this, half of the received optical signal is
injected into the Fabry-Perot laser. The output of the Fabry-Perot laser is then shifted by

400MHz and beat with the remaining portion of the received signal at a detector. The RF
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spectrum of the output of the detector is then analyzed. The 50m delay line is added in
order to compensate for the added fiber length that was required to generate the local

oscillator signal.

]
[Siaveitaser] (G
3

50 @— RF Spectrum

Analyzer
1st Order Out 50

Figure 5.21 — Layout for Determining Phase Coherence Between Injected Signal and

50m of fiber

Fabry-Perot Laser Output

The linewidth of the resulting RF spectrum indicates the fluctuations between the
phases of these two signals. Figure 5.22 shows three of these RF spectrums, given
injected powers of -16dBm (yellow plot), -44dBm (blue plot), and -62dBm (red plot).
From the previous section we know that, if the phases of the two signals are incoherent
with each other, the observed RF linewidth will be approximately 4MHz wide, as was the
red plot in Figure 5.14. Instead, the yellow plot of Figure 5.22 shows a linewidth that is
less than 300Hz. This indicates that the received and local oscillator signals are strongly
phase coherent. The residual phase variation (the phase noise within the 300Hz
bandwidth) is either due to thermal or acoustic fluctuations in the optical fiber, and can be
compensated for by implementing a phase tracking feedback loop, by isolating the

system from thermal and/or acoustic sources, or by reducing the lengths of fiber used in
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the system. If a phase tracking system is used, the yellow plot in Figure 5.22 indicates
that this feedback system will need to track the phase difference between the two signals

as speeds greater than 3.3ms.

399.995MHz 400MHz 400.005MHz

Figure 5.22 — RF Spectrum of Heterodyne Mixing for Various Injected Powers

By varying the injected power, we are able to determine the minimum input
power that is required to maintain coherence with the received optical signal. Figure 5.23
depicts the peak of the RF linewidth for various injected powers. From both Figures 5.22
and 5.23, we can see that, given injected powers of more than approximately -35dBm
(yellow plot in Figure 5.22), the received and local oscillator signals are coherent with
each other. At an injected power of approximately -40dBm (blue plot in Figure 5.22), the

slave laser begins to lose coherence with the received optical signal. At injected powers
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of less than -50dBm (red plot in Figure 5.22), the local oscillator signal is no longer

coherent with the received signal.
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Injected Power (dBm)

Figure 5.23 — Peak of RF Spectrum of Heterodyne Mixing for Various Injected Powers

5.2.6 Gain of the Fabry-Perot Laser

Since we are effectively using the Fabry-Perot laser as a regenerative optical
amplifier, it is important to know its effective coherent gain. Assuming that the free-
running frequency of the slave laser is centered in the locking range, it is expected that
the gain of the Fabry-Perot laser will be strongly dependent on the intensity of the
injected signal. Specifically, it is expected for the gain to increase as the injected power
decreases.

In order to determine the gain of the Fabry-Perot laser, the layout depicted in
Figure 5.21 (from the previous section) was used to monitor the output power of the

coherent signal. Figure 5.24 shows this gain for varying injected powers. In this case,
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the current used to pump the slave laser is approximately 120mA. From this it can be
seen that the gain of the Fabry-Perot slave laser increases as the injected intensity
decreases. However, just as in the case of the modulation transfer ratio of the slave laser,
both the overall noise on the output of the slave laser and the difficulty in maintaining the

injection lock increases as the injected intensity is decreased.

20

15 e\
10

Gain (dB)
o a

o T

'15 T T T I I

Injected Power (dBm)

Figure 5.24 - MTR of Fabry-Perot Laser for Various Injected Powers (at 128MHz)

5.2.7 Parasitic Oscillations
In order to effectively injection lock the Fabry-Perot laser, the laser must be
manufactured without internal isolators. One common problem that can occur as a result

of this is parasitic oscillations. Specifically, if a small amount of backscatter is present
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after the output of the laser, it is capable of creating additional oscillating modes. This
effect is illustrated in Figure 5.25.

In order to detect the noise due to parasitic oscillatons, we introduce a small point
of reflection between the slave laser and port #2 of the circulator. This will create an
oscillator between this point and the slave laser, which will generate a series of modes

spaced approximately 70 MHz apart in frequency space.
Feceived Optical Signal

Paint of Reflection

@2 *é___— > E@ Laser

Effective Oscillator

Optical Signal Out

Figure 5.25 — Source of Additional Oscillatory Modes

Figures 5.26-5.28 show the optical and RF spectrums from the injection locked
slave laser, at injected intensities of -20dBm (Figure 5.26), -30dBm (Figure 5.27), and -
40dBm (Figure 5.28). For this the Fabry-Perot laser, whose threshold driving current is
~30mA, was driven with a current of 200mA. Also, the gain curve of the Fabry-Perot
laser was tuned so that its peak coincided with the wavelength of the injected signal
(Figure 5.07). As can be seen from these figures, the intensity of the unwanted modes
varies inversely with the intensity of the received optical signal. Also, the 70MHz peaks

vary by approximately the same amount as the unwanted modes. Thus, similar to the
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case of RIN, the effect of this noise on the local oscillator signal can be minimized by
using a sufficiently strong received optical signal. In this case, the amplified received
optical signal power must be greater than -30dBm. However, this power depends on the
amount of backscatter present, as well as the magnitude of the electrical current used to

pump the slave laser.
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Figure 5.26 — Optical (a) and RF (b) Spectrum from Fabry-Perot laser (pumped at 200mA
— Injected near peak of gain curve) with an injected power of -20dBm
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Figure 5.27 — Optical (a) and RF (b) Spectrum from Fabry-Perot laser (pumped at 200mA
— Injected near peak of gain curve) with an injected power of -30dBm
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Figure 5.28 — Optical (a) and RF (b) Spectrum from Fabry-Perot laser (pumped at 200mA
— Injected near peak of gain curve) with an injected power of -40dBm

53 Modulation Suppression as a Function of Modulation Frequency

As was discussed in Section 4.4, injection locking theory predicts that the
modulation transfer ratio of the Fabry-Perot laser is weakly dependent on the modulation
frequency. In order to confirm this, the modulation transfer ratio of the Fabry-Perot laser
was recorded at frequencies ranging from 1MHz to 200MHz. Figure 5.29 shows the
results of this, given an injected power of —1dBm. Additionally, Figure 5.30 shows the
results of this, given an injected power of —10dBm. From these two graphs, it can be
seen that, unlike what is predicted by the theory, the modulation transfer ratio of the
Fabry-Perot laser increases at a modulation frequency of approximately SOMHz.

The cause of this breakdown in the theory of the modulation transfer ratio is most
likely due to the influence of thermal vibrations within the laser cavity. Previous studies
have shown that thermal effects will have an effect on frequencies that are below a
specific threshold, typically between 1MHz and 100MHz [31]. These thermal effects
most likely aid in the suppression of the incident modulation at lower modulation

frequencies. As a result, in order to effectively use the Fabry-Perot laser as an ultra low-
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bandwidth filter, it may be necessary to combine it with a SOMHz Fabry-Perot filter.
This would be used to uniformly suppress the incident modulation at all modulation

frequencies.

Modulation Transfer Ratio (dB)

Modulation Frequency (MHz)

Figure 5.29 — MTR vs. Modulation Frequency (Injected Power = -1dBm)
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Figure 5.30 — MTR vs. Modulation Frequency (Injected Power = -10dBm)
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54 Generating a Local Oscillator Signal

Now that the quality of the local oscillator signal has been established, we can
generate a local oscillator signal. The layout for the local oscillator generator is depicted
in Figure 5.31. In this, 10% of the received optical signal is diverted into an EDFA,
which is followed by a 20MHz Fabry-Perot optical filter. In order to lock the center
frequency of the filter to the received signal, the feedback loop previously described in
Chapter 2 (Section 2.2) is implemented. After the filter, the signal is re-amplified via a
second EDFA, and diverted into an optical modulator. The purpose of this modulator is
to apply the 100kHz modulation that will be used to implement the feedback control loop
for the injection lock, as was discussed in Chapter 3 (Section 3.2.3) and Chapter 4
(Section 4.3.5). From the modulator, the signal is directed into the Fabry-Perot slave
laser via a circulator. The output of the slave laser can then be used as the local oscillator

signal.
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Local Oscillator Generator

To Pol. Feedback To Filter Feedback
10 10
Received Optical Signal 90 7 | | 90
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90 FP Filter A
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o0 3
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Figure 5.31 — Layout of Local Oscillator Generator (Feedback Loops Omitted)
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VL CHAPTER 6 — Design of Homodyne Receiver

The primary goal for this project is the creation of a practical homodyne receiver
for use with high-speed optical transmissions. Specifically, we are creating a stand-
alone, rack-mountable, receiver. In order to do this, the feedback loops for both the filter
and the injection lock must be implemented without the use of rack-mountable lock-in
amplifiers and laser controllers. Also, a phase lock should be implemented, so that the
receiver can be used in an environment that is not as precisely temperature controlled as
the one in the experiment. Finally, for a practical homodyne receiver, the receiver itself

must be capable of initiating itself, automatically obtaining the filter and injection locks.

6.1 Phase Locking

The phase of the received and local oscillator signals must be aligned for the
homodyne receiver to achieve maximum sensitivity. In order to accomplish this, a

feedback system will be required to align the phases of these two signals together.

6.1.1 Background
As discussed in Chapter 1, the magnitude of the resulting signal from this detector
is dependant on the phase difference between the two signals. Specifically, the signal

from the overall receiver can be described as:

P =[PP, cos(4, — 4,) (6.01)

In this, Py and P, are the powers of the signal and local oscillator, respectively, and ¢

and ¢, are the phases of the signal and local oscillator, respectively.
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In order to create the phase locked loop, the setup depicted in Figure 6.01 can be
created. In this, a phase shifter is added to one of the arms of the interferometer. A
10kHz modulation can then be added to the phase shifter, along with the output of a lock-
in amplifier. A portion of the received signal from the detector is then input to this lock-
in amplifier whose reference signal is the 10kHz modulation. The lock-in amplifier will
effectively filter off the high-frequency data from the received signal, and its in-phase

output (X) will be the derivative of the sinusoidal signal of (6.01).

Received Optical Signal

Detector
_I_
Detector —
From Injection Lock | Phase
Shifter
T Lock-In [ ') RF
Amplifier Splitter
+ 90
A A
10kHz Data Out
~

Figure 6.01 — Layout of Phase-Locked Loop

6.2 Practical Feedback Systems

More practical versions of the filter, and injection, and phase lock feedback loops
are depicted in Figures 6.02-6.04. These layouts differ from the ones depicted in Figures
2.02,4.12, and 6.01 in that a microcontroller has now been added to the systems. The

purpose of the microcontroller is to automate the initial lock. After the microcontroller
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has found the correct bias to apply to the filter, it will hold that position, and allow the
lock-in amplifier to maintain the filter lock.

Fabry-Perot
Received SONET Filter (20MHz)
Transmission | |

T

+
Detector
DC Bias J
| (fom Lock-In
microcontroller) Amplifier

To A
Balanced @
Receiver

78kHz 1.5kHz

Figure 6.02 — Practical Filter Feedback Loop

From Pre-Filtering To Phase
Scheme 1 @3 Locked-Loop
2
Slave
Laser
Detector
Laser y

Controller Lock-In
78kH
Z() > Amplifier #1
+ 45Hz
AAA | Lock-In

DC Bias “I Amplifier #2
(from Control
microcontroller) Circuit €

Figure 6.03 — Practical Injection Lock Feedback Loop
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Detector
From Injection Detector
Locking System Phase
Shifter
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Amplifier Splitter
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DC Bias 15kHz Data Out
(from ~
microcontroller)

Figure 6.04 — Practical Phase-Locked Loop

In addition, the 78kHz modulation used to control the injection lock feedback
loop is now applied to the Fabry-Perot filter. This allows modulation of the received
optical signal without incurring the additional 6dB loss from an additional optical
modulator.

Figures 6.05-6.07 depict the layouts of the circuits that have been designed to
control the receiver. Additionally, Figures 6.08-6.10 are photographs of the actual circuit
boards that have been created. Board 0 (depicted in Figures 6.05 and 6.08) is responsible
for adding the electronic signals together, which is controlled by the four LM348N chips
and their corresponding resistors. The relay switches in the upper-left of Figure 6.05 are
used to enable the analog feedback for the optical filter and phase shifter (controlled by

the lock-in amplifier) once the appropriate bias point has been set. The feedback control
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for the injection lock does not require a relay switch, since it can be enabled by toggling
the hold pin on the digital counter. The four AD790 chips and AND (7408) gates are
used to convert the output of the sinusoidal oscillators (generated on Board #2, discussed
later in this section) to a square wave, which is used by the lock-in amplifiers as a
reference signal. Board 0 also has 6 slots, as depicted in Figure 6.08. These slots are for
Boards 1 and 2 (discussed later in this section) and the four the lock-in amplifier cards

used for the feedback loops.
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Figure 6.05 — Board #0 (Front Board)

Board 1 (plugs into Board 0), depicted in Figures 6.06 and 6.09, is comprised of
the control circuit used to stabilize the injection lock (described in Sections 3.2.3 and
4.3.5). The clock for this circuit is generated by the 555 Timer. The output of the
Threshold Circuit (AD790) is then combined with the output of the clock via the 3

NAND gates (7400). This results in two clock outputs, one corresponding to a signal that
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is greater than zero (ground) and one corresponding to a signal that is less than zero.
These two clock signals each control either the up or down pin of the Counter, comprised
of the four 74193 chips. The digital output of this counter is then converted by the DAC
(AC669) to an analog output. In addition, the four LM348N chips to the right of Figure
6.06 are used to generate the sinusoidal signals that are used in the feedback control

loops.
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Figure 6.06 — Board #1 (Slave Laser Control and Oscillators)

Board 2 (plugs into Board 0), depicted in Figures 6.07 and 6.10, contains the

microcontroller and corresponding logic used to set the initial bias for the controllers. In

this, the three DACs (ADS7812) convert the signals from the detectors that monitor the
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output of the filter, slave laser, and final signal to a digital value. The microcontroller is
programmed to select a particular data source (either the fliter, slave laser of final output
monitor) via a three-pin output and the logic gates, and use the information from this data
source to choose an appropriate bias (the code for this is in Appendix D). This bias is
then converted to an analog signal via the three ADCs (DAC7611) and sent to Board 0.
In addition, the three-pin data source selector is also used to control the two relay
switches on Board 0, as well as the hold pin of the up/down counter on Board 1. This
allows the microcontroller to enable the analog feedback loops once it has successfully

set the bias points.
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Figure 6.07 — Board #2 (Mic}ocontroller L(')gic)
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Figure 6.09 — Photograph of Board #1 (Slave Laser Control and Oscillators)
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Figure 6.10 — Photograph of Board #2 (Microcontroller Logic)

After the button on the front panel in pressed (denoted by the switch in Figure
6.05), a signal is sent to the microcontroller on Board #2 to begin its routine. First, the
microcontroller determines the proper bias for the filter, given the output from the
detector in Figure 6.02. After this, the microcontroller sends a signal to a relay switch to
activate the signal from the lock-in amplifier card, thus maintaining the filter lock.

Once the proper bias point for the filter is determined, the microcontroller biases
the slave laser, given the output of the detector in Figure 6.03. After the proper bias for
the slave laser is found, the microcontroller sends a signal to the hold pin of the up/down
counter. This allows for the counter to properly track the difference between the free-
running frequency of the slave laser and the received optical signal, as in explained in

Chapters 3 and 4.
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At this point, the microcontroller biases the phase shifter by maximizing the
average power of the signal from the balanced receiver (Figure 6.04). Similar to the
feedback circuit for the filter lock, once the proper bias for the phase shifter is found, the
microcontroller will activate a relay switch that allows for the lock-in amplifier card to

maintain the phase lock.

6.3 Future Work

6.3.1 Polarization Control

Up to this point, the topic of polarization control has not been mentioned. Since
several of the electro-optic devices in this setup are polarization sensitive, as well as the
final mixing of the received and local oscillator signals, it becomes necessary to ensure
that the polarization of the received signal is known. This can be accomplished in one of
two ways, polarization feedback or polarization diversity.

In the case of polarization diversity, the received optical signal would need to be
split via a polarizing beam cube into two known polarization states. The main problem
with this method is that is effectively doubles the complexity of the system, since we now
require two local oscillator generators. Also, the decrease in the effective magnitude of
the received optical signal may require additional optical amplifiers, which would add
noise to the local oscillator signal.

Thus, a polarization feedback loop would be the more practical solution. Such a
system is depicted in Figure 6.11. In this, the received optical signal is incident on a
polarization controller, followed by a polarizer, before a portion of the signal is split off

for local oscillator signal generation. After this portion is split off, a portion of that signal
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is diverted to a detector. This detected signal is directed to a lock-in amplifier, whose
output (along with a sinusoidal dither) controls the polarization controller. It should be
noted that, since a polarization controller usually has at least 3 inputs, it would either be
necessary to have separate feedback loops for each control, or have a microcontroller

switch between the input ports in order to maintain the proper polarization.

Polarizer
Riacsived Opticd Signal Folarization To Balanoed Receiver
an
Controller
10 To LD Generator
an
10
OC Power Fed Out Lock-In :Sig In
Supply Amplifier
Trefn

Figure 6.11 — Layout of Polarization Feedback Control Loop

6.3.2 Final Receiver Layout

The overall expected design for the receiver is depicted in Figure 6.12 (the
feedback loops are not shown in order to simplify the diagram). In this, 10% of the
received optical signal is diverted from the received optical signal. After this, 10% of the
diverted signal is used for the polarization feedback loop (explained in section 6.2.2).
The remaining portion of the diverted signal is directed into an EDFA. From the EDFA,
the signal goes through the filtering, injection locking, and phase locking stages
(discussed in section 6.2.1). After this, a balanced receiver detects the signal. The
purpose of the balanced receiver is to reduce the effect of any common-mode noise that is

present on the local oscillator [32].
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Figure 6.12 — Layout of Homodyne Receiver (Feedback Loops Omitted)

Once assembled, this homodyne receiver should be capable of receiving SONET
transmissions at data rates up to 10GHz (limited by the bandwidth of the detectors used
in the balanced receiver). In addition, this receiver should be capable of effectively

detecting transmissions whose optical power is less than -30dBm.

6.3.3. Support for PSK transmissions

The system described above can be used for homodyne detection or as a pump for
parametric amplification. In addition, our previous work has shown that our OIL system
can be used to generate an acceptable LO signal from a NRZ OC192 SONET
transmission, provided that the signal is first pre-filtered via a Fabry-Perot optical filter

(Micron Optics, 20MHz bandwidth) [47].
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It is also desirable to use this LO generator with more complex phase modulation
schemes, such as PSK [49]. However, because these transmissions do not have a carrier
to recover, they are not compatible with OIL without additional pre-processing. As such,
a method must be developed to generate a Fourier component of the carrier before the
OIL LO generator can be utilized.

One possible method to generate a carrier for the PSK signal is depicted in Figure 6.13.

A two-armed interferometer with a digitally-variable phase shift is used to generate the
carrier. The phase shifter is controlled by the output of the interferometer, which is
proportional to an optical mixing of the received signal and the output of the slave laser.
The phase shifter will shift the phase of the incident signal by either 0 or ©t, depending on
if the input signal is greater or less than a pre-defined threshold value. Note that an
optical delay has also been added before the phase shifter to ensure that the bit input into
the phase shifter is the same as the bit that is mixed with the local oscillator signal used to

bias the phase shifter at that instance.

Balanced

/ / Detector
Dela
Received Signal @ Phase Slave

Shifter Laser

Figure 6.13 - Possible layout for retrieving the carrier of the received optical signal

We assume that the bits that comprise the received signal can be represented as a

series of values equaling either 1 or -1 (depending on the phase). If we assume that the
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round trip time of the slave laser is on the order of the bit period, the output of the phase

shifter can be modeled as:

B,, =B, '(2'Uquo +B,

B 1)_ 1) (6.02)
such that B;, is the bit value of the phase shifter (1 or -1), By, is the normalized output of
the slave laser, and U(x) is a step function that returns 0 if x<0 and 1 if x>0. Note that if
that the intensity of the injected signal is much less than the free-running intensity of the
slave laser, B, will be approximately equal to the running average B,,,.

Given this, we can simulate the signal generated by this system, given an input of
random data. The result of this is depicted in Figure 6.14. Note that for this figure, the
spacing between points is equal to a bit period (which we also set equal to the round-trip
time of the laser cavity). In this case, given random data, the output of the phase shifter
eventually settles on a value of 1 (either 1 or -1 are possible results) for a random input,
forcing the coherent portion of the LO signal to approach a steady value. Our future
work will focus on developing a more robust theory to describe the operation of the PSK

LO generator, and will experimentally verify the process.
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Fig. 6.14 - Theoretical LO signal produced from LO generator that utilizes the proposed
carrier retrieval method (blue: input to carrier retrieval module, green: output of carrier

retrieval module, red: LO output).
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VII. CHAPTER 7 — Conclusions

It has been shown that a suitable local oscillator for a homodyne receiver can be
generated from a slave laser that is injected with a filtered portion of the received optical
signal. For this, the slave laser can either be a Fabry-Perot laser, or a Distributed
Feedback laser. The advantage of using a Fabry-Perot laser is its lower cost and higher
degree of wavelength acceptability, while the Distributed Feedback laser allows for a
simpler receiver design. However, either laser will effectively reduce the amplitude
modulation on the incident signal, while providing a signal whose intensity is that of the
free-running slave laser.

Additionally, it has been shown that the injection locking process can be
stabilized by monitoring the modulation transfer ratio of the slave laser. The modulation
transfer function of an injected laser is at a minimum at the center of the locking range,
and increases with detuning. This behavior can be utilized by a feedback loop to keep the
modulation transfer ratio of the slave laser to a minimum. Furthermore, it has been
shown that this trend holds true for both Fabry-Perot lasers and Distributed Feedback
lasers. Finally, it has been demonstrated that this effect is sufficiently well understood,

and that it can be modeled with simple laser rate equations.
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Appendix A — Matlab Code for Plotting Results for DFB Injection Locking

%$MatLab Code for Ploting Magnitude and Phase of 1lst Harmonic
%$for various modulation frequencies
clear
fudge=400;
op=linspace(-pi/2,pi/2,100);
el=sqrt (107-3.0/1000) /sqgrt (fudge) ;
isat=107-2.08/1000*fudge;
runsat=2;
tc=4e-12;
Tl=.5e-9;
gammae=-1./ (tc) ;
P=runsat./T1;
A=el*sqgrt(.1);
U=isat.*T1l;
wp=[1leb5,2.5e5,5e5,7.5e5,1e6,2.5e6,5e6,7.5e6,1e7,2.5e7,5e7,7.5e7,1e8, 2.
5e8,5e8,7.5e8,1e9,2.5e9,5e9];
Swp=logspace (5,10,15);
wp=[5e5,1e6,2e6];
for loop=l:1:1length (wp)
w=wp (loop) ;
strings (loop, :)=sprintf ('Modulation Frequency=%0.2e',w);
loop2=0;
for o=op
loop2=loop2+1;
e0 (loop, loop2)=solve el (isat, tc,gammae,el,o0,P,Tl);
etemp (loop, loop2)=el./e0 (loop, loop2) ;
r=(P.*T1) ./ (1+e0.72./isat) ;
f (loop, loop2)=—gammae.* (el./e0 (loop, loop2)) .*sin (o) ;
D:_
(e0 (loop, loop2) ."2.*r (loop, loop2)) ./ (i.*w.*Tl.*isat+isat+e0 (loop, loop2)
Lh2);
k=1./(i.*w+ (D+r (loop, loop2)-1)./(2.*tc));

B(loop,loop2)=((gammae.*el+i.*w.*e0 (loop, loop2) .*cos (o)) ...
./ ((el.”2./e0(loop,loop2)) .*gammae.*sin (o) . "2+ (i.*w.*e0 (loop, loop2)) ./ (
gammae.*k)+ (el.*cos (o)) ./k)) .*A;
C(loop,loop2)=((k.*gammae.”2.*el.*sin(0) .*cos (o) -

gammae.*el.*sin (o)) ...

./ (gammae. *e0 (loop, loop2) .*el.*cos (0) +i.*w.*e0 (loop, loop2) . "2+k.*gammae
N2.%el. "2.%sin(0) . h2)) L *FA;
B2 (loop, loop2)=( (-

C(loop,loop2) ."2.*el.*sin(0)) ./2+A.*C (loop, loop2) .*cos (o) ...
(B(loop,loop2) .*C(loop, loop2) .*el.*cos (0)) ./e0 (loop,loop2) -
(A.*B(loop, loop2) .*sin (o)) ./e0 (loop,loop2) ...

+ (B (loop, loop2).%2.*el.*sin(0)) ./e0 (loop, loop2) .72.0...

+((2.*1.*w.*e0 (loop, loop2)) ./gammae+el.*cos (0)) .* (-
C(loop,loop2) ."2./(2.*tan (o)) - (A.*C(loop, loop2))./el...

_(_
(isat.*e0 (loop, loop2) .*B(loop, loop2) ."2.*r (loop, loop2) .* (i.*w.*T1+1)) ./
(1.*w.*Tl.*isat+isat+e0 (loop,loop2) .%2).%2.0...
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+ (el (loop, loop2) .*B(loop, loop2) ."2.*r (loop, loop2)) ./ (i.*w.*Tl.*isat+isa

t+e0 (loop, loop2) ."2)) ./ (2.*tc.*gammae.*el.*sin(0)))) ./...
((el.*sin(o)) ./e0(loop,loop2)+((2.*i.*w.*e0 (loop, loop2)) ./gammae+el.*co
s(o)).*...

((4.*1.*w.*tc-
(e0 (loop, loop2) ."2.*r (loop, loop2)) ./ (i.*w.*Tl.*isat+isat+e0 (loop, loop2)
."2)+r (loop,loop2)-1)...

./ (2.*tc.*gammae.*el.*sin(0))));
end
end
figure (1)
plot (f', (sgrt(B'.*conj (B')).* (etemp') ./A)."2.*fudge)

axis([-4e8,4e8,0,1.06e-2]1)

title ('Modulation Transfer Function vs. Frequency Offset (1lst
Harmonic) ')

xlabel ('Frequency Offset (Hz)'")

ylabel ("Modulation Transfer Ratio')

legend(strings, -1);

figure (2)

plot (f', (sgqrt (B2'.*conj (B2')) .* (etemp') ./A) ."2.*fudge)
axis([-4e8,4e8,0,5e-8])

title('Modulation Transfer Function vs. Frequency Offset (2nd
Harmonic) ')

xlabel ('Frequency Offset (Hz)')

ylabel ('Modulation Transfer Ratio')

legend(strings, -1);
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%$MatLab Code for Ploting Magnitude and Phase of 1lst Harmonic
%$for various injected powers

clear
fudge=400;
op=linspace (-pi/2,pi/2,100);
el=sqgrt (107-3.0/1000) /sqgrt (fudge) ;
isat=107-2.08/1000*fudge;
runsat=2;
tc=4e-12;
Tl=.5e-9;
gammae=-1./(tc) ;
P=runsat./T1;
U=isat.*T1l;
w=leb6;
elp=[sqrt(10"-2.6/1000) /sgrt (fudge), sqrt (10"-
2.8/1000) /sgrt (fudge) ,sqgrt (107-3.0/1000) /sqgrt (fudge) 1;
$A=1le-5;
Ap=elp./sqrt (10);
for loop=l:1:length(elp)
el=elp (loop);
A=Ap (loop) ;

strings (loop, :)=sprintf ('Incident Power =
%2.0fdBm',30+10*1ogl0 (fudge*el”2)) ;

loop2=0;

for o=op

loop2=loop2+1;

e0 (loop, loop2)=solve el (isat, tc,gammae,el,o,P,Tl);

etemp (loop, loop2)=el./e0 (loop, loop2) ;

r=(P.*T1)./(l+e0.”2./isat);

f (loop, loop2)=—gammae.* (el./e0 (loop, loop2)) .*sin (o) ;

D:_
(e0 (loop, loop2) ."2.*r (loop, loop2)) ./ (i.*w.*Tl.*isat+isat+e0 (loop, loop2)
.N2);

k=1./(i.*w+ (D+r (loop,loop2)-1)./(2.*tc));

B(loop, loop2)=((gammae.*el+i.*w.*e0 (loop, loop2) .*cos (o)) ...

./ ((el.”2./e0(loop,loop2)) .*gammae.*sin (o) . "2+ (i.*w.*e0 (loop, loop2)) ./ (
gammae.*k)+(el.*cos (o)) ./k)) .*A;

C(loop,loop2)=((k.*gammae.”2.*el.*sin (0) .*cos (o) -
gammae.*el.*sin (o)) ...

./ (gammae. *e0 (loop, loop2) .*el.*cos (o) +i.*w.*e0 (loop, loop2) . "2+k.*gammae
N2.%el.”2.%sin(0) . N2)) L FA;
B2 (loop, loop2)=( (-

C(loop,loop2) ."2.*el.*sin(0)) ./2+A.*C (loop, loop2) .*cos (0) ...
(B(loop,loop2) .*C(loop, loop2) .*el.*cos (0)) ./e0 (loop, loop2) -
(A.*B(loop, loop2).*sin (o)) ./e0 (loop,loop2) ...

+ (B (loop,loop2).”2.*el.*sin(0)) ./e0 (loop, loop2) .72.0...

+((2.*1.*w.*e0 (loop, loop2)) ./gammae+el.*cos (0)) .* (-
C(loop,loop2) .2./(2.*tan (o)) - (A.*C(loop, loop2))./el...

_(_
(isat.*e0 (loop, loop2) .*B(loop, loop2) ."2.*r (loop, loop2) .* (i.*w.*T1+1)) ./
(i.*w.*Tl.*isat+isat+e0 (loop, loop2)."2).72.0...
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+ (el (loop, loop2) .*B(loop, loop2) ."2.*r (loop, loop2)) ./ (i.*w.*Tl.*isat+isa

t+e0 (loop, loop2) ."2)) ./ (2.*tc.*gammae.*el.*sin(0)))) ./...
((el.*sin(o)) ./e0(loop,loop2)+((2.*i.*w.*e0 (loop, loop2)) ./gammae+el.*co
s(o)).*...

((4.*%1.*w.*tc—
(e0 (loop, loop2) ."2.*r (loop, loop2)) ./ (i.*w.*Tl.*isat+isat+e0 (loop, loop2)
."2)+r (loop,loop2)-1)...
./ (2.*tc.*gammae.*el.*sin(0))));
end
end
atemp=ones (length (elp),100);
for loop=l:1l:length(elp)
atemp (loop, :)=atemp (loop, :) *Ap (loop) ;
end
figure (1)
plot (f', (sgqrt(B'.*conj(B')).* (etemp')./atemp') .”2.*fudge)
axis ([-4e8,4e8,0,.05])
title('Modulation Transfer Function vs. Frequency Offset (1lst
Harmonic) ')
xlabel ('Frequency Offset (Hz)')
ylabel ('Modulation Transfer Ratio')
legend(strings, -1);
figure (2)
plot (f', (sgrt(B2'.*conj (B2')).* (etemp') ./atemp') .”2.*fudge)
axis([-4e8,4e8,0,5e-8])
title('Modulation Transfer Function vs. Frequency Offset (2nd
Harmonic) ')
xlabel ('Frequency Offset (Hz)')
ylabel ("Modulation Transfer Ratio')
legend(strings, -1);
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%$Matlab Function for solving for e0
function eO=solve e0(isat, tc,gammae,el,o,P,T1)
start=1;
step=-.1;
stop=0;
for loop=1:1:10
flag=1;
while flag

sl=sign((start).”3/isat+(2.*tc.*gammae.*el.*cos (0)./isat).* (start) .2+ (
1-P.*T1) .* (start)+(2.*tc.*gammae.*el.*cos (0)));

s2=sign((start+step).”3/isat+(2.*tc.*gammae.*el.*cos (o) ./isat).* (start+
step) . "2+ (1-P.*T1) .* (start+step)+(2.*tc.*gammae.*el.*cos (0)));
if (sl~=s2)
flag=0;
stop=start+step;
step=step/10;
else
start=start+step;
if start<stop
disp ('No Solution');
return;
end
end
end
end
eO=start;
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Appendix B — Matlab Code for Plotting Results for Fabry-Perot Injection Locking

%$MatLab Code for Ploting Magnitude and Phase of 1st Harmonic
%$for various injected powers

clear
op=linspace (-pi/2,pi/2,1001);

isatp=10."(sin(op))/1000;
%isatp=linspace(1071/1000,1071/1000,1001);
dp=-3;
loop=1;
loop2=0;
for o=op
loop2=loop2+l;
isat=isatp (loop2);
runsat=2;
tc=4.4e-12;
Tl=1le-9;
gammae=-1./ (tc) ;
P=runsat./T1;
U=isat.*T1l;
w=1eb6;
el=sqrt (10~dp/1000) ;
eLl=sqrt (10°-4/1000) ;
A=el.*sqrt(.25);
e0 (loop,loop2)=solve el 2(isat,tc,gammae,el,ell,o,P,T1l);
eL0 (loop, loop2)=(e0 (loop, loop2) .*eLl) ./ (el.*cos (0)) ;
etemp (loop, loop2)=el./e0 (loop, loop2) ;
r=(P.*T1) ./ (1+e0.%2./isat);
f (loop, loop2)=-gammae.* (el./e0 (loop, loop2)) .*sin (o) ;
D:_
(e0 (loop, loop2) ."2.*r (loop, loop2)) ./ (i.*w.*Tl.*isat+isat+e0 (loop, Lloop2)
.h2)

B(loop,loop2)=((gammae.*el+i.*w.*e0 (loop,loop2).*cos(0)) ...
./ ((el.”2./e0(loop,loop2)) .*gammae.*sin (o) .2+ ((i.*w.*e0 (loop, loop2)) ./
gammae+t+ (el.*cos(0))) ...
(1L Fw-

(e0 (loop, loop2) .*r (loop, loop2)) ./ (tc.* (i.*w.*Tl.*isat+e0 (loop, loop2) ."2

+((1l+r (loop, loop2)-2.*1i.*w.*tc) ./ (1-r (loop, loop2) -

2.%i.*w.*tc)) .* ((e0(loop,loop2).*eLl) ./ (el.*cos(0))).”2))+(r (loop, loop2
)=1)./(2.%tc))));

end

f2=(sgrt(B'.*conj (B')) .* (etemp')./A)."2;

plot (£(2:1000)"',£f2(2:1000))

axis([-1e9,3e9,0,.0571)

title('Modulation Transfer Function vs. Frequency Offset (1lst
Harmonic) ')

xlabel ('Frequency Offset (Hz)'")

ylabel ("Modulation Transfer Ratio')

grid;
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%$Matlab Function for solving for e0

function eO=solve e0(isat, tc,gammae,el,ell,o,P,T1)
start=1;
step=-.1;
stop=0;
K=(l+elLl./ (el.*cos(0))) ."2;
for loop=1:1:10
flag=1;
while flag

sl=sign(K.* (start).”3/isat+K.* (2.*tc.*gammae.*el.*cos (0)./isat).* (start
) .2+ (1-P.*T1) .* (start)+(2.*tc.*gammae.*el.*cos(0))) ;

s2=sign (K.* (start+step) .”3/isat+K.* (2.*tc.*gammae.*el.*cos (o) ./isat) .* (
start+step) . "2+ (1-P.*T1) .* (start+step) +(2.*tc.*gammae.*el.*cos (0)));
if (sl~=s2)
flag=0;
stop=start+step;
step=step/10;
else
start=start+step;
if start<stop
disp ('No Solution');
return;
end
end
end
end
eO=start;
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Appendix C — Matlab Code for Plotting Phase Modulation due to Amplitude
Modulation on Input

%$MatLab Code for Ploting Phase Modulation of 1st Harmonic

clear
op=linspace (-pi/2,pi/2,1001);
isat=107-1/1000;

runsat=2;
tc=5e-10;
Tl=.5e-9;
gammae=-1./(tc) ;
P=runsat./T1;
U=isat.*T1l;

wp=0;
el=sqrt (10°-2);
A=.05.%el;
Cl=pi./100;
ah=10;
for loop=l:1:1length (wp)
loop2=0;
for o=op
loop2=loop2+1;
e0=solve e0(isat, tc,gammae,el,o,P,Tl);
r=(P.*T1) ./ (1+e0.72./isat);
f (loop, loop2)=—-gammae.* (el./e0) .*sin (o) ;
C(loop,loop2)=(cos (o) ./ ((r-1)./2-(r.*e0.72) ./ (isat+e0.72))—-...
sin(o) ./ ((tc.*gammae.*el.*sin (o)) ./e0-
(r.*e0.72.*ah) ./ (isat+e0.72)))./...
((el.*sin(o)) ./ ((r-1)./2-(r.*e0.72) ./ (isat+e0.72))-...
(el.*cos (0)) ./ ((tc.*gammae.*el.*sin (o)) ./e0-
(r.*e0.72.*ah) ./ (isat+e0.72)));
end
end

plot (f', (sgrt(C'.*conj(C"'))))
axis([-1.5e9,1.5e9,0,1071)

xlabel ('Frequency Offset (Hz)')

ylabel ('Phase Modulation Transfer Ratio')
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Appendix D — Stamp Basic Code for the Microcontroller

' {$STAMP BS2sx}
' {$SPBASIC 2.5}

sublooper VAR Nib
looper VAR Word
counter VAR Nib
thepoint VAR Word
theposa VAR Word
theposb VAR Word
temp VAR Word
temp2 VAR Word
thelimit VAR Byte

thelimit = 100

'Data Out

LOW 0

'Output CLK Out
LOW 1

'Load Out

LOW 2

'Filter Select
LOW 3

'Injection Select
LOW 4

'Phase Select

LOW 5

'Error Light
Low 8

'Filter OK
LOW 9
'Filter OK
LOW 10
'Filter OK
LOW 11

'Data In

INPUT 12
'Input CLK Out
INPUT 6

'Input Busy
INPUT 13

'Load In

LOW 14

'Start Switch
INPUT 15

Main:
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'Running Light
LOW 7

IF (IN15 = 0) THEN Main
HIGH 7

LOW 8

LOW 9

Low 10

Low 11

HIGH 3
LOW 4
LOW 5
counter=0
filterloop:
counter=counter+l
thepoint = 0
FOR looper = 0 TO 4095
SHIFTOUT 0, 1, MSBFIRST, [looper\12]
PULSOUT 2, 1
PULSOUT 14, 1
stillbusyla:
IF (IN13 = 0) THEN stillbusyla
temp = 65535
FOR sublooper = 0 TO 4
SHIFTIN 12, 6, MSBPOST, [temp2\12]
temp2.BIT11l = ~temp2.BIT11
IF (temp < temp2) THEN doneavgla
temp = temp2
doneavgla:
NEXT
IF thepoint >= temp THEN isfinela
thepoint = temp
theposa = looper
isfinela:
NEXT
thepoint = 0
FOR looper = 0 TO 4095
SHIFTOUT 0, 1, MSBFIRST, [looper\12]
PULSOUT 2, 1
PULSOUT 14, 1
stillbusylb:
IF (IN13 = 0) THEN stillbusylb
temp = 65535
FOR sublooper = 0 TO 4
SHIFTIN 12, 6, MSBPOST, [temp2\12]
temp2.BIT11l = ~temp2.BIT11
IF (temp < temp2) THEN doneavglb
temp = temp?2
doneavglb:
NEXT
IF thepoint >= temp THEN isfinelb
thepoint = temp
theposb = looper
isfinelb:
NEXT
IF (counter<3) THEN continuel
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HIGH 8
GOTO Main
continuel:

IF (ABS

looper 0

startloopl:
SHIFTOUT O,
PULSOUT 2, 1
PULSOUT 14, 1

1,

(theposa - theposb))

MSBFIRST,

> thelimit THEN filterloop

[looper\12]

[temp2\12]

stillbusylc:
IF (IN13 = 0) THEN stillbusylc
temp = 65535
FOR sublooper = 0 TO 4
SHIFTIN 12, 6, MSBPOST,

temp2.BIT11

IF (temp < temp2

temp temp?2
doneavglc:

NEXT

IF

thelimit) < ((theposa+theposb)/2))

((looper+thelimit) > ( (theposa+theposb) /2)))
THEN nofiltererror

IF (counter<3)
HIGH 8
GOTO Main
nofiltererror:
IF
filterloop
looper=looper+l
GOTO startloopl
endloopl:
HIGH 9

Low 3
HIGH 4
LOW 5
injectionloop:

thepoint = 0
FOR looper = 0 TO 4095
SHIFTOUT 0, 1, MSBFIRS

PULSOUT 2, 1
PULSOUT 14, 1

~temp2.BIT11

) THEN doneavglc

((temp> ( (thepoint*3)/4))

AND

(looper> ( ( (theposa+theposb) /2)+thelimit))

T,

AND ( (looper-

THEN endloopl

THEN

[looper\12]

[temp2\12]

stillbusy2a:
IF (IN13 = 0) THEN stillbusyZ2a
temp = 0
FOR sublooper = 0 TO 2
SHIFTIN 12, 6, MSBPOST,

temp2.BIT11
IF (temp > temp2)
temp temp?2
doneavgla:

NEXT

~temp2.BIT11

THEN doneavg2a

IF thepoint >= temp THEN isfinelb
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dothis2a

dothis2c

thepoint =
isfine2a:
NEXT

temp

looper=0
counter=0
startloop?2:
SHIFTOUT O,
PULSOUT 2, 1
PULSOUT 14, 1

1, MSBFIRST, [looper\12

]

stillbusy?2b:
IF (IN13 = 0) THEN stillbusy2b
temp = 0
FOR sublooper = 0 TO 2
SHIFTIN 12, 6, MSBPOST, [temp2\12]

temp2.BIT11
IF (temp > temp2)
temp = temp2
doneavg2b:

NEXT
IF

~temp2.BIT11

((temp> (3* (thepoint/4))) AND

IF
IF

((temp< (thepoint/2)) AND
((temp> (3* (thepoint/4))) AND
dothisza:
theposa=looper
counter=counter+l
GOTO continue2
dothis2b:
counter=counter+1l
GOTO continue2
dothis2c:
theposb=looper
counter=counter+1l
continue2:
looper=looper+l
IF ((counter<3) AND (looper<4095))
IF (counter=3) THEN endloop2
HIGH 8
GOTO Main
endloop2:
looper=( (theposa+theposb) /2)
SHIFTOUT 0, 1, MSBFIRST, [looper\12
PULSOUT 2, 1
HIGH 10

GOTO Main
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(counter=1))

THEN doneavg2b

(counter=0)) THEN

THEN dothis2b

(counter=2)) THEN

THEN startloop2

]
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