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Chapter 1

Introduction

“We must make everything as simple as possible, but no simpler.” -Albert Einstein

We are drowning in data. Scientists and engineers are more baffled than

ever as we continue to accumulate data at a staggering rate and our capacity for

processing and understanding it falls far behind. What we desperately need is

intelligent and efficient ways for extracting meaning, structure, useful information

and ultimately knowledge from the deluge of meaningless, raw data. Harmonic

analysis, broadly speaking, deals with efficient representations of data, and thus

offers potential tools for tackling the challenges resulting from an excess of data.

In this context, this thesis deals with dimensionality reduction, which is concerned

with the design and analysis of algorithms for removing redundancy in data and

capturing its true information content.

The problem of analyzing intrinsically low-dimensional data lying in high-

dimensional space is common in many areas of science and engineering, such as

speech, image, and text processing, and is one of the main concerns of disciplines

like machine learning, data mining, and pattern recognition. There is often a reason

to believe that high-dimensional signals have only a few degrees of freedom, in which

case the intrinsic information they contain may be captured more concisely. We thus

look for a mapping from a high-dimensional to a low-dimensional space, which is
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faithful to the data, in the sense that little or no information is lost along the way.

No such universally applicable mapping has been found thus far. Mappings

that work well in some settings may fail miserably in others. Thus, while designing

such a mapping, often a compromise must be made regarding its properties. First,

there are purely theoretical considerations, such as determining precisely what type

of information shall be preserved and what type may be lost. Second, there are

computational considerations, such as the time and space complexity of the resulting

implementation. We shall address both of these.

The first and arguably most crucial step in designing algorithms for finding

concise descriptions of data is deciding how to model it. For example, in the recently

developed theory of Compressed Sensing, the data is assumed to be sparse with re-

spect to some basis, possibly in a transform domain. Manifold learning methods are

based on the assumption that the signals lie on or near a low-dimensional manifold,

and are designed to recover its structure efficiently. We shall use this latter model

in most of what follows.

We now briefly describe the main contributions of this thesis, which are the

following:

• Proof of the consistency of Schrödinger Eigenmaps

• A theoretical guarantee for the performance of Laplacian Eigenmaps with

random projections, as well as empirical evidence of its advantages

• Empirical evidence of the advantages of a divide-and-conquer algorithm for the

construction of the adjacency graph in the context of Laplacian Eigenmaps
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• Integration of random projections with divide-and-conquer, optimization of

user defined parameters, and evaluation of the performance of the resulting

method

1.1 Schrödinger Eigenmaps

One popular manifold learning algorithm, known as Laplacian Eigenmaps

(LE) [9], is based on the Laplace-Beltrami operator of the underlying manifold.

Eigenfunctions of this operator give rise to smooth mappings, which may be used to

produce a low-dimensional representation of the manifold that respects its geometry.

However, in practical applications, the manifold is not directly accessible. Instead,

we are only given a finite point cloud, which is assumed to have been sampled from

the manifold. The first task is then to construct a discrete approximation of the

Laplace-Beltrami operator in an efficient manner. Considerable work in this field

has been devoted to proving convergence, in various senses, of the discrete approxi-

mation to its continuous counterpart, using methods of Riemannian geometry and

functional analysis. Such analysis has been used successfully to establish LE on a

firm foundation.

As we shall see, LE has been applied to various types of real data with some

impressive results. However, this method is unsupervised in the sense that it does

not allow for the use of labels associated with the data, when the ultimate goal is

classification. In light of the prevalence and importance of this task, it is natural to

consider methods for extending and generalizing LE in order to allow for some su-
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pervision. Such an extension would leverage the proven capability of LE to identify

underlying structure such as clusters in the data, and also allow for the introduction

of prior knowledge. One such generalization, an algorithm called Schrödinger Eigen-

maps [30], was recently designed and applied to biomedical images. In Chapter 3,

we establish its consistency, i.e., we show that under certain mild conditions, the

discrete approximations converge to well defined limits as the sample size increases.

1.2 Random Projections

The algorithms discussed above are nonlinear, as well as adaptive in the sense

that a mapping is derived from the given data points. In contrast, the theory of

Compressed Sensing relies on a linear, non adaptive method for reducing the dimen-

sion of signals modeled as sparse with respect to some dictionary. More specifically,

random projections are used to stably embed sparse high-dimensional signals in

a much lower-dimensional space, and efficient algorithms allow for their recovery.

Recently, by replacing the model of sparsity with the model of a manifold, this tech-

nique has been extended to a wide class of signals [8]. Using these new and promising

techniques, we have been able to reduce the computational cost of algorithms such

as LE, without sacrificing accuracy.

LE, as well as many related Laplacian-based methods, relies on the construc-

tion of a weighted adjacency graph, which in turn requires the search for nearest

neighbors in high-dimensional space. For large data sets, this search can easily be-

come computationally prohibitive. We have shown that using random projections
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to map the input data set to a low-dimensional space leads to a dramatic reduction

in computational time, while, with high probability, essentially preserving quality of

performance. In Chapter 4, we demonstrate this both theoretically and empirically.

1.3 Approximate Neighborhoods

The asymptotic complexity of the search for nearest neighbors depends on the

dimension of the ambient space and the number of points. The use of random pro-

jections as described in the previous section targets the dimension. In an effort to

deal with the number of points, we have implemented and tested an algorithm for

the construction of approximate neighborhoods described in [23]. In this algorithm,

the set of points is recursively divided into two smaller subsets, using spectral bi-

section, based on the inexpensive Lanczos algorithm. Once the size of the subset is

small enough, the neighborhood graph is constructed using brute-force. Finally, the

solutions to the subproblems are assembled in a straightforward manner to yield an

approximate solution to the original problem. In chapter 5, we apply this algorithm

to artificial as well as real data to show that it yields an approximation of high

quality. Our main goal is to show that it works well in the context of LE.

1.4 Integration and Data Analysis

As we shall demonstrate overwhelmingly in Section 2.2.3, the main computa-

tional bottleneck in LE consists of the search for nearest neighbors. In Chapter 6,

we show that we may readily combine random projections and approximate neigh-
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borhoods, as described in the previous two sections, to simultaneously leverage the

advantages of both in accelerating this search. Further, we apply the resulting algo-

rithm in a systematic manner, for the purpose of classification, to standard datasets

for which ground truth is available, evaluate its performance and show how to op-

timize the choice of user defined parameters.
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Chapter 2

Background

2.1 Dimensionality Reduction

In recent years, our capacity to collect and store data has far outstripped our

ability to analyze it. In problem domains as diverse as document retrieval, genetic

sequence analysis, face recognition, and remote sensing, we are often given a large

dataset in which each observation is associated with a large number of variables.

We refer to the number of variables as the dimension of each observation, and in

the given setting we say that the data lies in a high-dimensional space, where many

common problems are hard or even impossible to solve with limited resources.

It is difficult for humans to visualize and interpret high-dimensional data. But

perhaps more crucially, in an age when data analysis is increasingly automated, high-

dimensional data is intractable whenever the restrictions of real world computation

must be accounted for. The “curse of dimensionality” [15], as it has been called,

refers to common situations where the complexity of a problem increases exponen-

tially with the number of dimensions. One example, common to many problems of

machine learning and information retrieval, is the search for nearest neighbors.

However, it often turns out that not all the variables are vital for understanding

the underlying phenomenon, or that there is a high degree of redundancy in the

information they represent. In this case, the structure and information content of
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the data may be captured by a much smaller set of variables. For the purposes

of processing, computation, communication, visualization, and analysis, it is highly

desirable to determine the true, or intrinsic, dimension of the data, and find a faithful

representation for it in a space of this lower dimension. Before proceeding into more

technical details, let us consider a few intuitive examples to illustrate our goal.

First, consider a set of gray-scale images of a fixed object taken by a moving

camera. If each image is n× n, it yields a data point in Rn2
. However, the intrinsic

dimension of the space of all such images is simply the number of degrees of freedom

of the camera, which is usually much lower.

As a more concrete example, consider the dataset in Figure 2.1, consisting

of 221 images of the letter “A”, each of size 32 × 32, which have been scaled and

rotated. While the ambient space is R1024, the intrinsic dimensionality of the set

is two, since only two variables are needed to produce each image. Using Manifold

Sculpting, described in [38], to map the dataset to the two-dimensional plane, we

obtain the result on the right side of the figure.

Figure 2.1: Dimensionality Reduction Using Manifold Sculpting
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As a slightly more advanced example, taken from [44], we consider a dataset

containing 1965 gray-scale face images taken from sequential frames of a short video.

Each image has 20 × 28 pixels and is thus represented as a point in R560. Using

Locality Preserving Projections (LPP), described in [44], the images are mapped into

the two-dimensional plane. The result is shown in Figure 2.2, where representative

images are shown next to some points. As can be seen, the facial expression and

the viewing angle change smoothly. For example, the images shown at the bottom

correspond to points along the path marked by the solid line. Thus, it appears that

the structure in the high-dimensional ambient space has been well preserved in the

representation space, whose dimension is drastically lower.

Figure 2.2: Face Recognition with LPP

As an example from another field, consider the following problem, taken

from [54]. We are given 1047 articles from Science News, each belonging to one

of eight fields. 2036 words are selected to capture the information content of this
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particular body of documents. We then represent each article as a vector in R2036,

whose ith coordinate is the frequency of the ith word. Using a Laplacian kernel (a

common type of which we shall describe in the next section) and Diffusion Wavelets

as described in [54], the dataset is then embedded in R6. Three of the coordinates

are then plotted as shown in Figure 2.3. Each circle corresponds to an article whose

field is represented by the circle’s color. As the figure clearly shows, the structure

of the dataset is again well preserved, in the sense that articles from the same field

tend to cluster in the same region.

Figure 2.3: Document Classification with Diffusion Wavelets

Many methods of dimensionality reduction (DR) have been developed and

successfully applied. An important distinction is made between the linear and the

nonlinear techniques [53]. Linear methods assume that the data lies on or near a

linear subspace of the high-dimensional ambient space. Nonlinear methods make no

assumption of linearity and are designed to identify complex nonlinear manifolds as
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well as linear ones. Linear methods have been used for a long time. For example,

Principal Component Analysis (PCA) was invented in 1901 and is possibly still the

most widely used method of DR. In contrast, nonlinear methods have been the focus

of most research in recent times. Many of these methods clearly outperform linear

methods when applied to common artificial examples such as the Swiss roll in Figure

2.4, where the performance of PCA is compared to that of ISOMAP, described

in [59]. However, applications to real world data are often not as convincing [53].

(a) original set (b) PCA (c) ISOMAP

Figure 2.4: Reducing the Swiss roll

Methods of dimensionality reduction seek to recover the low-dimensional struc-

ture of the dataset, which is typically nonlinear, and thus not amenable to classical,

linear methods. One class of methods is geometrically motivated and known as

manifold learning. The problem can be stated as follows: Given a collection of n

data points x1, x2, . . . , xn (often called the “point cloud”) in RN , which are assumed

to lie on (or near) a manifold of dimension K � N , find n points y1, y2, . . . , yn

in RK such that if xi is mapped to yi, then the new set of points is a faithful

(low-dimensional) representation of the original point cloud. The sense in which the

representation is faithful or optimal varies – different algorithms attempt to preserve
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different geometric or topological properties of the manifold [49].

In general, nothing is known about the geometry or topology of the manifold,

not even its dimension, and this makes manifold learning a notoriously ill-posed

problem. Indeed, through any given set of points, it is easy to construct infinitely

many different manifolds of varying dimension. The dimension of the manifold is

crucial for common tasks relying on neighborhood relations. For example, in Figure

2.5, we are given a set of points on the left. If these points lie on the one-dimensional

manifold in the middle, the blue triangle is closer to the red circle than the green

square. However, if these points lie on the two-dimensional manifold on the right,

the green square is closer. Most algorithms therefore require the intrinsic dimension

as an input parameter, and several algorithms exist for estimating it for any given

point cloud [48].

Figure 2.5: One and two-dimensional manifolds

A popular family of manifold learning algorithms is based on the Laplace-

Beltrami operator of the underlying manifold. Eigenfunctions of this operator, which

12



constitute a basis for the space of square integrable functions on the manifold, give

rise to optimally smooth mappings which preserve the geometry of the manifold.

However, the manifold is not directly accessible. Instead we are only given a finite

point cloud which is assumed to have been sampled from the manifold. The main

task is then to construct a discrete approximation of the Laplace-Beltrami operator

in an efficient manner. Such approximations are typically derived from a graph

representation of the data, used in most state-of-the-art learning algorithms, such

as Diffusion Wavelets [26], Locally Linear Embedding (LLE) [57], Hessian LLE [33],

and Laplacian Eigenmaps [9].

2.2 Laplacian Eigenmaps

Laplacian Eigenmaps (LE) shall be our point of departure in much of what

follows, so we now take the time to describe key features of the algorithm and the

framework for its analysis. First described in [9], LE is an algorithm for nonlin-

ear dimensionality reduction that attempts to preserve the local geometry of the

manifold. It is designed to construct a discrete embedding that approximates the

eigenfunctions of the Laplace-Beltrami operator. Using a neighborhood graph al-

lows it to emphasize local information and makes it relatively insensitive to outliers

and noise. Furthermore, the emphasis on local information implicitly emphasizes

natural clusters in the data, in contrast to global methods such as ISOMAP [59].

In this sense it is closely related to spectral clustering algorithms developed earlier

in the fields of machine learning and computer vision [46].
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2.2.1 Historical Context

Connections between the spectrum of a manifold, defined as the spectrum

of the Laplace-Beltrami operator on the manifold, and its geometry, have been

studied for a long time and form the heart of a field known as spectral geometry.

The earliest such result was produced in 1911, when Hermann Weyl showed that

the dimension and volume of a bounded Euclidean domain are determined by its

spectrum. Subsequently, many more geometric spectral invariants were established,

leading mathematicians to wonder if in fact the geometry of a manifold is com-

pletely determined by its spectrum. The question was settled negatively in 1964 by

John Milnor, who constructed two isospectral non-isometric manifolds. Nonetheless,

Mark Kac continued to wonder if the answer might be positive for planar domains,

and popularized the question in 1966 [47] when he asked: “Can one hear the shape

of a drum?” But again the question was answered negatively in 1992 [41] by Gor-

don, Webb, and Wolpert, who constructed the counter example shown in Figure

2.6: these two regions have identical eigenvalues but different shapes.

Figure 2.6: One cannot hear the shape of a drum
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2.2.2 Eigenfunctions of the Laplace-Beltrami Operator

We would like to show what makes eigenfunctions of the Laplace-Beltrami

operator optimal for producing an embedding that respects the manifold’s geometry.

This will provide motivation for LE, detailed below, at the heart of which is a

discrete approximation to the Laplace-Beltrami operator and its eigenfunctions.

Before proceeding, we note that while there is a natural analogy between the discrete

and continuous settings, the formal and precise connections between the two were

established only much later than the formulation of the algorithm, in a series of

results we shall discuss in Section 2.2.6 [10,12].

Let M be a smooth, compact, k-dimensional manifold embedded in Rd. We

are looking for a map f : M → R such that if x, y ∈ M are close, then f(x) and

f(y) are also close, and assume that f is twice differentiable. Denote by ∇f(x) the

gradient of f at x. Using basic differential geometry, it is straightforward to show

that

|f(x)− f(y)| ≤ ‖∇f(x)‖‖x− y‖+ o(‖x− y‖).

Thus, as long as ‖∇f(x)‖ is small, points that are nearby on the manifold are

mapped to points nearby on the real line. We therefore look for a map for which

this quantity is small on average by finding

arg min
‖f‖L2(M)=1

∫
M
‖∇f(x)‖2. (2.1)

Recalling the Laplace-Beltrami operator ∆M(f) = −div(∇f), we use Stokes’ The-
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orem to conclude that ∫
M
‖∇f(x)‖2 =

∫
M

∆M(f)f,

and thus the functions that minimize (2.1) are the eigenfunctions of the Laplace-

Beltrami operator corresponding to the smallest eigenvalues. Furthermore, the spec-

trum of ∆M on a compact manifoldM is known to be discrete [56]. We discard the

constant eigenfunction corresponding to eigenvalue 0 and use the next k eigenfunc-

tions to produce an optimally smooth embedding into Rk.

2.2.3 The Algorithm

Given points x1, x2, . . . , xn in RN , LE consists of three main steps:

1. Constructing the adjacency graph: put an edge between nodes i and j if xi

and xj are close. Precisely, given a parameter m ∈ N, put an edge between

nodes i and j if xi is among the m nearest neighbors of xj, or vice versa.

2. Computing edge weights: given a parameter t > 0, if nodes i and j are con-

nected, set Wij = e−
‖xi−xj‖

2

t ; otherwise, set Wij = 0. Here and throughout we

use the Euclidean norm.

3. Computing eigenmaps: Assume the graph constructed in Step 1 is connected,

otherwise repeat the following for each connected component. Set Dii =∑
jWij, and let L = D − W . The matrix L is the Laplacian matrix; it is

symmetric and positive semidefinite. Solve the generalized eigenvalue prob-

lem, Lf = λDf (since D is nonsingular, this problem can be reduced to a
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standard eigenvalue problem). Let f0, f1, . . . , fK be K + 1 eigenvector solu-

tions corresponding to the first eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λK . Discard

f0 and use the next K eigenvectors to embed in K-dimensional Euclidean

space using the map

xi → (f1(i), f2(i), . . . , fK(i)).

The asymptotic computational complexity of the algorithm is determined by

steps 1 and 3. Assuming m� n, step 3 requires the solution of a sparse eigenvalue

problem. If we denote by p the ratio of the number of nonzero elements to the total

number of elements in the matrix, the cost of this step is O(pn2). However, running

time is typically dominated by step 1, which requires a search for nearest neighbors.

This fact is decisively illustrated with the following experiment. In Figure 2.7 we

see a two-dimensional rectangle embedded in three-dimensional space. We sample

the rectangle with increasing density and use LE to map it to the plane. In Figure

2.8, for each of five trials, the height of the bar shows the total running time, with

the blue portion representing the time required for step 1. If the ambient dimension

is N and the number of points is n, the cost of this step is O(Nn2). For a large,

high-dimensional dataset, this computation may be infeasible. We shall attempt to

mitigate this difficulty in Chapters 4 and 5.
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Figure 2.7: Mapping the square to the plane with LE

Figure 2.8: Constructing the nearest neighbor graph is a computational bottleneck

2.2.4 The Discrete Mapping

We would like to show that the embedding produced by LE preserves local

information optimally in the sense explained below. Suppose the point xi ∈ RN is

mapped to yi ∈ RK . Now consider the following expression:

∑
i,j

‖yi − yj‖2Wij.
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According to the manner in which the weights Wij were defined above, minimizing

this expression would ensure that if the points xi and xj are close in RN , then yi

and yj will be close in RK . Let Y = [y1 y2 . . . yn] and note that

∑
i,j

‖yi − yj‖2Wij =
∑
i,j

K∑
m=1

(yim − yjm)2Wij

=
∑
i,j,m

y2im + y2jm − 2yimyjmWij

=
∑
i,m

y2im
∑
j

Wij +
∑
j,m

y2jm
∑
i

Wij − 2
∑
i,j,m

yimWijyjm

=
∑
i,m

y2imDii +
∑
j,m

y2jmDjj − 2
∑
i,j,m

yimWijyjm

= 2
∑
i,j,m

yimDijyjm − 2
∑
i,j,m

yimWijyjm

= 2
∑
i,j,m

yim(Dij −Wij)yjm

= 2
∑
i,j,m

yimLijyjm = 2 tr(Y TLY ).

Therefore, we have

arg min
Y TLY=I

∑
i,j

‖yi − yj‖2Wij = arg min
Y TLY=I

tr(Y TLY ).

It is well known that the latter expression is minimized by the matrix of eigenvectors

corresponding to the smallest eigenvalues of the generalized eigenvalue problem Ly =

λDy.

As we shall see in the next section, LE performs reasonably well on some real

datasets. However, we note that it is easy to construct simple counterexamples, i.e.,
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manifolds that cannot be recovered by LE. In fact, in [40] the authors consider a

two-dimensional rectangle and show that if the ratio of its sides is greater than two,

the output of LE will be a one-dimensional manifold.

2.2.5 Examples

As a toy vision example taken from [9], consider binary images containing

exactly one rectangular bar at a random location. Each image is 40× 40 and thus

corresponds to a point in R1600. We choose 1000 random images, 500 containing

a horizontal bar and 500 containing a vertical bar. The space of all vertical bars

is a two-dimensional manifold, as is the space of all horizontal bars. In Figure

2.9, the left panel shows what the rectangles look like. The middle panel shows a

two-dimensional representation produced with LE, with blue dots corresponding to

vertical bars and red plus signs corresponding to horizontal bars. We can see that

the two components are well defined. In contrast, the right panel shows the result

of using PCA to represent the same data.

Figure 2.9: DR with toy rectangles: middle - LE, right - PCA
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For an example with real data, consider the following data from the world of

linguistics, also taken from [9]. Each of the 300 most frequent words in the Brown

corpus, a collection of texts containing about 1 million words, is represented by a

vector in R600. The first 300 components represent the frequency of each of the

300 words as the word’s left neighbor, and the latter 300 components represent the

frequency of each of the 300 words as the word’s right neighbor. We use LE to

obtain a two-dimensional representation of the data, as shown in Figure 2.10, where

three clusters are denoted by arrows. These clusters are shown in detail in Figure

2.11, where we can see that words in the same cluster belong to the same syntactic

category.

Figure 2.10: LE applied to 300 words

In our final example, taken from [44], we consider the task of recognizing the

digits ‘0’-‘9’. The dataset consists of 200 patterns per class, for a total of 2000

binary images. The images are pre-processed and then represented as points in

R649. The data is then reduced to two dimensions using both LE and PCA. The

results are presented in Figure 2.12, where we can see that LE performs much better
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Figure 2.11: Clusters: infinitives of verbs (left), prepositions (middle), modal and
auxiliary verbs (right)

at identifying clusters corresponding to the different classes.

Figure 2.12: Comparison of LE and PCA for digit recognition

2.2.6 Convergence

The theoretical justification for LE relies on the connections between the graph

Laplacian and its eigenvectors to the Laplace-Beltrami operator and its eigenfunc-
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tions. We will rely on the formal results which make these precise, and now state

two of them, as well as briefly mention the main ideas in their proofs.

The main idea behind the construction of the discrete Laplacian comes from

the solution to the heat equation on the manifold. Let f ∈ C(M). Recall that the

solution to

∂

∂t
u(x, t) + ∆u(x, t) = 0, u(x, 0) = f(x)

is given by

u(x, t) = Htf(x), Ht(f)(x) =

∫
M
ht(x, y)f(y)dµ(y)

where, on Rk, we have the heat kernel

ht(x, y) = (4πt)−
k
2 e−

‖x−y‖2
4t .

From this we can readily derive the key to the discrete approximation as follows:

∆f(x) = − ∂

∂t
u(x, t)

∣∣∣∣
t=0

= − ∂

∂t
Htf(x)

∣∣∣∣
t=0

= lim
t→0

1

t
(f(x)−Htf(x))

= lim
t→0

1

t
(4πt)−

k
2

(∫
M
f(x)e−

‖x−y‖2
4t dy −

∫
M
f(y)e−

‖x−y‖2
4t dy

)
.

Thus, we define L̂t,n : C(M)→ C(M) by

L̂t,nf(x) =
1

t
(4πt)−

k
2

(
1

n

∑
j

f(x)e−
‖x−xj‖

2

4t − 1

n

∑
j

f(xj)e
−
‖x−xj‖

2

4t

)
.

The Laplace-Beltrami operator on the manifold M, ∆M : C2(M) → L2(M), is

given by ∆M(f) = −div(∇f). We are now ready to state the first result, established
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in [10].

Theorem 2.2.1 (Pointwise Convergence, Belkin and Niyogi) Let the data points

x1, x2, . . . , xn be sampled independently from a uniform distribution on a smooth,

compact manifold M⊂ RN . Let α > 0, and set tn = ( 1
n
)

1
k+2+α . For f ∈ C∞(M),

lim
n→∞

L̂tn,nf(x) =
1

vol(M)
∆Mf(x) in probability,

where vol(M) is the volume of the manifold with respect to the canonical measure.

In proving the above result, we face several issues. First, in general we do not

know the exact form of the heat kernel on the manifold. Furthermore, we do not

know the geodesic distance on the manifold, only the (Euclidean) distance in the

ambient space.

The proof is broken into two parts, denoted by the following diagram:

L̂t,nf(p) −→
n→∞ Ltf(p) −→

t→0

1

vol(M)
∆Mf(p),

where the operator Lt : L2(M) → L2(M) is the functional approximation of ∆M,

given by

Lt(f)(x) =
1

(4πt)k/2t

(∫
M

f(x)e−
‖x−y‖2

4t dµy −
∫
M

f(y)e−
‖x−y‖2

4t dµy

)
.

Proving the first part, the empirical approximation, is entirely straightforward.

Since L̂t,n is the empirical average of n i.i.d. random variables with expectation
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E[L̂t,nf(p)] = Ltf(p), we can use a concentration inequality:

Lemma 2.2.2 (Hoeffding’s Inequality) Let X1, X2, . . . , Xn be i.i.d random variables

such that |Xi| ≤ K. Then,

P
{∣∣∣∣∑iXi

n
− E[Xi]

∣∣∣∣ > ε

}
< 2 exp

(
− ε2n

2K2

)
.

The proof of the second part, the functional approximation, is more intricate,

and is divided into three steps:

1. Reduce the integral to a ball B in M, i.e., show that

lim
t→0

Ltf(p) = lim
t→0

1

(4πt)k/2t

∫
B

(f(p)− f(y))e−
‖p−y‖2

4t dµ(y).

2. Apply a change of coordinates using the exponential map (see Figure 2.13) to

rewrite the integral in Rk.

3. Use a Taylor expansion to analyze the integral in Rk.

Finally, we have the following result relating the eigenvectors of the discrete

Laplacian to the eigenfunctions of the Laplace-Beltrami operator on the manifold

[12].

Theorem 2.2.3 (Spectral Convergence, Belkin and Niyogi) Let λit,n and eit,n be the

ith eigenvalue and corresponding eigenfunction of L̂t,n. Let λi and ei be the ith

eigenvalue and corresponding eigenfunction of ∆M, respectively. Then there exists

a sequence tn → 0 such that, in probability,
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Figure 2.13: The Exponential Map

lim
n→∞

λitn,n = λi and lim
n→∞

‖eitn,n − ei‖2 = 0.

2.3 Classification

In this thesis, we shall apply dimensionality reduction in the context of classi-

fication, which falls in the category of supervised machine learning. We now briefly

describe the general framework for dealing with this problem, as well as a common

algorithm that has been devised for its solution.

In the general setting of a classification task, we are given a training set

{(x1, y1), (x2, y2), . . . , (xn, yn)} consisting of n input-output pairs. The input is typ-

ically a vector and the output is one of a finite number of classes. The algorithm

analyzes the data in a phase called learning, and produces a classifier, also called

a discriminant, which is a rule for assigning a category to any valid input vector.

The ability to categorize correctly inputs that are not part of the training set is

called generalization, and is a central goal of any learning algorithm. Often the
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input to the classifier is pre-processed, i.e., the input vector is mapped to a new

space of variables. Typically this is done either to improve accuracy or to speed up

computation. Dimensionality reduction is one such type of pre-processing.

One of the simplest algorithms for classification is k nearest neighbors (kNN),

where k is a user defined parameter, and an input is assigned to the class most

common among its k nearest neighbors. This method is illustrated in Figure 2.14:

If k = 3, the green circle, our test sample, is classified as a red triangle, whereas if

k = 5 it is classified as a blue square. A particular instance of this algorithm is the

case k = 1, called nearest neighbor classification. In what follows we use nearest

neighbor classification, with one important modification: there is only one vector

representing each class and its coordinates are the average of all the vectors in the

training set that belong to that class. We now describe this procedure in detail,

following the presentation in [45].

Figure 2.14: kNN classification

Let X = {x1, x2, . . . , xn} ⊂ RD denote the set of input vectors in our training

set. For each i, xi belongs to exactly one of q classes Ck, k = 1, 2, . . . , q. Assume the

input vectors have already been pre-processed, e.g., mapped to a low-dimensional
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space. Now construct a representative vector for each class by computing an average.

That is, suppose Ci = {xi,j : j = 1, 2, . . . , qi}, where qi is the number of inputs in

class Ci. Then the representative vector for this class is given by

x̂i =
1

qi

qi∑
j=1

xi,j.

Now suppose we are to classify a new pre-processed vector x ∈ RD. We do

this by computing the angle between x and each representative vector x̂i, where this

angle is given by

θx,x̂i = cos−1
(

xT x̂i
‖x‖‖x̂i‖

)
,

and choosing the class that minimizes this angle.

2.4 Multispectral and Hyperspectral Data

We will test our algorithms with two kinds of data: multispectral and hyper-

spectral images. In both cases, the images are produced by sensors that measure

the reflected energy in several bands of the electromagnetic spectrum. The idea is

illustrated with the cube in Figure 2.15, taken from [2]. This type of imagery has

applications in fields such as agriculture, mineralogy, geology, physics, surveillance,

and medicine. It is designed to identify materials based on their spectral signature,

or “fingerprint”, across the electromagnetic spectrum.

Traditional images are produced by combining red, green, and blue images.

In multispectral imaging, as the retinal images used in Chapter 3, up to about 10
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different bands may be used. Hyperspectral sensors measure energy in narrower and

much more numerous bands. Hyperspectral images, such as the land images used

in Chapter 4, typically contain over 100 and as many as several hundred contiguous

spectral bands, and are thus more sensitive to subtle variations in the reflected

energy. Thus, for example, multispectral sensors may be used to detect a forest,

while hyperspectral sensors may be used to detect different species of trees within

the forest.

Figure 2.15: Hyperspectral data cube containing 224 bands [2]

In chapter 6, we will use two specific data sets, known as “Urban” and “Smith”.

Two features of these sets make them popular. First, these sets are publicly available

[3–6] [60]. Second, ground truth for the purposes of material classification is available

for some of the pixels, a fact that we shall later exploit in order to assess the

performance of our algorithms. A color image of each of the regions used in these

sets is shown in Figures 2.16 and 2.18. Each of the images in Urban is 307×307 and

the set contains 161 bands. Each ground truth pixel belongs to one of 23 classes

listed in Table 2.1. Each of the images in Smith is 679 × 944 and the set contains

110 bands. Each ground truth pixel belongs to one of 22 classes listed in Table 2.2.
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Sample bands for each of the sets are shown in Figures 2.17 and 2.19.

Figure 2.16: Urban in color

Figure 2.17: Urban spectral bands 1,51,61, and 161
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Table 2.1: Urban class names

1 AsphaltDrk

2 AsphaltLgt

3 Concrete01

4 VegPasture

5 VegGrass

6 VegTrees01a

7 Soil01

8 Soil02

9 Soil03Drk

10 Roof01Wal

11 Roof02A

12 Roof02BGvl

13 Roof03LgtGray

14 Roof04DrkBrn

15 Roof05AChurch

16 Roof06School

17 Roof07Bright

18 Roof08BlueGrn

19 TennisCrt

20 PoolWater

21 ShadedVeg

22 ShadedPav

23 VegTrees01b
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Figure 2.18: Smith in color

Figure 2.19: Smith spectral bands 1,21,51, and 110
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Table 2.2: Smith class names

1 phrag

2 scirpus

3 juncus

4 patens

5 distichlis

6 andropogon

7 ammophila

8 mud

9 alterniora

10 borrichia

11 salicornia

12 iva

13 pine

14 hardwood

15 pond water

16 sand

17 wrack

18 myrica

19 seaoats

20 typha

21 water shore

22 submerged nets
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Chapter 3

Schrödinger Eigenmaps

3.1 Introduction

Methods for dimensionality reduction are often applied to data for the pur-

pose of classification. Furthermore, in this setting, we are often provided with some

labeled examples. Laplacian Eigenmaps (LE) is an example of a completely un-

supervised method, i.e., it does not allow for the use of labels, but only seeks to

simplify and expose the underlying structure of the data. It seems natural to ex-

tend this method in order to take advantage of additional information and improve

the classification process. One framework for doing this, based on regularization

in reproducing kernel Hilbert space, is described in [13]. In this chapter, we de-

scribe an alternative method called Schrödinger Eigenmaps (SE) [30], based on the

Schrödinger operator on the assumed underlying manifold. This simple extension of

LE, in which we specify a potential on the adjacency graph, allows the user to take

advantage of prior information, and enforce certain relations between points. In

particular, certain points may be kept separate, i.e., classified into different classes,

while other points may be identified with each other, i.e., classified into the same

class. We shall now introduce the method, establish its asymptotic properties, and

present the results of experiments with artificial as well as real data.
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3.2 Laplacian Eigenmaps

For convenience, we recall the main steps of LE. Given n data points x1, x2, . . . , xn

sampled independently from a uniform distribution on a smooth, compact, K-

dimensional manifold M⊂ Rd:

1. Constructing the adjacency graph: Given a parameter m ∈ N, put an edge

between nodes i and j if xi is among the m nearest neighbors of xj or vice versa.

Given a parameter t > 0, if nodes i and j are connected, set Wij = e−
‖xi−xj‖

2

t .

2. Constructing the Laplacian matrix: Set Dii =
∑

jWij, and let L = D −W .

3. Computing the eigenmaps: Solve the generalized eigenvalue problem, Lf =

λDf . Let f0, f1, . . . , fK be K + 1 eigenvector solutions corresponding to the

first eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λK . Discard f0 and use the next

K eigenvectors to embed in K-dimensional Euclidean space using the map

xi → (f1(i), f2(i), . . . , fK(i)).

3.3 Schrödinger Eigenmaps

LetM⊂ Rd be a smooth, compact, K-dimensional manifold. Let v ∈ C∞(M)

be a nonnegative potential defined on the manifold. Adding v to the Laplace-

Beltrami operator ∆M results in the familiar Schrödinger operator. In order to

construct the discrete analogue of ∆ + v we add to L a nonnegative diagonal matrix

V . We now repeat step 3 above with L replaced by L + V . We may further refine

this scheme by considering L + αV , where α is a user defined potential parameter
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Figure 3.1: Two-dimensional arc recovered with Laplacian Eigenmaps

that allows for more control over the effect of using the potential.

To see this effect, consider an example where we use an artificial dataset. In

Figure 3.1, we have a two-dimensional arc in three-dimensional space. When we use

LE we obtain a perfect embedding in the plane. In Figure 3.2 we add a potential

consisting of zeros along the diagonal except for a 1 in the position corresponding to

the point in the middle of the arc. As we gradually increase the value of α, we force

the labeled point, as well as its neighbors, to separate from the rest of the points.

In Figure 3.3, we use a different matrix V to identify the endpoints of the arc.

For an example with real data, consider the retinal image in Figure 3.4, taken

from [30]. By identifying the pixels denoted by the two arrows, the authors classify

all the pixels into one class. In contrast, by separating these two pixels, they separate

the remaining pixels into two distinct classes.

We would now like to show that the discrete operator converges to the contin-

uous operator as the sample size increases. More precisely, we would like to prove

two results that are analogous to the ones established in [10] and [12] for Laplacian

Eigenmaps, namely, pointwise and spectral convergence.
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Figure 3.2: Separation with SE: V = diag(0,. . .,0,1,0,. . .,0), alpha = 0.05, 0.1, 0.5, 5

3.4 Pointwise Convergence

Given n data points x1, x2, . . . , xn sampled independently from a uniform dis-

tribution on a smooth, compact, k-dimensional manifold M⊂ Rd, define the oper-

ator L̂t,n : C(M)→ C(M) by

L̂t,n(f)(x) =
1

(4πt)k/2t

(
1

n

∑
j

f(x)e−
‖x−xj‖

2

4t − 1

n

∑
j

f(xj)e
−
‖x−xj‖

2

4t

)
.

Let v ∈ C(M) be a potential defined on the manifold. For a point x ∈ M, let

yn(x) = arg min
x1,x2,...,xn

‖x−xi‖ and define the operator Vn : C(M)→ C(M) by Vnf(x) =

v(yn(x))f(x).

Theorem 3.4.1 (Pointwise Convergence) Let α > 0, and set tn = ( 1
n
)

1
k+2+α . For
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Figure 3.3: Identification with SE: alpha = 0.01, 0.05, 0.1, 1

f ∈ C∞(M),

lim
n→∞

L̂tn,nf(x) + Vnf(x) =
1

µ(M)
∆Mf(x) + v(x)f(x) in probability,

where µ(M) is the volume of the manifold with respect to the canonical measure µ.

Proof. We are given a point x ∈M, a function f ∈ C∞(M), and ε > 0. Denote by

P the probability measure obtained by normalizing µ. First, note that

P
{∣∣∣∣L̂tn,nf(x) + Vnf(x)− (

1

µ(M)
∆Mf(x) + v(x)f(x))

∣∣∣∣ > ε

}
≤

P
{∣∣∣∣L̂tn,nf(x)− 1

µ(M)
∆Mf(x)

∣∣∣∣ > ε

2

}
+ P

{
|Vnf(x)− v(x)f(x)| > ε

2

}
.

In [10], the first term on the right side of the inequality was shown to be arbitrarily
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Figure 3.4: Application: classification of retinal Images

small for sufficiently large n. Thus, it suffices to bound the right one. Since f is

continuous on a compact manifold, there exists C > 0 such that |f(z)| ≤ C for all

z ∈ M. Also, since v is continuous, there exists δ > 0 such that if d(x, z) < δ then

|v(x)− v(z)| < ε
C

, where d is the geodesic distance on the manifold. If at least one

of the n points is within δ of x,

|Vnf(x)− v(x)f(x)| = |v(yn(x))f(x)− v(x)f(x)|

= |f(x)||v(yn(x))− v(x)|

≤ C
ε

C
= ε.

Since the points x1, x2, . . . , xn are sampled independently from a uniform distribu-

tion on a manifold with volume µ(M), the probability that none of the n points is
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within δ of x is
(
µ(M)−µ(Bδ(x))

µ(M)

)n
. Therefore,

P {|Vnf(x)− v(x)f(x)| > ε} ≤
(
µ(M)− µ(Bδ(x))

µ(M)

)n
−→
n→∞ 0.

3.5 Spectral Convergence

We now wish to establish a stronger convergence result that ensures the validity

of Schrödinger Eigenmaps. We wish to show that as the sample size n increases,

and the parameter t decreases, the eigenvectors of the discrete Schrödinger operator

converge to the eigenfunctions of the continuous Schrödinger operator, in a sense

that will be made precise.

Given n data points x1, x2, . . . , xn sampled from a manifold M ⊂ Rd, and

a parameter t > 0, the unnormalized graph Laplacian (see [9]) is constructed as

before, but now we stress the dependence on n and t:

• Construct a symmetric weight matrix (Wt,n)ij = e−
‖xi−xj‖

2

t

• Construct the diagonal matrix (Dt,n)ii =
∑

j (Wt,n)ij

• Let Lt,n = Dt,n −Wt,n

Given a function f defined on the data points, we have

Lt,n(f)(xi) =
∑
j

f(xi)e
−
‖xi−xj‖

2

4t −
∑
j

f(xj)e
−
‖xi−xj‖

2

4t .
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We may extend this construction to functions defined on the entire manifold, and

normalize to obtain the operator L̂t,n : C(M)→ C(M) defined by

L̂t,n(f)(x) =
1

(4πt)k/2t

(
1

n

∑
j

f(x)e−
‖x−xj‖

2

4t − 1

n

∑
j

f(xj)e
−
‖x−xj‖

2

4t

)
.

Recall the Laplace-Beltrami operator on the manifoldM, ∆M : C2(M)→ L2(M),

given by ∆M(f) = −div(∇f). For convenience, we repeat the following result from

Section 2.2.6, established in [12].

Theorem 3.5.1 (Spectral Convergence, Belkin and Niyogi) Let λit,n and eit,n be the

ith eigenvalue and corresponding eigenfunction of L̂t,n. Let λi and ei be the ith

eigenvalue and corresponding eigenfunction of ∆M. Then there exists a sequence

tn → 0, such that

lim
n→∞

λitn,n = λi and lim
n→∞

‖eitn,n − ei‖2 = 0 in probability.

Let v ∈ C(M) be a bounded potential defined on the manifold, and let V̂n =

diag(v(x1), . . . , v(xn)). Given a function f defined on the data points, we have

V̂n(f)(xi) = v(xi)f(xi).

Define the multiplication operator V : C(M) → C(M) by V f(x) = v(x)f(x).

We define the extension Vn of V̂n to functions defined on the entire manifold by

setting Vn = V , i.e., Vn is independent of n. We wish to generalize Theorem 3.5.1
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to Schrödinger operators of the form St,n = Lt,n + Vn. Precisely, we would like to

establish the following.

Theorem 3.5.2 (Spectral Convergence of Schrödinger Operator) Let λit,n and eit,n

be the ith eigenvalue and corresponding eigenfunction of St,n. Let λi and ei be the

ith eigenvalue and corresponding eigenfunction of ∆M + V . Then there exists a

sequence tn → 0, such that

lim
n→∞

λitn,n = λi and lim
n→∞

‖eitn,n − ei‖2 = 0 in probability.

The argument splits into two parts, represented by the following diagram:

EigSt,n
−→
n→∞ EigSt

−→
t→0 Eig∆M + V.

The first convergence is in probability, and the second one is deterministic. However,

we observe that Vn does not depend on the parameter t. Thus it suffices to show the

first convergence. To do so, we adapt the arguments in [52] to establish convergence

of the eigenvalues and eigenvectors of the empirical Schrödinger operator, under

certain conditions.

3.5.1 Overview of Method

We are given n data points x1, x2, . . . , xn sampled from a manifold M ⊂ Rd.

An eigenvector vn = (v1, v2, . . . , vn) of the discrete operator (matrix) Ŝn can be

thought of as a function gn on these points, by defining gn(xi) = vi. As n → ∞,
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we would like these functions to converge to a continuous function on the entire

manifold. The technical difficulty in proving this convergence is that, for different

n, the vectors vn live in different spaces. To overcome this, let the restriction

operator ρn : M → Rn map a function to its values on the first n points, that is,

ρnf = (f(x1), f(x2), . . . , f(xn)). We will construct operators Sn and S on M with

corresponding eigenfunctions fn and f such that vn = ρnfn and fn converges to f .

3.5.2 Preliminaries

From now on we assume the following:

Assumption 3.5.3 M⊂ Rd is a compact manifold, B is the Borel σ-algebra onM,

and P is a probability measure on (M,B). The points X1, X2, . . . , Xn are sampled

independently according to P . The similarity function k :M×M→ R is symmetric,

continuous, and bounded away from 0 by a positive constant. The potential v ∈

C(M) is bounded above.

Definition 3.5.4 (Convergence of Operators) Let (E, ‖ · ‖E) be a Banach space, B

its unit ball, and (Sn)n a sequence of bounded linear operators on E.

• (Sn)n converges pointwise to S, denoted Sn
p−→ S, if ‖Snx− Sx‖E → 0 for all

x ∈ E.

• (Sn)n converges compactly to S, denoted Sn
c−→ S, if it converges pointwise

and if for every sequence (xn)n in B, the sequence (S − Sn)xn is relatively

compact (has compact closure) in (E, ‖ · ‖E).
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Compact convergence will ensure the convergence of spectral properties in the

following sense, see [22].

Proposition 3.5.5 (Perturbation) Let (E, ‖ · ‖E) be a Banach space and (Tn)n

and T bounded linear operators on E with Tn
c−→ T . Let λ ∈ σ(T ) be an isolated

eigenvalue with finite multiplicity m, and M ⊂ C an open neighborhood of λ such

that σ(T ) ∩M = {λ}. Then:

1. Convergence of eigenvalues: There exists an N ∈ N such that, for all n > N ,

the set σ(Tn)∩M is an isolated part of σ(Tn), consists of at most m different

eigenvalues, and their multiplicities sum up to m. Moreover, the sequence of

sets σ(Tn)∩M converges to the set {λ} in the sense that every sequence (λn)n

with λn ∈ σ(Tn) ∩M satisfies limλn = λ.

2. Convergence of spectral projections: Let Pr be the spectral projection of T

corresponding to λ, and for n > N let Prn be the spectral projection of Tn

corresponding to σ(Tn) ∩M . Then Prn
p−→ Pr.

3. Convergence of eigenvectors: If, additionally, λ is a simple eigenvalue, then

there exists some N ∈ N such that, for all n > N , the sets σ(Tn) ∩M consist

of a simple eigenvalue λn. The corresponding eigenfunctions fn converge up

to a change of sign, i.e., there exists a sequence (an)n of signs an ∈ {−1, 1}

such that anfn converges.

3.5.3 Proving Convergence

Define the matrices,
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(K̂n)ij = k(Xi, Xj), (D̂n)ii =
n∑
j=1

k(Xi, Xj),

L̂n = D̂n − K̂n, Ŝn =
1

n
L̂n + V̂n,

the empirical distributions,

Pn =
1

n

n∑
i=1

δxi ,

the degree functions,

dn(x) =

∫
k(x, y)dPn(y) ∈ C(M),

d(x) =

∫
k(x, y)dP (y) ∈ C(M),

the multiplication operators,

Dn : C(M)→ C(M), Dnf(x) = dn(x)f(x),

D : C(M)→ C(M), Df(x) = d(x)f(x),

Vn : C(M)→ C(M), Vnf(x) = v(x)f(x),

V : C(M)→ C(M), V f(x) = v(x)f(x) = Vnf(x),

Mn : C(M)→ C(M), Mnf(x) = Vnf(x) +Dnf(x),

M : C(M)→ C(M), Mf(x) = V f(x) +Df(x),
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the integral operators,

Kn : C(M)→ C(M), Knf(x) =

∫
k(x, y)f(y)dPn(y),

K : C(M)→ C(M), Kf(x) =

∫
k(x, y)f(y)dP (y),

and the corresponding sums and differences,

Ln : C(M)→ C(M), Lnf(x) = Dnf(x)−Knf(x),

L : C(M)→ C(M), Lf(x) = Df(x)−Kf(x).

Now define the Schrödinger operators, Sn : C(M)→ C(M),

Snf(x) = Vnf(x) + Lnf(x)

= Vnf(x) +Dnf(x)−Knf(x)

= Mnf(x)−Knf(x),

and the limit operator, S : C(M)→ C(M),

Sf(x) = V f(x) + Lf(x)

= V f(x) +Df(x)−Kf(x)

= Mf(x)−Kf(x).

These definitions ensure that when a function on M is restricted to the sample
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points, the operators on C(M) behave like their matrix analogues. In particular,

Ŝn ◦ ρn = ρn ◦ Sn.

Lemma 3.5.6 (Relating the Spectra of Ŝn and Sn) 1. If f ∈ C(M) is an eigen-

function of Sn with eigenvalue λ, then the vector v = ρnf ∈ Rn is an eigen-

vector of the matrix Ŝn with the same eigenvalue.

2. If u = (u1, u2, . . . , un) is an eigenvector of the matrix Ŝn with eigenvalue λ /∈

range(dn + v) , then f is an eigenfunction of Sn with the same eigenvalue,

where

f(x) =
1
n

∑
j k(x,Xj)uj

v(x) + dn(x)− λ
.

3. If λ /∈ range(d+ v) is an eigenvalue of S, then λ is isolated with finite multi-

plicity.

Proof.

1. This follows directly from the relation Ŝn ◦ ρnf = ρn ◦ Snf : Ŝnv = Ŝnρnf =

ρnSnf = ρn(λf)) = λρnf = λu.

2. Since u is an eigenvector of Ŝn, we have

λuk = (Ŝnu)k = ((
1

n
L̂n + Vn)u)k =

1

n

∑
j

k(Xk, Xj)(uk − uj) + v(Xk)uk,

or

uk(v(Xk) +
1

n

∑
j

k(Xk, Xj)− λ) =
1

n

∑
j

k(Xk, Xj)uj.
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Thus,

uk =
1
n

∑
j k(Xk, Xj)uj

v(Xk) + 1
n

∑
j k(Xk, Xj)− λ

= f(Xk).

Now,

Snf(x) = Mnf(x)−Knf(x) = (v(x) + dn(x))f(x)− 1

n

∑
j

k(x,Xj)f(Xj).

From the definition of f we have

(v(x) + dn(x))f(x) = λf(x) +
1

n

∑
j

k(x,Xj)uj.

So

Snf(x) = λf(x) +
1

n

∑
j

k(x,Xj)uj −
1

n

∑
j

k(x,Xj)f(Xj) = λf(x),

since uj = f(Xj).

3. S is the difference of the multiplication operator M and the compact operator

K. The essential spectrum is not affected by a compact perturbation [22], so

the essential spectrum of S coincides with the essential spectrum of M , which

is precisely range(d + v). Thus, if λ /∈ range(d + v), it is isolated with finite

multiplicity.

Lemma 3.5.7 Sn converges compactly to S.
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Proof. By definition, Sn = Vn + Ln, and S = V + L. In proposition 23 of [52], it

was shown that Ln converges compactly to L. Since Vn = V for every n, the claim

follows immediately.

Putting everything together, we have our main result:

Theorem 3.5.8 (Convergence of Schrödinger Operator) Let λ /∈ range(d+ v) be an

eigenvalue of S and M ⊂ C an open neighborhood of λ such that σ(S) ∩M = {λ}.

Then:

1. The eigenvalues in σ(Sn) ∩M converge to λ in the sense that every sequence

(λn)n with λn ∈ σ(Sn) ∩M satisfies λn → λ almost surely.

2. Convergence of spectral projections: There exists some N ∈ N such that, for

every n > N , the sets σ(Sn)∩M are isolated in σ(Sn). For n > N , let Prn be

the spectral projection of Sn corresponding to σ(Sn) ∩M , and Pr the spectral

projection of S for λ. Then Prn
p−→ Pr almost everywhere.

3. Convergence of eigenvectors: If λ is a simple eigenvalue of S and f the cor-

responding eigenfunction, then the eigenvectors of Sn converge a.s. up to a

change of sign, i.e., if vn is the eigenvector of Sn with eigenvalue λn, and vn,i

its ith coordinate, then there exists a sequence (an)n with an ∈ {−1, 1} such

that supi=1,...,n|anvn,i − f(xi)| → 0 almost everywhere.

Proof. Lemma 3.5.6 established a one-to-one correspondence between the eigensys-

tems of Ŝn and Sn and showed that an eigenvalue λ /∈ range(d+ v) of S is isolated
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with finite multiplicity. Lemma 3.5.7 established that Sn
c−→ S. These two facts,

together with Proposition 3.5.5, imply convergence of eigenvalues and spectral pro-

jections, and further, if λ is simple, convergence of eigenvectors, up to a change of

sign.

3.6 Conclusion

In this chapter, we introduced Schrödinger Eigenmaps. By adding a potential

to the graph Laplacian, we allow for the introduction of prior knowledge, thus

turning an unsupervised algorithm into a semi-supervised one. This generalization

of LE is ideal for classification tasks where user input may be used to label some of

the points, as in the example of retinal imagery given above. We have seen that the

mapping produced by the algorithm converges to a well defined limit as the sample

size increases.
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Chapter 4

Laplacian Eigenmaps with Random Projections

As described in Section 2.2.3, LE relies on the construction of a weighted

adjacency graph corresponding to the point cloud, and this requires a search for

nearest neighbors. If the dimension of the space is high and the dataset is large,

this search is expensive or even impossible. In this chapter, we wish to build on a

result inspired by the theory of Compressed Sensing (CS) in order to reduce this

cost without significantly compromising accuracy. We use random projections as a

preliminary step to map the input dataset to a low-dimensional space, thus gaining

a dramatic reduction in computational time while, with high probability, essentially

preserving the output of the original algorithm. We provide theoretical guarantees

as well as numerical evidence of reliability and efficiency.

4.1 Connection to Compressed Sensing

One of the most fundamental elements in the development of useful algorithms

for data processing is the model characterizing the expected behavior or structure of

the signals of interest. One model that has been the focus of much recent attention is

that of sparse signals. Given a basis for the ambient (potentially high-dimensional)

space RN , a signal is called K-sparse if it can be represented using this basis with at

most K nonzero coefficients. The theory of CS [18–21,34,35] exploits this model in
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order to maintain a low-dimensional representation of the signal from which a faith-

ful approximation to the original signal can be recovered efficiently. Dimensionality

reduction in CS is linear and nonadaptive, i.e., the mapping does not depend on the

data. CS has many promising applications in signal acquisition, compression, and

medical imaging [36,51,58].

CS theory states that, with high probability, every K-sparse signal x ∈ RN can

be recovered from just M = O(K log(N/K)) linear measurements y = Φx, where Φ

is an M ×N measurement matrix drawn randomly from an acceptable distribution.

For example, Φ may have i.i.d Gaussian entries. These ideas are illustrated in

Figure 4.1. Note that M is linear in the “information level” K and logarithmic

in the ambient dimension N . M is taken high enough to ensure that all K-sparse

signals remain well-separated when embedded in RM . CS theory applies equally

well to signals that are not strictly sparse but compressible, i.e., if the coefficients in

the signal’s representation decay fast enough. Furthermore, near optimal recovery

is guaranteed even in the presence of noise.

Figure 4.1: Model for measurement in Compressed Sensing

The notion of using a random projection for dimensionality reduction is not
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new. Long before the present wave of interest, the Johnson-Lindenstrauss Lemma

(JL) [32] used a random projection for a stable embedding of a finite point cloud.

Lemma 4.1.1 (Johnson-Lindenstrauss) Given 0 < ε < 1, a set Xof n points in

RN , and a number M ≥ O(lnN)/ε2, there is a Lipschitz function f : RN → RM

such that, for all u, v ∈ X,

(1− ε)‖u− v‖ ≤ ‖f(u)− f(v)‖ ≤ (1 + ε)‖u− v‖.

In [7] a fundamental connection was identified between CS theory and the JL

Lemma, despite the fact that the former allows for the embedding of an uncountable

number of points.

We note that computing random projections is relatively cheap: projecting n

points from N to M dimensions costs O(NMn). To see them in action consider the

example shown in Figure 4.2. Here, 2000 points in R1000 are randomly projected to

R20. We compute the relative error in the norm of the projected points and plot a

histogram. We can see that for the vast majority of points the error is negligible.

Manifold models generalize the notion of sparsity beyond bases. These models

arise whenever a signal in RN is a continuous function of a K-dimensional parameter.

For example, a pure sinusoid is completely determined by its amplitude, phase, and

frequency. So a class of signals consisting of pure sinusoids would form a three-

dimensional manifold in RN . The dimension of the manifold under this model is

analogous to the sparsity level in the CS model. In [8] the authors extend the

CS theory by demonstrating that random linear projections can be used to map the
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Figure 4.2: Relative error in norm of randomly projected points

high-dimensional manifold-modeled data to a low-dimensional space while, with high

probability, approximately preserving all pairwise distances between the points. We

use this technique as a preliminary step in LE and show that the resulting algorithm

is still provably reliable but considerably faster than the original.

4.2 Preliminaries

4.2.1 Random projections of Smooth Manifolds

First, we recall the main result from [8], which shall be our main tool in es-

tablishing a theoretical guarantee on the reliability of our algorithm. The result

concerns the effect of a random linear projection Φ : RN → RM on a smooth K-

dimensional submanifold M ⊂ RN . Here Φ is a random orthogonal projection,

or orthoprojector, constructed by orthonormalizing the rows of an M × N matrix

having i.i.d. Gaussian entries. The authors establish a sufficient number M to guar-

antee that, with high probability, all pairwise distances between points on M are
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well preserved under the mapping Φ. In their analysis, the authors make several

assumptions about regularity of the manifold. In particular, they define the condi-

tion number of the manifold, which controls both local properties of the manifold

(such as curvature) and global properties (such as self-avoidance), and the geodesic

covering regularity which describes a natural bound on the number of balls of a

given radius needed to cover the manifold. Before stating the main result, we state

the precise definitions as given in [8].

Definition 4.2.1 Let M be a compact Riemannian submanifold of RN . The con-

dition number is defined as 1/τ , where τ is the largest number having the following

property: The open normal bundle about M of radius r is embedded in RN for all

r < τ .

Definition 4.2.2 Let M be a compact Riemannian submanifold of RN . Given

T > 0, the geodesic covering number G(T ) of M is defined as the smallest number

such that there exists a set A of points on M, |A| = G(T ), so that for all x ∈M,

min
a∈A

dM(x, a) ≤ T.

Definition 4.2.3 Let M be a compact Riemannian submanifold of RN having vol-

ume V . We say that M has geodesic covering regularity R for resolutions T ≤ T0

if

G(T ) ≤ RKV KK/2

TK
,

for all 0 < T ≤ T0.
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Theorem 4.2.4 (Baraniuk and Wakin [8]) Let M be a compact K-dimensional

Riemannian submanifold of RN having condition number 1/τ , geodesic covering

regularity R, and volume V . Fix 0 < ε < 1 and 0 < ρ < 1, and let Φ be a random

orthoprojector from RN to RM , where

M ≥ 4− 2 ln(1/ρ)

ε2/200 + ε3/3000
K ln

(
1900KNRV

ετ 1/3

)
.

If M ≤ N , then, with probability at least 1− ρ, the following holds: For every

pair of points x, y ∈M,

(1− ε)
√
M

N
≤ ‖Φx− Φy‖2
‖x− y‖2

≤ (1 + ε)

√
M

N
.

The proof proceeds by first specifying a high resolution sampling of points

on the manifold, and on the tangent spaces to these points. The JL Lemma is

invoked to produce a satisfactory embedding for these points. The embedding is

then extended to the entire manifold based on the notions of regularity discussed

above.

4.2.2 Approximation of Eigenvectors

We will need a standard result on the approximation of eigenvectors (see e.g.

[12]).

Theorem 4.2.5 Let L and L̂ be two symmetric, positive semidefinite matrices, with

nondecreasing simple eigenvalues {λj} and {λ̂j}, respectively. Let vk be a normalized
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eigenvector of L associated with λk. If r > 0 satisfies

r ≤ min
i,j
|λi − λj| and ‖L− L̂‖ ≤ r/2,

then,

‖vk − v̂k‖ <
4

r
‖L− L̂‖,

where v̂k is a normalized eigenvector of L̂ associated with λ̂k.

4.2.3 Laplacian Eigenmaps

We recall the main steps of LE. Given points x1, x2, . . . , xn in RN :

1. Constructing the adjacency graph: Given a parameter m ∈ N, put an edge

between nodes i and j if xi is among the m nearest neighbors of xj or vice versa.

Given a parameter t > 0, if nodes i and j are connected, set Wij = e−
‖xi−xj‖

2

t .

2. Constructing the Laplacian matrix: Set Dii =
∑

jWij, and let L = D −W .

3. Computing the eigenmaps: Solve the generalized eigenvalue problem, Lf =

λDf . Let f0, f1, . . . , fK be K + 1 eigenvector solutions corresponding to the

first eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λK . Discard f0 and use the next

K eigenvectors to embed in K-dimensional Euclidean space using the map

xi → (f1(i), f2(i), . . . , fK(i)).
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4.3 Main Result

We begin with a point cloud in RN assumed to lie on a K-dimensional sub-

manifold that we wish to learn. We use a random linear projection to map the points

to RM . We then use LE on the projected set, rather than the original. Our goal is

to show that, under the standard regularity assumptions on the manifold, if M is

sufficiently high (yet logarithmic in N and linear in K), then with high probability,

the difference in the resulting output is negligible. This amounts to showing that

the eigenvectors computed in step 3, as described in section 4.2.3 above, remain

essentially the same. We now state this result precisely.

Theorem 4.3.1 Given a data set {x1, x2, . . . , xn} in RN , sampled from a compact

K-dimensional Riemannian manifold , assume ‖xi − xj‖ ≤ A for all i, j and some

A > 0. Let 0 < λ1 < λ2 < · · · < λK be the first K nonzero eigenvalues computed by

LE, assumed simple, with r = mini,j |λi−λj|, and let fj be a normalized eigenvector

corresponding to λj. Use a random orthoprojector Φ (as described above) to map

the points to RM . Let f̂j be the jth eigenvector computed by LE for the projected

data set. Fix 0 < α < 1 and 0 < ρ < 1. If

M ≥ 4− 2 ln(1/ρ)

ε2/200 + ε3/3000
K ln

(
CKN

ε

)
, where ε =

rα

4An(n− 1)
,

then, with probability at least 1− ρ,

‖fj − f̂j‖ < α.
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The constant C depends on properties of the manifold. Precisely, C = 1900RV
τ1/3

, where

R, V , and 1/τ are the geodesic covering regularity, volume, and condition number,

respectively, as described in [8].

Proof. Let dij = ‖xi − xj‖, d̂ij = ‖Φxi − Φxj‖. The construction in section 4.2.3

leads to an eigenvalue problem for a matrix L whose elements Lij are continuous

functions of the interpoint distances dij. More precisely, for i 6= j, Lij = e−d
2
ij/t (for

convenience we shall assume t = 1), and Lii is a sum of n − 1 terms of this form.

Thus, given β > 0, there is a δij > 0 such that if |dij− d̂ij| < δij, then |Lij−L̂ij| < β.

In fact, since the derivative of e−x
2

is bounded by 1, we can let δij = β, for i 6= j,

and δii = β/(n − 1). Let β = (rα)/(4n) and let δ = mini,j δij = β/(n − 1) =

(rα)/[4n(n− 1)]. We may choose M as prescribed by Theorem 4.2.4, so that, with

probability at least 1− ρ, for all i, j, |d̂ij/dij − 1| < δ/A. Since dij ≤ A, we obtain

|dij − d̂ij| < δ and |Lij − L̂ij| < β.

This establishes a bound on the maximum norm of the difference between the matri-

ces, which is equivalent to the operator norm. In particular, for a matrix E ∈Mn(C),

‖E‖ ≤ n‖E‖max. Thus, we have ‖L− L̂‖ ≤ n‖L− L̂‖max ≤ nβ = rα/4. The claim

now follows using Theorem 4.2.5.
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4.4 Numerical Experiments

4.4.1 Artificial Data

We now offer numerical evidence of the advantage of using LE with random

projections (LERP). First, we construct an artificial two-dimensional manifold em-

bedded in high-dimensional space (R200). We compare the results of running LE on

the original data set, with LE on the projection of the data set to a low-dimensional

space (R20). Furthermore, we compare the result with the output produced by

the state-of-the-art out-of-sample extension algorithm, Improved Nystrom (IN), de-

scribed in [63]. Figure 4.3 shows the results. We clearly see, as suggested by the

colored marks, that even when the general shape of the image is somewhat altered

with LERP, the relative positions of the mapped points, which are crucial for the

purposes of classification, are well preserved. This property holds for IN to a much

lesser extent.

(a) LE (b) LERP (c) Improved Nystrom

Figure 4.3: Reducing a two-dimensional manifold embedded in R200

As a more drastic example, we compare the performance of LERP with IN

on a piece of a Swiss roll, commonly used in this setting. Figure 4.4 shows that
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while LERP correctly identifies the two-dimensional structure, IN collapses it onto

a one-dimensional structure.

(a) original set (b) LERP (c) Improved Nystrom

Figure 4.4: Reducing a Swiss roll

4.4.2 Real Data

To further demonstrate the utility of our method, we now test it with real

data, using the hyperspectral dataset Urban described in section 2.4. Recall that

the image contains 307× 307 pixels, and ground truth is available for 1058 of these,

which are classified into one of 23 classes. We use a 248×253 rectangular piece of the

image which contains all the ground truth pixels. Table 4.1 presents a comparison

of LE, LERP, and IN, in terms of running times and accuracy of classification,

averaged over 15 trials: LERP outperforms IN by both measures. Figure 4.5 shows

a comparison of accuracy of classification for LE and LERP by class. Figures 4.6 -

4.12 show a comparison of class maps, which are virtually identical. Figures 4.13 -

4.15 show a comparison of eigenvectors corresponding to the smallest eigenvalues,

where we can see that LE and LERP produce a very similar separation of materials

in the scene.
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Table 4.1: Comparison of performance on Urban

Method Time (min) Accuracy (percent)

LE 15.26 79.05

LERP 11.78 78.44

IN 12.02 72.09

Figure 4.5: Classification of Urban using LE and LERP, comparison by class

4.5 Conclusion

We have shown, both theoretically and empirically, that using a random linear

projection as a preliminary step in LE preserves the essential properties of the

mapping. At the same time, by accelerating the search for nearest neighbors, it

allows for a dramatic reduction in computational time. Thus, using a preliminary

random projection makes the algorithm more attractive for applications in general,

and for the classification of high-dimensional data, in particular. Finally, we remark

that using random projections with other algorithms, which similarly rely on the

construction of neighborhoods, is likely to have similar benefits.
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(a) Class 1

(b) Class 2

(c) Class 3

Figure 4.6: Urban classes: left - LE, right - LERP
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(a) Class 4

(b) Class 5

(c) Class 6

Figure 4.7: Urban classes: left - LE, right - LERP
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(a) Class 7

(b) Class 8

(c) Class 9

Figure 4.8: Urban classes: left - LE, right - LERP
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(a) Class 10

(b) Class 11

(c) Class 12

Figure 4.9: Urban classes: left - LE, right - LERP
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(a) Class 13

(b) Class 14

(c) Class 15

Figure 4.10: Urban classes: left - LE, right - LERP

67



(a) Class 16

(b) Class 17

(c) Class 18

Figure 4.11: Urban classes: left - LE, right - LERP
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(a) Class 19

(b) Class 20

(c) Class 21

Figure 4.12: Urban classes: left - LE, right - LERP
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Figure 4.13: Urban eigenvectors: left - LE, right - LERP
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Figure 4.14: Urban eigenvectors: left - LE, right - LERP
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Figure 4.15: Urban eigenvectors: left - LE, right - LERP
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Chapter 5

Fast Approximate Neighborhoods

5.1 Introduction

As described in previous sections, at the heart of Laplacian Eigenmaps, as

well as many related Laplacian-based methods, is the construction of the k near-

est neighbor (kNN) graph, from which a discrete approximation to the manifold

Laplacian is derived. The time complexity of the brute-force construction depends

linearly on the dimension d of the ambient space, and quadratically on the number

n of points. For large datasets, the computation can thus become impractical or

even impossible. In order to remedy this situation, we have implemented and tested

a recursive algorithm described in [23], which allows for a significant speed-up over

the brute-force method, virtually without compromising accuracy.

5.2 Background

The problem of searching for nearest neighbors has attracted much attention

in recent years, in light of its importance in numerous applications in domains such

as pattern recognition, data mining, machine learning, computer vision, and com-

putational statistics. Many algorithms, deterministic and randomized, exact and

approximate, have been proposed, see, e.g., [23], and references therein. However,
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most of these algorithms perform poorly in high dimensions, require a significant

amount of pre-processing, or fail to provide a guarantee of asymptotic time com-

plexity [1,55]. The algorithm we have chosen to implement and use with LE requires

no pre-processing, is very effective in high dimensions, and comes complete with a

detailed analysis of time complexity.

5.3 The Algorithm

Our problem can be stated as follows. For each of n data points x1, x2, . . . , xn

in Rd, find its k nearest neighbors (kNN), where for a measure of proximity we use

the Euclidean norm. The brute-force method for computing the exact kNN graph

requires Θ(dn2) time. We now describe a divide-and-conquer method for computing

an approximate kNN graph in Θ(dnt) time. The exponent t is larger than 1, but as

we shall see, experiments show that a small value, close to 1, is sufficient for a high

quality graph.

The set of points is recursively divided into two overlapping subsets, as in Fig-

ure 5.1, where the size of the overlap is controlled by a parameter 0 < α < 1 (which

determines the exponent t, as we shall soon see). The division is accomplished using

spectral bisection, based on the inexpensive Lanczos algorithm. Spectral bisection

uses the largest singular triplet of the centered data to produce a hyperplane that

separates the points into two sets. The separation is optimal in the sense that the

sum of the squared distances between the points and the hyperplane is maximized.

To see this, let X̂ denote the centered data, and let (σ, u, v) denote the largest sin-
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gular triplet of X̂ with uT X̂ = σvT . Then, for any hyperplane wTx = 0, the sum

is
n∑
i=1

(wT x̂i)
2 = ‖wT X̂‖22 ≤ ‖X̂‖22 = σ2,

while setting w = u achieves equality.

Once the size of a subset is less than a threshold r, the kNN graph is computed

using brute-force. The solutions to the small subproblems are then assembled in a

simple conquer step: If a data point belongs to more than one of the subsets, its

k nearest neighbors are selected from the neighbors found in each of the subsets.

Due to the nature of the divide-and-conquer approach, only a small portion of the

n2 distances are actually computed. Memory requirements can be kept modest by

using a hash table to store them.

If we denote by f(n) the time needed for the divide-and-conquer steps, then

the time complexity T of this algorithm satisfies the following recurrence relation:

T (n) = 2T ((1 + α)
n

2
) + f(n).

It is straightforward to show that f(n) = O(dn). Using the Master Theorem [28]

we then have the solution:

T (n) = Θ(dnt), t =
1

1− log2(1 + α)
.

For example, in the experiments below we use α = 0.1, in which case t = 1.16.

The following is pseudo code for the main functions implemented:
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Figure 5.1: Approximate kNN

function G = kNN(X, k, α)
if |X| < r then

G = kNN-Brute-Force(X, k)
else

(X1, X2) = Divide(X,α)
G1 = kNN(X1, k, α)
G2 = kNN(X2, k, α)
G = Conquer(G1, G2)

end if
end function

function [X1, X2] = Divide(X,α)
X̂ = centered X
v = largest right singular vector of X̂
X1 = {xi|vi ≥ (100α)% of absolute values of elements in v}
X2 = {xi|vi < (100α)% of absolute values of elements in v}

end function

function G = Conquer(G1, G2)
for each point in G1, G2

if point is only in G1

place its k neighbors in G
else if point is only in G2

place its k neighbors in G
else

find its k nearest neighbors among the 2k neighbors in G1 and G2

place its k neighbors in G
end if

end for
end function
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function G = kNN-Brute-Force(X, k)
compute all pairwise distances for points in X
for each point in X

find its k nearest neighbors
place its k neighbors in G

end for
end function

5.4 Experimental Results

To investigate the effect of using the approximate neighborhoods in Laplacian

Eigenmaps, we have conducted several tests. First, we used artificial data sets, such

as the helix shown in figure 5.2. As can be seen, the resulting maps, using the exact

and approximate neighborhoods, are virtually indistinguishable. Furthermore, the

relative error incurred in the norms of the resulting matrices is typically less than

1%. We obtain the same result using a two dimensional roll embedded in R3, as

shown in Figure 5.3. We note in passing that the mapping produced when using

the approximate algorithm is consistently better, at least visually, as suggested by

this figure.

(a) Helix (b) Exact (c) Approximate

Figure 5.2: Mapping a one-dimensional helix embedded in R3

Finally, we use LE to reduce the dimension of Urban and classify its pixels.
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Figure 5.3: Left: two dimensional roll, center: exact, right: approximate

We do it twice: First, using the exact neighborhood construction, and second, using

the approximate construction. Table 5.1 presents a comparison of running time and

accuracy of classification: The approximate algorithm outperforms the exact one by

both measures. Figure 5.4 shows a comparison of accuracy by class. Figures 5.5 -

5.11 show a comparison of class maps, most of which are very similar.

Table 5.1: Comparison of performance on Urban

Method Time (min) Accuracy (percent)

LE - exact neighborhood 35.3 77.25

LE - approximate neighborhood 5.33 80.01
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Figure 5.4: Classifying Urban using LE with exact and approximate neighborhoods
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(a) Class 1

(b) Class 2

(c) Class 3

Figure 5.5: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 4

(b) Class 5

(c) Class 6

Figure 5.6: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 7

(b) Class 8

(c) Class 9

Figure 5.7: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 10

(b) Class 11

(c) Class 12

Figure 5.8: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 13

(b) Class 14

(c) Class 15

Figure 5.9: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 16

(b) Class 17

(c) Class 18

Figure 5.10: Urban: left - exact neighborhoods, right - approximate neighborhoods

85



(a) Class 19

(b) Class 20

(c) Class 21

Figure 5.11: Urban: left - exact neighborhoods, right - approximate neighborhoods
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Chapter 6

Integration and Data Analysis

In the last two chapters we established, theoretically and empirically, the ad-

vantages of using random projections and approximate neighborhoods with Lapla-

cian Eigenmaps. We now wish to integrate these two methods and show that they

work well together and yield a dramatic reduction in computational time with no

significant reduction in accuracy. In fact, as our experiments will show, using the

combined approximate algorithm, surprisingly, sometimes results in increased accu-

racy. We shall demonstrate this across a wide choice of parameter settings using the

two sets of hyperspectral imaging data described in section 2.4.

We recall that the brute force method for constructing nearest neighbor graphs

has asymptotic complexity of Θ(dn2), where d is the dimension of the ambient

space and n is the number of points. Using random projections, as described in

Chapter 4, allows us to reduce d by a significant factor. For example, as we shall

see in our experiments with the Urban dataset, whose points lie in R161, there

seems to be no significant loss of accuracy if the points are projected down to

as few as 20 dimensions. Furthermore, our experiments show that the price of

computing the projection is much more than offset by the savings in the construction

of the neighborhood graph. Finally, using the recursive approximate neighborhood

construction introduced in Chapter 5, we may replace the exponent 2 with a much
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smaller one (about 1.16 in most of the trials described below.) Putting these two

methods together, we obtain the maximum possible reduction in running time while

preserving accuracy, as we shall soon see.

All of our experiments will consist of material classification based on the Urban

and Smith hyperspectral datasets. We will use LE to map the high-dimensional set

to a lower-dimensional space, and study the effect of using the fast neighborhood

construction instead of the exact method. Namely, we shall compare accuracy of

classification and running time. Note that we are not trying to establish a new

and competitive method for classification, but only to show that the performance

of LE does not degrade by using the fast method to construct the nearest neighbor

graph, and that the computational savings are substantial. Our methodology of

classification will be the same as the one established in [45] and detailed in Section

2.3. In short, after mapping the vectors to a low-dimensional space, we construct

a representative vector for each class by averaging all the ground truth vectors in

that class. We classify each pixel by computing the angle between the vector it

was mapped to and each of the class representatives, and choosing the class that

minimizes this angle.

6.1 Hardware Specifications

All of the computations were performed on a Mac OS X with the following

specifications:

• Processor: 2 x 2.26 GHz Quad Core Intel Xeon,
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• Memory: 16 GB 1066 MHz DDR3.

6.2 Urban

We begin our empirical evaluation with the Urban data set. Recall from

Section 2.4 that this set consists of 307× 307 = 94249 pixels and 161 bands. After

optimizing each of the algorithms (exact and approximate classification as described

above) using an exhaustive search over a grid within a reasonable range, we obtain

the results in Table 6.1. The parameters used for this comparison are the following:

Exact algorithm:

• number of neighbors = 12,

• kernel bandwidth = 0.5,

• reduced dimension = 55.

Approximate algorithm:

• number of neighbors = 8,

• kernel bandwidth = 0.5,

• reduced dimension = 55,

• dimension of random projection = 80,

• overlap = 0.1.
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Table 6.1: Comparison of performance on Urban

Method Time (min) Accuracy (percent)

exact 35.3 77.25

approximate 5.8 78.54

As we can see, the reduction in computational time is dramatic and the accu-

racy of classification does not degrade. It seems that the slight increase in accuracy

can be explained as follows. Computing the adjacency graph using the approximate

algorithm incurs small, random errors. These errors mean that, occasionally, points

which are distant will be designated as neighbors. This makes the largest connected

component in the graph, which is the only one for which an embedding is actually

computed, consistently larger than it is when the exact method is used. In fact,

typically, for the Urban dataset, it contains all the points, whereas about 2700 are

omitted when the exact method is used. Therefore, we obtain a better approxima-

tion of the Laplace-Beltrami operator on the assumed underlying manifold, which,

in turn, leads to a mapping that is apparently better in preserving geometry.

In Figure 6.1 we can see a comparison of classification results by class. Figures

6.2 - 6.8 show a comparison of maps by class. We can see that most classes look

very similar. In Figure 6.9 we see a few of the eigenfunctions corresponding to the

smallest eigenvalues, and how well they separate the different materials present in

the scene.

90



Figure 6.1: Classifying Urban using LE with exact and approximate neighborhoods

6.3 Numerical Analysis of Parameters

We now isolate each of the user specified parameters that may affect the algo-

rithm’s performance in order to gain a deeper understanding of its significance and

identify optimal working values. Since the algorithm involves a random element,

namely, the use of a random matrix for projection, for each fixed set of parameters,

at least three trials are performed and their results are averaged. In this section we

continue to work with the Urban data set.

6.3.1 Number of Neighbors

We begin with the number of neighbors that is used in constructing the nearest

neighbor graph. We consider values in the range 4 - 24, and the results are presented

in Figure 6.10. As far as accuracy of classification, we can see that the algorithm is

not very sensitive to the value of this parameter. However, running time increases

at least linearly with this parameter and more than doubles in this range. We
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(a) Class 1

(b) Class 2

(c) Class 3

Figure 6.2: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 4

(b) Class 5

(c) Class 6

Figure 6.3: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 7

(b) Class 8

(c) Class 9

Figure 6.4: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 10

(b) Class 11

(c) Class 12

Figure 6.5: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 13

(b) Class 14

(c) Class 15

Figure 6.6: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 16

(b) Class 17

(c) Class 18

Figure 6.7: Urban: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 19

(b) Class 20

(c) Class 21

Figure 6.8: Urban: left - exact neighborhoods, right - approximate neighborhoods
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Figure 6.9: Urban: a few eigenvectors
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Figure 6.10: Accuracy and running time as functions of the number of neighbors

recall that this number affects not only the time needed to construct the adjacency

graph, but also how sparse it is, which, in turn, affects the time needed to solve the

associated eigenvalue problem.

Fixed parameters:

• kernel bandwidth = 0.5,

• reduced dimension = 55,

• dimension of random projection = 80,

• overlap = 0.3.

6.3.2 Kernel Bandwidth

The kernel bandwidth (denoted by t in section 2.2.3) determines the penalty

associated with the distance between the neighbors. When this parameter is assigned

a small value, the effect of distant neighbors on the computed mapping will be

negligible. As Figure 6.11 shows, beyond a value of 0.1 both accuracy and time
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fluctuate in a relatively small range and the exact value assigned to this parameter

does not seem to have a significant effect on either one.

Fixed parameters:

• number of neighbors = 8,

• reduced dimension = 40,

• dimension of random projection = 80,

• overlap = 0.3.

Figure 6.11: Accuracy and running time as functions of the kernel bandwidth

6.3.3 Reduced Dimension

Since we have no way of knowing what the dimension of the assumed under-

lying manifold is, we must specify the dimension of the space to which we map the

points. We test values in the range 5 - 70 and present the results in Figure 6.12.

While there is an expected increase in computational time arising from the necessity

of computing more eigenvectors, it is not significant. In contrast, we note a steady
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increase in accuracy, which tapers off around 55. This may suggest that this is

roughly the intrinsic dimension of the manifold.

Fixed parameters:

• number of neighbors = 8,

• kernel bandwidth = 0.5,

• dimension of random projection = 80,

• overlap = 0.3.

Figure 6.12: Accuracy and running time as functions of the reduced dimension

6.3.4 Dimension of Projection

We now study the role of the dimension of the random projection, denoted

by M in Section 4.3, using values in the range 2 - 50. Figure 6.13 shows that once

we reach a value of about 10, two things seem to happen. First, further running

times are hardly affected (the marginal cost of computing the projection is negligible

compared with the rest of the computation). Second, the effect on accuracy seems
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to be negligible, except for what seems like random fluctuation. This is interesting

in as far as it seems to contradict our previous conclusion: If the intrinsic dimension

is really around 55, we would expect to lose a significant amount of information

when projecting to a much lower dimension such as 10.

Fixed parameters:

• number of neighbors = 8,

• kernel bandwidth = 0.5,

• reduced dimension = 40,

• Overlap = 0.3.

Figure 6.13: Accuracy and running time as functions of dimension of projection

6.3.5 Overlap

The final parameter we consider determines the amount of overlap between

the two sets that arise after each bisection, as detailed in section 5.3, where it was

denoted by α. Naturally, we expect both the running time and the accuracy to

103



increase with α, as confirmed by Figure 6.14. We recall that α determines the expo-

nent a in the overall complexity Θ(dna). In fact, Table 6.2 gives the precise values

predicted by the theoretical analysis in [23]. Compared with the steep (exponential)

increase in running time, we note only a moderate improvement in accuracy. In

fact, the low value of 0.1 seems to offer an excellent tradeoff, especially for a large

dataset like Smith, to which we turn now.

Table 6.2: The exponent a for different values of α

α 0.05 0.1 0.15 0.2 0.25 0.3 0.35

a 1.08 1.16 1.25 1.36 1.47 1.61 1.76

Fixed parameters:

• number of neighbors = 8,

• kernel bandwidth = 0.5,

• reduced dimension = 40,

• dimension of projection = 80.

Figure 6.14: Accuracy and running time as functions of the overlap
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6.4 Smith

We now present the results of a comparison using the Smith dataset. We recall

that this data set is much larger than Urban and consists of 679 × 944 = 640976

pixels and 110 wavelengths. However, in order to bring down the running times

from many hours to more reasonable periods, only a wide diagonal band was used,

consisting of 399,611 pixels. The following parameters were used:

Exact algorithm:

• number of neighbors = 12,

• kernel bandwidth = 0.5,

• reduced dimension = 55.

Approximate algorithm:

• number of neighbors = 8,

• kernel bandwidth = 0.5,

• reduced dimension = 55,

• dimension of random projection = 80,

• overlap = 0.1.

The results are presented in Table 6.3. Once again, the approximate algorithm

yields better accuracy in drastically lower time. Figure 6.15 shows a comparison of
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Figure 6.15: Classifying Smith using LE with exact and approximate neighborhoods

accuracy by class. Figures 6.16 - 6.22 show a comparison of class maps. Figure 6.23

shows a few of the eigenvectors corresponding to the lowest eigenvalues, suggesting

a reasonable separation of materials in the scene.

Table 6.3: Comparison of performance on Smith

Method Time (min) Accuracy (percent)

LE - exact neighborhood 534.3 50.20

LE - approximate neighborhood 69.4 58.24
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(a) Class 1

(b) Class 2

(c) Class 3

Figure 6.16: Smith: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 4

(b) Class 5

(c) Class 6

Figure 6.17: Smith: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 7

(b) Class 8

(c) Class 9

Figure 6.18: Smith: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 10

(b) Class 11

(c) Class 12

Figure 6.19: Smith: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 13

(b) Class 14

(c) Class 15

Figure 6.20: Smith: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 16

(b) Class 17

(c) Class 18

Figure 6.21: Smith: left - exact neighborhoods, right - approximate neighborhoods
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(a) Class 19

(b) Class 20

(c) Class 21

Figure 6.22: Smith: left - exact neighborhoods, right - approximate neighborhoods
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Figure 6.23: Smith: selected eigenvectors
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