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Over the past several decades, the primacy of the automobile in American travel culture 

has led to rising congestion and energy consumption levels, rampant air pollution, 

sprawled urban designs, pervasiveness of sedentary behaviors and lifestyles, and 

prevalence of many health problems. Nonmotorized modes of travel such as walking 

and bicycling are sustainable alternatives to the automobile and suitable remedies to 

the adverse environmental, economic, and health effects of automobile dependency. 

As research continues to reveal the many benefits of nonmotorized travel 

modes, identification of the factors that influence people’s levels of walking and 

bicycling has become essential in developing transportation planning policies and 

urban designs that nurture these activities, and thereby promote public health. Among 

such factors are the built environment characteristics of the place of residence. 

To date, research on the impact of the built environment on nonmotorized travel 

behavior has been focused on neighborhood-level factors. Nonetheless, people do not 



  

stay within their neighborhoods; they live and work at a regional scale and travel to 

different places and distances each day to access various destinations. Little is known, 

however, about the impact of built environment factors at larger scales including those 

representing the overall built environment of metropolitan areas on nonmotorized 

travel behavior and health status of residents. 

Guided by the principles of the ecological model of behavior, this dissertation 

systematically tests the impact of the built environment at hierarchical spatial scales on 

nonmotorized travel behavior and health outcomes. Advanced statistical techniques 

have been employed to develop integrated models allowing comprehensive 

examination of the complex interrelationships between the built environment, 

nonmotorized travel, and health. 

Through inclusion of built environment factors from larger spatial scales, this 

research sheds light on the overlooked impact of the macro-level built environment on 

nonmotorized travel and health.  

The findings indicate that built environment factors at various spatial scales—

including the metropolitan area—can influence nonmotorized travel behavior and 

health outcomes of residents. Thus, to promote walking and bicycling and public 

health, more effective policies are those that include multilevel built environment and 

land use interventions and consider the overall physical form of urban areas. 
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Chapter 1: Introduction 

1.1 Background and Research Motivations 

Statistics and research findings pertaining to the state of travel within the U.S. reveal that 

automobile remains the dominant mode of transportation in the U.S., whereas walking and 

bicycling remain the modes less traveled. These trends have adverse economic, environmental, 

and health consequences. For instance, in 2011, traffic congestion caused Americans to purchase 

an additional 2.9 billion gallons of fuel, while at the same time, approximately 65% of the U.S. 

population was either overweight or obese and 32% lived with high blood pressure (Milne and 

Melin 2014). Other statistics show that transportation activities accounted for 27% of total U.S. 

greenhouse gas emissions in 2015 (EPA 2017).  On the other hand, research continues to reveal 

health, social, and economic benefits of nonmotorized travel—both for individuals and the 

communities. Walking and bicycling are deemed sustainable and cost-effective modes of travel 

and have been suggested to lower risks of many health problems including obesity as well as 

chronic diseases, mental disorders, and mortality (Andersen et al. 2000; Lindström 2008; Buehler 

et al. 2011; Nehme et al. 2016; Liao et al. 2016; Tajalli and Hajbabaie 2017). 

Considering the numerous benefits of walking and bicycling, promoting these modes of 

travel has become the focus of many transportation and planning professionals and agencies in 

recent years. As a result, land use policies that encourage moving away from a sedentary lifestyle 

(in which automobile is the dominant mode of travel) and moving toward more sustainable travel 

patterns and a more viable lifestyle (in which nonmotorized travel modes are utilized more often) 

are gaining increased importance. 

Identification and gaining a deeper understanding of the factors that influence the extent of 

walking and bicycling activities are key elements in planning sustainable and livable communities, 



 

2 

 

particularly within urban areas. Due to their denser form of development, urbanized areas (e.g., 

metropolitan areas) have been suggested to be the most promising areas in the U.S. to promote 

nonmotorized travel modes (Delmelle et al. 2012). Similar arguments regarding the role of urban 

development form on walking and bicycling activities highlight one of the factors that can 

potentially influence nonmotorized travel behavior—the built environment. 

Empirical evidence within the travel behavior literature shows that built environment 

attributes of the place of residence may influence walking and bicycling of individuals. However, 

previous research on the determinants of nonmotorized travel can be faulted on a number of 

grounds.  

The chief point that can be raised against prior work is the inattention to the potential role 

of the built environment at larger spatial scales (e.g., the metropolitan area) on nonmotorized travel 

behavior. It has been assertively argued by past studies that walking and bicycling trips stay within 

the neighborhood due to the shorter trip lengths compared with the length of trips made by other 

travel modes. Consequently, research on nonmotorized travel behavior and its link with the built 

environment has heavily concentrated on the micro-level (i.e., residence or destination 

neighborhood) built environment factors thus far, while the potential impact of the built 

environment at larger spatial scales on nonmotorized trips has been largely overlooked. 

Nonetheless, the complex interrelation between built environment factors and travel choices gives 

rise to untested hypotheses regarding the potential impact of the built environment at larger spatial 

scales (i.e., macro-level built environment) on nonmotorized travel behavior. 

Theoretically, the macro-level built environment (i.e., built environment characteristics of 

the region or the metropolitan area) can be influential in nonmotorized travel behavior. For 

instance, built environment characteristics that reduce reliance on regional automobile trips and 
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support regional transit trips may lead to generation of more transit-related nonmotorized trips by 

residents. The ecological model of behavior provides further theoretical support for the argument 

that in probing the relationship between the built environment and nonmotorized travel behavior, 

a more comprehensive framework is one that considers multiple levels of the built environment 

influence including that of the macro level (e.g., metropolitan area level). 

Additionally, literature hints on the potential role of the built environment at larger spatial 

scales in nonmotorized travel behavior. For example, it has been postulated that the built 

environment—at many geographic scales including the region—can affect the propensity of being 

physically active (e.g., engage in walking or bicycling activities) (National Research Council 

2005). Also, macro-level built environment features such as low-density, sprawling suburban 

developments have been suggested to discourage nonmotorized travel choices such as walking 

(Leslie et al. 2007; Cao et al. 2009). A more recent study argued that because people spend most 

of their daily hours away from their home, the implicit assumption that walking distance from 

place of residence is the operative scale at which the built environment influences physical activity 

(e.g., nonmotorized travel) is just that: “an assumption” (Ewing et al. 2014).  

On the other hand, literature also suggests that macro-level built environment attributes as 

well as two related concepts—mobility and regional accessibility—play important roles in shaping 

individuals’ motorized travel behavior. Thus, it can be hypothesized that as the overall physical 

form of the metropolitan area1 impacts household’s mode choice and travel outcomes, it can also 

be influential in nonmotorized travel behavior of residents.  

 
1 The overall physical form of the metropolitan area can be represented by factors such as population and employment 

densities, regional accessibility, extent of decentralization and urban sprawl, transportation network design 

characteristics, and the extent of mixed-use development within the metropolitan area. 
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These effects can be exerted either directly through providing access to additional 

pedestrian- and bicyclist-friendly destinations, or indirectly through affecting the motorized travel 

behavior. For instance, less driving by household members (i.e., fewer VMT) can mean more 

walking or bicycling by them, and vice versa. Both the direct and indirect effects of the physical 

form of the metropolitan area on nonmotorized travel behavior can be a result of increased 

accessibility and mobility throughout the entire metropolitan area as well as the effects of other 

macro-level built environment characteristics that may or may not support nonmotorized travel.  

The bottom line is that as Guo and Bhat (2007) suggested: the attractiveness of a location 

(e.g., travel destination) depends not only on its immediate neighborhood but also on how it 

spatially relates to the urban area it locates in. Thus, it becomes evident from the preceding 

arguments that in investigation of the link between the built environment and nonmotorized travel 

behavior, a more comprehensive analysis is one that considers the macro-level (e.g., metropolitan 

area) built environment in addition to the micro-level (i.e., neighborhood) built environment. Such 

analysis could give a more complete picture of nonmotorized travel behavior of individuals and 

its link with the built environment attributes of their place of residence. Therefore, to 

systematically test the mechanisms behind the built environment and nonmotorized travel 

connection, it is important to sketch out a comprehensive framework that includes built 

environment characteristics at both the micro and macro spatial levels.  

By consideration of factors representing the built environment at multiple spatial levels— 

including attributes of the macro-level (i.e., metropolitan area-level) built environment—in the 

analysis of nonmotorized travel behavior, this dissertation research makes a significant step toward 

that goal and fills the gap in the body of knowledge on the role of the macro-level built environment 

in nonmotorized travel behavior.  
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Moreover, a snapshot of the state of physical activity levels and state of health within the 

U.S. indicates that physical inactivity has become a trend in the U.S. and as a result, health problem 

such as obesity are increasing in prevalence. Regular physical activity is a major contributing 

factor to human health as it leads to reduced risk of many health problems and diseases including 

obesity, diabetes, hypertension (i.e., high blood pressure), coronary heart disease, stroke and 

premature death (DHHS 2018). Despite the many health benefits of physical activity, statistics 

show that between 1998 and 2015, on average, nearly half of U.S. adults did not meet the 

recommended physical activity requirements2. This is while the average percentage of the U.S. 

population that was overweight or obese increased from 56% to approximately 70% between 1988 

and 20143. A recent report estimated the annual healthcare cost of lack of physical activity in the 

U.S. and its related adverse health outcomes be around $117 billion (DHHS 2018). 

Thus, identification of the factors that influence peoples’ physical activity levels and their 

health status is an essential step in promoting public health and lowering healthcare costs within 

the U.S. Literature suggests that the built environment is among the factors that affect health and 

physical activity—both in its general form and its transportation-related form (e.g., walking and 

bicycling). To examine the link between the built environment, physical activity and health 

outcomes, a three-level built environment hierarchy has been proposed, which includes: the micro 

level (e.g., immediate local area/neighborhood), the meso level (e.g., neighborhood/community) 

and the macro level (e.g., metropolitan or county) (King et al. 2002; Ewing et al. 2003b).  

 
2 See “Table 057. Participation in leisure-time aerobic and muscle-strengthening activities that meet the federal 2008 

Physical Activity Guidelines for Americans among adults aged 18 and over, by selected characteristics: United States, 

selected years 1998–2015”: https://www.cdc.gov/nchs/hus/contents2016.htm 

 
3 See “Table 058. Normal weight, overweight, and obesity among adults aged 20 and over, by selected characteristics: 

United States, selected years 1988–1994 through 2011–2014”: https://www.cdc.gov/nchs/hus/contents2016.htm 
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Many past studies on the role of the built environment in health behavior such as physical 

activity and health outcomes considered built environment attributes of the neighborhood or 

county. Other studies suggested that macro-level built environment attributes including the extent 

of urban sprawl have a potential to influence individuals’ health through affecting physical activity 

levels and access to healthy food (see e.g., Ewing et al. 2014). Nonetheless, due to the limited 

number of the latter studies, the role of built environment characteristics of the metropolitan area 

of residence in physical activity levels and health status of individuals remains under-examined. 

The ecological model of behavior supports the argument that in examination of the link 

between the built environment, health behavior and health status of individuals, a more 

comprehensive framework is one that considers the macro-level (e.g., metropolitan area-level) 

built environment in addition to the micro-level (e.g., neighborhood-level) and meso-level (e.g., 

county-level) built environment. This is because various spatial levels of the built environment 

may interact to influence health behavior and health outcomes. 

Thus, it can be hypothesized that the overall physical form of the urban area (i.e., the built 

environment of the metropolitan area) can be influential in residents’ health behavior such as 

physical activity levels and their health outcomes. Therefore, to systematically test the mechanisms 

that influence physical activity and health, it is important to employ a comprehensive framework 

that includes variables representing various spatial levels of the built environment including the 

micro, the meso and the macro levels. This theoretical perspective conforms to the principles of 

the ecological model and is consistent with arguments by previous research (King et al. 2002). 

The present dissertation aims toward that goal by inclusion of factors representing various 

spatial levels of the built environment—including the macro-level built environment—in the 

analysis of physical activity and health outcomes. 



 

7 

 

Additionally, the health impacts of travel-related activities such as telecommuting and 

teleshopping remain unclear.  

With respect to psychological health, telecommuting has been suggested by some 

researchers to positively affect psychological health status (see e.g, Baruch 2001; Steward 2001; 

Ganendran and Harrison 2007). Others argued that telecommuting has a potential to adversely 

affect psychological health of individuals (see e.g., Robertson et al. 2003; Henke et al. 2015). 

However, little empirical research exists to provide evidence of the effects of telecommuting on 

psychological health. Previous research also suggested that sufficient evidence has not been 

provided by existing studies to conclude about psychological health benefits of telecommuting and 

further research is needed in this area as telecommuting grows in popularity (De Croon et al. 2010).  

With respect to physical health, there have been few hints in the literature that 

telecommuting can impact physical health outcomes such as various illnesses, particularly stress-

related illnesses (Steward 2001; Lister and Harnish 2011). Nonetheless, the limited number of 

empirical studies that investigated the role of telecommuting in physical health outcomes and the 

inconsistent findings do not yield adequate evidence to conclude about the effects of 

telecommuting on physical health (see Henke et al. 2015; Tajalli and Hajbabaie 2017).  

Further, the role of teleshopping in health is currently an open field of research as there 

seems to be no empirical studies on the health impacts of teleshopping.  

The present study fills the gaps in research regarding the health impacts of telecommuting 

and teleshopping by exploring the role of these travel-related behaviors on both mental and 

physical health outcomes. 

Appendix A provides a more detailed discussion on the background information, problem 

statements, and research motivations for this dissertation. 



 

8 

 

1.2 Research Objectives 

The present dissertation consists of two parts that are linked to one another by their conceptual and 

empirical findings. This section gives a synopsis of the research undertaken and the main research 

questions to be examined in each part of the dissertation. 

The first part of the study investigates the link between nonmotorized travel behavior and 

the environment (in terms of both built and social environments). The main research questions to 

be explored in this part include: 

➢ How is nonmotorized travel behavior associated with built environment characteristics 

such as land use patterns, street network patterns, and accessibility at various spatial levels 

including the micro level (i.e., neighborhood), the meso level (i.e., county), and the macro 

level (i.e., metropolitan area)?  

➢ How is nonmotorized travel behavior associated with social environment characteristics 

such as socioeconomic, sociodemographic, and sociocultural factors at various levels of 

influence including the micro level (e.g., household or neighborhood), the meso level (i.e., 

county), and the macro level (i.e., metropolitan area)? 

➢ Does residential self-selection play a role in nonmotorized travel behavior?  

➢ Is the link between nonmotorized travel behavior and built environment factors—as 

measured in the samples analyzed—a causal one? 

To investigate the links between built and social environments and nonmotorized travel 

behavior, the research examines the connections between measures of nonmotorized travel and 

measures representing the environment at three spatial levels: the neighborhood (i.e., TAZ or 

census block group), the county, and the metropolitan area. Two analysis levels are considered: 

the household and the individual.  
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At the household level, the research tests the hypothesis that built and social environment 

attributes beyond those of the neighborhood are associated with the number of nonmotorized trips 

generated from households. Measures of regional accessibility are also included in the analysis as 

important large-scale built environment factors, which can potentially impact nonmotorized trips.  

At the individual level, the analysis examines how multiple levels of built and social 

environments influence nonmotorized mode share. By inclusion of county-level and metropolitan 

area-level environmental factors, the study aims to test the role of the built and social environments 

at larger geographical scales on walking and bicycling of residents. The effect of residential self-

selection is controlled for in the individual-level analysis and causality of the links between 

environmental factors and individual-level nonmotorized mode share is examined. 

The second part of the study explores the interrelationships between the environment, 

human health and health behavior such as nonmotorized (i.e., active) travel and other forms of 

physical activity. The main research questions to be examined in this part of the research are: 

➢ How are built environment characteristics such as land use patterns, street network 

patterns, and accessibility at various spatial levels including the meso level (i.e., county), 

and the macro level (i.e., metropolitan area) related to health behavior such as physical 

activity levels and health outcomes for individuals and communities? 

➢ How are social environment characteristics such as socioeconomic, sociodemographic, and 

sociocultural factors at various levels of influence including the micro level (e.g., 

household or neighborhood), the meso level (i.e., county), and the macro level (i.e., 

metropolitan area) related to health behavior such as physical activity levels and health 

outcomes for individuals and communities? 
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➢ How are the telecommuting and teleshopping behaviors of residents of a community 

related to health behavior such as physical activity levels and health outcomes for 

individuals and communities?  

➢ Does reverse causality exist between health outcomes and health behavior such as 

nonmotorized travel behavior and other forms of physical activity? 

To probe the link between built and social environments, health outcomes, and physical 

activity (including active travel), the interrelationships between health outcomes, factors 

representing the environment (i.e., in terms of built and social environment), active travel and other 

forms of physical activity are examined at two analysis levels: the individual and the community 

(i.e., county). As indicated previously, two spatial levels are considered in the analyses: the county 

and the metropolitan area. 

At the individual level, the present research investigates how multiple levels of built and 

social environments influence levels of physical activity performed by individuals and their health 

status. By inclusion of county-level and metropolitan area-level environmental characteristics in 

the statistical models developed, the study seeks to test the role of built as well as social 

environment at larger geographical scales on physical activity levels and health status of residents. 

The existence of reverse causality and endogeneity bias are also controlled for in the individual-

level health outcome analysis. 

At the community level, the analysis tests the hypothesis that indicators of community 

health status are linked with built and social environment attributes at both county and 

metropolitan levels. The issue of reverse causality between active travel and health is addressed 

by examination of the reciprocal effects between the extent of active travel within the community 

and the health outcomes measured for the community.  
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1.3 Research Contributions 

Compared to the existing literature, this research is unique in several ways. Each part of the present 

dissertation offers its own contributions. These contributions lie in the following aspects: 

1.3.1 Research Contributions in Analysis of Nonmotorized Travel Behavior 

The first part of this dissertation contributes to the body of knowledge on the link between 

environmental factors and nonmotorized travel behavior in terms of theoretical framework, 

methodology, empirical findings, and policy debates. 

In terms of theoretical contribution, this study derives a theoretical framework of the link 

between built environment and nonmotorized travel behavior from the ecological model of 

behavior. This theoretical framework allows empirical testing of mechanisms by which 

environmental factors at multiple levels of influence impact nonmotorized travel behavior. Over 

the last two decades, a considerable body of research on the link between nonmotorized travel 

behavior and built environment has focused on micro-level (neighborhood-level) built 

environment characteristics. Studies that tested the impact of built environment characteristics at 

larger spatial scales—such as that of meso-level (i.e., county-level) and macro-level (metropolitan 

area) built environment attributes—on nonmotorized travel are relatively scant.  

The theoretical framework proposed in this study provides a comprehensive framework for 

simultaneous examination of the role of environmental attributes (in terms of built and social 

environments) at various hierarchical levels of influence including the micro level, the meso level, 

and the macro level on nonmotorized travel behavior. This research is one of the first studies to 

examine the role of built environment factors in walking and bicycling trips within an integrated 

theoretical framework, which incorporates measures of macro-level (i.e., metropolitan area-level) 
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built and social environments in addition to those of the meso level (i.e., county level) and the 

micro level (i.e., neighborhood level).  

The comprehensive research framework proposed in this study advances the body of 

knowledge on nonmotorized travel behavior by providing insights into the role of the overall 

structure of metropolitan areas in walking and bicycling trips of residents. Macro-level built 

environment has rarely been tested for its link with walking and bicycling trips. Accordingly, the 

role of macro-level built environment in nonmotorized trips is of focal interest in this study. 

Therefore, the main contribution of the first part of the dissertation with regards to theoretical 

framework is taking into account the position of the neighborhood with respect to the county and 

the metropolitan area it lies within when analyzing nonmotorized travel behavior.  

Further, the theoretical framework of the nonmotorized travel behavior models at the 

individual level developed in this study accounts for residential self-selection bias (i.e., 

endogeneity bias). Literature suggests that the link between the built environment and activities 

such as walking and bicycling should be tested using more comprehensive conceptual models, 

which account for endogeneity bias (Handy 2005). Therefore, this study contributes to the body of 

knowledge on the role of self-selection in nonmotorized travel behavior by using a comprehensive 

framework that allows for addressing the self-selection bias, while incorporating various 

hierarchical levels (i.e., micro, meso, macro) of built as well as social environment influence. 

In terms of the methodology, this study contributes by examining the causality of the link 

between nonmotorized travel behavior and the built environment as well as by addressing spatial 

autocorrelation using solid methodologies. As it will be discussed in Chapter 2, evidence 

supporting the causality of the link between the built environment and nonmotorized travel is 

currently sparse due to only few studies controlling for self-selection bias or using reliable 
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methodologies when testing for causality. Further, the clustered structure of the data in many past 

studies subjected the analysis to spatial autocorrelation issues, which remained unaddressed. 

To simultaneously examine the effects of the built environment—at multiple spatial 

levels—on nonmotorized travel behavior within an ecological model framework and while 

addressing self-selection and spatial autocorrelation issues, this study employs multilevel 

Structural Equation Modeling (multilevel SEM) techniques. Employment of the multilevel SEM 

techniques in this research provides several methodological advantages. First, the advanced 

multilevel modeling capabilities offered by these techniques conform to the multilevel framework 

of ecological models. Second, the multilevel techniques allow for controlling for any potential 

spatial autocorrelation issue in the analysis, which may exist due to the clustered and hierarchical 

nature of the data. Further, the structural equation modeling techniques embedded in multilevel 

SEMs allow for addressing residential self-selection bias and examining the causal links between 

nonmotorized travel behavior and the built environment.  

Multilevel SEM techniques have rarely been applied in a transportation context despite 

their many capabilities for being used in travel behavior research. The employment of multilevel 

SEM techniques in travel behavior research has been proposed in the past (Van Acker et al. 2010). 

Aside from only two empirical studies (Chung et al. 2004; Kim et al. 2004), however, no other 

studies were found by the author that used multilevel SEMs in analysis of travel behavior. By 

employment of such techniques and testing for causality and spatial autocorrelation, this research 

contributes to a more accurate modeling of the complex link between the built environment and 

nonmotorized travel behavior and obtaining more methodologically sound results. 

With regards to empirical contributions, this study systematically examines the link 

between nonmotorized travel behavior and built as well as social environment, at three 
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geographical levels—the census block group (i.e., neighborhood), the county, and the metropolitan 

area—and at two levels of analysis: the individual and the household level. Also, given the lack of 

empirical research on the association between nonmotorized travel behavior and built environment 

factors at larger spatial scales, this study contributes to the body of empirical knowledge on the 

link between the two by including measures of metropolitan area-level (macro-level) and county-

level (i.e., meso-level) built environment in the analysis, in addition to those of the micro-level 

(neighborhood-level) built environment.  

To the best of the author’s knowledge, this is one of the first studies attempting to advance 

the body of knowledge on the topic of nonmotorized travel behavior by including measures of 

built environment from multiple spatial scales (i.e., micro, meso, macro levels) to capture the 

effects of built environment at multiple hierarchical levels on nonmotorized travel, simultaneously.  

By offering analyses that incorporate multiple levels of influence, this dissertation gives 

more meaningful attention to built environment contingencies and provides more comprehensive 

insights into the role of the built environment in nonmotorized travel behavior. The knowledge 

developed from this research can be integrated with past research that examined the impact of 

micro-level (i.e., neighborhood-level) built environment on walking and bicycling to provide a 

deeper and more comprehensive understanding of how the built environment influences people’s 

nonmotorized travel patterns.  

Moreover, the treatment of built and social environments in this research is extensive, 

integrating variables representing various dimensions of the built environment (the five Ds of the 

built environment) as well as those representing the social environment at multiple levels of 

geography. This is to accommodate past arguments, which suggest that using rigorous measures 

of the built environment is an essential step in understanding how the built environment shapes 
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behavior (Ryan and Frank 2009). Using objectively measured, individually observable measures 

(vs. subjective measures or composite indices) has been suggested to facilitate the interpretation 

of results for policy and interventions (Moudon et al. 2005; Lee and Moudon 2006).  

By including objective and independent measures of the built and social environments, this 

study contributes to facilitated interpretation of empirical findings and drawing more effective 

policy strategies that can promote nonmotorized travel. Findings add to the existing empirical 

knowledge by providing insights into the effects of the overall structure and context of the urban 

areas (i.e., macro-level built and social environment) in residents’ nonmotorized travel behavior. 

In addition, as modeling of bicycling travel behavior remains an under-studied area of 

research, the present study contributes to the body of knowledge on the role of built and social 

environments in bicycling by developing bicycling-specific models to analyze bicycling behavior.  

In terms of contributions to policy and practice, the study findings contribute to policy 

debates concerning the role of the built environment in nonmotorized travel behavior. The focus 

of this research is on the influence of the macro-level environment; therefore, findings provide 

insights into policy interventions that can promote walking and bicycling through modifications 

to the built (and social environment) within metropolitan areas.  

The implications of these findings can assist transportation/urban planners and policy 

decision-makers to identify the most promising interventions and develop more effective policies 

through which more sustainable and more environmentally friendly modes of travel are promoted. 

In practice, more effective operational models can be developed by incorporating the approach 

proposed in this study to capture walking and bicycling patterns and demand. 
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1.3.2 Research Contributions in Analysis of Health Outcomes 

The second part of this dissertation contributes to the body of knowledge on the complex 

interrelationships between the built environment, health outcomes, and health behavior such as 

walking and bicycling as well as other forms of physical activity. The contributions are in terms 

of theoretical framework, methodology, empirical findings and policy implications. 

With respect to theoretical contributions, this research derives a theoretical framework 

from the principles of the ecological model of behavior as well as past research that emphasizes 

the role of multiple levels of the environment in health outcomes (see e.g., Joshu et al. 2008) to 

disentangle the links between physical activity (e.g., active travel), built and social environments 

and health. Research to date, which examined the role of built environment factors in physical 

activity and health, has been concentrated on the micro-level (i.e., neighborhood) and meso-level 

(i.e., county-level) built environment factors. Nonetheless, literature suggests that the structural 

characteristics of an urban area can potentially influence health outcomes. For instance, sprawling 

metropolitan areas have been postulated to impact health of residents through restricting access to 

healthy food as well as producing long commutes, which can cut physical activity times short 

(Ewing et al. 2014).  

The role of macro-level (i.e., urban area and metropolitan-level) built environment factors 

in health, however, has not been fully examined in previous research. This study contributes to the 

body of knowledge on the link between built environment and health by considering the role of 

macro-level built environment in human health. Using an ecological framework as the theoretical 

foundation, this research examines the health impacts of various dimensions of the built 

environment at hierarchical spatial levels. More specifically, the analysis explores the hypothesis 
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that built (and social) environment at various levels affect individual and community health 

outcomes as well as individuals’ physical activity levels.  

With respect to methodological contributions, this analysis employs sophisticated 

statistical techniques, which have rarely been applied in a transportation context, to test the 

causality of the links between physical activity (e.g., active travel), health outcomes and the built 

environment. The complex interrelationships between physical activity, health, and the built 

environment can produce interdependencies due to reverse causality as well as the nested nature 

of the data. Reverse causality may subject the analysis to the endogeneity bias but is often 

neglected in studies that probe the links between physical activity, health, and the built 

environment. Endogeneity bias can be accounted for by using advanced statistical methods such 

as structural equation modeling and instrumental variable techniques. A nested data structure can 

subject the analysis to spatial autocorrelation issues and can be accounted for by using multilevel 

(i.e., hierarchical) modeling.  

To concurrently control for endogeneity bias and spatial autocorrelation, multilevel 

modeling can be combined with structural equation modeling in the form of multilevel Structural 

Equation Modeling (multilevel SEM) techniques, which allow for a more thorough examination 

of the links between physical activity, built environment factors, and health outcomes. Studies 

employing multilevel SEM techniques in a transportation context remain rarely found. To the 

author’s knowledge, multilevel SEM techniques have not been previously applied to empirical 

data in probing the health impacts of physical activity and built environment factors. The present 

dissertation contributes to this research field by using multilevel SEMs to control for endogeneity 

bias and to test the causality of the links between physical activity and health. 
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In terms of empirical contributions, this research systematically examines the link between 

measures of travel behavior (including active travel), objectively measured built environment 

factors, and health outcomes. The analyses are conducted within an ecological model framework 

using two levels as the unit of analysis: the individual level and the community (i.e., county) level. 

This analysis framework offers a comprehensive approach that has never been applied to empirical 

data before and is one of the contributions of this study. The findings provide a more 

comprehensive picture of the interrelationships between travel behavior, physical activity, the built 

environment, and health outcomes and add to the existing empirical knowledge on these topics. 

Moreover, the study contributes to the body of knowledge on the link between travel 

behavior and health by including measures of travel-related behaviors such as telecommuting and 

teleshopping in the analysis. Research in the past postulated that telecommuting influences 

psychological health indicators such as level of job satisfaction and social isolation. However, 

there have been only a handful of empirical studies to investigate the link between telecommuting 

and psychological health with little consistency in the findings.  

In addition, the effect of telecommuting on physical health has not been thoroughly 

investigated in the past and studies on that topic are scarce. Further, to the best of author’s 

knowledge, no empirical studies exist regarding the health impacts of teleshopping. Considering 

these gaps in research, this study incorporates measures of travel-related behavior including 

telecommuting behavior and teleshopping behavior in addition to other travel behavior measures 

(e.g., nonmotorized travel) in the analysis framework to capture the effects of these travel behavior 

patterns on physical and psychological health of individuals and communities.  

With regards to policy and practice, the study findings contribute to the current policy 

debates on the role of the built environment in physical activity and health. Findings provide 
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insights into the most promising policy interventions that can promote public health through 

changing the built and/or social environments within urban areas. The findings can be used by 

transportation/urban planning and public health decision-makers to develop more effective 

policies that maximize health benefits for individuals and communities. 

1.4 Organization of the Rest of the Document 

 

In the following chapter (Chapter 2), a comprehensive literature review relative to nonmotorized 

travel behavior research and health research is presented in terms of both theoretical foundations 

and empirical research findings. Chapter 3 discusses the research design of this dissertation with 

respect to the conceptual framework, hypotheses to be tested, datasets utilized, and analytical 

techniques employed. Chapters 4 and 5 comprise the analytical chapters. In Chapter 4, 

nonmotorized travel behavior is analyzed providing model specifications, model results and 

discussion of the findings. Chapter 5 provides the analysis of health outcomes including model 

specifications, model results, and discussion of the findings. Conclusions, policy implications, and 

future research directions are discussed at the end of each analytical chapter (Chapters 4 and 5). 

Lastly, Chapter 6 provides the closing remarks. Additionally, ten appendices are provided: 

Appendix A complements Chapter 1. It provides a more detailed discussion on background 

and research motivations for this dissertation. Appendix B complements Chapter 2 and provides a 

more comprehensive literature review on nonmotorized travel behavior, the built environment, and 

health and the connections between them. Appendix C complements Chapter 4 and presents a 

Baltimore-Washington D.C. case study of the link between nonmotorized travel and the built 

environment. Appendices D through H supplement analyses presented in Chapter 4. Appendix I 

complements work in Chapter 5 and presents an analysis of the county-level health outcomes. 

Finally, Appendix J provides a summary of the findings of this dissertation. 
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Chapter 2: Literature Review 
 

This dissertation aims at developing an integrated travel behavior—built environment—health 

framework to model nonmotorized trips and health outcomes. Thus, an extensive literature review 

was conducted to synthesize the findings of previous research and to identify gaps in the existing 

knowledge on the relationships between nonmotorized travel behavior, the built environment, and 

human health. In the interest of brevity, this chapter only discusses the takeaways revealed from 

the literature review along with gaps in existing research. A comprehensive review of the literature, 

which provides the basis for the discussion presented in this chapter, can be found in Appendix B.  

Studies on nonmotorized travel behavior and its relationship with the built environment 

and health outcomes are abundant. An important note confirmed by the review of this literature is 

the multidisciplinary nature of the research concerning walking and bicycling activities. Any 

research on these modes of travel inevitably involves perspectives of professionals from many 

scientific disciplines. Consequently, factors influencing walking and bicycling travel, and the 

impact of these activities on health outcomes are prolific areas of research in several fields such as 

transportation planning, urban design, preventive medicine, psychology and public health.  

The transportation/urban planning fields of research view walking and bicycling as 

alternatives to automobile travel and potential remedies to the problems associated with 

automobile-oriented modern urban societies. In the past two decades, the transportation/urban 

planning literature has been trending on concepts such as smart growth, new urbanism, transit-

oriented development, complete streets, livable communities, and sustainable transportation—all 

of which advocate for urban planning and designs that promote walking and bicycling as 

competing modes to the automobile. Walking and bicycling are often referred to as nonmotorized 

travel in the transportation planning and urban design literature.  
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On the other hand, the health benefits of walking and bicycling—to both the individual and 

the society—are what prompts health professionals to be interested in these modes of travel. In the 

health fields, health outcomes are considered to depend, in part, on health behavior such as physical 

activity, while walking and bicycling are considered important forms of physical activity. Thus, 

the health literature often refers to walking and bicycling as physical activity or active travel. 

Health benefits of active travel are well established in the health-related literature. For instance, 

research has provided ample evidence that active travel—particularly in the form of walking—is 

an essential element in maintaining a healthy weight while providing many other health benefits 

(see e.g., Ewing et al. 2003b; Frank et al. 2004; and Schauder and Foley 2015). 

Further, literature provides evidence that several factors influence nonmotorized travel 

behavior. These factors can be categorized into three major groups:  

1) socioeconomic and sociodemographic factors (e.g., age, race, gender, car ownership); 

2) built environment factors (e.g., the five Ds of the built environment—namely, density, 

diversity, destination accessibility, design, and distance to transit—as suggested by past 

research such as Cervero and Kockelman (1997) and Ewing and Cervero (2010); and 

3) psychological factors (e.g., attitudes, self-selection, social and cultural norms). 

Also, various factors that play an important role in health outcomes of individuals emerge 

from the literature. These include:  

1) physical activity (e.g., active travel such as walking or bicycling);  

2) built environment factors (e.g., the five Ds);  

3) social environment factors (e.g., crime levels); and  

4) travel and travel-related behavior such as telecommuting. 
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Particularly, components of the environment are revealed to have a potential to impact 

nonmotorized travel behavior and human health. Professionals in the public health, transportation 

engineering, and urban planning communities are increasingly learning about the mechanisms by 

which attributes of the built, natural, and social environments influence physical and mental health 

(Frank et al. 2016). Among these components, the built environment is shown to play a key role 

in walking and bicycling as well as in health outcomes. 

The literature review also shows that researchers in each of the afore-mentioned disciplines 

have utilized various theories and methodologies to explain various travel behavior outcomes. 

Through these efforts, the body of knowledge on walking and bicycling activities and their 

relationship with built environment characteristics and health outcomes has advanced 

substantially.  

However, due to different theoretical and methodological perspectives from each 

discipline, ambiguity in empirical evidence still exists and many aspects of the complex 

interrelationships between walking and bicycling travel behavior, the built environment, and 

human health remain to be explored. 

This chapter summarizes the key takeaway notes from the comprehensive review of the 

literature on the factors affecting walking and bicycling and health as well as the role that built and 

social environments play in walking and bicycling travel and health outcomes (see Appendix B). 

In addition, the main gaps in existing research are identified and opportunities for further research, 

which guided the present study in its endeavor to fill some of the gaps in research, are discussed. 

Walking and bicycling are interchangeably referred to as nonmotorized travel, active 

travel, and physical activity in the following sections—depending on the context within which 

they are being discussed (i.e., the travel behavior context or the health context). 
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2.1 Nonmotorized Travel Behavior: The Role of Sociodemographic and Socioeconomic Factors 

 

Empirical studies on nonmotorized travel behavior provide evidence that socioeconomic and 

sociodemographic characteristics including age, gender, race, and income influence walking and 

bicycling. Past findings are summarized below to provide a synopsis of the current state of 

empirical knowledge on the role of socioeconomic/demographic factors in nonmotorized travel.             

Age: Many studies on nonmotorized travel provide evidence for the impact of age on 

walking and bicycling. Overall, it seems that those who make nonmotorized trips tend to be 

younger (Hess et al. 1999; Pucher et al. 1999; Ross 2000; Handy and Clifton 2001; Troped et al. 

2001; Zhang 2004; Targa and Clifton 2005; Zacharias 2005; Clifton and Dill 2005; Handy et al. 

2006; Dill and Voros 2007; Boarnet et al. 2008; Merom et al. 2010; Siu et al. 2012; Ma and Dill 

2015). Therefore, age appears to have a negative correlation with nonmotorized travel based on 

current findings. This means that being older is often associated with fewer nonmotorized trips. 

Gender: Past findings suggest that gender influences nonmotorized travel behavior. 

Specifically, those who are male seem to engage in walking and bicycling at higher rates (Pucher 

et al. 1999; Ross 2000; Troped et al. 2001; Cervero and Duncan 2003; Rodríguez and Joo 2004; 

Stinson and Bhat 2004; Targa and Clifton 2005; Plaut 2005; Moudon et al. 2005; Dill and Voros 

2007; Gatersleben and Appleton 2007; Merom et al. 2010; McDonald et al. 2011; Mitra and 

Buliung 2012; Ma and Dill 2015). Thus, based on the existing literature, higher levels of 

nonmotorized trip-making are generally associated with being male. 

Education: Existing findings indicate that higher education is associated with increased 

nonmotorized travel as many studies found higher education to be positively correlated with 

walking and bicycling (Ross 2000; Troped et al. 2001; Ewing et al. 2003b; Targa and Clifton 2005; 

Plaut 2005; Agrawal and Schimek 2007; Siu et al. 2012; Nehme et al. 2016; Wasfi et al. 2016).  



 

24 

 

Income: The effect of higher income levels on nonmotorized travel has been generally 

found to be negative in past studies, suggesting that higher income correlates with lower levels of 

nonmotorized travel (Cervero and Radisch 1996; Cervero and Kockelman 1997; Handy and 

Clifton 2001; Ewing et al. 2004; Schwanen and Mokhtarian 2005; Plaut 2005; Bento et al. 2005; 

Agrawal and Schimek 2007; Boarnet et al. 2008; Schneider 2015). However, the findings on 

income are not universal and vary based on the context or trip purpose (Cervero and Duncan 2003; 

Moudon et al. 2005; Clifton and Dill 2005; Zacharias 2005; Agrawal and Schimek 2007; Merom 

et al. 2010). Some suggest that higher income levels are associated with more recreational 

nonmotorized travel but fewer nonmotorized utilitarian trips (Dill and Voros 2007; Marcus 2008). 

Also, safety concerns have been presumed to be related to lower levels of nonmotorized travel in 

low-income neighborhoods (Cervero and Duncan 2003). Considering the inconsistent findings, 

further research may be needed into the role of income in nonmotorized travel behavior. 

Race: Race seems to have a significant association with walking and bicycling with more 

studies suggesting that non-Whites are more likely to make nonmotorized trips (Hess et al. 1999; 

Cervero and Duncan 2003; Scuderi 2005; Yarlagadda and Srinivasan 2008; Pucher et al. 2011).  

Car Ownership and Possessing a Driver’s License: Having a car and/or a driver’s license 

is almost always negatively associated with walking and bicycling in the past studies (Cervero 

1996; Cervero and Radisch 1996; Kockelman 1997; Kitamura et al. 1997; Cervero and Kockelman 

1997; Dieleman et al. 2002; Bagely and Mokhtarian 2002; Cervero and Duncan 2003; Dill and 

Carr 2003; Zhang 2004; Ewing et al. 2004; Rodríguez and Joo 2004; Stinson and Bhat 2004; Targa 

and Clifton 2005; Plaut 2005; Næss 2005; Cao et al. 2010; McDonald et al. 2011; Mitra and 

Buliung 2012). This implies that owning a car and the ability to drive it may adversely impact 

walking and bicycling activities. 
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2.2 Nonmotorized Travel Behavior: The Role of Environmental Factors 

2.2.1 Theories Applied 

The theoretical foundations for nonmotorized (i.e., active) travel behavior come from a variety of 

disciplines that explain human behavior such as the economics and the psychology fields. The 

chief theories that have been used in travel behavior research as well as health behavior (i.e., 

physical activity and active travel) research are: the utility-maximization demand theory 

(McFadden 1974), which originated in the field of economics and behavioral theories including 

the theory of planned behavior (Ajzen 1991); the social cognitive theory (Bandura 1986); and the 

ecological model of behavior, which come from the field of psychology.  

A comprehensive review of literature (see Appendix B) reveals that the ecological model 

of behavior provides the most integrated framework for modeling human behavior such as active 

travel. This is because an ecological model framework incorporates all the components of the 

theory of planned behavior (i.e., attitudes, subjective norms, and perceived behavioral controls), 

and those of the social cognitive theory (i.e., social environment factors) and adds to them the 

influence of built environment factors on behavior.  

In terms of the built environment, the ecological model can include factors representing 

hierarchical spatial levels such as the micro level (e.g., neighborhood), the meso level (e.g., 

county), and the macro levels (e.g., metropolitan area or city). 

2.2.2 Methodologies 

The literature review shows that various methodologies have been used by researchers in 

examination of the link between nonmotorized travel behavior and the built environment and this 

research often faces challenges in term of confounding factors. A few of the methodological issues 

generic to this research include: i) complex and interrelated factors that may be spatially clustered 
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(Lee and Moudon 2004); ii) limited data availability on nonmotorized travel, especially for 

bicycling; iii) inconsistencies in built environment and land use data; iv) inconsistencies in defining 

the neighborhood as the most common spatial unit of analysis; v) inattention to spatial 

autocorrelation; vi) difficulties in controlling for self-selection bias and establishing causal links. 

In terms of methodological perspectives, this literature review unveils new promising 

avenues for research on the connection between nonmotorized travel behavior and the environment 

in terms of the built and social environments. The advanced theoretical perspectives on human 

behavior offered by the field of psychology can be combined with the sophisticated 

methodological perspectives offered by the fields of public health and econometrics to develop 

comprehensive conceptual frameworks that can guide further empirical examination of the link 

between nonmotorized travel behavior and the environment. 

Because it includes all the components of the other psychological theories and models, the 

ecological model of behavior provides a good vehicle for an integrated framework. The multilevel 

framework of the ecological model of behavior, which allows integration of variables representing 

multiple influence levels on behavior as well as various spatial levels (e.g., micro, meso, and macro 

levels), can be analyzed using hierarchical modeling techniques to statistically deal with multilevel 

effects and spatial clustering dependencies (i.e., spatial autocorrelation). Employment of 

hierarchical models has been suggested in past research to help in statistical treatment of spatial 

autocorrelation (Moudon et al. 2005).  

Further, in dealing with residential self-selection issues, statistical methods such as 

Structural Equations Modeling (SEM) techniques can be utilized in testing the link between 

nonmotorized travel and the built environment. SEM techniques have been suggested to offer a 

conceptual improvement over the single-equation regression methodology (Cao et al. 2009). 
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2.2.3 Empirical Findings 

2.2.3.1 Nonmotorized Travel Behavior and the Built Environment 

This literature review reveals that many studies that examined factors influencing health behavior 

such as active travel included built environment factors in their conceptual frameworks. The focus 

has been on empirically testing the effects of micro-level (neighborhood-level) built environment 

attributes. However, several shortcomings in this research including lack of comprehensive 

analysis, methodological weaknesses, data limitations, widely dissimilar approaches to measuring 

neighborhood-level built environment attributes, using land-use and travel data at different levels 

of aggregation, and testing different travel outcomes have resulted in mixed, and in many cases, 

insignificant evidence (Badoe and Miller 2000; Targa and Clifton 2005). 

Nonetheless, five key built environment dimensions that have a potential to influence 

active travel behavior can be derived from the evidence provided by past research. These include 

neighborhood-level (i.e., micro-level): density, diversity, distance to destinations, design, and 

distance to transit. Literature refers to these dimensions as the five Ds of the built environment (see 

e.g., Cervero and Kockelman 1997; Ewing and Cervero 2010). Previous findings on the role of 

these factors in active travel can be summarized as follows: 

Density: Density has been operationalized in various studies using various methods 

yielding the use of different measures of density such as population density, employment density, 

residential density, housing density, and activity density (see e.g., Frank and Pivo 1994; Kitamura 

et al. 1997; Badoe and Miller 2000; Rodríguez and Joo 2004; Boer et al. 2007; Weinberger and 

Sweet 2012). Regardless of the density measure used, existing literature suggests that the effects 

of neighborhood-level density on nonmotorized travel behavior remain unclear. This statement is 

consistent with previous literature arguing that compared to other Ds of the built environment, 
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density is of less importance and its effects sometimes are captured by the other Ds (Ewing and 

Cervero 2010). 

Diversity (Land Use Mix): It is evident from the literature review that previous findings on 

the association between the level of neighborhood diversity and walking/bicycling behavior are 

inconsistent. Many studies found that presence of or proximity to mixed-use and/or commercial 

establishments positively affected nonmotorized travel (see e.g., Frank and Pivo 1994; Cervero 

1996; Kitamura et al. 1997; Shriver 1997; Cervero and Kockelman 1997; Handy and Clifton 2001; 

Giles-Corti and Donovan 2002; Cervero and Duncan 2003; Limanond and Niemeier 2004; Scuderi 

2005; Plaut 2005; Moudon et al. 2005; Cao et al. 2006 ; Pikora et al. 2006; Kerr et al. 2007; Lin 

and Chang 2010). However, others reported mixed, negative or non-existent correlations between 

local mixed land use or commercial establishments and nonmotorized travel (see e.g., Kitamura et 

al. 1997; Hess et al. 1999; Zhang 2004; Ewing et al. 2003a; Moudon et al. 2005; Forsyth et al. 

2008; Rodríguez et al. 2009; Mitra and Buliung 2012; Wang 2013; Ma and Dill 2015).  

The overall ambiguity in the empirical evidence and the inconsistency in findings seems to 

be due to: i) differences in methods of quantifying mixed land use and usage of different factors 

(e.g., ratio of employment to population, ratio of public and commercial areas to residential areas, 

presence of retail and mixed-use developments including parks, size or number of retail 

establishments, and distance to the nearest store or park); ii) differences in trip purpose (e.g., 

shopping vs. entertainment, work vs. non-work); and iii) differences in the travel behavior outcome 

being examined (e.g., trip frequency vs. mode choice). The inconclusive findings suggest that the 

effects of mixed-use development on walking and bicycling may merit further investigation.  

Destination Accessibility: Empirical findings are more consistent in terms of the role of 

destination accessibility in walking and bicycling. Past research findings suggest that local 
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destination accessibility influences nonmotorized travel behavior. More specifically, limited 

access to local destinations in terms of distance (i.e., greater distances to destinations) has been 

reported in many studies to negatively impact nonmotorized travel (see e.g., Handy 1996a, 1996b; 

Kitamura et al. 1997; Handy and Clifton 2001; Greenwald and Boarnet 2001; Giles-Corti and 

Donovan 2002; Cervero and Duncan 2003; Limanond and Niemeier 2004; Stinson and Bhat 2004; 

National Research Council 2005; Handy 2005; Hoehner et al. 2005; Shay et al. 2006; Lee and 

Moudon 2006; Cao et al. 2006; Goddard et al. 2006; Handy and Xing 2011).  

Thus, with respect to nonmotorized travel behavior, local destination accessibility—

typically represented by distance to destinations—is a key attribute of the neighborhood built 

environment. This is in line with Ewing and Cervero (2010) who concluded in their meta-analysis 

of past studies that destination accessibility had a strong connection with nonmotorized travel (i.e., 

walking in that study). 

          Design: The impact of various variables representing characteristics of neighborhood design 

as well as transportation infrastructure on nonmotorized travel has been investigated in the past.  

To measure grid-like street patterns, past studies often measured block size and/or 

intersection density. Findings of these studies suggest that the impact of block size on 

nonmotorized travel behavior is somewhat ambiguous with researchers finding either no 

significant correlation between nonmotorized travel and block size or a significantly negative one 

(Cervero and Duncan 2003; Ewing et al. 2003a; Moudon et al. 2005; Boer et al. 2007; Forsyth et 

al. 2008; and Lin and Chang 2010). The inconsistent findings have been suggested to result from 

the potentially mixed effects of block sizes and street connectivity. On the one hand, smaller block 

sizes may increase access to destinations, and thereby encourage nonmotorized trips. On the other 
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hand, smaller block sizes may also create more conflict points between vehicles and pedestrians 

(or bicyclists), which can discourage walking or bicycling (van Loon and Frank 2011).  

More consistency can be seen in empirical findings on the effect of street connectivity on 

nonmotorized travel behavior as studies consistently found that higher extents of street 

connectivity were correlated with higher levels of nonmotorized travel (Zhang 2004; Targa and 

Clifton 2005; Dill and Voros 2007). Previous research also suggests that presence and/or higher 

density of intersections (a proxy for street connectivity) seems to positively affect nonmotorized 

travel (Cervero and Kockelman 1996; Boer et al. 2007; Kerr et al. 2007; Wang 2013).  

Based on previous studies, density of major roads does not appear to have an impact on the 

walking/bicycling travel (Mitra and Buliung 2012; Wang 2013). 

Research findings have also shown that vehicular traffic as well as vehicular network and 

facilities influence nonmotorized travel behavior. Traffic volumes and speeds have been found to 

adversely affect walking (Appleyard 1981; Gehl 1987; Cao et al. 2006; Nehme et al. 2016). 

However, no significant association has been found between traffic volumes and bicycling 

(Moudon et al. 2005). Further, higher parking costs seem to be associated with increased 

nonmotorized travel rates (Cervero and Kockelman 1997; Handy and Xing 2011). 

In addition, presence and extent of pedestrian and bicyclist infrastructure and amenities 

play a key role in nonmotorized travel behavior. Presence of sidewalks and extent of their 

completeness and connectivity have been shown to be positively associated with nonmotorized 

trips (Kitamura et al. 1997; Hess et al.1999; De Bourdeaudhuij et al. 2003; Rodríguez and Joo 

2004; Fan 2007; Forsyth et al. 2008; Lin and Chang 2010). Presence of walking and bicycling 

paths has not suggested consistent correlations with nonmotorized mode choice (Rodríguez and 
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Joo 2004). Further, presence and/or density of bicycle lanes has been found to be an insignificant 

factor in predicting the likelihood of bicycling (Moudon et al. 2005; Dill and Voros 2007).  

Considering these findings, the reviewed material has proved inconclusive with respect to 

the effects of neighborhood design and transportation infrastructure on nonmotorized travel 

behavior. While there appears to be a correlation between some design and infrastructure attributes 

and nonmotorized travel, the significance and direction of such correlation varies considerably 

among empirical studies. This conclusion is somewhat similar to that of Rodríguez and Joo (2004) 

and Handy (2005). The former study stated “relationships between nonmotorized travel and street 

and road network attributes other than connectivity are less clear. These attributes include sidewalk 

continuity, sidewalk width, presence of cycling and walking paths, and the local topography, 

among others.” (Rodríguez and Joo 2004). The latter study performed a comprehensive review of 

literature and concluded that due to various approaches and inconsistencies in measuring design, 

design-related variables were largely insignificant in studies reviewed, and that the design 

dimension of the built environment requires further attention in future studies (Handy 2005). 

Distance to Transit: Literature suggests that distance to transit is the most important 

measure of access to transit services influencing nonmotorized travel. Findings of the studies that 

examined the effects of access and distance to transit facilities on walking and bicycling behavior 

suggest that shorter distances to local transit is correlated with higher rates of nonmotorized travel. 

However, further research is needed to investigate these findings as it seems that the effects of 

access to transit (in terms of distance) on walking and bicycling have not been fully explored in 

the past. Overall, it is concluded that although empirical research provides strong evidence that the 

five Ds of the built environment at the neighborhood level are correlated with walking and 

bicycling, for some of these dimensions, the direction and magnitudes of correlations are less clear 
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than the others. More specifically, the effects of density and diversity (i.e., mixed land use) are 

less consistent than the effects of distance to destinations and distance to transit services, which 

seem to negatively impact walking and bicycling. Findings of existing studies also indicate that 

the effects of some attributes of neighborhood design such as street and sidewalk connectivity on 

walking and bicycling trips are more consistent than the other micro-level design attributes.  

2.2.3.2 Nonmotorized Travel Behavior and the Social Environment  

Literature suggests that the social environment can influence nonmotorized travel behavior 

through concepts such as social and cultural norms as well as perceptions of crime.  

Social and Cultural Norms: Social norms are values that a group or the society holds, which 

influence behavior by individual members of that group or society. In other words, social norms 

are the perceived pressure that the individual feels in performing or not performing a certain 

behavior; thus, social norms have the power to regulate an individual’s behavior (Heinen et al. 

2010; Van Acker et al. 2010).  

With respect to nonmotorized travel behavior, social and cultural norms can influence 

walking and bicycling activities through concepts such as observational learning and social stigma. 

The former encourages individuals to perform an activity that they frequently observe others 

perform. The latter may discourage them to engage in an activity due to the feeling of shame. 

Many studies found a link between walking or bicycling and observing others perform the 

same activities (see e.g., Dill and Voros 2007; Ma and Dill 2015; Nehme et al. 2016). On the other 

hand, concerns about public prestige in societies with cultural norms that associate utilitarian 

walking/bicycling with social stigma may discourage these activities. Thus, the social norms 

within a society can create a culture for travel behavior including for walking and bicycling travel. 

For individuals, this travel culture may also be influenced by the structural characteristics of the 
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geographical area of current or prior residence. Past research found that living in areas with a high 

population of immigrants was linked with higher levels of walking to school among children 

(McDonald 2005), whereas having a parent who was born in the U.S. was associated with a lower 

likelihood of walking/bicycling to school by children (McMillan 2003). These findings imply that 

the geographical context (i.e., metropolitan area, country) of residence can influence cultural 

norms, and thereby can play a role in nonmotorized travel behavior of individuals. The importance 

of geographical context (e.g., region, metropolitan area, country) in walking and bicycling 

activities has been highlighted in literature, with many researchers suggesting that nonmotorized 

travel behavior may vary depending on the geographical context (see e.g., De Bourdeaudhuij et al. 

2003; Targa and Clifton 2005; Heinen et al. 2010; Pucher et al. 2010; Buehler et al. 2011). Also, 

several studies investigated nonmotorized travel behavior among citizens of different countries 

(see e.g., Buehler et al. 2011) and discussed cross-cultural differences in levels of these activities. 

Thus, the social norms and travel culture held by a community as well as the geographical context 

which contains the community can play key roles in nonmotorized travel behavior of residents. 

Crime: Perceptions of crime as well as actual crime rates have been found by some to be 

negatively associated with nonmotorized travel (see e.g., Ross 2000; Joh et al. 2009; Nehme et al. 

2016). However, others did not find any relation between nonmotorized travel such as walking 

and perceived safety from crime (De Bourdeaudhuij et al. 2003). In addition, perceptions of crime 

have been found to have a stronger influence on behavior than objective crime measures (Nehme 

et al. 2016). Overall, the empirical evidence seems to be inconclusive with regards to the 

relationship between levels of nonmotorized travel and crime rates within the area of residence as 

well as perceptions of crime held by residents. Thus, further research may be needed to clarify the 

role of crime-related factors in nonmotorized travel behavior. 
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2.2.4 Nonmotorized Travel Behavior and Environmental Factors: Gaps and 

Limitations in Research 

This literature review unveils a few gaps and limitation in the existing research on the link between 

nonmotorized travel behavior and the environment—particularly the built environment. These 

include limitations in methodologies used as well as a few empirical research gaps. 

Methodologies Used: As previously mentioned, the framework of the ecological model of 

behavior, which allows integration of variables representing multiple levels of influences on 

behavior as well as various spatial levels, is a suitable framework for analysis of nonmotorized 

travel behavior. This multilevel framework can be analyzed using hierarchical modeling 

techniques to statistically deal with any potential spatial autocorrelation issues. Although few 

studies reviewed (for this literature review) employed hierarchical modeling methods (see e.g., 

Hovell et al. 1992; Craig et al. 2002; Ewing et al. 2003b, 2008; Ewing et al. 2014), spatial 

autocorrelation remains largely overlooked in examination of nonmotorized travel behavior. As 

environmental factors are known to covary spatially, the nature of spatial autocorrelation and the 

utility of hierarchical modeling techniques need to be further examined (Lee and Moudon 2004). 

Further, in dealing with confounding factors such as the residential self-selection, methodologies 

such as Structural Equations Modeling (SEM) techniques, which literature deems as a conceptual 

improvement over the single-equation methodologies (Cao et al. 2009), can be used. 

Hence, advanced statistical tools such as the SEM techniques that allow controlling 

for self-selection bias can be applied to a comprehensive research framework that includes 

objective built environment factors from multiple spatial levels in examining the causal links 

between nonmotorized travel behavior and the built environment. Specifically, the 

employment of multilevel SEM techniques seems to provide methodological improvements 
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in nonmotorized travel behavior research. Despite capabilities in dealing with endogeneity bias 

(i.e., self-selection bias in this context) as well as spatial autocorrelation issues, multilevel SEM 

techniques are surprisingly underutilized in travel research behavior. 

Multiple Spatial Levels of the Built Environment: The ecological model of behavior 

assumes the possibility that multiple levels of the built environment influence behavior. These 

levels can include the micro level (i.e., the neighborhood), as well as the meso level and the macro 

level (i.e., geographical scales that are larger than the neighborhood). However, a notable 

knowledge gap revealed from the literature review is the inattention of research efforts to the 

effects of various levels of geography on nonmotorized travel behavior. To date, almost all the 

studies that examined the association between nonmotorized travel behavior and the built 

environment focused on the micro-level (i.e., neighborhood-level) built environment factors, and 

did not include built environment attributes from the other levels of geographical aggregation.  

Past literature draws attention to the issue of geographical scales in examining the impact 

of land use and the built environment in travel behavior and suggests that future studies should 

compare land use and built environment factors at various levels of geography (Boarnet and 

Srmiento 1998). Moreover, some uncertainties exist within the literature about the appropriateness 

of the geographical scale of current studies of nonmotorized travel behavior. For instance, Mitra 

and Buliung (2012) suggested that future research into the built environment’s role in 

nonmotorized travel should be conducted at different levels of geographical aggregation. Also, 

National Research Council (2005) suggested that stratification of the effects of the built 

environment on physical activity such as walking and bicycling should be considered in future 

studies as differences in contextual factors (such as subpopulation and urban settings) may cause 

variations in the relationship between these activities and the built environment. Another study 
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recommended examination of the role of regional-level attributes on physical activity (Handy 

2005) such as walking and bicycling, which has been ignored so far in research. 

Considering all the above, it can be inferred that nonmotorized travel behavior can vary 

based on factors representing various levels of geography (i.e., neighborhood vs. metropolitan 

area). The influence of the built environment beyond the neighborhood level on nonmotorized 

travel behavior is yet to be determined. In particular, macro-level built environment factors have 

not previously been tested for that purpose. However, as discussed previously, there are many 

reasons based on the literature as to why testing meso-level and macro-level (i.e., regional and 

metropolitan area level) built environment factors for their potential role in nonmotorized travel 

seems a plausible argument. The simultaneous inclusion of various spatial levels of the built 

environment may shed light on the influence exerted by factors at each level. 

Therefore, investigating the effects of the built environment at different spatial levels 

including the neighborhood (micro level), the county/region (meso level), and the 

metropolitan area (macro level) on nonmotorized travel behavior is a research idea that fits 

the ecological model framework but has not been previously explored.  

Micro-level Built Environment: Several attributes of the neighborhood (i.e., micro-level) 

built environment have been tested in previous research. The relationship between these attributes 

and nonmotorized travel behavior varies according to the context and type of travel behavior being 

examined such as trip frequency, mode choice, and trip purpose (Rodríguez and Joo 2004). From 

the literature, it appears that better street connectivity within the neighborhood as well as shorter 

distances to local destinations and transit facilities are correlated with increased nonmotorized 

travel. However, evidence on the effects of other neighborhood-level built environment factors 

(e.g., density, mixed land use, density of roads, traffic volumes and bicycle lanes) on nonmotorized 
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travel is either inconsistent or slim. In addition, micro-level built environment factors have rarely 

been considered in a model that also includes meso and/or macro-level built environment factors.  

Thus, additional research is required to clarify the role of micro-level density, 

diversity, and design dimensions of the built environment in nonmotorized travel behavior. 

Moreover, additional analysis of the relationship between the micro-level built environment 

and nonmotorized travel behavior—especially within a framework that includes built 

environment factors from other spatial levels (i.e., meso and macro)—can strengthen the 

existing knowledge by further clarifying the effects of each spatial level of the built 

environment on walking and bicycling activities. 

Macro-level Built Environment: It is noteworthy that a disproportionate number of the 

studies reviewed were conducted within a neighborhood context and included only micro-level 

built environment variables in their analysis of nonmotorized travel behavior. The existing 

literature almost entirely disregards any potential effects of macro-level built environment on 

walking and bicycling. For instance, variables describing the overall structure of the metropolitan 

area (i.e., the regional structure dimension) have not been considered in the analysis of 

nonmotorized trips. Perhaps the reason for this is that in the past, researchers considered the 

regional structure dimension one that closely related to VMT with a much less sensitivity to 

walking and bicycling (Fan 2007). Only few researchers suggested that macro-level built 

environment characteristics such as regional accessibility and urban sprawl have a potential to 

affect walking and bicycling travel by promoting sedentary behavior and increasing automobile 

use (see e.g., King et al. 2002; National Research Council 2005; Plantinga and Bernell 2007). 

Nonetheless, empirical studies that considered the role of macro-level built environment in 

nonmotorized travel behavior are scarce. Findings of these studies indicated that: i) regional 
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(zipcode level) densities did not impact walking (Greenwald and Boarnet 2001); ii) metropolitan 

area-level compactness promoted walking (Ewing et al. 2003b, 2008); and iii) regional-level 

walkability influenced walking mode share (Weinberger and Sweet 2012). With regards to 

bicycling, past empirical findings showed that city-level bicycle infrastructure was associated with 

higher rates of bicycle commuting (Dill and Carr 2003). However, the following limitations exist 

in the case of each of these studies, which can be addressed by further research: 

Greenwald and Boarnet (2001) examined the impact of regional-level land use on walking 

behavior. The authors defined regional level land use factors as zipcode-level population density 

and retail employment density. They concluded that regional densities did not have any effects on 

walking behavior4. However, their analysis of the regional effects had two limitations: 1) besides 

population and retail employment, no other measure of the built environment was included in the 

regional model; and 2) regional-level density variables were included in a separate model and not 

in combination with neighborhood-level built environment variables. Nonetheless, the authors 

suggested that the effects of regional density attributes and other regional-level built environment 

measures should be examined in future analyses to allow inferences about the influence of the built 

environment beyond the neighborhood level. 

To examine minutes of walking among other outcomes, Ewing et al. (2003b, 2008) 

developed county-level and metropolitan area-level sprawl indices by combining several built 

environment variables capturing the levels of residential density, land use diversity, centralization, 

and street accessibility. The two studies found that the extent of county-level and metropolitan 

area-level sprawl impacted walking. Based on these findings, the studies suggested that county-

 
4 The authors of this study did not consider the effects of the regional-level density variables as statistically significant 

because the coefficients of these variables were insignificant at the 5% level of significance. However, the effects of 

the zipcode-level population density were significant at the 10% significance level in the models (Z scores 1.945 and 

1.934 in Table 5, page 38 of Greenwald and Boarnet 2001). 
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level as well as metropolitan area-level compactness promoted walking. Because both studies also 

examined the effects of county-level and metropolitan area-level sprawl indices on many health 

outcomes, the limitations of these studies will be discussed under Section 2.55. 

Dill and Carr (2003) analyzed city-level data from 42 U.S. cities to examine the 

relationship between a city’s extent of bicycle infrastructure and the percentage of workers in the 

city that commuted by bicycle. The study found that having a higher level of bicycle infrastructure 

within the city was positively correlated with higher percentages of commuting by bicycle. 

However, except for a bicycle infrastructure variable and one potential transit availability variable 

(which according to the paper was excluded from models due to being insignificant), this study 

did not include any other built environment variables in the analysis. 

Leslie et al. (2007) divided a mega-metro region in Australia into five various sub-regions 

to examine walking behavior of residents of each sub-region. The study found significant sub-

regional differences in walking. However, one limitation of the study was the coarse-

categorization of sub-regions into five broad areas, which probably masked walking behavior due 

to substantial variability in the built environment attributes of different sub-regions. The authors 

concluded that “variations within sub-regions and the mix of local area characteristics are likely 

to be more useful than categorizing sub-regional areas more broadly”. Thus, a more consistent 

spatial categorization of the study area will help in analysis of the influence of macro-level built 

environment on nonmotorized travel behavior. 

Weinberger and Sweet (2012) examined the effects of walkability at micro (TAZ) level as 

well as macro (regional) level on walking mode share. The study concluded that walkability at 

both levels influenced walking mode share. However, the only built environment factor considered 

 
5 See Subsection “2.5.3 Health and Environmental Factors: Gaps and Limitations in Research”. 
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in this study was walkability measured by Walk Score, which is a composite measure of the built 

environment inclusive of many Ds of the built environment. Although, Walk Score is a valid 

measure of the built environment (see Subsection 3.2.10), the authors of the study stated that “it is 

not comprehensive and still lacks information” (Weinberger and Sweet 2012). Therefore, Walk 

Score by itself cannot be assumed to represent all of the built environment attributes of the study 

area. To more comprehensively investigate the connection between nonmotorized travel behavior 

and the built environment, various built environment variables representing various dimensions of 

the micro- as well as macro-level built environment should be considered in the analysis. 

Considering the limited empirical research regarding the potential effects of macro-level 

built environment factors on nonmotorized travel behavior, it is fair to say that empirical 

knowledge contains a gap in this area as the role of macro-level built environment in nonmotorized 

travel has not been thoroughly examined in the past.  

Thus, it is time to move beyond the micro-level spatial scope and also consider the 

macro-level built environment in the analysis framework of walking and bicycling research. 

Such integrated framework can help researchers and policymakers determine the role of the 

overall structure of metropolitan areas in nonmotorized travel behavior of residents. 

Multiple Spatial Levels of the Social Environment: Theories of human behavior such as the 

social cognitive theory and the ecological model of behavior consider the role of the social 

environment in human behavior. The social environment factors in this context represent the 

sociocultural norms of the social circles that the individual is a member of. The ecological model 

further recognizes the influence of multiple levels of the social environment on behavior. These 

levels can include the micro-level (e.g., the household or the neighborhood), the meso-level (e.g., 

county) and the macro-level (e.g., city) social environment. 
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It should be noted, however, that the effect of the social environment may not be mutually 

exclusive from that of the built environment. Literature suggests that structural (i.e., built 

environment) effects and contagion effects (i.e., adopting a behavior due to seeing others perform 

it) can mutually reinforce each other; for example, if the built environment encourages some 

individuals to walk, others who see these walkers may also start walking (Ross 2000). 

Other researchers also argue that social norms can influence travel behavior by creating a 

travel culture, which in turn, may be influenced by the structural attributes of the urban area (Næss 

2005). The current literature posits that nonmotorized travel behavior can vary among various 

levels of geography (i.e., neighborhood vs. metropolitan area) as well as among different 

geographical contexts that may have the potential to exert “cultural” (i.e., social environmental) 

effects on travel behavior (e.g., the cultural effects of one metropolitan area vs. those of another).  

Considering the existing empirical studies, the role of social environment factors such as 

social and cultural differences—at various levels of influence—on nonmotorized travel seem to 

be under-investigated. Additionally, it is important to consider the effects of the social environment 

on nonmotorized travel behavior within a framework that also includes built environment factors. 

The ecological model of behavior provides such comprehensive framework.  

The effects of the social environment in an integrated ecological framework—which 

includes social and built environment factors at various spatial levels (e.g., the neighborhood, 

the region, and the metropolitan area)—on nonmotorized travel behavior has not been 

previously explored. Macro-level social environment (sociodemographic and socioeconomic) 

attributes as well as macro-level built environment factors can be included within an 

integrated framework as proxies for cultural and contextual effects. This will shed light on 

the differences in nonmotorized travel between various contexts and geographical levels.   
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Bicycling, the Built and the Social Environments: Literature suggests that bicycling and 

walking are distinct activities (see e.g., Porter et al. 1999; Pikora et al. 2003; Schlossberg et al. 

2006); thus, factors that affect bicycling trips may not necessarily be the same factors that affect 

walking trips. However, most empirical studies that examined nonmotorized travel behavior 

focused on walking trips only (see e.g., Hess et al.1999; McMillan 2003; Boer et al. 2007; Agrawal 

and Schimek 2007; Rodríguez et al. 2009 among many others) or conducted their analysis and 

reached their conclusions based on a general “nonmotorized” or “non-auto” dataset—which 

combined walking and bicycling, and occasionally, even transit data as one category (see e.g., 

Cervero and Radisch 1996; Cervero and Kockelman 1997; Schwanen and Mokhtarian 2005). This 

has been mainly due to data limitations on bicycling travel (Merom et al. 2010).  

Therefore, compared with walking, bicycling travel behavior seems to be under-examined. 

Although few studies exist that focused on bicycle travel only (see e.g., Moudon et al. 2005; Dill 

and Voros 2007), there have been calls in literature for further research into the correlations 

between the built and social environments and bicycling, especially with regards to bicycling 

frequency (Heinen et al. 2010). In other words, understanding the link between bicycling travel 

behavior and the built and/or social environment can benefit from further research. Thus, a 

comprehensive study that focuses on the impact of built and social environments on 

bicycling-specific travel behavior merits undertaking.   

2.3 Nonmotorized Travel Behavior: The Role of Psychological Factors and the Issue of 

Causality 

Literature provides evidence that psychological factors such as attitudes, perceptions, and 

preferences play key roles in nonmotorized travel behavior. Past findings with this respect can be 

summarized as follows: 
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Attitudes, Perceptions, and Preferences: It appears from the literature that attitudes, 

perceptions, and preferences toward daily travel as well as toward physical activity, personal 

health, and the environment have an important influence on nonmotorized travel behavior. In a 

few cases, literature suggests that the effects of these attitudinal predispositions may supersede the 

effects that built environment and land use factors exert on nonmotorized mode choices (Kitamura 

et al. 1997; Lund 2003; Cao et al. 2006). This statement is supported by the past reviews of the 

literature on the role of attitudes in physical activity (e.g., nonmotorized travel), which also 

concluded that compared with land use characteristics, attitudes may exert a stronger effect on 

nonmotorized travel (National Research Council 2005).  

Self-selection and Causality: Attitudes and preferences also influence residential location 

choices—leading to self-selection bias. That is, individuals with a preference toward nonmotorized 

modes of travel may self-select themselves into pedestrian- and bicyclist-friendly residential areas. 

Self-selection results in spuriousness, and thereby confounds the relationship between 

nonmotorized travel behavior and the built environment.  

Some researchers argue that in examining the link between the built environment and travel 

behavior or transportation-related physical activity (e.g., nonmotorized travel), residential self-

selection should be controlled for because otherwise, the analysis may produce biased results (see 

e.g., National Research Council 2005; Chen et al. 2008; Cao 2010; and van Wee and Ettema 2016).  

Further, drawing causal links between the built environment and nonmotorized travel 

behavior will not be appropriate in presence of spurious relationships due to self-selection bias. 

Therefore, if a correlation is observed between built environment attributes and nonmotorized 

travel behavior, one must ensure that the possibility of self-selection was addressed in the analysis 

prior to inferring that causal mechanisms were involved. 
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Three prominent approaches to account for self-selection bias in examining the relationship 

between travel behavior and built environment characteristics emerge from the existing literature. 

These include: 

1) structural equation modeling (SEM) techniques;  

2) instrumental variables analysis; and  

3) longitudinal research designs.  

A preference for the SEM techniques emerges from the literature due to the conceptual 

improvements that these methodologies offer over the single-equation methodology (i.e., OLS 

techniques). For instance, to investigate self-selection and causality, Cao et al. (2009) 

recommended the usage of longitudinal structural equations modeling with control groups. 

From a review of empirical self-selection studies, the above-referenced paper also 

suggested that while self-selection plays an important role in explaining the link between the built 

environment and nonmotorized travel behavior, the attributes of the built environment are still 

significantly influential in making the choice to walk or bicycle (Cao et al. 2009).  

Consistent with what Cao et al. (2009) suggested, many of the empirical studies reviewed 

for this literature review found a statistically significant influence of built environment attributes 

(either subjective or objective) on nonmotorized travel behavior, even after accounting for 

residential self-selection (see e.g., Greenwald and Boarnet 2001; Cao et al. 2006; Handy et al. 

2006; Fan 2007; Chatman 2009; Cao 2010; Aditjandra et al. 2016).  

Appendix B lists all the self-selection papers reviewed for this literature review along with 

a summary of their findings (see Table B in Appendix B). 
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2.3.1 Nonmotorized Travel and Psychological Factors: Gaps and Limitations in 

Research 

While the existing empirical evidence indicates that a correlation exists between the built 

environment and nonmotorized travel behavior, evidence supporting a causal link is currently 

sparse as few studies controlled for self-selection issues and/or demonstrated a causal link using 

reliable methodologies. 

Further, notably absent from the literature reviewed are studies that consider the causal 

links and self-selection issues in an analysis framework that includes macro-level (e.g., 

metropolitan area level) built environment characteristics to examine nonmotorized travel 

behavior. The closest to this comes a study by Greenwald and Boarnet who included zipcode-level 

density variables in their analysis of walking trips and controlled for self-selection by using 

instrumental variables (Greenwald and Boarnet 2001). 

The noninclusion of macro-level built environment characteristics in the analysis is an 

important missing piece from research examining causal links between nonmotorized travel 

behavior and the built environment. He and Zhang (2012) provides support for this argument by 

suggesting that the analysis of causal effects between the built environment and travel behavior 

can be improved by including metropolitan area-level built environment measures in the analysis.  

Also, in a context of self-selection literature review, Cao et al. (2009) stated that many past 

studies focused on micro-level (i.e., neighborhood-level) built environment characteristics and did 

not consider the regional location of the neighborhood. The authors suggested that as opposed to 

neighborhood-level built environment attributes, the regional location within which the 

neighborhood lies also has a potential to influence travel behavior—in their words “perhaps even 

more substantially, in some ways, than the former” (Cao et al. 2009).  
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Although, a subsequent study did address self-selection within a framework that included 

macro-level built environment variables, it analyzed motorized (and not nonmotorized) travel 

behavior (Nasri and Zhang 2014). Thus, questions remain regarding the complex interactions 

between micro- and macro-level built environment characteristics and residential self-selection as 

well as their relations with nonmotorized travel behavior and the causality of such relations.  

This means that research into the role of self-selection in nonmotorized travel behavior and 

the causal links involved remain tentative and can benefit from more comprehensive frameworks, 

which include built environment characteristics from micro and macro spatial levels.  

Thus, the body of empirical knowledge can be furthered on the issues of self-selection 

and causality in nonmotorized travel behavior research by using a comprehensive 

framework that controls for self-selection bias and includes various spatial levels (e.g., micro, 

meso, macro levels). 

2.4 Health: The Role of Nonmotorized Travel (i.e., Physical Activity) 

This literature review shows that the impact of walking and bicycling on health has been studied 

by many researchers in the past. Walking and bicycling are considered types of physical activity; 

thus, the phrases walking and bicycling, active travel, and physical activity are used 

interchangeably in health literature.  

The health benefits of active travel are well established in the literature. Prior research has 

provided ample evidence that physical activities such as walking and bicycling are positively 

associated with a lower risk of mortality (Andersen et al. 2000) and improved health indicators 

including BMI and obesity (see e.g., Ewing et al. 2003b; Frank et al. 2004; Smith et al. 2008; 

Schauder and Foley 2015; and Tajalli and Hajbabaie 2017).  
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2.5 Health: The Role of Environmental Factors  

2.5.1 Theories Applied and Methodologies 

Health literature suggests that much of the influence of the built environment on health is exerted 

by facilitating or constraining physical activity, especially in the form of active travel (i.e., walking 

and bicycling). Thus, the discussion regarding theories and methodologies applied in examination 

of the link between nonmotorized travel behavior and the built environment holds true here as well 

(see Section 2.2).  

With regards to theoretical foundations, the multilevel framework of the ecological model 

of behavior can be employed to model health behavior such as physical activity (e.g., active travel) 

as well as health outcomes.  

In terms of methodologies, it is noteworthy that often in health studies, the outcome 

variable of interest is dichotomous. For example, the researcher is interested in knowing whether 

(or not) the sufficient level of physical activity for health purposes was achieved, or if the subjects 

of the study have a certain health problem such as asthma.  In both situations, a no/yes survey 

response can be coded as a dichotomous 0/1 variable for statistical modeling purposes. 

Employment of binary logistic regression and binary probit regression in modeling health 

behavior and health outcomes is a common choice in the case of a dichotomized dependent 

variable (see e.g., Smith et al. 2008 and Liao et al. 2016 for binary logistic models, and Samimi 

and Mohammadian 2009; Samimi et al. 2009 as well as Langerudi et al. 2015 for binary probit 

models).  

In addition, hierarchical models can be used to model health behavior and health outcomes 

and statistically account for any potential spatial autocorrelation issues (Moudon et al. 2005; 

Marshall et al. 2014).  
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2.5.2 Empirical Findings 

2.5.2.1 Health and the Built Environment 

Many of studies reviewed here that examined factors influencing health behavior such as active 

travel (i.e., walking and bicycling) and health outcomes included characteristics of the built 

environment in their conceptual frameworks. Literature suggests that built environment attributes 

can influence human health through three key domains: 1) physical activity; 2) social interaction; 

and 3) access to healthy food (Kent and Thompson 2012). For instance, by encouraging or 

discouraging health behavior such as physical activity, the design of communities can influence 

health outcomes such as weight (see e.g., McCann and Ewing 2003).  

Empirical research shows that certain built environment characteristics such as mixed land 

use and pedestrian friendliness of streets favorably influence both physical and mental health 

outcomes, especially weight-related health outcomes such as BMI and obesity (see e.g., Lund 

2002; Leyden 2003; Frank et al. 2004; Smith et al. 2008; Timperio et al. 2010). However, research 

findings are mixed when it comes to the effects of other measures of the built environment such 

as density measures (e.g., residential density, population density) and street connectivity measures 

(e.g., block size, intersection density) on health outcomes. This is because some of these measures 

showed insignificant effects or opposite direction of effects in health models in different past 

studies (see e.g., Frank et al. 2004; Smith et al. 2008; Samimi et al. 2009; Samimi and 

Mohammadian 2009).  

Compactness (defined as a combined measure of density, land use mix, centering of jobs 

and population and street network design in this context) has also been related to lower BMIs and 

a lower probability of having health problems such as obesity, diabetes, high blood pressure and 

heart disease (Ewing et al. 2003b; Ewing et al. 2014). Increased access to open recreational spaces 
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and parks has been found to be associated with lower BMIs (Timperio et al. 2010) and more social 

interaction (Lund 2003). The latter effect can positively influence mental health.  

2.5.2.2 Health and the Social Environment 

The literature review reveals that by influencing health behavior such as active travel and physical 

activity, the social environment can impact health outcomes. Social environment factors such as 

social norms, culture, and crime rates have been found to influence levels of active travel as well 

as those of other types of physical activity.  

Evidence of the influence of factors representing social and cultural environments on active 

travel is provided by studies such as McMillan (2003), McDonald (2005), Dill and Voros (2007), 

Ma and Dill (2015), and Nehme et al. (2016); however, empirical findings on the effects of such 

factors on active travel and physical activity are not consistent, particularly with respect to crime.  

Findings reported in the Morbidity and Mortality Weekly Report (CDC 1999) documented 

a higher prevalence of physical inactivity among individuals who perceived their neighborhoods 

unsafe from crime. However, based on a review of empirical studies, Foster and Giles-Corti (2008) 

concluded that evidence on the link between crime-related safety and physical activity (inclusive 

of active travel) was inadequate and required further research.  

Nonetheless, due to the relations between physical activity and health, any effect exerted 

by sociocultural norms and crime on active travel can impact health outcomes downstream.  

2.5.3 Health and Environmental Factors: Gaps and Limitations in Research 

This literature review shows that gaps and limitations exist in research on the link between health, 

health behavior and the environment (in terms of built and social environment). These include 

limitations in methodologies used as well as a few empirical research gaps. 
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Methodologies Used: Although a few studies reviewed for this literature review employed 

hierarchical modeling techniques in modeling health outcomes (see e.g., Ewing et al. 2003b; Kelly-

Schwartz et al. 2004; Joshu et al. 2008; Marshall et al. 2014), spatial autocorrelation in this research 

remains under-studied. As environmental factors are assumed to spatially covary; the nature of 

spatial autocorrelation and the utility of hierarchical modeling techniques need further examination 

(Lee and Moudon 2004). 

Moreover, a notable methodological limitation in the existing research concerns the issue 

of endogeneity bias in the analysis of the interrelationships between health behavior, health 

outcomes and the built environment. Endogeneity occurs in a model when a few variables are 

interdependent and need to be jointly determined as dependent variables (Mahmoudi and Zhang 

2018b), or when an observed independent (i.e., explanatory) variable is a random function of other 

independent variables or is correlated with the error term (i.e., unobserved factors) (Train 2009). 

Interdependency between variables representing health behavior, health outcomes and the 

built environment can exist. For instance, the built environment has a potential to influence health 

behavior (e.g., active travel) as well as health status of individuals. Also, health behavior such as 

active travel can affect individuals’ health status. On the other hand, however, health status can 

also influence health behavior. For example, due to a better health status, healthier individuals’ 

may be more likely to engage in physical activity. Studies in the past suggested that poor health 

may act as a personal barrier to physical activity and active travel (see e.g., Lee and Moudon 2004; 

National Research Council 2005) and that reciprocal causation (i.e., reverse causality) between 

health status and health behavior such as active travel may exist (Schauder and Foley 2015).  

In addition, health status also has a potential to affect the residential choice location (and 

thereby the built environment characteristics of the place of residence). Health indicators such as 
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BMI have been found to influence the choice of residential location (Plantinga and Bernell 2007; 

Zick et al. 2013), which suggests that built environment factors may not be exogenous 

determinants of BMI. Since BMI and obesity play a role in other health outcomes, it can generally 

be assumed that bidirectional causality can run between health outcomes and the built 

environment—a possibility that further confounds the relationships between health behavior, 

health outcomes, and the built environment and the causality of the pathways between them.  

Moreover, existing literature suggests that attitudes and self-selection bias (i.e., 

endogeneity bias) play a role in health behavior such as physical activity and its travel-related 

form, active travel (see Section 2.3 and Appendix B). Thus, attitudes and self-selection can 

potentially influence health outcomes. There is consensus within the health literature that physical 

activity leads to health benefits (see e.g., Andersen et al. 2000; Frank et al. 2004; Smith et al. 2008; 

DHHS 2008, 2018; Schauder and Foley 2015). However, the influential role of the built 

environment in physical activity (e.g., active travel) is a matter of ongoing debate. In other words, 

while the causal link between adequate levels of physical activity (e.g., walking and bicycling) and 

health is well established, the other half of the equation—the causal link between the built 

environment and walking/bicycling activities (as forms of physical activity)—is not quite yet 

confirmed (National Research Council 2005).  

Thus, the complex nature of the links between health behavior, health outcomes and the 

built environment as well as the possibility of existence of other underlying unmeasurable factors 

(e.g., persistence to engage in active travel) subject the analysis to endogeneity bias. However, this 

literature review confirms that endogeneity bias is often neglected in the studies modeling the 

relationship between health behavior such as active travel and health outcomes, which may result 

in biased estimates—a point also raised by Schauder and Foley (2015). 
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The above-referenced study used instrumental variables analysis to address endogeneity in 

examination of the relations between health behavior (e.g., active travel) and health outcomes. 

Although, the study did not control for objective built environment factors, a few of the variables 

used might have potentially represented built environment characteristics. For instance, the authors 

argued that their usage of a variable indicating whether the individuals rent or own their home 

represented the density characteristic of the area of residence (Schauder and Foley 2015). Despite 

not using more rigorously measured built environment variables, this study highlighted the 

importance of addressing endogeneity bias in testing causal links between health behavior and 

health outcomes. Zick et al. (2013) also used instrumental variable analysis to adjust for the 

possible endogeneity in the analysis of residential location selection and BMI of residents. 

Another way of addressing endogeneity bias and bidirectional influences is using the SEM 

techniques. As indicated previously, SEM accounts for multiple directions of causality (National 

Research Council 2005) and can deal with multiple endogenous variables (Scheiner and Holz-Rau 

2007). Thus, the SEM techniques can be utilized to estimate bidirectional relationships between 

health outcomes and health behavior endogenous variables. The use of advanced statistical 

techniques such as SEM has been recommended in previous research to disentangle the complex 

causalities between travel behavior and health (van Wee and Ettema 2016). Further, the SEM 

techniques have been used in past studies to address endogeneity issues, although not always in a 

health context (e.g., Bagely and Mokhtarian 2002; Cao et al. 2007; Cervero and Murakami 2010).  

Almost all of the studies reviewed for this literature review are cross-sectional studies, and 

therefore, causality assumption of the statistical analyses may not hold for them. However, there 

seems to be a need to identify and examine more fully the array of causal links implied in health 

behavior and health outcome models.  
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Sophisticated statistical techniques such as instrumental variable analysis and SEM 

techniques, which allow controlling for endogeneity bias, can be applied to a comprehensive 

research framework, which includes objective built environment factors, in testing the causal 

links between built environment, health behavior such as active travel, and health outcomes.  

Multiple Spatial Levels of the Built Environment: The other note emerging from the 

literature is the multilevel nature of the influence of the built environment on health behavior and 

potentially, on health outcomes. Considering the ecological model of behavior, literature argues 

that the influence of built environment attributes on health behavior such as physical activity (e.g., 

active travel) and the related health outcomes should be considered at various spatial levels ranging 

from micro (e.g., neighborhood) to meso (e.g., county) to macro levels (e.g., metropolitan area and 

city levels). The principles of the ecological model can provide a basis for identifying high-

leverage attributes of micro, meso, and macro environments—each of which can potentially 

influence individuals’ level of physical activity (King et al. 2002), and thereby their health status. 

However, most of the health-related studies reviewed were conducted at the neighborhood 

level (i.e., micro level) or county level (i.e., meso level). Neighborhood-level built environment 

was only utilized in studies where home addresses of the individuals were available to researchers 

(see e.g., Frank et al. 2004). Nonetheless, many health studies had to stay within the county-level 

boundaries due to privacy issues concerning health data.  

While it is evident from the literature that the neighborhood (i.e., micro-level) and county-

level (i.e., meso-level) built environment play a role in individuals’ health, the role of metropolitan 

area-level (i.e., macro-level) built environment in public health has not been fully examined in the 

past and merits further research. This brings the discussion to the very related topic of the gaps in 

knowledge regarding the effects of macro-level environmental factors on human health. 
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Health and the Macro-level Built Environment: This literature review shows that there 

have been some calls in the past for future studies to examine the link between the macro-level 

built environment and health outcomes. For instance, Smith et al. (2008) suggested that macro-

level measures of walkability (e.g., land-use mix, density, and street network connectivity) should 

be studied for their association with weight-related outcomes. The study further suggested that 

pedestrian-friendly designs were likely related to macro-level as well as micro-level measures of 

walkability and future work should develop an understanding of how macro- and micro-level 

factors of walkability were interrelated (Smith et al. 2008) in influencing health outcomes.  

Further, health literature argues that macro-level built environment factors such as those of 

the metropolitan area can influence health by affecting health behavior such as active travel 

behavior as well as access to healthy food; therefore, measures of the macro-level built 

environment are needed to represent the broad settings that shape individuals’ health-related 

behavior (Ewing et al. 2014). Specifically, existing literature suggests that urban structural 

characteristics such as urban sprawl have a potential to affect physical and mental health of 

residents either directly, or indirectly by constraining physical activity (e.g., active travel), 

promoting sedentary behavior, and increasing social exclusion (Cervero and Duncan 2003; 

Khattak and Rodriguez 2005; Næss 2005; Leslie et al. 2007; Plantinga and Bernell 2007).  

To date, however, only few empirical studies included measures of macro-level built 

environment in their analysis of health outcomes. The sprawl index (i.e., a combined measure of 

residential density, land use mix and street network) at the metropolitan area level was found to be 

not associated with health indicators in two studies (Ewing et al. 2003b; Kelly-Schwartz et al. 

2004). In contrast, city-level built environment measures such as increased levels of major streets 

with bicycle lanes, number of fast food restaurants and convenience stores, and intersection density 
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were found to be associated with health outcomes in another study (Marshall et al. 2014). City-

level street connectivity was not associated with health outcomes in the latter study. 

Nonetheless, there remain a few limitations and gaps in the case of each of these studies, 

which can be addressed by further research. These gaps and limitations are discussed below. 

Ewing et al. (2003b, 2008) included macro-level built environment factors in their analysis 

of health outcomes. However, the following limitations exist in their analysis:  

1) even though these studies investigated the effects of county and metropolitan area built 

environment on health and active travel, they estimated two separate models; one for a county-

level analysis, and one for a metropolitan area-level analysis. The studies did not include built 

environment variables from each spatial area in one integrated model to capture the concurrent 

effect of the county and metropolitan area on health and active travel behavior. Literature agrees 

that the effect of each variable in explaining travel behavior is best determined if all variables are 

considered simultaneously in the framework of the same model (Badoe and Miller 2000);  

2) the composite nature of the sprawl index developed in these studies may have masked 

the individual effects of each built environment factor. This is evidenced by findings of a 

subsequent study (Kelly-Schwartz et al. 2004) that used the sprawl indices developed by Ewing et 

al. (2002) and Ewing et al. (2003b) as well as health data at the Primary Metropolitan Statistical 

Areas level to examine the effect of metropolitan sprawl on health outcomes. The study found that 

various dimensions of sprawl affected health in different and contradictory ways. The influence of 

sprawl on health was both positive and negative meaning some aspects of sprawl such as street 

connectivity showed positive association with better health, but other aspects such as density 

showed negative association with overall health ratings. The study concluded that the composite 

measure of sprawl confounded the analysis by combining the positive effect of street connectivity 
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with the negative effect of density into one index—leading to a failure in finding a significant 

relationship between the sprawl measure and measures of health (Kelly-Schwartz et al. 2004).  

Other studies also suggest that composite factors may not adequately capture the effects of 

each independent built environment attribute on the outcome variable. Humpel et al. (2002) argued 

that composite measures may obscure correlations that might have been evidenced if individual 

components were used independently. Rodríguez and Joo (2004) suggested that it is unclear if the 

attributes that really influence health behavior such as walking are measured by using composite 

factors. Further, Foster and Giles-Corti (2008) stated that “composite variable lack specificity”.  

In addition, having composite factors poses the question of weighing the component 

variables. As Ewing et al. (2014) asked “should the factors be weighted equally, or should one or 

another be given more weight than the others?” That study gave all the component factors of the 

composite sprawl index equal weights in the overall index; however, any analysis conducted using 

composite indices may produce inaccurate results if differential weights should have been used 

instead of equal weights. Several other studies have also discussed the generality and challenges 

of practical policy interpretations of composite factors (e.g., Lee and Moudon 2006; Fan 2007).  

Therefore, inferring conclusions and making policy decisions regarding a specific built 

environment attribute is difficult if a composite index, which combines all dimensions of the built 

environment, is used. To gain a better understanding of the effects of various metropolitan-level 

built environment factors on health, they should be included in the analysis as independent factors;  

3) the sprawl index did not include many factors that may potentially influence active travel 

and health outcomes (such as existence of parks and fast food restaurants); and  

4) the effects of metropolitan area built environment characteristics on asthma and 

psychological health indicators was not examined in these studies. 
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Joshu et al. (2008) assessed the environmental correlates of obesity at both the micro and 

macro spatial levels—using a sample of adults in the U.S. Important limitations of this study are:  

1) usage of perceived as opposed to objective neighborhood built environment measures; 

2) inclusion of only one city-level measure (level of urbanization);  

3) noninclusion of food-related built environment factors; and  

4) consideration of only one health outcome (obesity). 

Marshall et al. (2014) also conducted their analysis at both neighborhood and city levels. 

Study limitations in that research include: 

1) it focused on street design-related built environment variables in the model and did not 

control for other important dimensions of city-level built environment such as population and 

employment densities, transit accessibility and destination accessibility;  

2) except for the household income, no other city-level socioeconomic factor was included 

in the models; and  

3) travel mode choice-related (e.g., neighborhood- or city-level nonmotorized travel mode 

share) variables were not included in the model. 

Braun and Malizia (2015) developed a composite downtown vibrancy index for 48 U.S. 

cities to examine the association of this index with health outcomes. That study has limitations:  

1) a composite index was used, which as previously mentioned, does not allow the effects 

of individual built environment factors to be assessed separately; and  

2) the geographic scales for the vibrancy and health outcome variables were inconsistent. 

As the authors indicated, vibrancy was measured in this study for downtown areas, whereas the 

health outcome variables were measured for the county that contained the downtown area; this 

inconsistency might have weakened the correlations. 
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Thus, the health impacts (in terms of both physical and psychological health) of 

various macro-level (i.e., metropolitan area level) built environment characteristics have not 

been thoroughly investigated in the past and additional research can be conducted in this 

area.  

Health and the Macro-level Social Environment: The literature review reveals that 

consideration of how the social environment influences health outcomes—particularly with 

respect to the macro-level measures—has been very limited in past research. The few studies that 

included macro-level (e.g., metropolitan area-level) measures in their framework to examine 

health outcomes did not take into account the fact that metropolitan areas differ in their cultural 

context. Studies that did consider some cultural measures in their analysis did so in a neighborhood 

(i.e., micro-level) context, and did not take into account the metropolitan area (macro-level) 

cultural factors.  

An example of the former studies is Marshall et al. (2014) who included built environment 

variables and an income variable at the city-level in their models but did not include variables 

representing the sociocultural characteristics (e.g., percentage of immigrants) of the different cities 

under study. For the latter studies, Mitra and builing (2012) can serve as an example whose 

“walking density” measure was defined at the micro level and their study did not include a macro-

level sociocultural measure in the analysis of active travel (which is a type of physical activity, 

and thereby can influence health outcomes).  

Further, as the influence of the social and built environments on health behavior—and 

consequently, on health outcomes—are considered interwoven (see e.g., Joshu et al. 2008), 

literature calls for additional research on the effects of both micro- and macro-level built 
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environment factors and their interrelationship with social environment features to influence health 

outcomes such as BMI (Smith et al. 2008). 

Moreover, macro-level crime-related factors have not been considered in the analysis of 

health outcomes in the past as many studies examining the effects of crime on health were 

conducted at the neighborhood level (see e.g., CDC 1999). Also, literature suggests that additional 

research is needed regarding the influence of crime on health behavior such as physical activity as 

empirical findings in this area are inconsistent (see e.g., Foster and Giles-Corti 2008). Since 

physical activity can influence health outcomes, it can be concluded that the effects of crime on 

health outcomes are under-studied and remain unclear.  

Therefore, probing the effects of the social environment in an integrated research 

framework that includes both social and built environment factors at various levels of 

geography on health outcomes and physical activity require further examination.  

Macro-level attributes (e.g., sociocultural, socioeconomic, and crime factors) can be 

included in the analysis as proxies for cultural and contextual effects to shed light on the role 

of the macro-level social environment in health status of residents.  

2.6 Health: The Role of Telecommuting 

 

Research in the past suggests that telecommuting provides a number of benefits such as improving 

productivity, conserving energy, protecting the environment from harmful emissions, and 

enhancing family values by allowing employees work from their homes (see e.g., Balaker 2005; 

Lister and Harnish 2011; Khan 2015). These effects can have health implications.  

Nonetheless, this review of the existing literature on the effect of telecommuting on health 

reveals that studies examining this topic are limited in number. In addition, they are mostly focused 

on the health effects of telecommuting in the context of psychological and mental health.  
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2.6.1 Research Theories and Empirical Findings 

2.6.1.1 Psychological Health and Telecommuting 

Past research suggests that telecommuting may have various psychological health benefits 

including lower levels of occupational stress, better job performance, improved job satisfaction, 

and community improvements (see e.g., Baruch 2001; Steward 2001; Robertson et al. 2003; 

Ganendran and Harrison 2007). However, literature also highlights the potential negative aspects 

of telecommuting, which can also have psychological implications, including longer work hours, 

social isolation and increased work-related stress (see e.g., Baruch 2001; Robertson et al. 2003; 

Henke et al. 2015).  

This literature review reveals that empirical research findings on the link between 

telecommuting and psychological health are inconsistent. Other studies also suggest that sufficient 

evidence has not been provided by existing studies to conclude about psychological health benefits 

of telecommuting such as job satisfaction (De Croon et al. 2010). 

2.6.1.2 Physical Health and Telecommuting  

The psychological health of an individual is not separate from her/his physical health. Therefore, 

it is logical to hypothesize that the factors that affect a person’s psychological health can also affect 

her/his physical health.  

For instance, commute-related stress (a psychological health factor) may lead to increased 

levels of stress hormones (adrenaline and cortisol) (see e.g., Evans et al. 2002; Evans and Wener 

2006). If commuting occurs chronically, the elevated levels of these hormones may cause physical 

health problems over time.  

Nonetheless, the role of telecommuting in physical health has not been thoroughly 

examined in the past. Only two studies investigated the role of telecommuting on physical health 
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outcomes, and they yielded different findings. Telecommuting was found to potentially increase 

the risk for obesity in one study (Henke et al. 2015). However, the other study found that 

telecommuting was not associated with indicators of physical health such as obesity, blood 

pressure and diabetes (Tajalli and Hajbabaie 2017).  

2.6.2 Health and Telecommuting: Gaps and Limitations in Research 

Many research gaps and limitations exist in terms of the link between telecommuting and health. 

Little is known about the role of telecommuting in psychological health and empirical findings on 

this topic are inconclusive. Further, very little empirical knowledge exists regarding the role of 

telecommuting in physical health.  

The only two studies that examined the effects of telecommuting on physical health 

outcomes produced inconsistent results. More specifically, one of these studies concluded that 

telecommuting may increase the risk of obesity (Henke et al. 2015), whereas the other found that 

telecommuting was not associated with indicators of physical health including obesity, blood 

pressure and diabetes (Tajalli and Hajbabaie 2017).  

Moreover, the two referenced studies have several limitations. For instance, neither study 

considered the effects of built environment factors in their analysis framework; Henke et al. (2015) 

included only a dummy variable for the region of work location, whereas Tajalli and Hajbabaie 

(2017) did not include any built environment variables.  

Past research calls for further examination of the role of telecommuting in health (see e.g., 

Baruch 2001; De Croon et al. 2010; Henke et al. 2015), which seems a good idea considering the 

inconsistencies in findings and gaps in empirical knowledge on this topic. 
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A related topic is the role of teleshopping in health. The present review of literature reveals 

that to date, there are no empirical studies on health impacts of teleshopping and research in this 

area is almost silent.  

This leaves the question of “how does telecommuting affect health?”—to some 

degree—unanswered, and the question of “how does teleshopping affect health?” just 

unanswered! Answering these questions require further research, the findings of which, can 

shed light on the role of telecommuting and teleshopping in health status. 

2.7 Chapter Conclusions 

 

This review of literature on nonmotorized travel behavior (i.e., walking and bicycling behavior), 

the health impact of walking and bicycling, and the role of the built environment in these activities 

as well as in health yielded interesting information and provided insights into the theoretical bases 

as well as empirical research findings on these topics.  

By identifying several gaps in existing research, the literature review also unveiled new 

promising avenues for research in probing the links between nonmotorized travel behavior, the 

built environment and human health. The identified gaps in existing knowledge are addressed in 

the present dissertation as discussed in the preceding sections within this chapter. 

A comprehensive review of the literature on the topics of nonmotorized travel behavior, 

the built environment, and health and the interrelationships between these three can be found in 

Appendix B. The elaborated literature review presented in Appendix B provides the foundation 

for the discussions in this chapter. 
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Chapter 3: Research Design 

As discussed in previous chapters, interest in nonmotorized travel behavior stems from the health 

benefits of walking and bicycling activities for both the individual who is engaging in these 

activities, and the community as a whole. The main goals of conducting research on nonmotorized 

travel are: i) to identify the factors that affect people’s decision to walk or ride a bicycle; and ii) to 

determine the extent of the effects of such factors. Transportation and urban planning agencies, 

engineers, and policymakers can use the knowledge gained from such research in designing more 

sustainable communities and infrastructure as well as developing and implementing more effective 

policies to promote the health of individuals and the livability of communities.  

Based on these ideas, the goal of this study is to understand how and to what degree the 

overall physical form of the metropolitan area (in addition to that of the neighborhood of residence) 

influences residents’ nonmotorized travel behavior, their health status and the overall health of the 

community. A research framework for investigating the relationships between nonmotorized travel 

behavior, the built and social environments, and health is developed—which takes into account 

the potential role of environmental factors (in terms of built and social environments) representing 

the region and the metropolitan area of residence. This chapter discusses the design of this 

research, the proposed conceptual framework, the datasets used for the empirical analyses as well 

as the analytical techniques utilized to conduct the research. 

3.1 Conceptual Framework 

The complexity of human activity and behavior—particularly active travel behavior—calls for a 

multidisciplinary approach that combines theoretical and methodological perspectives from all 

related fields including transportation, public health, and psychology. It is evident from the 
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discussion in Subsection 2.2.1 that the ecological model of behavior—a framework borrowed from 

the field of psychology—provides the most integrated and comprehensive framework to 

conceptualize health behavior such as nonmotorized (i.e., active) travel behavior. The framework 

of the ecological model of behavior allows for conceptualization of multiple interacting levels of 

influence on nonmotorized travel behavior. These levels can include: intrapersonal (e.g., genetic 

factors and attitudes), interpersonal (e.g., social environment factors and sociocultural norms), 

organizational, community (e.g., built environment factors), and policy levels. Any influence 

exerted by any of these levels on nonmotorized travel behavior can be assumed to interact across 

the other levels of influence. In addition, a few concepts such as the social environment (e.g., 

sociocultural factors) as well as the built environment (i.e., the D factors) cut across these multiple 

levels of influence and may be applied to more than one level (Sallis et al. 2008).  

Research frameworks that are developed based on the ecological model, therefore, demand 

incorporation of multilevel-approach analysis methodologies and efforts including data collection 

from multiple levels of influence, development of measures representing these multiple levels, 

integration of data from various fields of research, and employment of more sophisticated 

statistical techniques that can handle the complexity of such synthesized analysis.  

Past research provides some suggestions regarding the application of the ecological model 

of behavior with regards to health behavior and travel behavior research. In particular, public 

health research has been increasingly adopting the framework of the ecological model in 

determining the factors that influence health-related behavior such as nonmotorized (i.e., active) 

travel behavior and levels of physical activity as well as other health-related outcomes.  

The adoption of the ecological model framework can be emulated in transportation 

planning and engineering fields as it provides a rich theoretical framework to understand multilevel 
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influences on behavior, which can serve to enhance transportation-related research (Lee and 

Moudon 2004). In addition, multiple spatial and cultural settings can be considered to achieve 

adequate variation in environmental characteristics to examine their relationship with behavior 

(Trost et al. 2002) such as nonmotorized travel behavior. Further, a conceptual model of travel 

behavior proposed by Van Acker et al. (2010) considers travel behavior as the outcome of a 

decision hierarchy based on three levels of “opportunities and constraints” including: 1) the 

individual level; 2) the social level; and 3) the spatial level. 

Based on the arguments above, multiple levels of influence should include environmental 

influence levels—in terms of social and built environments—in the analysis of behavior. 

Therefore, drawing from previous research and behavioral theories, the present research adopts an 

ecological model framework to propose a conceptual framework for understanding how various 

built and social environment factors from multiple levels of influence may influence nonmotorized 

travel behavior and health outcomes. The factors included in the conceptual framework are derived 

from the existing body of literature on nonmotorized travel behavior and public health. As a result, 

this study consists of two parts, which are linked to one another by their conceptual framework 

and empirical findings. Figure 1 illustrates the conceptual framework that links the two parts. 

The first part (Tier 1) of the study examines the role of built and social environment factors 

at multiple hierarchical levels of influence including the micro level, the meso level, and the macro 

level in nonmotorized travel behavior. Several environmental attributes are tested for their 

association with nonmotorized travel behavior at both the household and individual levels. 

Additionally, the role of self-selection and the causality of the correlations observed are tested. 

The analyses presented in Tier 1 use data from the metropolitan areas in two different parts of the 

U.S.: 1) the state of Florida; and 2) the state of Maryland plus District of Columbia. 
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                 Effect considered in the study                                                             Tier 1: Nonmotorized travel models 

                 Effect not considered in the study                                                       Tier 2: Health outcome models 

  Potential reverse causality                                                                   Potential self-selection effect                                                                         

Figure 1. Proposed Conceptual Framework 
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The second part (Tier 2) of the study explores the health effects of travel behavior including 

nonmotorized travel behavior and telecommuting behavior as well as the relationship between 

health and built as well as social environment factors at multiple levels of influence. Particularly, 

factors representing the built and the social environments of the household’s location have been 

tested for their association with health outcomes at both the community and individual levels. 

Consistent with the principles of the ecological model of behavior, the conceptual 

framework indicates that behavior including health-related behavior (i.e., walking and bicycling 

travel and other physical activity) is affected by multiple levels of influence including the 

intrapersonal (i.e., individual), the interpersonal (i.e., social environment), and the physical 

environment (i.e., built environment) levels. The ecological model framework also shows that 

factors representing the residential location’s built and social environments at various levels of 

influence affect behavior including travel behavior (e.g., walking and bicycling) and health 

behavior (e.g., physical activity). The built environment’s influence on behavior may be more 

direct as features of the built environment facilitate or restrict specific behaviors. The influence of 

the social environment may be more indirect; by providing or limiting opportunities for social 

interactions, the social environment can help in shaping attitudes, social norms and culture, and 

thereby affect behavior. The ecological model framework also portrays that built and social 

environment can influence health outcomes, both directly and indirectly through mediating health-

related behavioral factors (e.g., nonmotorized travel behavior and other physical activity behavior).  

The main hypotheses to be tested based on this conceptual framework are presented in 

Table 1. The first set of hypotheses concern the role of larger-scale spatial areas on nonmotorized 

travel behavior and health outcomes. The other hypotheses concern self-selection bias in 

nonmotorized travel and endogeneity bias and the role of telecommuting/teleshopping in health. 
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Hypotheses 1a and 1b: On the Role of Macro-level Built and Social Environments in 

Nonmotorized Travel Behavior and Health 

The discussion in the Literature Review Chapter (Chapter 2) revealed that nonmotorized travel 

behavior has disproportionately been examined within the environmental context of the immediate 

neighborhood. That is, built and social environments beyond the neighborhood level (i.e., micro 

level) have rarely been considered in nonmotorized travel behavior studies except for few cases 

(see e.g., Greenwald and Boarnet 2001; Ewing et al. 2003b; Dill and Carr 2003; Weinberger and 

Sweet 2012). Many of the referenced studies did not include a comprehensive set of environmental 

factors (in terms of the built and social environments) from larger geographical scales in their 

analysis. Nevertheless, empirical results from these studies showed that there may be a potential 

for larger-scale environmental factors—particularly factors related to the built environment beyond 

the neighborhood—to influence nonmotorized travel behavior.  

Also, most of health-related studies examined health impacts of environmental factors 

either at the neighborhood level (i.e., micro level) or county level (i.e., meso level). However, the 

very few studies that examined the effects of city-level (i.e., macro-level) environmental factors 

on health outcomes suggest that macro-level environmental factors may play a role in the health 

status of residents (Joshu et al. 2008; Marshall et al. 2014; Braun and Malizia 2015). Macro-level 

built environment such as that of the metropolitan area has been postulated to impact residents’ 

health by affecting commute times and distances, access to healthy food, and health behavior such 

as physical activity and nonmotorized travel behavior (Ewing et al. 2014). Moreover, the 

ecological model of behavior provides the theoretical foundation for the impact of the built and 

social environments at larger spatial scales on human behavior including health behavior such as 

nonmotorized travel behavior (i.e., walking and bicycling) and other physical activities.  
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Therefore, it is hypothesized in this dissertation that built and social environments beyond 

the neighborhood boundaries such as those of the county (i.e., the meso level) and the metropolitan 

area (i.e., the macro level) impact nonmotorized travel behavior and health outcomes. These 

hypotheses are tested in Chapters 4 and 5 using the individual and the household as the units of 

analyses in the nonmotorized travel behavior models, and the individual and the county as the units 

of analyses in the health outcomes models. The conceptual frameworks of these models are based 

on the ecological framework and include built environment and social environment characteristics 

at hierarchical levels. The analyses are conducted through employment of advanced statistical 

methods including the multilevel SEM techniques. 

Hypotheses 2 and 3: On the Role of Self-selection in Nonmotorized Travel Behavior and 

Existence of Causal Links between Built Environment and Nonmotorized Travel Behavior 

The literature review in Chapter 2 made it clear that when examining the role of built environment 

in nonmotorized travel behavior, the importance of self-selection bias is not to be overlooked and 

underestimated. Theoretically, the potential spurious relation between travel choices and the 

residential location choice introduces the self-selection bias into the analysis. Existence of self-

selection bias makes it difficult to determine whether a causal relationship exists between the built 

environment and nonmotorized travel or if the correlation observed is the effect of the spuriousness 

between the two (as shown in Figure B, Appendix B and conceptualized in Figure 1). Therefore, 

self-selection bias confounds the analysis of the link between nonmotorized travel and the built 

environment and makes causal inferences difficult as elaborated in many studies in the past (see 

e.g., Handy 2005; Cao et al. 2009 among other studies as discussed in Chapter 2 and Appendix B).  

Empirical findings provide evidence of the effects of self-selection in nonmotorized travel 

behavior (see Section 2.3 and Appendix B). However, few studies controlled for self-selection 
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issues using sophisticated methodologies (e.g., instrumental variable analysis, structural equation 

modeling). Thus, evidence supporting a causal link between the built environment and 

nonmotorized travel behavior is relatively scant. 

Considering the above arguments, it is hypothesized in this dissertation that self-selection 

plays a key role in nonmotorized travel behavior. Also, causal links are hypothesized between built 

environment factors and nonmotorized travel behavior. These hypotheses are tested in Chapter 4 

using the individual as the unit of analysis within an integrated framework, which includes built 

and social environment attributes at hierarchical (micro-meso-macro) levels, and by employing 

more reliable methodologies to address self-selection bias (i.e., multilevel SEM techniques). 

Hypothesis 4: On the Role of Reverse Causality between Physical Activity and Health, and 

the Potential Resulting Endogeneity Bias  

Health literature has established the benefits of health behavior such as physical activity for human 

health (see DHHS 2018 and other studies as discussed in Chapter 2). However, the opposite could 

also be true; health status can affect the ability or willingness to perform physical activity. This 

introduces reverse causality (i.e., reciprocal causation) into the analysis of the link between 

physical activity and health. Literature suggests that reverse causality may exist between health 

status and health behavior such as active travel (Schauder and Foley 2015), which may play a role 

in physical activity levels; poor health may become a personal barrier to physical activity including 

active travel (Lee and Moudon 2004; National Research Council 2005; Joshu et al. 2008).  

Further, other underlying unmeasurable or omitted factors may exist, which may subject 

the analysis of the link between physical activity and health outcomes to endogeneity bias, and 

thereby to biased estimates. However, as Schauder and Foley (2015) argue, endogeneity bias is 

often neglected in the studies modeling the relationship between health behavior such as active 
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travel and health outcomes. The referenced study highlighted the importance of addressing 

endogeneity bias in testing the causality of the links between health behavior and health outcomes 

and used instrumental variables techniques to address endogeneity in examination of the relations 

between active travel and health outcomes. 

The present dissertation hypothesizes that reverse causality may exist between physical 

activity (both in its general form and its travel-specific form, walking and bicycling) and health 

outcomes. Accordingly, it tests for endogeneity bias in the analysis, which may be present as a 

consequence of the potential reverse causality as well as the existence of omitted factors. This 

hypothesis is tested in Chapter 5 using the individual as well as the county as the units of analyses 

within a comprehensive ecological framework, which includes built environment and social 

environment characteristics at hierarchical levels. The analyses are conducted through 

employment of advanced statistical tools such as instrumental variable analysis and multilevel 

SEM techniques to address endogeneity bias as well as the issue of reverse causality between 

physical activity (e.g., nonmotorized travel) and health outcomes. 

Hypothesis 5: On the Role of Telecommuting in Health 

Telecommuting has a potential to impact psychological health of employees. For instance, through 

lowering the level of commute-related stress, telecommuting can potentially improve job 

performance and offer a higher level of job satisfaction. On the other hand, the potential 

encroachment of work time into personal time, the increased work-related stress, and the social 

isolation associated with working from home can adversely affect psychological health of 

telecommuters. As discussed in Chapter 2, the role of telecommuting in psychological health of 

employees has been examined in prior research but has produced some inconsistent findings (see 

e.g., Baruch 2001; Ganendran and Harrison 2007; Henke et al. 2015; Tajalli and Hajbabaie 2017). 
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The impact of telecommuting on physical health remains largely underexamined and ambiguous. 

This is because the only two studies that probed the effects of telecommuting on physical health 

of individuals (Henke et al. 2015; Tajalli and Hajbabaie 2017) resulted in inconsistent findings.  

Moreover, telecommuting may allow increased levels of physical activity by making 

available some time that would otherwise be spent on commuting, whereas longer commutes can 

affect physical activity by cutting leisure times short (Ewing et al. 2014). On the other hand, 

physical activity levels may decrease for an individual due to the sedentary nature of 

telecommuting or the blurriness between work and personal time boundaries. This may also affect 

the telecommuter’s health status, especially if telecommuting is performed on a regular basis over 

a long period of time. 

In consideration of these arguments, the role of telecommuting in both psychological and 

physical health as well as in health behavior such as physical activity is examined in Chapter 5 of 

this dissertation using the individual as the unit of analysis. It is expected that telecommuting 

affects physical health outcomes, psychological health outcomes, and physical activity levels; 

however, the direction of these effects is not hypothesized in advance due to inconsistencies in the 

findings of past studies. 

Hypothesis 6: On the Role of Teleshopping in Health 

The appealing features of teleshopping for customers are numerous. For instance, teleshopping 

adds various purchasing options to buyers’ existing ones and relieves them from having to spend 

time and energy for visiting different stores to find desired goods at desired prices (Mahmoudi and 

Clifton 2019). This highlights the potential of teleshopping to eliminate actual trips to various 

destinations (i.e., stores in this case). That is, teleshopping may have a substitution effect with 

regards to customer trips. On the other hand, teleshopping can also lead to generation of additional 
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short-distance business trips due to deliveries or pick-ups of online orders. That is, teleshopping 

may have a complementarity effect with regards to business trips.  

Activities related to substitution and complementarity effects of teleshopping can impact 

health differently. The former (i.e., substitution effect) can promote sedentary behaviors and 

lifestyles as customers barely need to leave their homes to purchase needed or desired goods. A 

sedentary lifestyle can have health implications for regular online shoppers. The latter (i.e., 

complementarity effect) may lead to additional vehicular and/or nonvehicular trips by business 

associates (e.g., deliverer); both of these types of trips have health implications for these associates.  

For instance, regular deliveries by automobile may lead to lower levels of physical activity 

as well as adverse health outcomes for the deliverer due to an increased level of driving and time 

spent in a car (i.e., sedentary behaviors). On the other hand, one can expect that delivery trips may 

lead to higher levels of physical activity, and thereby to health benefits if deliveries are made by 

bicycle or if the deliverer parks his/her car and then walks to several destinations within a certain 

delivery area to distribute items. The unfavorable health effects of excessive automobile usage as 

well as the health benefit of using nonmotorized travel modes have been discussed in Chapter 2. 

For example, each additional hour spent in a car per day was found by Frank et al. (2004) to be 

associated with a 6% increase in the likelihood of obesity, whereas each additional kilometer 

walked per day was found to be associated with a 4.8% decrease in likelihood of obesity. 

Research on the role of teleshopping in health is almost nonexistent. Therefore, 

hypothesizing the direction of effects of teleshopping on health outcomes is a difficult task. To 

elucidate these effects, measures of teleshopping behavior have been tested for their association 

with health outcomes in Chapter 5 of this dissertation using the individual as the unit of analysis. 

The existence of such association and the direction and significance of effects remain to be seen. 
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Table 1.  Main Research Hypotheses 

 

3.2 Datasets 

This study utilizes several databases from various sources. These datasets are listed below in 

alphabetical order and each are described in detail. 

3.2.1 American Community Survey (ACS) 

The American Community Survey (ACS) is an annual survey program conducted by the United 

States Census Bureau. Data collected through this survey provide information about the population 

(e.g., socioeconomic and sociodemographic characteristics, means of commuting to work, 

disability characteristics, veteran status) as well as housing (e.g., financial and physical 

characteristics for housing units) at many geographical scales.  

Data from several multiyear estimates of ACS have been used in this research to develop 

nonmotorized travel behavior models as well as health outcome models. 

Nonmotorized Travel Behavior Analysis 

Hypothesis 1a 

In addition to those of the neighborhood (i.e., micro level), built and social 

environment factors from larger spatial scales such as those representing the county 

(i.e., the meso level) and the metropolitan area (i.e., the macro level) play a role in 

nonmotorized travel behavior. 

Hypothesis 2 

and 

Hypothesis 3 

Self-selection plays a role in nonmotorized travel behavior; and 

The link between built environment characteristics and nonmotorized travel behavior 

is a causal one. 

Health Outcome Analysis 

Hypothesis 1b 
The overall structure and context of the metropolitan area (i.e., the macro-level built 

and social environments) play a role in health outcomes of residents. 

Hypothesis 4 

Reverse causality exists between physical activity and health outcomes resulting in 

endogeneity bias in the model (which needs to be addressed in analysis of the link 

between health behavior such as physical activity and health outcomes). 

Hypothesis 5 
Telecommuting is an influential factor in psychological and physical health status as 

well as in physical activity levels performed by individuals. 

Hypothesis 6 
Teleshopping impacts health outcomes and physical activity levels performed by 

individuals. 
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3.2.2 Behavioral Risk Factor Surveillance System (BRFSS) 

The Behavioral Risk Factor Surveillance System (BRFSS) is a health-related survey system, which 

collects data from the adult residents of the U.S. and its territories on their health behaviors, chronic 

health conditions, and preventive health-related practices that can influence health status. Initiated 

by the Centers for Disease Control and Prevention (CDC) in 1984, the BRFSS is conducted 

monthly by state health departments as a cross-sectional telephone-based survey. The database is 

managed by the CDC and is the world’s largest health survey system. More specifically, the 

BRFSS data provide self-reported information on respondents’ socioeconomic and 

sociodemographic characteristics, household characteristics, health behavior, access to health care, 

health status, preventive health practices, and much more.  

The BRFSS data are collected from over 400,000 adults each year. The comprehensive 

survey design and the large number of respondents makes the BRFSS the leading scientific 

database within the U.S.—providing data on behavioral health risk factors and health outcomes. 

Due to privacy concerns, however, the smallest geographical unit available for the BRFSS 

respondents’ addresses is the county of residence.  

This dissertation uses the 2009 BRFSS data from Florida residents in the analysis of 

person-level health outcomes6. 

 
6 The usage of the first-person singular pronoun, “I”, has been avoided throughout this dissertation. However, the 

mention of a personal experience related to BRFSS is a very tempting idea and makes using the pronoun “I” inevitable: 

The day I started researching the BRFSS and writing this subsection on it, I received a call in the middle of 

my work. The gentleman on the other side of the line mentioned that he was calling from the Maryland Department 

of Health to interview me for a health survey. I was very excited and agreed to participate in the survey as I thought 

it was related to the research I was conducting. The phone interview took approximately 40 minutes.  

At the end of the interview, the gentleman thanked me for my participation, and then proceeded to tell me 

that the survey I had just participated in was called the Behavioral Risk Factor Surveillance System survey! I was so 

pleasantly surprised! I am certain that my squeaky voice captured my excitement as I was telling the interviewer that 

I had just been writing about the BRFSS in my dissertation draft.  

That was such an interestingly odd coincidence that I could not resist writing about here. While I gained 

much perspective from participation in the actual survey, I would leave it up to statisticians to calculate the probability 

of me receiving a call for participation in the BRFSS survey on the very same day and at the very same moments I 

was writing about the BRFSS! 
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3.2.3 Community Health Status Indicators (CHSI) 

The Community Health Status Indicators (CHSI) dataset provides health status profiles for all of 

the 3,143 counties in the U.S. as well as the District of Columbia. CHSI data are available through 

the U.S. Department of Health and Human Services (DHHS), Centers for Disease Control and 

Prevention (CDC). The dataset provides information on: i) county-level population health behavior 

(e.g., smoking); ii) county-level factors that potentially affect population health status (e.g., health 

access, social and built environment characteristics); and iii) county-level health outcomes (i.e., 

measures of mortality and morbidity). The CHSI fuses data from several data sources to produce 

county-level health profiles. The data sources used in production of CHSI include the Behavioral 

Risk Factor Surveillance System data, Medicare Chronic Conditions Report data, and the Area 

Health Resources Files data. These data are periodically and regularly reported; therefore, the 

health status profiles for each county have been produced based on multiyear estimates.  

The CHSI data are utilized in this study to investigate the health impacts of nonmotorized 

travel, telecommuting, and the built environment of communities (i.e., counties) within several 

U.S. metropolitan areas. 

3.2.4 County Health Rankings & Roadmaps (CHR & R) 

The Robert Wood Johnson Foundation in collaboration with the University of Wisconsin 

Population Health Institute created the County Health Rankings and Roadmaps (CHR & R) 

program. The CHR & R dataset provides information on county-level health profile and rankings 

for each county within a specific state in the U.S.  

Ranking measures rank each county based on two categories of health-related indicators: 

1) health outcomes (i.e., how healthy the population of a county is); and 2) health factors (i.e., 

factors that influence the health status of the population in a county).  
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Health outcomes in this dataset are based on measures of mortality (i.e., length of life) and 

morbidity (i.e., quality of life). Health factors are represented in this dataset by health behavior 

measures (e.g., adult obesity), clinical care measures (e.g., uninsured adults), socioeconomic 

measures (e.g., unemployment, crime), and physical environment measures (e.g., access to healthy 

food). The CHR & R dataset uses several health data sources to extract information about 

population health and factors affecting it for each of the U.S. counties. A few of these data sources 

are: the Behavioral Risk Factor Surveillance System data, National Center for Health Statistics, 

Small Area Health Insurance Estimates, and the Safe Drinking Water Information System.  

The 2010 CHR & R data have been used in this study to examine the health impacts of 

nonmotorized travel behavior and telecommuting behavior as well as the association between 

community-level (i.e., county-level) health outcomes and built environment factors within several 

U.S. counties and metropolitan areas. 

3.2.5 National Household Travel Survey (NHTS) 

The National Household Travel Survey (NHTS) dataset is the only comprehensive travel dataset 

at the national level in the U.S. The survey is periodically conducted by the Federal Highway 

Administration (FHWA) to collect data on both short- and long-term travel behavior of U.S. 

household members. Sample households throughout the U.S. are surveyed to gather information 

on their travel behavior. The most recent dataset is the 2017 NHTS7, which contains data of 

approximately 130,000 sampled households and updates information in the previous datasets 

(2009 NHTS and prior years).  

The NHTS dataset contains comprehensive information on household geographic area 

(e.g., census tract, county, and metropolitan area), household socioeconomic and 

 
7 The 2017 NHTS data were released in March 2018. 
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sociodemographic characteristics (e.g., household income, size, number of vehicles, and number 

of workers), as well as detailed information on household members’ daily trips made within a 

designated 24-hour period of time (e.g., trip mode, travel time, trip purpose, and distance traveled). 

Moreover, the NHTS data provide information on other travel-related behavior of household 

members such as their telecommuting and teleshopping behavior.  

Traditionally, additional random samples of households have also been surveyed in states 

that are considered within the NHTS Add-on Program area. The Add-on database provides 

geocoded location of the households located within the Add-on regions. Due to this level of 

resolution with respect to the geographical location of the surveyed households, the 2009 NHTS 

Add-on database has been utilized in this study for analyzing the nonmotorized travel behavior of 

Florida residents and the related health impacts for them. Usage of the NHTS data adds a layer of 

confidence to the study results and makes this research’s findings generalizable. 

3.2.6 Smart Location Database (SLD) 

The Smart Location Database (SLD), which was first released in 2011, is a nationwide spatial 

dataset for the U.S. The SLD is a product of the U.S. Environmental Protection Agency (EPA)’s 

Smart Growth Program and is available to users for free on the EPA web site. The latest version 

of this dataset is the SLD Version 2.0, which was released in 2013.  

This rich dataset provides information on land use and built environment characteristics 

such as population and employment density, mixed-use development, neighborhood design 

attributes, destination and transit accessibility, transit service frequency, and demographic 

characteristics at the census block group level.  

In essence, the SLD provides a wealth of information on the D indicators of the built 

environment at a fine spatial resolution (census block group). These characteristics of SLD make 
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it a very appropriate dataset to be utilized in examining the association between the built 

environment and nonmotorized travel demand and behavior.  

The present study uses the SLD in the analysis of nonmotorized travel behavior of Florida 

residents as well as in the analysis of health outcomes for residents of various counties in the U.S. 

3.2.7 Topologically Integrated Geographic Encoding and Referencing (TIGER)/Line 

Shapefiles 

An open source data, the U.S. Census Bureau’s TIGER/Line Shapefiles are a comprehensive 

dataset that provide valuable spatial information for use with Geographic Information Systems 

(GIS) applications. Information such as legal and political geographic boundaries, statistical 

geographic areas, address information, roads and railroads can be obtained from this dataset. 

In this study, TIGER/Line Shapefiles have been used to obtain census block-level and 

county-level data within all study areas. 

3.2.8 Uniform Crime Reporting Program—Federal Bureau of Investigation (FBI) 

Created in 1929, the FBI’s Uniform Crime Reporting (UCR) program is intended to serve the need 

for reliable crime statistics for the U.S. through collecting, publishing, and archiving data on crime.  

As of the present, data have been received from more than 18,000 agencies within the U.S. and 

are available to the public free of charge.  

This dissertation uses multiyear FBI’s UCR data on violent crime rates within Florida 

metropolitan areas in analysis of health outcomes for residents. 

3.2.9 Urban Mobility Information—Texas A&M Transportation Institute (TTI) 

The TTI Urban Mobility Information data are accessible to the public, and provide multiyear data 

on the level of mobility (e.g., roadway congestion levels, annual hours of delay, travel times) for 
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nearly 500 urban areas across the U.S. The 2015 Urban Mobility Scorecard is the latest edition of 

this report, which is published jointly by the Texas A&M Transportation Institute and INRIX. The 

2015 Urban Mobility Scorecard provides a comprehensive analysis of traffic and mobility 

conditions within the U.S. urban areas.  

In this dissertation, Urban Mobility data from years 2008 through 2010 have been used to 

develop health outcome models for residents of Florida metropolitan areas. 

3.2.10 Walk Score and Bike Score 

Walk Score® (www.walkscore.com) is a publicly available dataset, which provides information 

on walkability of locations. A Walk Score is an objectively measured number that assesses the 

walkability and pedestrian friendliness of a particular address based on a destination accessibility-

oriented approach. Distance to nearby desired walkable amenities (e.g., educational, retail, 

services, food, and recreational destinations) is used in an algorithm, which calculates the Walk 

Score of a specific point. Each type of destination is weighted equally in the calculations of the 

Walk Score of a location. The Walk Score methodology also considers other factors in calculation 

of the Walk Score. These factors include population density and street network attributes (e.g., 

block length and intersection density).  

Research suggests that Walk Score correlates well with objective and subjective measures 

of walkability and is a reliable and valid metric for estimating neighborhood destination 

accessibility (Carr et al. 2010a, 2010b). Research has further validated Walk Score as a measure 

of neighborhood walkability at multiple spatial scales and for various geographic locations 

(Duncan et al. 2011). Additionally, Walk Score has been shown to outperform other walkability 

measures in predicting actual amounts of walking (Manaugh and El-Geneidy 2011). Consequently, 

the Walk Score has become a widely known measure of walkability in recent years and has been 
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utilized by researchers in the fields of transportation engineering, urban design, real estate, and 

public health (see e.g., Pivo and Fisher 2011; Weinberger and Sweet 2012; Li et al. 2014; Hirsch 

et al. 2014; Renne et al. 2015; Wasfi et al. 2015; Braun and Malizia 2015; Barnes et al. 2016).  

Similarly, a Bike Score is a number designated to a certain location that assesses how 

bikeable that location is. The calculation algorithm for Bike Score takes into account bicycle 

infrastructure (e.g., bicycle lanes and bicycle trails), topography (e.g., hilliness) as well as 

destination and road network connectivity measures. 

Walk Score and Bike Score range from 0 for a car-dependent (i.e., non-walkable for Walk 

Score or non-bikeable for Bike Score) location to 100 for the most pedestrian-friendly (or bicycle-

friendly for Bike Score) location. Appendix D lists the Walk and Bike Score categories.  

In this dissertation, the Walk and Bike Score data have been used in the analysis of 

nonmotorized travel behavior in the Florida case study (and the Baltimore-D.C. case study, which 

is presented in Appendix C). Walk Score data have also been used in this study to analyze health 

outcomes for residents of different metropolitan areas within the state of Florida.  

3.2.11 Woods & Poole Complete Economic and Demographic Data Source (CEDDS) 

Produced by Woods and Poole Economics, Inc., the CEDDS data source provides historical (from 

1970) economic and demographic data for all U.S. counties, metropolitan areas, and states. These 

data include information such as population (total as well as by age, sex, race), employment (total 

as well as by industry), income, retail sales by type of business and more 8,9.  

This study utilizes the 2008 and 2009 CEDDS data to develop health outcome models. 

 
8 See “Summary Technical Description of the Woods & Poole Economics, Inc. 2018 Regional Projections and 

Database”: https://www.woodsandpoole.com/wp-content/uploads/2018/04/TECH18-summary.pdf 

 
9 See “CEDDS-The Complete Economic and Demographic Data Source”: https://www.woodsandpoole.com/wp-

content/uploads/2018/05/CED18.pdf 
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3.3 Analytical Techniques  

The main analytical techniques utilized in this research are:  

i) linear mixed-effects (i.e., multilevel or hierarchical) modeling techniques;  

ii) ordered probit modeling techniques;  

iii) structural equation modeling (SEM) techniques;  

iv) instrumental variable analysis (for binary probit modeling); and  

v) binary probit modeling techniques.  

An overview of each of these techniques is given in the following subsections, which 

summarize the formulation and assumptions of the technique. 

3.3.1 Linear Mixed-effects (Multilevel) Modeling Techniques 

Linear mixed-effects modeling is a versatile technique that encompasses various types of modeling 

tools and is used to analyze grouped (i.e., clustered) data. Linear mixed-effects models are also 

known as linear multilevel models, linear hierarchical model, random effects models, or random 

coefficient models (Heck 2001; Chung et al. 2004; Garison 2013).  

According to Demidenko (2004), classical statistics assumes that individual observations 

are drawn from the same general population and are independently and identically distributed (iid). 

These assumptions may not hold when observations come from various groups within the general 

population.  

If the general population comprises of different groups (i.e., clusters), observations 

between different groups are independent of each other; however, the same cannot be said about 

observations within each group. Observations that come from the same group belong to the same 

subpopulation and may share the characteristics of the particular subpopulation they belong to. In 

this case, these observations are correlated and are not independent.  
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Further, in grouped data with a multilevel (i.e., hierarchical) structure, nested data exist at 

multiple levels and observations in the same level (i.e., group) are likely to be correlated because 

they share similar characteristics.  

Clustering of observations within groups leads to correlated error terms, biased estimations 

of coefficients, biased estimations of standard errors, and substantive mistakes in interpretation of 

the effects of explanatory variables (see e.g., Heck 2001; Garison 2013). Therefore, classical 

regression modeling techniques are not appropriate for modeling grouped observations because 

the independently and identically distributed (iid) assumption of classical regression modeling 

techniques is violated for observations that come from the same group (referred to as clusters 

hereinafter).  

According to Heck (2001) and Demidenko (2004), there are two types of observations in a 

clustered dataset:  

1) observations from different clusters, which have independent characteristics from each 

other; and  

2) observations within a specific cluster, which are likely to have similar characteristics. 

Consequently, two sources of variation are assumed in a mixed-effects (i.e., multilevel) 

model using clustered data:  

1) variations within clusters (i.e., the intraclass variance); and  

2) variations between clusters (i.e., the interclass variance). 

The multilevel structure of the mixed-effects model allows for capturing these two sources 

of variation among clustered data.  

Thus, as Demidenko (2004) explains, two types of coefficients are estimated by the mixed-

effects model:  
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1) population-averaged coefficients; and  

2) cluster-specific coefficients.  

The former coefficients (i.e., population-averaged coefficients) are called fixed effects and 

have the same meaning as in ordinary regression models. The latter coefficients (i.e., cluster-

specific coefficients) are called random effects and contain the effects of clustering of the 

observations under different levels. 

For multilevel data structures, the model introduces random effects for each level (i.e., 

cluster) of the data. In other words, and as explained by Hamilton (2013), mixed-effects modeling 

is regression analysis that allows two types of effects: 

1) fixed effects, which are intercepts and slopes that describe the population as a whole 

(similar to the case of classical regression modeling); and 

2) random effects, which are intercepts and slopes that can vary across clusters within the 

sample. 

Having a small number of clusters with a large number of observations per cluster 

constitutes the treatment of the cluster-specific coefficients as fixed effects, whereas having a large 

number of clusters with a small number of observations per cluster necessitates the treatment of 

the cluster-specific coefficients as random effects (Demidenko 2004).  

Therefore, by providing a combination of analysis of variance, variance component, and 

regression models (Demidenko 2004; Snijders and Bosker 2012), the mixed-effects model treats 

clustered data, where due to correlation of error terms, the classical assumption of observations 

being independent and identically distributed (iid) may lead to inaccurate results, and thereby to 

erroneous interpretations of the effects of explanatory variables. 
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Based on Verbeke and Molenberghs (1997) and Demidenko (2004), the linear mixed model 

can be formulated in a general matrix notation as: 

Y = 𝐗𝛽 + 𝐙𝑢 + 휀                                                                                     Equation 1     

where, 

Y =  𝑛×1 vector of observations with a mean of 𝐗𝛽; 

𝐗 =  𝑛×𝑝 matrix of covariates (i.e., explanatory variables) with fixed effects; 

𝛽 = vector containing the overall mean (population average) and the fixed effects 

coefficients; 

𝐙 = 𝑛×𝑞 matrix of covariates (i.e., explanatory variables) with random effects; 

𝑢 =  vector of the iid random effects; 

휀 = vector of random error term such that: 

(
𝑢
휀
)~ 𝑁 ((

0
0
),   (

𝐷 0
0 Σ

)) 

𝐷 = variance-covariance matrix of random effects (variance components) of  𝑢 and 휀; and 

∑ = 𝜎𝜀
2𝐼𝑛 with n being the number of observations. 

The mixed-effect model assumes that: 

i) variance parameters for each cluster are random;  

ii) the distributions of random effects (𝑢) and the random error term (휀) are normal; and 

iii) the random vectors (𝑢 and 휀) are mutually independent. 

Also, it should be noted that even though the mixed-effects model is formulated as a linear 

model, the fact that variance-covariance matrix of random effects (D) is unknown makes it a 

nonlinear model with a complex estimation methodology.  

If the parameters of matrix D are known, the model can be estimated by ordinary least 

square (OLS) regression modeling techniques (Demidenko 2004).  
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In multilevel mixed-effects models, the matrix of observed covariates (X) can include 

variables from various levels, which vary at the respective levels10. The model formulation for a 

two-level mixed-effects model can be written as Equation 2 in a matrix notation or as Equation 3 

based on the general formulation presented in Snijders and Bosker (2012): 

𝑦𝑖𝑗 = 𝛽0 + 𝐗𝛽 + 𝑢0𝑗 + 𝐙𝑗𝑢𝑗 + 휀𝑖𝑗                                                        Equation 2 

𝑦𝑖𝑗 = 𝛽0 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗
𝑝
ℎ=1 + 𝑢0𝑗 + ∑ 𝑢ℎ𝑗𝑧ℎ𝑖𝑗

𝑞
ℎ=1 + 휀𝑖𝑗                              Equation 3                      

where, 

𝑦𝑖𝑗 = observation for subject i (level one) within the jth cluster (level two); 

𝛽0 = model intercept (the value of 𝑦𝑖𝑗 when all explanatory variables are equal to zero); 

𝛽 and 𝑢 are vectors as defined for Equation 1;  

𝐙𝑗 = matrix of cluster jth (level two) covariates with random effects; 

𝛽ℎ and 𝑢ℎ𝑗 are model parameters for fixed and random parts of the model, respectively; 

𝑝 = number of explanatory variables with fixed effects only;  

𝑞 = number of explanatory variables with random effects; 

𝑥ℎ𝑖𝑗 = the explanatory variables (including level-one and level-two variables) with fixed 

effects only; 

𝑧ℎ𝑖𝑗 = the explanatory variables (including level-one and level-two variables) with random 

effects; 

𝑢𝑗  and 𝑢0𝑗 = cluster-specific (level two) random effects and random intercept, 

respectively, with mean zero and a variance of 𝜎𝑢
2; 

휀𝑖𝑗 = random error term (level one) with mean zero and a variance of 𝜎𝑒
2 . 

 
10 Therefore, the matrix of observed covariates is just denoted as X without any subscripts to assign a particular level 

(i.e., i, j or k) in Equations 2, 4 and 6. 



 

87 

 

For a two-level random intercept model, Equations 2 and 3 can be simplified to Equation 

4 and Equation 5, respectively: 

𝑦𝑖𝑗 = 𝛽0 + 𝐗𝛽 + 𝑢0𝑗 + 휀𝑖𝑗                                                                     Equation 4 

𝑦𝑖𝑗 = 𝛽0 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗
𝑝
ℎ=1 + 𝑢0𝑗 + 휀𝑖𝑗                                                       Equation 5 

The random intercept model assumes that there is a random effect (i.e.,  𝑢0𝑗 ) that applies 

to all observations from cluster j. However, the regression slopes for various explanatory variables 

in the model are not assumed to be randomly varying from cluster to cluster (i.e., the regression 

lines for each explanatory variable all have a common slope), and thereby the model is simplified 

to a random intercept model. Also, in the two-level model, the observation 𝑦𝑖𝑗 is the observation 

for subject i within cluster j, meaning that subject is comprise the first level and cluster js comprise 

the second level of the model. Here, 𝛽0 is the fixed part of the model, whereas  휀𝑖𝑗 and 𝑢0𝑗 comprise 

the random part. Also, 휀𝑖𝑗 and 𝑢0𝑗 are assumed to be uncorrelated. Further, 𝑢0𝑗 are assumed to be 

uncorrelated across cluster js and 휀𝑖𝑗 are assumed to be uncorrelated across subject is (Healy 2001; 

Rabe-Hesketh and Skrondal 2012).  

A three-level model for first-level observations (is) nested within second-level clusters (js) 

that are themselves nested within third-level clusters (ks) is a straightforward extension of the two-

level model. The three-level model can be formulated as Equation 6 in a matrix notation or as 

Equation 7, which is developed based on the general formulas in Snijders and Bosker (2012). 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝐗𝛽 + 𝑢0𝑗𝑘
(2)

+ 𝑢0𝑘
(3)
+ 𝐙𝑗𝑘

(2)
𝑢𝑗𝑘
(2)
+ 𝐙𝑗𝑘

(3)
𝑢𝑘
(3)
+ 휀𝑖𝑗𝑘                 Equation 6 

𝑦𝑖𝑗𝑘 = 𝛽0 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗𝑘
𝑝
ℎ=1 + 𝑢0𝑗𝑘

(2)
+ 𝑢0𝑘

(3)
+ ∑ 𝑢ℎ𝑗𝑘𝑧ℎ𝑖𝑗𝑘

𝑞
ℎ=1 + 휀𝑖𝑗𝑘        Equation 7 

where, 
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𝑦𝑖𝑗𝑘 = observation for subject i (level one) within the jth cluster (level two) within the kth 

supercluster (level three); 

𝛽0 = model intercept (the value of 𝑦𝑖𝑗 when all covariates are equal to zero); 

𝛽 and 𝑢 are vectors as defined for Equation 1;  

𝐙𝑗𝑘
(2)
 and 𝐙𝑗𝑘

(3)
= matrices of cluster jth (level two) and supercluster kth (level three) 

covariates with random effects, respectively; 

𝛽ℎ and 𝑢ℎ𝑗𝑘 are model parameters for fixed and random parts of the model, respectively; 

𝑝 = number of explanatory variables with fixed effects only;  

𝑞 = number of explanatory variables with random effects; 

𝑥ℎ𝑖𝑗𝑘 = the explanatory variables (including level-one, level-two, and level-three variables) 

with fixed effects only; 

𝑧ℎ𝑖𝑗𝑘 = the explanatory variables (including level-one, level-two, and level-three variables) 

with random effects; 

𝑢𝑘
(3)
= random effects for supercluster k (level three); 

𝑢𝑗𝑘
(2)
= random effects for cluster j (level two); 

𝑢0𝑘
(3)
= random intercept for supercluster k (level three) with mean zero and a variance of 

𝜎𝑢0𝑘
2 ; 

𝑢0𝑗𝑘
(2)

= random intercept for cluster j (level two), which is in supercluster k and has a mean 

of zero and a variance of 𝜎𝑢0𝑗𝑘
2 ; 

휀𝑖𝑗𝑘 = random error term (level one) with mean zero and a variance of 𝜎𝑒
2 . 

Random effects (𝑢𝑘
(3)

, 𝑢𝑗𝑘
(2)

, 𝑢0𝑘
(3)

, 𝑢0𝑗𝑘
(2)

) and error term (휀𝑖𝑗𝑘) are assumed to be mutually 

uncorrelated, and the total variance is equal to   𝜎𝑢0𝑘
2 + 𝜎𝑢0𝑗𝑘

2 +  𝜎𝑒
2.  
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Equations 6 and 7 can be simplified to Equations 8 and 9 to formulate a three-level random 

intercept model as follows: 

𝑦𝑖𝑗𝑘 = 𝛽0 + 𝐗𝛽 + 𝑢0𝑗𝑘
(2)

+ 𝑢0𝑘
(3)
+ 휀𝑖𝑗𝑘                                                     Equation 8 

𝑦𝑖𝑗𝑘 = 𝛽0 + ∑ 𝛽ℎ𝑥ℎ𝑖𝑗𝑘
𝑝
ℎ=1 + 𝑢0𝑗𝑘

(2)
+ 𝑢0𝑘

(3)
+ 휀𝑖𝑗𝑘                                     Equation 9      

In the present study, two-level and three-level mixed-effects models have been employed 

to examine the association between nonmotorized travel behavior and built as well as social 

environment characteristics at various geographical levels including the micro level (i.e., 

neighborhood), the meso level (i.e., county) and macro level (i.e., region or metropolitan area).  

In choosing a fixed- versus a random-effects approach to estimate the cluster-specific 

intercepts, Rabe-Hesketh and Skrondal (2012) suggests that a random-effects model is suitable if: 

a) the target of inference concerns the population of clusters (vs. the particular clusters in the 

dataset); and b) if there is an adequate number (> 10 or 20) of clusters in the sample. Since the 

present research is concerned with making inferences about the infinite population (i.e., 

generalizing beyond the specific clusters in the samples at hand) and there is a large number of 

clusters in the sample for each case study (>1,000), a random-effects (i.e., random intercept) 

modeling approach is selected—making the models developed mixed-effects models.  

Further, some researchers argue that if the larger-scale units (e.g., meso- or macro-level 

spatial units) have any potential association with the phenomenon under study, analyzing only the 

aggregated data or only the disaggregated data may lead to erroneous results (Chung et al. 2004; 

Snijders and Bosker 2012). These authors suggest that a multilevel approach, which accounts for 

within-cluster as well as between-cluster variations is a more suitable methodology for analyzing 

such clustered, multilevel data. In multilevel analysis, some authors have referred to level one and 

level two as micro level and macro level, respectively (see e.g., Heck 2001 and Snijders and Bosker 
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2012). Others suggest that the multilevel structure of the mixed-effects models allows the analyst 

to simultaneously focus on both micro-level (i.e., level one) and macro-level (i.e., level two) 

associations as well as the interaction between the two levels (Healy 2001).  

Another advantage of the mixed-effects modeling is that it can account for any potential 

spatial autocorrelation that may exist due to use of nested data from multilevel geographical areas 

(Marshall et al. 2014). Due to the nested nature of data used in the present study (e.g., individuals 

nested in households, households nested in neighborhoods), the mixed-effects models developed 

in this research are considered multilevel mixed-effects models.  

3.3.2 Ordered Probit Modeling Techniques 

Ordered probit models are a special case of the statistical models that deal with ordinal dependent 

variables. Ordinal variables result from cases where the discrete quantity of something is 

considered or where a nominal factor is measured using a graded scale. Attitudinal surveys using 

the Likert Scale11 are a good example of such cases where due to lack of a natural unit of 

measurement for attitudes, survey responses generate data in the form of ordinal responses (Daykin 

and Moffatt 2002). Due to the ordinal nature of responses, the dependent variable to be modeled 

becomes an ordinal variable (i.e., categorical variable)—providing information on ordering of 

different categories of the measured factor (Grilli and Rampichini 2012).  

Ordinal dependent variables violate the assumptions of linear regression models, which 

can lead to inaccurate model estimations. If the observed dependent variable y is a nominal 

 
11 Satisfaction with a service or agreement with a view are examples of factors measured using the Likert’s graded 

scale. In the former case (i.e., satisfaction), the scale can include responses such as ‘very dissatisfied’, ‘dissatisfied’, 

‘satisfied’ and ‘very satisfied’. In the latter case (i.e., agreement), the responses can include categories such as ‘strongly 

disagree’, ‘disagree’, ‘agree’ and ‘strongly agree’ (Daykin and Moffatt 2002; Grilli and Rampichini 2012). In both 

cases, the response categories are ordered—generating ordinal data, which in turn, translates into an ordinal dependent 

variable in the model. 
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variable, which has ordered categories, sometimes a score can be associated with each category of 

the observed variable. Due to the statistical methods for quantitative variables being more powerful 

and easier to interpret, the use of scoring systems to convert ordinal categories into numbers is a 

common practice in research; however, since the distances between the categories are unknown, 

the scoring system is just an arbitrary assumption (Grilli and Rampichini 2012). Nonetheless, if 

categories of the observed dependent variable are ordered and can be coded as consecutive 

integers, the ordered probit model can be applied. 

In research dealing with psychological factors such as attitudes, latent variables are often 

preferred over observed variables for more effectively capturing factors such as attitudes and 

perceptions (Moudon et al. 2005). Latent-variable models often serve as a suitable statistical 

method to analyze attitudinal survey responses. Ordered probit models can be considered a latent-

variable model (see Long and Freese 2006). As a latent-variable model, the ordered probit model 

relates the discrete ordinal observed response y to an unobserved latent variable y*. This latent 

variable (y*) is the exact response, which cannot be observed. Instead, what is observed is the 

categories of the response (y). The ordered probit model can be presented as Equation 10 based on 

theoretical aspects discussed by many researchers (see e.g., Daykin and Moffatt 2002; Long and 

Freese 2006; Gelman and Hill 2007; Wooldridge 2010). 

𝑦𝑖
∗ = 𝑥𝑖

′𝛽 + 휀𝑖                                                                                           Equation 10 

It is assumed in this formulation that the ordinal dependent variable y has J distinct 

categories where J is an integer representing each specific category (J = 0, 1, …., n). The ordinal 

dependent variable is represented as 𝑦𝑖 where i represents each distinct observation. It is further 

assumed that the ordinal dependent variable 𝑦𝑖 is generated by the latent continuous variable 𝑦𝑖
∗ 

with a set of n − 1 thresholds 𝛼𝑛  such that:  𝑦𝑖   =    𝑦𝑛    only and only if 𝛼𝑛−1 < 𝑦𝑖
∗ ≤ 𝛼𝑛 . 
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In addition, 

𝑦𝑖
∗    =  a continuous but unobserved (i.e., latent) variable such that −∞ <  𝑦𝑖

∗ < +∞.  

The model estimations only indicate when 𝑦𝑖
∗ crosses a threshold; and 

𝑥𝑖
′      = vector of independent (i.e., explanatory) variables;  

β       = vector of model parameters (not containing an intercept12); 

휀𝑖       = an iid error term, which follows a normal distribution (휀𝑖 ~ 𝑁 (0, 1)). 

The latent variable 𝑦𝑖
∗ captures the underlined probability of occurrence of a certain 

category in the ordinal dependent variable. That probability is given by: 

Probability (𝑦𝑖 = 𝑦𝑛) =  Φ (𝛼𝑛 − 𝑥𝑖𝛽) −  Φ (𝛼𝑛−1 − 𝑥𝑖𝛽)                 

where, 

𝑛       = the number of categories of the ordinal dependent variable y; 

𝑦𝑛      =  a certain category of the ordinal dependent variable y; 

Φ      = the standard cumulative normal distribution function; 

𝛼𝑛     =  the upper threshold for the range of 𝑦∗, which corresponds to n; 

𝛼𝑛−1 =  the lower threshold for the range of 𝑦∗, which corresponds to n; 

Therefore, the relationship between 𝑦𝑖 and 𝑦𝑖
∗ can be formulated as below in ordered probit 

models: 

𝑦𝑖 =

{
  
 

 
 
 
0            𝑖𝑓               − ∞  ≤  𝑦𝑖

∗ <  𝛼1                  

1            𝑖𝑓                    𝛼1  ≤  𝑦𝑖
∗ <  𝛼2                  

 2            𝑖𝑓                    𝛼2  ≤  𝑦𝑖
∗ <  𝛼3                   

.

.

.
 𝑦𝑛            𝑖𝑓                𝛼𝑛−1  ≤  𝑦𝑖

∗ <  𝛼𝑛  (= + ∞)

 

 
12 See page 655 in Wooldridge (2010). 
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The association between the ordinal dependent (i.e., response) variable (𝑦𝑖) and the 

independent (i.e., explanatory) variables is obtained through model estimations. The ordered probit 

model estimates the model parameters (βs) as well as the thresholds (cut points) as 𝑦𝑖
∗ crosses them. 

Also, when i = 1, the ordered probit model becomes the binary probit model. 

In this study, ordered probit models have been used to examine the association between 

nonmotorized travel behavior and built as well as social environment factors at various 

geographical scales. More specifically, the total number of household’s nonmotorized (walking or 

bicycling) trips is considered as the observed ordinal dependent variable (𝑦𝑖), which is assumed to 

take on a series of values ranging from zero to the maximum number of trips in the dataset—

depending on the value of the unobserved latent variable 𝑦𝑖
∗. The probability of a certain number 

of walking (or bicycling) trips having been generated from a household is estimated by the ordered 

probit models developed.  

In addition, binary probit models have been developed and estimated in this dissertation to 

analyze the link between individuals’ health status, travel behavior, and built as well as social 

environment characteristics at various levels of influence.   

3.3.3 Instrumental Variable Techniques 

In the linear model represented by Equation 11, if one (or more) of the independent (i.e., 

explanatory) variables contained in vector  𝑥 ′ is correlated with the error term (휀), that independent 

variable becomes endogenous in the equation (Baum et al. 2003; Wooldridge 2010). 

y = 𝛽0 +  𝑥
′𝛽 + 휀                                                                                     Equation 11 

Endogeneity can occur due to many reasons including the existence of omitted variables in 

the model. In models susceptible to endogeneity, estimations can be biased due to the non-zero 

correlation between the endogenous independent variable(s) and the error term. Instrumental 
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variable (IV) analysis is an appropriate method, which provides a general solution to the problem 

of endogenous independent variables (see Train 2009 and Wooldridge 2010); thus, it can be used 

to address any potential endogeneity bias in the model. To apply the IV method, a column vector 

of observable variables, which are not included in Equation 11, can be used as instruments ( 𝑧 ′ ).  

Based on Wooldridge (2010), a reduced-form equation can then be written for the 

endogenous independent variable—denoted by xe —as:  

𝑥𝑒 = 𝛿0 + 𝑥1
′ 𝛿 + 𝑧 ′휃 +  𝜏                                                                         Equation 12 

where, 

𝑥𝑒 = the endogenous independent variable in Equation 11; 

𝑥1
′ = vector of independent variables contained in  𝑥 ′ except for 𝑥𝑒; 

𝑧 ′  =  vector of instrumental variables; 

𝛽 , 𝛿 , 휃 = model parameters; and 

𝜏  =  error terms of the reduced-form equation, which should be uncorrelated with 

variables contained in 𝑥1
′  and 𝑧 ′.             

The instrumental variables (i.e., instruments) contained in column vector 𝑧 ′  must satisfy 

two conditions: 1) exogeneity, meaning that the instrumental variable(s) must be uncorrelated with 

the error term (휀); and 2) correlation, meaning that the instrumental variable(s) must be partially 

correlated with the endogenous independent variable ( 𝑥𝑒) once the other exogenous variables in 

𝑥1
′  have been controlled for (Wooldridge 2010).  

All variables contained in 𝑥1
′  can serve as their own instruments in Equation 11 as they are 

already uncorrelated with 휀. That means that although the instrument for the endogenous 

independent variable is often referred to as the “instrument”, all exogenous independent variables 

are considered instrumental variables in the model.  
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By plugging Equation 12 into Equation 11 (i.e., substituting for  𝑥𝑒 in vector 𝑥 ′), a reduced 

form for y is obtained: 

𝑦 = 𝛼0 + 𝑥1
′ 𝛼 + 𝑧 ′𝜎 + 𝜗                       

Here, 𝜗 𝑖𝑠 the reduced-form error term, which is by assumption, uncorrelated with all 

independent variables in 𝑥1
′  and 𝑧 ′. Thus, the endogeneity problem in Equation 11 has been 

addressed through employment of instrumental variable analysis. 

A simplified instrumental variable formulation for binary probit models with endogenous 

independent variables can be written based on formulas presented by Newey (1987) for models 

with limited dependent variables and endogenous independent variables as well as formulas by 

Rivers and Vuong (1988) for simultaneous probit models (with endogenous independent 

variables)13.  

If i = (1, …, N), the instrumental variable binary probit model can be presented as: 

𝑦1𝑖
∗ = 𝑦2𝑖𝛽 + 𝑥1𝑖𝛾 = 𝑧𝑖𝛿 + 𝜇𝑖                                                                       Equation 13 

𝑦2𝑖 = 𝑥1𝑖𝚷1 + 𝑥2𝑖𝚷2 + 𝜗𝑖                                                                     Equation 14                               

Substituting Equation 14 in Equation 13, the final reduced-form equation for 𝑦1𝑖
∗  is: 

𝑦1𝑖
∗ = 𝑥𝑖𝛼 + 𝜔𝑖                                                                                        Equation 15 

where, 

𝑦1𝑖
∗ = an unobserved latent variable based on which the observed value of the endogenous 

variable 𝑦1𝑖  changes as follows: 

𝑦1𝑖 = { 
0         𝑦1𝑖

∗ <  0 

1         𝑦1𝑖
∗  ≥ 0 

 

 
13 For additional information and detailed model formulation, refer to Newey (1987), Rivers and Vuong (1988), Baum 

et al. (2012) as well as Stata’s documentation on instrumental variable binary probit modeling “ivprobit — Probit 

model with continuous endogenous regressors”: https://www.stata.com/manuals13/rivprobit.pdf 
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𝑦2𝑖 = 1×𝑝 vector of observed endogenous variables; 

𝑥1𝑖 = 1×𝑘1 vector of observed exogenous variables; 

𝑥2𝑖 = 1×𝑘2  vector of additional instrumental variables; 

𝚷𝟏 = matrix of coefficients for instrumental variables that are included in Equation 13; 

𝚷𝟐 = matrix of coefficients for instrumental variables that are excluded from Equation 13;  

𝛽 and 𝛾 = vectors of structural parameters. 

In addition, 

𝛿 = (𝛽′, 𝛾′)’ ; 𝑥𝑖  = (𝑥1𝑖 , 𝑥2𝑖); 𝑧𝑖  = (𝑦2𝑖  , 𝑥1𝑖); 𝚷 = (𝚷1 
′ , 𝚷2 

′ )’;  

𝜇𝑖 and 𝜗𝑖 = model error terms which are jointly normal; and 

𝜔𝑖 = 𝜗𝑖𝛽 + 𝜇𝑖 = the reduced-form model error term which is normal. 

Instrumental variable (IV) analysis has been employed in this dissertation to develop IV 

binary probit models for person-level health outcomes. The IV analysis in these models accounts 

for the potential endogeneity bias, which may exist due to reciprocal causation (i.e., reverse 

causality) effects between physical activity levels and health outcomes. 

3.3.4 Structural Equation Modeling (SEM) Techniques 

Structural equation modeling techniques provide a methodological framework to examine theory-

driven causal relations (Hancock and Mueller 2006). These techniques were first developed in the 

1970s and are primarily used in social and behavioral sciences such as sociology, psychology, and 

marketing (Kelloway 1998; Chung et al. 2004; Kline 2011). According to Chung et al. (2004), the 

first application of SEM in travel behavior research was in 1980s. 

The SEM techniques encompass a series of related statistical procedures that have the 

capability of incorporating both measurement (i.e., factor analysis) and structural (i.e., path 

analysis) approaches. Thus, the SEM techniques can be considered a combination of measurement 
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models and path analysis (Chung et al. 2004). In models with both components, the SEM process 

validates the measurement model through factor analysis and estimates the structural model 

through path analysis. By providing simultaneous measurement and prediction analyses, SEM 

techniques allow for specification and examination of elaborate path models and causal links that 

shape the phenomenon of interest (Kelloway 1998). 

For models with both measurement and structural components, the measurement model, 

which relates the latent (i.e., unobserved) variable(s) with its observed indicators can be formulated 

as follows—according to Heck (2001) as well as Rabe-Hesketh, Skrondal and Zheng (2007):  

𝑦𝑖 =  𝜈 + 𝚲휂𝑖 + 𝐊𝑥𝑖 + 𝜖𝑖                                                                        Equation 16 

𝑦𝑖 =  vector of observed dependent (i.e., endogenous) variables for observation i ; 

𝜈 =  vector of measurement intercepts; 

𝚲 =  matrix of measurement coefficients (i.e., pattern coefficients or factor loadings); 

휂𝑖 =  set of latent variables (i.e., factors);  

𝑥𝑖 =  vector of observed independent (i.e., exogenous) variables; 

𝐊 =  matrix of regression coefficients; and 

𝜖𝑖 = vector of measurement error terms assumed to be unrelated with other variables. 

The structural model, which specifies the causal links between the latent variable(s) (i.e., 

endogenous variables) and exogenous variables or other endogenous variables, can be formulated 

as follows: 

휂𝑖 =  𝛼 + 𝐁휂𝑖 + 𝚪𝑥𝑖 + 휁𝑖                                                                        Equation 17  

where, 

휂𝑖 =  vector of endogenous variables for observation i ; 

𝛼 =  vector of intercepts; 
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𝐁 = matrix of latent endogenous coefficients representing the direct effect of endogenous 

variables (휂𝑖) on other endogenous variables; 

𝚪 =  matrix of latent exogenous coefficients representing the direct effect of exogenous 

variables (𝑥𝑖) on endogenous variables (휂𝑖); and 

휁𝑖 =  vector of structural equation residuals (i.e., error terms). 

For models with all observed variables (i.e., with no latent variables), the structural 

equation reduces to an equation representing a path model: 

𝑦𝑖 =  𝛼 + 𝐁𝑦𝑖 + 𝚪𝑥𝑖 + 휁𝑖                                                                        Equation 18 

A measurement model in which the latent variable(s) is measured by multiple indicators 

and is also considered to have been caused by additional observed variables is called a multiple 

indicators and multiple independent causes (MIMIC) model. This means that in measurement 

models with a MIMIC factor (i.e., latent variable), some observed indicators are specified as effects 

of the latent variable, whereas other indicators are specified as causes of the latent variable (Kline 

2006).  

In a MIMIC model, there are no links among the latent variables (Rabe-Hesketh et al. 

2004), so Equation 18 becomes: 

휂𝑖 =  𝛼 + 𝚪𝑥𝑖 + 휁𝑖                                                                                   Equation 19                        

The specification of the presumed causal effects (i.e., effect priority) is a key part of 

structural equation modeling (Kline 2011). Causal relations can be hypothesized and accordingly 

specified in the model for both types of variables, observed and latent. The SEM analysis for a 

specified model produces parameter estimates in such way to minimize the discrepancy between 

the covariance matrix of the sample (i.e., observed variables), (S), and the covariance matrix of 

these variables calculated from the estimated parameters of the model (�̂�) (Hershberger 2006). 
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3.3.4.1 Multilevel Structural Equation Modeling (multilevel SEM) Techniques 

A major recent development with regards to SEM techniques has been the convergence of SEM 

and multilevel analyses, which accounts for interdependencies resulting from clustering of 

observations within a lower-level unit in higher-level units (Kline 2011).  

In multilevel SEM techniques, the SEM analysis component allows for examination of 

complex links among various exogenous and endogenous variables while the multilevel analysis 

component allows for examination of interdependency among data due to nesting of units within 

hierarchical levels. These tasks occur simultaneously during the multilevel SEM estimation 

process. These synthetized capabilities make the multilevel SEM a sophisticated and advanced 

technique to be applied to empirical data in various research fields. 

The structural model for a two-level multilevel SEM where first-level observations is are 

clustered in second-level cluster js can be formulated as: 

𝑦𝑖𝑗 =  𝛼 + 𝐁𝑦𝑖𝑗 + 𝚪𝑥𝑖𝑗 + 𝚭𝑧𝑗 + 휁𝑖𝑗                                                          Equation 20                         

where, 𝛼 , 𝐁 , 𝚪, and other parameters are as previously defined; 

𝑧𝑗 =  vector of observed independent (i.e., exogenous) variables at the cluster level; and 

𝐙 =  matrix of regression coefficients for cluster-level variables. 

Modeling cases with a nested data structure (such as the one above) by multilevel SEM 

techniques makes the analysis more powerful than analyzing the data at only the observation level. 

This is because the multilevel SEM allows for examination of within-cluster (i.e., observation or 

first level) relations as well as the between-cluster (i.e., cluster or second level) relations. This 

means that the between-cluster covariance matrix provides additional information about the 

within-cluster relations (Stapleton 2006). The random effects of clusters are estimated by the 
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multilevel SEM along with coefficients of the structural model (as well as those for the 

measurement model in multilevel SEMs with both structural and measurement components).  

In research based on ecological model frameworks, Smith et al. (2008) suggested using 

multilevel analytic approaches such as multilevel statistical models. Therefore, this study uses 

multilevel SEM techniques to examine the link between nonmotorized travel behavior and the 

built and social environments, while controlling for residential self-selection (i.e., endogeneity) 

bias as well as interdependency among data from multiple hierarchical levels of influence.  

Studies using a multilevel SEM model are rarely found in the transportation field (Chung 

et al. 2004). The present study aims to the reintroduce these sophisticated techniques to travel 

behavior research by employment of multilevel SEMs in the analysis of nonmotorized travel 

behavior. Moreover, multilevel SEM techniques have been used in the current study to test the 

causality of the links between physical activity, the built environment, and health—highlighting 

the potential of such techniques for being applied in public health research. 

3.4 Chapter Conclusions 

 

Guided by the principles of the ecological model of behavior and the existing literature, a 

comprehensive conceptual framework is proposed in this chapter for examination of the links 

between nonmotorized travel behavior, the built and social environments and health outcomes. 

Several publicly available datasets are utilized in the analysis including—but not limited 

to—the NHTS, the ACS, the SLD, the Walk Score, the BRFSS, and the CHR&R datasets.  

Advanced statistical techniques are employed to develop integrated models, which allow 

comprehensive analysis of the complex interrelationships between the environment, nonmotorized 

travel and health. These include linear mixed-effects (i.e., multilevel) modeling, ordered as well 

as binary probit modeling, structural equation modeling, and instrumental variable techniques. 
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Chapter 4: Analysis of Nonmotorized Travel Behavior 

“Walking is the best possible exercise. Habituate yourself to walk very far.”     

                                                                                                                       —Thomas Jefferson 14 

Identification of factors that influence nonmotorized travel behavior and understanding the extent 

and direction of the effects of these factors are essential to development of travel demand models 

with a comprehensive, multimodal framework. The built environment characteristics of the 

residential location are among the many factors that can influence the choice and the extent of 

nonmotorized travel by people. 

While it is evident that micro-level (i.e., neighborhood-level) built environment factors 

play a role in generating nonmotorized trips (see e.g., Cervero and Kockelman 1997; Handy and 

Clifton 2001; Greenwald and Boarnet 2001; Rodríguez et al. 2009; Mitra and Buliung 2012 among 

other studies), it is not clear how the built environment characteristics of higher-level spatial areas 

(i.e., meso- and macro-level built environment factors) affect these trips. This gap in knowledge 

highlights the need for research into the role of regional (i.e., meso-level) and metropolitan area 

(i.e., macro-level) built environment factors in promotion or prevention of nonmotorized trips.  

This chapter contributes to the existing empirical knowledge on nonmotorized travel 

behavior by using an ecological framework for developing advanced statistical models to analyze 

nonmotorized travel. First, household-level nonmotorized travel behavior models are developed 

to examine the association between the number of nonmotorized trips generated from households 

and objectively measured neighborhood-level (i.e., micro-level) as well as regional- and 

metropolitan-level (i.e., meso- and macro-level) built and social environment attributes of the place 

of residence. Second, person-level nonmotorized travel behavior models are developed to examine 

 
14 Letter to Peter Carr, 19 August 1785 in The Papers of Thomas Jefferson. 
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the link between individuals’ daily nonmotorized trip mode share and objectively measured built 

and social environment attributes of their place of residence at multiple levels of influence. 

Nonmotorized travel behavior is defined as walking and bicycling in this study and separate 

models are developed for each of these activities. It should be borne in mind that modeling 

bicycling travel behavior remains an under-investigated area of research. Therefore, this chapter 

also contributes to the body of empirical knowledge on bicycling travel behavior by developing 

and estimating separate models for bicycling trips. The estimated models provide insights for 

evaluation of the effects of various factors on walking and bicycling travel. 

Nonmotorized travel behavior models have been developed based on data from two 

different study areas: 

1) several metropolitan areas within the state of Florida; and  

2) the Baltimore (in state of Maryland) and Washington, D.C. metropolitan areas15.  

Due to data availability time frames, the analyses of the two different study areas utilize 

different databases. However, both analyses have been designed in such way to include the 

elements of the same conceptual framework (Figure 1), which follows the principles of the 

ecological model of behavior.  

A central focus of the ecological model is the role of the built environment (in addition to 

that of the social environment) at multiple levels of influence in human behavior. Accordingly, the 

proposed frameworks for the nonmotorized travel behavior models developed in this chapter have 

been conceptualized in such way to examine the effects of built as well as social environment 

factors at multiple levels of influence on walking and bicycling travel behavior (see Figure 1). 

 
15 Due to similarities in the analysis of the two case studies, only the Florida case study nonmotorized travel models 

are included in the main body of this dissertation. The Baltimore-D.C. case study analysis and models are presented 

in Appendix C. However, results from the Baltimore-D.C. case study are used in the main body of the dissertation for 

comparison purposes and are referred to as corroborating evidence for the findings of the Florida case study. 
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4.1 Nonmotorized Travel Behavior: A Florida Case Study 

Based on the principles of the ecological model of behavior, this section presents the analysis of 

the link between nonmotorized travel and built as well as social environment attributes at various 

levels of influence using data from several metropolitan areas within the state of Florida. To 

systematically test the link between walking and bicycling trips and environmental factors16, two 

different units of analysis are considered for developing statistical models. First, household-level 

models are estimated to examine the role of various environmental factors in the number of 

walking/bicycling trips generated from households. Then, person-level models are estimated to 

investigate the impact of environmental factors in the level of nonmotorized travel by individuals. 

According to the ecological model, the influence of built and social environments on 

behavior can be considered at multiple spatial levels. As mentioned in Chapter 2, a few studies 

discussed a three-level hierarchy for the influence of environmental factors on physical activity 

such as nonmotorized travel including the micro level (e.g., neighborhood), the meso level (e.g., 

county), and the macro level (e.g., metropolitan area) (see e.g., King et al. 2002 and Ewing et al. 

2003b). Specifically, King et al. (2002) suggested that the influence of built environment attributes 

on physical activity (e.g., nonmotorized travel) should be considered at micro, meso, and macro 

levels. Thus, this hierarchical structure has been adopted in the Florida case study to develop 

models that link walking and bicycling travel behavior to household characteristics as well as 

environmental factors (i.e., built and social environment characteristics).  

This means that the role of built environment factors in nonmotorized travel has been 

examined at the micro-level (i.e., neighborhood), the meso-level (i.e., county), and the macro-level 

 
16 For the purpose of analyses presented in this dissertation, “the environment” refers to the “built and social 

environment” (as opposed to the natural environment). Therefore, anywhere the phrase “environmental factors” is 

used within this analysis, it should be considered in terms of built and social environment factors. 
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(i.e., metropolitan area). Social environment factors have also been included in the Florida models 

at the micro, meso, and macro levels (i.e., household, neighborhood, metropolitan area)17.  

Detailed descriptions of the data utilized in the Florida nonmotorized travel behavior case 

study along with the statistical modeling techniques employed and model estimation results are 

provided in the following subsections. 

4.1.1 Florida Data 

The database for the Florida nonmotorized travel behavior models consists of the following 

individual datasets:  

- National Household Travel Survey (NHTS)—2009 Florida Add-on data; 

- Smart Location Database (SLD); 

- Community Health Status Indicators (CHSI); 

- County Health Rankings & Roadmaps (CHR&R); 

- American Community Survey (ACS); 

- Walk Score data;  

- Urban Mobility Information data—Texas A&M Transportation Institute (TTI); 

- Uniform Crime Reporting (UCR) Program data—Federal Bureau of Investigation 

(FBI); and 

- Census Bureau’s TIGER/Line Shapefiles.  

 
17 It is noteworthy that compared with the Baltimore-DC case study (Appendix C), which examines the role of the 

built environment in nonmotorized travel at the micro-level (i.e., neighborhood) and meso-level (i.e., county), the 

Florida case study adds a macro-level (i.e., metropolitan area) built environment influence to the models. Further, 

social environment factors have also been included in Florida models at the micro (i.e., household), meso (i.e., 

neighborhood) and macro (i.e., metropolitan area) levels, whereas the only level of influence for the social 

environment included in the Baltimore-DC case study (Appendix C) is the household. 



 

105 

 

As a nationwide travel survey, the NHTS greatly challenges the ability to measure the 

micro-level built environment near respondents’ residences. Instead, the Florida 2009 NHTS Add-

on survey identified the census block group of each household as the smallest geographic unit in 

the survey. This facilitated the operationalization of the micro-level (i.e., neighborhood level) built 

environment. The Add-on data also provided geocoded information on Florida survey 

respondents’ household location, household socioeconomic, and sociodemographic characteristics 

as well as detailed information on trips made by individuals within each surveyed household.  

Figure 2 shows the mode share for Florida trips based on the 2009 NHTS Add-on travel 

survey data. Figure 3 shows the percentage of trips by destination based on the data recorded in 

the Florida 2009 NHTS Add-on sample.  

 

Figure 2. Trip Mode Share Based on the Florida 2009 NHTS Add-on Data 

As it can be seen from Figure 3, “Home” was the destination for over 40% of the walking 

trips and nearly 45% of bicycling trips. Considering walking and bicycling trips as one general 

“nonmotorized” mode, the Florida 2009 NHTS Add-on data also indicate that of the 11,614 

nonmotorized trips (i.e., pedestrian trips plus bicycle trips) that were reported in Florida: 
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- 4,708 trips (i.e., approximately 41%) listed “Home” as trip destination; 

- 1,635 trips (i.e., over 14%) went beyond 1.5 miles in trip distance; 

- 1,567 trips (i.e., approximately 13.5%) lasted longer than 30 minutes in trip duration. 

These statistics show that a considerable proportion of Florida walking and bicycling trips 

did not originate at the residence location and may not have stayed within the neighborhood 

boundaries.  

 

Figure 3. Percentage of Trips by Destination — Florida 2009 NHTS Add-on Data 

The SLD provided information on land use and built environment characteristics (i.e., Ds 

of the built environment), in addition to socioeconomic and sociodemographic characteristics at 

the census block group level. These data include population and employment densities, extent of 

mix land use development, network and neighborhood design factors, destination and transit 

accessibility, and transit service frequency. The CHSI, CHR&R, ACS, TTI, and FBI datasets 

provided additional data on built and social environment factors. 
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Walk Score data were obtained for counties as well as metropolitan areas in the Florida 

case study. Also, block-level and county-level shapefiles were obtained from the U.S. Census 

Bureau’s TIGER/Line database. GIS tools were used to spatially link land use and built 

environment data for each household to nonmotorized travel behavior of the household and 

individuals and obtain the final integrated Florida database for statistical modeling. Detailed 

information on the datasets used in this analysis can be found in Chapter 3. 

4.1.2 Florida Metropolitan Areas 

The National Research Council (2005) reported that by year 2000, 80% of the U.S. population 

lived in metropolitan areas (i.e., central cities, suburbs of metropolitan areas). For that reason, the 

present case study focuses on metropolitan areas as study areas and does not include data from 

non-metropolitan areas (e.g., micropolitan areas, rural areas) in the analysis.  

According to the U.S. Census Bureau web site, a Core-Based Statistical Area (CBSA) 

designated as a metropolitan area has “at least one urbanized area of 50,000 or more population, 

plus adjacent territory that has a high degree of social and economic integration with the core as 

measured by commuting ties.”18 

For the purpose of this case study, a metropolitan area is considered the CBSA where the 

surveyed household was located. Data from 23 metropolitan areas (CBSAs) in the state of Florida 

are utilized in the analysis. Figure 4 shows a few of these metropolitan areas on a map of Florida 

along with the location of households for which walking and bicycling activities were recorded in 

the Florida 2009 NHTS Add-on data.  

 
18 “Core Based Statistical Areas”: https://www.census.gov/topics/housing/housing-patterns/about/core-based-

statistical-areas.html 
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Figure 4. Florida Case Study Map 
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Table 2 lists the Florida metropolitan areas with their corresponding sample size and total 

population (according to U.S. Census Bureau 201019). Population and employment densities have 

been computed for each metropolitan area based on information available in the SLD.  

Table 2. Florida Case Study Metropolitan Areas 
 

Metropolitan Area 

(CBSA) 

Sample  

Size 

Population 

(2010) 

 

Mean 

Residential 

Densitya 

Mean  

Employment 

Densityb 

Cape Coral-Fort Myers 

Crestview-Fort Walton Beach-Destin 

Deltona-Daytona Beach-Ormond Beach 

Gainesville 

Homosassa Springs 

Jacksonville 

Lakeland-Winter Haven 

Miami-Fort Lauderdale-Pompano Beach 

Naples-Marco Island 

North Port-Bradenton-Sarasota 

Ocala 

Orlando-Kissimmee-Sanford 

Palm Bay-Melbourne-Titusville 

Palm Coast 

Panama City-Lynn Haven-Panama City Beach 

Pensacola-Ferry Pass-Brent 

Port St. Lucie 

Punta Gorda 

Sebastian-Vero Beach 

Sebring 

Tallahassee 

Tampa-St. Petersburg-Clearwater 

The Villages 
 

478 

325 

448 

310 

354 

1,184 

406 

3,949 

264 

516 

315 

1,155 

447 

146 

296 

518 

429 

165 

115 

274 

617 

2,160 

105 
 

618,754 

180,822 

494,593 

264,275 

141,236 

1,345,596 

602,095 

5,564,635 

321,520 

702,281 

331,298 

2,134,411 

543,376 

95,696 

168,852 

448,991 

424,107 

159,978 

138,028 

98,786 

367,413 

2,783,243 

93,420 
 

3.62 

3.29 

3.36 

2.73 

1.06 

4.27 

2.84 

13.54 

4.24 

4.28 

1.54 

4.83 

4.43 

2.44 

2.58 

2.65 

3.51 

2.56 

2.51 

1.95 

2.48 

6.35 

1.94 
 

0.92 

1.14 

0.85 

1.77 

0.21 

1.41 

1.31 

2.81 

1.17 

1.39 

0.35 

1.47 

1.15 

0.44 

1.41 

0.98 

0.87 

0.71 

0.87 

0.61 

1.31 

1.74 

0.28 
 

NOTES: 

 

To more accurately account for household representativeness, analytic weights (NHTS household survey weights) 

have been considered in the computation of the residential and employment densities reported; 

 
a Measured by taking the average of values for the census block group within the CBSA rather than dividing the overall 

population by the overall area (size of the metropolitan area). The unit is persons per acre; 

 
b Measured by taking the average of values for the census block group within the CBSA rather than dividing the overall 

employment by the overall area (size of the metropolitan area). The unit is jobs per acre. 

 
19 U.S. Census Bureau, American FactFinder web site: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml 
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It can be seen from the table that the most highly populated metropolitan areas in the 

Florida sample are the Miami-Fort Lauderdale-Pompano Beach and the Tampa-St. Petersburg-

Clearwater metropolitan areas, respectively. In terms of average employment density, Miami-Fort 

Lauderdale-Pompano Beach is the metropolitan area with the most job opportunities per area of 

land and the Gainesville and Tampa-St. Petersburg-Clearwater metropolitan areas follow next. 

Table 2 also shows that sample sizes are proportionate to the population, which overall makes this 

sample a good representative of the population within the state of Florida. 

4.1.3 Household-level Nonmotorized Travel Behavior Model Framework 

The unit of analysis for the first Florida case study is the household. As indicated previously, a 

large proportion of Florida nonmotorized trips did not originate from the home location (41%). 

Also, for considerable proportions of nonmotorized trips, a travel distance over 1.5 miles (>14%) 

or a travel time of over 30 minutes was reported (>13%); therefore, it is possible that many of 

these trips did not occur or stay within the residential neighborhood. Consequently, the 

environmental patterns of geographical areas beyond the neighborhood (e.g., county or 

metropolitan area) may have played a role in generation of these nonmotorized trips. This implies 

that potentially multiple levels of built and social environments influenced the extent of 

nonmotorized travel behavior in the Florida sample.  

This is in line with the theoretical principles of the ecological model of behavior, which 

posits that within the multiple levels of influence on behavior, concepts that themselves operate at 

multiple levels are sociocultural and built environment factors (Sallis et al. 2008). In this case, 

focusing only on the attributes of the neighborhood-level built or social environment for their 

influence on nonmotorized travel behavior will not be a comprehensive analysis. Therefore, based 

on the ecological model of behavior, a multilevel model framework has been conceptualized for 
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the Florida household-level analysis, which relates the extent of households’ nonmotorized travel 

to the attributes of the built and social environments at various levels of influence.  

Figure 5 shows the ecological model framework as conceptualized and applied to the 

Florida household-level nonmotorized travel behavior models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Ecological Framework for Levels of Influence on Nonmotorized Travel Behavior 

(Florida Household-level Models) 
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the household (i.e., micro level), the neighborhood (i.e., the meso level), and the metropolitan area 

(i.e., the macro level). Although considered in the initial model framework (Figure 5), county-

level socioeconomic factors have not been included in the final Florida household models mainly 

to keep the hierarchy for the influence of the social environment at three levels.  

4.1.4 Household-level Nonmotorized Travel Models: Dependent Variables 

The nonmotorized trips of the 2009 NHTS Add-on households located in metropolitan areas within 

the state of Florida have been considered for statistical modeling in the Florida household-level 

case study. Florida was selected as the study area due to availability of geocoded information on 

respondents’ household location in the 2009 NHTS Add-on data for that state, which allowed 

operationalization of the neighborhood built environment attributes at a fine scale. Four separate 

models for walking and bicycling trips have been developed based on four dependent variables: 

1) household’s number of daily per capita walking trips; 

2) household’s number of daily per capita bicycling trips; 

3) household’s total number of daily walking trips; and 

4) household’s total number of daily bicycling trips.  

The total numbers of a household’s walking (or bicycling) trips were computed by 

aggregating the number of walking (or bicycling) trips recorded in the 2009 NHTS Add-on travel 

survey during the travel day for all members of that household.  

To obtain the household’s number of daily per capita walking trips, the total number of 

household’s daily pedestrian trips was divided by the total number of household members. 

Similarly, the household’s number of daily per capita bicycling trips was computed by dividing 

the total number of household’s daily bicycling trips by the total number of household members.  
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Table 3 provides information on the frequency and percentage of Florida households’ total 

number of household’s daily walking and bicycling trips. The table indicates that the maximum 

number of household trips was 22 and 11 for walking and bicycling trips, respectively.  

      Table 3. Number and Proportion of Florida Household Nonmotorized Trips 

        NOTE: — = Not applicable; Source of data: 2009 NHTS Add-on data. 

 

Also, a sizable percentage (77.5%) of Florida households did not report any walking trips. 

This percentage is much higher in the case of bicycling trips as almost 97% of households did not 

report any bicycling trips during the day of travel survey. The average number of daily household 

walking and bicycling trips were 0.65 trips and 0.08 trips, respectively. These low figures are 

consistent with the literature that suggests nonmotorized trips occur at very low rates (see e.g., 

Number 

of Household 

Trips 

Frequency Percent 

Walking Bicycling Walking Bicycling 

0 11,607 14,463 77.50 96.57 

1 421 59 2.81 0.39 

2 1,787 339 11.93 2.26 

3 161 19 1.08 0.13 

4 584 63 3.90 0.42 

5 63 12 0.42 0.08 

6 185 10 1.24 0.07 

7 24 3 0.16 0.02 

8 82 4 0.55 0.03 

9 10 1 0.07 0.01 

10 28 2 0.19 0.01 

11 4 1 0.03 0.01 

12 4 — 0.03 — 

13 — — — — 

14 7 — 0.05 — 

15 2 — 0.01 — 

16 3 — 0.02 — 

17 — — — — 

18 1 — 0.01 — 

19 1 — 0.01 — 

20 — — — — 

21 1 — 0.01 — 

22 1 — 0.01 — 

Total 14,976 14,976 100.00 100.00 
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Friedman et al. 1994; Agrawal and Schimek 2007; Marcus 2008; Kuzmyak et al. 2014) as well as 

the statistics obtained from the Baltimore-DC case study (presented in Appendix C). Also, Florida 

households’ average lower in the number of daily household walking trips compared to the 

Baltimore-DC case study where the average number of daily household walking trips was 0.99 

(see Appendix C). 

4.1.5 Household-level Nonmotorized Travel Models: Independent Variables 

The independent variables for the Florida statistical models were chosen based on the theoretical 

principals of the ecological models of behavior, previous empirical research (elaborated in Chapter 

2 and Appendix B), and the results of the Baltimore-D.C. case study (reported in Appendix C). 

The independent variables for the Florida household-level case study are categorized as follows: 

4.1.5.1 Social Environment Variables 

Social environment factors have been included in the models at three levels of influence: the 

household (i.e., the micro level), the neighborhood (i.e., the meso level), and the metropolitan area 

(i.e., the macro level). The household is considered the most important setting among the social 

environment levels of influence that determines an individual’s behavior (Gochman 1997; Van 

Acker et al. 2010). Therefore, household control variables have been included in the Florida 

models to represent the first level of influence (micro level) of the social environment on 

nonmotorized travel behavior. These variables provide information on socioeconomic status (SES) 

of each Florida 2009 NHTS Add-on household including the household’s: 

-  number of adult members; 

-  annual income; 

-  number of workers; and 

-  number of vehicles. 
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The values for these variables are taken directly from the Florida 2009 NHTS Add-on data. 

Many past studies (see Chapter 2) highlighted the crucial role of car ownership in nonmotorized 

travel behavior20. Thus, variables representing car ownership were included in the models at 

influence levels higher than the household (i.e., the micro-level social environment).  

To represent the meso-level social environment, a variable representing the percentage of 

households in the neighborhood that own no cars has been included in the nonmotorized travel 

behavior models. The macro-level social environment has been represented by a CBSA-level car 

ownership variable (i.e., the average percentage of households in the CBSA that own more than 

two cars) as well as a CBSA-level income-related variable (i.e., the average percentage of low-

wage workers in the CBSA).  

These variables allow controlling for socioeconomic factors within the area where the 

household was located, in addition to those of the household itself. Table 4 provides additional 

information about the three-level (micro, meso, macro) social environment variables included in 

the Florida models. 

4.1.5.2 Built Environment Variables 

As mentioned previously, built environment characteristics of the household location have been 

considered at various levels of geography to control for the impact of micro-, meso- and macro-

level built environment on walking and bicycling travel behavior. These variables include: 

Micro-level (i.e., Neighborhood-level) Built Environment Variables  

The micro-level built environment variables provide information on the neighborhood-level built 

environment for each household location. The SLD provides these data at the census block group 

(CBG) level, which is a fine-scale geographical area. According to the U.S. Census Bureau, CBGs 

 
20 Household vehicle ownership also proves to be one of the most influential socioeconomic factors in determining 

walking and bicycling trips in the Baltimore-D.C. case study (see Appendix C). 
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typically contain between 600 to 3,000 people21. Therefore, the census block group is a relatively 

small area that approximates a neighborhood (Zick et al. 2013). In the Florida case study, the 

neighborhood-level built environment variables are represented by the attributes of the census 

block group where the household was located. This provides a much better resolution for the 

neighborhood built environment characteristics than the one utilized in the Baltimore-D.C. case 

study, which used TAZs as neighborhoods (see Appendix C). The SLD neighborhood-level (i.e., 

CBG-level) built environment variables included in the Florida household-level models are:  

- activity density; 

- entropy; 

- intersection density; 

- pedestrian-friendly network density; 

- local transit accessibility (frequency of service); and 

- distance to local transit (proximity to transit). 

These variables represent the Ds of the built environment at the neighborhood level. Table 

4 provides additional information about the micro-level built environment variables. 

Meso-level (County-level) Built Environment Variables 

The meso-level built environment variables have been defined based on the county where the 

household was located. Block group-level built environment and land use measures provided by 

the SLD were aggregated to obtain the average county-level built environment measures for each 

household’s location. Aggregation of data at smaller scales to obtain the mean of the explanatory 

variables at larger scales provides a meaningful contextual variable (i.e., the group mean) for 

inclusion in the multilevel mixed-effects models (Snijders and Bosker 2012). This method of 

 
21 “Geographic Terms and Concepts – Block Groups”: https://www.census.gov/geo/reference/gtc/gtc_bg.html 



 

117 

 

calculation of the built environment for larger level scales prevents measurement biases (Nasri and 

Zhang 2014). Meso-level regional accessibility measures have also been derived from the SLD 

data. Interzonal (i.e., census block group to census block group) accessibility measures provided 

in SLD have been aggregated to obtain average county-level accessibility measures for the 

nonmotorized travel behavior models developed in this case study. The meso-level (i.e., county-

level) built environment variables included in the household-level nonmotorized travel models are:  

- average activity density; 

- average entropy; 

- average regional diversity; 

- average intersection density; 

- average pedestrian-friendly network density; 

- average transit service frequency; 

- average automobile accessibility; and  

- average transit accessibility. 

These variables represent the Ds of the built environment at the county (meso) level in the 

models. Table 4 provides more information about the meso-level built environment variables. 

Macro-level (Metropolitan Area-level) Built Environment Variables 

To examine the role of various levels of geography on nonmotorized travel behavior, the Florida 

case study adds the macro-level (i.e., metropolitan area-level) geographical scale to the analysis. 

The travel profile in many metropolitan areas shows a mix of patterns ranging from high levels of 

automobile trips in the suburban areas to high levels of nonmotorized trips in the core of the urban 

area (Murga 2004). Therefore, the role of the metropolitan area-level built environment 
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characteristics in nonmotorized travel behavior is examined by including variables representing 

these macro-level built environment attributes in the Florida models.  

Metropolitan area-level built environment variables have been defined based on the Core 

Based Statistical Area (CBSA) where the household was located. Past studies also defined 

metropolitan areas based on the CBSA designation (Cidell 2010).  

Census block group-level built environment and land use measures provided by the SLD 

have been aggregated to obtain the average metropolitan area-level (macro-level) built 

environment measures for each household location. This was done based on arguments by Snijders 

and Bosker (2012) who suggested that obtaining the mean of the explanatory variables at larger 

scales by aggregation of data at smaller scales provides a meaningful contextual variable (i.e., the 

group mean) for inclusion in multilevel mixed-effects models. The macro-level (i.e., 

CBSA/metropolitan area-level) built environment variables included in the models are:  

- average activity density; 

- average entropy; 

- average total road network density; 

- percentage of small blocks; 

- average automobile accessibility; and  

- average transit accessibility. 

Table 4 provides additional information about the macro-level built environment variables, 

and the Ds of the built environment they represent in the models. 

Additional Notes on Built Environment Variables 

As seen from Table 4, a few of the built environment variables have been included at all three 

levels of geography (i.e., micro, meso, and macro levels). For example, the Activity Density 
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variable at the micro level measures employment and residential density at the neighborhood level, 

whereas the Mean Activity Density variables at the meso and macro levels quantify the level of 

residential and employment activities in the corresponding level of geographical areas (e.g., county 

and metropolitan area).  

Also, the Entropy variable has been included in the model to represent the extent of mixed-

use development (i.e., land use diversity) in the respective area (i.e., neighborhood, county, 

metropolitan area). This variable uses the 5-tier employment categories (i.e., retail, office, 

industrial, service, and entertainment) and the entropy formula22 in computation of entropy at each 

level of geography.  

Variables representing intersection density and total road network density have been 

included to account for street network design and automobile-oriented intersection density. 

Intersection density have been used in the past studies as an indicator of smaller block sizes and a 

more walkable urban design (see e.g., Kerr et al. 2007). However, the intersection density variable 

provided by the SLD measures the intersection density in terms of automobile-oriented 

intersections. Additionally, the SLD User Guide states that the source data for this variable 

“provides no information regarding the presence or quality of sidewalks”23. Therefore, this 

variable it is not expected to be an indicator of more pedestrian-friendly designs or to have a 

positive correlation with walking in this analysis. 

The pedestrian-friendly network density variables have been included to capture the 

influence of pedestrian-oriented urban designs on nonmotorized travel behavior. These variables 

are hypothesized to have a positive association with walking.  

 
22 Entropy =  −∑

𝑃𝑗∗𝑙𝑛(𝑃𝑗)

𝑙𝑛(𝐽)𝑗   where, 𝐽 =  number of land use classes within the area; and 𝑃𝑗 = proportion of land use 

in the jth class (Frank and Pivo 1994; Cervero and Kockelman 1997; Cervero 2001; and Cervero and Duncan 2003); 

 
23 See page 20 of Ramsey and Bell (2014). 
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Local transit proximity and accessibility are represented by variables measuring distance 

to transit stops and frequency of transit service. Frequency of transit service has been aggregated 

to the county level to represent the transit accessibility at the meso level of the built environment.  

The inclusion of destination accessibility variables allows for capturing the role of regional 

accessibility in nonmotorized travel behavior at both the county and the metropolitan area levels. 

The destination accessibility variables measure the average number of employment opportunities 

in the county or metropolitan area that are within a 45-minute automobile or transit travel time, 

respectively. These variables focus on employment accessibility and have been considered for 

inclusion in the models based on the use of similar measures in past research. For example, Cervero 

and Murakami (2010) used an employment accessibility index computed based on the mean 

number of jobs within 30 minutes travel time on highway networks. Employment accessibility was 

also measured in terms of number of jobs within a distance from the origin in the analysis of 

walking and bicycling by Cervero and Duncan (2003). 

The final integrated database is included in Table 4, which lists all the independent 

variables used in the Florida nonmotorized travel behavior models along with brief descriptions, 

the effect they represent in the model, and information about data sources.  

Together, the variables listed in Table 4 provide a comprehensive set of factors that can be 

used to examine the effects of the five Ds of the built environment as well as the social environment 

attributes at hierarchical levels of influence as posited by the principles of the ecological model of 

behavior.  

Tables 5 and 6 present the weighted descriptive statistics for household-level social 

environment variables as well as a few of the main built environment independent variables at the 

neighborhood level (CBG level) for Florida metropolitan areas included in the models. 
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Table 4. Florida Household-level Model Variable Descriptions and Data Sources 
 

Independent  

Variable 

Represented 

Effect 

Variable 

Description/Units 

Data  

Source 

Data Field 

(Computation)24, a 

Social Environment  
Micro Level: The Household 

Number of Adults SES Persons over 18 in household NHTS NUMADLTc 

Number of Vehicles SES Vehicles owned by household NHTS HHVEHCNTc 

Number of Workers SES Employed persons in household NHTS WRKCOUNTc 

Annual Income SES Household annual income 

(midpoint of category)  
NHTS 

Based on 

“HHFAMINC”c 

Meso Level (Census Block Group): The Neighborhood 

Percentage of HHs  

with No Cars 

 

SES 
Percentage of HHs in CBG  

with zero cars 

 

SLD Pct_AO0 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Percentage of 

HHs with 2+ Cars 

 

SES 
Percentage of HHs in CBSA  

with more than two cars 
SLD 

Pct_AO2p 

(Averaged) 

Average Percentage of 

Low-Wage Workers 
SES 

Percentage of workers in CBSA 

earning $1250/month or less  
SLD 

R_PctLowWage 

(Averaged) 

Built Environment 
Micro Level (Census Block Group): The Neighborhood  

Activity Density Density 
(Employment + housing units) 

on unprotected land area (acres) 
SLD D1d 

Entropy 
Land use 

Diversity 
5-tier employment entropy  SLD D2b_E5Mix 

Intersection Density Urban Design Auto-oriented intersections/mi2 SLD D3bao 

Pedestrian-friendly 

Network Density 
Urban Design 

Facility miles of  

pedestrian-oriented links/mi2 
SLD D3apo 

Local Transit Service 
Local Transit 

Accessibility 

Aggregate frequency of  

transit service/mi2 
SLD D4d 

Local Transit Accessibility 
Distance to  

Local Transit 

Distance from centroid to the 

nearest transit stop (meters) 
SLD D4a 

Meso Level: The County  

Mean  

Activity Density 
Density 

Ave. (employment+ housing units) 

on unprotected land in county 
SLD 

D1d 

(Averaged) 

Mean  

Entropy 

Land use 

Diversity 

Ave. 5-tier employment  

entropy for county 

 

SLD 
D2b_E5Mix  

(Averaged) 

Mean  

Regional Diversity 

Regional 

Diversity 

Ave. deviation of jobs/population 

ratio from the regionalb average 
SLD 

D2r_JobPop 

(Averaged) 

Mean  

Intersection Density 

Urban  

Design 

Ave. auto-oriented  

intersections/mi2 for county 
SLD 

D3bao 

(Averaged) 

 
Mean Pedestrian-friendly 

Network Density 

Urban  

Design 

Ave. facility miles of pedestrian- 

oriented links/mi2 for county 
SLD 

D3apo 

(Averaged) 

Mean  

Transit Service 

Transit 

Accessibility 

Ave. aggregate frequency of  

transit service/mi2 for county 
SLD 

D4d 

(Averaged) 

 
24 The variables provided in the SLD have been computed using various established methodologies, which have been 

extensively described in the SLD User Guide document. Therefore, the computation methods for the SLD variables 

are not discussed in this dissertation. The Smart Location Database User Guide can be found at: 

https://www.epa.gov/sites/production/files/2014-03/documents/sld_userguide.pdf 
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Mean Temporal  

Automobile Accessibility 

Destination 

Accessibility 

Ave. number of jobs in county 

within a 45-minute auto travel time  
SLD 

D5ar 

(Averaged) 

Mean Temporal  

Transit Accessibility 

Destination 

Accessibility 

Ave. number of jobs in county 

within a 45-minute transit commute 
SLD 

D5br 

(Averaged) 

Macro Level (Core Based Statistical Area): The Metropolitan Area  

Mean  

Activity Density 
Density 

Ave. (employment+ housing units) 

on unprotected land in CBSA 
SLD 

D1d 

(Averaged) 

Mean  

Entropy 

Land use 

Diversity 

Ave. 5-tier employment  

entropy for CBSA 
SLD 

D2b_E5Mix  

(Averaged) 

Mean  

Total Road Network Density 

Urban  

Design 

Ave. total road network density 

for CBSA 
SLD 

D3a 

(Averaged) 

Percentage  

of 0.01 Blocks 

Urban  

Design 

Percent blocks with an area  

smaller than 0.01 square miles 

Census TIGER  

Block Shapefiles 

Mean Temporal  

Automobile Accessibility 

Destination 

Accessibility 

Ave. number of jobs in CBSA 

within a 45-minute auto travel time  
SLD 

D5ar 

(Averaged) 

Mean Temporal  

Transit Accessibility 

Destination 

Accessibility 

Ave. number of jobs in CBSA 

within a 45-minute transit commute  
SLD 

D5br 

(Averaged) 

NOTES: 
a Measure was computed by averaging values of the referenced field provided in data source over the relevant geographical area; 
b CBSA;  
c Variable was obtained from 2009 NHTS Add-on Household File;  

Ave. = Average; HH = Household. 

 

   Table 5. Descriptive Statistics: Socioeconomic Status (SES) Characteristics 
 

Florida  

Metropolitan Area 

(CBSA) 

Number  

of HH  

Adults 

Number  

of HH 

Vehicles 

Number 

of HH 

Workers 

HH Annual 

Income 

(1,000 dollars) 

 % HHs in 

CBG with  

No Cars  

 Mean SD Mean SD Mean SD Mean Mean SD 

Cape Coral-Fort Myers 1.82 0.74 1.66 0.95 0.96 0.86 50 - 55 4.44 6.52 

Crestview-Fort Walton-Destin 1.89 0.72 2.12 1.21 1.13 0.73 50 - 55 3.05 3.56 

Deltona-Daytona Beach-Ormond 1.85 0.77 1.79 1.01 0.82 0.85 40 - 45 5.18 6.85 

Gainesville 1.84 0.69 1.82 1.05 1.16 0.84 50 - 55 7.21 7.03 

Homosassa Springs 1.88 0.71 1.87 1.08 0.84 0.92 40 - 45 3.71 3.81 

Jacksonville 1.85 0.74 1.74 1.01 1.01 0.82 50 - 55 6.80 10.1

7 Lakeland-Winter Haven 1.86 0.72 1.62 1.01 0.90 0.84 40 - 45 5.53 6.99 

Miami-Fort Lauderdale-Pompano 1.91 0.84 1.58 0.97 1.00 0.84 45 - 50 8.66 11.2

5 Naples-Marco Island 1.74 0.68 1.62 0.92 0.89 0.75 45 - 50 4.75 5.44 

North Port-Bradenton-Sarasota 1.75 0.65 1.56 0.89 0.75 0.84 45 - 50 5.56 6.42 

Ocala 1.90 0.88 1.73 1.02 0.78 0.88 40 - 45 4.36 5.06 

Orlando-Kissimmee-Sanford 1.95 0.79 1.71 0.96 1.09 0.86 45 - 50 5.13 6.69 

Palm Bay-Melbourne-Titusville 1.85 0.76 1.71 0.91 0.99 0.87 45 - 50 4.27 5.17 

Palm Coast 2.07 0.69 2.01 0.94 1.02 0.88 50 - 55 3.80 4.73 

Panama City-Lynn Haven 1.74 0.64 1.78 0.88 0.97 0.76 45 - 50 4.31 4.05 

Pensacola-Ferry Pass-Brent 1.77 0.69 1.78 1.20 0.99 0.80 40 - 45 5.93 7.09 

Port St. Lucie 1.89 0.61 1.78 0.96 1.02 0.86 50 - 55 4.43 6.30 

Punta Gorda 1.78 0.69 1.65 1.05 0.79 0.90 35 - 40 5.57 9.31 

Sebastian-Vero Beach 1.71 0.62 1.77 1.04 0.97 0.83 50 - 55 6.82 7.71 

Sebring 1.77 0.63 1.75 1.08 0.81 0.97 40 - 45 5.62 6.40 

Tallahassee 1.82 0.71 1.82 1.03 1.16 0.82 50 - 55 6.44 8.48 

Tampa-St. Petersburg-Clearwater 1.81 0.71 1.62 0.94 0.98 0.83 45 - 50 6.45 8.16 

The Villages 1.62 0.50 1.37 0.79 0.43 0.69 35 - 40 2.76 3.38 

      

    NOTES: HH = Household; CBG = Census Block Group (i.e., neighborhood). 
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    The information in Table 5 shows that the Palm Coast metropolitan area has the largest 

mean of number of adults in the household (2.07), whereas the Crestview-Fort Walton-Destin 

metropolitan area households own the largest number of vehicles (2.12). The metropolitan areas 

with the largest number of workers in the household are Gainesville and Tallahassee (each with 

1.16 workers in the household). Households residing in The Villages and the Punta Gorda 

metropolitan areas earn the lowest mean annual income. Also, neighborhoods in the Miami-Fort 

Lauderdale-Pompano metropolitan area have the largest mean percentage of households that do 

not own any private vehicles (8.66%). 

Table 6. Descriptive Statistics: CBG-Level Built Environment Characteristics 
 

Florida  

Metropolitan 

Area 

(CBSA) 

Activity 

Density 

(employment + 

housing units)/ 

acre 

Entropy 

(dimensionless) 

Intersection 

Density 

(auto-oriented 

intersections/mi2) 

Pedestrian-

friendly 

Network 

Density 
(miles of  

ped-oriented 

links/mi2) 

Distance to 

Local Transita 

(meters) 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Cape Coral-Fort Myers 3.19 3.14 0.58 0.33 0.58 1.24 13.35 5.68 688.41 301.11 

Crestview-Fort Walton -Destin 2.79 2.89 0.63 0.31 0.27 0.64 10.52 5.79 667.83 25.96 

Deltona-Daytona Beach-Ormond 2.75 3.28 0.65 0.28 0.51 0.75 10.68 5.76 697.47 — b 

Gainesville 3.06 6.54 0.63 0.24 0.57 1.12 8.22 6.51 665.27 26.44 

Homosassa Springs 0.81 0.89 0.54 0.34 0.25 0.43 7.67 4.39 640.49 — b 

Jacksonville 3.49 4.26 0.66 0.25 1.31 3.05 10.13 5.87 668.82 25.23 

Lakeland-Winter Haven 2.59 4.52 0.54 0.31 0.64 1.17 8.99 5.81 729.35 335.53 

Miami-Fort Lauderdale-Pompano 9.35 11.6

2 
0.53 0.33 1.41 2.90 17.42 6.13 658.59 285.13 

Naples-Marco Island 3.61 3.53 0.65 0.25 0.61 0.89 10.51 5.57 483.22 26.88 

North Port-Bradenton-Sarasota 4.04 4.54 0.61 0.29 0.42 1.03 13.61 6.05 725.85 295.08 

Ocala 1.17 1.44 0.59 0.31 0.39 0.69 8.29 5.05 665.88 23.47 

Orlando-Kissimmee-Sanford 3.64 4.65 0.72 0.23 1.06 1.79 10.88 5.23 667.99 — b 

Palm Bay-Melbourne-Titusville 3.47 2.99 0.61 0.31 0.56 1.13 12.44 5.26 767.79 274.91 

Palm Coast 1.73 1.12 0.51 0.37 0.35 0.62 9.77 5.59 665.43 — b 

Panama City-Lynn Haven 3.16 3.91 0.62 0.29 0.51 0.97 10.11 5.03 673.15 — b 

Pensacola-Ferry Pass-Brent 2.19 2.37 0.64 0.29 0.62 1.65 9.36 5.19 667.82 — b 

Port St. Lucie 2.71 2.82 0.62 0.62 0.49 0.72 10.59 5.86 668.32 — b 

Punta Gorda 2.27 2.45 0.54 0.35 1.04 2.03 13.15 5.57 987.49 — b 

Sebastian-Vero Beach 2.31 1.99 0.58 0.34 0.57 1.02 9.92 4.78 697.48 — b 

Sebring 1.62 1.83 0.53 0.35 0.36 0.75 11.06 6.75 674.98 — b 

Tallahassee 2.49 4.89 0.61 0.31 0.51 0.98 7.28 5.32 674.44 — b 

Tampa-St. Petersburg-Clearwater 5.07 5.76 0.53 0.34 1.12 2.59 14.33 6.64 649.78 283.78 

The Villages 1.58 1.13 0.54 0.67 0.44 0.42 9.22 5.36 640.08 — b 

  

NOTES:  a Missing values were replaced by the value of the mean of the adjacent CBGs or CBSAs; b Not applicable (due to 

missing data, the average value of the variable from adjacent CBSAs were considered for all CBGs within the entire CBSA). 
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The descriptive statistics in Table 6 indicate that the mean activity density is highest in the 

Miami-Fort Lauderdale-Pompano Beach and the Tampa-St. Petersburg-Clearwater metropolitan 

areas (9.35 and 5.07, respectively). The Orlando-Kissimmee-Sanford and Jacksonville metro. 

areas have the highest extent of mixed-use development (mean entropies of 0.72 and 0.66, 

respectively). Miami-Fort Lauderdale-Pompano Beach metro. area has the highest mean of 

automobile-oriented intersection density (1.41 intersections/mi2), whereas Homosassa Springs has 

the lowest (0.25 intersections/mi2). Also, the Miami-Fort Lauderdale-Pompano Beach and 

Tallahassee metropolitan areas have the highest and lowest pedestrian-oriented street network 

density (17.42 and 7.28 facility miles of pedestrian-oriented links/mi2), respectively.  

4.1.6 Household-level Nonmotorized Travel Behavior Models 

Using an integrated database as shown in Table 4, nonmotorized travel behavior has been modeled 

for Florida households. The analysis of household-level nonmotorized travel behavior for the 

Florida case study is performed by employment of mixed-effects modeling techniques and ordered 

probit modeling techniques.  

First, mixed-effects (i.e., multilevel) models have been developed to relate the number of 

household’s daily per capita walking and bicycling trips to social environment characteristics (i.e., 

household, neighborhood, and metropolitan area socioeconomic attributes) as well as 

neighborhood, county, and metropolitan area built environment measures. Then, ordered probit 

models have been developed to predict the number of household’s daily walking and bicycling 

trips based on the same factors as above. The results of the two types of models are used for 

comparison purposes.  

All Florida models have been developed based on the principles of the ecological model of 

behavior. Considering these principles, the models examine the association between nonmotorized 
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travel behavior and the social environment attributes as well as the built environment 

characteristics at three hierarchical levels of influence. For the social environment, these levels of 

influence include: the micro level (i.e., household), the meso level (i.e., neighborhood), and the 

macro level (i.e., metropolitan area). For the built environment, the levels of influence considered 

in the models are: the micro level (i.e., neighborhood), the meso level (i.e., county), and the macro 

level (i.e., metropolitan). 

The final model specifications have been obtained based on a systematic process of testing 

and eliminating variables found to be statistically insignificant. This was accompanied by 

parsimony and intuitive considerations as well as consideration of the results from earlier studies 

including the Baltimore-DC case study (see Appendix C). 

4.1.6.1 Linear Mixed-effects Models (i.e., the Multilevel Models) 

Specification of Models: Florida Linear Mixed-effects Nonmotorized Travel Models 

Mixed-effects (multilevel) models have been employed in this Florida case study to examine the 

association between household-level nonmotorized travel behavior and the social as well as the 

built environment characteristics of the place of residence. The ecological frameworks of the 

models incorporate variables that operate at multiple hierarchical levels of influence. This makes 

the multilevel model an appropriate statistical tool to evaluate the influence of built and social 

environments on nonmotorized travel behavior. Also, literature supports the use of multilevel 

models in ecological analyses of behavior (Sallis et al. 2008), which can include walking and 

bicycling behavior. Data for the Florida case study are assumed to be clustered as groups of 

surveyed households locate within similar geographical areas (e.g., neighborhoods or counties), 

and there may be correlations between households that locate in the same area. The clustered nature 

of observations further warrants the use of mixed-effects models for this case study. 
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Based on the general formula for the linear mixed-effects model (Equations 1 and 2), the 

Florida household-level nonmotorized travel behavior mixed-effects models are specified as: 

Y =  𝛽0 + 𝛽1
′SEHH + 𝛽1SECBG + 𝛽2

′SECBSA + 𝛽3
′BECBG + 𝛽4

′BECounty + 𝛽5
′BECBSA +

 𝑢CBG𝐑𝐄CBG +  휀                                                                                      Equation 21 

where, 

𝛽0 = model intercept; 

𝛽1 
′ − 𝛽5 

′ = column vectors of model parameters; 

𝛽1 = model parameter for the meso-level (neighborhood) social environment attribute; 

𝑢CBG = vector of iid neighborhood-level random effects; 

휀 = vector of model error terms;  

SEHH = column vector of micro-level (household) social environment attributes; 

SECBG = the meso-level (neighborhood) social environment attribute; 

SECBSA = column vector of macro-level (metropolitan area) social environment attributes; 

BECBG = column vector of micro-level (neighborhood) built environment attributes; 

BECounty = column vector of meso-level (county) built environment attributes; 

BECBSA = column vector of macro-level (metropolitan area) built environment attributes; 

RECBG = matrix of neighborhood-level covariates for random effects; and 

Y = vector of observations (household’s number of per capita walking or bicycling trips). 

As it can be seen from Equation 21, census block groups (i.e., neighborhoods) have been 

considered as clusters in this case study and random effects of census block groups have been 

estimated in the models. This model design introduces two levels: the first level is the household, 

and the second level is the census block group (i.e., CBG). There are households that live in the 

same census block group (cluster), but individual household characteristics differ from each other. 
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Therefore, two sources of variation exist in the model: the variation between different census block 

groups (i.e., interclass variance) and the variation within each census block group (i.e., intraclass 

variance). These variations are estimated in the model.  

It is assumed that the slope of similar covariates contained within the random portion of 

the model (i.e., RECBG) is constant across CBGs. Therefore, the CBG random effects are simplified 

to a CBG-specific effect, which captures an effect that is common to all households within the 

same CBG (𝑢0CBG ). This makes the specified model a random intercept model, which assumes 

that CBGs add a random offset to households’ nonmotorized travel behavior (i.e., measured as 

household’s number of daily per capita walking or bicycling trips). 

The simplified (i.e., random intercept) model formula is: 

Y =  𝛽0 + 𝛽1
′SEHH + 𝛽1SECBG + 𝛽2

′SECBSA + 𝛽3
′BECBG + 𝛽4

′BECounty + 𝛽5
′BECBSA +

 𝑢0CBG +  휀                                                                                               Equation 22 

As indicated previously, census block groups (i.e., CBGs) represent the neighborhoods in 

the Florida case study. Thus, the variance estimates (random effects) computed by the mixed-

effects model provide information as to how random differences between neighborhoods affect 

the walking and bicycling behavior of residents.  

The model estimates also provide information on the existence and magnitude of effects 

exerted by meso-level (county-level) and macro-level (metropolitan area-level) built environment 

factors on walking or bicycling trips generated from the surveyed households.  

The walking and bicycling mixed-effect (multilevel) models relate the dependent variables 

(household’s number of daily per capita walking and household’s number of daily per capita 

bicycling trips) to the independent variables listed in Table 4.  
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Pearson correlation coefficients have been calculated for all original independent variables 

and are presented in Appendix E. As built environment factors tend to be highly correlated, some 

researchers use composite indices to deal with the high correlation between variables. Replacement 

of highly correlated variables with a composite variable obtained from combining them is 

considered one way of dealing with extreme collinearity between variables (Kline 2011).  

However, composite indices are often difficult to interpret for policy purposes (Lee and 

Moudon 2006)25. To facilitate the interpretation of study results into policies, the present study 

focuses on objectively measured and individually observable measures of the built environment 

and avoids the use of composite indices—to the extent possible. This approach, however, 

introduces the risk of multicollinearity in the models.  

Correlation coefficients higher than 0.8 or 0.9 between independent variables are 

considered as excessively collinear and are indicators of multicollinearity according to Franke 

(2010). Initial Pearson correlation coefficients computed for all original independent variables that 

were considered for inclusion in the models showed that variables representing the population and 

employment densities at the county and metropolitan area level are highly correlated (r > 0.9). 

Some researchers argue that residential density and employment density should be measured 

separately since most of new developments at the urban outskirts have gained residential density 

but lack employment opportunities and density (Fan 2007).  

Nonetheless, to lower the risk of multicollinearity in the models, the highly correlated 

population and employment density variables have been replaced with activity density variables, 

which quantify the density of total population plus employment opportunities within each 

geographical scale (i.e., neighborhood, county, and metropolitan area). In reality, however, the 

 
25 See Appendix C (Nonmotorized Travel Behavior: A Baltimore, Maryland and Washington, D.C. Case Study) for a 

more detailed discussion regarding the issue of high correlation between built environment factors. 
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effects of many built environment factors are correlated and there is not an easy way to separate 

these correlations, as Reilly and Landis (2003) argued. Thus, this study uses a correlation threshold 

of |p| > 0.70—suggested by previous research (Kim and Susilo 2013)—to eliminate highly 

correlated independent variables. Variables with correlation coefficients ≥ 0.70 and < 0.85 were 

retained in the models if they reached a significance level of 0.05 or if there was a theoretical 

reason for retaining the variable; for example, if the variable was proved by previous studies to be 

an important factor in determining nonmotorized travel behavior. 

Any continuous variable with a correctable skewed distribution was normalized by 

transformation into its naturally logged form before inclusion in the model. Many variables 

however, showed a normal (or nearly normal distribution), while the distribution of a few variables 

with skewed distributions (including the dependent variables) did not improve by transformation 

to naturally logged form. Therefore, these variables have been included in the model in their 

original form. Due to the natural log of zero being undefined, for independent variables with an 

original value equal to zero, the zero value was changed to 0.25 before the variable was log-

transformed—a practice also used in previous research (see e.g., Schauder and Foley 2015). 

Discussion of Results: Florida Linear Mixed-effects Nonmotorized Travel Models 

Table 7 summarizes the estimation results of the Florida household-level mixed-effects walking 

and bicycling models. The results show many statistically significant associations between 

household nonmotorized travel behavior and built environment characteristics at all levels of 

influence including the micro level (i.e., neighborhood), the meso level (i.e., county), and the 

macro level (i.e., metropolitan area). The results also indicate that social environment measures at 

all hierarchical levels of influence have statistically significant associations with nonmotorized 

travel behavior, especially at the household level. 
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   Table 7. Results: Florida Household-level Mixed-Effects Nonmotorized Travel Models 
 

Dependent Variable: Number of Household’s Daily Per Capita Walking/Bicycling Trips 

 Walking Model Bicycling Model 

Independent Variable Coefficient p-value Coefficient     p-value 

Social Environment  

Micro Level: The Household 

Number of Adults - logged -.1049554*** 0.000 -.0088922* 0.093 

Number of Vehicles -.0292874*** 0.000 -.007933*** 0.006 

Number of Workers -.0013254 0.886 -.0008806 0.787 

Annual Income  .0099911*** 0.000 .0010603** 0.037 

Meso Level (Census Block Group): The Neighborhood 

Percentage of Households with No Cars 

 
.150817* 0.093 -.0242312 0.477 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Percentage of Households with 2+ Cars 

 
-.3428987* 0.073 -.3256664** 0.038 

Average Percentage of Low-Wage Workers 

 
.6029278 0.451 -.3282153** 0.047 

Built Environment 

Micro Level (Census Block Group): The Neighborhood 

Activity Density .0019367* 0.059 -.0003432 0.346 

Entropy .0304338* 0.073 .0116624* 0.091 

Intersection Density (Auto-oriented) - logged -.0016636 0.284   .0007872* 0.085 

Pedestrian-friendly Network Density .0018363*** 0.007 .0007049* 0.073 

Local Transit Service - logged .0076436** 0.039 .0004267 0.747 

Local Transit Accessibility -9.40e-06 0.836 -.0000108 0.506 

Meso Level: The County  

Mean Activity Density .0122569* 0.094 -.0053862** 0.040 

Mean Entropy .3974471* 0.092 .0455479 0.592 

Mean Regional Diversity -.2390165 0.215 -.077811* 0.055 

Mean Intersection Density (Auto-oriented) .0335583 0.438 .0221108* 0.069 

Mean Pedestrian-friendly Network Density .0016844* 0.059 .005206** 0.012 

Mean Transit Service .0001846* 0.087 .0000951 0.308 

Mean Temporal Automobile Accessibility -1.12e-06* 0.075 -3.70e-07** 0.049 

Mean Temporal Transit Accessibility -.0000269 0.147 -1.70e-06 0.834 

Macro Level (Core Based Statistical Area): The Metropolitan Area  

Mean Activity Density .0017064 0.856 .0026659 0.429 

Mean Entropy -.4171373** 0.026 .0418177 0.731 

Mean Total Road Network Density -.0008827* 0.085 -.0004398 0.325 

Percentage of 0.01 Blocks .5314081*** 0.010 .0312544 0.688 

Mean Temporal Automobile Accessibility -1.48e-07 0.843 -1.11e-07 0.679 

Mean Temporal Transit Accessibility -7.73e-06 0.452 -8.99e-06** 0.015 

Variance Estimates (Random Effects) 

Census Block Group (i.e., Neighborhood) .0084544*** 0.000 .0022749*** 0.000 

Residuals  .6152914*** 0.000 .0753187*** 0.000 

Model Goodness Parameters 

Likelihood Ratio Test vs. Linear Regression  χ2  =  2.89* 0.089 χ2  = 13.32*** 0.000 

Log Likelihood -17714.041 -2101.6548 

R2  Marginal     0.1087513 0.0448391 

R2  Conditional 0.2612913 0.0456274 

Observations; Clusters 14,976; 6,956 14,976; 6,956 

     NOTE: *, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively. 
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Social Environment Variables Findings: The results of the Florida household-level 

nonmotorized travel behavior models show that a few social environment factors at the micro-

level (i.e., household level) have significant associations with household’s nonmotorized travel 

behavior. Specifically, the household’s number of adults has a significant and negative correlation 

with household’s walking and bicycling travel behavior. This result is expected and consistent 

with findings of the Baltimore-D.C. case study models (see Appendix C). The variable for 

household’s number of vehicles shows a negative and significant correlation with both household’s 

number of per capita walking and bicycling trips, which corroborates the results of the Baltimore-

D.C. case study (see Appendix C) and those of many past studies (e.g., Cervero 1996; Cervero and 

Radisch 1996; Kitamura et al. 1997; Stinson and Bhat 2004; Plaut 2005; Mitra and Buliung 2012). 

Household income shows statistically significant and positive correlations with 

household’s number of per capita walking and bicycling trips. These results confirm the results of 

the Baltimore-D.C. case study (Appendix C), and in general, may be reflective of recreational 

nonmotorized travel conducted by members of wealthier households, as also suggested in previous 

research (see e.g., Pucher et al. 1999; Roshan Zamir et al. 2014). With regards to bicycling, Pucher 

et al. (1999) argued that although lower income levels may be correlated with more bicycle use, 

this correlation cannot be generalized because in many cases high bicycle modal shares exist in 

the wealthiest societies. The finding of the present study, which shows a positive and statistically 

significant correlation between household income and bicycling, can therefore be indicative of 

recreational bicycling among wealthier people—perhaps due to factors such as higher levels of 

affordability and health-consciousness, as also suggested by Heinen et al. (2010). 

On another note, Dill and Carr (2003) suggested that in analysis of bicycling trips, income 

might be significant at the disaggregate level. The results of the Florida case study support that 
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statement as the coefficient of the variable representing the household income is significant in the 

Florida bicycling model. It should be noted, however, that the coefficient of the household income 

variable is insignificant in the Baltimore-DC bicycling model (see Appendix C). Thus, when 

considered in conjunction with the results of that case study, the findings confirm the conclusion 

of Heinen et al. (2010) that the relationship between income and bicycling remains unclear. 

As a social environment factor, car ownership at the meso level (i.e., neighborhood level) 

exhibits a significant association with household’s walking. The results show a positive correlation 

between the percentage of households within the neighborhood that own no cars and households’ 

number of daily per capita walking trips. 

Social environment measures at the macro level (i.e., metropolitan area level) also show 

significant correlations with household nonmotorized travel behavior. The average percentage of 

households within the metropolitan area that own more than two cars is significantly and 

negatively correlated with household’s nonmotorized travel behavior—an expected finding. This 

result reinforces the corresponding results at the household level (i.e., micro level) and 

neighborhood level (i.e., meso level), suggesting that vehicle ownership at multiple levels of 

influence (and beyond the household level) plays a key role in nonmotorized travel behavior. 

Also, the average percentage of low-wage workers in the metropolitan area is negatively 

associated with household’s per capita bicycling trips. This suggests that living in a metropolitan 

area where more low-income workers reside is associated with fewer household bicycling trips. In 

other words, bicycling is occurring more in metropolitan areas with fewer lower-income workers. 

This result seems counter-intuitive as higher levels of commuting by bicycle and other utilitarian 

bicycling are expected to be correlated with lower income levels. However, this finding may be an 

indication of recreational bicycling by wealthier individuals. 
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Micro-level (Neighborhood-level) Built environment Variables Findings: A few micro-

level built environment variables are significantly correlated with household nonmotorized travel 

behavior. As seen from Table 7, the variables representing activity density (i.e., the Activity 

Density variable) and land use mix (i.e., the Entropy variable) at the neighborhood level are 

positively correlated with households’ number of per capita walking trips. The neighborhood-level 

Entropy variable is also positively correlated with households’ number of per capita bicycling 

trips. These results show that higher residential and employment densities at the neighborhood 

level are associated with increased numbers of walking trips, whereas higher mixed land use at the 

neighborhood level is associated with increased numbers of both walking and bicycling trips. 

These findings corroborate those of the Baltimore-D.C. case study (see Appendix C). 

The density of the pedestrian-oriented network within the neighborhood shows significant 

and positive correlations with the number of daily per capita walking and bicycling trips generated 

from households. These results are expected and corroborate the findings of previous studies that 

found pedestrian-oriented environments to be encouraging of nonmotorized travel (see e.g., 

Greenwald and Boarnet 2001). 

On the other hand, the coefficient estimate of the Intersection Density variable at the 

neighborhood level in the bicycling model indicates a significantly positive correlation between 

bicycling and the density of automobile-oriented intersections within the neighborhood. This result 

might be showing that bicyclists ride their bicycles on automobile-oriented roadways, and that 

higher intersection density may encourage bicycling and not defer bicyclists. These results are 

somewhat in line with previous research suggesting that presence and/or higher density of 

intersections at the neighborhood level positively influence nonmotorized travel (Cervero and 

Kockelman 1997; Boer et al. 2007; Kerr et al. 2007).  
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The Local Transit Service variable, which measures the frequency of the local transit 

service, shows a significant and positive correlation with walking. This indicates that a higher 

frequency of transit service within the neighborhood is associated with more walking trips 

generated from households within the neighborhood. This result is in line with the results from the 

Baltimore-D.C. case study, which show a positive correlation between higher accessibility to local 

transit and the number of daily per capita walking trips by residents (see Appendix C). 

Together, these results confirm that neighborhood-level built environment attributes are 

important factors in estimating nonmotorized travel behavior. 

Meso-level (County-level) Built environment Variables Findings: At the meso level (i.e., 

county level), the Mean Activity Density variable shows significant associations with walking and 

bicycling travel, but the direction of these associations is opposite. More specifically, this variable 

is positively correlated with walking trips, whereas its correlation with bicycling trips is negative. 

This is the same pattern observed in the Baltimore-D.C. case study (see Appendix C). These results 

further emphasize that built environment characteristics can influence walking and bicycling travel 

behavior differently. With regards to bicycling, literature offers two arguments. One is that of 

Cervero and Duncan (2003) who suggested that denser urban employment settings create many 

roadway conflict points, and thereby may deter bicyclists due to safety concerns. The other point 

of view is that of Pucher et al. (1999) who argued that denser urban environments tend to attract 

utilitarian bicycling due to more destinations being accessible within a short bicycle ride. The 

results of the present case study support the former argument. 

The Mean Entropy variable at the county level shows a significant and positive correlation 

with walking, and a positive but insignificant one with bicycling. This suggests that increased 

mixed land use within the county is associated with increased numbers of daily per capita walking 
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trips and potentially increased numbers of daily per capita bicycling trips. County-level entropy 

shows a negative sign in both the walking model and the bicycling model in the Baltimore-D.C. 

case study; however, the coefficient estimate of this variable is not significant in the Baltimore-

D.C. walking mixed-effects model (see Appendix C).  

As mentioned previously, improved mixed-use development throughout the county is 

expected to increase the extent of nonmotorized travel by residents because past research found a 

negative association between mean county-level mixed-use development and household VMT 

(Nasri and Zhang 2012). The findings of the Baltimore-D.C. case study (presented in Appendix 

C) did not support the hypothesis that higher levels of mixed-use development throughout the 

county is correlated with increased levels of nonmotorized travel. However, the results of the 

Florida household-level case study partially support that hypothesis. The results of the Baltimore-

D.C. case study (Appendix C) can be revealing an effect related to more variety in destinations. 

That is, as destination choices within the county increase, individuals may be attracted to 

destinations located farther away and may choose to drive to these remote destinations for their 

travel needs instead of walking or bicycling to nearby destinations. The substitution of automobile 

trips to farther destinations for nonmotorized trips to nearby destinations may negatively influence 

the number of households’ nonmotorized trips. Thus, the role of county-level mixed-use 

development in nonmotorized travel behavior seems to be a bit unclear. Consequently, additional 

investigation is probably needed to examine the link between mixed land use at the county level 

and walking and bicycling travel behavior.  

Further the Mean Regional Diversity variable shows a significantly negative correlation 

with bicycling trips. This result indicates that higher regional diversity (in terms of employment 

opportunities within the county) is associated with fewer daily per capita bicycling trips.  
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The coefficient estimates of the Mean Pedestrian-oriented Network Density variable at the 

county level show significant and positive correlations with household’s daily per capita walking 

and bicycling trips. The coefficient estimate of the Mean Intersection Density at the county level 

in the bicycling model is also significantly positive. These results complement those estimated for 

the neighborhood-level variables and indicate that pedestrian-friendly designs may promote both 

walking and bicycling activities, while higher intersection density may lead to higher levels of 

bicycling activity. 

The significantly positive coefficient of the county-level Mean Transit Service variable in 

the walking model indicates that a higher average transit frequency within the county is associated 

with increased numbers of walking trips generated from households. However, transit accessibility 

at the county level (mean number of jobs within 45 minutes of transit travel time) does not seem 

to be correlated with walking or bicycling trips because the coefficient of the county-level Mean 

Temporal Transit Accessibility variable is insignificant in both models. On the other hand, county-

level automobile accessibility (mean number of jobs within 45 minutes of automobile travel time) 

is negatively associated with nonmotorized travel, as expected. Even though these effects are very 

small, they are significant in both the walking and bicycling models. Accessibility has been 

operationalized in terms of number of employment opportunities within a certain travel time or 

distance in the past. One example is a study by Cervero and Duncan (2003) who examined the 

effect of an employment accessibility variable measured as the number of jobs within 1 and 5 miles 

of origin in walking and bicycling, respectively. They found this variable to be positively 

associated with walking, and negatively associated with bicycling (but not statistically significant).  

Overall, these results corroborate those from the Baltimore-D.C. case study (Appendix C) 

in implying that the county-level built environment plays an important role in nonmotorized travel. 
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Macro-level (Metropolitan-level) Built Environment Variables Findings: At the 

metropolitan area level (macro level), the Mean Entropy variable shows a negative association 

with walking and its coefficient is significant. This suggests that a higher level of mixed land use 

within the metropolitan area is correlated with fewer numbers of daily per capita walking trips 

generated from households within that metropolitan area. This can be an indication of the effect of 

additional destination choices. As destination choices—especially those related to employment—

increase, people will need to commute long distances across metropolitan areas to reach 

employment sites and other destinations. This can lead to a reduction in the number of walking 

trips made by members of the households within the metropolitan area due, in part, to substitution 

of automobile trips to remote destinations for nonmotorized trips to nearby destinations. 

The coefficient of the Mean Total Road Network Density variable has a negative sign in 

both walking and bicycling models, as expected. However, this coefficient is only significant in 

the walking model. The negative sign indicates that higher roadway network densities within the 

metropolitan area are associated with fewer walking trips generated from households. Although 

the effects of the metropolitan area-level built environment factors (including road density) have 

not been previously tested, the density of major roads at the neighborhood level did not show any 

impact on walking or bicycling travel in a previous study (Mitra and Buliung 2012).  

Another salient result is the coefficient estimate of the Percentage of 0.01 Blocks variable 

in the walking model. This variable represents the percentage of blocks with an area smaller than 

0.01 square miles, and has been included in the model to capture the effects of the pedestrian 

friendliness and connectivity of the street network within the metropolitan area based on previous 

research (Nasri and Zhang 2014). As expected, this variable exhibits a positive and highly 

significant correlation with walking, which means increased numbers of walking trips are 
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associated with higher levels of pedestrian friendliness of the network as well as with better street 

network connectivity. This finding emphasizes the importance of street connectivity throughout 

the entire metropolitan area in generation of walking trips. However, the coefficient of this variable 

is not statistically significant in the bicycling model. Previous literature on bicycling travel 

behavior can be used as support for this latter result. Although the impact of block size at the 

macro-level scale of geography has not been tested in previous studies, block size at the 

neighborhood level was found to be insignificant in bicycling travel by Moudon et al. (2005). 

Temporal destination accessibility in terms of mean automobile accessibility to jobs within 

the entire metropolitan area (i.e., the macro-level Mean Temporal Automobile Accessibility 

variable) shows a negative association with walking and bicycling, but its coefficient is not 

significant in either model. Nonetheless, the negative sign of the coefficient for this variable is 

consistent with the statistically significant coefficients of the same variable at the meso level (i.e., 

county level) as well as the results of the Baltimore-D.C. case study (Appendix C) in which the 

regional automobile accessibility index is negatively associated with walking and bicycling. 

The Mean Temporal Transit Accessibility variable at the macro-level, which represents the 

temporal destination accessibility by transit (i.e., the mean number of jobs in the metropolitan area 

that are within a 45-minute transit commute), has a negative sign in both models, but its coefficient 

is only significant in the bicycling model. The coefficient, albeit very small (-0.00000899), reaches 

the 5% significance level. This result shows that higher transit accessibility to employment within 

the metropolitan area is associated with households generating fewer bicycling trips per person. 

This finding implies that accessibility at the metropolitan area level has a potential to significantly 

impact household bicycling travel in a negative way. Although these results at first may seem to 

be counter-intuitive, further reasoning presents the possibility that the negative direction of the 
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coefficients of the Mean Temporal Transit Accessibility can be capturing the effect of driving to 

transit stations rather than walking or bicycling to them. The importance of macro-level 

accessibility to transit by means of nonmotorized modes (i.e., walk and bicycle accessibility to 

transit within the entire metropolitan area) is, therefore, further emphasized by these results. The 

results of the Baltimore-D.C. case study (see Appendix C) provide support for these statements. 

In that case study, regional accessibility to transit by means of driving was found to be negatively 

associated with walking, whereas regional accessibility to transit by means of walking was found 

to be positively associated with both nonmotorized modes of travel (i.e., walking and bicycling). 

As previously mentioned, the Mean Temporal Automobile Accessibility and the Mean 

Temporal Transit Accessibility variables in the Florida case study represent the mean number of 

jobs within 45 minutes of automobile travel or transit commute, respectively. The results of the 

models potentially indicate that more jobs within relatively longer commutes (i.e., up to 45 

minutes) are associated with fewer nonmotorized trips. This is in line with what Rodríguez and 

Joo (2004) suggested; decreasing commuting distance may result in higher propensity of choosing 

nonmotorized modes and a lower propensity of choosing motorized modes. 

Taken together, these results show that metropolitan area-level built environment attributes 

are associated with households’ number of per capita walking and bicycling trips and their effects 

should not be overlooked in the analysis of nonmotorized travel behavior. 

Interpretation of Results: Florida Linear Mixed-effects Nonmotorized Travel Models  

The results presented in Table 7 can be interpreted using standard interpretation methods for 

regression coefficients. A few specific examples are given here: for instance, the coefficient of the 

household vehicle ownership in the walking model (-0.0292874) indicates that all else being equal, 

each additional private automobile that is available to the household is correlated with a decrease 
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of approximately 0.03 in the number of daily walking trips per household adult (0.03 fewer 

walking trips/person for each additional private vehicle owned by the household).   

The coefficient estimate of the log-transformed Intersection Density variable at the micro 

level (i.e., neighborhood level) in the bicycling model is equal to 0.0007872. This estimate means 

that all else being equal, an increase of 100% in the value of the neighborhood-level Intersection 

Density variable (i.e., doubling of the number of intersections/miles2 CBG land area) is associated 

with an increase of approximately 0.08 in the number of bicycling trips per household adult 

member (0.08 more bicycling trips/person).   

The coefficient estimate of the county-level Mean Pedestrian-friendly Network Density 

variable in the walking model (0.0016844) indicates that a one unit increase in the average density 

of pedestrian-friendly facilities (i.e., one additional mile of pedestrian-oriented facilities/miles2) 

within the county is correlated with approximately 0.002 additional walking trips per household 

adult member for households within that county. 

The entropy index is in a proportion form, meaning that its value ranges between 0 and 1. 

The coefficient of the Mean Entropy variable at the metropolitan level in the walking model is 

equal to -0.4171373, which indicates that all else being equal, an increase of one unit (i.e., 0.01) 

in the mean entropy within the metropolitan area of residence is associated with a decrease of 

nearly 0.42 in the daily number of walking trips generated by each adult person in the household.  

These interpretations serve as examples for quantifications of the impact of neighborhood-

, county-, and metropolitan-level built environment characteristics such as mix land use, network 

pedestrian friendliness and street network density on nonmotorized travel behavior of residents. 

As in the Baltimore-D.C. case study (Appendix C), the random effects of neighborhoods 

(i.e., census block groups) have been considered in the above mixed-effects models to assess how 
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random differences between neighborhoods affect nonmotorized travel behavior of residents. The 

between-CBG (level two) component of variance (i.e., the variance component corresponding to 

the random intercept) is 𝜎𝑢
2= 0.0084544 in the walking model, and 𝜎𝑢

2= 0.0022749 in the bicycling 

model. These estimates are statistically significant, which indicates that after controlling for the 

various variables listed in Table 7, there remains some CBG-level variance in the models which is 

unaccounted for. This means that significant variation exists in the means of the number of 

households’ per capita walking/bicycling trips across CBGs. 

Additionally, the between-CBG (level two) component of variance in the walking model 

(𝜎𝑢
2= 0.0084544) is much smaller that the within-CBG (level one) component of variance (𝜎𝑒

2= 

0.6152914). This result is probably because the number of households in each CBG (i.e., number 

of observations per cluster) is relatively small (an average of 2.15 observations per cluster), 

whereas the number of CBGs (clusters) that are compared to each other is large (6,956 CBGs)26.  

The total variance for the walking model is 𝜎𝑢
2 + 𝜎𝑒

2= 0.0084544 + 0.6152914 = 

0.6237458. Thus, the variance partition coefficient (i.e., intraclass correlation coefficient) is equal 

to 0.0084544/0.6237458 = 0.0136. This indicates that approximately 1.4% of the variance in 

number of households’ daily per capita walking trips is attributable to random differences between 

CBGs27 (i.e., neighborhood random effects).  

With respect to the bicycling model, Table 7 shows that the between-CBG component of 

variance (𝜎𝑢
2= 0.0022749) is much smaller that the within-CBG component of variance (𝜎𝑒

2= 

0.0753187). This difference is also attributable to the fact that the number of households in each 

 
26 The small number of households in each CBG (i.e., number of observations per cluster) further justifies employment 

of mixed-effects modeling techniques and computing random effects in this analysis. According to Demidenko (2004), 

having a large number of clusters with a small number of observations per cluster necessitates the treatment of the 

cluster-specific coefficients as random effects. 

 
27 Computations based on examples in Leckie (2010), and in Albright and Marinova (2010). 
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CBG (i.e., number of observations per cluster) is relatively small (an average of 2.15 observations 

per cluster), but a large number of CBGs (i.e., clusters) are compared to each other (6,956 CBGs). 

The total variance for the bicycling model is 𝜎𝑢
2 + 𝜎𝑒

2= 0.0022749 + 0.0753187= 0.0775936. Thus, 

the variance partition coefficient (i.e., intraclass correlation coefficient) is equal to 

0.0022749/0.0775936 = 0.0293. This indicates that approximately 3% of the variance in number 

of households’ daily per capita bicycling trips is attributable to random differences between CBGs 

(i.e., neighborhood random effects).  

The p-values of the CBG random effects are significant in both the walking and bicycling 

models. These results suggest that random differences between neighborhoods play a small but 

statistically significant role in nonmotorized travel behavior of residents. This finding is consistent 

with the results obtained in the Baltimore-D.C. case study (presented in Appendix C). 

The results of the Likelihood Ratio tests in both models are statistically significant as 

evidenced by the value of chi-squared (χ2) as well as the p-values. These results mean that in both 

models, the multilevel (i.e., mixed-effects) modeling technique offers improvements over an 

ordinary linear regression model with fixed effects only. These results justify taking into 

consideration the effects of individual CBGs (i.e., neighborhoods) on walking and bicycling trips 

and using the mixed-effects models instead of ordinary linear regression models. It should be 

noted, however, that albeit statistically significant at 10% significance level, the improvements 

offered by the multilevel model in the walking model are not very robust (p-value = 0.089).  

The marginal R-squared values provide information on variance explained by fixed factors, 

and the conditional R-squared is for variance explained by both fixed and random effects. The 

differences between values of the marginal R-squared and the conditional R-squared reflect the 

variability that exists in random effects (Nakagawa and Schielzeth 2013). The referenced paper 
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recommended that both marginal and conditional R-squared be reported in publications because 

each of these R-squared convey unique information. 

Elasticities: Table 8 shows the elasticities computed for the multilevel (i.e., mixed-effects) 

models with all the independent variables set equal to their mean values.  

Table 8. Elasticities: Florida Household-level Mixed-Effects Nonmotorized Travel Models 
 

Dependent Variable: Number of Household’s Daily Per Capita Walking/Bicycling Trips 

 Walking Model Bicycling Model 

Independent Variable Elasticity p-value Elasticity     p-value 

Social Environment  

Micro Level: The Household 

Number of Adults - logged -.1679345*** 0.000 -.2237934* 0.095 

Number of Vehicles -.3286707*** 0.000 -.365574*** 0.007 

Number of Workers -.0031924 0.886 -.0170474 0.787 

Annual Income  .3270595*** 0.000 .2789398** 0.038 

Meso Level (Census Block Group): The Neighborhood 

Percentage of Households with No Cars 

 

.0250779* 0.091 -.0323814 0.477 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Percentage of Households with 2+ Cars 

 

-.5623937* 0.073 -4.292675** 0.040 

Average Percentage of Low-Wage Workers 

 

.5021738 0.451 -2.19699** 0.048 

Built Environment 

Micro Level (Census Block Group): The Neighborhood 

Activity Density .0267505* 0.059 -.0385365 0.341 

Entropy .0549636* 0.072 .1692731* 0.093 

Intersection Density (Automobile-oriented) - logged -.0052096 0.284   .0198126* 0.087 

Pedestrian-friendly Network Density   .0697464*** 0.007 .2151574* 0.075 

Local Transit Service - logged .0239362** 0.039 .0107387 0.747 

Local Transit Accessibility -.0196095 0.836 -.1810229 0.506 

Meso Level: The County  

Mean Activity Density .2150806* 0.094 -.7595931** 0.042 

Mean Entropy .6722402* 0.092 .6191477 0.592 

Mean Regional Diversity   -.1321075 0.216   -.3456379* 0.055 

Mean Intersection Density (Automobile-oriented) .1061823 0.438 .56226* 0.067 

Mean Pedestrian-friendly Network Density .0672372* 0.060 1.670148** 0.013 

Mean Transit Service .1188901* 0.089 .4921798 0.308 

Mean Temporal Automobile Accessibility   -.2640612* 0.075 -.6979103** 0.050 

Mean Temporal Transit Accessibility -.2000848 0.147 -.1016926 0.834 

Macro Level (Core Based Statistical Area): The Metropolitan Area  

Mean Activity Density .031397 0.856 .394206 0.430 

Mean Entropy -.7060062** 0.025 .5688136 0.731 

Mean Total Road Network Density   -.0512845* 0.087 -.2053688 0.326 

Percentage of 0.01 Blocks .9494162*** 0.010   .4487667 0.688 

Mean Temporal Automobile Accessibility -.0355812 0.843 -.2143855 0.679 

Mean Temporal Transit Accessibility -.0623876 0.452 -.5835221** 0.016 

      NOTE: *, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively. 



 

144 

 

The table indicates that among the micro-level (i.e., neighborhood-level) built environment 

characteristics, the Pedestrian-friendly Network Density variable has the highest statistically 

significant elasticity in both the walking and the bicycling models (0.0697464 and 0.2151574, 

respectively). These results mean that an increase of 1% in the density of pedestrian-friendly 

network within the neighborhood (i.e., facility miles of pedestrian-oriented links/mi2) is associated 

with an increase by approximately 0.07% in the number of household’s daily per capita walking 

trips and an increase by approximately 0.22% in the number of household’s daily per capita 

bicycling trips. This is an interesting finding that shows bicycling trips may be more sensitive to 

pedestrian-oriented network designs than walking trips. One reason for such a result may be that 

the SLD-defined pedestrian-oriented links were also attractive to bicyclists. 

The SLD defines pedestrian-oriented facilities as28: 

• Any arterial or local street having a speed category of 6 (between 21 and 30 mph) where 

car travel is permitted in both directions; 

• Any arterial or local street having a speed category of 7 or higher (less than 21 mph); 

• Any local street having a speed category of 6 (between 21 and 30 mph); 

• Any pathway or trail on which automobile travel is not permitted (speed category 8);  

• For all of the above, pedestrians must be permitted on the link; 

• For all of the above, controlled access highways, tollways, highway ramps, ferries, 

parking lot roads, tunnels, and facilities having four or more lanes of travel in a single 

direction (implied eight lanes bidirectional) are excluded. 

 
28 Page 22 of Ramsey and Bell (2014), “The Smart Location Database User Guide”. 
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Considering the definition above, it is very likely that bicyclists also used these pedestrian-

oriented links—perhaps even to a higher extent than pedestrians—and that resulted in the higher 

elasticity for this particular variable in the bicycling model as seen in Table 8.   

At the meso level (i.e., county level), the Mean Entropy variable, which measures the 

average mixed land use within the county, has the highest elasticity in the walking model 

(0.6722402). Based on this elasticity, a 1% increase in the value of county-level mean entropy is 

correlated with a 0.67% increase in the number of daily walking trips generated from each adult 

member of households within that county. Interestingly, the county-level Pedestrian-friendly 

Network Density variable is again the county-level built environment variable with the highest 

elasticity in the bicycling model (1.670148), which is consistent with the elasticity obtained for 

this variable at the neighborhood level (i.e., micro level). In addition, the elasticity of this variable 

is only 0.0672372 in the walking model, which is considerably less that the highest elasticity at 

this level of geography (i.e., 0.6722402 for the county-level Mean Entropy variable). These results 

support the statements in the previous paragraph that the pedestrian-friendly networks as defined 

in SLD potentially facilitate bicycling as well and perhaps are even more inviting to bicyclists than 

to pedestrians. 

At the macro level (i.e., metropolitan area level), the highest statistically significant 

elasticities belong to the Percentage of 0.01 Blocks variable (0.9494162) in the walking model, 

and the Mean Temporal Transit Accessibility variable (-0.5835221) in the bicycling model. Since 

the Percentage of 0.01 Blocks variable represents the percentage of blocks within the metropolitan 

area that are smaller than 0.01 square miles, the former result shows the importance of smaller 

block sizes (i.e., street network connectivity) within the entire metropolitan area in generating 

walking trips. Also, the macro-level Mean Temporal Transit Accessibility variable represents the 
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mean number of jobs in the metropolitan area that are within 45 minutes of transit commute. 

Therefore, the elasticity of this variable indicates that having more jobs located within relatively 

longer commutes (i.e., up to 45 minutes) are associated with fewer bicycling trips. 

Regarding social environment variables, Table 8 shows that the highest elasticity of the 

number of household’s daily per capita walking trips with respect to the household socioeconomic 

characteristics belongs to the variable representing the number of vehicles owned by the household 

(-0.3286707). This elasticity indicates that an increase of 100% in the number of vehicles (i.e., if 

the number of household vehicle doubles) is associated with a decrease of approximately 33% in 

the number of household’s daily per capita walking trips. The elasticity of the number of 

household’s daily per capita walking trips with respect to household vehicle ownership variable 

obtained from the Baltimore-D.C. case study (see Appendix C) is -0.528005, which albeit higher 

in value, is consistent with the elasticity obtained here in terms of the negative direction of the 

effect. Vehicle ownership shows the highest elasticity among the household socioeconomic 

characteristics in the bicycling model as well (-0.365574). 

The elasticities of the social environment variables at the neighborhood and metropolitan 

area levels are also noteworthy. At both levels of influence, vehicle ownership variables show 

statistically significant elasticities in the walking model, meaning that daily per capita walking 

trips generated from households are sensitive to vehicle ownership levels, not just at the household 

level but also at the neighborhood and metropolitan area levels.  

However, the salient finding concerns the elasticities of the social environment variables 

at the metropolitan area level in the bicycling model. The variables representing the average 

percentage of 2+-car households and the average percentage of low-wage workers within the 
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metropolitan area show the highest elasticities in the bicycle model (-4.292675 and -2.19699, 

respectively) even with consideration of the built environment variables. 

These results mean that at the macro level (i.e., metropolitan area level) of influence, 

bicycling trips may be more sensitive to social environment factors than to built environment 

factors. This finding is in line with previous research, which found that the influence of built 

environment factors on travel behavior including nonmotorized travel was not greater than that of 

sociodemographic factors such as car ownership (Wang 2013). The referenced study suggested 

that this was a reasonable finding because households with different backgrounds and in different 

life stages may have developed their own travel pattern and they may resist changing that pattern 

due to external factors (e.g., the characteristics of the built environment). 

These results emphasize the role of social environment factors such as vehicle ownership 

at multiple levels of influence (i.e., household, neighborhood, and metropolitan area) in 

nonmotorized travel, especially in the case of bicycling. The elasticities also provide further 

insights into the key determinants of the built environment at multiple levels with respect to 

nonmotorized trips. The influence of factors such as mixed land use and pedestrian friendliness of 

the street network on nonmotorized trips potentially goes beyond the neighborhood level (i.e., 

micro level) as these variables show high elasticities at the county level and metropolitan area 

levels in nonmotorized travel models.  

Also, based on the elasticities obtained, county-level activity density and automobile 

accessibility are other key meso-level built environment factors to consider in nonmotorized travel 

behavior analysis. At the metropolitan area level (i.e., macro level), the most influential built 

environment factors seem to be block size for walking trips and mean transit accessibility for 

bicycling trips. 



 

148 

 

4.1.6.2 Ordered Probit Models 

Specification of Models: Florida Ordered Probit Nonmotorized Travel Models 

In this part of the Florida household-level case study, ordered probit models have been employed 

to examine the association between nonmotorized trips and built and social environment 

characteristics at three levels of influence: the micro level, the meso level, and the macro level. 

Applying the ordered probit modeling concepts to the Florida household-level case study, 

the total number of household’s daily walking (or bicycling) trips has been defined as the observed 

ordinal dependent variable (y) in the models. This observed variable is assumed to take on a series 

of values—from zero to the maximum number of trips in the dataset (22 for walking trips, and 11 

for bicycling trips, per Table 3)—depending on the value of the unobserved variable 𝑦∗. Based on 

Equation 10, the Florida household-level ordered probit models can be formulated as: 

𝑦∗ =   𝛽1
′SEHH + 𝛽1SECBG + 𝛽2

′SECBSA + 𝛽3
′BECBG+ 𝛽4

′BECounty+ 𝛽5
′BECBSA + 휀       Equation 23 

where, 

𝛽1 
′ − 𝛽5 

′  = column vectors of model parameters; 

𝛽1 = model parameter for the meso-level (neighborhood) social environment attribute; 

휀 = an iid error term with a normal distribution (휀 ~ 𝑁 (0, 1)); 

SEHH = column vector of micro-level (household) social environment attributes; 

SECBG = column vector of meso-level (neighborhood) social environment attributes; 

SECBSA= column vector of macro-level (metropolitan area) social environment attributes; 

BECBG = column vector of micro-level (neighborhood) built environment attributes; 

BECounty = column vector of meso-level (county) built environment attributes; 

BECBSA= column vector of macro-level (metropolitan area) built environment attributes; 

𝑦∗ = value of the unobserved latent variable. 
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The probability of a certain number of walking (or bicycling) trips having been generated 

from a certain household, i, is computed by the ordered probit model through relating the observed 

number of household trips (y) to the unobserved latent variable 𝑦∗.  

That probability is given by: 

Probability (𝑦𝑖 = 𝑦𝑛) =  Φ (𝛼𝑛 − 𝑥𝑖𝛽) −  Φ (𝛼𝑛−1 − 𝑥𝑖𝛽)                 

where, 

𝑦𝑛      =  an integral number of walking (or bicycling) trips; 

Φ      = the cumulative normal distribution function; 

𝛼𝑛    =  the upper threshold for the range of 𝑦∗ which corresponds to n trips; 

𝛼𝑛−1 =  the lower threshold for the range of 𝑦∗ which corresponds to n trips; 

𝑥𝑖      =  vector of independent variables containing SEHH/CBG/CBSA, BECBG/County/CBSA; and 

𝛽      = column vector of the parameters 𝛽1 and 𝛽1−5
′   (in Equation 23).  

Given the representation above, the ordered probit models can be estimated for Florida 

household’s daily number of walking (or bicycling) trips based on built and social environment 

characteristics at multiple levels of influence.  

Discussion of Results: Florida Ordered Probit Nonmotorized Travel Models 

Table 9 summarizes the results of the ordered probit models for the Florida household-level 

analysis. The results of the ordered probit models are generally consistent with those obtained from 

the multilevel (i.e., mixed-effects) models, which are presented in Table 7.  

Therefore, this discussion section only focuses on comparing the results of the Florida 

household-level ordered probit models with those obtained from the Florida household-level 

multilevel models (Table 7) as well as with the results estimated by the Baltimore-D.C. ordered 

probit models (presented in Appendix C). 
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    Table 9. Results: Florida Household-level Ordered Probit Nonmotorized Travel Models 
 

      NOTES:  

     DF=Degrees of freedom;  

     *, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively; 

     For brevity, the cut point estimates are not reported in the table. 

Dependent Variable:  Number of Household’s Daily Walking/Bicycling Trips 

Walking Model 

Bicycling  Model 

Independent Variable Walking Model Bicycling Model 

 Coefficient p-value Coefficient p-value 

Social Environment  

Micro Level: The Household  

Number of Adults - logged  -.3624788*** 0.000 -.2758517*** 0.000 

Number of Vehicles -.0521078*** 0.000 -.0750995*** 0.003 

Number of Workers .0587672*** 0.000 .0454139* 0.092 

Annual Income  .0188557*** 0.000 .0153484*** 0.000 

Meso Level (Census Block Group): The Neighborhood  

Percentage of Households with No Cars 

 
.0628375* 0.075 -.2444447 0.465 

Macro Level (Core Based Statistical Area): The Metropolitan Area  

Average Percentage of Households with 2+ Cars 

 
  -.7354391** 0.047 -2.027309* 0.091 

Average Percentage of Low-Wage Workers 

 
.5676108 0.674 -.691309 0.111 

Built Environment 

Micro Level (Census Block Group): The Neighborhood  

Activity Density .003134* 0.051 -.006105 0.198 

Entropy .0496001* 0.066 .128649* 0.060 

Intersection Density (Automobile-oriented) - logged -.0011786 0.650 .0063139* 0.078 

Pedestrian-friendly Network Density .0020931** 0.046 .0047229* 0.070 

Local Transit Service - logged .0141105** 0.026 .008118 0.473 

Local Transit Accessibility .0000264 0.727 .0000228 0.874 

Meso Level: The County  

Mean Activity Density .0313752*** 0.010   -.0191985** 0.038 

Mean Entropy .8760413** 0.035 .2806565 0.704 

Mean Regional Diversity -.0832672 0.805 -.5391015 0.358 

Mean Intersection Density -.0009994 0.989 .1361056** 0.048 

Mean Pedestrian-friendly Network Density .0113724** 0.049 .0326989* 0.058 

Mean Transit Service .0005097 0.253 .0005049 0.526 

Mean Temporal Automobile Accessibility -1.52e-06 0.206   -2.37e-06 0.259 

Mean Temporal Transit Accessibility -.0000706* 0.069 -.0000316 0.646 

Macro Level (Core Based Statistical Area): The Metropolitan Area  

Mean Activity Density -.0177383 0.271 .0314577 0.282 

Mean Entropy   -1.368036** 0.020 -.2736731 0.784 

Mean Total Road Network Density -.0013882* 0.097 -.0008796 0.813 

Percentage of 0.01 Blocks .8381268** 0.020 .3858952 0.532 

Mean Temporal Automobile Accessibility 1.29e-06 0.304 -6.90e-07 0.750 

Mean Temporal Transit Accessibility -.0000194 0.267 -.0001004*** 0.001 

Model Goodness Parameters 

Likelihood Ratio Test 391*** (DF=27) 108*** (DF=27) 

Pseudo R2     0.015 0.019 

Log likelihood  -12879.027 -2786.517 

Observations (households) 14,976 14,976 
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Social Environment Variables Findings: Parallel to the results of the mixed-effects models 

(Table 7), the Florida household-level ordered probit models show that social environment factors 

at multiple levels of influence are correlated with household’s daily number of nonmotorized trips.  

Micro-level (i.e., household-level) social environment attributes such as the number of 

household adult members and the number of household vehicles exhibit negative correlations with 

household’s number of walking and bicycling trips. These results are consistent with results 

obtained from the Florida mixed-effects models (Table 7) and those from the ordered probit 

models for the Baltimore-D.C. case study (Appendix C). However, unlike the case in the mixed-

effects models, the variable representing the number of household workers becomes statistically 

significant in the ordered probit models for both walking and bicycling and it shows a positive 

correlation with household’s number of nonmotorized trips. This is consistent with the Baltimore-

D.C. case study (see Appendix C) and indicates that an increase in the total number of employed 

persons in the household is associated with more nonmotorized trips generated from the household.  

Also, consistent with the mixed-effects models (Table 7), household’s annual income 

shows a positive correlation with household’s daily number of both walking and bicycling trips. 

As indicated previously, this finding is probably capturing recreational walking and bicycling trips 

of members of wealthier households. However, there is inconsistency between the results of the 

Florida ordered probit models, which show a significant correlation between household income 

and bicycling, and the results of the Baltimore-D.C. bicycling ordered probit model (see Appendix 

C), in which, the coefficient of the income variable is insignificant. Thus, the conclusion of Heinen 

et al. (2010) that the relationship between income and bicycling remains unclear is corroborated. 

At the meso level (i.e., neighborhood level) of the social environment, a positive correlation 

is estimated by the ordered probit model between the percentage of households with no cars within 
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the neighborhood and household’s number of daily walking trips. This result is consistent with the 

results of the Florida mixed-effect models.  

At the macro level (i.e., metropolitan area level) of the social environment, the average 

percentage of 2+-car households within the metropolitan area is significantly and negatively 

correlated with household’s nonmotorized travel—a finding that is consistent with that of the 

mixed-effects models. This result also supports the results obtained for the car ownership variables 

at the household level (i.e., micro level) and neighborhood level (i.e., meso level) and suggests 

that vehicle ownership at multiple levels of influence is associated with nonmotorized travel. 

Micro-level (Neighborhood-level) Built Environment Variables Findings: Considering the 

micro-level (i.e., neighborhood-level) built environment variables, the ordered probit models 

indicate that increased daily numbers of household walking trips are correlated with increased 

levels of compactness (i.e., higher activity density), higher mixed land use (i.e., entropy), higher 

pedestrian-friendly network density, and more frequent transit service within the neighborhood.  

Increased neighborhood-level mixed land use, pedestrian-friendly network density, and 

intersection density are also positively correlated with the daily number of household bicycling 

trips. These results are consistent with the results of the Florida mixed-effects models (Table 7). 

Overall, these findings confirm that neighborhood-level built environment attributes are among 

the key elements in estimating nonmotorized trips of residents. 

Meso-level (County-level) Built Environment Variables Findings: At the county level, 

increased household’s daily number of walking trips are associated with increased compactness 

(i.e., higher average activity density), higher average entropy (i.e., mixed land use), and higher 

average pedestrian-friendly network density. These results are consistent with the results of the 

mixed-effects models and the Baltimore-D.C. case study except in the case of average county-
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level entropy variable, which shows a negative association with walking trips in the Baltimore-

D.C. ordered probit model (see Appendix C). Increased county-level transit accessibility to 

employment shows a negative correlation with the daily number of walking trips. This variable 

measures the average number of jobs within a 45 minute-transit commute; thus, the result obtained 

indicates that having more jobs located within relatively longer transit commutes (i.e., up to 45 

minutes) is associated with fewer walking trips generated from households. The coefficient for 

this variable did not reach a significance threshold in the mixed-effects model. 

Consistent with the results of the mixed-effects models and the Baltimore-D.C. case study 

(see Appendix C), increased county-level compactness (higher average  activity density) is 

negatively correlated with household’s daily number of bicycling trips, whereas increased average 

county-level intersection density and average pedestrian-friendly network density show significant 

and positive correlations with households’ daily number of bicycling trips. Average county-level 

entropy variable does not reach a significance threshold in the bicycling model—a result consistent 

with that of the mixed-effects model. However, this variable shows a negative and significant 

association with bicycling trips in the Baltimore-D.C. ordered probit model (see Appendix C). 

Also, the county-level Mean Transit Service variable in the walking ordered probit model and the 

county-level Mean Regional Diversity variable in the bicycling ordered probit model become 

insignificant despite showing significant coefficients in the respective mixed-effects models.  

Together, these results confirm that county-level compactness (i.e., average activity 

density) and pedestrian-friendly network density are among key county-level built environment 

factors in determining nonmotorized travel behavior. The results also indicate that other county-

level built environment attributes (e.g., mixed land use, transit accessibility, and automobile 

accessibility) play a less clear role in nonmotorized travel behavior of residents. 
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Macro-level (Metropolitan Area-level) Built Environment Variables Findings: At the 

metropolitan area level (i.e., macro level) of influence, increased numbers of daily household 

walking trips are associated with better street connectivity (i.e., percentage of small blocks) within 

the metropolitan area. Conversely, fewer numbers of daily household walking trips are associated 

with higher levels of mixed land use and higher road network density throughout the metropolitan 

area. All of these results are consistent with those obtained from the mixed-effects models. 

Also consistent with the results of the mixed-effects models (Table 7), the Mean Temporal 

Transit Accessibility variable at the macro level has a negative sign in both ordered probit models 

but is only significant in the bicycling model. This shows that higher transit accessibility to 

employment within the metropolitan area is associated with households generating fewer bicycling 

trips. The Mean Temporal Transit Accessibility variables in this case study represent the mean 

number of jobs within 45 minutes of transit commute. The results of the models potentially indicate 

that metropolitan areas with more jobs accessible within relatively longer commutes (i.e., up to 45 

minutes) are associated with fewer nonmotorized trips by residents. 

The negative coefficient of the Mean Temporal Transit Accessibility in the bicycling model 

may be capturing the effect of driving to transit stations rather than bicycling to them (due to longer 

commute distance). This argument is in line with what Rodríguez and Joo (2004) suggested; 

decreasing commuting distance may result in higher propensity of choosing nonmotorized modes 

and a lower propensity of choosing motorized modes. 

Taken together, the results of the ordered probit models support the results of the mixed-

effects models and indicate that macro-level (i.e., metropolitan-level) built environment factors 

are associated with walking and bicycling. Therefore, to comprehensively analyze nonmotorized 

travel behavior, the role of macro-level built environment attributes should not be overlooked. 
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Interpretation of Results: Florida Ordered Probit Nonmotorized Travel Models 

Marginal effects can be computed after the Florida household-level ordered probit models to 

measure the change in the probability of a certain category of the ordinal dependent variable 

occurring as a result of a one-unit change in each of the independent variables. In the Florida case 

study, the ordinal categories of the dependent variable consist of different values of the “total 

number of daily walking or bicycling trips” (0-22 for walking trips and 0-11 for bicycling trips 

based on Table 3). Marginal effects can be computed for each specific number of trips to obtain 

the probability of a household generating that exact number of walking or bicycling trips.  

To avoid ambiguity in interpretations of marginal effects for all values of the of the total 

number of trips, marginal effects are only reported for the case of “zero” daily walking and “zero” 

daily bicycling trips. This means that average marginal effects have been computed for the case of 

a household not reporting any walking/bicycling trips during the travel survey day. The marginal 

effects in this case represent the expected change in the probability of households’ reporting no 

walking/bicycling trips during the travel survey day, associated with a one-unit change in a certain 

independent variable. Since the ordered probit model is a nonlinear model, that effect varies from 

household to household. The average marginal effect computes the change in the probability for 

each observation (i.e., household) and then computes the average for all observations.  

Table 10 provides the average marginal effects along with the p-values estimated after the 

ordered probit models for a total number of “zero” daily walking/bicycling trips generated from a 

household. The average marginal effects are interpreted as the average probability of the household 

generating exactly “zero” walking/bicycling trips during a day. The ordered probit model is a 

nonlinear model; therefore, for interpretation purposes, it is assumed that the average marginal 

effects of a unit change in a certain independent variable on the probability of the household 
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generating exactly “zero” walking/bicycling trips during a day is conditional on the distribution of 

all the model variables being as they are in the dataset. The average marginal effects can be 

interpreted for each of the independent variables as if it represents the response to a unit change29. 

    Table 10. Average Marginal Effects: Florida Household-level Ordered Probit Models 

Average Marginal Effects for Number of Household’s Daily Nonmotorized Trips = 0 

 Walking Model Bicycling Model 

Independent  

Variable 

Average 

Marginal 

Effects 

p-value 

Average 

Marginal 

Effects 

p-value 

Social Environment  

Micro level: The Household   

Number of Adults - logged .0152792*** 0.000 .0055833*** 0.004 

Number of Vehicles .1062873*** 0.000 .0205083*** 0.000 

Number of Workers -.0172319*** 0.000 -.0033763* 0.093 

Annual Income  -.0055289*** 0.000 -.0011411*** 0.000 

Meso Level (Census Block Group): The Neighborhood 

Percentage of Households with No Cars 

 
-.0184254* 0.075   .0181733 0.465 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Percentage of Households with 2+ Cars 

 
.2156481** 0.047 .1507208* 0.091 

Built Environment 

Micro Level (Census Block Group): The Neighborhood 

Activity Density -.000919* 0.051 .0004539 0.198 

Entropy -.0145439* 0.066 -.0095644* 0.060 

Intersection Density (Automobile-oriented) - logged .0003456 0.650 -.0004694* 0.078 

Pedestrian-friendly Network Density -.0006137** 0.046 -.0003511* 0.070 

Local Transit Service - logged -.0041375** 0.026 -.0006035 0.473 

Meso Level: The County 

Mean Activity Density -.0091999*** 0.010 .0014273** 0.035 

Mean Entropy -.256876** 0.035 -.0208655 0.704 

Mean Intersection Density .000293 0.989 -.0101188** 0.048 

Mean Pedestrian-friendly Network Density -.0033347** 0.049 -.002431** 0.058 

Mean Temporal Transit Accessibility .0000207* 0.069 2.35e-06 0.646 

Macro Level (Core Based Statistical Area): The Metropolitan Area  

Mean Entropy .4011405** 0.020 .0203463 0.784 

Mean Total Road Network Density   .000407* 0.097 .0000654 0.813 

Percentage of 0.01 Blocks -.2457585** 0.020 -.0286895 0.532 

Mean Temporal Transit Accessibility 5.68e-06 0.267 7.46e-06*** 0.001 

Model Prediction 

Model Prediction for Total Number of Household’s Trips = 0 

(all variable set to their mean values) 
.7802678*** .9686084*** 

     NOTES: 

     *, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively; 

     Variables with statistically insignificant marginal effects in both models have been omitted from the table. 

 
29 See Stata 13 Manual “margins — Marginal means, predictive margins, and marginal effects”: 

https://www.stata.com/manuals13/rmargins.pdf  
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For example, the average marginal effects on the household vehicle ownership in the 

walking model (0.1062873) indicates that each additional private vehicle that is available to the 

household is associated with an increase of approximately 10.6 percentage points in the average 

probability of the household generating no walking trips (i.e., households are less likely to generate 

walking trips if they own more vehicles). Consistent with the elasticities computed for the 

multilevel (i.e., mixed-effects) models, this is the highest average marginal effect on the number 

of household’s daily walking trips with respect to the household socioeconomic characteristics. In 

addition, this result is consistent with the average marginal effects computed for the household-

level vehicle ownership variable in the Baltimore-D.C. case study (see Appendix C). Vehicle 

ownership also shows the highest average marginal effects among the household socioeconomic 

characteristics in the bicycling model (0.0205083). 

The average marginal effects on the social environment variables at the neighborhood and 

metropolitan area level further emphasize the role of vehicle ownership in nonmotorized travel 

behavior. These results show that an increase of one percentage point in the average percentage of 

zero-vehicle households within the neighborhood is associated with 1.84 percentage points 

decrease in the average probability of the household generating no walking trips (i.e., walking trips 

are more likely to occur if the percentage of zero-vehicle households in the neighborhood is 

higher). Also, an increase of one percentage point in the average percentage of 2+-vehicle 

households within the metropolitan area is associated with 21.5 percentage points increase in the 

average probability of the household generating no walking trips (i.e., walking trips are less likely 

to occur if the percentage of 2+-vehicle households in the metropolitan area is higher). The variable 

with the largest average marginal effect in the bicycling model is the variables representing the 

average percentage of 2+-vehicle households within the metropolitan area (0.1507208). These 
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results emphasize the role of social environment factors such as vehicle ownership at multiple 

levels of influence (i.e., household, neighborhood, and metropolitan area) in nonmotorized travel. 

Furthermore, among the micro-level (i.e., neighborhood-level) built environment 

characteristics, the Entropy variable has the largest average marginal effects in both the walking 

and the bicycling models (-0.0145439 and -0.0095644, respectively). This result is consistent with 

the results of the Baltimore-D.C. case study (see Appendix C). The average marginal effects can 

be interpreted as: a one-unit increase in the neighborhood-level entropy value (i.e., mixed land 

use) is associated with a decrease of 1.45 and 0.95 percentage points in the average probability of 

the household generating no walking or no bicycling trips, respectively (i.e., households are more 

likely to generate walking/bicycling trips if land use mix within the neighborhood increases). 

At the meso level (i.e., county level), the Mean Entropy variable is again the variable with 

the largest average marginal effects in the walking model (-0.256876). This means that a one-unit 

increase in the county-level entropy value (i.e., mixed land use) is associated with a decrease of 

approximately 26 percentage points in the average probability of the household generating no 

walking trips. This result is consistent with the results of the elasticities computed for the multilevel 

(i.e., mixed-effects) models (Table 8), but it stands in contrast with the results of the Baltimore-

D.C. case study, which shows positive correlations between county-level entropy variable and 

nonmotorized trips (see Appendix C). The county-level Mean Intersection Density variable has 

the largest statistically significant average marginal effects in the bicycling model (-0.0101188) 

with respect to county-level built environment variables. This indicates that a one-unit increase in 

the value of the county-level Mean Intersection Density variable is associated with a decrease of 

1.01 percentage points in the probability of the household generating no bicycling trips. This result 

implies that increased intersection density within the county may encourage bicycling trips. 
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At the macro-level (i.e., metropolitan area level), the largest statistically significant average 

marginal effect in the walking model belongs to the Mean Entropy variable (0.4011405). This 

result means that a one-unit increase in the metropolitan-level entropy value is associated with an 

increase of 40 percentage points in the average probability of the household generating no walking 

trips. This shows the importance of mixed-use development within the entire metropolitan area in 

walking. It should be noted, however, that compared with the sign of the average marginal effects 

of the entropy variables at the micro and meso level (negative signs), the sign of the average 

marginal effect of the entropy variable at the macro level is reversed (positive sign). Considering 

that the average marginal effects are computed for “zero” walking/bicycling trips, these results 

suggest that higher levels of mixed land use within the metropolitan area are correlated with a 

higher probability of fewer walking trips generated from households within that metropolitan area.  

The only significant average marginal effects at the metropolitan level (i.e., macro level) 

in the bicycling model belongs to the Mean Temporal Transit Accessibility variable. This effect 

indicates that an increase of 1,000 jobs in the mean number of jobs within 45 minutes of transit 

commute in the metropolitan area is associated with an increase of 0.75 percentage points in the 

average probability of the household generating no bicycling trips. Therefore, consistent with what 

the elasticity of this variable showed (Table 8), this result implies that having more jobs located 

within relatively longer transit commutes is associated with fewer household bicycling trips. 

The probability of a household generating no walking trips given that the rest of the 

variables are at their mean values is 78% (model prediction is 0.7802678). The probability of a 

household generating no bicycling trips given that the rest of the variables are at their mean values 

is 97% (model prediction is 0.9686084). In sum, the results of the ordered probit models emphasize 

the role of social and built environment at multiple levels of influence in nonmotorized travel. 
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4.1.7 Person-level Nonmotorized Travel Behavior Model Framework 

The Florida household-level nonmotorized travel behavior models in Subsection 4.1.6 were 

developed based on the ecological model of behavior, which stems from the social cognitive 

theory. Applying the concepts of the ecological model to physical activity as a health behavior in 

general, and to its travel-related forms (i.e., walking and bicycling) in particular, one can state that:  

i) in examining walking and bicycling behavior, the role of various factors across multiple 

levels of influence (intrapersonal, interpersonal, environmental, community, and policy) should be 

considered; and  

ii)  levels of walking or bicycling are expected to be maximized when: the individuals have 

pro-walking/pro-bicycling attitudes (i.e., the intrapersonal level); the social and cultural norms 

within the community as well as family and friends are supportive of walking and bicycling (i.e., 

the interpersonal and the community levels); the built environment—at various spatial scales—

and the natural environment are conducive to nonmotorized travel (i.e., the environmental level); 

and policies are in place to promote walking and bicycling (i.e., the public policy level).  

This is also in line with the conceptual model of travel behavior proposed by Van Acker et 

al. (2010), which considered travel behavior as the outcome of a decision hierarchy based on three 

levels of  “opportunities and constraints”: 1) spatial (i.e., built/natural environment characteristics);  

2) social (i.e., sociodemographic/socioeconomic factors such as age and income, as well as 

sociocultural characteristics such as ethnicity backgrounds); and 3) individual (i.e., personal 

sociopsychological characteristics such as attitudes and perceptions). 

The household-level models met some of the above criteria as they incorporated the 

emphasis of the ecological model on the influence of built environment factors on behavior as well 

as the emphasis of the social cognitive theory on the influence of social environment factors on 
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behavior, especially the role of household as the most important setting among social environment 

factors. Further, the household-level models were conceptualized based on the ecological models’ 

multiple level of influence framework—relating household-level walking and bicycling behavior 

to built and social environment characteristics, each at three levels: the micro, the meso, and the 

macro levels. Nonetheless, the household-level models have limitations that can be further 

improved. Particularly, the following two limitations exist in the household-level models:  

1) Noninclusion of the Intrapersonal Level: Although the household-level models include 

various levels of influence for the social and built environments in their framework, they do not 

fully incorporate all the levels conceptualized by the ecological model of behavior. Based on the 

principles of that model, an important level of influence on behavior is the intrapersonal level.  

The intrapersonal level of influence encompasses individual-level attributes that drive or 

impede behavior. These characteristics include biological factors such as genetic characteristics, 

demographic factors such as age and gender, socioeconomic factors such as employment status 

and college education, and psychological factors such as attitudes and perceptions.  

Incorporation of these factors is, therefore, essential in development of comprehensive 

model frameworks for examination of human behavior including travel behavior. Literature 

supports person-level analyses and argues that “the individual” is a more proper unit of analysis 

since: a) physical activity (e.g., walking and bicycling) manifests itself at the person level; and b) 

aggregate data may not show causal links (National Research Council 2005); 

2) Noninclusion of the Self-selection Effect: Residential self-selection is a crucial element 

in nonmotorized travel behavior, which has received much scholarly attention—as elaborated in 

Chapter 2 (and Appendix B). Understanding the role of self-selection is the key to understanding 

the causal relationship between the built environment and travel behavior (Handy et al. 2005).  
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Residential self-selection can confound the analysis of the link between nonmotorized 

travel behavior and the built environment due to uncertainty in spuriousness or causality of the 

link. Since existence of a correlation cannot confirm existence of a causal link, controlling for 

residential self-selection bias is essential in determining whether the correlation observed between 

nonmotorized travel behavior and the built environment is the result of spuriousness or causality.  

If the choice of residential location is influenced by unobserved attitudes and preferences 

toward nonmotorized modes of travel, then variables representing the built environment attributes 

can be correlated with the error term resulting in endogeneity bias in the analysis. Thus, in research 

concerning the link between the built environment and travel behavior, residential self-selection 

bias is considered the manifestation of the endogeneity bias. The issue of residential self-selection 

should be accounted for in the analysis of the link between the built environment and nonmotorized 

travel behavior to establish causality and to address the endogeneity bias.  

Although the analytical structure of the household-level models allowed for examining the 

statistical association between nonmotorized travel and the built environment, it imposed 

limitations on capturing self-selection bias as well as making inferences about causality.  

The results of household-level models confirmed existence of many statistically significant 

correlations between nonmotorized travel behavior and built environment factors at various levels 

of influence; however, as Kelloway (1998) argued, “finding the expected patterns of correlations 

is a necessary, but not sufficient condition for the validity of theory”. Since residential self-

selection was not considered in the household-level model frameworks, the models developed in 

the present research thus far do not provide any insights into the role of self-selection and the 

causality of correlations observed. Therefore, the links between built environment attributes and 

walking/bicycling travel as estimated by the household-level models should not be construed as 
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casual ones. In other words, the results of the household-level models merely confirm existence of 

a correlation between the built environment and nonmotorized travel behavior but not causality. 

To improve upon the nonmotorized travel behavior models, the two limitations of the 

household-level models (discussed above) are addressed in the framework of the person-level 

nonmotorized travel behavior models as follows:  

First, in consideration of the intrapersonal level of influence as posited by the ecological 

model of behavior, the principles of this model have been used to conceptualize a multilevel model 

framework that relates nonmotorized travel behavior at the individual level to attributes of the built 

and social environments of the residential location. Figure 6 shows the ecological framework 

applied to the Florida person-level nonmotorized travel behavior models. The framework is similar 

to that of the household-level models (Figure 5); however, as depicted in the figure, person-level 

characteristics have been added in the new models as the framework of the person-level models 

focuses on nonmotorized travel behavior of individuals. 

In developing the model framework for person-level nonmotorized travel behavior, it 

should be borne in mind that each individual belongs to a social network of family, friends, and 

colleagues and resides within a particular location, which can influence her/his behavior. Thus, the 

ecological model should include the individual level, the social environment level, and the spatial 

environment level (Van Acker et al. 2010). Accordingly, these levels have also been included in 

the person-level model framework. The theory of the ecological model posits that within the 

multiple levels of influence on behavior, the social and built environment levels operate at multiple 

levels themselves (Sallis et al. 2008). Thus, built environment characteristics in the person-level 

models have been measured utilizing a three-level hierarchy of influence: the micro level (i.e., 

neighborhood), the meso level (i.e., county), and the macro level (i.e., metropolitan area).  
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Also, the person-level models incorporate a three-level hierarchy for the influence of the 

social environment on walking and bicycling behavior: the micro level (i.e., the household and the 

neighborhood), the meso level (i.e., the county), and the macro level (i.e., the metropolitan area). 

It should be noted, however, that although the core concept of the ecological model 

includes a policy level as a key level of influence on behavior (see Sallis et al. 2008 ), due to lack 

of data on policy measures, a policy level was not included in the person-level ecological models 

developed in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Ecological Framework for Levels of Influence on Nonmotorized Travel Behavior 

(Florida Person-level Models) 

Second, by addressing residential self-selection in the analysis of the link between 

nonmotorized travel behavior and the built environment, the frameworks of the person-level 

models are designed to test the causality of correlations observed and reduce the risk of 

endogeneity bias in the analysis.  
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4.1.8 Person-level Nonmotorized Travel Models: Dependent Variables 

The 2009 NHTS Add-on data from the metropolitan areas within the state of Florida have been 

used to conduct the analysis of nonmotorized travel behavior at the individual level. Nonmotorized 

trip mode share for each individual traveler has been considered for statistical modeling. Separate 

models for walking and bicycling have been developed based on two dependent variables: 

1) individual’s daily walking mode share (i.e., number of daily walking trips by the 

individual divided by the number of all trips made by the individual); 

2) individual’s daily bicycling mode share (i.e., number of daily bicycling trips by the 

individual divided by the number of all trips made by the individual). 

The 2009 NHTS Add-on data for the person-level models provide information on a total 

of 24,550 individuals who resided in Florida metropolitan areas. Table 11 lists the frequency of 

the total number of individuals’ daily walking and bicycling trips. The table indicates that the 

maximum numbers of walking and bicycling trips for Florida residents were 18 and 10, 

respectively. Consistent with what the literature suggests, most individuals did not make any 

walking or bicycling trips.  

Owing to most individuals not making any nonmotorized trips, the two dependent variables 

are extremely skewed. However, since the data distribution curve did not show any improvement 

by transforming the data values to their naturally logged form, the dependent variables were 

retained in the models in their original form. 

Also, the average numbers of daily person-level walking and bicycling trips in the Florida 

study area were 0.40 and 0.05 trips, respectively. The average person-level walking mode share 

was 8.3%, whereas the average person-level bicycling mode share was 1.1%. 
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                           Table 11. Frequency of Florida Nonmotorized Person Trips 
 

Number 

of Individual’s Trips 

Frequency 

Walking Bicycling 

0 20,369 23,972 

1 640 74 

2 2,705 426 

3 155 20 

4 469 39 

5 43 10 

6 107 3 

7 13 2 

8 32 2 

9 2 1 

10 9 1 

11 2 — 

12 2 — 

13 — — 

14 1 — 

15 — — 

16 — — 

17 — — 

18 1 — 

Total 24,550 24,550 

                                  NOTES: — = Not applicable; Source of data: 2009 NHTS Add-on data. 

 

4.1.9 Person-level Nonmotorized Travel Models: Independent Variables 

The independent variables for the Florida person-level models have been chosen based on the 

principals of the ecological models of behavior. Most of the independent variables for the Florida 

person-level models are the same as those included in the Florida household-level models (Table 

4). However, since the person-level models expand the influence level to the individual traveler, 

person-level data have also been included in the models to account for the role of each individual’s 

characteristics in his/her nonmotorized travel behavior. Further, additional independent variables 

have been added to better capture the influence of the built and social environment surrounding 

the residence location of individual trip-makers. The final database for the Florida person-level 

models was constructed by merging various datasets as depicted in Appendix F. Table 12 lists all 

the independent variables for Florida person-level nonmotorized travel behavior models.  
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    Table 12. Florida Person-level Model Variable Descriptions and Data Sources 
 

Independent Variable  

(Exogenous or Endogenous30) 

Represented  

Effect 

 

Variable 

Description/Units 

Data  

Source 

Data Field/ 

Computation 

Individual (i.e., Person) Characteristics 

Age Intrapersonal Person’s age (years) NHTS R_AGEd 

Race Intrapersonal Person’s race: 1 = White, 0 = otherwise NHTS HH_RACEd 

Gender Intrapersonal Person’s gender: 1 = male, 0 = female NHTS R_SEXd 

Employment Status  Intrapersonal Employed? 1 = yes, 0 = no NHTS WORKERd 

College Education Intrapersonal College degree? 1 = yes, 0 = no NHTS Based on “EDUC”d 

Social Environment  

Micro Level: The Household 

Number of Members Interpersonal Count of household members NHTS HHSIZEc 

Number of Vehicles Interpersonal Vehicles owned by the household NHTS HHVEHCNTc 

Number of Workers Interpersonal Employed persons in the household NHTS WRKCOUNTc 

Annual Income Interpersonal Household annual income (midpoint of category) NHTS Based on “HHFAMINC”c 

Number of  

Daily Transit Trips  
Interpersonal 

Number of daily transit trips  

made by all members of the household 
NHTS TRPTRANSe 

Number of  

Daily Nonmotorized Trips 

 

Interpersonal 
Number of daily [walking + bicycling] trips  

made by all members of the household 
NHTS TRPTRANSe 

Micro Level (Census Block Group): The Neighborhood 

Percentage of HHs with No Cars Interpersonal Percentage of households (in CBG) with zero cars 

 
SLD Pct_AO0f 

Meso Level (County): The County 

Average Walking  

(or Bicycling) Density 

Interpersonal 

(sociocultural) 

Number of walking (or bicycling) trips in CBG divided by 

area of CBGs in acre (averaged for county) 

SLD and 

NHTS 

AC_TOT (SLD)a,f and 

TRPTRANSe (NHTS) 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Percentage of 

HHs with 2+ Cars 

 

Interpersonal 

(socioeconomics) 

Average percentage of households (in CBSA)  

with more than two cars  

 

SLD 
Pct_AO2p  

(Averaged)a,f 

Average Percentage of 

Low-Wage Workers 

Interpersonal 

(socioeconomics) 

Average percentage of workers (in CBSA)  

earning $1250/month or less  
SLD 

R_PctLowWage 

(Averaged)a 

Average Walking  

(or Bicycling) Density 

Interpersonal 

(sociocultural) 

Number of walking (or bicycling) trips in CBG divided by 

area of CBGs in acre (averaged for CBSA) 

SLD and 

NHTS 

AC_TOT (SLD)a  and 

TRPTRANSe (NHTS) 

 
30 Endogenous variables in a SEM are defined as variables that need to be explained or predicted, and exogenous variables are those that can potentially offer the 

explanation or prediction (Kelloway 1998). In a SEM model, independent variables can be either exogenous or endogenous, whereas dependent variables are 

always endogenous. 
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Public Transportation  

Annual Passenger-Miles 

Interpersonal 

(sociocultural) 

Public transportation annual passenger-miles  

in CBSA (millions) 

 

TTI Public Transportationg  

Average  

State Gasoline Cost 

Interpersonal 

(socioeconomics) 

 

Average state gasoline cost  

($/gallon) for CBSA  
TTI 

Cost Componentsg  

 

Average  

Median Age 

Interpersonal 

(sociodemographics) 

Median age for the entire population  

in CBSA (years) 
 ACS 

Median Ageg  

 

Average  

Percent Foreign-Born 

Interpersonal 

(sociocultural) 

Percentage of population in CBSA  

that was not born in the U.S. 
 ACS 

Foreign Borng 

 

Average  

Crime Rate 

Interpersonal 

(crime) 

Annual number of violent crimes  

per 100,000 population in CBSA 

FBI and 

CDC 
Violent Crime Rateh  

Built Environment 

Micro Level (Census Block Group): The Neighborhood  

Activity Density i Density 
(Employment + housing units) 

on unprotected land area (acres) 
SLD D1df 

Entropy i Land use Diversity 5-tier employment entropy  SLD D2b_E5Mixf 

Intersection Density i Urban Design Auto-oriented intersections/mi2 SLD D3baof 

Pedestrian-friendly i 

Network Density 
Urban Design Facility miles of pedestrian-oriented links/mi2 SLD D3apof 

Local Transit Service 
Local Transit 

Accessibility 

Aggregate frequency of 

transit service/mi2 
SLD D4df 

Local Transit Accessibility 
Distance to  

Local Transit 

Distance from centroid to  

the nearest transit stop (meters) 
SLD D4af 

Meso Level: The County  

Mean  

Activity Density 
Density 

Average (employment +housing units) 

on unprotected land in county 
SLD 

D1d 

(Averaged)a,f 

Mean  

Entropy 

Land use 

 Diversity 

Average 5-tier employment entropy  

for county 
SLD 

D2b_E5Mix  

(Averaged)a,f 

Mean  

Regional Diversity 

Regional  

Diversity 

Average deviation of jobs/population ratio  

from the regionalb average 
SLD 

D2r_JobPop 

(Averaged)a,f 

Mean  

Intersection Density 

Urban  

Design 

Average auto-oriented intersections/mi2  

for county 
SLD 

D3bao 

(Averaged)a,f 

 
Mean Pedestrian-friendly  

Network Density 

Urban  

Design 

Average facility miles of pedestrian-oriented links/mi2  

for county 
SLD 

D3apo 

(Averaged)a,f 

Mean  

Transit Service 

Transit  

Accessibility 

Average aggregate frequency of transit service/mi2  

for county 
SLD 

D4d 

(Averaged)a,f 
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Mean Temporal Automobile 

Accessibility (to Jobs) 

Destination 

Accessibility 

Average number of jobs in county within a 

45-minute automobile travel time  
SLD 

D5ar 

(Averaged)a,f 

Mean Temporal Transit  

Accessibility (to Jobs) 

Destination 

Accessibility 

Average number of jobs in county within a  

45-minute transit commute 
SLD 

D5br 

(Averaged)a,f 

Mean  

Walk Score 

Destination 

Accessibility 

Average Walk Score  

for county 

Walk 

Score® 

Averaged 

for county 

Macro Level (Core Based Statistical Area): The Metropolitan Area  

Mean  

Activity Density 
Density 

Average (employment+ housing units) 

on unprotected land in CBSA 
SLD 

D1d 

(Averaged)a,f 

Mean  

Entropy 

Land use  

Diversity 

Average 5-tier employment entropy  

for CBSA 
SLD 

D2b_E5Mix  

(Averaged)a,f 

Mean  

Total Road Network Density 

Urban  

Design 

Average total road network density 

for CBSA 
SLD 

D3a 

(Averaged)a,f 

Percentage of 0.01 Blocks 
Urban  

Design 

Percent blocks with an area  

smaller than 0.01 mi2 in CBSA 

Census TIGER  

Block Shapefiles 

Mean Temporal Automobile 

Accessibility (to Jobs) 

Destination 

Accessibility 

Average number of jobs in CBSA within a  

45-minutes automobile travel time  
SLD 

D5ar 

(Averaged)a,f 

Mean Temporal Transit  

Accessibility (to Jobs) 

Destination 

Accessibility 

Average number of jobs in CBSA within a  

45-minute transit commute  
SLD 

D5br 

(Averaged)a,f 

Mean  

Walk Score 

Destination 

Accessibility 

Average Walk Score  

for CBSA 

Walk 

Score® 

Averaged 

For CBSA 

Average 

 Roadway Congestion Index 
Mobility 

Average roadway congestion index 

for CBSA 
TTI 

Roadway Congestion 

Indexg (Averaged) 

 

NOTES: 

 
a Measure was computed by averaging values of the referenced field provided in data source over the relevant geographical area; 
b CBSA; 
c Variable was obtained from 2009 NHTS Add-on Household File; 
d Variable was obtained from 2009 NHTS Add-on Person File; 
e Variable was obtained from 2009 NHTS Add-on Day Trip File; 
f The variables provided in the SLD have been extensively discussed in the SLD User Guide document, which can be found at: 

https://www.epa.gov/sites/production/files/2014-03/documents/sld_userguide.pdf; 
g Average of years 2008 and 2009; 
h For CBSAs where FBI crime data were available, the data were averaged over years 2008 to 2010. For CBSAs for which FBI data were not available, 

the county-level crime data from CDC (CHR&R 2005-2007 data and CHSI 2010-2012 data) were averaged to obtain the CBSA average crime rates; 
i Endogenous variable.
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Table 13 presents the weighted descriptive statistics for the continuous independent 

variables in the person-level nonmotorized travel behavior models. Cumulatively, the variables 

listed in Table 13 provide a comprehensive set of factors that can be used to examine the effects 

of interpersonal (i.e., individual) attributes, intrapersonal (i.e., social environment) attributes, as 

well as the community physical environment (i.e., built environment) attributes at hierarchical 

levels of influence as posited by the principles of the ecological model of behavior.  

Most of the independent variables were discussed in Subsection 4.1.5. The new 

independent variables considered for inclusion in the person-level models are discussed below. 

4.1.9.1 Person-level Variables (Individual Characteristics) 

To satisfy the ecological model of behavior’s emphasis on the intrapersonal level of influence on 

behavior, person-level characteristics such as biological, demographic, socioeconomic factors, as 

well as measures representing attitudes and perceptions were considered for inclusion in the 

models. However, using a complete set of person-level variables that represented all of the above-

mentioned characteristics was not possible due to the following data limitations: 

• the NHTS Add-on Person File did not include biological data on individual trip-

makers; therefore, no variable representing the person’s genetic attributes was included 

in the models due to unavailability of these data; 

• although the NHTS Add-on Person File provided some data on person’s attitudes and 

perceptions, which can potentially influence one’s nonmotorized travel behavior, these 

data were missing for most of the data records. Appendix G lists the data fields in the 

NHTS Add-on Person File that were considered to represent a person’s attitudes and 

perceptions along with the number of available and missing observations.  
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To retain as many observations as possible and reduce the risk of bias in the models, a 

decision was made to not include these attitudinal data in the models. Consequently, the person-

level variables only include the following demographic and socioeconomic characteristics: 

-  age; 

-  race; 

- gender; 

-  employment status; and 

-  college education. 

As discussed in the Literature Review Chapter (Chapter 2), previous studies have proved 

that all of the above factors play important roles in nonmotorized travel behavior. 

4.1.9.2 Social Environment Variables  

Social environment factors have been included in the models at multiple levels of influence 

including the household and the neighborhood (i.e., micro level), the county (i.e., the meso level), 

and the metropolitan area (i.e., the macro level).  

Micro-level (i.e., Household and Neighborhood-level) Social Environment Variables 

As in the Florida household-level nonmotorized travel behavior models, the household variables 

provide information on the household’s social environment for each of the Florida 2009 NHTS 

Add-on respondents including the household’s: 

-  number of members (household size); 

-  annual income; 

-  number of workers;  

-  number of vehicles; and 

- number of daily transit trips. 
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The variable representing the number of daily household transit is a new variable, which 

has been included in the person-level analysis to examine the effects of the household’s transit trip 

levels on nonmotorized trip levels of the household members.  

The variable measuring the percentage of zero-vehicle households in the neighborhood has 

been included in the models to represent the neighborhood-level social environment. 

Meso-level (County-level) Social Environment Variable  

To represent the meso-level social environment, a new variable has been included in the models 

that measures the average walking or bicycling density within the county of residence. The 

inclusion of this variable is intended to operationalize two important behavioral concepts within a 

nonmotorized travel behavior context: 1) the concept of observational learning—defined by the 

social cognitive theory; and 2) the concept of contagion perspective—defined by Ross (2000). 

Representing social norms and sociocultural values, both of these concepts posit that human 

behavior can be influenced by seeing others perform a certain behavior. Past research showed an 

association between recreational walking and perceptions of others being physically active (e.g., 

people walking or bicycling) (Nehme et al. 2016).  

Therefore, for the person-level models, it is hypothesized that levels of walking and 

bicycling densities within the county of residence influence an individual’s walking and bicycling 

travel behavior due to a “cultural” effect. Mitra and builing (2012) who used a measure for walking 

density in modeling children’s nonmotorized trips to school found that children were more likely 

to walk or bicycle in locations where others also walked (i.e., locations with higher walking 

densities).  

Thus, it is hypothesized that individuals who frequently see others walk and bicycle (i.e., 

live in counties with higher walking/bicycling densities) engage in such activities at higher rates. 
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Macro-level (Metropolitan area-level) Social Environment Variables 

As in the Florida household-level models, the macro-level social environment is represented by a 

CBSA-level car ownership variable (the average percentage of households in the CBSA that own 

more than two cars) and a CBSA-level income variable (the average percentage of low-wage 

workers in the CBSA). Moreover, a few new CBSA-level variables are included in the Florida 

person-level nonmotorized travel behavior models to better represent the macro-level social 

environment. The new macro-level (i.e., CBSA-level) variables include: 

- average walking (or bicycling) density; 

- annual public transportation passenger-miles; 

- average gasoline cost (within the state where the CBSA was located); 

- average median age; 

- average percentage of population that was born outside of the U.S.; 

- average violent crime rate. 

The macro-level social environment variables are intended to capture three different 

features of the social environment within a metropolitan area including the: 

1) Sociodemographic and Socioeconomic Characteristics: Together with the CBSA-level 

car ownership variable and the CBSA-level income variable, variables measuring the CBSA-level 

average median age and average gasoline cost control for the effects of macro-level 

sociodemographic and socioeconomic attributes on nonmotorized travel behavior of individuals;  

2) Social Norms and Sociocultural Characteristics: As previously mentioned, walking and 

bicycling density variables have been included in the models to represent social norms and 

sociocultural values within the metropolitan area and to capture the effects of these concepts on 
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nonmotorized travel behavior of residents. It is hypothesized that where walking/bicycling have 

higher densities, individuals may be encouraged to walk or bicycle more due to a “cultural” effect.  

The variable measuring the percentage of foreign-born individuals within the CBSA has 

also been included to control for any cultural differences that may exist among immigrants and the 

U.S.-born population with respect to nonmotorized travel behavior. This variable has been 

considered for inclusion in the models based on findings by two previous studies: 1) McMillan 

(2003) who found that having a U.S.-born parent lowered the likelihood of children’s 

nonmotorized travel to school; and 2) McDonald (2005) who found that neighborhoods with larger 

immigrant population had higher levels of walking to school among children.  

Further, the variable measuring the annual public transportation passenger-miles has been 

included in the analysis to represent the levels of public transit usage within the CBSA—an 

indicator for a potential “public transportation culture” within the metropolitan area. 

3) Crime-related Characteristics: A variable measuring the average CBSA-level violent 

crime rate has been included in the Florida person-level nonmotorized travel behavior models to 

examine the impact of violent crime levels within the metropolitan area on nonmotorized travel 

behavior of residents. This variable has been included in the models based on previous research 

suggesting that crime rates within an area may play a role in walking or bicycling of individuals 

(see e.g., Joh et al. 2009). 

4.1.9.3 Built environment Variables 

Variables representing the built environment characteristics of the household location at various 

levels of geography have been included in the Florida person-level nonmotorized travel behavior 

models to control for the impact of micro-, meso-, and macro-level built environment on walking 

and bicycling of individuals. These include: 
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Micro-level (i.e., Neighborhood-level) Built Environment Variables 

The micro-level built environment variables are based on the SLD data and provide information 

on the neighborhood-level (CBG-level) built environment and land use for each household 

location. The neighborhood-level built environment variables include: 

- activity density; 

- entropy; 

- intersection density; 

- pedestrian-friendly network density; 

- local transit service frequency; and 

- distance to local transit (proximity to transit). 

These variables represent the Ds of the built environment at the neighborhood level. Table 

13 provides additional information about the micro-level built environment variables. 

Meso-level (County-level) Built Environment Variables  

The meso-level built environment variables are defined based on the county where the household 

was located. Block group-level built environment and land use measures provided by the SLD 

were aggregated to obtain the average county-level built environment measures for each household 

location. The meso-level (i.e., county-level) built environment variables included in the person-

level nonmotorized travel behavior models are:  

- average activity density; 

- average entropy; 

- average regional diversity; 

- average intersection density; 

- average pedestrian-friendly network density; 
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- average transit service frequency; 

- average local transit accessibility (i.e., average distance to local transit); 

- average automobile accessibility to employment opportunities;  

- average transit accessibility to employment opportunities; and  

- average Walk Score. 

The county-level Walk Score variable is a new variable that has been added in the person-

level analysis to further examine the effects of county-level destination accessibility as well as 

walkability on nonmotorized trip levels by residents. 

These variables represent the Ds of the built environment at the county (meso) level in the 

models. Additional information about the meso-level built environment variables is provided in 

Table 13. 

Macro-level (Metropolitan area-level) Built Environment Variables  

Census block group-level built environment measures provided by the SLD were aggregated to 

obtain the average metropolitan area-level (macro-level) built environment measures for each 

household location. The macro-level (i.e., CBSA level) built environment variables include:  

- average activity density; 

- average entropy; 

- average total road network density; 

- percentage of small blocks; 

- average automobile accessibility to employment opportunities;  

- average transit accessibility to employment opportunities; 

- average Walk Score; and 

- average roadway congestion index. 
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The CBSA-level Walk Score variable is a new variable that has been added in the person-

level analysis to further examine the effects of macro-level destination accessibility as well as 

walkability on nonmotorized trip levels by residents of each metropolitan area. The average 

roadway congestion index is also a new variable that has been added in the person-level models to 

account for levels of mobility within the metropolitan area. As an indicator of speed at which a 

person can travel within a specific timeframe, mobility has a potential to indirectly impact 

nonmotorized travel behavior through influencing motorized travel choices including mode and 

destination choices. It is hypothesized in this study that increased congestion (i.e., decreased 

mobility) within the metropolitan area has a positive association with walking and bicycling.  

Table 13 provides more information about the macro-level built environment variables. 

Additional Notes on Built Environment Variables 

As seen from Table 13, a few of the built environment variables—such as the activity density and 

the entropy variables—have been included at all three levels of geography (i.e., micro, meso, and 

macro levels). The entropy variable uses the 5-tier employment categories (i.e., retail, office, 

industrial, service, and entertainment) and the entropy formula31 in the computation of entropy at 

each level of geography. The intersection density variable provided by the SLD measures the 

intersection density in terms of automobile-oriented intersections. Thus, this variable it is not 

expected to be an indicator of more pedestrian-friendly designs or to have a positive correlation 

with walking. Additional information about the Florida built environment variables are provided 

in Subsection 4.1.5.2. The final integrated database is included in Table 13, which summarizes all 

the independent variables used in the Florida person-level nonmotorized travel behavior models. 

 
31 Entropy =  −∑

𝑃𝑗∗𝑙𝑛(𝑃𝑗)

𝑙𝑛(𝐽)𝑗   where, 𝐽 =  number of land use classes within the area; and 𝑃𝑗 = proportion of land use 

in the jth class (Frank and Pivo 1994; Cervero and Kockelman 1997; Cervero 2001; and Cervero and Duncan 2003). 
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Table 13.Descriptive Statistics: Florida Person-level Nonmotorized Travel Model Variables  
 

Independent Variable (Units) Mean SD Min. Max. 

Individual (i.e., Person) Characteristics 

Age of the Individual (years) 46.53 21.89 5 100 

Social Environment  

Micro Level: The Household 

Number of Members 2.95 1.45 1 10 

Number of Vehicles 1.94 1.02 0 14 

Number of Workers 1.27 .91 0 5 

Annual Income (1,000s of dollars) 50 - 55 — ≤ 5 ≥ 100 

Number of Daily Transit Trips (count of daily transit trips by all members of the household) 0.11 0.61 0 12 

Micro Level (Census Block Group): The Neighborhood 

Percentage of Households with No Cars 

 

5.67 7.90 0 90.45 

Meso Level (County): The County 

Average Walking Density [average (number of walking trips in CBG/CBG area in acres)] 0.0032  0.0025  0 0.0085 

Average Bicycling Density [average (number of bicycling trips in CBG/CBG area in acres)] 0.0003 0.0001 0 0.0014 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Percentage of Households with 2+ Cars (%) 52.40 2.58 43.35 60.64 

Average Percentage of Low-Wage Workers (workers earning ≤ $1250/month) (%) 26.32 1.86 24.31 34.16 

Average Walking Density [average (number of walking trips in CBG/CBG area in acres)] 0.0031 0.0021 0.0007 0.0062 

Average Bicycling Density [average (number of bicycling trips in CBG/CBG area in acres)] 0.0003 0.0001 0 0.0008 

Annual Public Transportation Passenger-Miles (millions) 331.26 408.60 5.70 972.70 

Average State Gasoline Cost (dollars/gallons) 2.80 0.05 2.66 2.92 

Average Median Age (years) 39.92 3.69 29.4 52.75 

Average Percentage of Foreign-Born Population (%) 18.54 11.98 5.19 36.73 

Average Violent Crime Rate (annual crimes/100,000 population) 821.67 355.51 180.27 1314.43 

Built Environment 

Micro Level (Census Block Group): The Neighborhood 

Activity Density [(employment + housing units)/acres)] 4.79 7.04 0 177.16 

Entropy (dimensionless) 0.59 0.31 0 0.99 

Intersection Density (automobile-oriented intersections/mi2) 0.98 2.17 0 28.83 

Pedestrian-friendly Network Density (facility miles of pedestrian-oriented links/mi2) 12.89 6.71 0 46.42 

Local Transit Service (aggregate frequency of transit service/mi2) 126.03 272.75 0 11760.5 

Local Transit Accessibility (distance from centroid to the nearest transit stop in meters) 662.10 162.97 1.87 1205.42 

Meso Level: The County 

Mean Activity Density [average (employment + housing units)/acres)] 6.29 4.41 0.02 15.86 

Mean Entropy (dimensionless) 0.54 0.06 0.30 0.70 

Mean Regional Diversity (average deviation of jobs/population ratio from the regional average) 0.18 0.05 0 0.31 

Mean Intersection Density [average (automobile-oriented intersections/mi2)] 1.12 0.54 0.06 1.99 

Mean Pedestrian-friendly Network Density [average (facility miles of ped.-oriented links/mi2)] 13.38 3.59 1.63 18.74 

Mean Transit Service [average (aggregate frequency of transit service per mi2)] 278.09 277.20 0 728.72 

Mean Local Transit Accessibility [average (distance to the nearest transit stop in meters)] 659.18 68.30 481.40 987.49 

Mean Temporal Automobile Accessibility (ave. number of jobs within 45-min. auto. commute) 85896.1 59076.8 804.61 172539 

Mean Temporal Transit Accessibility (ave. number of jobs within a 45-minute transit commute) 3750.35 3327.53 0 8834.1 

Mean Walk Score (dimensionless) 10.71 17.58 0 75 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Mean Activity Density [average (employment + housing units)/acres)] 6.17 3.51 0.18 11.55 

Mean Entropy (dimensionless) 0.54 0.05 0.44 0.64 

Mean Total Road Network Density [average (total road network miles/mi2)] 18.83 8.39 4.35 45.69 

Percentage of 0.01 Blocks (% blocks with an area smaller than 0.01mi2) 58.43 8.63 38.66 67.25 

Mean Temporal Automobile Accessibility (ave. number of jobs within 45-min. auto. commute) 83615.8 50055.7 6257.5 149675 

Mean Temporal Transit Accessibility (ave. number of jobs within a 45-minute transit commute) 2572.9 2073.9 0.91 5388.9 

Mean Walk Score (dimensionless) 41.52 15.06 0 91 

Mean Roadway Congestion Index (dimensionless) 1.12 0.20 0.82 1.36 
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4.1.10 Person-level Nonmotorized Travel Behavior Models 

Based on the principles of the ecological model of behavior, the Florida person-level models have 

been developed to comprehensively analyze the relationships between measures representing 

multiple levels of influence (e.g., intrapersonal, interpersonal, and built environment levels) and 

nonmotorized travel behavior. Previous research suggests that a key element of such relationships 

is the influence of intrapersonal level’s psychological factors such as attitudes and perceptions (see 

Chapter 2 and Appendix B).  However, as indicated previously, the attitudinal data from the Florida 

2009 NHTS Add-on Person File were unusable for the present study due to the large proportions 

of missing data (see Appendix G). The unavailability of attitudinal survey data limits the ability to 

control for residential self-selection bias (i.e., endogeneity bias) as residential self-selection is 

interwoven with attitudes. In addition, owing to lack of attitudinal data, the question of correlation 

or causality remains unaddressed. This is because attitudes may simultaneously influence travel 

choices and residential location choices, which means any correlation observed between 

nonmotorized travel and the built environment can be the effect of a spurious relationship and not 

a causal one. Further, the available data are cross-sectional, which limits the ability to test for the 

causality of the links between nonmotorized travel behavior and built environment factors. 

Due to the cross-sectional nature of data and lack of attitudinal data, a more sophisticated 

methodology is needed to more comprehensively analyze the link between nonmotorized travel 

behavior and the built environment and to control for residential self-selection bias (i.e., 

endogeneity bias). As indicated in prior chapters, the Structural Equations Modeling (SEM) 

technique has the capability to simultaneously estimate coefficients for multiple interrelated 

regression equations and test for the self-selection effect. The SEM methodology has been used in 

previous travel behavior research to control for self-selection bias and causality in analyses using 
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cross-sectional data and in absence of personal attitudinal data (see e.g., He and Zhang 2012; Wang 

2013; Nasri and Zhang 2014). Further, with regards to spatial data, the multilevel structure of the 

models causes a clustered structure for data. This introduces interdependencies within the data, 

which can potentially subject the analysis to spatial autocorrelation. Literature suggests that using 

hierarchical (i.e., multilevel) models can help in statistical treatment of any spatial autocorrelation 

problem, which may exist due to the clustered nature of the data (see e.g., Moudon et al. 2005).  

For the above reasons, multilevel Structural Equation Modeling (multilevel SEM) 

techniques have been employed in the Florida person-level nonmotorized travel behavior models 

to explain the complex relationships among person-level walking/bicycling activities and built as 

well as social environments, while accounting for interdependency among data from multiple 

hierarchical levels of influence (i.e., micro, meso, and macro levels) in the model framework.  

The multilevel SEM approach is a suitable modeling methodology to handle the 

hierarchical nature of the data as well as the multilevel conceptual model framework used in this 

analysis. It offers the capability of concurrently analyzing the effect of factors from various levels 

including those from the individual level and those from the cluster/group level (i.e., contextual 

effects) on the dependent variable (Kline 2011).  

Employment of the multilevel SEM techniques to examine the link between person-level 

nonmotorized travel behavior and built and social environment factors at multiple levels provides 

many methodological advantages. Most importantly, the application of the advanced statistical 

analysis tools offered by the multilevel SEM to the comprehensive person-level ecological model 

framework allows for controlling for self-selection bias and examining the causal links between 

nonmotorized travel behavior and the built environment at multiple levels of influence. Further, 

spatial autocorrelation can be accounted for by using the multilevel analysis capabilities embedded 
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in the multilevel SEM. Moreover, the SEM nature of the multilevel SEM can deal with potential 

multicollinearity problems that may exist in the models. Literature suggests that by testing causal 

paths through a sequence of correlated variables or by treating highly correlated variables as 

indictors of a common underlying construct, SEM may deal with collinearity issues (Franke 2010). 

Past research suggests that the advanced capabilities of the multilevel SEM, which allow 

for addressing various interdependencies within the model—whether resulting from numerous 

relationships (i.e., direct and indirect effects) or from a nested data structure (e.g., households 

nesting within neighborhoods)—makes it an appropriate methodology to disentangle the 

complexity of travel behavior (Van Acker et al. 2010). However, despite having a tremendous 

potential for application in travel behavior research, this approach has not been taken full 

advantage of in empirical studies. The author has found only two papers that employed multilevel 

SEM to examine travel behavior (see Chung et al. 2004 and Kim et al. 2004). Both the referenced 

papers suggested that although either SEM or multilevel modeling tools have been applied to travel 

behavior research, a model combining the SEM and multilevel techniques is rarely found in travel 

behavior research or even within other aspects of transportation research.  

Considering the arguments above and based on the proposed ecological model framework 

(Figure 1), the multilevel SEM models developed in this subsection examine the causality of the 

links between nonmotorized travel behavior and the built environment, while simultaneously 

controlling for self-selection bias.  

These models relate an individual trip maker’s daily walking and bicycling mode share to 

person-level characteristics, social environment characteristics at multiple hierarchal levels (i.e., 

household, neighborhood, county, and metropolitan area) as well as built environment 

characteristics at multiple hierarchal levels (i.e., neighborhood, county, and metropolitan area). 
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4.1.10.1 Specification of the Florida Person-level Multilevel Structural Equation Models  

Data for the Florida person-level models are assumed to be clustered as individuals are nested 

within households and households are nested within similar geographical areas (e.g., 

neighborhoods, counties, or metropolitan areas). Due to the clustered nature of data, there may be 

correlations between observations within the same households or observations within the same 

spatial area (i.e., spatial autocorrelation). These data interdependencies are accounted for by 

employing a hierarchical modeling technique (i.e., the multilevel SEM) as well as by considering 

random effects for two clusters: the household and the neighborhood (i.e., census block group).  

From a theoretical standpoint, the importance of consideration of random effects at the 

household-level in this analysis is further strengthened by the fact that the household is considered 

the most important social environment setting that determines an individuals’ behavior (Gochman 

1997; Van Acker et al. 2010).  

The theoretical basis for consideration of neighborhood random effects comes from 

literature providing evidence that neighborhood-level built environment attributes influence 

nonmotorized travel behavior (see Chapter 2 and Appendix B) as well as the findings of the present 

study on the role of neighborhood random differences in nonmotorized travel behavior of residents 

(as evidenced in the Florida household-level nonmotorized travel behavior analysis). 

With respect to the multilevel modeling, this model design introduces three levels: the first 

level is the individual, the second level is the household, and the third level is the census block 

group (i.e., neighborhood). The household-level and the neighborhood-level random effects are 

represented by specifying random intercepts at the household level and the neighborhood level 

(i.e., census block group).  
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Variations in the models can be divided into two components for the household taste: 

within-household variation and between-household variation, as well as two components for 

differences in neighborhoods: within-neighborhood variation and between-neighborhood 

variation. These variations can be captured by the household-level and neighborhood-level random 

intercepts32. Based on Kline (2011), this model specification allows for simultaneous analysis of 

the effect of factors from multiple hierarchical levels including those from the individual level and 

those from the cluster/group level (i.e., contextual effects) on nonmotorized travel.  

With respect to the structural equation modeling, the concepts of dependent and 

independent variables as defined in an ordinary regression modeling context become blurred. 

Instead, the SEM specification consists of endogenous and exogenous variables representing 

logical cause-effect relationships between them. Endogenous variables in an SEM context are 

defined as variables that need to be explained or predicted, whereas exogenous variables are those 

that are determined by causes outside of the model and can potentially offer the explanation or 

prediction desired for endogenous variables in the model (Kelloway 1998; Heck 2001).  

A path diagram is often drawn for the SEM, which depicts the structural relationships 

among variables of interest. Unidirectional arrows represent presumed causal links in the path 

diagram. The causal links hypothesized in the path diagram should be justified based on theoretical 

grounds. The path diagram can also include latent variables (i.e., variables that are not observed 

or measured directly) allowing factor analysis to be embedded in the model.  

Figure 7 shows the multilevel SEM model structure (i.e., proposed path diagram) 

describing the hypothesized causal links among endogenous variables as well as between 

 
32 The Stata software package provides two formulations for the multilevel random-intercept modeling: the single-

equation formulation and the within-and-between formulation. If there are no missing data values, results from both 

formulations are equivalent (StataCorp 2013, Page 370). Since there are no observations with missing values in the 

present study’s database, the single-equation formulation is used for random-intercept modeling in this analysis.  
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exogenous and endogenous variables for the Florida person-level models. Through incorporation 

of both measurement and structural models, the path diagram presents a latent variable path 

analysis (Kelloway 1998). Appendix H provides variable labels as depicted in Figure 7. 

Per conventions of SEM, latent (i.e., unobserved) variables are represented in ovals (i.e. 

ellipses), whereas observed variables are represented in squares or rectangles (see Kelloway 1998; 

Kline 2011). Accordingly, the path diagram used in the multilevel SEM (Figure 7) is shown with 

rectangles representing observed variables, and ovals representing latent variables.  

Further, endogenous and exogenous variables are connected by arrows indicating the 

direction of influence coming from the exogenous variables and heading toward the endogenous 

variables. For instance, the direction of an arrow coming from variable X and heading toward 

variable Y (i.e., X → Y) represents the presumed causal effects (i.e., effect priority) of X on Y—

implying that X is causally prior to Y and affects it (Kline 2011).  

Variables with a double-ringed representation in the path diagram indicate random 

intercept variables at the household and neighborhood levels. The household-level double-ringed 

variable stays constant within the same household but varies across different households. 

Similarly, the neighborhood-level double-ringed variable stays constant within the same 

neighborhood but varies across different neighborhoods. These variables represent the random 

effects at the household and neighborhood levels. 

Pearson correlation coefficients have been calculated for all original independent variables 

(i.e., exogenous variables). According to Franke (2010), correlation coefficients higher than 0.8 or 

0.9 between independent variables are considered as excessively collinear and are indicators of 

multicollinearity. 
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Therefore, as in the household-level models developed in this dissertation, a correlation 

threshold of |p| > 0.7 was used to eliminated highly correlated independent variables (i.e., 

exogenous variables) as suggested by Kim and Susilo (2013). However, variables with correlation 

coefficients ≥ 0.70 and < 0.85 were retained in the models if they reached a significance level of 

0.05 or if there was a theoretical reason for retaining the variable. Nevertheless, according to 

Franke (2010), one of the capabilities of SEM techniques is that they may deal with collinearity; 

therefore, it is assumed that the SEM nature of the developed models handles any multicollinearity 

problems that may exist after elimination of variables based on a correlation threshold of |p| > 0.7. 

Also, any continuous variable with a correctable skewed distribution was normalized by 

transformation into its naturally logged form before inclusion in the model. Most of the variables 

however, either showed a normal (or nearly normal distribution) or did not show any improvement 

in their distribution curve by transformation to naturally logged form (including the dependent 

variables); therefore, these variables have been included in the model in their original form. Similar 

to previous studies (see e.g., Schauder and Foley 2015), for independent variables with an original 

value equal to zero, the zero value was changed to 0.25 before their log-transformation. This is 

because the natural log of zero is undefined. 

The path diagram in Figure 7 can be represented by a simplified regression equation for 

the person-level daily walking or bicycling mode shares (Equation 24) and a simplified equation 

for the latent variable representing the urban form of the residential location as a function of 

household-level social environment (i.e., household-level socioeconomic factors as well as transit 

and nonmotorized travel behavior factors as measures of household travel culture) (Equation 25).  

Equations 24 and 25 constitute the structural model, which is formulated as: 
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Y =  𝛽0 + 𝛽1
′EDPerson + 𝛽2

′SEHH + 𝛽3SECBG + 𝛽4SECounty + 𝛽3
′SECBSA + 𝛽4

′BECBG +

 𝛽5
′BECounty + 𝛽6

′BECBSA + 𝑢HH𝐑𝐄HH + 𝑢CBG𝐑𝐄CBG + 휀6                                          Equation 24 

 Urban Form of Residential Location(𝐿𝑎𝑡𝑒𝑛𝑡 𝐸𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) = 𝛽7
′SEHH + 휀1      Equation 25         

where, 

𝛽0 = model intercept; 

𝛽1 
′ − 𝛽7 

′  = column vectors of model path coefficients; 

𝛽3 = model parameter for the micro-level (i.e., neighborhood-level) social environment attribute; 

𝛽4 = model parameter for the meso-level (i.e., county-level) social environment attribute; 

𝑢HH = vector of iid household-level random effects; 

𝑢CBG = vector of iid neighborhood-level random effects; 

휀1, 휀6 = model error terms; 

EDPerson = column vector of person-level socioeconomic and sociodemographic attributes; 

SEHH and SECBG = column vectors of micro-level (i.e., household and neighborhood) social 

environment attributes (including household-level travel culture attributes); 

SECounty = the meso-level (i.e., county) social environment attribute; 

SECBSA = column vector of macro-level (i.e., metropolitan area) social environment attributes; 

BECBG = column vector of micro-level (i.e., neighborhood) built environment attributes; 

BECounty = column vector of meso-level (i.e., county) built environment attributes; 

BECBSA = column vector of macro-level (i.e., metropolitan area) built environment attributes; 

REHH = matrix of household-level covariates for random effects; 

RECBG = matrix of neighborhood-level covariates for random effects; and 

Y = vector of observed endogenous variable (i.e., person-level walking or bicycling mode share). 
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As a requirement of the multilevel SEM models, the within-cluster covariance matrices are 

assumed to be equal across all groups (clusters), allowing for a single pooled within-cluster matrix 

to be used for estimating the model. Therefore, the assumption for random effects modeling in this 

type of model is that the relations between variables is the same across all clusters (Stapleton 

2006). Accordingly, it is assumed here that the slopes of similar covariates contained within the 

random portions of the model (i.e., REHH and RECBG) are constant across various similar groups 

(i.e., households or CBGs). Therefore, the random household effects are simplified to a household-

specific effect, which captures an effect that is common to all individuals within the same 

household (𝑢0HH ). Similarly, the CBG random effects are simplified to a CBG-specific effect, 

which captures an effect that is common to all households within the same CBG (𝑢0CBG ).  

This makes the specified model a random intercept model, which assumes that households 

and CBGs add random offsets to individuals nonmotorized travel behavior (i.e., person-level daily 

walking/bicycling mode share).  

The simplified (i.e., random intercept) formulation for Equation 24 is: 

Y =  𝛽0 + 𝛽1
′EDPerson + 𝛽2

′SEHH + 𝛽3SECBG + 𝛽4SECounty + 𝛽3
′SECBSA + 𝛽4

′BECBG +

 𝛽5
′BECounty + 𝛽6

′BECBSA + 𝑢0HH + 𝑢0CBG + 휀6                                                Equation 26 

Owning to lack of attitudinal survey data and the cross-sectional nature of data used for the 

analysis, the ability to thoroughly capture the effect of residential self-selection bias (i.e., 

endogeneity bias) on person-level nonmotorized travel behavior is restricted. However, the SEM 

techniques allow for testing for existence of residential self-selection effect and estimation of its 

magnitude relative to the effect of built environment factors with a reasonably close approximation 

(Nasri and Zhang 2014).  
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Accordingly, the Urban Form of Residential Location (UFRL) latent variable is measured 

by using the main neighborhood-level attributes that represent the overall urban form of the 

individual trip-maker’s residential neighborhood area. Inclusion of this latent variable allows for 

estimation of the residential self-selection effect in absence of attitudinal data.  

In construction of the Urban Form of Residential Location (UFRL) latent variable, causal 

links are hypothesized between the household’s urban form of residential location and the 

household-level social environment characteristics (i.e., household taste) including households’ 

socioeconomic and travel culture characteristics. These causal links are included in the model 

based on the theoretical assumption that the household-level social environment influences both 

nonmotorized travel behavior and residential location choice—an assumption supported by 

previous studies (see Chapter 2 and Appendix B).  

For instance, wealthier individuals who can afford expenses associated with owning private 

vehicles and long travel distances are more likely to select a low-density suburban neighborhood 

to reside in, where they can take advantage of cleaner air and spacious land. In contrast, low-

income individuals who own no private vehicles may prefer to reside in dense urban 

neighborhoods conducive to the less costly modes of transportation such as transit (Wang 2013) 

as well as walking and bicycling. 

The measurement model for the Urban Form of Residential Location (UFRL) latent 

variable is formulated by the following equations: 

ADCBG = 𝛼1UFRL + 휀2                                                                            Equation 27 

ENCBG = 𝛼2UFRL + 휀3                                                                            Equation 28 

PFCBG = 𝛼3UFRL + 휀4                                                                             Equation 29 

IDCBG = 𝛼4UFRL + 휀5                                                                             Equation 30 



 

190 

 

where, 

UFRL = Urban Form of Residential Location latent variable; 

ADCBG = neighborhood-level activity density (the “ad_cbg” variable in Figure 7); 

ENCBG = neighborhood-level mixed land use score (the “en_cbg” variable in Figure 7); 

PFCBG = neighborhood-level pedestrian-friendly network density (“pf_cbg” in Figure 7);  

IDCBG = neighborhood-level intersection density (the “id_cbg” variable in Figure 7); 

𝛼1−4 = measurement model pattern coefficients; and 

휀2−5 = measurement errors. 

In the measurement model specified above (Equations 27 – 30), there are four observed 

built environment characteristics that record an individual’s urban form of residential location and 

form the latent variable (UFRL). Observed variables used to measure a latent variable are referred 

to as indicators (Kline 2011). The minimum number of indicators to be included in the 

measurement model for a latent variable (i.e., factor) in a SEM analysis is three (Kelloway 1998), 

with three or four indicators being deemed as a better target (Kline 2011). Therefore, the present 

analysis uses four indicators in the measurement model of the latent variable UFRL. 

Equation 25 along with Equations 27 – 30 represent a MIMIC model where the household-

level observed social environment variables (i.e., the SEHH variables) determine the UFRL latent 

variable, and UFRL in turn, determines the observed built environment indicator variables (i.e., 

built environment characteristics of the residential location neighborhood).  

The household-level observed social environment variables are treated as predictors of 

UFRL, and thereby give an estimate of the residential self-selection effect.  

Through Equations 24 – 30, the model structure allows for the nonmotorized (i.e., walking 

or bicycling) trip mode shares and the urban form of residential location to be estimated jointly.  
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This means that all components of the path diagram depicted in Figure 7 are simultaneously 

estimated by the model33,34. 

4.1.10.2 Discussion of Results: Florida Person-level Multilevel Structural Equation Models 

Table 14 summarizes the estimation results of the multilevel SEMs for the Florida person-level 

nonmotorized travel behavior models. As mentioned previously, the direction of arrows in a SEM 

path diagram represents the effect priority as hypothesized in the theory for which the model is 

specified. That is, X → Y in the path diagram represents the presumed causal effects of variable X 

on variable Y, which means that it is hypothesized that X is causally prior to Y, and thus, X → Y 

can be interpreted as X affects Y (Kline 2011). Therefore, the results of the multilevel SEMs are 

discussed assuming such links as causal ones. 

The results of the Florida person-level multilevel SEMs indicate that individuals’ 

nonmotorized travel behavior is linked with their personal characteristics as well as the social 

environment within their household. The results also show many statistically significant paths 

between individuals’ nonmotorized travel behavior and the built as well as the social environment 

characteristics of their residential location at all spatial levels of influence including the micro level 

(i.e., neighborhood), the meso level (i.e., county), and the macro level (i.e., metropolitan area).  

 

 
33 The maximum likelihood estimation (MLE)—commonly used in practice (Cao et al. 2007)—is used to develop the 

multilevel SEMs in the present study. Model estimation is undertaken using the Generalized Structural Equation 

Modeling (GSEM) mode of the Stata software. The GSEM mode fits multilevel mixed-effects models in Stata. In 

standard linear SEMs, the validity of MLE depends on the SEM meeting the assumption of multivariate (i.e., joint) 

normality of all model variables, observed and latent. However, the MLE method used in GSEM is applied to a 

different likelihood function that assumes only conditional normality and does not require the full joint-normality 

assumption of the standard linear SEMs. The conditional normality assumed in MLE means that latent variables are 

still assumed to be normally distributed (StataCorp 2013, Pages 43-45). 

 
34 Since data used in this analysis are clustered with some non-normal distributions, a generalized form of the 

Huber/White/sandwich estimator method for robust calculations of standard errors (i.e., the “vce (cluster clustvar)” 

option in Stata’s GSEM mode) is used to calculate robust standard errors. In this generalized form of standard errors 

calculations, the errors are independent across clusters (i.e., neighborhoods) but are allowed to be correlated within 

clusters. 
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 Table 14. Resultsa: Florida Person-level Nonmotorized Travel Models (Multilevel SEMs)  
 

Endogenous Response Variable (Observed): Person-level Daily Nonmotorized Trip Mode Share 

 Walking Model Bicycling Model 

Exogenous and Endogenous Predictor Variables Path 

Coefficient 

p- 

Value 

Path 

Coefficient 

p- 

Value 

Individual (i.e., Person) Characteristics 

Age (years) -.0676293*** 0.000 -.0257986*** 0.000 

Race (1 = White, 0 = otherwise) 1.065734*** 0.044 .1914605NS 0.281 

Gender (1 = male, 0 = female) .0278688NS 0.916 .9399146*** 0.000 

Employment Status (employed? 1 = yes, 0 = no) -3.245868*** 0.000 -.394663*** 0.013 

College Education (1 = yes, 0 = no) .6977489*** 0.037 .0062927NS 0.957 

Social Environment  

Micro level: The Household 

Number of Vehicles -1.492666*** 0.000 -.3505599*** 0.000 

Annual Income  .0463946* 0.099 -.0074726NS 0.561 

Number of Daily Transit Trips .9352254** 0.026 .3848374*** 0.002 

Micro Level (Census Block Group): The Neighborhood 

Percentage of Households with No Cars 

 
.0594356* 0.063 .0056245NS 0.556 

Meso Level (County): The County 

Average Walking Density - logged .5498248* 0.082 — — 

Average Bicycling Density - logged — — .211758** 0.018 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Percentage of Households with 2+ Cars 

 

-.0366042* 0.099 -.0616712* 0.080 

Average Percentage of Low-Wage Workers 

 

.5566391* 0.087 .0592485NS 0.552 

Average Walking Density - logged 2.68457* 0.057 — — 

Public Transportation Annual Passenger-Miles .0048983** 0.035 .0019688* 0.063 

Average State Gasoline Cost 1.112083** 0.044 2.564236** 0.041 

Average Median Age -.1547878NS 0.402 -.1226676** 0.012 

Average Percent Foreign-Born Population .1388364* 0.091 -.0164406NS 0.608 

Built Environment 

Micro Level (Census Block Group): The Neighborhood 

Activity Density b .0661413** 0.026 -.0032872NS 0.545 

Entropy b .0840489* 0.063 .3595972** 0.049 

Intersection Density (Automobile-oriented) b -.0418847NS 0.653 .0938886** 0.023 

Pedestrian-friendly Network Density b .000602** 0.043 .0013923* 0.089 

Local Transit Service - logged .1775506* 0.093 -.0098804NS 0.778 

Meso Level: The County 

Mean Activity Density .4101298*     0.085 -.0573349* 0.078 

Intersection Density (Automobile-oriented) .9860214NS 0.461 .3474463* 0.080 

Mean Regional Diversity -.4809108NS 0.399 -.4206712* 0.053 

Mean Pedestrian-friendly Network Density .1227838* 0.087 .0848946** 0.030 

Mean Temporal Automobile Accessibility (to Jobs) -.0000302* 0.085 -.0000113* 0.086 
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Macro Level (Core Based Statistical Area): The Metropolitan Area 

Mean Entropy -.1270356** 0.049 .7166568NS 0.841 

Percentage of 0.01 Blocks .0327152** 0.048 -.0018981NS 0.937 

Mean Temporal Automobile Accessibility (to Jobs) 6.09e-07NS 0.989 -.0000201* 0.084 

Mean Temporal Transit Accessibility (to Jobs) -.0006749* 0.099 -.0001225* 0.069 

Mean Walk Score .037621* 0.087 — — 

Average Roadway Congestion Index .6284358* 0.051 3.428704** 0.018 

Variance Estimates  

Households c (Random Effects) 130.3447*** 0.000 7.32847*** 0.000 

Census Block Groups d  

(Neighborhood Random Effects) 
9.84e-30NS 0.903 .4755464NS 0.359 

Variance of ɛ1  

(error term of the UFRL Latent Variable) 
9.587172*** 0.000 9.586853*** 0.000 

Variance of ɛ6 (error term of the Nonmotorized Trip 

Mode Share Endogenous Variable) 
317.116*** 0.000 48.73677*** 0.000 

Other Model Factors 

Log pseudolikelihood   -313179.15 -291360.83 

Observations; Households c; Neighborhoods d 24,550; 13,509 c; 6,613 d 24,550; 13,509 c; 6,613 d 

 

 NOTES: 

 
 a In the interest of brevity, only variables whose path coefficients were statistically significant in at least one model 

(i.e., in either walking or bicycling model) are listed in the table; 

 b Endogenous observed variable used in the measurement model of the UFRL latent variable; 

 c Clusters: households; 

 d Clusters: neighborhoods; 

 *, **, *** = Path coefficient is significant at the 10%, 5% and 1% significance level, respectively;  

 NS = Not significant; 

 — = Not included in the model. 

 

 

It should be borne in mind that although the results of the multilevel SEMs provide 

coefficient estimates on the effects of various factors on individuals’ nonmotorized travel behavior, 

elasticities cannot be computed for these effects.  

This is because in the complex structure of the SEM models, different equations represent 

different effects of variables on one another (i.e., direct and indirect effects). These effects cannot 

be computed as a single elasticity (Ewing and Cervero 2010). 
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Person-level (Individual Characteristics) Variables Findings 

The results of both the walking and bicycling multilevel SEM models show that as measures of 

the intrapersonal level of influence on behavior, an individual’s demographic and socioeconomic 

characteristics affect his/her nonmotorized travel behavior. Specifically, individuals’ age is 

negatively linked with their daily nonmotorized mode share. As an individual gets older, physical 

activity such as walking and bicycling may get more difficult to perform. Many studies in the past 

also found age to be negatively correlated with nonmotorized travel behavior (see e.g., Hess et al. 

1999; Pucher et al. 1999; Ross 2000; Handy and Clifton 2001; Troped et al. 2001; Zhang 2004; 

Targa and Clifton 2005; Zacharias 2005; Clifton and Dill 2005; Handy et al. 2006; Dill and Voros 

2007; Boarnet et al. 2008; Merom et al. 2010; Siu et al. 2012; Ma and Dill 2015). 

An individual’s race being White is positively linked with his/her daily nonmotorized 

travel mode share; however, the path coefficient of the race variable does reach a statistical 

significance threshold in the bicycling model. This means that race may be a more influential factor 

in walking than in bicycling of individuals. 

In terms of gender, the results of the present case study indicate that a higher bicycling 

mode share is linked with being male, as also suggested by many previous studies (see e.g., Troped 

et al. 2001; Moudon et al. 2005; Dill and Voros 2007; Gatersleben and Appleton 2007; Ma and 

Dill 2015). However, gender does not appear to be a statistically significant determinant of 

individuals’ walking mode share. 

The results also suggest that being employed is linked with lower levels of nonmotorized 

mode shares (both walking and bicycling) for individuals. This may be an indication of time 

limitations that workers face in performing recreational walking and bicycling activities. Further, 

having a college education has a positive impact on individuals’ walking mode share. This is 
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consistent with previous findings that suggested higher education was positively associated with 

walking (see e.g., Ross 2000; Ewing et al. 2003b, 2008; Targa and Clifton 2005; Siu et al. 2012; 

Wasfi et al. 2016). The results indicate that the effect of having a college education on an 

individual’s daily bicycling mode share is not statistically significant. 

Micro-level (Household/Neighborhood-level) Social Environment Variables Findings 

Consistent with the results of the household-level models, the results of the person-level models 

suggest that household-level socioeconomic characteristics affect nonmotorized travel behavior. 

A higher number of private vehicles owned by the household has a negative effect on both walking 

and bicycling mode shares at the person level. This result corroborates findings by many previous 

studies (see e.g., Cervero 1996; Cervero and Radisch 1996; Kitamura et al. 1997; Plaut 2005; 

Stinson and Bhat 2005; Mitra and Buliung 2012).  

Higher household income levels are positively linked with walking mode share, which is 

consistent with the results of the household-level models developed in the present study. This result 

may be an indication of recreational walking by individuals from higher-income households as 

suggested by previous research (see e.g., Roshan Zamir et al. 2014).  

A notable result is the positive direction of influence of the variable representing 

household’s number of daily transit trips on an individual’s nonmotorized mode shares (both 

walking and bicycling). Literature suggests a sizable proportion of all public transit trips involve 

walking at both ends of the trip, and bicycling can also be a potentially important mode of access 

to public transit (Pucher et al. 2011). The results of the person-level nonmotorized mode share 

models show that as hypothesized, more transit trips encourage more nonmotorized trips. This 

finding implies that a travel culture within a household that is more oriented toward transit usage 

leads to higher levels of nonmotorized travel by individuals living within that household. 
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The car ownership variable at the neighborhood level exhibits a statistically significant 

path coefficient with person-level walking mode share. The positive sign of this variable, which 

represents the percentage of households within the neighborhood that own no cars, indicates a 

positive direction of influence on the walking mode share by an individual. This means that the 

higher the percentage of zero-car households within the neighborhood, the higher the walking 

mode share is for residents of that neighborhood. This result also implies that the influence of car 

ownership has a potential to go beyond the household level. 

Meso-level (County-level) Social Environment Variable Findings  

As measures of the social environment at the county level, the variables representing the average 

walking and bicycling density within the county show significant effects on individuals’ 

nonmotorized travel behavior. The path coefficients of these variables exhibit a significant positive 

direction of influence on walking and bicycling mode shares of individuals.  

These variables are intended to operationalize two important behavioral concepts: the 

concept of observational learning—defined within the social cognitive theory—and the concept of 

contagion perspective—defined by Ross (2000). Both of these concepts postulate that human 

behavior can be influenced by seeing others perform a certain behavior. In that sense, the average 

walking and bicycling density variables are considered proxies for social norms and sociocultural 

values with respect to nonmotorized travel behavior. 

Thus, the results imply that walking and bicycling are influenced by “cultural effects” 

within the county of residence. The results confirm past findings of a positive correlation between 

individuals’ level of nonmotorized travel and higher densities of nonmotorized trips within an area 

(Mitra and builing 2012), as well as a positive association between walking and perceptions of 

others being physically active (e.g., walking, bicycling, playing sports) (Nehme et al. 2016). 
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Macro-level (Metropolitan Area-level) Social Environment Variables Findings 

Based on the model results, many metropolitan area-level social environment variables (i.e., 

variables representing sociodemographic, socioeconomic, sociocultural and crime factors) are 

influential in an individual’s nonmotorized travel (i.e., walking and bicycling mode shares). The 

effects of macro-level social environment factors on nonmotorized travel behavior of individuals 

are discussed for three different features of the social environment in a metropolitan area including: 

1) Sociodemographic and Socioeconomic Variables Effects: The results indicate that as the 

average median age within the metropolitan area increases, the person-level nonmotorized mode 

share declines. Although the effect is not significant in the walking model, the negative direction 

of influence is in line with the path coefficient estimate for the Age variable at the individual level 

(i.e., -0.0676293). These results further emphasize the role that age plays in physical activity such 

as walking and bicycling. 

As expected, the metropolitan area-level car ownership variable (i.e., average percentage 

of households within the metropolitan area that own more than two cars) is negatively linked with 

walking and bicycling mode share of individuals. Also, the metropolitan area-level income 

variable (i.e., the Average Percentage of Low-Wage Workers variable) exhibits a significant 

positive effect in the person-level walking mode share model, indicating that lower income levels 

within the metropolitan area are linked with higher walking mode share by residents. 

Also, as hypothesized, the average gasoline price affects nonmotorized travel behavior in 

a positive direction meaning as the gasoline price increases within the state where the metropolitan 

area is located, person-level walking and bicycling mode shares for residents of that metropolitan 

area increase. It should be noted that past research found a negative link between increased 

gasoline price and household-level Vehicle Miles Traveled (VMT) (see e.g., Nasri and Zhang 
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2014). The finding of the present study that higher fuel costs promote the nonmotorized mode 

share compliments such past empirical findings in suggesting that the cost of gasoline can act as a 

disincentive in motorized travel, whereas it can be considered an incentive for nonmotorized travel. 

On the other hand, this finding is also in line with the literature suggesting that the low user-cost 

of using private vehicle is crucial in discouraging other modes such as walking (Pucher et al. 1999).  

The path coefficient of the Average State Gasoline Cost variable is larger in the bicycling 

model (2.564236) than in the walking model (1.112083), which implies that higher gasoline prices 

may lead to generation of more bicycling trips than walking trips. One possible explanation for 

this can be the effect of trip distance. Longer distances can be traveled by bicycling compared to 

walking; therefore, individuals may substitute more vehicular trips with bicycle trips if they deem 

gasoline costs as high. However, further research is needed in this area to examine any substitution 

effects of gasoline prices on bicycling trips for vehicular trips considering travel distances. 

2) Social Norms and Sociocultural Variables Effects: Reinforcing the model estimations at 

the county-level, the path coefficient of the Average Walking Density variable at the metropolitan 

level implies a positive effect of social norms and sociocultural factors on individual’s walking. 

Also, higher percentages of foreign-born population living within the metropolitan area seem to 

positively influence individuals’ walking mode share. This finding is supported by McMillan 

(2003) who found that the likelihood of children walking and bicycling to school decreased if they 

had a parent born in the U.S., as well as by McDonald (2005) who found that neighborhoods with 

higher percentages of immigrants had higher levels of walking to school by children.  

These results provide further support for the influence of cultural norms—in this case, the 

cultural norms of the country of origin—on nonmotorized travel behavior. The differences 

between the social norms and travel cultures in the U.S. (which has an automobile-dominated 
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travel culture) and other countries have been discussed in previous studies (see e.g., Pucher et al. 

1999; McMillan 2003; McMillan 2005; Giles-Corti et al. 2009). These cultural differences seem 

to exert a statistically significant effect on individuals’ walking mode share, as suggested by the 

model estimates in the present analysis.  

Further, the variable measuring the annual public transportation passenger-miles within a 

metropolitan area has a statistically significant path coefficient in both the walking and bicycling 

mode share models. The observed positive influence suggests that as transit use within a 

metropolitan area increases, so does the person-level nonmotorized trip mode share for residents. 

In the present study, this variable is considered as a proxy for a “public transportation 

culture” within the metropolitan area. Therefore, this result implies that metropolitan areas with a 

travel culture that is more oriented toward public transportation promote nonmotorized trips. 

3) Crime-related Effects: The variable representing the average metropolitan area-level 

violent crime rate does not reach a statistical significance threshold in the Florida person-level 

nonmotorized travel behavior models. Previous studies argued that crime rates may play a role in 

walking or bicycling (see e.g., Joh et al. 2009). However, the results of the present case study 

suggest that any impact that crime levels within the metropolitan area may have on nonmotorized 

travel behavior diminishes after the effects of other metropolitan area-level factors (e.g., 

socioeconomic, demographic, sociocultural factors) are controlled for. This result is in line with 

empirical findings by Nehme et al. (2016) who found that walking behavior and the number of 

violent crimes within the neighborhood were not significantly associated. 

Cumulatively, these findings lend more credibility to the argument that social environment 

at multiple levels of influence (i.e., micro, meso, and macro levels) plays a key role in 

nonmotorized travel behavior. 
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Micro-level (i.e., Neighborhood-level) Built Environment Variables Findings 

Consistent with the results of the household-level models developed in this study as well as many 

past studies (see Chapter 2 and Appendix B), the results of the Florida person-level models suggest 

that neighborhood-level built environment attributes impact nonmotorized travel behavior. 

Particularly, the results indicate that neighborhoods with higher activity (i.e., residential 

and employment) densities, a higher extent of land use mix (entropy), higher densities of 

pedestrian-friendly street networks, and higher frequencies of local transit service are linked with 

higher walking mode shares for residents. Also, neighborhoods with a higher extent of land use 

mix, higher levels of street connectivity (higher intersection density), and denser pedestrian-

oriented network designs are linked with higher bicycling mode share for residents. 

Meso-level (County-level) Built Environment Variables Findings 

The models’ estimations suggest that built environment characteristics at the county level also 

influence nonmotorized travel behavior. Specifically, higher activity density and more pedestrian-

friendly network designs at the county level are related to higher person-level walking mode share, 

whereas higher levels of accessibility to employment by mean of automobile are related to lower 

walking mode shares. These results are consistent with the results of the household-level 

nonmotorized travel behavior models (see Table 7). 

On the other hand, higher county-level activity density negatively affects bicycling mode 

share. This result is consistent with that of the household-level models35 and further lends support 

to the hypothesis that built environment characteristics can impact walking and bicycling travel 

behavior in different directions. Further, higher county-level regional diversity as well as higher 

levels of accessibility to employment by mean of automobile within the county lead to a lower 

 
35 This applies to both the Florida and Baltimore-D.C. case studies, the latter of which is presented in Appendix C. 
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person-level bicycling mode share, whereas higher pedestrian friendliness and connectivity of the 

county street network promote the bicycling mode share for individuals. These results are also 

consistent with the results of the household-level models (see Table 7). 

The path coefficient of the county-level Mean Entropy variable shows insignificant effects 

in both the Florida person-level walking and bicycling models. This variable exhibited significant 

correlations with walking and bicycling in the Florida household-level models as well as the 

Baltimore-D.C. case study (see Appendix C); however, those correlations fluctuated in directions. 

Therefore, it can be inferred that the role of county-level mixed-use development in nonmotorized 

travel behavior stays unclear and requires further examination. 

Macro-level (Metropolitan Area-level) Built Environment Variables Findings 

The results of the person-level mode share models suggest that higher mixed-use development 

within the entire metropolitan area is related to lower walking mode shares for residents. As 

previously mentioned, the negative direction of influence can be capturing a substitution effect; 

residents may be driving to additional and more remote destination options (provided by the higher 

extent of mixed land use within the metro. area) instead of walking to nearby local destinations. 

As hypothesized, higher Walk Scores and higher percentages of small blocks within the 

metropolitan area affect person-level walking mode share in a positive direction. These results 

indicate that increased walking mode shares for residents are related to higher walkability, 

increased destination accessibility by means of walking, and better street connectivity within the 

metropolitan area. 

Moreover, higher transit accessibility to jobs within the entire metropolitan area leads to 

lower walking and bicycling mode shares. The negative direction of influence can be capturing the 

effect of driving to transit stations rather than walking or bicycling to stations. The results further 



 

202 

 

indicate that higher automobile accessibility to jobs within the metropolitan area discourages 

bicycling, which is an expected result. 

Also expected is the positive signs of the path coefficients of the Average Roadway 

Congestion Index in the models. This variable represents mobility within the metropolitan areas in 

this study. Literature suggests that the speed (i.e., extent of mobility) of alternative modes 

influences travel behavior such as modal choice (Pucher et al. 1999). Therefore, it was 

hypothesized that increased roadway congestion levels (which indicate lower levels of speed and 

mobility) lead to increased levels of nonmotorized mode shares. Model estimations confirm that 

hypothesis and indicate that increased congestion (i.e., decreased mobility) within the metropolitan 

area positively affects walking and bicycling mode shares of residents. Past empirical research 

found that increased congestion levels lead to lower household-level VMT (Nasri and Zhang 

2014). This lends support to the finding of the present study that lower levels of mobility within a 

metropolitan area promote nonmotorized travel—perhaps through discouraging vehicular trips. 

Random Effects36 

The variances of the household-level random intercepts are estimated by the walking and bicycling 

mode share models to be 130.3447 and 7.32847, respectively. Despite being less than the 

corresponding estimated error variances (317.116 in the walking model and 48.73677 in the 

bicycling model), the estimated variances are sufficiently large to not be disregarded. These results 

indicate that after controlling for the various variables in the models (as listed in Table 14), there 

remains some household-level variance in the model that is unaccounted for. Thus, there appears 

to be significant variation in averages of the person-level walking/bicycling mode shares across 

 
36 In the person-level models, the coefficients of the household and neighborhood random intercept variables are 

constrained to be 1. Such constraints are automatically supplied by the Generalized Structural Equation Modeling 

(GSEM) mode of the Stata software to identify the latent variables in the model. 
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households. These results indicate that household-level random effects (i.e., random differences 

across households) play a significant role in nonmotorized travel behavior of individuals. 

However, the variances of the neighborhood-level random intercepts are small and 

statistically insignificant. Therefore, it can be inferred that neighborhood-level random effects (i.e., 

random differences between neighborhoods) do not play a crucial role in nonmotorized travel 

behavior of individuals. This finding stands in contrast to the results of the household-level models, 

which suggested that random differences between neighborhoods played a small but statistically 

significant role in nonmotorized travel behavior. One possible explanation can be that the 

statistical significance of the neighborhood random effects as estimated by the household-level 

models in fact captured the household-level random effects, which were not accounted for in those 

models. Thus, it could be the case that once household-level random effects are controlled for, the 

neighborhood-level random effects become statistically insignificant. Further research is probably 

needed to clarify the role of neighborhood random effects in nonmotorized travel behavior. 

Nonetheless, the present results emphasize the key role that the household—as the first and the 

most influential social environment setting—plays in nonmotorized behavior of individuals. 

The Self-selection Effect  

As the model path diagram shows (Figure 7), the latent variable UFRL was created to represent 

the overall urban form of the residential location of the individual trip-makers. This latent variable 

is measured from four observed land use and built environment variables at the neighborhood level 

through Equations 27 – 30. It is hypothesized that the UFRL latent variable is influenced by 

households’ social environment characteristics (i.e., SEHH variables). Together, Equations 25 

along with Equations 27 – 30 represent the MIMIC model specified to examine the self-selection 

effect in Florida person-level nonmotorized travel behavior models. 
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Table 15 presents estimation results of the measurement model for the UFRL latent variable 

(i.e., results of Equations 27 – 30) as well as those of the related structural model, which is assumed 

to quantify the self-selection effect (Equation 25)37. In measurement models with a MIMIC factor 

(i.e., latent variable), some observed indicators are specified as effects of the latent variable, 

whereas other indicators are specified as causes of the latent variable (see Kline 2006). 

Accordingly, the built environment variables in the measurement model (i.e., the ADCBG, 

ENCBG, PFCBG, IDCBG variables) were specified as the effects of the Urban Form of Residential 

Location (UFRL) latent variable, while the household-level social environment variables (i.e., 

number of members, number of workers, vehicle ownership, annual income, level of transit usage, 

and level of nonmotorized travel) were specified as the cause of UFRL. Thus, the results of the 

model are interpreted in such way to reflect these cause-effect considerations. 

Table 15. Self-selection Effects: Florida Person-level Nonmotorized Travel Models 
 

To 

(Variable) 

From 

(Variable) 

Pattern 

Coefficient 

p-

value 

Measurement Model: Latent Variable - Urban Form Residential Location (UFRL) 

ADCBG (neighborhood-level activity density)  UFRL 1 (constrained) — 

ENCBG (neighborhood-level entropy score) UFRL .0189522*** 0.000 

PFCBG (neighborhood-level ped-friendly network density) UFRL 1.473815*** 0.000 

IDCBG (neighborhood-level intersection density) UFRL .0739489*** 0.000 

Structural Model: Self-selection Effect 

UFRL Number of members (household size) -.033423NS 0.475 

UFRL Number of household vehicles -.7028294*** 0.000 

UFRL Number of household workers .3229689*** 0.000 

UFRL Annual income of the household -.0250406*** 0.008 

UFRL Number of daily transit trips  .6475415** 0.011 

UFRL Number of daily nonmotorized trips .0899426*** 0.001 

NOTES: 

*, **, *** = Path coefficient is significant at the 10%, 5% and 1% significance level, respectively; NS = Not significant. 

 
37 Owing to utilization of the same data and same variables, the estimation results of the measurement model for the 

UFRL latent variable and the structural model that captures the self-selection effect are almost identical in the walking 

and bicycling mode share models. 
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The direction of the hypothesized causal effects from household social environment 

variables to the UFRL latent variable (which is itself measured from the built environment 

variables) represents the residential self-selection behavior (see Wang 2013). The results of the 

self-selection effect analysis (Table 15) show that household social environment characteristics—

often termed households’ taste in transportation research—influence households’ residential 

location choice. Most notably, the exogenous variables representing household’s number of daily 

transit and nonmotorized trips exhibit positive effects on the UFRL latent variable. The positive 

direction of the effects implies that households with more transit and nonmotorized trips choose 

to live in more walkable and bikeable urban neighborhoods, which often also foster transit use.  

Despite not being able to make direct inferences about the influence of individuals’ travel 

attitudes and preferences on their residential locations (due to the unavailability of attitudinal 

survey data in this study), it can be inferred from the SEM estimations that households’ travel 

culture impacts their residential location choice. The results confirm that households with a travel 

culture that is more oriented toward nonmotorized and transit trips self-select into residential 

locations that facilitate their travel culture (which most likely represents their travel attitudes and 

preferences). 

In addition, the exogenous household-level socioeconomic variables show statistically 

significant effects on households’ residential location choice. The variables representing the 

number of vehicles owned by the household and the household’s annual income have negative 

effects on the UFRL latent variable, suggesting that households with more private vehicles and 

higher annual income levels choose to reside in suburban neighborhoods where they can enjoy 

cleaner air, ample parking space, larger homes, as well as less congested and noisy streets. These 

results confirm an argument by Wang (2013) who suggested that individuals with a higher 
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household income may be willing to live in low-density suburban neighborhoods. In contrast, the 

variable representing the number of household workers exerts a positive effect on UFRL latent 

variable. This implies that households with more employed members tend to locate closer to dense 

urban neighborhoods where higher levels of mixed-use development provide better access to more 

destinations including employment centers.  

With respect to the measurement model estimations, one should be mindful that due to 

UFRL being a latent variable, it requires a normalization constraint because latent variables do not 

have natural scales (StataCorp 2013)38; thus, by SEM conventions, the pattern coefficient of the 

activity density variable in the UFRL measurement model (i.e., the ADCBG variable) is constrained 

to be equal to 1. This scale is related to that of the explained variance of the ADCBG variable, and 

the constrained coefficient makes this variable the reference variable for the latent variable UFRL 

(see Kline 2006). All other variables from which the UFRL latent variable is measured show 

statistically significant pattern coefficients with positive signs. This means that urban 

neighborhoods are neighborhoods that are more compact with higher levels of mixed-use 

development, increased density of pedestrian-friendly network, and better street connectivity.  

These results are in line with how literature characterizes an urban neighborhood (see 

Chapter 2), particularly with the definition of “urban neighborhood” as provided by Wang (2013). 

The referenced study considered an urban neighborhood a neighborhood with high density, high 

mixed land use, high intersection density (i.e., better street connectivity) as opposed to a low-

density, residential-only suburban neighborhood with not much street connectivity (see Wang 

2013). 

 
38 See Stata Structural Equation Modeling Reference Manual Release 13, Page 58 “Identification 2: Normalization 

constraints (anchoring)”. 
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The direction of effects of household characteristics including car ownership, number of 

workers, and number of transit trips on residential location choice (i.e., UFRL variable) and the 

direction of the pattern coefficients in the measurement model of UFRL from the neighborhood 

built environment variables corroborate findings by past research (Nasri and Zhang 2014). This 

consistency in findings lends a degree of confidence to the results obtained in the present study. 

Coefficients can be interpreted using standard linear regression interpretations. 

Theoretically, since variables used in this analysis have different scales, standardized coefficients 

can be used to compare the magnitude of the coefficients. It should be noted, however, that due to 

the limitations of the Generalized Structural Equation Modeling (GSEM) techniques, which 

perform the multilevel SEM analyses in Stata, standardized path coefficients cannot be computed 

for the models developed. As a result, direct comparison of path coefficients in terms of magnitude 

is not possible. Thus, it cannot be concluded from the results obtained which variable exerts the 

largest effect on nonmotorized travel mode share or on the residential location choice. 

4.2 Chapter Conclusions 

The main hypothesis of this chapter was that nonmotorized travel behavior has become more 

dependent on environmental factors from larger-scale spatial areas. Thus, the present study 

considered the role of county-level (i.e., meso-level) and metropolitan area-level (i.e., macro-level) 

built and social environment factors in nonmotorized travel behavior.  

More specifically, the main purpose of this chapter was twofold: 1) to examine the role of 

larger-scale (i.e., county-level and metropolitan area-level) environmental factors in nonmotorized 

travel behavior; and 2) to investigate the role of self-selection in nonmotorized travel behavior as 

well as the causal links between nonmotorized travel and the environment within a comprehensive 

model framework that incorporates factors from various spatial scales of geography. 
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It is imperative for any research into human behavior to consider psychological theories of 

behavior. Thus, the principles of the ecological model—a variant of the social cognitive theory 

(Bandura 1986)—were employed to develop the conceptual framework for this study. Due to 

travel behavior being affected by opportunities and constraints at multiple levels, the ecological 

model framework, which includes factors representing multiple levels of influence on behavior, 

can be considered a suitable theoretical framework for analysis of nonmotorized travel behavior. 

Advanced statistical methods such as mixed-effects modeling and multilevel SEM 

techniques were utilized to estimate models capturing the link between nonmotorized travel 

behavior and built as well as social environment factors at multiple levels (i.e., micro, meso, and 

macro levels) of influence. The analysis was conducted using two units of analysis: the household 

and the individual. Data from several metropolitan areas in the state of Florida as well as in 

Washington, D.C. and Baltimore, Maryland were used in the analysis39.  

Considering that the study utilized datasets, which are either available from most MPOs 

(e.g., household travel surveys, land use data, and skimming OD matrices) or are publicly available 

(e.g., SLD, Walk Score, U.S. Census Bureau’s TIGER/Line data, ACS), similar models can also 

be developed for other metropolitan areas using the approach proposed in this study.  

In practice, more effective operational models can be developed by incorporating the 

proposed approach (i.e., consideration of hierarchical levels of environmental influence within an 

ecological model framework) to capture nonmotorized travel patterns and demand in U.S. cities, 

and to develop policies as well as planning and design processes accordingly.  

The chapter conclusions are discussed next in terms of research findings and policy 

implications as well as research contributions and limitations.  

 
39 As mentioned previously, due to similarities in the analysis of the two case studies, the Baltimore-Washington, 

D.C. case study analysis and model results are presented in Appendix C. 
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4.2.1 Research Findings 

Findings in this chapter reveal that nonmotorized travel behavior of individuals can be influenced 

not just by the character of their neighborhood but also by the spatial structure and the context of 

the county or metropolitan area which their neighborhood is a part of. In other words, the research 

findings provide evidence that in analyzing walking and bicycling trips, going beyond the 

neighborhood boundaries is okay! and may even be essential.  

The main conclusions reached, and the knowledge obtained from this research can be 

presented as follows: 

On Correlations: Nonmotorized travel behavior is correlated with built and social 

environment factors at multiple spatial levels  

From results of the household-level nonmotorized travel behavior models, it can be inferred that 

nonmotorized trips are correlated with built and social environment attributes at multiple levels of 

influence.  

Among neighborhood-level (i.e., micro-level) built environment attributes, nonmotorized 

trips are associated with the extent of: compactness, mixed-use development, pedestrian- and 

bicyclist-friendliness of the street network, connectivity of the street network, and access to public 

transit within the neighborhood. Neighborhood mixed-use development and the pedestrian 

friendliness of the street network show the highest elasticities with respect to nonmotorized trips.  

Walking or bicycling trips are also correlated with measures of the built environment at the 

county level (meso level) including the extent of: compactness, mixed-use development, 

connectivity and pedestrian friendliness of the street network, access to public transit, automobile 

as well as transit accessibility to employment opportunities within the county. County-level mixed-
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use development has the highest elasticity with respect to walking, whereas pedestrian friendliness 

of county street network has the highest elasticity with respect to bicycling. 

Macro-level built environment attributes associated with nonmotorized trips—particularly 

walking trips—include distance to the CBD, road network density, and the extent of: regional 

accessibility to highways and transit, mixed-use development, connectivity and pedestrian 

friendliness of the street network, and transit accessibility to employment opportunities within the 

metropolitan area. Among macro-level built environment factors, the highest elasticities with 

respect to walking belongs to the variables measuring the connectivity and pedestrian friendliness 

of the street network as well as those measuring the extent of mixed-use development.  

These findings highlight the roles of pedestrian-friendly designs and land use diversity 

within the county as well as the entire metropolitan area in nonmotorized travel of residents. 

The social environment attributes associated with walking and bicycling are household-

level (i.e., micro-level) characteristics such as size, number of students, number of workers, vehicle 

as well as bicycle ownership status, and level of income. In addition, vehicle ownership levels 

within the neighborhood (i.e., meso level) as well as vehicle ownership and income levels within 

the metropolitan area (i.e., macro level) are also associated with nonmotorized trips.  

Also, based on the elasticity analysis, it is concluded that at various levels of influence, the 

most important social environment factor determining the extent of household nonmotorized 

travel—particularly bicycling—is vehicle ownership. This suggests that the role of vehicle 

ownership in nonmotorized travel behavior may be far more critical and complex than previously 

considered. The highest elasticities in the Florida household-level bicycling model are exhibited 

by the metropolitan area-level car ownership and income variables. These findings also emphasize 
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the key role that macro-level (i.e., metropolitan area-level) social environment plays in bicycling 

trips. This role should not be overlooked in examining bicycling travel behavior. 

Overall, findings of the analyses presented in this chapter support the research hypothesis 

of this dissertation that the residential location’s built and social environment characteristics at 

multiple levels (i.e., micro, meso, and macro levels) are correlated with nonmotorized travel 

behavior (see Hypothesis 1a in Table 1). 

These findings accentuate the importance of examining the relationship between 

nonmotorized travel behavior and environmental factors within an ecological model framework, 

which allows assessing the role of multiple levels of the built as well as social environment on 

observed behavior (e.g., nonmotorized travel behavior). 

On Causality: Causal links may exist between nonmotorized travel behavior and built as 

well as social environment factors at multiple spatial levels 

By definition, the direction of arrows in a SEM path diagram represents the effect priority as 

hypothesized in the theory for which the model is specified. Thus, the employment of multilevel 

SEM techniques in the person-level nonmotorized travel behavior models was assumed to allow 

for testing the causality of correlations observed between nonmotorized travel behavior and the 

environmental factors. Considering the results of the models, it can be concluded that causality 

may play a role in the links between individuals’ nonmotorized travel behavior and the built (as 

well as social) environment attributes—at multiple levels of influence—of their place of residence. 

The findings imply that within this sample, causal links exist between individuals’ 

nonmotorized trip mode share and the extent of: compactness, mixed-use development, pedestrian 

friendliness and connectivity of the street network, and access to public transit service within the 

neighborhood (i.e., micro level). 
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Further, the effect of a few of these factors spills over the neighborhood boundaries, as 

hypothesized in this research. Nonmotorized travel behavior is linked with a few meso-level (i.e., 

county-level) built environment attributes including the extent of: compactness, regional diversity, 

connectivity and pedestrian friendliness of the street network, and automobile accessibility to 

employment opportunities within the county. The macro-level built environment attributes with 

potential causal relations with nonmotorized travel behaver include the extent of: mixed-use 

development, connectivity of the street network, pedestrian friendliness and walkability of the 

streets, roadway congestion (i.e., proxy for mobility levels), and automobile as well as transit 

accessibility to employment opportunities within the metropolitan area.  

Nonetheless, considering the study findings, it can be concluded that the stimulating effect 

of mixed-use development on nonmotorized travel, which exists at lower spatial scales such as the 

neighborhood, diminishes at higher spatial scales. One explanation can be that more land use 

diversity within metropolitan areas may encourage residents to make more vehicular trips to 

various, more remote destinations rather than using nonmotorized modes to visit local destinations. 

Therefore, an optimal threshold may exist for cities to become mixed in terms of land use to 

promote nonmotorized travel. 

The findings also indicate that contextual effects—such as those of the social environment 

(i.e., the interpersonal level of ecological influence) at multiple levels (i.e., micro, meso, macro 

levels)—play a role in people’s nonmotorized travel behavior.  

Micro-level social environment attributes such as households’ level of vehicle ownership, 

annual income, and daily transit trips influence individuals’ nonmotorized travel. Vehicle 

ownership levels within the neighborhood also have an impact, particularly on walking trips. The 

findings provide additional support for concluding that the impact of vehicle ownership and 
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income levels go beyond the household and neighborhood boundaries as these factors measured 

at the macro level (i.e., metropolitan area level) are also influential in nonmotorized travel 

behavior. Other macro-level sociodemographic and socioeconomic attributes such as the median 

age and the gasoline price within the metropolitan area also impact nonmotorized travel behavior. 

Furthermore, based on the findings, important conclusions can also be drawn regarding the 

role of sociocultural factors at various levels of influence in nonmotorized travel behavior. As 

representatives of the social environment, sociocultural factors such as the travel culture within 

the household, county, or metropolitan area of residence also prove influential in individuals’ 

walking and bicycling activities.  

At the micro level, the extent of household’s daily transit trips is linked with nonmotorized 

travel behavior. This is perhaps capturing the positive influence of the “transit travel culture” 

within a household on walking/bicycling trips of household members. Further, the densities of 

nonmotorized trips within the county (i.e., the meso level) and the metropolitan area (i.e., the 

macro level) are linked with nonmotorized travel behavior. Moreover, the annual public 

transportation passenger-miles—considered a proxy for a “public transportation travel culture” 

within the metropolitan area in this study—is also influential in levels of nonmotorized travel. The 

percentage of foreign-born population living within the metropolitan area (i.e., macro level) also 

affects individuals’ walking behavior, which can be capturing the influence of the cultural norms 

of the country of origin on nonmotorized travel behavior.  

Therefore, it can be concluded that nonmotorized travel behavior is influenced by 

“sociocultural effects”. These include social norms concerning nonmotorized travel and public 

transit that exist within the household as well as the area of residence at multiple spatial levels.  
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On a related note, the impact of household-level random effects proved to be significant in 

the models, emphasizing the importance of households’ tastes in individuals’ nonmotorized travel 

behavior. This conclusion is supported by the literature suggesting that the most important setting 

within the individual’s social environment is the household (Gochman 1997; Handy 2005; 

National Research Council 2005; Van Acker et al. 2010). 

Overall, these findings support the hypotheses of this study that in addition to the built and 

social environment of the neighborhood (i.e., micro level), built (and social) environment at the 

meso and macro levels also play a causal role in shaping individuals’ nonmotorized travel behavior 

(see Hypotheses 1a and 3 in Table 1). Considering the hierarchical nature of these levels of 

influence, the importance of using an ecological model framework in examining the link between 

nonmotorized travel and the environment is, therefore, re-emphasized through these findings.  

Further, the findings reveal that the relationship between the residential location’s built 

environment and nonmotorized travel behavior may be a causal one. In other words, the effects of 

the built environment on nonmotorized travel go beyond the neighborhood boundaries (as they are 

significant at higher spatial levels), and the links between the two go beyond mere correlations (as 

they imply causality—at least in this sample). It should be borne in mind that although the results 

of the person-level nonmotorized travel behavior imply existence of casual links between the built 

environment and nonmotorized travel, evidence for existence of the causality is only supported by 

the results estimated for the sample examined in this research. Thus, caution should be exercised 

with generalizing the results and implying “proof of causality” based on findings. As Kline (2011) 

argues, it is impractical for a single study to meet all the conditions required for inference of 

causality; therefore, it is more appropriate to regard structural models as seemingly causal models 

with a potential to correspond to the real-world causal processes (Kline 2011). 
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On Self-selection: Residential self-selection plays a decisive role  

Nonmotorized travel behavior literature is increasingly emphasizing on the role of residential self-

selection in walking and bicycling. This is because nonmotorized travel behavior, car ownership, 

and residential location choice are integrally linked (Salon 2006), which introduces the self-

selection bias in the analysis. As understanding the role of self-selection is the key to understanding 

the causal links between the built environment and travel behavior (Handy et al. 2005), the 

frameworks of the person-level nonmotorized travel behavior models developed in this chapter 

were designed to address the residential self-selection bias (i.e., endogeneity bias) in the analysis.  

The self-selection effect can be best accounted for by using attitudinal survey data, which 

provide information on respondents’ attitudes and preferences toward travel. Absent attitudinal 

survey data, however, the advanced capabilities of structural equation modeling techniques can be 

employed for analyzing the link between nonmotorized travel and the built environment, while 

controlling for residential self-selection bias. Due to lack of attitudinal data, self-selection was 

addressed in this analysis by using the latter methodology (i.e., SEM).  

The results show that self-selection of individuals is shaped by household social 

environment attributes—often termed household’s taste in transportation research. These attributes 

were defined in the present study based on household’s socioeconomic attributes as well as 

attributes representative of households’ travel culture. Further, the findings indicate that 

individuals’ self-selection influences their choice of residential location. More specifically, the 

findings suggest that households with a travel culture more oriented toward nonmotorized and 

transit trips self-select into neighborhoods that facilitate their travel culture (which probably 

represents their attitudes and preferences toward travel). Based on these findings, it can be inferred 

that both the built environment and self-selection influence nonmotorized travel behavior, as 
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suggested by several past studies (see Chapter 2 and Appendix B). These findings provide support 

for the hypotheses of this dissertation that self-selection plays a role in nonmotorized travel 

behavior and the link between nonmotorized travel behavior and the built environment is a causal 

one (see Hypotheses 2 and 3 in Table 1). In drawing conclusions with regards to causality and self-

selection, however, one should be mindful of two caveats in this analysis: 1) the use of cross-

sectional data (which limits the ability to make causal inferences); and 2) the unavailability of 

attitudinal survey data (which limits the ability to make inferences about self-selection).  

The alternative to using cross-sectional data is to collect and use longitudinal data—an 

effort that poses challenges in terms of cost and resources. This is probably the reason for SEM 

studies often featuring concurrent rather than longitudinal measurement (Kline 2011).  

Nevertheless, it is assumed that the capabilities offered by the multilevel SEM techniques 

combined with the comprehensive ecological framework of the person-level nonmotorized travel 

behavior models allowed for adequate examination of the causal links between nonmotorized 

travel behavior and the built environment as well as controlling for self-selection bias. Thus, it is 

concluded that the successful estimation of the multilevel SEM models in this study, which 

controlled for self-selection effects, have yielded policy-relevant findings. 

4.2.2 Policy Implications 

Analyses presented in this chapter of the dissertation provide a useful and systematic approach for 

researchers and policy analysts to determine the most effective interventions for promoting 

walking and bicycling trips. The ecological models developed in this study highlight the role of 

the built environment—at various spatial levels—in nonmotorized travel behavior. As a key 

strength of the ecological model of behavior, this focus on multiple hierarchical levels of influence 

broadens options for interventions (Sallis et al. 2008).  
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To infer policy conclusions and develop suitable interventions, the effect of each level of 

influence can be considered separately or in combination with the effects of other levels as 

estimated in the analysis. As regards the built environment, findings from the present study provide 

compelling evidence that modifications to the Ds of the built environment at multiple spatial levels 

can influence nonmotorized travel behavior. These findings imply that policies concentrating on 

interventions that target the built environment within the neighborhood (i.e., micro level), the 

county (i.e., meso level), and the metropolitan area (i.e., macro level) to make them more 

supportive of nonmotorized and transit trips can promote walking and/or bicycling by residents.  

At the neighborhood (i.e., micro) level, such interventions include changes to the built 

environment within the neighborhood that: 

o increase compactness (i.e., density in terms of activities); 

o increase mixed-use development (i.e., land use diversity); 

o increase walkability and bikeability (i.e., destination accessibility); 

o increase pedestrian friendliness of the street network (i.e., design);  

o increase connectivity of the street network (i.e., design); and 

o increase access to transit facilities and services (e.g., shorter distance to transit stations, 

more frequency of service). 

At the county (i.e., meso) level, key interventions to promote walking and/or bicycling 

include changes to the built environment within the county that: 

o increase compactness (i.e., density in terms of activities) in areas with existing low 

residential and employment densities—to promote walking trips; 

o increase pedestrian friendliness of the street network (i.e., design); and  

o improve connectivity of the street network (i.e., design). 
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Further, a salient finding of this study is that the built environment characteristics of the 

metropolitan area (i.e., macro level) influence nonmotorized travel behavior of residents. 

Therefore, these characteristics should also be considered in decisions regarding policy and 

intervention development. With this respect, findings suggest that walking and bicycling can be 

promoted through interventions to modify the built environment within the entire metropolitan 

area in such ways that: 

o improve connectivity of the street network (i.e., design); 

o increase walkability (i.e., destination accessibility); 

o facilitate accessibility to transit by means of nonmotorized modes, particularly by 

walking (e.g., shorter distance to transit stations); and 

o build residential or other activity locations closer to the core activity center of the city 

(i.e., CBD). This is, basically, moving away from decentralization of urban areas—a 

development pattern which is associated with longer travel times and discouragement 

of nonmotorized modes of travel. 

According to the study findings, the social environment characteristics within the 

residential area are also influential in promoting nonmotorized trips. More specifically, the 

findings provide evidence that walking and bicycling trips are influenced by factors representing 

the socioeconomic status and sociocultural values—particularly with respect to travel culture—

within the county and/or metropolitan area. Thus, interventions targeting these characteristics can 

also be considered in policy decisions.  

Based on the study findings, stimulating walking and bicycling trips through changes to 

the social environment within the area of residence include interventions that: 
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o encourage more use of nonmotorized modes of travel through observational learning 

(i.e., seeing others engage in walking and bicycling activities); 

o encourage more use of public transportation modes; 

o discourage automobile ownership; and 

o discourage the use of the automobile mode through increasing gasoline costs. 

Overall, evidence found in this study supports the idea that nonmotorized trips can be 

promoted through interventions that target the environment, built and social.  

Findings imply that a built environment inimical to nonmotorized modes of travel can 

discourage walking and bicycling trips, whereas an amenable one can foster these trips. To 

promote nonmotorized modes of travel, therefore, policies and interventions that can make the 

built environment more supportive of walking and bicycling activities should be pursued, while 

policies encouraging sprawling urban developments and automobile-oriented urban designs 

should be avoided.  

In terms of the social environment, the study findings imply that communities with travel 

cultures more oriented toward nonmotorized and public transportation modes foster walking and 

bicycling trips. Thus, policies and programs that incentivize non-automobile mobility and 

disincentivize automobile dependency within the society can be developed. This includes policies 

that can potentially increase the cost of automobile ownership and use. An argument by Pucher et 

al. (1999) is well-suited here: the low cost of using automobiles in the U.S. (e.g., low gasoline 

costs) is a key factor in discouraging other modes of travel including the nonmotorized ones, 

whereas higher costs of automobile use in Europe is a factor that makes car ownership less essential 

and increases the tendency to use nonmotorized modes (Pucher et al. 1999). 
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The analysis framework and findings of the present study can assist policy decision-makers 

aiming to increase levels of walking and bicycling within their communities in assessment of 

interventions that involve changes to the built and/or social environment. Yet, the main point of 

the study findings must be re-emphasized: more effective policies to promote walking and/or 

bicycling seem to be the ones that consider the overall form of the metropolitan area in addition to 

that of the county and the neighborhood of residence. Put differently, to promote nonmotorized 

trips, interventions to modify the built environment should be considered not just within the 

neighborhood but also in combination with those within the county as well as throughout the whole 

metropolitan area. In addition, interventions targeting the built environment should be considered 

in combination with those targeting social environment and not in isolation.  

This provides a seamless and integrated policy framework, which can help 

urban/transportation planning professionals and decision-makers to find more potent intervention 

strategies to create urban environments that are more amenable to walking and bicycling. Policies 

developed based on such a comprehensive framework can yield the most efficient use of resources 

and the most optimized solutions. 

4.2.3 Contributions 

This chapter contributes to the body of knowledge on the role of the environment (i.e., built and 

social environments) in nonmotorized travel behavior in terms of theoretical framework as well as 

methods, empirical evidence, and policy implications. 

With respect to theoretical contributions, this research derives a comprehensive theoretical 

framework from the principles of the ecological model of behavior to systematically examine the 

link between nonmotorized travel behavior and built environment factors. Up to the present, the 

research probing this link has been focused on the micro-level (i.e., neighborhood-level) built 
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environment. This study hypothesizes that built and social environment factors at larger scales 

may also be influential in nonmotorized travel behavior due to the complex interrelations between 

environmental factors and travel behavior. The integrated theoretical framework derived in this 

study allows for simultaneous examination of the influence of environmental attributes at various 

levels on nonmotorized travel behavior within an ecological framework.  

The hierarchical levels included in the theoretical framework of this study for the built 

environment are: the micro level (i.e., the neighborhood), the meso level (i.e., the county), and the 

macro level (i.e., the metropolitan area). The hierarchical levels for the social environment are: the 

micro level (i.e., the household or the neighborhood), the meso level (i.e., the neighborhood or the 

county), and the macro level (i.e., the metropolitan area).  

To the best of the author’s knowledge, this research is one of the first to move beyond the 

neighborhood by including several measures of macro-level (i.e., metropolitan area-level) built 

and social environments in addition to those of the meso level (i.e., county level) and the micro 

level (i.e., neighborhood level) within an integrated theoretical framework in analysis of walking 

and bicycling trips. Such research framework advances the body of knowledge on nonmotorized 

travel behavior by assisting researchers and policymakers in determining the role of the overall 

context and structure of metropolitan areas in walking and bicycling activities of residents.  

Macro-level built environment characteristics have rarely been tested for their link with 

nonmotorized travel behavior. Thus, the main contribution of this chapter is looking at the bigger 

picture—the position of the neighborhood with respect to the region and the metropolitan area it 

is located in—when analyzing nonmotorized travel behavior. The knowledge developed from this 

study can be integrated with past research that focused on the impact of micro-level (i.e., 

neighborhood-level) built environment on walking and bicycling to provide a more comprehensive 
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understanding of how the environment (i.e., built and social) influences nonmotorized travel 

behavior, especially in large metropolitan areas. 

Further, the conceptual framework of the person-level nonmotorized travel behavior 

developed in this chapter allows for controlling for residential self-selection bias (i.e., endogeneity 

bias) in the analysis. In terms of the relationship between the built environment and activities such 

as walking and bicycling, literature suggests that a more comprehensive conceptual model that 

accounts for the possibility of endogeneity bias is needed since the observed link between the built 

environment and physical activity (e.g., walking and bicycling) may be an outcome of residential 

location choices (Handy 2005). The body of knowledge on nonmotorized travel behavior is 

furthered on the role of self-selection and causality in nonmotorized trips by the comprehensive 

framework of the person-level nonmotorized travel behavior models developed in this study, 

which allow for addressing self-selection bias, while incorporating various hierarchical levels (i.e., 

micro, meso, macro) of built environmental influence. 

In terms of the methodology, this study contributes by examining the causality of the links 

between nonmotorized travel behavior and the built environment as well as by addressing spatial 

autocorrelation using a more solid methodology. As elaborated in Chapter 2 (and Appendix B), 

the existing empirical evidence indicates that built environment factors and nonmotorized travel 

behavior are correlated. However, evidence supporting the causality of this correlation is currently 

sparse due to few studies controlling for self-selection bias or demonstrating a causal link using 

reliable methodologies. Further, the clustered structure of the data introduces interdependencies 

within the data, which can potentially subject the analysis to spatial autocorrelation issues. Self-

selection and causality can be controlled for by employing Structural Equation Modeling (SEM) 
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techniques, whereas spatial autocorrelation can be accounted for by employing multilevel (i.e., 

hierarchical) modeling techniques. 

To elucidate these issues empirically within the integrated ecological framework of this 

research, multilevel modeling techniques should be combined with SEM techniques so that any 

potential self-selection and spatial autocorrelation issues are addressed and any causal links 

between nonmotorized travel behavior and the built environment are better understood. Therefore, 

this study examines the utility of the multilevel Structural Equation Modeling (i.e., multilevel 

SEM) techniques—rarely applied in a transportation context—to investigate the relationship 

between nonmotorized travel behavior and environmental factors. Employment of the multilevel 

SEM techniques to such analysis provides several methodological advantages: 

First, the advanced statistical analysis capabilities offered by such techniques conform to 

the ecological framework of the models. This allows for addressing residential self-selection bias 

as well as for examining the causal links between nonmotorized travel behavior and the built 

environment in a more methodologically rigorous manner. Moreover, employment of multilevel 

SEM can account for any potential spatial autocorrelation issue in the analysis as using hierarchical 

models can help in statistical treatments of spatial autocorrelation problems, which may exist due 

to the clustered nature of the data (see e.g., Moudon et al. 2005). In addition, the SEM nature of 

the multilevel SEM can deal with any potential multicollinearity problems in the models. This is 

because by examining causal paths through a sequence of correlated variables or by treating highly 

correlated variables as indictors of a common underlying construct, SEM may deal with 

collinearity problems (Franke 2010). 

Despite having these advanced capabilities and a tremendous potential to be used in travel 

behavior research, the application of multilevel SEM in a transportation context remains scarce, 
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as also noted previously (see Chung et al. 2004). In fact, only two empirical studies were located 

by the author that used multilevel SEMs in conducting travel behavior research (Chung et al. 2004; 

Kim et al. 2004). In proposing a conceptual model for travel behavior, Van Acker et al. (2010) 

also argued that the complexity of travel behavior can be better understood by employment of 

multilevel SEM techniques. The referenced study suggested that the capabilities of multilevel SEM 

can account for various interdependencies within the model including those resulting from 

numerous relationships (i.e., direct and indirect effects) as well as those resulting from a nested 

data structure (e.g., individuals nesting within households, and households nesting within 

neighborhoods) (Van Acker et al. 2010). 

However, to the best of the author’s knowledge, multilevel SEM techniques have never 

been applied to empirical data to investigate the link between nonmotorized travel behavior and 

environmental factors. Thus, the present study contributes to the body of knowledge by 

employment of multilevel SEMs to test the causal pathways between nonmotorized travel behavior 

and the built environment and by reintroducing the capabilities of such techniques to the travel 

behavior field of research. 

With respect to empirical contributions, this study systematically tests the link between 

nonmotorized travel behavior and the built as well as the social environment, using two units of 

analysis: the individual (i.e., person-level nonmotorized travel behavior models) and the household 

(i.e., household-level nonmotorized travel behavior models). The findings add to the existing 

empirical knowledge on the link between nonmotorized travel behavior and the environment by 

providing insights into the consistency between results from the two different analyses (i.e., 

person-level model results vs. household-level model results). 
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Further, the relationship between the built environment and physical activity such as 

walking and bicycling is often not systematically examined due partly to variables included in the 

studies not comprehensively capturing the characteristics of the built environment (Lee and 

Moudon 2004). One example of this can be the absence of factors representing the overall form of 

the region (i.e., macro-level built environment) in the analysis. 

As little empirical knowledge exists on the influence of the environment at larger scales 

than the neighborhood (i.e., micro level) on nonmotorized travel behavior, this study empirically 

tested the under-investigated role of macro-level environmental factors in explaining walking and 

bicycling trips. The study results provide evidence that macro-level environmental factors play a 

crucial role in residents’ nonmotorized travel behavior.  

Of particular importance is the model results indicating that nonmotorized travel behavior 

is influenced by the macro-level (i.e., metropolitan area-level) built environment in addition to the 

micro-level (i.e., neighborhood-level) built environment. These findings enhance and complement 

existing empirical knowledge on the role of built environment factors in walking and bicycling, 

and thereby contribute to the research on the topic of nonmotorized travel behavior. 

Moreover, compared with walking, bicycling travel behavior can be considered an under-

studied topic as empirical research on nonmotorized travel behavior often focuses on walking trips 

or combines walking and bicycling trips into one category (see Chapter 2). Nonetheless, past 

research also suggests that bicycling and walking are distinct activities (see e.g., Porter et al. 1999; 

Pikora et al. 2003; Schlossberg et al. 2006). Therefore, this study analyzes walking and bicycling 

trips separately to further elucidate the role of built and social environments on bicycling behavior. 

The results provide empirical evidence that built environment characteristics, particularly 

the extent of compactness (i.e., measured as activity density)—affect walking and bicycling travel 
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behavior differently. This finding is another empirical contribution of this dissertation considering 

the importance of gaining a deeper understanding about the specific factors that influence bicycling 

trips and isolating these factors from those that influence walking trips. 

Also, the present study follows recommendations of previous research that suggests the 

use of objectively measured, individually observable measures of the environment—instead of 

subjective measures or composite indices—to facilitate the interpretation of results for policy and 

interventions (Moudon et al. 2005; Lee and Moudon 2006). By including objective and 

independent measures of the built environment, this study contributes to facilitated interpretation 

of empirical findings to draw more effective policy strategies and interventions that can promote 

nonmotorized travel.  

In terms of contributions to policy and practice, the study findings contribute to the ongoing 

policy debates concerning the role of the built environment in nonmotorized travel behavior. As 

this research focuses on the influence of macro-level environment (i.e., built and social 

environment), the research findings particularly shed light on the most promising policy 

interventions that can promote walking and bicycling through modifications to the built (and social 

environment) within metropolitan areas.  

Overall, the implications of these findings can provide insights for those who are tasked 

with making and executing decisions related to improving the equity and affordability of the 

transportation opportunities within communities. This can assist policy decision-makers as well as 

urban/transportation planning and engineering professionals who aim at enhancing sustainability 

and livability of their communities to more appropriately and more efficiently allocate available 

resources toward that goal. 
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4.2.4 Study Limitations and Future Research 

Analyses presented in this chapter, albeit significant contributions to the research on the link 

between nonmotorized travel behavior and the built environment, have a few limitations.  

Main data-related limitations include the use of cross-sectional data, and lack of useable 

data on attitudes and perceptions. First, cross-sectional data were used in the analyses, which 

provide a snapshot of the information at a single point in time. By nature, cross-sectional analyses 

can capture correlations but do not allow for a full examination of causal relationships.  

The employment of Structural Equation Modeling (SEM) techniques—to a degree—

allowed for examination of causal links between nonmotorized travel behavior and built 

environment factors in the present analysis. One should be mindful, however, that although 

causality is implied by the results obtained from samples analyzed for this research, “proof of 

causality” for broader, real world processes is not provided by findings of this study. This is—

according to Kline (2011)—due to the impracticality of any single study to meet all the conditions 

required for inference of causality40. Therefore, as put by Kline “it is better to view the structural 

models as being “as if” models of causality that may or may not correspond to causal sequences 

in the real word” (Kline 2011). 

Most importantly, the use of cross-sectional survey data limits the ability to draw 

inferences about true causal links at work as cross-sectional data do not provide information 

regarding the temporal precedence of events. For instance, it most likely takes a period of time for 

changes in the built environment to lead to changes in travel behavior and these effects are not 

instantaneous. On the other hand, some researchers posit that the relationship between the built 

environment and travel behavior is bidirectional even though changes in the built environment 

 
40 Refer to page 98 of Kline (2011) for a list of general conditions that must be met to infer a cause-effect relation. 
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may not be immediately affected by changes in travel behavior (e.g., nonmotorized travel 

behavior) (Cao et al. 2009). For these reasons, the use of cross-sectional data often causes 

researchers and policy decision-makers to interpret research findings cautiously.  

In contrast, using longitudinal data allows for examining bidirectional links between the 

built environment and travel behavior (Cao et al. 2009). By clearly establishing temporal 

precedence, longitudinal data can enhance the ability to infer causality (Bagley and Mokhtarian 

2002). Therefore, future research can benefit from utilization of longitudinal data, which allow for 

a more intensive investigation of causal relationships and can provide more reliable evidence of 

the causal links between nonmotorized travel behavior and the built environment. 

Second, owing to lack of attitudinal data, the effect of residential self-selection may have 

not been thoroughly captured in this study. As previously mentioned, the attitudinal data from the 

Florida 2009 NHTS Add-on Person File were unusable for this analysis due to the large 

proportions of missing data. In absence of attitudinal data, a sophisticated model framework and 

advanced statistical methods were used in an attempt to capture self-selection bias. This included 

application of the latent variable approach within a SEM model structure and defining the self-

selection effect as a function of households’ social environment (i.e., households’ tastes), which 

can influence residential location choices.  

The SEM methodology has been used in previous travel behavior research to control for 

self-selection bias in analysis of cross-sectional data and in absence of personal attitudinal data 

(see e.g., He and Zhang 2012; Wang 2013; Nasri and Zhang 2014). However, as residential self-

selection is intertwined with attitudes, using attitudinal survey data can undoubtedly improve the 

analysis, and allow future research to fully control for any potential self-selection bias.  
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Attitudinal survey data, however, remain rarely available, probably due to two main 

reasons: 1) collection of such data is costly and time-consuming; and 2) even when questions about 

attitudes and preferences are included in travel surveys, most respondents skip answering those 

questions, resulting in large proportions of missing data in such fields (as in the case of the Florida 

2009 NHTS Add-on data). 

Further, due to data limitations and the scope of this research, several other built and social 

environment factors (at various levels of influence) that potentially impact walking and bicycling 

were not included in the models. Among such factors are: extent of toll roads and amount of toll 

fees as well as parking availability and fees (which can affect nonmotorized trips in CBD areas).  

In addition, although this study controlled for the influence of built and social environments 

on nonmotorized travel behavior, it did not address an equally important aspect of the environment, 

which can potentially impact walking and bicycling—the natural environment. Weather and 

climate, topography, and extent of vegetation—all may influence the decision to walk or bicycle 

and the levels of such activities. Future research can extend the scope of the study by including 

such potentially contributing factors to gain a deeper and more comprehensive understanding of 

the impact of the environment on nonmotorized travel behavior.  

Moreover, although policy has been identified as one of the key levels of influence on 

human behavior based on the core concept of the ecological model (see Sallis et al. 2008), due to 

lack of data on policy measures, a policy level was not included in the person-level ecological 

models developed in this dissertation. Future research can examine the effects of policy (e.g., 

parking, housing, bicycling policies) on nonmotorized travel in an integrated model framework 

with multiple levels of influence such as the one proposed and tested in the present study.  
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Additionally, although the ecological model of behavior was considered as a 

comprehensive and integrated framework for modeling nonmotorized travel behavior in this study, 

literature suggests that borrowing insights on the discrete choices that underlie behavior from the 

utility-maximizing framework may enhance the analysis by consideration of different 

conceptualizations of behavior (Handy 2005). Therefore, a research framework that conceptualizes 

nonmotorized travel behavior by combining principles of the ecological model and those of the 

utility-maximization demand theory may enhance the analysis and provide a better understanding 

of mechanisms that influence nonmotorized travel behavior. 

Also, utilitarian and recreational nonmotorized trips were analyzed together in this research 

and not separately. However, work trips and non-work trips may respond differently to 

environmental factors (Frank and Pivo 1994); therefore, future research can separate commute and 

recreational trips in analyzing the influence of multiple levels of environmental factors in 

nonmotorized travel behavior.  

Furthermore, the data used for developing the nonmotorized travel behavior models in this 

study came only from a few metropolitan areas and may not be fully representative of the U.S. 

metropolitan areas. Thus, it may be best to apply some caution with respect to the potential 

transferability of the results to other cities. Data from additional metropolitan areas and other states 

within the U.S. can be analyzed in the future to investigate the link between nonmotorized travel 

behavior and various levels (i.e., micro, meso, macro levels) of the built and social environment 

within an ecological model framework. An analysis based on such enhanced data—which offer 

more variation, particularly with regards to macro-level environmental factors—can provide 

insights into the generalizability of the findings of the present study.  
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Lastly, the empirical evidence presented in this chapter proves inconclusive in a few cases, 

which indicates potential avenues for further research.  

For instance, the examination of the effects of mixed-use development in nonmotorized 

travel behavior yielded inconsistent results in different models. More specifically, a higher extent 

of mixed land use at the meso level (i.e., county level) in household-level models resulted in 

contradictory estimations between the Florida case study (presented in this chapter) and the 

Baltimore-D.C. case study (presented in Appendix C). This is while meso-level mixed land use 

shows insignificant effects in the Florida person-level nonmotorized travel behavior models. 

Therefore, the role of meso-level mixed land use (i.e., extent of mixed-use development within the 

county) in nonmotorized travel behavior stays unclear and requires further examination.  

Also, the results of the Florida household-level nonmotorized travel behavior models and 

the Baltimore-D.C. household-level nonmotorized travel behavior models (see Appendix C) 

showed that random differences between neighborhoods may play a small but statistically 

significant role in the extent of walking and bicycling trips. However, random differences between 

neighborhoods exhibited statistically insignificant effects in the Florida person-level nonmotorized 

travel behavior. One possible explanation can be that the statistical significance of the 

neighborhood random effects as estimated by the household-level models in fact captured the 

household-level random effects, which were not accounted for in those models. Nonetheless, 

further research is needed to clarify the role of household as well as neighborhood random effects 

(i.e., random neighborhood contextual effects) on nonmotorized travel behavior.  
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Chapter 5:  Health Impacts of Active Travel and Built Environment 
 

“It is health that is real wealth and not pieces of gold and silver.”     

                                                                                                                           —Mahatma Gandhi 

Human health is an invaluable quality and probably the greatest asset one can poses. There are 

numerous benefits of being healthy. Healthy individuals can live free of pain, discomfort, or 

suffering; can regain their health quicker in case of illness; and can perform to the best of their 

ability in every sphere of life. Through being at their best state of being, healthy individuals can 

help shaping healthy communities. Healthy communities are more prepared, provide more 

resources for promoting healthy habits, and are more resilient after a disaster occurs41. 

Health starts with the individual and extends to the community. Thus, identification of 

factors that impact individuals’ health status and understanding the extent of the effects of those 

factors are essential tasks for development of transportation planning policies and urban designs 

that promote public health within communities. 

Physical activity—in both its general form as well as its active travel form (i.e., walking 

and bicycling)—and the built and social environments of the residential location are among the 

factors that can influence health, both at the individual and community levels (see Chapter 2). 

While it is evident from the literature that neighborhood-level (i.e., micro-level) and 

county-level (i.e., meso-level) built environment play important roles in individuals’ health, the 

role of metropolitan area-level (macro-level) built and social environment characteristics in 

individual and population health has not been thoroughly examined in the past.  

 
41 Centers for Disease Control and Prevention “Public Health Matters Blog”: 

https://blogs.cdc.gov/publichealthmatters/2015/09/a-healthy-community-is-a-prepared-community/ 
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Further, the complex interrelationships between health outcomes, health behavior, and the 

built environment introduce the possibility of endogeneity bias to the analysis. A review of health 

literature (see Chapter 2) revealed that endogeneity bias is often neglected in examination of the 

link between health outcomes, health behavior (e.g., walking and bicycling), and the built 

environment—which may result in biased estimates, as also argued by Schauder and Foley (2015).  

In addition, little empirical knowledge exists on the effects of other travel-related behavior 

on health. For instance, although a few studies investigated the link between telecommuting and 

psychological health, the role of telecommuting in physical health has not been thoroughly tested. 

Further, the role of teleshopping behavior in health remains largely unclear as there are no 

empirical studies on the health impacts of teleshopping. 

This chapter contributes to the existing knowledge on the links between health outcomes, 

health behavior (in terms of both general physical activity and active travel), travel behavior 

(including telecommuting and teleshopping behavior), and the built and social environments by 

developing advanced statistical models to predict physical and psychological health outcomes. 

These models incorporate individual and household characteristics, as well as built and social 

environment attributes—at hierarchical levels of geography—for the place of residence. 

Additionally, all health models developed account for a potential endogeneity bias in the analysis. 

Person-level models have been developed to examine the link between indicators of 

individuals’ health status and health behavior (e.g., physical activity), measures of built as well as 

social environment at multiple levels of influence, and measures of travel behavior including active 

travel, telecommuting, and teleshopping behavior. The person-level models have been estimated 

for various different health indicators representing both the physical and the psychological health 

status for residents. These health indicators include obesity, diabetes, asthma, general health status, 
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as well as the average numbers of physically and mentally unhealthy days. Health behavior such 

as physical activity has also been examined to model the level of physical activity performed by 

individuals. Due to the possibility of reverse causality (i.e., reciprocal causation) between 

individuals’ health and their health behavior (e.g., physical activity such as walking and bicycling), 

(see e.g., Lee and Moudon 2004; Schauder and Foley 2015; van Wee and Ettema 2016), the health 

outcome models are susceptible to endogeneity bias. Reverse causality and endogeneity bias have 

been addressed in the person-level health models by employment of instrumental variable analysis 

as well as inclusion of bidirectional links between health outcomes and health behavior (i.e., 

physical activity) within a SEM model structure. Person-level health outcome models are 

developed using data from residents of several metropolitan areas within the state of Florida.  

County-level health outcome models have also been developed as part of this dissertation 

research, but in the interest of brevity, are presented in Appendix I42. The county-level models 

examine the link between county-level health status indicators and built and social environment 

attributes at two levels of geography: the county level (i.e., meso level), and the CBSA within 

which the county lies (i.e., macro level). The county-level models are estimated for six different 

health indicators representing both the physical and the psychological health status for county 

residents. These health indicators include prevalence of obesity, prevalence of diabetes, prevalence 

of fair or poor health, prevalence of premature death, as well as the average number of physically 

and mentally unhealthy days experienced by residents of the county. To account for reverse 

causality and endogeneity bias, the SEM framework of the county-level models includes 

bidirectional links between health outcomes and measures of nonmotorized (i.e., active) travel 

behavior. This model design allows for examining causal pathways between health outcomes, 

 
42 Results from the county-level health models are used in the main body of the dissertation for comparison purposes 

and are referred to as corroborating evidence for the findings of the person-level health outcome models. 
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health behavior (i.e., active travel), and built environment factors—while concurrently addressing 

any potential endogeneity bias. County-level health models are developed using data from counties 

within the U.S. states of Florida, Maryland, Virginia, Washington, D.C., and West Virginia. 

The health outcome models have been specified in such way to include the elements of the 

main conceptual framework (see Figure 1), which follows an ecological model framework. The 

proposed ecological framework allows for testing the effects of the built as well as social 

environment at multiple levels of influence on health behavior and health status of residents.  

It should be noted that while the role of genetic factors in individuals’ health is very 

important, it is not within the scope of this study—partly due to limitations in data. This analysis 

focuses on the built and social environment attributes as well as transportation-related factors that 

can potentially influence health outcomes. As Corburn (2015) puts it “health begins where we live, 

learn, work and play, and transport has a critical role in providing access to healthy communities, 

schools and workplaces for all”. 

As previously mentioned, walking and bicycling are often referred to as active travel in 

health literature. Therefore, the terms nonmotorized travel and active travel are used 

interchangeably in this part of the dissertation. 

5.1 Person-level Health Outcome Models 

The county-level health impact models, which are developed and discussed in Appendix I, provide 

insights into the role of meso- and macro-level built and social environments as well as the travel 

culture of communities in shaping the health profile of those communities. Nonetheless, health is 

a person-level quality and the collective health profile of each community is inevitably formed by 

the health status of each individual resident. Thus, to better understand the health of a population, 

examining the factors that influence individuals’ health status seems to be a reasonable step. 
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As noted in Chapter 3, the world’s largest and most important source of person-level health 

data is the BRFSS dataset. This dataset has been used in this section to develop person-level health 

outcome models. Due to confidentiality reasons involving health data, the smallest geographic area 

for which BRFSS data are available is the county. Consequently, the smallest geographical unit of 

analysis for the person-level health models has been selected as the county where the respondent 

resided in. The models have been developed using the 2009 BRFSS data from respondents living 

in the state of Florida. Florida was selected as the study area because it is the same state from 

which data were utilized in the analysis of nonmotorized travel behavior (presented in Chapter 4).  

The person-level health models examine the link between individual-level health status 

indicators; travel behavior including nonmotorized travel, telecommuting, and teleshopping 

behavior; built environment attributes at two levels of geography: the county of residence (i.e., the 

meso level), and the CBSA within which the county of residence lies (i.e., the macro level); and 

social environment attributes at three levels of influence: the household (i.e., the micro level), the 

county (i.e., the meso level), and the CBSA (i.e., the macro level).           

5.1.1 Person-level Health Outcome Models: Data 

The database for the person-level health outcome models consist of the following datasets: 

- Behavioral Risk Factor Surveillance System (BRFSS); 

- National Household Travel Survey (NHTS)—2009 Florida Add-on data; 

- American Community Survey (ACS); 

- Smart Location Database (SLD); 

- Community Health Status Indicators (CHSI); 

- County Health Rankings & Roadmaps (CHR&R); 

- Woods & Poole Complete Economic and Demographic Data Source (CEDDS); 
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- Urban Mobility Information data—Texas A&M Transportation Institute (TTI); 

- Uniform Crime Reporting Program data—Federal Bureau of Investigation (FBI); 

- Walk Score data;  

- Point of Interest (POI) data; and 

- Census Bureau’s TIGER/Line Shapefiles. 

The BRFSS provided self-reported data on individuals’ socioeconomic and 

sociodemographic characteristics (e.g., age, gender, race, household income level), health-related 

behavior (e.g., physical activity, consumption of fruits and vegetables, and consumption of tobacco 

products), as well as the health status of respondents with respect to various health indicators. 

The NHTS and the ACS data provided information on travel behavior within the county. 

These included the county-level: automobile, public transit, and nonmotorized travel mode shares 

as well as levels of: telecommuting, online purchasing, and delivery of online purchases within the 

county. ACS also provided data on social environment factors for the counties (i.e., socioeconomic 

and sociodemographic attributes such as median age, median household income, and the racial 

composition within each county).  

The TTI Urban Mobility Information data provided information about the mobility level 

within the CBSA of residence (e.g., congestion level). The FBI Uniform Crime Reporting (UCR) 

data provided information on the levels of violate crimes within the CBSA of residence. Garmin 

Point of Interest (POI) data provided information on the location of fast food establishments within 

the counties. Also, Walk Score data provided information on the Walk Score within the counties 

and CBSAs where the Florida respondents of 2009 BRFSS lived.  

Information provided by the data included in the SLD, the CHSI, the CHR & R, the Woods 

and Poole’s CEDDS datasets, and the TIGER/Line Shapefiles is elaborated in Appendix I. 
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GIS tools were utilized to spatially link travel behavior, telecommuting and teleshopping 

behavior, as well as social and built environment data to person-level health data and obtain the 

final integrated database for statistical modeling of individual-level health outcomes. Detailed 

information on the datasets used in this analysis can be found in Chapter 3. 

5.1.2 Person-level Health Outcome Models: Dependent Variables 

The dependent (i.e., endogenous) variables for the person-level health outcome models have been 

selected based on health outcomes provided in the BRFSS dataset, which represent measures of 

mortality and morbidity for each respondent.  

Seven separate models have been developed for the following seven person-level health 

outcomes and health behavior indicators: 

1) overweight or obese; 

2) diabetes; 

3) asthma; 

4) general health; 

5) poor physical health days; 

6) poor mental health days; 

7) participation in 150 minutes of moderate physical activity per week (as recommended 

by CDC and DHHS43). 

Maps presented in Appendix I show the prevalence of a few of the above indicators for 

each county within the study area based on the data available from the 2012 CHR & R datasets. 

 
43 Centers for Disease Control and Prevention (CDC) “Physical Activity Basics”: 

https://www.cdc.gov/physicalactivity/basics/index.htm, and DHHS (2018). 
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5.1.3 Person-level Health Outcome Models: Independent Variables 

The independent (i.e., exogenous) variables for the statistical models in the person-level health 

impact analysis have been considered based on previous research (Chapter 2 and Appendix B) as 

well as the results of the county-level health models (Appendix I). These variables represent health 

behavior and health status at the individual level as well as the built and social environments at 

two different geographical levels: the county and the metropolitan area of residence.  

The independent (i.e., exogenous) variables included in the person-level health modes are 

categorized as follows: 

5.1.3.1 Person-level Variables (Characteristics of Individuals and their Households) 

The person-level variables represent the socioeconomic and sociodemographic characteristics for 

the respondents and their households as well as the health behavior of the BRFSS respondents. 

These variables include respondent’s:  

- age; 

- race; 

- gender; 

- employment status;  

- college education status; 

- number of children in the household; 

- annual household income;  

- level of physical activity; 

- level of consumption of fruits and vegetables;  

- level of consumption of alcoholic beverages; and  

- smoking status. 
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5.1.3.2 Built Environment Variables 

Built environment variables have been included in the person-level health models to account for 

the most important built environment factors that—according to the literature—can influence the 

health status of an individual. The built environment variables have been chosen in such manner 

to capture the physical environment profile of the residential area with respect to the extent it 

promotes or restricts: 1) physical activity; 2) social interaction; and 3) access to healthy food. 

These are the three main domains identified by Kent and Thompson (2012) through which the 

built environment can influence human health. 

As mentioned previously, the BRFSS health data, which are used to develop the person-

level health outcome models, do not provide information at the neighborhood level (i.e., micro 

level) due to confidentiality concerns. Thus, the county of residence was the smallest scale at which 

this analysis could be conducted. As a result, built environment characteristics have been included 

in the person-level health models at two spatial levels: the meso level (i.e., county level) and the 

macro level (i.e., CBSA level). 

Meso-level (County-level) Built Environment Variables  

Census block group-level built environment and land use measures provided by the SLD were 

aggregated to obtain the average county-level built environment measures. Other built 

environment variables at the county level are related to health factors and come from the CHSI 

and the CHR&R datasets. These variables include data on the levels of: access to clinical 

healthcare, access to healthy and unhealthy food, and access to parks for the population residing 

within a county as well as the air quality within the county.  

The meso-level (i.e., county-level) built environment variables included in the person-level 

health outcome models are:  
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- average activity density; 

- average entropy (i.e., mixed land use); 

- average intersection density; 

- average local transit accessibility (i.e., average distance to local transit); 

- average automobile accessibility to employment opportunities;  

- average transit accessibility to employment opportunities;  

- prevalence of fast food restaurants; 

- access to parks; 

- access to primary care physicians; 

- access to healthy food outlets; 

- ambient air pollution; and 

- average Walk Score. 

Together, these variables represent the Ds of the built environment as well as other 

important built environment factors at the county (i.e., meso) level that—based on the literature 

(and the findings from the county-level health models presented in Appendix I)—may play a role 

in the health of the residents. Table 16 provides more information about the meso-level built 

environment variables included in the person-level health outcome models. 

Macro-level (CBSA-level) Built Environment Variables  

The macro-level variables are defined based on the Core Based Statistical Area (CBSA) of 

residence. For the person-level health models, CBSAs include only metropolitan areas (and not 

micropolitan areas). Census block group-level built environment measures provided by the SLD 

were aggregated to obtain the average CBSA-level (macro-level) built environment measures.  

The macro-level built environment variables included in the models are:  
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- average activity density; 

- average entropy; 

- average intersection density; 

- average transit accessibility (i.e., average distance to local transit); 

- average automobile accessibility to employment opportunities;  

- average transit accessibility to employment opportunities; and  

- average roadway congestion index. 

These variables capture a good picture of the overall physical environment (i.e., built 

environment and land use characteristics) of the CBSAs in the study area including the extent of: 

compactness, mixed land use, street network connectivity, and access to transit as well as levels of 

mobility within those urbanized areas. Table 16 provides additional information about the macro-

level built environment variables included in the person-level health outcome models. 

5.1.3.3 Social Environment Variables  

Social environment factors have been included in the person-level health models at two spatial 

levels: the county (i.e., the meso level) and the CBSA (i.e., the macro level).  

Meso-level (County-level) Social Environment Variables 

County-level socioeconomic and sociodemographic attributes have been included in the person-

level health outcome models to represent the meso-level (i.e., county-level) social environment. 

The county-level social environment variables are:  

- median age; 

- median household income; 

-  percentage of population of the White race; and 

- percentage of industry employment that can be performed by telecommuting. 
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These variables provide information on key socioeconomic and sociodemographic 

characteristics of a county that—based on the literature (and results from the county-level health 

models presented in Appendix I)—can play a role in residents’ health outcomes. 

Macro-level (CBSA-level) Social Environment Variables  

CBSA-level socioeconomic and sociodemographic characteristics have been included in the 

person-level health models to represent the macro-level social environment.  

The CBSA-level (i.e., metropolitan area-level) social environment variables are:  

- average walking and bicycling density; 

- annual public transportation passenger-miles; 

- average commuter stress index; 

- average percentage of low-wage workers; 

- average percentage of households with no cars; 

- average percentage of the minority population; 

- average gross regional product (GRP); and  

- average violent crime rate. 

These variables control for the effects of macro-level (i.e., metropolitan area-level) 

sociodemographic, socioeconomic, and sociocultural factors on person-level health outcomes. It 

should be noted that in a way, the first three variables (average walking and bicycling density, 

annual public transportation passenger-miles, average commuter stress index) represent the “travel 

culture” within the CBSAs (i.e., metropolitan areas). 

These variables are intertwined with travel behavior measures for the residential areas; 

thus, they can be considered as factors representative of travel behavior within urbanized 

residential communities—a subject discussed next. 
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5.1.3.4 Travel Behavior and Telecommuting Behavior Variables 

The travel behavior measures included in the models provide information about the extent of travel 

by each travel mode within each county in the study area as well as the extent of telecommuting 

and teleshopping-related activities within the county.  

The county-level travel behavior measures include: 

- nonmotorized travel mode share; 

- private vehicle mode share; 

- public transit mode share;  

- average frequency of telecommuting events per month; 

- average percentage of household members with telecommuting option; 

- average number of online purchases per month; and 

- average number of monthly deliveries related to online purchases. 

As potentially influential—but to some degree, subtle travel behavior factors—online 

shopping-related activities have notably been overlooked in health impact studies. To fill that gap 

in empirical analysis, measures of teleshopping behavior have been included in the present study 

to account for the impact of the prevalence of an “online shopping culture” within the area of 

residence on individuals’ health outcomes.  

It should be kept in mind that although categorized under separate categories of variables, 

the travel behavior as well as the telecommuting and teleshopping behavior variables potentially 

represent another aspect of the social environment within the county of residence. Cumulatively, 

these measures characterize each county in terms of its “travel culture”, and thereby they can be 

considered sociocultural characteristics of the county—or in other words, measures of the county’s 

social environment. Table 16 lists the final variables included in the person-level health models.   
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     Table 16. Person-level Health Models Variables: Descriptive Statistics and Data Sources 

Model Variables Mean SD Data Source 

Endogenous (i.e., Dependent) Variables: Person Level 

Overweight or Obese (individual had a BMI ≥ 25 – 1: yes, 0: otherwise) 

Prevalence of Adult Diabetes 

Fair or Poor Health 

Poor Physical Health Days 

Poor Mental Health Days 

Premature Death 

0.63 0.48 BRFSS 

Diabetes (individual was diagnosed with diabetes – 1: yes, 0: otherwise) 0.14 0.34 BRFSS 

Asthma (individual was diagnosed with asthma – 1: yes, 0: otherwise) 0.12 0.32 BRFSS 

Good General Health (individual reported good or better health – 1: yes, 0: otherwise) 0.78 0.41 BRFSS 

Number of Poor Physical Health Days (in the past 30 days) 4.65 9.27 BRFSS 

Number of Poor Mental Health Days (in the past 30 days) 3.45 8.18 BRFSS 

CDC Physical Activity (individual participated in 150 minutes of physical activity/week per CDC – 1: yes, 0: otherwise) 0.62 0.49 BRFSS 

Independent (i.e., exogenous) Variables 

Person and Household Characteristics 

Age (individual’s age in years) 58.98 16.27 BRFSS 

Race (individual’s race: – 1: White, 0: otherwise) 0.82 0.38 BRFSS 

Gender (individual’s gender: – 1: male, 0: female) 0.38 0.49 BRFSS 

Employment Status (individual was employed – 1: yes, 0: otherwise) 0.42 0.49 BRFSS 

College Education (individual had college degree – 1: yes, 0: otherwise) 0.61 0.48 BRFSS 

Physical Activity (individual’s total minutes of moderate physical activity per week) a 58.79 82.21 BRFSS 

Fruit and Vegetable (individual’s fruit and vegetable servings per day) 3.96 3.04 BRFSS 

Smoking Status (1: everyday smoker, 2: someday smoker, 3: former smoker, 4: non-smoker) 3.23 1.09 BRFSS 

Drinking Status (total number of alcoholic beverages consumed per month) 11.92 41.34 BRFSS 

Household Income Category b 3.48 1.44 BRFSS 

Number of Children in Household (number of children under 18 years of age in individual’s household) 0.42 0.92 BRFSS 

Social Environment 

Meso Level: The County 

Median Age (years) 39.19 4.85 ACS 

Median Annual Household Income (dollars) 43,842 6,292 ACS 

Percent White (%) 76.70 7.59 ACS 

Percent of Telecommutable Jobs c (%) 56.40 5.82 Woods and Poole d 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Walking and Bicycling Density [average (number of walking and bicycling trips in CBG/CBG area in acres)] 0.0024 0.0016 NHTS and SLD 

Annual Public Transportation Passenger-Miles (millions) 129.14 262.00 TTI 

Average Commuter Stress Index 1.18 0.064 TTI 

Average Percentage of Low-Wage Workers (workers earning ≤ $1250/month) (%) 27.44 1.93 SLD 

Average Percentage of Households with No Cars (%) 6.43 1.19 SLD 

Average Gross Regional Product (GRP) (in millions of 2004 dollars) 49,829 63,022 Woods and Poole d 

Average Crime Rate (annual violent crimes/100,000 population) 700.83 363.17 FBI and CDC 
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Travel Behavior 

Meso Level: The County  

Nonmotorized Travel Mode Share (%) 8.10 2.38 ACS 

Private Vehicle Travel Mode Share (%) 87.16 3.60 ACS 

Public Transit Travel Mode Share (%) 1.21 0.79 ACS 

Average Frequency of Telecommuting Events per Month 4.05 2.03 NHTS 

Average Percentage of Household Members with Telecommuting Option (%) 11.46 4.83 NHTS 

Average Number of Online Purchases per Month 1.80 0.37 NHTS 

Average Number of Monthly Deliveries Related to Online Purchases 3.00 0.48 NHTS 

Built Environment 

Meso Level: The County 

Mean Activity Density [average (employment + housing units)/acres)] 3.41 2.99 SLD 

Mean Entropy (dimensionless) 0.54 0.07 SLD 

Mean Intersection Density [average (automobile-oriented intersections/mi2)] 0.72 0.55 SLD 

Mean Local Transit Accessibility [average (distance to the nearest transit stop in meters)] 735.45 69.64 SLD 

Mean Temporal Automobile Accessibility (average number of jobs within a 45-minute automobile travel time) 44,173 46,063 SLD 

Mean Temporal Transit Accessibility (average number of jobs within a 45-minute transit commute) 1,488 1,666 SLD 

Density of Fast Food Restaurants e (number of fast food restaurants/10,000 population) 1.97 0.63 POI and ACS 

Access to Parks (percentage of population living within half miles of park features) (%) 20.54 15.21 CHSI  

 Primary Care Physician Rate (primary care providers per 100,000 population) 68.10 31.11 CHR&R 

Access to Healthy Food Outlets f (percent of zip codes in county with healthy food outlets) (%) 47.68 11.21 CHR&R 

 Ambient Air Pollution (annual number of unhealthy air quality days due to Ozone and Fine Particulate Matter) 7.23 4.89 CHR&R 

Mean Walk Score (dimensionless) 11.23 18.94 Walk Score® 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Mean Activity Density [average (employment + housing units)/acres)] 4.39 2.40 SLD 

Mean Entropy (dimensionless) 0.56 0.05 SLD 

Mean Intersection Density [average (automobile-oriented intersections/mi2)] 0.88 0.42 SLD 

Mean Local Transit Accessibility [average (distance to the nearest transit stop in meters)] 669.51 46.33 SLD 

Mean Temporal Automobile Accessibility (average number of jobs within a 45-minute automobile travel time) 53,611 40,868 SLD 

Mean Temporal Transit Accessibility (average number of jobs within a 45-minute transit commute) 1,703 1,450 SLD 

Mean Roadway Congestion Index (dimensionless) 0.98 0.18 TTI 

Number of Observations (i.e., BRFSS Respondents): 9,427 – Number of Counties: 51 – Number of CBSAs: 23 

NOTES:  a BRFSS defines moderate physical activity as “brisk walking, bicycling, vacuuming, gardening, or anything else that causes some increase in breathing or heart rate”; 
b Based on household income categories listed in BRFSS (1= less than $15,000; 2= $15,000 to less than $25,000; 3= $25,000 to less than $35,000; 4= $35,000 to less than 

$50,000 and 5= $50,000 or more); 
c Percentage of county jobs that fall into the “Information”, “FIRE” (Finance, Insurance, Real Estate), “Services”, and “Government” sectors; 
d Source:  Woods & Poole Economics, Inc. Washington, D.C.  Copyright 2018.  Woods & Poole does not guarantee the accuracy of this data.  The use of this data and the 

conclusion drawn from it are solely the responsibility of the author of this dissertation; 
e In computation of the values of this variable, the following establishments have been considered fast food restaurants: Burger King, Domino Pizza, KFC, McDonalds, 

Papa John’s Pizza, Pizza Hut, Roy Rogers, Subway, Taco Bell, and Wendy’s; 
f Data on healthy food outlets in the 2010 CHR&R data come from the County Business Patterns (CBP) economic data. According to the CHR&R “healthy food outlets 

include grocery stores (NAICS 445110) with > 4 employees and produce stands/farmers’ markets (NAICS 445230)”; CBG = Census Block Group.
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As seen from Table 16, the table summarizes all the endogenous (i.e., dependent) and 

exogenous (i.e., independent) variables used in the person-level health outcome models. The 

Florida metropolitan areas included in the person-level health models are the same as the ones 

included in the Florida nonmotorized travel behavior models. Information about social and built 

environment attributes of those metropolitan areas was listed in Tables 2, 5, and 6 (Chapter 4).  

Table 17 provides descriptive statistics by CBSA (i.e., metropolitan area) for a few of the 

county-level variables that come from health datasets and have not been previously described.  

Table 17. Descriptive Statistics: Health-related Data for Florida Metropolitan Areas 

Metropolitan 

Area 

Crime 

Rate 

Ambient Air 

Pollution 

Primary Care 

Provider 

Rate 

Access to 

Healthy Food 

Outlets 

Access to 

Parks and 

Green Spaces 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Cape Coral-Fort Myers 556.2 — 7.0 — 62.9 — 51.1 — 23.0 — 
Crestview-Fort Walton -Destin 342.9 28.5 5.7 0.6 54.3 35.6 36.9 11.8 8.0 5.2 
Deltona-Daytona Beach-Ormond 563.9 — 5.0 — 69.8 — 42.55 — 30.0 — 
Gainesville 470.4 362.9 4.5 1.0 65.9 94.5 46.1 7.8 3.5 2.9 
Homosassa Springs 293.3 — 3.0 — 52.7 — 40.0 — 14.0 — 
Jacksonville 723.3 423.2 7.4 5.7 68.2 31.7 46.3 13.5 21.8 10.6 
Lakeland-Winter Haven 519.0 — 8.0 — 55.3 — 41.8 — 8.0 — 
Miami-FortLauderdale-Pompano 774.3 202.0 0.3 0.6 90.6 15.7 58.9 3.0 44.3 17.6 
Naples-Marco Island 436.0 — 5.0 — 70.7 — 60.1 — 16.0 — 
North Port-Bradenton-Sarasota 681.6 388.8 12.0 4.2 79.3 12.5 56.5 0.3 21.5 17.7 
Ocala 698.1 — 4.0 — 56.0 — 44.7 — 13.0 — 
Orlando-Kissimmee-Sanford 670.4 333.1 9.3 2.2 68.6 18.2 46.9 6.1 11.5 5.8 
Palm Bay-Melbourne-Titusville 669.5 — 5.0 — 74.3 — 44.7 — 36.0 — 
Palm Coast 313.1 — 4.0 — 31.8 — 50.0 — 19.0 — 
Panama City-Lynn Haven 452.9 307.8 6.0 2.0 50.4 10.2 52.6 18.7 17.5 14.5 
Pensacola-Ferry Pass-Brent 523.5 400.9 16.5 4.9 76.2 11.4 45.0 7.1 7.0 2.8 
Port St. Lucie 515.2 114.5 3.5 2.1 62.1 29.6 60.7 3.4 32.0 2.8 
Punta Gorda 458.6 — 5.0 — 61.3 — 58.8 — 25.0 — 
Sebastian-Vero Beach 358.1 — 4.0 — 79.7 — 43.8 — 32.0 — 
Sebring 413.1 — 4.0 — 62.0 — 36.4 — 8.0 — 
Tallahassee 653.6 330.5 6.7 3.5 39.7 28.5 40.5 16.9 10.3 14.9 
Tampa-St. Petersburg-Clearwater 612.5 231.7 10.3 6.8 71.7 21.4 48.9 7.4 27.0 19.5 
The Villages 377.8 — 5.4 — 18.9 — 40.0 — 8.0 — 

NOTE: SD = Standard deviation; — = Data not available; Source of data: 2010 CHR&R data.  

The descriptive statistics show that the Miami-Fort Lauderdale-Pompano and Jacksonville 

metropolitan areas have the highest crime rates (774.3 and 723.3 violent crimes per 100,000 

population, respectively), whereas Homosassa Springs has the lowest crime rate (293.3 violent 

crimes per 100,000 population) in Florida. The Pensacola-Ferry Pass-Brent metro. area has the 
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highest annual average number of ambient air pollution days (approximately 17 days), but data 

indicates that with only 0.3 days, the Miami-Fort Lauderdale-Pompano metro. area has the lowest 

average number of unhealthy air quality days in Florida. In terms of access to clinical care, the 

Miami-Fort Lauderdale-Pompano metro. area provides the largest number of primary care 

providers per 100,000 population (over 90 providers), whereas access to clinical healthcare seems 

to be limited to fewer than 20 providers per 100,000 population in The Villages metropolitan area. 

Access to healthy food outlets is highest in the Port St. Lucie and Naples-Marco Island 

metropolitan areas as the average percentage of zip codes with healthy food outlets in counties 

within those metropolitan areas are above 60%. However, the residents of the Sebring metropolitan 

area do not seem to enjoy the same healthy food access advantages since based on data, only 36.4% 

of them have access to healthy food outlets.  

Poor diet is one of the accepted causes leading to poor health (Samimi et al. 2009). The 

difference in having access to healthy food outlets between the highest level of access (in Port St. 

Lucie) and the lowest level (in Sebring) is over twenty-four percentage points (60.7% - 36.4%), 

which is somewhat high and may have health implications for the residents of Sebring. 

Further, access to green spaces and parks may contribute to residents’ health—as suggested 

by past studies (see e.g., Lund 2003; Timperio et al. 2010)—in part, by facilitating physical 

activity. Table 17 shows that the Miami-Fort Lauderdale-Pompano metropolitan area offers the 

best opportunity in Florida for residents to enjoy a healthier lifestyle as related to having access to 

green spaces. With over 44% of its population living within half miles of parks, the Miami-Fort 

Lauderdale-Pompano is the metro. area in Florida where the highest level of access to parks and 

green spaces exists. The Gainesville metropolitan area lies on the other end of the access-to-parks 

spectrum in Florida, with only 3.5% of its population living near parks and green spaces. 
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5.1.4 Person-level Health Outcome Models: Methodology and Results 

The person-level health outcome and health behavior models have been developed based on 

variables included in Table 16. Several other built and social environment variables were 

considered for inclusion in the person-level health outcome models. At the end, the most 

parsimonious model specifications representing logical cause-effect relationships were selected 

with consideration of reducing the risk of multicollinearity in the models. 

The analysis of person-level health outcomes is susceptible to endogeneity bias. This is 

due to the possibility of reverse causality between health outcomes and physical activity (including 

walking and bicycling) or omission of an underlying unmeasurable variable, such as internal 

motivation that influences both the propensity to be physically active (e.g., engage in active travel) 

as well as the health status (Schauder and Foley 2015).  

To account for any potential endogeneity bias in the person-level health outcome models, 

two advanced statistical techniques have been employed in this chapter of the dissertation:  

1) instrumental variable analysis; and  

2) multilevel SEM analysis.  

Instrumental variable analysis has been used by other researchers as an appropriate 

methodology to address endogeneity bias in estimating health outcomes (see e.g., Zick et al. 2013; 

Schauder and Foley 2015) and can provide more comprehensive and less biased results.  

Further, as discussed previously, the employment of SEM techniques allows for 

examination of the causal links between health outcomes, health behavior (including physical 

activity and active travel), and built as well as social environment factors—while controlling for 

any potential endogeneity, multicollinearity, or spatial autocorrelation problems (the latter may 

exist due to usage of clustered data). 
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5.1.4.1 Specification of Models: Person-level Health Outcome Models 

Instrumental Variable Binary Probit Models 

In developing person-level health models, the assumption is that individuals’ level of physical 

activity (including walking and bicycling) impacts their health status, but that the reciprocal effect 

can also exist; individuals’ health status may influence their levels of physical activity. This 

reciprocal causation effect—also termed reverse causality in the literature—has been rationalized 

by researchers to exist because having a better health status makes individuals more likely to 

perform physical activity such as active travel (Schauder and Foley 2015). In addition, there may 

exist at least one omitted variable in the models that influences both an individual’s physical 

activity level and his/her health status. In this situation, the physical activity variable becomes an 

endogenous independent variable in the model, meaning that after controlling for all the other 

independent variables, there is a non-zero correlation between physical activity and the error term. 

Such a correlation may lead to biased coefficient estimates in the model (see Subsection 3.3.3). To 

account for this potential endogeneity bias in the person-level health models, instrumental 

variables have been used for the endogenous physical activity independent variable.  

Several health outcome variables are in a binary form, indicating the diagnosis (or lack 

thereof) of a specific health outcome for an individual. This requires the employment of binary 

choice models. As in many past studies (see e.g., Samimi et al. 2009; Samimi and Mohammadian 

2009), binary probit modeling has been selected in the present study as the regression technique 

to model several health outcomes. Five models have been developed for five binary endogenous 

variables representing person-level health outcomes including the individual being overweight or 

obese, the individual having ever been diagnosed with diabetes, the individual having ever been 
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diagnosed with asthma, the individual having good general health, and the individual having met 

the CDC recommendations of participating in 150 minutes of physical activity per week.  

The person-level instrumental variable binary probit health models can be formulated as: 

𝑦1𝑖
∗ = 𝑐1𝑖 + 𝛽𝑦2𝑖 + 𝛾1𝑖

′ EDPerson + 𝛾2𝑖
′ SECounty + 𝛾3𝑖

′ SECBSA +

 𝛾4𝑖
′ TBCounty + 𝛾5𝑖

′ BECounty + 𝛾6𝑖
′ BECBSA + 𝜇𝑖                                      Equation 31              

 𝑦2𝑖 = 𝑐2𝑖 + 𝚷1EDPerson + 𝚷2SECounty + 𝚷3SECBSA + 𝚷4TBCounty +     

𝚷5BECounty + 𝚷6BECBSA +  𝚷7ZPerson + 𝜗𝑖                                         Equation 32 

where, 

𝑦1𝑖
∗  = value of the unobserved endogenous person-level health outcome variable i; 

𝑦2𝑖 = value of the observed endogenous person-level physical activity variable (for outcome i); 

𝑐1𝑖, 𝑐2𝑖 = model intercepts; 

𝛽 = model structural parameter for the instrumented endogenous variable (i.e., person-level 

physical activity variable); 

𝛾1𝑖 
′ − 𝛾6𝑖 

′  = column vectors of model structural parameters; 

𝚷1 − 𝚷7 = matrices of reduced-form parameters; 

EDPerson = column vector of exogenous person-level (and person’s household) attributes; 

SECounty = column vector of exogenous meso-level (i.e., county) social environment attributes; 

SECBSA = column vector of exogenous macro-level (i.e., CBSA) social environment attributes; 

TBCounty = column vector of exogenous meso-level (i.e., county) travel behavior attributes; 

BECounty = column vector of exogenous meso-level (i.e., county) built environment attributes; 

ZPerson = column vector of additional person-level instrumental variables; 

𝜇𝑖 and 𝜗𝑖  = model error terms; and  

i = (overweight or obese, diagnosed with diabetes, diagnosed with asthma, good general health). 
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It should be noted that the equation for 𝑦2𝑖 (Equation 32) is written in the reduced form. 

Also, by assumptions of the model, (𝜇𝑖, 𝜗𝑖) ∼ N (0, Σ), where 𝜎11 is normalized to one to identify 

the model. The model is derived under the assumption that (𝜇𝑖, 𝜗𝑖) is iid multivariate normal for 

all observations (in the model for health outcome i). In addition, while 𝑦1𝑖
∗   is not observable, the 

observed value of the endogenous health outcome variable, 𝑦1𝑖 , changes as follows: 

𝑦1𝑖 = { 
0         𝑦1𝑖

∗ <  0 

1         𝑦1𝑖
∗  ≥ 0 

 

Thus, the instrumental variable analysis formulated above consists of two stages: in the 

first stage, the endogenous independent variable (i.e., physical activity variable) is modeled as a 

function of control variables plus the instrumental variables, ZPerson (which are assumed to be 

strongly correlated with the physical activity variable but have zero correlation with the error term 

in the health outcome model). In the second stage, the observed value of the physical activity 

variable is replaced with its predicted value obtained from the first stage of analysis and the health 

outcome binary probit model is estimated based on the predicted values of the physical activity 

variable plus the control variables. The instrumental variable analysis isolates the variation in the 

instrumented variable (in this case the physical activity variable) that is not due to reverse causality 

or omitted variables, and thereby achieves a more accurate estimate for its coefficient in the model 

(Schauder and Foley 2015).  

According to Wooldridge (2010), the instrumental variables contained in column vector Z 

must satisfy two conditions: 1) exogeneity; and 2) correlation. Exogeneity implies that the 

instrumental variable must be uncorrelated with the error term in the health models (𝜇𝑖). 

Correlation implies that the instrumental variable must be partially correlated with the endogenous 

independent variable (i.e., physical activity variable, 𝑦2𝑖, in this case).  

Three person-level variables have been selected as instrumental variables in this analysis:  



 

253 

 

-  employment status (1: individual is employed, 0: otherwise); 

- educational status (1: individual has college degree, 0: otherwise); and 

- children (number of children under 18 years of age in individual’s household).  

These variables have been chosen as instrumental variables because they can be correlated 

with an individual’s propensity and level of physical activity (the correlation condition) but should 

not theoretically be correlated with the error term in the health outcome models (𝜇𝑖) after 

controlling for other factors (the exogeneity condition).  

Findings of past research is inconsistent in terms of existence of a correlation between the 

health outcomes for individuals and their educational attainment, employment status, or living-

with-children status. For instance, while some studies suggested that individuals’ level of 

education is significantly correlated with BMI (Plantinga and Bernell 2007) and being obese 

(Frank et al. 2004; Samimi and Mohammadian 2009), others found no significant correlation 

between individuals’ education and being obese or having asthma (Langerudi et al. 2015).  

Also, no significant correlation was found between having children and being obese or 

having asthma (Samimi and Mohammadian 2009; Langerudi et al. 2015). Further, although both 

latter studies found a correlation between having children and individuals’ general health 

condition, their findings should be treated with caution due to inconsistency in the direction of 

effects. The direction of the correlation between having children and individuals’ general health 

was found to be positive in the first study (Samimi and Mohammadian 2009), whereas it was found 

to be negative in the second one (Langerudi et al. 2015)—making the end result inconclusive. 

Overall, the inconsistencies in past findings suggest that educational status, employment 

status, and number of children can be suitable instrumental variables to model the specific health 

outcomes of interest in this section of the analysis (i.e., obesity, diabetes, asthma, general health).  
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Multilevel Structural Equation Models (i.e., Multilevel SEMs) 

Two person-level health outcomes are in the form of continuous endogenous variables: the number 

of poor physical health days and the number of poor mental health days. Therefore, binary probit 

modeling as used for estimating the other health outcomes (i.e., obesity, diabetes, asthma, general 

health) is not a suitable technique to model these health outcomes.  

To control for endogeneity bias due to omitted variables or potential reverse causal effects 

between the health outcomes represented by the continuous endogenous variables (i.e., the number 

of poor physical or mental health days) and the level of physical activity, multilevel SEM 

techniques have been employed to estimate the number of physically or mentally unhealthy days. 

The multilevel SEM model structure for these health outcomes includes bidirectional 

arrows to incorporate the reciprocal causation (i.e., reverse causality), which may potentially exist 

between physical activity levels and these particular health outcomes (i.e., the number of poor 

physical or mental health days). 

Employment of multilevel SEM has the bonus of dealing with any potential 

multicollinearity or spatial autocorrelation problems in the person-level health outcome models. 

Consistent with the county-level health models (see Appendix I), CBSAs (i.e., metropolitan areas) 

are considered clusters in the person-level multilevel SEM health models and CBSA random 

effects are estimated by these models.  

The person-level multilevel SEMs can be represented by the following two regression 

equations for: 1) the person-level health outcomes (i.e., the number of poor physical health days 

or the number of poor mental health days); and 2) the person’s level of physical activity (i.e., total 

minutes of moderate physical activity per week): 
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Number of poor physical (or mental) health days (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) =

 𝛽0 + 𝛽1
′EDPerson + 𝛽2

′SECounty + 𝛽3
′SECBSA + 𝛽4

′TBCounty+ 𝛽5
′BECounty  +

𝛽6
′BECBSA + 𝑢0CBSA + 휀1                                                                         Equation 33 

Minutes of moderate physical activity per week  (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) =

   𝛼0 + 𝛽7
′HO𝑖 (Person) + 𝛽8

′SEDPerson + 휀2                                             Equation 34 

where, 

𝛼0, 𝛽0 = model intercepts; 

𝛽1 
′ − 𝛽8 

′  = column vectors of model path coefficients; 

EDPerson, SECounty, SECBSA, TBCounty, BECounty, and BECBSA = as defined for the person-level 

instrumental variable binary probit health models (Equations 31 and 32); 

𝑢0CBSA  = the CBSA-level random intercept (i.e., random effects); 

HOi (Person) = the person-level health outcome i; 

SEDPerson = a subset column vector containing person-level characteristics as well as the 

characteristics of the person’s household; 

휀1, 휀2 = model error terms;  

i = (number of poor physical health days, number of poor mental health days). 

Considering the arguments presented in Kline (2011), the above multilevel SEM model 

specification allows for simultaneous analysis of the effect of factors from multiple hierarchical 

levels—including those from the individual level and those from the cluster level (i.e., contextual 

effects) on individuals’ health outcome of interest being modeled.  

In this case, the health outcomes of interest are those represented by the continuous 

endogenous variables, which include: the individual’s number of poor physical health days or the 

individual’s number of poor mental health days.  
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Variable Transformation and Estimation Methods 

Most of the variables included in the models are normally distributed; however, to simplify 

interpretation of the results, a few of the built environment variables were normalized by 

transformation into a naturally logged form before inclusion in the models. The MLE estimation 

method has been used to estimate the person-level health outcome models.  

For the instrumental variable binary probit models, application of the MLE method allows 

for computation of marginal effects after model estimation using the Stata software. With respect 

to multilevel SEMs, applying the MLE method deals with endogeneity bias in the models since in 

estimating bidirectional relationships, potential endogeneity bias can be statistically corrected by 

using MLE (Cervero and Murakami 2010).  

In addition, to account for spatial autocorrelation, all standard errors have been adjusted 

for lack of independence among observations due to being located within a certain geographical 

area (i.e., county). That is, the standard errors have been calculated under the relaxed assumptions 

of a generalized Huber/White/sandwich estimation method.  

These assumptions relax the assumption of independence of the errors and replace it with 

the assumption of independence between clusters. Therefore, the errors are allowed to be 

correlated within clusters (i.e., counties in this case)44. This estimation method for standard errors, 

therefore, is robust to heteroskedasticity of the errors as well as any spatial autocorrelation 

problems, which may exist in the models. The AIC and the BIC were used for model evaluation 

and to select the best model for each of the health outcomes.  

The results of the person-level health outcome models are discussed next. 

 
44 See Stata Structural Equation Modeling Reference Manual Release 13, Pages 96-97 “intro 8 — Robust and clustered 

standard errors”: https://www.stata.com/manuals13/sem.pdf and Stata’s “ivprobit — Probit model with continuous 

endogenous regressors”, Page 5 “Technical note”: https://www.stata.com/manuals13/rivprobit.pdf 
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5.1.4.2 Discussion of Results: Person-level Health Outcome Models 

Table 18 summarizes the estimation results of the instrumental variable binary probit models and 

multilevel SEM models for the seven person-level health indicators of interest (obesity, asthma, 

diabetes, general health, poor physical health days, poor mental health days, and participation in 

at least 150 minutes of moderate physical activity per week).  

With regards to the binary probit models, average marginal effects have been computed for 

each independent variable to facilitate interpretation of the coefficients. Table 19 provides the 

average marginal effects, estimating the probability of: being overweight or obese; having asthma, 

diabetes, a good or excellent health; and meeting the CDC-recommended physical activity levels.  

With regards to the multilevel SEM models, the direction of arrows in the path diagrams 

represents the effect priority as hypothesized and specified in the model (i.e., X → Y implies that 

X affects Y) (Kline 2011). Thus, the results of the multilevel SEMs are discussed considering such 

links as causal relations. 

Through their comprehensive frameworks, the econometric models for which the results 

are presented in Tables 18 and 19 link individuals’ physical and psychological health45 indicators 

to their personal and household characteristics as well as travel behavior characteristics (i.e., active 

travel behavior, motorized travel behavior, telecommuting behavior, and teleshopping behavior) 

and built and social environment factors of their place of residence at different spatial levels.  

The results show that person-level health outcomes are linked with person and household 

attributes, health-related behavior, travel behavior as well as built and social environment 

attributes of place of residence at the meso level (i.e., county) and the macro level (i.e., CBSA).  

 
45 Psychological health status is perceived to be a result of environmental factors or social circumstances (external 

factors), whereas mental health status is perceived to be formed partly by individual’s biological factors (internal 

factors). Although often perceived in different ways, the terms psychological and mental are sometimes used 

interchangeably. Thus, the phrases psychological health and mental health are used interchangeably in this research. 
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  Table 18. Results: Person-level Health Outcome Models  
                                                    Health Outcome  

                                                   Response Variables  

 

Predictor  

Variables 

Overweight  

Or 

Obese 

Asthma 

Diagnosis 

Diabetes 

Diagnosis 

Good or Excellent 

General 

Health 

Number of 

Poor Physical 

Health Days 

Number of 

Poor Mental 

Health Days 

Participation in ≥ 

150 Min. Moderate 

Physical Activity 

Coefficient 
p- 

value 
Coefficient 

p- 

value 
Coefficient 

p- 

value 
Coefficient 

p- 

value 

Path 

Coefficient 

p- 

value 

Path 

Coefficient 

p- 

value 
Coefficient 

p- 

value 

The Health Outcome Equation 
Person and Household  

Age (years) .002257* 0.087 .0058397*** 0.000 .0045403*** 0.002 -.004757*** 0.000 NS NS .091115*** 0.000 -.0113326*** 0.000 

Race (1: White, 0: otherwise) -.1855208*** 0.001 NS NS -.0860503** 0.030 .2192878*** 0.000 NS NS NS NS .2454019*** 0.000 

Gender (1: male, 0: female) NS NS NS NS -.1197435*** 0.000 NS NS NS NS -.680052*** 0.004 .2160422*** 0.000 

Physical Activity b, c (minutes per week) -.0105765*** 0.000 -.0119303*** 0.000 -.0124975*** 0.000 .001614*** 0.000 -.0222596** 0.036 -.0151169* 0.088 — — 

Fruit and Vegetables (servings per day) -.019859** 0.013 -.0141154*** 0.008 -.014526*** 0.002 .0319202*** 0.000 -.064054* 0.097 -.0685074** 0.035 .0898337*** 0.000 

Smoking Status (base: nonsmoker)  

everyday smoker -.265297*** 0.000 .1402861*** 0.005 -.1300801*** 0.008 -.3827534*** 0.000 2.149076*** 0.000 3.034778*** 0.000 NS NS 

someday smoker -.240904*** 0.001 .2390436*** 0.001 -.1716818*** 0.007 -.388848*** 0.000 2.954808*** 0.000 1.920725*** 0.003 -.1425182* 0.062 

former smoker NS NS .0975375*** 0.050 NS NS -.2126278*** 0.000 1.263961*** 0.000 .8654087*** 0.000 NS NS 

Drinking Status (number of alcoholic beverages per month) — — — — .0006407* 0.087 — — — — — — — — 

Household Income (base: < $15,000)  

$15,000 to less than $25,000 NS NS NS NS NS NS .3398008*** 0.000 -3.279143*** 0.000 -1.820816*** 0.000 .1562742*** 0.005 

$25,000 to less than $35,000 NS NS NS NS NS NS .5259056*** 0.000 -3.981217*** 0.000 -2.531651*** 0.000 .1643225*** 0.009 

$35,000 to less than $50,000 NS NS NS NS NS NS .7404188*** 0.000 -4.74856*** 0.000 -3.356317*** 0.000 .2960195*** 0.000 

$50,000 or more NS NS -.2009064* 0.099 NS NS 1.044106*** 0.000 -5.304316*** 0.000 -4.018764*** 0.000 .383828*** 0.000 

Employment Status d (1: employed, 0: not employed) NA NA NA .4421719*** 0.000 -2.622018*** 0.000 -1.534643*** 0.000 NS NS 

College Education d (1: yes, 0: no) NA NA NA .1382413*** 0.000 -.5393645*** 0.010 NS NS .0963694** 0.023 

Children d (number of children in the household) NA NA NA .0511261** 0.016 -.3354186*** 0.006 NS NS NS NS 

Social Environment  

Meso Level: The County 

Median Age  NS NS .0277286*** 0.002 .0134414* 0.082 -.0583641*** 0.001 .1395475* 0.072 .1548975** 0.025 -.0476338*** 0.000 

Median Annual Household Income NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Percent of White Population NS NS NS NS NS NS .0261994*** 0.000 -.0947322*** 0.008 NS NS .0127899*** 0.002 

Percent of Telecommutable Jobs NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Walking and Bicycling Density a NS NS NS NS -.0414568* 0.084 .1916424* 0.066 NS NS -1.373881*** 0.000 NS NS 

Annual Public Transit Passenger-Miles a NS NS .1228535*** 0.010 -.0897097** 0.042 -.2888749*** 0.003 1.128578** 0.020 NS NS NS NS 

Average Commuter Stress Index NS NS NS NS NS NS -4.742522*** 0.004 10.59153* 0.087 NS NS NS NS 

Average Percent of Low-Wage Workers  NS NS NS NS NS NS -.104597*** 0.000 NS NS .3987882*** 0.003 -.0800193*** 0.000 

Average Percentage of Households with No Cars NS NS NS NS NS NS -.1048387* 0.067 .7688444*** 0.008 .4256389* 0.062 NS NS 

Average Gross Regional Product (GRP) a -.1058054** 0.029 -.0756389* 0.093 NS NS .2993636*** 0.000 -.5321078* 0.095 -2.16883*** 0.000 NS NS 

Average Crime Rate .0003399*** 0.004 -.0005537*** 0.000 .000346*** 0.002 -.000874*** 0.001 NS NS NS NS -.0004294** 0.019 

Travel Behavior  

Meso Level: The County 

Nonmotorized Travel Mode Share -.0075641** 0.047 NS NS NS NS .0054944* 0.069 -.1295234** 0.049 -.1406948** 0.029 NS NS 

Private Vehicle Travel Mode Share NS NS .0139775*** 0.000 .0118146*** 0.000 NS NS NS NS -.0842479*** 0.007 NS NS 

Public Transit Travel Mode Share -.0597685*** 0.002 .0788665*** 0.000 -.053574*** 0.000 -.0703956** 0.019 NS NS .1904615* 0.092 .0996205*** 0.000 

Ave. Frequency of Telecommuting Events per Month NS NS -.0100291* 0.073 .0089899* 0.059 -.0282205* 0.097 NS NS NS NS -.0165912* 0.077 

Ave. Percent of HH Members with Telecommuting Option NS NS -.0081331* 0.049 NS NS NS NS NS NS .0811453*** 0.003 -.0069587* 0.089 

Ave. Number of Online Purchases per Month .1019967** 0.021 -.0466664* 0.099 NS NS -.4156456*** 0.000 1.883836*** 0.000 .6604995* 0.077 NS NS 

Ave. Number of Monthly Deliveries Related to Online Purchases NS NS NS NS .1015846** 0.017 NS NS NS NS NS NS -.252159*** 0.000 
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Built Environment 

Meso Level: The County 

Mean Activity Density a  .0774713*** 0.002 -.0908846** 0.021 .0496282*** 0.003 -.126384** 0.047 NS NS .4590626* 0.084 .0915875** 0.019 

Mean Entropy a  -.5076122*** 0.004 .7426236*** 0.004 .2912284** 0.047 NS NS NS NS 2.166756** 0.074 .5677244*** 0.005 

Mean Intersection Density a NS NS NS NS NS NS .3569469*** 0.003 NS NS NS NS -.0922825** 0.030 

Mean Local Transit Accessibility NS NS -.0013313* 0.065 NS NS -.0024025** 0.047 NS NS NS NS .0026825*** 0.000 

Mean Temporal Automobile Accessibility a  

 

NS NS .0509068* 0.059 NS NS NS NS NS NS -.8602602*** 0.001 -.1099844** 0.021 

Mean Temporal Transit Accessibility a  -.0190041*** 0.000 .0167732*** 0.000 -.0121438*** 0.001 NS NS -.1119116** 0.039 NS NS NS NS 

Density of Fast Food Restaurants .095305*** 0.000 .1475638*** 0.000 .1039651*** 0.000 -.1124666*** 0.008 .6907523*** 0.006 NS NS -.0771437*** 0.003 

Access to Parks -.0026208* 0.095 .0056172*** 0.004 -.002919*** 0.004 NS NS -.0436033*** 0.007 -.0221404* 0.075 .0088919*** 0.000 

Primary Care Physician Rate  -.0015728** 0.020 NS NS NS NS .00129* 0.087 -.0124352* 0.054 NS NS NS NS 

Access to Healthy Food Outlets -.0028061* 0.061 -.0054182*** 0.000 -.0037962*** 0.000 .005718*** 0.005 NS NS -.0258053*** 0.005 .0077523*** 0.000 

Ambient Air Pollution — — .0040683* 0.067 — — -.0428995*** 0.000 .1640947*** 0.002 .0767465* 0.085 — — 

Mean Walk Score -.0027107*** 0.001 -.0025144** 0.037 -.0020266*** 0.005 .0063055*** 0.001 -.0240459** 0.037 NS NS NS NS 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Mean Activity Density a NS NS -.2119958*** 0.008 .1914216** 0.017 NS NS NS NS 1.817649*** 0.004 NS NS 

Mean Entropy a NS NS .8071199*** 0.004 .2790995* 0.085 1.445422*** 0.006 NS NS NS NS 1.040943*** 0.001 

Mean Intersection Density a .2101968** 0.012 .1859524* 0.068 .1503409** 0.029 .3920485** 0.020 -2.112958** 0.029 NS NS NS NS 

Mean Local Transit Accessibility .0014559** 0.016 NS NS .000788** 0.044 NS NS .0171399*** 0.001 .0053337* 0.070 NS NS 

Mean Temporal Automobile Accessibility a .2972497*** 0.003 .2766411*** 0.004 .1759324** 0.022 -.4232195** 0.030 NS NS -3.467102*** 0.000 NS NS 

Mean Temporal Transit Accessibility a NS NS .0411097*** 0.005 -.0243627* 0.088 .0784013*** 0.001 NS NS .1600574* 0.059 .0830311*** 0.000 

Mean Roadway Congestion Index NS NS NS NS NS NS -.8122739** 0.020 5.979551*** 0.004 NS NS -.5009632* 0.083 

The Weekly Minutes of Moderate Physical Activity Equation (in multilevel SEM Models only) 
Person and Household  

Number of Poor Physical Health Days c NA NA NA NA NS NS — — NA 

Number of Poor Mental Health Days c NA NA NA NA — — NS NS NA 

Age (years) NA NA NA NA -.2988571*** 0.000 -.1684047* 0.095 NA 

Gender (1: male, 0: female) NA NA NA NA 11.13582*** 0.000 11.42947*** 0.000 NA 

Employment Status (1: employed, 0: not employed) NA NA NA NA NS NS NS NS NA 

College Education (1: yes, 0: no) NA NA NA NA 4.656244** 0.038 5.541723** 0.013 NA 

Children (number of children in the household) NA NA NA NA NS NS NS NS NA 

Warm Season — — — — NS NS NS NS — 

Other Model Factors 

Wald test of exogeneity [(corr = 0): χ2 (1)] for IV Probit Model   10.12*** .0015 11.02*** .0009 7.49*** .0062 see Note “ e ” NA NA see Note “ f ” 

Amemiya-Lee-Newey minimum χ2 test for the equivalent model 

estimated using the twostep method (test of overidentifying 

restrictions, Baum et al. 2006) 

.241 .8866 1.619 .4451 1.787 .4092 NA NA NA NA 

Model IV Binary Probit IV Binary Probit IV Binary Probit Binary Probit e Multilevel SEM Multilevel SEM Binary Probit f 

CBSA Random Effects — — — — NS NS — 

Pseudo R2 NA NA NA 0.1673 NA NA 0.0652 

Log pseudolikelihood  -44672.516 -43961.596 -43214.583 -3026.1687 -65655.726 -65409.793 -4415.5681 

  
            NOTES: 

a Variable was log-transformed; b Instrumented variable in IV probit models (on instruments Employment Status, College Education, and Children); c Endogenous variable in multilevel SEM models; d Instrumental variable in in IV probit 

models; e Instrumental variable analysis showed no endogeneity bias in the model (the Wald test of exogeneity was not significant for the IV probit model—indicating the null hypothesis of no endogeneity cannot be rejected); therefore, a 

regular binary probit model was estimated instead of an instrumental variable (IV) probit model; f No endogeneity was assumed in this model; therefore, a regular binary probit model was estimated instead of an instrumental variable (IV) 

probit model; HH = Household; NA = Not applicable; NS = Not statistically significant; — = Not included in the model; *, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively;  

Also, standard errors were adjusted for 51 clusters (i.e., counties);  

The process of model selection is not discussed in this dissertation; therefore, the values of the minimum AIC and BIC for each health outcome model are not reported in the table. As Fabozzi et al. (2014) suggested, AIC/BIC estimates for 

just one model and in isolation are meaningless.
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Table 19. Average Marginal Effects: Person-level Health Outcome Models  
 

                                                           Health Outcome  

                                                           Response Variables  

 

Predictor  

Variables 

Overweight  

Or 

Obese 

Asthma 

Diagnosis 

Diabetes 

Diagnosis 

Good or Excellent 

General 

Health 

Participation in ≥ 

150 Min. Moderate 

Physical Activity 

Average 

Marginal 

Effects 

p- 

value 

Average 

Marginal 

Effects 

p- 

value 

Average 

Marginal 

Effects 

p- 

value 

Average 

Marginal 

Effects 

p- 

value 

Average 

Marginal 

Effects 

p- 

value 

Person and Household 

Age NS NS .0016064*** 0.001 .0031978*** 0.002 -.0011288*** 0.000 -.0039874*** 0.000 

Race (1: White, 0: otherwise) -.0879356*** 0.001 NS NS -.0734162*** 0.002 .0520407*** 0.000 .0863445*** 0.000 

Gender (1: male, 0: female) .168422*** 0.002 -.0461154*** 0.000 NS NS NS NS .0760143*** 0.000 

Physical Activity b (minutes per week) -.0001527* 0.063 -.0000951** 0.028 -.0001283** 0.039 .000383*** 0.000 — — 

Fruit and Vegetables (servings per day) -.0053932* 0.095 NS NS NS NS .0075752*** 0.000 .0316079*** 0.000 

Smoking Status (base: non-smoker)  

everyday smoker -.0973157*** 0.000 NS NS NS NS -.0908339*** 0.000 NS NS 

someday smoker -.063421*** 0.002 .0408043** 0.035 NS NS -.0922802*** 0.000 -.0501449* 0.062 

former smoker .0303125* 0.080 .0411301*** 0.000 .0276464*** 0.010 -.0504602*** 0.000 NS NS 

Drinking Status (number of alcoholic beverages per month) — — — — .0011031*** 0.002 — — — — 

Household Income (base: < $15,000)  

$15,000 to less than $25,000 NS NS -.0672238*** 0.001 NS NS .1129422*** 0.000 .058242*** 0.005 

$25,000 to less than $35,000 NS NS -.0863357*** 0.000 NS NS .1670949*** 0.000 .061196*** 0.009 

$35,000 to less than $50,000 NS NS -.1015195*** 0.000 NS NS .2212181*** 0.000 .1086166*** 0.000 

$50,000 or more NS NS -.1237543*** 0.000 -.0652509*** 0.006 .2818209*** 0.000 .1390636*** 0.000 

Employment Status c (1: employed, 0: not employed) NA NA NA .1049349*** 0.000 NS NS 

College Education c (1: yes, 0: no) NA NA NA .032807*** 0.000 .0339075** 0.023 

Childrenc (number of children in the household) NA NA NA .0121331** 0.016 NS NS 

Social Environment 

Meso Level: The County 

Median Age  NS NS .0048621* 0.076 NS NS -.0138508*** 0.001 -.0167599*** 0.000 

Median Annual Household Income NS NS -2.16e-06*** 0.007 -2.24e-06** 0.034 NS NS NS NS 

Percent of White Population NS NS .0020337* 0.056 NS NS .0062176*** 0.000 .0045001*** 0.002 

Percent of Telecommutable Jobs NS NS NS NS NS NS NS NS NS NS 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Walking and Bicycling Density a NS NS -.027676** 0.019 -.0109178* 0.097 .04548* 0.064 NS NS 

Annual Public Transit Passenger-Miles a -.0492583* 0.092 NS NS -.0081668* 0.073 -.0685549*** 0.003 NS NS 

Average Commuter Stress Index .7558689* 0.049 NS NS NS NS -1.125481*** 0.005 NS NS 

Average Percent of Low-Wage Workers  .0144142** 0.045 NS 

 

 

 

NS NS NS -.0248226*** 0.000 -.0281547*** 0.000 
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Average Percentage of Households with No Cars NS NS NS NS NS NS -.02488* 0.069 NS NS 

Average Gross Regional Product (GRP) a -.0442002** 0.093 -.016817* 0.078 NS NS .071044*** 0.000 NS NS 

Average Crime Rate NS NS -.0000583* 0.085 NS NS -.0002074*** 0.001 -.0001511** 0.020 

Travel Behavior 

Meso Level: The County 
Nonmotorized Travel Mode Share -.0015181** 0.089 NS NS NS NS .0013039* 0.070 NS NS 

Private Vehicle Travel Mode Share NS NS .002202* 0.097 NS NS NS NS NS NS 

Public Transit Travel Mode Share -.0041469** 0.055 .0183288*** 0.001 -.0126945** 0.049 -.0167061** 0.019 .0350514*** 0.000 

Ave. Frequency of Telecommuting Events per Month .0062141* 0.061 -.0011821* 0.093 NS NS -.0066972* 0.096 -.0058376* 0.076 

Ave. Percent of HH Members with Telecommuting Option NS NS -.0030147** 0.012 NS NS NS NS -.0024484* 0.089 

Ave. Number of Online Purchases 

per Month 
.0633425** 0.014 -.0261397* 0.052 NS NS -.0986397*** 0.000 NS NS 

Ave. Number of Monthly Deliveries Related to Online Purchases .0714118** 0.042 NS NS NS NS NS NS -.088722*** 0.000 

Built Environment 

Meso Level: The County 
Mean Activity Density a  .0176133* 0.067 -.0381007*** 0.001 NS NS -.0299931** 0.047 .032225** 0.019 

Mean Entropya  -.1795927* 0.097 .2355872*** 0.000 .2121117*** 0.004 NS NS .1997535*** 0.005 

Mean Intersection Density a NS NS .0487475*** 0.000 NS NS .0847095*** 0.003 -.0324695** 0.030 

Mean Local Transit Accessibility .0003067* 0.076 -.0006379*** 0.000 .0003539** 0.013 -.0005702** 0.046 .0009438*** 0.000 

Mean Temporal Automobile Accessibility a .0360363* 0.095 NS NS .0223294** 0.019 NS NS -.0386979** 0.021 

Mean Temporal Transit Accessibility a -.0035077*** 0.084 .0026601* 0.091 NS NS NS NS NS NS 

Density of Fast Food Restaurants .0001297** 0.044 .0199601** 0.014 .0131376* 0.099 -.0266902*** 0.008 -.027143*** 0.003 

Access to Parks NS NS .0019291*** 0.000 -.0014158* 0.095 NS NS .0031286*** 0.000 

Primary Care Physician Rate  -.0009547** 0.027 NS NS NS NS .0003062* 0.085 NS NS 

Access to Healthy Food Outlets NS NS -.0009925*** 0.006 -.0012867* 0.069 .001357*** 0.005 .0027277*** 0.000 

Ambient Air Pollution — — .0020361* 0.095 — — -.0101808*** 0.000 — — 

Mean Walk Score -.000044** 0.038 -.0005676* 0.094 NS NS .0014964*** 0.001 NS NS 

Macro Level (Core Based Statistical Area): The Metropolitan Area 
Mean Activity Density a .1444978** 0.015 NS NS NS NS NS NS NS NS 

Mean Entropya NS NS .2336963*** 0.002 .1106682* 0.054 .3430231*** 0.006 .3662552*** 0.001 

Mean Intersection Density a NS NS .0413187* 0.063 .0443029* 0.063 .0930397** 0.020 NS NS 

Mean Local Transit Accessibility .0003777* 0.087 -.0007915*** 0.000 .0003052* 0.096 NS NS NS NS 

Mean Temporal Automobile Accessibility a NS NS NS NS NS NS -.1004371** 0.030 NS NS 

Mean Temporal Transit Accessibility a -.0213517** 0.031 NS NS NS NS .0186059*** 0.001 .0292144*** 0.000 

Mean Roadway Congestion Index .2272241* 0.080 .1200605** 0.024 NS NS -.1927663** 0.019 -.1762636* 0.083 

Model IV Binary Probit IV Binary Probit IV Binary Probit Binary Probit d Binary Probit e 

NOTES: a Variable was log-transformed; b Instrumented variable in IV probit models; c Instrumental variable in IV probit models; d Instrumental variable analysis showed no endogeneity in 

the model (the Wald test of exogeneity was not significant for the IV probit model); therefore, a regular binary probit model was estimated instead of an instrumental variable (IV) probit model;  
e No endogeneity was assumed in this model; therefore, a regular binary probit model was estimated instead of an instrumental variable (IV) probit model; HH = Household; Ave.=Average; 

NS = Not statistically significant; — = Not included in the model; *, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively.
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The Health Outcome Equation Findings 

Person-level Variables (Individual and Household Characteristics) Findings 

The results of the person-level health outcome models emphasize the influential role of 

characteristics related to individuals as well as their households in person-level health outcomes. 

These characteristics represent sociodemographic and socioeconomic status of the Florida 2009 

BRFSS respondents as well as their health behavior in the models. 

Among sociodemographic characteristics, an individual’s age, race, gender, as well as the 

number of children in individual’s household have been included in the models. Not surprisingly, 

older age is associated with adverse health outcomes including a higher likelihood of having been 

diagnosed with asthma, a higher likelihood of having been diagnosed with diabetes, a lower 

likelihood of meeting the CDC recommendation on physical activity levels and having a good or 

excellent general health. The Age variable is also linked with a higher number of poor mental 

health days and might have a positive association with being overweight or obese (marginal effect 

not statistically significant). These findings are consistent with past studies suggesting that older 

age is associated with lower likelihood of participation in physical activity as well as lower levels 

of physical activity (see e.g., Ross 2000; Trost et al. 2002; Frank et al. 2005; Ewing et al. 2014), 

and poorer health outcomes (see e.g., Frank et al. 2004; Plantinga and Bernell 2007; Lindström 

2008; Ewing et al. 2014; Langerudi et al. 2015; Barr et al. 2016; Tajalli and Hajbabaie 2017). 

Additionally, race proves to be an influential factor in individuals’ health status and 

outcomes. The results show that being of the White race is associated with an increased likelihood 

of participating in at least 150 minutes of physical activity per week, an increased likelihood of 

having a good or excellent general health status, and a lower likelihood of having been diagnosed 

with diabetes or being overweight or obese. These findings are in line with those of previous 
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studies suggesting that the likelihood of engaging in physical activity and meeting the 

recommended physical activity levels are greater for Whites than other races (see e.g., Ross 2000; 

Ewing et al. 2003b; Frank et al. 2005; Ewing et al. 2008) and that being of the White race is 

generally associated with having better health outcomes, especially with respect to obesity and 

diabetes (see e.g., Ewing et al. 2008; Joshu et al. 2008; Ewing et al. 2014). 

Further the individuals’ gender plays a key role in their health status and physical activity 

levels. The model results presented in Tables 18 and 19 indicate that males are more likely to be 

overweight or obese, but they have a lower likelihood of being diagnosed with asthma and perhaps 

even diabetes (average marginal effect is not statistically significant in the diabetes model). In 

addition, males have a lower number of poor mental health days and are more likely to meet the 

CDC recommendation on physical activity levels. Lending support to these findings are many 

previous studies suggesting that males are more likely to be physically active and typically have 

higher physical activity levels (see e.g., Ross 2000; Trost et al. 2002; Ewing et al. 2003b, 2008; 

Frank et al. 2005; Ewing et al. 2014). A few studies found that BMI was higher for males than 

females (see e.g., Ewing et al. 2003b, 2008; Plantinga and Bernell 2007; Ewing et al. 2014) and 

that diabetes and other physical health problems were more prevalent in males than females (Ewing 

et al. 2014)—all of which are consistent with findings of the present study.  

Also, the more children living in an individual’s households, the higher the likelihood of 

that individual having a good or excellent general health and the lower the number of his/her poor 

physical health days. These results are consistent with findings of Samimi and Mohammadian 

(2009) who reported that individuals’ general health was positively correlated with having 

children. However, the results stand in contrast with findings of Langerudi et al. (2015) who found 

a negative correlation between general health and having children. The inconsistencies in these 
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findings suggest that further research may be needed to elucidate the role of having children or 

living with children in individuals’ general health. 

Among socioeconomic characteristics, an individual’s employment status and educational 

attainment as well as the income level of the individual’s household have been included in the 

models. Results show that being employed is linked with better physical and psychological health 

outcomes such as increased likelihood of having good or excellent general health as well as having 

fewer numbers of poor physical and poor mental health days. In addition, higher education is 

related to higher likelihood of meeting the CDC recommendations on physical activity levels, a 

higher likelihood of having a good or excellent general health, and fewer numbers of poor physical 

health days. These results are consistent with previous findings suggesting that higher levels of 

educational attainment were associated with a higher likelihood of engaging in physical activity 

as well as with higher levels of physical activity (see e.g., Ross 2000; Ewing et al. 2003b; Frank 

et al. 2005). The results are also consistent with studies that found higher levels of educational 

attainment at the person level were associated with physical healthiness (Tajalli and Hajbabaie 

2017), and are in line with those that reported county-level higher educational attainment measures 

were associated with lower prevalence of diabetes (Braun and Malizia 2015)46. 

Further, increased household income levels are linked with favorable physical and 

psychological health outcomes. Higher incomes show positive associations with lower likelihood 

of being diagnosed with asthma or diabetes (average marginal effect is statistically significant for 

the highest income group), and increased likelihood of meeting the CDC-recommended physical 

activity levels and having a good or excellent general health status. Higher household incomes are 

 
46 Also, see discussion under the “Endogeneity and Reverse Causality between Health Outcomes and Physical 

Activity” part on page 306 of this dissertation. 
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also linked with fewer numbers of poor physical and mental health days. These results corroborate 

past findings that indicated higher incomes were associated with higher levels of physical activity 

(see e.g., Ross 2000; Ewing et al. 2014), better physical and psychological health outcomes, as 

well as a better general health status (see e.g., Frank et al. 2004; Samimi and Mohammadian 2009; 

Ewing et al. 2014; Langerudi et al. 2015; Tajalli and Hajbabaie 2017). The results imply that lower-

income households may bear a greater burden of health disparities. 

The health behavior of the individuals has been controlled for by including variables 

representing their fruit and vegetable consumption, alcoholic beverages consumption, smoking 

status, and physical activity levels. These variables are postulated to be influential in personal 

health and well-being, and several prior studies have considered some of them in their analysis 

(e.g., Ewing et al. 2003b, 2008; Ewing et al. 2014; Liao et al. 2016; Tajalli and Hajbabaie 2017).  

Based on the results, more servings per day of fruits and vegetables are linked with having 

more favorable health outcomes including a lower likelihood of being overweight or obese, a 

higher likelihood of having a good or excellent general health, as well as having fewer numbers of 

poor physical and mental health days. Moreover, a higher likelihood of meeting the CDC 

recommendation on physical activity levels is associated with higher consumption levels of fruits 

and vegetables. Lower probabilities of being diagnosed with asthma and diabetes may also be 

associated with higher consumption levels of fruits and vegetables (although, the average marginal 

effects are not statistically significant in the asthma and diabetes models).  

These findings corroborate those of past research, which reported that lower BMI was 

associated with higher daily levels (i.e., three or more servings) of consumption of fruits and 

vegetables (Ewing et al. 2003b, 2008; Ewing et al. 2014), and that having a healthy diet was 

associated with better physical and mental health outcomes (Tajalli and Hajbabaie 2017). 
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The smoking status of the individual also proves a crucial factor in individual’s health 

outcomes. Results indicate that compared to nonsmokers, individuals who smoke cigarettes (i.e., 

everyday smokers and someday smokers) have a lower likelihood of being overweight or obese 

and may have a lower likelihood of having diabetes. Albeit somewhat counter-intuitive, these 

results corroborate past research that found BMI, obesity levels, and diabetes levels to be lower 

for smokers compared to nonsmokers (Ewing et al. 2003b, 2008; Plantinga and Bernell 2007; 

Ewing et al. 2014). As expected, however, current smokers suffer from adverse health effects 

including a higher likelihood of being diagnosed with asthma, a lower likelihood of having a good 

or excellent general health, as well as increased numbers of poor physical and mental health days.  

Current smokers also are less likely to meet the CDC-recommended physical activity 

levels, which is consistent with findings of prior research suggesting that participation in physical 

activity and physical activity levels were lower among smokers compared to nonsmokers (Ewing 

et al. 2003b, 2008). Former smokers, on the other hand, have a higher likelihood of being 

overweight or obese and a higher likelihood of being diagnosed with diabetes compared to 

individuals who have never smoked (i.e., the nonsmoker category, which is the base category). 

Compared to nonsmokers, former smokers are also more likely to have been diagnosed with 

asthma, are less likely to have a good or excellent general health, and have increased numbers of 

poor physical and mental health days. These results suggest that smoking, even if only in the past, 

has adverse health effects—an anticipated finding. 

The drinking status of individuals, which represents the level of consumption of alcoholic 

beverages by them, shows a positive association with increased likelihood of having been 

diagnosed with diabetes. This implies that as the number of alcoholic beverages consumed per 

month by the individual increases, so does the risk of developing diabetes. This result is consistent 
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with those obtained from the county-level health outcome models, which indicate that higher 

liquor store density within the county (proxy for alcohol consumption by residents) may lead to 

higher rates of diabetes for residents (see Appendix I). These findings are also in line with the 

literature suggesting that high levels of liquor intake are associated with increased risk of diabetes 

(Rimm et al. 1995; Wannamethee et al. 2003; Howard et al. 2004). 

As regards physical activity, results show that higher levels of moderate physical activity 

(i.e., more minutes per week) are linked with better physical and psychological health outcomes 

including a lower likelihood of: overweight or obese, asthma diagnosis, and diabetes diagnosis; 

lower numbers of poor physical and mental health days; and an increased likelihood of good or 

excellent general health. These findings corroborate findings of previous research, which 

suggested that: i) participation in physical activity was associated with better physical health 

outcomes including better general health, a lower likelihood of obesity, and a lower likelihood of 

asthma (Langerudi et al. 2015); ii) higher physical activity levels were associated with lower 

probabilities of being obese, having diabetes, and having mental health problems (Tajalli and 

Hajbabaie 2017); and iii) higher levels of physical activity in the form of active travel were 

correlated with lower BMI, a lower likelihood of being overweight/obese, and having other 

adverse health outcomes as well as an increased likelihood of having a good general health 

(Schauder and Foley 2015). 

Built Environment Variables Findings 

The effects of the built environment on person-level health outcomes have been controlled for at 

two spatial levels: the meso level (i.e., county level) and the macro level (i.e., metropolitan level). 

Several built environment factors show statistically significant effects in the person-level health 

outcome models. These effects are discussed below. 
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Meso-level (County-level) Built Environment Variables Findings: County-level built 

environment variables represent the Ds of the built environment in the health outcome models. 

These variables characterize each county based on levels of compactness (i.e., activity density), 

mixed-use development (i.e., entropy), connectivity and walkability of the street network, 

employment accessibility, access to local transit, access to clinical healthcare, access to 

recreational facilities, access to healthy and unhealthy food outlets, as well as ambient air pollution. 

The model estimates and marginal effects show that many of these county-level built environment 

factors play an important role in health status of residents. 

The results indicate that despite being positively associated with higher probabilities of the 

individual meeting the CDC recommendation of participation in at least 150 minutes of moderate 

physical activity per week, the county-level Mean Activity Density variable (which represents 

population and employment densities combined) also shows positive association with the 

probability of the individual being overweight or obese, probability of having been diagnosed with 

diabetes, and with having more mentally unhealthy days. In addition, this variable is negatively 

associated with the probability of having a good or excellent general health status.  

The results imply that despite their potential pedestrian- and bicyclist-friendly designs and 

providing a better opportunity for physical activity, higher densities—as suggested by many past 

studies—may adversely affect individuals’ health due to creating potentially stressful 

environments (Kelly-Schwartz et al. 2004; Samimi and Mohammadian 2009; Langerudi et al. 

2015). Although, a few previous studies found that residents of more compact counties have lower 

BMIs (Ewing et al. 2003b; Plantinga and Bernell 2007; Ewing et al. 2014) as well as lower 

probabilities of obesity and diabetes (Ewing et al. 2014), it should be borne in mind that these 

studies operationalized compactness based on a sprawl index, which combined factors 
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representing different dimensions of the built environment (i.e., density, land use mix, centering 

of jobs and population, and street network design). Thus, further research may be needed based on 

consistent definitions to clarify the role of compactness (i.e., population and employment density) 

in obesity and diabetes. Also, the effect of the county-level activity density variable on asthma 

diagnosis shows a negative direction, indicating that a lower probability of asthma is associated 

with an increased activity density within the county. This result is counter-intuitive as based on 

past research (Langerudi et al. 2015), one would expect dense urban areas to also be the more 

polluted ones—residing in which may lead to more respiratory health problems such as asthma.  

Tables 18 and 19 indicate that the Mean Entropy variable at the county level has a positive 

association with the probability of meeting the CDC physical activity recommendations, and a 

negative association with the probability of being overweight or obese. Nonetheless, this variable 

exhibits a positive association with the probability of having been diagnosed with asthma and 

diabetes, as well as a positive link with having more mentally unhealthy days. With respect to 

asthma, the results may be capturing the effects of availability of additional destinations. As mixed 

land use within a county increases, additional destinations become available at farther distances. 

This may encourage additional vehicular trips, which may lead to higher pollution levels within 

the county and an increased risk of asthma for residents. The coefficient and the average marginal 

effects for this variable show a statistically insignificant effect in the probability of having a good 

or excellent general health status. This is somewhat inconsistent with findings of a prior study, 

which suggested that presence of various land uses within a neighborhood is associated with better 

general health (Langerudi et al. 2015). In terms of mental health, the finding of the present study 

is consistent with that of a previous study, which found an inverse association between sense of 

community (a proxy for mental health state) and mixed land use (Wood et al. 2010). Considering 
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these findings, additional research may be needed to further clarify the impact of county-level 

mixed land use on health outcomes for residents. 

Model estimates and average marginal effects also indicate that increased intersection 

densities throughout the county are associated with higher probabilities of having a better general 

health status. This is while previous research did not find a statistically significant association 

between intersection density and the status of population’s general health (Samimi and 

Mohammadian 2009; Samimi et al. 2009). Also, the average marginal effects computed for the 

county-level Mean Intersection Density variable indicates that increased intersection density 

throughout the county is associated with higher probabilities of being diagnosed with asthma. 

Results also show that higher levels of county-level intersection density are associated with lower 

probabilities of meeting the CDC physical activity recommendations. Since the Mean Intersection 

Density variable in this study represents intersection density in terms of automobile-oriented 

intersections, these results are reasonable. More automobile-oriented intersections within an area 

can mean higher levels of air pollution due to vehicle emissions—an externality that may lead to 

lung diseases (Mackett and Thoreau 2015) such as asthma.  

In addition, an increased number of automobile-oriented intersections may mean fewer 

pedestrian and bicyclist facilities, which can lead to lower levels of active travel and other forms 

of physical activity. However, this variable does not show a statistically significant effect on the 

other health outcomes including obesity. This result is consistent with that of Samimi and 

Mohammadian’s (2009), but it stands in contrast with the findings of Samimi et al. (2009) who 

reported a negative association between obesity and county-level intersection density. The 

inconsistent findings warrant further research into the role of intersection density at the county 

level in individuals’ health outcomes, particularly obesity.  
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The model estimate and the average marginal effects of the county-level Mean Local 

Transit Accessibility variable suggest that although associated with lower probabilities of having 

been diagnosed with asthma, increased distances to the nearest local transit stop are also correlated 

with adverse health effects such as a higher likelihood of being overweight or obese, a higher 

likelihood of having been diagnosed with diabetes, and a lower likelihood of having a good or 

excellent general health status. Residential areas farther away from transit stops are most likely the 

sprawled suburban areas, which provide cleaner air to breath, and thereby can lower the probability 

of an asthma infection. However, these suburban areas are also the ones that typically restrict 

activities such as walking and bicycling. This can lead to lower levels of active travel, which in 

turn, may lead to higher levels of obesity and other health problems for residents. As literature 

suggests that sprawl is related to higher obesity rates (see e.g., McCann and Ewing 2003; Handy 

et al. 2006; Ewing et al. 2014), these results imply that living in sprawled suburban areas with 

lower levels of access to transit may lead to obesity and other adverse health effects. 

With regards to physical activity, it can be seen from Tables 18 and 19 that an increased 

distance to transit stops is associated with a higher probability of participating in at least 150 

minutes of moderate physical activity per week. This result may seem counter-intuitive at first 

since one would expect to see lower levels of physical activity such as active travel performed by 

residents of suburban areas, which are also typically areas located farther away from transit stops. 

However, it should be borne in mind that the BRFSS defines moderate physical activity as 

activities including “brisk walking, bicycling, vacuuming, gardening, or anything else that causes 

some increase in breathing or heart rate”. Therefore, the results might be an indication of residents 

of suburban areas engaging in other physical activities, and not necessarily active travel. 
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The effects of regional accessibility have been examined in the person-level health models 

by including two county-level variables: Mean Temporal Automobile Accessibility and Mean 

Temporal Transit Accessibility. These variables were defined based on accessibility to 

employment opportunities within 45 minutes of automobile or transit travel times.  

The results suggest that higher accessibility to jobs within the county by means of 

automobile is associated with an increased probability of residents being overweight or obese, 

whereas higher accessibility to jobs by means of transit is associated with a lower probability of 

being overweight or obese for residents. In terms of automobile accessibility, the results can be 

capturing the effect of long commutes. Longer commutes by means of automobile can mean 

additional commute-related stress and/or lower levels of physical activity; both of which can lead 

to obesity. Car commuting has been linked with higher levels of stress (Wener and Evans 2011) 

and long commutes have been suggested to limit physical activity levels by cutting into leisure 

time (Ewing et al. 2014). Coefficient estimates and the average marginal effects of the county-

level Mean Temporal Automobile Accessibility variable in the present study confirm that higher 

temporal accessibility to jobs by means of automobile (proxy for long commutes) is related to a 

lower likelihood of participating in at least 150 minutes of moderate physical activity per week. 

With respect to transit accessibility, the results are in line with findings of a previous study, which 

suggested that increased transit use can lead to lower obesity rates (Samimi et al. 2009).  

Further, model estimates provide evidence that higher levels of accessibility to jobs by 

automobile is linked to a lower number of poor mental health days, which can mean that higher 

automobile accessibility may lead to better psychological health for residents.  

In addition, the average marginal effects of the Mean Temporal Automobile Accessibility 

variable in the Diabetes Diagnosis model is statistically significant, suggesting that increased 
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automobile accessibility to jobs is associated with a higher likelihood of being diagnosed with 

diabetes. The coefficient estimate of the Mean Temporal Transit Accessibility variable in the 

diabetes model is also statistically significant, suggesting that increased transit accessibility to jobs 

is associated with a lower likelihood of being diagnosed with diabetes. It should be noted, however, 

that the average marginal effects of this variable does not reach a statistical significance threshold 

in the Diabetes Diagnosis model; therefore, additional research may be needed to clarify the role 

of transit accessibility to jobs in being diagnosed with diabetes. 

Results also show that increased levels of accessibility to jobs by both automobile and 

transit are associated with an increased likelihood of asthma diagnosis (although the average 

marginal effects of the Mean Temporal Automobile Accessibility variable is not statistically 

significant in the Asthma Diagnosis model). These results are expected as increased levels of 

accessibility to jobs by automobile and transit can mean increased levels of use of these modes of 

travel. Increased use of automobiles means higher levels of vehicle emissions, which can affect 

respiratory health and lead to asthma. Widespread car usage—during both idle and moving 

times—has been suggested to lead to increasing rate of asthma in past research (Jackson 2003). 

With respect to transit, the results of the present study confirm the findings of a previous 

study that found a significant, positive association between increased use of transit and being 

diagnosed with asthma (Samimi and Mohammadian 2009). One reason can be additional exposure 

to harmful particles in the air due to increased time spent outdoors when walking to and from 

transit stops or while waiting for the vehicle to arrive. Literature suggests that transit accessibility 

can promote active travel (Ryan and Frank 2009; Barnes et al. 2016), and that most public transit 

users arrive at and depart from transit stops via walking (Durand et al. 2016). On the other hand, 

past studies link higher walkability of the area to higher levels of traffic-related pollution (Marshall 
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et al. 2009); thus, additional walking due to additional transit use may lead to inhaling increased 

amounts of harmful vehicle emissions, which can lead to asthma—as also suggested by Samimi 

and Mohammadian (2009). Other prior research argued that rail transit users may be exposed to 

high concentrations of particulate matter (PM) originating from mechanical friction processes, 

which can lead to negative health effects including respiratory health problems such as asthma 

(van Wee and Ettema 2016).  

Together, these results suggest that in general, increased levels of accessibility to jobs by 

means of automobile may lead to better psychological health, whereas higher levels of accessibility 

to jobs by means of transit may lead to better physical health (except in the case of asthma). The 

latter argument is further supported by the negative direction of the path coefficient estimate of the 

Mean Temporal Transit Accessibility variable in the Number of Poor Physical Health Days 

multilevel SEM model.  

Consistent with the county-level health outcome models (see Appendix I), access to clinical 

care within the county seems to contribute to a better health status for residents. The results indicate 

that an increased number of primary care physicians per 100,000 county population is associated 

with a lower likelihood of the residents being overweight or obese. This variable is also linked 

with individuals experiencing fewer numbers of physically unhealthy days. In addition, higher 

levels of access to clinical care within the county is associated with residents having good or 

excellent general health status. These results further support the hypothesis that increased access 

to healthcare within an area contributes to the betterment of the health status of residents. 

Additionally, the results of the person-level health models provide further evidence for the 

role of the food environment in human health. The results show that higher densities of fast food 

restaurants within the county are associated with a higher likelihood of: being obese or overweight, 
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having been diagnosed with asthma and/or diabetes, and with a lower likelihood of: meeting the 

CDC recommendations on physical activity and having a good or excellent general health status. 

Moreover, higher densities of fast food restaurants within the county are linked to increased 

numbers of poor physical health days for residents.  

With respect to obesity, these results are consistent with those obtained from the county-

level models (see Appendix I) and corroborate the findings of past research (Maddock 2004). Also, 

the results provide evidence for arguments by: i) Joshu et al. (2008) who suggested that physical 

environments that promote unhealthy food choices can also promote obesity; ii) Plantinga and 

Bernell (2007) who suggested that prevalence of fast food restaurants is one of the factors that may 

explain the rise in obesity rates in the U.S.; and iii) Croucher et al. (2012) who after conducting a 

review of literature, suggested that empirical evidence supports a link between the density of fast 

food outlets and obesity. Considering diabetes, at least one previous study found that more fast 

food restaurants within the city were associated with a higher diabetes rates (Marshall et al. 2014) 

—a finding in line with findings of the present study. 

In contrast and as expected, access to healthy food outlets seems to have a favorable 

influence on health outcomes. Results show that increased levels of access to healthy food outlets 

within the county is associated with a lower likelihood of: being obese or overweight, having been 

diagnosed with asthma and/or diabetes, and a higher likelihood of: meeting the CDC physical 

activity recommendations and having a good or excellent general health status. Higher access to 

healthy food outlets is also linked with having fewer poor mental health days for residents. It 

should be noted that the average marginal effects of the Access to Healthy Food Outlets variable 

in the Overweight or Obese model does not reach a statistically significance threshold, which 

means that further examination of the role of access to healthy food in weight-related health 
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outcomes may be needed. Nevertheless, these results imply that access to healthy food plays an 

important role in physical and psychological health of individuals and confirm arguments by past 

studies that access to healthy food can influence health outcomes (Frank et al. 2004; Mackett and 

Thoreau 2015). The findings provide further evidence that access to healthy food—as suggested 

by Kent and Thompson (2012)—is one of the main domains through which the built environment 

influences human health. Access to healthy food may be a challenge in sprawling environments 

(Ewing et al. 2014). Nonetheless, the results of the present study imply that lack of or limited 

access to healthy food can lead to poor health outcomes in terms of both physical and psychological 

health. Therefore, access to healthy food is a key element in retaining good health. 

Also, living in the vicinity of parks seems to be associated with a lower likelihood of: being 

overweight or obese (bear in mind, however, that the corresponding average marginal effects is 

not significant) and having been diagnosed with diabetes, a higher likelihood of meeting the CDC 

physical activity recommendations. This variable (i.e., the Access to Parks variable) is also linked 

with fewer numbers of poor physical and mental health days. These results are reasonable as living 

near parks can encourage people to get out of their houses, exercise, and enjoy the outdoors—

which can lead to a better state of physical health as well as improved quality of life and 

psychological health. Literature suggests that lower BMI is associated with more of the county 

land devoted to parks (Ewing et al. 2014) and that access to green spaces can affect health (Mackett 

and Thoreau 2015). The results of the present study confirm those hypotheses and further 

corroborates arguments by previous studies that parks and green spaces play a decisive role in 

providing neutral environments for social interaction and “de-stressing” (Croucher et al. 2012). 

However, based on the results, access to parks is also associated with a higher likelihood of being 

diagnosed with asthma. This is a reasonable finding as spending time near plants and vegetation 
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increases exposure to environmental triggers and allergens such as pollen. Exposure to pollen may 

lead to respiratory allergic illness and/or exacerbation of asthma (D’amato et al. 2015). 

On a related note, exposure to air pollution—particularly transportation and traffic-related 

air pollution—can adversely affect health (WHO 2006; Marshall et al. 2009; BTS 2016). Although 

the Ambient Air Pollution variable (which in this study represents the annual number of ambient 

air pollution days due to Ozone and Fine Particulate Matter) did not show a statistically significant 

association with most health outcomes in the county-level models (see Appendix I), this variable 

indicates unfavorable, statistically significant health effects in the person-level health models. 

Most notably, and as expected, an increased number of air pollution days is positively associated 

with the probability of having been diagnosed with asthma. This result is consistent with the 

literature suggesting that air pollution is related to asthma and outdoor air pollution exacerbates 

asthma in individuals who already have the condition (D’amato et al. 2015). Other results suggest 

that increased exposure to air pollution is associated with a lower probability of having a good or 

excellent general health as well as increased numbers of physically and/or mentally unhealthy 

days. Together, these findings are supported by statements in a report published by the World 

Health Organization (WHO 2006) suggesting that air pollutants such as Ozone and Fine Particulate 

Matter are associated with adverse health effects. 

Results also provide evidence that living in a county with a higher Walk Score is associated 

with a lower likelihood of having undesirable health outcomes and a higher likelihood of having a 

good or excellent general health status. These results corroborate results obtained from the county-

level health outcome models (see Appendix I) as well as past research (see e.g., Smith et al. 2008) 

and highlight the importance of walkability and pedestrian friendliness of the street network within 

the residential area in individuals’ health status. 
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Macro-level (Metropolitan Area-level) Built Environment Variables Findings: The results 

of the person-level health outcome models provide further evidence that the macro-level (i.e., 

metropolitan area level) built environment plays an important role in residents’ health. 

The metropolitan area-level Mean Activity Density variable shows positive associations 

with the probability of the individual being overweight or obese and the probability of having been 

diagnosed with diabetes. The average marginal effects for this variable is only statistically 

significant in the Overweight or Obese model. Nonetheless, the direction of effects is consistent 

with those for the county-level Mean Activity Density variable and corroborate those findings. In 

addition, the metropolitan area-level Mean Activity Density variable shows a positive link with 

reporting an increased number of poor mental health days. These results indicate that higher 

densities (i.e., higher compactness) within a metropolitan area may lead to unfavaroable physical 

and psychological health outcomes. These findings are in line with arguments presented in past 

research that higher densities may adversely affect health due to creating potentially stressful 

environments (see e.g., Kelly-Schwartz et al. 2004; Samimi and Mohammadian 2009; Langerudi 

et al. 2015).  

In terms of psychological health effects, the results of the present study do not provide 

support for an argument by Melis et al. (2015) who suggested that dense urban structures may 

lower the risk of depression by providing residents with the opportunity to have a more active 

social life. Thus, further research may be needed on the role of compactness of metropolitan areas 

in residents’ mental and psychological health. 

Results further indicate that similar to its counterpart at the county-level, the Mean Entropy 

variable at the metropolitan area level shows a positive association with the probability of meeting 

the CDC physical activity recommendations. This variable is also positively associated with the 
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probability of reporting good or excellent general health. This means that a higher extent of mixed-

use development within metropolitan areas is associated with increased likelihood of higher levels 

of physical activity and better general health status for residents.  

With respect to general health, these results are counter to those obtained from the county-

level health models (see Appendix I). This inconsistency warrants additional research into the role 

of macro-level mixed-use development in residents’ general health status. Nonetheless, the results 

of the present study are somewhat in line with past findings such as those of Langerudi et al. (2015) 

who found that presence of various land uses within a neighborhood was associated with better 

general health. Further, the results provide evidence that the effect of mixed land use on general 

health go beyond the county, and this dimension of the built environment has a potential to affect 

residents’ health at the metropolitan area level as well.  

Also, as in the case for the county-level variable, the metropolitan area-level mixed land 

use variable is positively associated with the probability of having been diagnosed with asthma 

and diabetes. In the case of asthma, one explanation can be that as mixed land use increases within 

a metropolitan area, additional destination options become available at remoter locations, which 

may encourage more vehicular trips. The increased number of vehicular trips may lead to higher 

pollution levels within the metropolitan area, and thereby increase the risk of asthma for residents.  

Model estimates and average marginal effects also indicate that an increased intersection 

density throughout the metropolitan area is associated with higher probabilities of having a better 

general health status. This variable is also linked with reporting fewer numbers of poor physical 

health days. As intersection density is a proxy for street network connectivity, these results may 

be capturing the effect of network connectivity on general health status of residents. However, the 

Mean Intersection Density variable in this study represents intersection density in terms of 
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automobile-oriented intersections an increase of which may mean fewer pedestrian and bicyclist 

facilities and lower levels of active travel and other forms of physical activity. Also, previous 

research found that smaller average block sizes (proxy for intersection density) may cause poorer 

general health but did not find a significant relationship between intersection density and the status 

of population general health (Samimi and Mohammadian 2009; Samimi et al. 2009). Therefore, 

the results obtained here should be treated with caution and further research may be needed to 

clarify the role of metropolitan area-level intersection density in individuals’ general health status.  

On another note, the results indicate that intersection density at the macro-level (i.e., 

metropolitan area-level) may be more influential in general health than at the meso-level (county-

level). In other words, compared to those of the county-level Mean Intersection Density variable, 

the coefficient estimates and average marginal effects for the macro-level Mean Intersection 

Density variable are larger in magnitude in the Good or Excellent General Health model as well 

as the Number of Poor Physical Health Days model. This means that better general health status 

is associated with living in compact metropolitan areas (in terms of intersection density), which is 

partly consistent with findings of Marshall et al. (2014) who suggested that city-level intersection 

density was more important in determining health outcomes than the same variable at the 

neighborhood level. This, as the referenced study also suggested, can mean that better general 

health outcomes may be associated with residing in a more compact, better connected city than a 

compact neighborhood surrounded by a sparse city (Marshall et al. 2014). 

The average marginal effects computed for the metropolitan area-level Mean Intersection 

Density variable indicate that increased intersection densities throughout the metropolitan area are 

associated with higher probabilities of being diagnosed with asthma. The direction of this effect is 

consistent with that for the county-level Mean Intersection Density variable. Due to the Mean 
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Intersection Density variable representing intersection density in terms of automobile-oriented 

intersections, these results are expected. A previous study found that smaller average block sizes 

(proxy for higher intersection density) were related to higher asthma rates (Samimi and 

Mohammadian 2009), which is consistent with findings of the present study. More automobile-

oriented intersections within an area can mean higher rates of automobile use and higher levels of 

air pollution, and thereby may lead to respiratory health problems such as asthma. Consistent with 

the case for the county-level variable, the average marginal effects of the Mean Intersection 

Density variable at the metropolitan area shows a statistically insignificant effect on obesity.  

The model estimate and the average marginal effects of the metropolitan area-level Mean 

Local Transit Accessibility variable suggest that increased distances to the nearest local transit stop 

are associated with lower probabilities of having been diagnosed with asthma but increased 

probabilities of being overweight or obese and higher probabilities of having been diagnosed with 

diabetes. This variable is also linked to increased numbers of poor physical and mental health days. 

These results are consistent with those obtained from the county-level health outcome models (see 

Appendix I) and can be capturing the state of health for residents of suburban areas.  

Areas with greater distances to transit stops are most likely those farther away from the 

core of the city where traffic-related pollution levels are high. Living in these sprawled suburban 

areas where air is cleaner may lead to a lower probability of being diagnosed with asthma. 

However, suburban areas typically do not provide much opportunities for active travel. This can 

lead to lower levels of walking and bicycling, which in turn, may lead to higher levels of obesity 

and other health problems. With respect to mental health, having limited access to transit—a 

feature common to suburban areas in the U.S.—may lead to social exclusion, particularly for 

individuals who for whatever reason are not able to drive (e.g., seniors, individuals with disability, 
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individuals who do not own a private vehicle, etc.). Providing support for this statement is an 

argument by Melis et al. (2015) who suggested that good accessibility to public transit may lower 

the risk of depression, particularly for women and retired individuals, providing them with the 

opportunity to travel around, satisfy their daily needs and have a more active social life. 

 Literature suggests that urban sprawl—another feature common to U.S. suburban areas—

has a potential to affect physical and mental health outcomes by promoting or restricting active 

behavior and social inclusion (see e.g., Cervero and Duncan 2003; Khattak and Rodriguez 2005; 

Næss 2005; Leslie et al. 2007; Plantinga and Bernell 2007; Melis et al. 2015). Consistent with this 

literature, the results of the present study imply that living in sprawled suburban areas with lower 

levels of access to transit may lead to obesity and other undesirable physical and psychological 

health outcomes.  

The results suggest that higher accessibility to jobs within the metropolitan area by means 

of automobile (i.e., the metropolitan area-level Mean Temporal Automobile Accessibility variable) 

is associated with an increased probability of residents being overweight or obese, increased 

probability of being diagnosed with asthma, increased probability of being diagnosed with 

diabetes, and a lower probability of reporting good or excellent general health. The direction of 

these effects is consistent with those obtained for the county-level automobile accessibility 

variable. It should be noted, however, that the average marginal effects for this variable is only 

statistically significant in the general health model (i.e., Good or Excellent General Health model), 

suggesting that further examination of the relationship between metropolitan area-level automobile 

accessibility and health outcomes may be needed.  

In terms of physical health outcomes, the results may be capturing the effect of long 

automobile commutes, which can mean more commute-related stress and less physical activity; 
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both of which can lead to adverse health effects. Previous studies suggest that long commutes limit 

physical activity levels by cutting into leisure time (Ewing et al. 2014) and can have adverse health 

effects on human health over time due to a number of reasons including fatigue and elevated stress 

levels related to operating and navigating the vehicle during the rush hour traffic, driving on 

congested roadways, and having to deal with aggressive driving behavior such as road rage 

(Jackson 2003; Galovski and Blanchard 2004; Evans and Wener 2006; Wener and Evans 2011; 

Hansson et al. 2011; Künn-Nelen 2015).  

Also, the positive direction of the effect of the metropolitan area-level Mean Temporal 

Automobile Accessibility variable in the asthma model (i.e., Asthma Diagnosis model) is expected. 

Increased levels of automobile accessibility to jobs within a metropolitan area can mean increased 

levels of use of private vehicle for commuting, and thereby higher levels of vehicle emissions and 

traffic-generated air pollution. Respiratory health problems such as asthma may then affect the 

health of residents of such metropolitan areas at higher rates due to higher levels of air pollution 

within the area. Past research suggests that widespread car usage may lead to increased rates of 

asthma (Jackson 2003).  

In terms of mental health, the results indicate that higher accessibility to jobs within a 

metropolitan area is linked with fewer poor mental health days, suggesting that higher automobile 

accessibility to employment opportunities within the urban area of residence may lead to better 

psychological health for residents.  

On the other hand, higher accessibility to jobs by means of transit (i.e., the metropolitan 

area-level Mean Temporal Transit Accessibility variable) is associated with a lower probability of 

being overweight or obese for residents, a lower probability of being diagnosed with diabetes, as 

well as a higher probability of meeting the CDC recommendations on physical activity levels, and 
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a higher probability of having good or excellent general health. However, results indicate that 

higher transit accessibility to jobs is also associated an increased probability of being diagnosed 

with asthma. It should be noted, however, that the average marginal effects for this variable is 

statistically insignificant in the Asthma Diagnosis and Diabetes Diagnosis models. 

With respect to physical health outcomes, the results are in line with findings of previous 

studies suggesting that increased transit use can lead to lower obesity rates (Samimi et al. 2009; 

Langerudi et al. 2015), and higher asthma rates (Samimi and Mohammadian 2009). The physical 

activity associated with transit use can lead to lower levels of obesity. Literature suggests that 

transit accessibility can promote active travel (Ryan and Frank 2009; Barnes et al. 2016) as most 

transit users arrive at and depart from transit stops via walking (Durand et al. 2016).  

However, increased walking and waiting times associated with transit use can mean 

additional exposure to harmful particles in the air; a factor that may lead to development of asthma. 

Past studies suggest that transit riders are more exposed to polluted air due to additional walking 

associated with transit use as well as the mechanical friction processes involved in transit vehicle 

operations, and therefore, they are at higher risks of having asthma (Samimi and Mohammadian 

2009; van Wee and Ettema 2016).  

Despite having a statistically significant coefficient in the Diabetes Diagnosis model, the 

average marginal effects of the Mean Temporal Transit Accessibility variable does not reach a 

statistical significance threshold; therefore, additional research is required to clarify the role of 

transit accessibility to employment opportunities within the metropolitan area in being diagnosed 

with diabetes.  

Regarding mental health, the results indicate that higher transit accessibility to jobs within 

a metropolitan area is linked to an increased number of poor mental health days, suggesting that 
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higher transit accessibility to employment opportunities within an urban area may lead to adverse 

psychological health effects for residents. A farther commute distance by means of transit can 

mean additional transit-specific stress including unpredictability of service, having to wait for the 

arrival of the vehicle, and interaction with other riders. For instance, a previous study found 

predictability to be a salient component of commuting-related stress among rail transit users as 

both perceived stress and cortisol levels were significantly higher among users who perceived their 

commute as more unpredictable (Evans et al. 2002).  

Longer duration of rail commuting was also found in another study to be associated with 

elevated cortisol levels and higher levels of perceived commuting stress (Evans and Wener 2006). 

Other researchers suggested that using public transit may lead to lower levels of subjective well-

being due to exposure to incidents such as undesired interactions with personnel or other travelers, 

which may evoke negative emotions (van Wee and Ettema 2016). In the case of recurrent travel 

such as everyday commute, the chronic stress associated with public transit use may lead to adverse 

psychological health effects. 

Overall, it can be said that with respect to automobile accessibility to jobs, the results are 

consistent with those obtained from the county-level variable and suggest that increased levels of 

regional accessibility to jobs by means of automobile may lead to a better psychological health 

status for residents. The results also imply that higher levels of accessibility to jobs by means of 

transit may lead to a better physical health status (with exception of asthma).  

Further, the Mean Roadway Congestion Index variable is positively associated with the 

probability of being obese or overweight, which is consistent with findings of Joshu et al. (2008) 

who reported that heavy traffic was moderately associated with obesity among residents of large 

metropolitan and micropolitan areas.  
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Additionally, this variable is positively associated with the probability of having asthma 

and it is negatively associated with having good or excellent general health status and meeting the 

CDC recommendations on physical activity. Further, the results indicate that higher roadway 

congestion indices are linked with having an increased number of poor physical health days.  

Cumulatively, these results imply that higher congestion levels within metropolitan areas 

of residence may adversely impact the physical health status of residents. The two main culprits 

are likely to be: 1) higher levels of stress in residents of such congested urban areas; and 2) less 

time to engage in physical activity for car commuters who drive on congested roadways.  

The above argument is supported by past studies suggesting that driving on congested roads 

is a contributor to stress (see e.g., Stokols et al. 1978; Evans et al. 2002; Jackson 2003; Evans and 

Wener 2006; van Wee and Ettema 2016). In addition, higher congestion levels may be an 

indication of longer automobile commute times, which based on literature, may lead to increased 

levels of stress in commuters (Wener and Evans 2011) as well as lower levels of physical activity 

(Ewing et al. 2014), and thereby can have adverse health effects (Jackson 2003; Evans and Wener 

2006) including obesity. Also, past research provides evidence that: i) additional daily time spent 

in an automobile is associated with an increased likelihood of obesity (Frank et al. 2004); and ii) 

a longer duration of car commuting is associated with a higher BMI (Lindström 2008).  

Concerning asthma, it should be noted that increased congestion levels mean additional 

exposure to harmful air pollutants due to vehicle emissions, and thereby can lead to respiratory 

health problems such as asthma. Past research provides support for this argument by suggesting 

that: i) increased car usage may lead to increased rates of asthma (Jackson 2003); and additionally, 

that ii) residential proximity to heavy traffic increases the risk of asthma occurrence and 

exacerbation (Salam et al. 2008). 
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Social Environment Variables Findings 

Social environment factors have been included in the person-level health models at two spatial 

levels: the meso level (i.e., the county) and the macro level (i.e., the metropolitan area level). At 

both geographical scales, several social environment (i.e., sociodemographic and/or 

socioeconomic) factors prove to play a key role in an individual’s health status. 

Meso-level (County-level) Social Environment Variables Findings: The effect of meso-

level sociodemographic and socioeconomic factors in individuals’ health outcomes have been 

controlled for by including county-level: median age, median annual household income, percent 

of the population that is of the White race, and the percent of total telecommutable jobs. 

With regards to sociodemographic factors, the variable representing the median age of the 

county population (the Median Age variable) shows a positive correlation with the likelihood of 

having been diagnosed with asthma and having been diagnosed with diabetes (although the 

average marginal effects is not statistically significant in the case of diabetes). Also, the county-

level Median Age variable exhibits a negative correlation with the likelihood of having a good or 

excellent general health status and meeting the CDC recommendations on physical activity levels. 

Further this variable is positively linked with the number of poor physical health days and the 

number of poor mental health days. These results further indicate that older age is associated with 

lower levels of physical activity and adverse health outcomes, which is consistent with past 

research (see e.g., Trost et al. 2002; Lindström 2008; Ewing et al. 2014; Langerudi et al. 2015).  

Results also suggest that the racial composition of the county plays a role in health 

outcomes for residents as having a higher percentage of White residents within the county is 

associated with an increased likelihood of participating in at least 150 minutes of physical activity 

per week, an increased likelihood of having a good or excellent general health status, and a lower 
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number of poor physical health days. These findings are consistent with those of previous studies, 

which suggested that being White was associated with a higher likelihood of engaging in physical 

activity and meeting the recommended physical activity levels—and in general—with having 

better health outcomes, especially as related to obesity and diabetes (e.g., Ewing et al. 2003b, 2008; 

Ewing et al. 2014). Also, according to Table 19, higher percentages of White residents within the 

county are associated with an increased likelihood of having asthma. Considering the statistically 

insignificant coefficient estimate of the Race variable, which represents the race of the respondents 

in the asthma model, the evidence on the role of race in asthma diagnoses can be considered 

inconclusive. Thus, further research may be required to clarify the link between race and asthma.  

The average marginal effects computed for the Median Annual Household Income variable 

show that higher median income levels within the county are correlated with lower probabilities 

of being diagnosed with asthma and/or diabetes. Past research also found that increased income is 

associated with lower risk of asthma (Samimi and Mohammadian 2009). However, albeit 

consistent with the results of the county-level models (see Appendix I), the direction of the effects 

of this variable in the Diabetes Diagnosis model is not consistent with findings of Barr et al. (2016) 

who suggested that higher household income levels were associated with a higher risk of diabetes.  

The model estimates and average marginal effects of the Percent of Telecommutable Jobs 

variable, which represents the level of telecommutability of employment opportunities within a 

county, does not reach a statistically significant threshold in the person-level health outcome 

models. These results are not consistent with those obtained from the county-level health models 

(presented in Appendix I), which suggest that the extent of telecommutability of employment 

within a county may adversely affect the residents’ physical and psychological health status. 

Therefore, the role of county-level telecommutability of jobs in health outcomes remains unclear. 
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Macro-level (Metropolitan Area-level) Social Environment Variables Findings: Consistent 

with the results of the county-level health outcome models (see Appendix I), the results of the 

person-level health models suggest that macro-level socioeconomic, sociocultural, and crime-

related factors can also be influential in the health status of individuals.  

As measures of a metropolitan area’s  economy, Average Percent of Low-Wage Workers 

and Average Gross Regional Product variables indicate that higher socioeconomic status and a 

larger-size economy within a metropolitan area are associated with a lower likelihood of residents 

being overweight or obese and/or having been diagnosed with asthma as well as with a higher 

likelihood of them meeting the CDC recommendations on physical activity levels (i.e., 

participating in at least 150 minutes of physical activity per week) and having a good or excellent 

general health status. Residents of metropolitan areas with higher socioeconomic status also seem 

to report a lower number of poor physical and mental health days. These results are consistent with 

past findings that higher incomes are associated with higher levels of physical activity (e.g., Ross 

2000; Ewing et al. 2014) and that the likelihood of obesity and other adverse physical or mental 

health outcomes declines with higher income levels and living in high-income areas (Samimi and 

Mohammadian 2009; Ewing et al. 2014; Tajalli and Hajbabaie 2017). 

In addition, the coefficient and the average marginal effects of the Average Percent of 

Households with No Cars variable, which measures another aspect of the socioeconomic status 

(i.e., vehicle ownership levels) of residents of a metropolitan area, indicate that lower levels of 

vehicle ownership within metropolitan areas are associated with a lower likelihood of residents 

having a good or excellent general health.  This variable is also linked with residents reporting 

increased numbers of poor physical and mental health days. One explanation for these results can 

be the limited access to healthcare providers or services imposed by not having access to a car.  
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Individuals who do not own a private vehicle may not be able to reach a physician’s office 

or pharmacy when they are ill and need treatment. As a result, they may be more likely to suffer 

from poorer physical health conditions. On the other hand, access to a private vehicle can be 

psychologically advantageous as Ellaway et al. (2003) found that individuals with car access may 

experience positive psychological effects, in their words, such as “more protection, autonomy, 

prestige, self-esteem, and mastery”. In addition, literature suggests that lack of transportation may 

prevent individuals from finding employment (Mackett and Thoreau 2015). Therefore, owning a 

private vehicle provides the opportunity to find a job or secure a better one, which can also be 

considered a psychosocial advantage of vehicle ownership. These arguments lend support to the 

findings of the present study that suggest a positive link exists between lower levels of vehicle 

ownership within an urban area and a poorer mental health status for residents. 

Together, these results suggest that higher socioeconomic status within a metropolitan area 

is associated with better physical and mental health outcomes for residents, which is a reasonable 

finding. Higher socioeconomic status (e.g., higher incomes, owning more vehicles, etc.) means 

higher levels of affordability for better quality goods as well as higher levels of access to services 

that can impact one’s health. For example, high-income individuals can afford organically-grown 

food items, better health insurance, and gym membership—all of which may favorably influence 

their health status. Past research found higher income levels to be correlated with better health 

status (see e.g., Samimi and Mohammadian 2009; Marshall et al. 2014; Langerudi et al. 2015; 

Braun and Malizia 2015). In addition, literature suggests that higher-income individuals travel 

further and have an increased level of access to opportunities (Mackett and Thoreau 2015).  

The findings are also in line with arguments by Ellaway et al. (2003) who suggested that 

vehicle ownership was associated with better physical health outcomes (i.e., lower rates of overall 
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mortality, lower rates of long-term illness, and fewer symptoms) as well as with better mental 

health (e.g., gaining more psychosocial benefits).  

Based on the coefficient estimates and average marginal effects of the Average Crime Rate 

variable, it seems that increased rates of violent crime within the metropolitan area are associated 

with lower probabilities of residents meeting the CDC recommendations on physical activity levels 

and having a good or excellent general health status as well as with lower probabilities of them 

having been diagnosed with asthma. One explanation for these findings can be lower levels of 

outdoor physical activity due to safety concerns. Residents who fear violent crimes in their cities 

are not likely to spend much time outside of their houses to perform physical activities such as 

walking or bicycling. Fear and concerns about neighborhood crime and personal safety have been 

postulated to act as a barrier to walking and other physical activities (CDC 1999; Ross 2000) and 

empirical research has shown that violent crime rates have a negative impact on walking trips (Joh 

et al. 2009). Further, chronic exposure to community violence and crime has been argued to be an 

important social environment factor that can potentially impact physical activity levels (King et 

al. 2002). The latter study also suggested that the extent of environmental stressors (such as crime) 

at micro, meso, and macro levels of the environment may lead to reduced levels of individuals’ 

engagement in outdoor recreational physical activities (e.g., walking, bicycling, and use of open 

spaces for sports).  

On the other hand, residents of high-crime cities may be at lower risk of developing asthma 

due to spending more time indoors and having less exposure to airborne pollutants that are 

detrimental to respiratory health. Results also show a positive and significant association between 

the coefficient estimate of the violent crime variable and the probability of residents being 

overweight or obese and having been diagnosed with diabetes; however, the corresponding 
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average marginal effects are not statistically significant in either model, indicating the need for 

further investigation of the relationship between metropolitan area-level crime rates and obesity as 

well as diabetes rates in residents. Nonetheless, the positive direction of the effect of the violent 

crime variable in the Overweight/Obese model is consistent with past findings suggesting that 

prevalence of obesity is higher in areas with more violent crime (Ewing et al. 2014). 

The coefficient estimate and the average marginal effects of the Average Walking and 

Bicycling Density variable indicate that increased densities of active travel within a metropolitan 

area are associated with better physical health outcomes (i.e., a lower likelihood of asthma and 

diabetes diagnoses and a higher likelihood of having a good or excellent general health status) as 

well as better mental health outcomes (i.e., fewer number of poor mental health days). These 

results are expected as many past studies found an association between higher levels of active 

travel and physical as well as mental health indicators (see e.g., Leyden 2003; Frank et al. 2004; 

Lindström 2008; Gordon-Larsen 2009; Schauder and Foley 2015; Tajalli and Hajbabaie 2017). 

Further, the results indicate that increased public transit usage within the metropolitan area 

(represented by the Annual Public Transit Passenger-Miles variable) is associated with a lower 

likelihood of being overweight or obese and a lower likelihood of having been diagnosed with 

diabetes. However, this variable is also associated with unfavorable physical health outcomes such 

as a higher likelihood of asthma diagnoses, a lower likelihood of having a good or excellent general 

health status, and an increased number of physically unhealthy days. These results are in line with 

studies suggesting that increased public transit use is associated with better weight-based health 

outcomes such as lower risks of overweight or obesity (Lindström 2008; Samimi et al. 2009; 

Langerudi et al. 2015; Liao et al. 2016), most likely due to the additional physical activity 

associated with transit use. The results are also consistent with literature suggesting that increased 
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public transit use is associated with higher risk of asthma (Samimi and Mohammadian 2009; van 

Wee and Ettema 2016), most likely due to inhalation of more polluted air produced from transit 

vehicle operations. In addition, crowded transit vehicles provide increased opportunities for 

diseases to spread, which can negatively affect one’s personal health (Widener and Hatzopoulou 

2016). The association between increased public transit use within the metropolitan area and 

poorer general health status for residents can be due to reasons such as increased levels of transit 

commute-related stress—a subject which brings the discussion to the next factor with a potential 

to affect human health as hypothesized in this study—commuter stress in urbanized areas. 

Tables 18 and 19 show that the Average Commuter Stress Index variable is positively 

associated with the probability of being overweight or obese and negatively associated with the 

probability of having a good or excellent general health status. Moreover, the path coefficient of 

this variable is positively linked with the number of poor physical health days. These results imply 

that, as expected, residing in metropolitan areas with higher levels of commuter stress may 

adversely affect health outcomes. Lending further credence to this argument is past research 

suggesting that commute-related stress may be linked to adverse health outcomes (e.g., Galovski 

and Blanchard 2004; Evans and Wener 2006; Rissel et al. 2014; van Wee and Ettema 2016). 

The last three variables (i.e., Average Walking and Bicycling Density, Annual Public 

Transit Passenger-Miles and Average Commuter Stress Index variables) have been considered 

proxies for travel-related social norms and sociocultural factors in the present study and in that 

sense, they have been assumed to represent the “travel culture” within the metropolitan areas. 

Therefore, the results of the person-level health models provide evidence that the travel culture 

within the metropolitan area of residence can influence individuals’ health outcomes both in terms 

of physical and psychological health. Metropolitan areas with a travel culture that is more oriented 
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toward active travel can promote this form of physical activity, which can lead to better health 

outcomes for residents. Indeed, literature suggests that supportive social and cultural norms can 

promote physical activity as observing others being physically active has encouraging effects on 

individuals to do the same (see e.g., Trost et al. 2002). On the other hand, sprawled metropolitan 

areas with a travel culture oriented toward long commutes may induce higher levels of commute-

related chronic stress in residents, and as a result, lead to adverse health effects.  

These findings further imply that the effects of the macro-level built and social 

environments on travel culture, and thereby on health outcomes are intertwined. As Joshu et al. 

(2008) argued, by changing social norms, changes in the macro-level built environment can 

potentially affect personal attitudes and motivations. Personal attitudes, preferences, and 

motivations are key factors in shaping the daily travel behavior of individuals and thus, in the long 

run, these factors can shape the travel culture within communities and the society as a whole. 

Therefore, social environment factors such as those representing the travel culture within 

an urbanized area are closely related with the travel behavior of residents of that area. The role of 

travel behavior measures in health outcomes based on the results of the person-level health models 

is discussed next. 

Travel Behavior and Telecommuting Behavior Variables Findings 

Meso-level (County-level) Travel Behavior Variables Findings: Consistent with the results 

of the county-level health models (see Appendix I), the results of the person-level health models 

show that measures of travel behavior of residents of a county play an important role in their health 

status. The coefficient estimates and average marginal effects of the Nonmotorized Travel Mode 

Share variable are negatively associated with the likelihood of being overweight or obese and 

positively associated with the likelihood of having a good or excellent general health status. 
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Further, the path coefficients of this variable in multilevel SEMs is negatively linked with the 

number of poor physical and mental health days. These results corroborate those obtained from 

the county-level health models (Appendix I) and are in line with findings of several prior studies, 

which reported that active travel lowers the risk of morbidity and mortality (see e.g., Andersen et 

al. 2000; Frank et al. 2004; Smith et al. 2008; Schauder and Foley 2015; Tajalli and Hajbabaie).  

More specifically, with respect to weight-related health outcomes and general physical 

health, these findings are consistent with those of many past studies (see e.g., Frank et al. 2004; 

Lindström 2008; Gordon-Larsen 2009; Schauder and Foley 2015; Tajalli and Hajbabaie 2017). 

With respect to mental health outcomes, the findings are consistent with past research as well (see 

e.g., Leyden 2003; Ohta et al. 2007; Tsunoda et al. 2015; Liao et al. 2016; Tajalli and Hajbabaie 

2017). Thus, the results of the present analysis provide evidence that higher rates of walking and 

bicycling within a county can lead to better physical and psychological health status for residents. 

Also, the results indicate that more traveling within the county by means of private vehicle 

(represented by the Private Vehicle Travel Mode Share variable) is associated with adverse 

physical health outcomes including a higher likelihood of having been diagnosed with asthma and 

a higher likelihood of having been diagnosed with diabetes (the average marginal effects is 

statistically insignificant in the case of diabetes). Although results of the county-level health 

models (presented in Appendix I) suggest that higher levels of private vehicle use within the county 

are linked to many other unfavorable physical health outcomes such as higher prevalence of 

obesity and poor/fair general health as well as higher numbers of poor physical days, the coefficient 

estimates and/or average marginal effects of this variable do not reach statistical thresholds in the 

corresponding person-level health models. Therefore, further research may be needed to clarify 

the role of private vehicle use in obesity, diabetes, and general physical health.  
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Further, the results show a negative link between levels of private vehicle use within a 

county (the Private Vehicle Travel Mode Share variable) and the number of poor mental health 

days for residents. This result stands in contrast to that obtained from the county-level health 

models (see Appendix I), which suggest that private vehicle use within a county and the number 

of poor mental health days are positively linked. Many past studies suggested that increased use 

of private vehicle—particularly in the form of car commuting—is associated with increased levels 

of stress and adverse phycological health outcomes such as a negative mood and decline of social 

capital (see e.g., Leyden 2003; Galovski and Blanchard 2004; Wener and Evans 2011), increased 

cognitive impairment and lower overall life satisfaction (Rissel et al. 2014), and lower levels of 

subjective well-being (van Wee and Ettema 2016). On the other hand, others suggested that use of 

private vehicle may have positive mental health outcomes (see e.g., Ellaway et al. 2003; Tsunoda 

et al. 2015). Considering the inconsistent results from county-level and person-level health models 

(the former are presented in Appendix I and the latter in this chapter) as well as the inconsistent 

arguments in the literature, the role of private vehicle use in mental health status remains unclear.  

Tables 18 and 19 show that the coefficient estimates and average marginal effects of the 

Public Transit Mode Share variable are associated with a lower probability of being overweight 

or obese, a lower probability of having been diagnosed with diabetes, and a higher probability of 

meeting the CDC recommendations on physical activity levels. However, this variable is also 

positively associated with having been diagnosed with asthma and it is negatively associated with 

having a good or excellent general health status. Moreover, it is positively linked with having an 

increased number of poor mental health days. These results suggest that despite having a potential 

to promote physical activity and providing some health benefits, increased transit use within the 

county may be related to adverse general health outcomes. These findings are consistent with 
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literature suggesting  that: i) a positive association exists between public transit use and physical 

activity in the form of active travel as using public transit involves walking (and/or bicycling) to, 

from, and within the transit stations (see e.g., Cervero 2001; National Research Council 2005; 

Lindström 2008; Liao et al. 2016; Barr et al. 2016; Sener et al. 2016);  and ii) public transit use is 

correlated with a lowered risk of being overweight or obese due to the active travel involved in 

transit trips (see e.g., Langerudi et al. 2015; Liao et al. 2016).  

The results are also consistent with those of the past studies that found an association 

between use of subway and lower probabilities of obesity and diabetes (Tajalli and Hajbabaie 

2017) as well as those that reported an association between use of public transportation and better 

weight-based health outcomes including lower risks of overweight or obesity (Lindström 2008; 

Samimi et al. 2009; Liao et al. 2016). With respect to general health, however, the results of the 

present study stand in contrast with those of a few past studies that found higher levels of transit 

use within a county were correlated with better general health for residents (Samimi and 

Mohammadian 2009; Samimi et al. 2009). One explanation for the adverse effects of increased 

transit use within an area on general health status of residents can be conditions that are typically 

associated with public transit use and have a potential to affect human health. For transit user, 

these could include long wait times, higher stress levels due to unpredictability of service, exposure 

to higher levels of air pollution due to transit vehicle operations, exposure to inclement weather 

conditions, exposure to crowded stations, and interaction with other users who may be ill. Past 

studies suggest that public transit users experience higher levels of perceived stress, particularly 

due to factors such as long commutes and unpredictability (Evans et al. 2002; Evans and Wener 

2006). The chronic stress experienced by public transit users may lead to adverse physical and 

mental health outcomes, and thereby to a poorer general health status. 
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In addition, the general health of transit users may be adversely affected due to increased 

and frequent exposure to other riders and higher disease diffusion rates among riders, particularly 

for airborne infectious diseases such as the common cold. Andrews et al. (2013) suggested that 

densely crowded and often poorly ventilated environments associated with public transportation 

can provide high respiratory contact rates, and thereby pose a risk of transmission of airborne 

infections. Widener and Hatzopoulou (2016) suggested that more interactions between individuals 

provides more opportunities for diseases to spread, which can negatively affect individuals’ 

personal health. With regards to mental health, literature suggests that public transit users may 

have lower levels of subjective well-being due to negative emotions evoked by exposure to 

undesired interactions with other users (van Wee and Ettema 2016). Therefore, frequent use of 

public transit such as in the case of everyday commute may lead to a poorer mental health state for 

transit commuters due to these negative emotions.  

Moreover, and for both users and non-users of transit, the higher air pollution levels due to 

increased transit use—particularly in the case of bus or other vehicular transit—within the county 

may lead to negative health outcomes. Past research suggests that air pollution from vehicles has 

negative health effects including lung disease and other undesirable health conditions (Mackett 

and Thoreau 2015). With regards to asthma, additional amounts of walking or waiting by transit 

users may negatively affect respiratory health and lead to asthma due to inhalation of more polluted 

air. Support for these arguments is provided by Samimi and Mohammadian (2009) who found that 

increased transit use within a county was correlated with higher rates of asthma. They suggested 

that this was due to transit riders being more exposed to polluted air because of the additional 

walking associated with transit use. Nonetheless, non-transit users who live in areas within which 
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transit use is high can also be at increased risk of developing asthma due to higher air pollution 

levels within their residential areas.  

Overall, findings of the present analysis are consistent with those obtained from the county-

level health models (see Appendix I) and corroborate some aspects of past research. However, 

inconsistencies exist among findings of a few previous studies and those of the present study 

regarding the implications of levels of public transit use within an area for general health outcomes 

of residents. Thus, additional examination of the role of public transit in general health is needed.  

Consistent with the results of the county-level health models (see Appendix I), the results 

of the person-level health models indicate that a higher of telecommuting mode share within the 

county is associated with a higher likelihood of being overweight or obese and a lower likelihood 

of having a good or excellent general health status. Additionally, a higher telecommuting mode 

share is associated with a lower likelihood of meeting the CDC recommendations on physical 

activity levels. On a positive note, however, it seems that an increased telecommuting mode share 

within the county is associated with a lower likelihood of being diagnosed with asthma. The results 

further suggest that a negative association exists between the percentage of the county population 

with an option to telecommute and the likelihood of being diagnosed with asthma as well as the 

likelihood of meeting the CDC recommendations on physical activity levels. Also, increased 

percentages of the county population with an option to telecommute are linked with more mentally 

unhealthy days. The results show consistency in terms of the direction of associations between 

measures of telecommuting behavior and health outcomes. 

These findings confirm past arguments that excessive participation in computer-related 

activities has a potential to reduce physical activity levels (King et al. 2002). Therefore, more 

telecommuting can mean less physical activity, which can lead to obesity and other adverse 
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physical and psychological health outcomes. Also, facilitated access to food for telecommuters 

who work from the convenience of their homes can lead to an increased overall food consumption 

and ultimately, to obesity and other related adverse general health outcomes. Nonetheless, with 

regards to obesity and physical activity levels, the results of the present study are not consistent 

with those of Henke et al. (2015) who found that non-telecommuters were at greater risk for obesity 

and physical inactivity, and those of Tajalli and Hajbabaie (2017) who did not find a statistically 

significant association between telecommuting and obesity.  

One reason for the inconsistency in results can be that in both cases of Henke et al. (2015) 

and Tajalli and Hajbabaie (2017), telecommuting information was available at the respondent 

level, which made it possible to examine the association between telecommuting behavior and 

health outcomes at the individual level. Telecommuting data at the respondent level were not 

available for the present study; therefore, this analysis examined the role of telecommuting in 

health outcomes using aggregate telecommuting measures (i.e., county-level measures). 

Therefore, caution should be taken with respect to the findings bearing in mind the issue of 

ecological fallacy, which is making inferences about correlations at the disaggregate level when 

data are only available at the aggregate level (Robinson 1950; Snijders and Bosker 2012). 

Nevertheless, the inconsistency in the results of the present study and past findings suggests that 

further investigation into the relationship between telecommuting and physical health outcomes 

may be needed, particularly in the case of obesity and physical activity. 

The negative association between telecommuting measures and the likelihood of asthma 

diagnoses is notable. Increased levels of telecommuting within an area may mean less vehicular 

commute and less congestion, which can lead to reduced air pollution levels in that area. Past 

research suggests that telecommuting has a potential to serve as a substitute for commuting, and 
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reduce traffic congestion (see e.g., Mokhtarian 2003; Balaker 2005; Lister and Harnish 2011; Khan 

2015). This literature also argues that telecommuting may reduce greenhouse gases and improve 

air quality in urban areas (see e.g., Balaker 2005; Lister and Harnish 2011; Khan 2015).  

The cleaner air within the area of residence due to higher telecommuting rates in that area 

can then lead to a lower risk of asthma for residents. With regards to diabetes, the average marginal 

effects for the measures of telecommuting in the Diabetes Diagnosis model are statistically 

insignificant. This is consistent with past empirical research that did not find a statistically 

significant link between telecommuting and diabetes (Tajalli and Hajbabaie 2017). 

From a mental health perspective, the results of the present study suggest that 

telecommuting may have adverse effects—a finding consistent with those of the county-level 

health models (see Appendix I) as well as previous research. A few studies in the past suggested 

that telecommuting may lead to negative psychological health outcomes such as social isolation 

and mental exhaustion (see e.g., Baruch 2001; Tajalli and Hajbabaie 2017). In particular, empirical 

findings provide evidence that telecommuting is associated with a higher probability of having 

mental disorders (Tajalli and Hajbabaie 2017). The results from the present study corroborate those 

findings as the model estimates indicate that an increased percentage of the county population with 

an option to telecommute is linked to a higher number of poor mental health days for residents. 

Yet, Henke et al. (2015) found that employees who telecommuted during regular work hours had 

a lowered risk for depression over time compared to employees who did not telecommute.  

Considering the inconsistencies in the findings of the present study and those of Henke et 

al. (2015), further research may be needed to clarify the role of telecommuting in mental health 

outcomes. Nonetheless, the results of the person-level health models provide evidence that 

telecommuting affects health outcomes in terms of both physical and psychological health.  
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Model results also provide evidence that the extent of online shopping-related activities 

within an area is associated with the health status of residents. Most notably, the model estimates 

and average marginal effects of the Average Number of Online Purchases per Month and the 

Average Number of Monthly Deliveries Related to Online Purchases variables indicate that 

increased online shopping-related activities are associated with a lower likelihood of meeting the 

CDC recommendation on physical activity and a higher probability of being overweight or obese. 

These results complement those on the telecommuting variables and are consistent with them in 

the direction of correlations.  

These findings are also in line with past arguments that excessive participation in 

computer-related activities and time spent online has a potential to reduce physical activity levels 

(King et al. 2002; Zheng et al. 2016) and may contribute to weight gain (Zheng et al. 2016). Online 

shopping can be considered a feature of a sedentary lifestyle. Teleshoppers47 do not need to leave 

their house (or even their couch) to satisfy their shopping needs. Therefore, it is plausible to assume 

that if performed habitually, online shopping may lead to lower levels of physical activity and 

ultimately, to adverse health outcomes such as obesity.  

In addition, the model estimates indicate that increased levels of online shopping are linked 

with increased numbers of poor mental health days. This finding is in line with the very limited 

literature available on the relationship between online shopping behavior and mental health 

suggesting that excessive online shopping may be related to adverse mental health outcomes such 

as low self-esteem, low self-regulation, and a negative emotional state (Rose and Dhandayudham 

2014). The results are also consistent with the literature within the broader context of internet 

 
47 The Oxford Dictionary has an entry for teleshopper. According to that dictionary, the word teleshopper was first 

used in the 1940s: https://en.oxforddictionaries.com/definition/teleshopper 
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dependency discussing the negative mental or psychological health effects of internet overuse (see 

e.g., Yoo et al. 2014; Rose and Dhandayudham 2014; Zheng et al. 2016). 

Considering the above, it is not surprising to see that increased levels of online shopping 

within a county are also correlated with increased numbers of poor physical health days as well as 

with a lower likelihood of having a good or excellent general health status for the residents. In a 

general internet overuse context, these results are consistent with those of Zheng et al. (2016) who 

found increased frequencies of online activities were strongly associated with higher levels of 

complaints related to general physical health outcomes.  

With respect to physical health outcomes, the only favorable online shopping-related 

results are those in the Asthma Diagnosis model. The coefficient and average marginal effects 

indicate that increased levels of online shopping-related activities within a county are associated 

with a lower likelihood of residents being diagnosed with asthma. This finding may be related to 

the substitution effects of online shopping. Online shopping has a potential to substitute for some 

vehicular trips, which individuals would otherwise make to stores to satisfy their shopping needs. 

For instance, literature argues that online shopping and home delivery provide the opportunity to 

reduce the total vehicular transportation related to grocery shopping and the associated emission 

levels (Siikavirta et al. 2002; Fichter 2002). Therefore, the negative association between online 

shopping-related variables and asthma diagnosis may be due to the reduced number of vehicular 

trips to stores and the associated lower air pollution levels within the county of residence. 

Nonetheless, literature related specifically to health impacts of online shopping is scarce 

and little empirical knowledge exists in this area—making it difficult to compare findings from 

the present analysis to those of the past studies. The results of the person-level health models fill 

that gap in research and suggest that online shopping may contribute to adverse physical and 
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psychological health outcomes (except in the case of asthma)—a finding which is open to future 

and further research.  

As noted earlier, the travel behavior as well as the telecommuting and teleshopping 

behavior measures in this study potentially represent the “travel culture” aspect of the social 

environment within a county. Therefore, the findings on the association between these measures 

and the person-level health outcomes can also entail the role of a county’s sociocultural 

environment in the health status of its residents. 

The Weekly Minutes of Moderate Physical Activity Equation Findings (in Multilevel SEMs) 

In the multilevel SEM equation systems for the two continuous endogenous health outcome 

variables (i.e., number of poor physical health days and number of poor mental health days), the 

second equation (i.e., Equation 34) estimates the effects of person and household-level factors on 

an individual’s level of physical activity (i.e., minutes of moderate physical activity per week). 

Due to the possibility of reverse causality between health outcomes and health behavior 

such as physical activity (Schauder and Foley 2015), this equation also includes a direct link to 

each of the two health outcomes indicated above (i.e., number of poor physical health days and 

number of poor mental health days). This model framework allows for estimation of bidirectional 

effects between these physical and psychological health outcomes for individuals and their 

physical activity levels.  

By applying the MLE estimation method for multilevel SEMs, this model framework deals 

with any endogeneity bias that may exist in the models. This is because in estimating bidirectional 

relationships, potential endogeneity bias can be statistically corrected by using MLE (Cervero and 

Murakami 2010). The results of the Weekly Minutes of Moderate Physical Activity equation for 

the two health outcome models are discussed below. 
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Person-level Variables (Individual and Household Characteristics) 

The results of the multilevel SEMs indicate that person-level attributes influence the level of 

individuals’ weekly physical activity.  

As expected, older age is linked with fewer minutes of weekly physical activity by 

individuals. This result supports the results obtained for the Participation in ≥ 150 Min. Moderate 

Physical Activity model (in the Health Outcome Equation part) and is consistent with findings of 

previous research suggesting that age is inversely associated with levels of physical activity (see 

e.g., Ross 2000; Trost et al. 2002; Frank et al. 2005; Ewing et al. 2014).  

Further, being male is linked with more minutes of weekly physical activity by individuals, 

which is consistent with the results from the Participation in ≥ 150 Min. Moderate Physical 

Activity model (in the Health Outcome Equation part) as well as findings of past research 

suggesting that being male is positively associated with physical activity levels (see e.g., Ross 

2000; Trost et al. 2002; Ewing et al. 2003b, 2008; Frank et al. 2005; Ewing et al. 2014). 

Additionally, having a college education is related to more minutes of physical activity per 

week—a result consistent with those obtained from the Participation in ≥ 150 Min. Moderate 

Physical Activity model (in the Health Outcome Equation part) as well as findings of past studies 

that suggested higher educational attainment was associated with a higher likelihood of 

participation in physical activity and with higher levels of physical activity (see e.g., Ross 2000; 

Ewing et al. 2003b; Frank et al. 2005).  

Being employed and the number of children in the household do not show statistically 

significant effects in the Weekly Minutes of Moderate Physical Activity equations for the number 

of poor physical health days and the number of poor mental health days multilevel Structural 

Equation Models (multilevel SEMs).  
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Endogeneity and Reverse Causality Between Health Outcomes and Physical Activity  

An underlying assumption in developing the person-level health outcome models was that the 

Physical Activity (minutes per week) variable is an endogenous independent variable in the models. 

This means that after controlling for all the other independent variables, there is a non-zero 

correlation between the Physical Activity variable and the error term in the models. This correlation 

could exist due to reverse causality or the effect of omitted variables. Regarding the former, 

literature suggests that reverse causality may exist between health outcomes and physical activity 

(Schauder and Foley 2015) and that individuals with poor health may perform lower levels of 

physical activity (Joshu et al. 2008). In other words, reverse causality implies that an individual’s 

level of physical activity can impact his/her health outcomes but that the reciprocal effect can also 

exists, meaning that the individual’s health status can affect his/her levels of physical activity. In 

the case of the latter, there may exist one or more omitted variables in the models that can influence 

both an individual’s physical activity level and health outcomes.  

The non-zero correlation between the Physical Activity variable and the error term subjects 

the models to endogeneity bias. To mitigate the potential endogeneity bias in the person-level 

health models due to reverse causality and omitted variables, two statistical methods were utilized: 

1) instrumental variable analysis was employed to model the likelihood of obesity, asthma, and 

diabetes diagnoses as well as that of having a good or excellent general health; and 2) multilevel 

SEM analysis with bidirectional links between health outcomes and weekly physical activity levels 

was employed to model the number of physically or mentally unhealthy days.  

The instrumental variable analysis included three instrumental variables (i.e., educational 

status, employment status, and number of children) for the endogenous physical activity 

independent variable. The Wald test of exogeneity of the instrumented variable (i.e., Physical 
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Activity variable) shows significant results in the Overweight or Obese, Asthma, and Diabetes 

models. This indicates that the null hypothesis of no endogeneity can be rejected in these models 

and employment of an instrumental variable binary probit model is justified to control for 

endogeneity bias in the models. However, in the case of Good or Excellent General Health model, 

this test statistic is not significant, meaning that there is not sufficient information in the sample to 

reject the null hypothesis of no endogeneity; therefore, a regular binary probit model was employed 

instead of an instrumental variable binary probit model to estimate the likelihood of having a good 

or excellent general health (i.e., Good or Excellent General Health model).  

Also, the results of the Amemiya-Lee-Newey minimum χ2
 test for validity of instruments 

are statistically insignificant in the Overweight or Obese, Asthma, and Diabetes models, indicating 

that educational status, employment status, and number of children are valid instruments for the 

endogenous physical activity independent variable in these models48.  

Findings of past research lend some degree of confidence to the results of the test for 

validity of instruments. With respect to educational attainment, some studies suggested that higher 

education had: i)  a negative correlation with BMI (Ewing et al. 2003b, 2008; Plantinga and Bernell 

2007; Ewing et al. 2014); and ii) a negative correlation with the probability of being obese (Frank 

et al. 2004; Samimi and Mohammadian 2009; Ewing et al. 2014; Tajalli and Hajbabaie 2017); and 

also iii) a negative correlation with the probability of having diabetes (Ewing et al. 2014; Tajalli 

 
48 Stata does not provide a command for testing the validity of instruments after the ivprobit command with the 

maximum likelihood estimation option. Therefore, the test of overidentifying restrictions in Stata, which gives the 

Amemiya-Lee-Newey minimum χ2 statistic for validity of instruments, was performed after the ivprobit command 

with the two-step estimation option. It should be noted that no standard error adjustments for clusters (i.e., controlling 

for a lack of independence between observations) are available with the two-step estimation option; as a result, the 

two-step estimation method produces different results from those of the maximum likelihood method. Nonetheless, 

the results of the Wald test of exogeneity for both estimation options are significant, indicating that endogeneity bias 

exists in these models regardless of the estimation method. Therefore, it is assumed that validity of instruments, which 

holds true for models estimated with the two-step method, also holds true for corresponding models estimated with 

the maximum likelihood method. 



 

308 

 

and Hajbabaie 2017). Conversely, others found either a positive association between higher 

education and the probability of obesity and diabetes (Barr et al. 2016) or no significant correlation 

between individuals’ educational status and obesity or other health outcomes (Langerudi et al. 

2015). Further, in a county-level analysis, Braun and Malizia (2016) found that although an 

increased proportion of county population with higher educational attainment was not associated 

with prevalence of obesity within the county, it was correlated with lower prevalence of diabetes.  

These findings suggest that there is no consensus in past research regarding the association 

between educational status and obesity or diabetes. It should also be borne in mind that none of 

these studies controlled for endogeneity bias in their analysis; therefore, any correlations observed 

between education and obesity or diabetes could be due to the indirect effects of education on these 

health outcomes through impacting physical activity levels—a condition enhancing the validity of 

education as an instrument for physical activity in modeling obesity and diabetes. Moreover, past 

research has not found a correlation between higher education and having asthma (Samimi and 

Mohammadian 2009; Langerudi et al. 2015).  

The inconsistencies in the statistical significance and direction of the correlations between 

educational attainment and obesity, diabetes, and asthma can mean that education is not related to 

these health outcomes. On the other hand, research provides evidence that higher education is 

associated with higher likelihood of participation in physical activity as well as higher levels of 

physical activity (see e.g., Ross 2000; Ewing et al. 2003b; Frank et al. 2005); therefore, educational 

attainment can be considered as a valid instrument for physical activity in modeling obesity, 

diabetes, and asthma—as done in this dissertation.  

The result of the present study, which finds the number of children living in the household 

as a valid instrument for physical activity in modeling obesity and asthma, can also be further 
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validated based on past findings that reported: i) having children was not correlated with obesity 

or asthma (see e.g., Samimi and Mohammadian 2009; Langerudi et al. 2015); but that ii) having 

more children in the household was positively associated with physical activity in terms of active 

travel (see e.g., Næss 2005); and iii) being in a family with children was not a barrier for physical 

activity in the form of cycling (Gatersleben and Appleton 2007). 

The results of the multilevel SEMs for the number of poor physical health days and the 

number of poor mental health days indicate that reverse causality does not exist between these 

health outcomes and the extent of weekly physical activity performed by individuals. 

These findings stand in contrast with the results of the county-level health models 

(presented in Appendix I), which show statistically significant links between county-level physical 

and mental health outcomes—including prevalence of: obesity, diabetes, and fair/poor health as 

well as average numbers of unhealthy physical or mental days—and levels of physical activity in 

the form of active travel within the county.  

The inconsistency in the findings may have resulted from the differences in the physical 

activity and active travel measures in the two health model types (i.e., person-level vs. county-

level health models). Physical activity as defined in the person-level health models is much broader 

than active travel as defined in the county-level health models (see Appendix I).  

Albeit somewhat inconsistent, these findings provide insights into the issue of reverse 

causality between health outcomes and health behavior such as physical activity (in its broader 

form or in its active travel form), which is often overlooked in research probing the link between 

physical activity and health outcomes.  

Notwithstanding, future research is needed to elucidate the role of reverse causality in the 

link between health outcomes and health behavior such as physical activity and active travel. 
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Random Effects 

Since individuals reside within counties and counties lie within CBSAs (i.e., metropolitan areas in 

this sample), CBSAs were considered clusters in the multilevel SEMs models and their random 

effects were estimated by the models. The variance of the CBSA-level random intercept is 

estimated to be statistically insignificant by both of the multilevel SEM models.  

Consistent with the county-level models (Appendix I), this result implies that CBSA-level 

random effects (i.e., random differences between CBSAs) do not play an important role in these 

health outcomes for the residents.  

5.2 Chapter Conclusions 

Health is a key factor influencing the well-being of individuals and the vitality of communities and 

for that reason, it has been a topic of great interest in many academic disciplines for many decades. 

The health benefits of active travel and the role of the built environment in human health have also 

gained a growing attention recently. Research thus far asserts that health—at both individual and 

community levels—is affected by several factors including the travel behavior of individuals and 

the built environment characteristics of their surroundings. However, while many studies in the 

past examined the relationship between various health outcomes and built environment factors at 

the neighborhood (i.e., micro level) and county level (i.e., meso level), little attention has been 

given to the health impacts of built environment characteristics at the higher levels of geography 

(i.e., macro level) such as those of the metropolitan area of residence.  

As increased accessibility and mobility have broadened the destination options of people 

and their commute distances in recent decades, it is hypothesized in this chapter of the present 

dissertation that individuals’ health status can also be affected by the built and social environment 

characteristics of a wider geographical area such as the metropolitan area. Literature supports this 
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idea. For instance, Ewing et al. (2014) suggested that sprawling metropolitan areas produce long 

commutes, which can shorten leisure, exercise, or active travel time and ultimately lead to poorer 

health outcomes. That study further suggested that access to healthy foods may be more difficult 

within sprawling metropolitan areas, which can also affect health of residents.  

Based on the above arguments, this study tested the hypothesis that built and social 

environments at two hierarchical levels of geography including the county level (i.e., meso level) 

and the metropolitan area level (i.e., macro level) influence individuals’ and communities’ health 

outcomes. Measures of travel behavior were also included in the analysis framework to capture 

the effects of travel by various modes of travel on individuals’ and communities’ physical and 

psychological health status.   

More specifically, the main purpose of this chapter was twofold: 1) to examine the under-

investigated influence of macro-level (i.e., metropolitan area-level) environmental factors in 

health; and 2) to investigate the role of telecommuting and teleshopping behaviors in health.  

The chapter conclusions are discussed in the subsections below. 

5.2.1 Research Findings 

On Correlations: Health outcomes are correlated with built and social environment factors 

Results of the analyses presented in this chapter of the dissertation indicate that in addition to 

personal and household characteristics, human health is affected by the characteristics of the 

environment (i.e., contextual effects) in terms of the built and social environments. These two 

aspects of the environment exert their influence on human health through various domains, and at 

hierarchical spatial levels of influence including the previously under-examined macro level. 

The findings suggest that social environment characteristics such as the median age, racial 

composition, and household income levels within the county of residence can affect residents’ 
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physical and psychological health outcomes. Findings further suggest that the social environment’s 

influence on human health extends beyond the county boundaries. One example is the effect of the 

metropolitan area’s gross regional product (GRP), which is considered one of several measures of 

the size of the economy within the metropolitan area. Results provide evidence that metropolitan 

areas with a stronger and larger economy (i.e., higher average GRP) can promote residents’ health.  

In addition, residents of metropolitan areas within which income and car ownership levels 

are higher enjoy improved health outcomes including better mental health outcomes. The latter 

effect is an interesting finding, which confirms the hypotheses of this study that the influence of 

car ownership has a potential to go beyond the household level, and that car ownership can affect 

psychological health of individuals in addition to their physical health. Other findings imply that 

residents of metropolitan areas with higher violent crime rates may suffer health implications 

including poorer psychological health outcomes. 

As representatives of the social environment, sociocultural factors such as the travel culture 

within the county or metropolitan area of residence also play key roles in health status of residents. 

Living in counties or metropolitan areas where active travel is occurring at higher rates can lead 

to better physical and psychological health outcomes. Residing in county and metropolitan areas 

with a travel culture geared toward public transit may help in lowering the risk of obesity and 

diabetes but can also lead to a higher risk of asthma and a poorer general health status—presumably 

due to reasons such as increased exposure to polluted air generated from transit vehicles, increased 

exposure to harsh weather conditions, increased exposure to higher disease diffusion rates due to 

crowded vehicles, and increased levels of stress related to commuting by public transit. 

Also, living in metropolitan areas with higher levels of commuter stress may adversely 

affect the health status of residents. Further, the study findings show that residents suffer from 

https://en.wikipedia.org/wiki/Metropolitan_area
https://en.wikipedia.org/wiki/Metropolitan_area
https://en.wikipedia.org/wiki/Economy
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adverse physical health outcomes where the travel culture is oriented toward more usage of private 

automobiles. These findings are not surprising and corroborate the findings of past research 

asserting that the physical inactivity, the sedentary lifestyle, as well as the chronic stress related to 

operating a vehicle and car commuting contribute to declined physical health.  

In terms of the under-investigated effects of telecommuting behavior and the almost 

nonexistent research on the effects of teleshopping-related behavior on health, the findings suggest 

that living in counties where telecommuting and teleshopping are prevalent among residents may 

lead to unfavorable physical and psychological health outcomes.  

Results of the present study also corroborate past research findings that county-level (i.e., 

meso-level) built environment factors influence residents’ health. Further, the study provides 

evidence that metropolitan area-level (i.e., macro-level) built environment factors play a crucial 

role in individuals’ health outcomes. Counties with higher levels of compactness may adversely 

affect physical and psychological health of residents—potentially due to quintessential 

characteristics of dense urban areas such as crowded conditions, higher pollution levels, and 

increased stress levels. Counties with a higher extent of mixed-use development can also lead to 

some unfavorable physical and psychological health outcomes for residents including a higher risk 

of asthma. On the other hand, poorer health outcomes are associated with living in sprawled 

counties where average distances to local transit stops are greater. Considering these findings, 

there may be an optimal threshold for counties to become dense and mixed (in terms of land use) 

to promote residents’ health.  

Findings also indicate that walkability and pedestrian friendliness of the street network 

within the county can lead to better physical and psychological health. Moreover, increased 

automobile accessibility to employment opportunities within the county may lead to better 
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psychological health outcomes for residents, whereas increased transit accessibility to employment 

opportunities within the county may lead to better physical health outcomes. Increased access to 

clinical healthcare, recreational facilities (e.g., parks), and healthy food outlets within the county 

contribute to better health outcomes for residents. In contrast, living in counties with higher 

pollution levels and higher access to unhealthy food outlets may lead to adverse health outcomes.  

Past research found meso-level (i.e., county-level) sprawl to be more strongly related to 

residents’ health outcomes than macro-level (i.e., metropolitan area) sprawl and posited that the 

built environment of the county—rather than that of the overall metropolitan environment—may 

be more representative of the daily experiences of residents, and thereby more influential in their 

health (Ewing et al. 2003b, 2008). The results of the present study generally agree with that 

postulate, while placing emphasis on the existence of the impact of macro-level built environment 

on health. A salient finding of this analysis is that the influence of a few built environment factors 

including mixed-use development, intersection density, access to local transit, and accessibility to 

employment on health extends beyond the county boundaries and into the metropolitan area.  

Particularly, higher mixed-use development within the metropolitan areas may lead to 

poorer physical and psychological health outcomes; a result that does not support the hypothesis 

that higher extents of mixed land use lead to improved health status. On the other hand, 

metropolitan areas with increased intersection density (a proxy for compactness in terms of street 

connectivity) may promote general health of residents and in fact, the effect of macro-level (i.e., 

metropolitan area-level) intersection density may be more influential in general health than the 

same effect at the meso level (county level). Based on this finding, it can be inferred that better 

general health may be linked with residing in a more compact, better connected metropolitan area 

than a compact neighborhood or county located within a sparse metropolitan area—as also 
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suggested by Marshall et al. (2014). Further, living in sprawled metropolitan areas with lower 

levels of access to transit may lead to obesity and other adverse health outcomes. These findings 

imply that to promote health, an optimal threshold may exist for cities with regards to compactness 

and mixed land use. Considering the study results, it seems that compactness in terms of population 

and employment density at either county or metropolitan area levels is not among the factors with 

the most influence on residents’ health outcomes. If anything, the meso level (i.e., county) seem 

to be the geographical scale that exerts the most influence on health outcomes in terms of density 

measures. However, these effects tend to dissipate at the macro level (i.e., metropolitan area).  

Increased levels of regional automobile accessibility to employment (within the entire 

metro. area) may promote residents’ psychological health, whereas higher levels of regional transit 

accessibility to employment may promote their physical health. Also, residents of metropolitan 

areas with more roadway congestion may suffer health consequences due partly to higher stress 

levels and higher physical inactivity levels associated with commuting on congested roadways.  

Considering these findings, it can be concluded that although the meso-level (i.e., county-

level) built environment may be more influential in health status of residents, the effects of the 

macro-level (metropolitan area-level) built environment on individuals’ health are existent and 

significant, and therefore, should not be overlooked in analysis of health outcomes.  

Overall, findings of the analyses presented in this chapter support the research hypothesis 

of this dissertation that the residential location’s built and social environment characteristics at the 

macro level play a role in residents’ health status (see Hypothesis 1b in Table 1).  

Further, the findings also provide empirical evidence for the research hypotheses that 

telecommuting and teleshopping behaviors impact individuals’ health outcomes in terms of both 

psychological and physical health (see Hypotheses 5 and 6 in Table 1). 
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Moreover, the findings emphasize the importance of using an ecological model framework 

in examining the link between health outcomes and environmental factors. Accordingly, it is 

concluded that in probing such link, assessing the effects of multiple levels of the built and social 

environments on health outcomes is essential—a conclusion consistent with that reached by 

previous research (Joshu et al. 2008).  

On Correlations: Physical activity is correlated with built and social environment factors 

Based on the findings of this study, it can further be concluded that health-related behavior such 

as physical activity can be affected by social and built environments at both meso (i.e., county) 

and macro (i.e., metropolitan area) levels. This holds true for both the general form of physical 

activity as defined for BRFSS purposes (i.e., activities including brisk walking, bicycling, 

vacuuming, gardening, or anything else that causes some increase in breathing or heart rate) or in 

its transportation-specific form (i.e., active travel).  

Factors such as the median age, racial composition, household income levels, and crime 

rates within the area of residence seem to be key influential social environment characteristics in 

determining the levels of physical activity and/or active travel by residents.  

Other sociocultural factors such as the travel culture within the county of residence also 

play a role. Counties with a travel culture oriented toward public transit (i.e., increased use of 

public transit) can promote physical activity. On the other hand, counties with a prevalent 

telecommuting culture and increased levels of online shopping-related activities may discourage 

active living, and thereby may lead to lower levels of physical activity by residents. The latter 

findings provide empirical evidence for the research hypotheses of this dissertation that 

telecommuting and teleshopping behaviors impact individuals’ physical activity levels (see 

Hypotheses 5 and 6 in Table 1). 
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Several built environment factors at the meso level (i.e., county level) are key elements in 

physical activity and active travel levels. These include the extent of county compactness; mixed-

use development; connectivity and pedestrian friendliness of street network; level of access to: 

local transit stops, parks, healthy and unhealthy food outlets, clinical healthcare; and accessibility 

to employment by means of automobile. Physical activity levels are also influenced by a few built 

environment factors at the macro level including the extent of mixed land use, accessibility to 

employment by means of transit, and congestion levels throughout the entire metropolitan area.  

On Causality: Reverse causality exists between health outcomes and physical activity— 

leading to a potential endogeneity bias, which should not be overlooked 

Findings of this research reveal that in investigating the links between health outcomes, health 

behavior, and the environment—particularly in terms of the built environment—complex causal 

relationships and endogeneity issues cannot be overlooked. In particular, addressing reverse 

causality between health outcomes and health behavior is crucial. This is because individuals’ 

health status may influence their health behavior such as physical activity or active travel levels, 

as also concluded in previous research (see e.g., van Wee and Ettema 2016).  

The capabilities of sophisticated statistical techniques such as the multilevel Structural 

Equation Modeling (multilevel SEM) and the instrumental variable analysis provide appropriate 

tools for estimating such complex interrelationships within a comprehensive model framework. 

Additionally, the SEM techniques—to some extent—allow examination of the causality of the 

links between physical activity, the built environment, and health outcomes.  

Thus, it is concluded that despite the use of cross-sectional data in this analysis, which 

limits the ability to draw causal inferences, the relative robustness of the datasets combined with 
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the successful estimation of the multilevel SEM and instrumental variable models provided some 

evidence of causality (at least in this sample), and thereby have yielded results of policy relevance. 

5.2.2 Policy Implications 

For research and policy analysts, this study provides a useful and systematic methodology for 

analyzing the health impacts of travel behavior and the built environment. The ecological models 

developed in this study highlight the role of built environment factors at various levels of 

geography in health of individuals and communities (i.e., counties). 

The findings imply that policies concentrating on interventions that target the built 

environment of the county may be effective in promoting essential health provisions. These 

interventions include modifications to the built environment of the county that make it more 

conducive to physical activity and active travel.  

Other interventions include modifications to the built environment of the county to make 

it more promotive of healthy food choices (or as described by Joshu et al. 2008, to make it more 

“nonobesogenic”).  

Examples of such interventions are changes to the built environment features throughout 

the county that: 

o increase walkability and pedestrian friendliness of the street network;  

o increase connectivity of the street network (to support nonmotorized travel); 

o facilitate access to healthy food outlets; 

o facilitate access to parks, green spaces, and recreational facilities; 

o facilitate access to clinical healthcare; 

o limit the number of fast food restaurants; and 

o lower ambient air pollution levels. 
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The built and social environment characteristics of the metropolitan area also prove to be 

influential in individuals’ and communities’ health outcomes; therefore, these characteristics 

should also be considered in policy and health intervention decision-making processes.  

Based on the findings of the present study, more effective public health policies and 

interventions seem to be the ones that consider the overall form of the metropolitan area in addition 

to that of the county. These include interventions that can modify the built and social environments 

within the entire metropolitan area in such way to: 

o promote nonmotorized travel (i.e., active travel); 

o increase compactness (in terms of intersection density and street connectivity); 

o increase access to transit (in terms of distance to transit stops); 

o lower traffic congestion levels and commute durations; 

o increase the size and strength of the economy (e.g., a higher GRP); and 

o lower violent crime rates. 

The conclusion that promoting nonmotorized travel (i.e., walking and bicycling) through 

changes to the built or social environment can be an effective way to improve public health 

outcomes is not surprising. Nonetheless, it reaffirms past research conclusions that environments 

supportive of active travel promote individuals’ health status. 

In addition, since using public transit involves active travel at either end of a trip, promoting 

a higher public transit mode share can also serve as an effective policy to improve some public 

health outcomes by integrating physical activity into the daily routines of individuals.  

Particularly, considering the findings of the study, it can be concluded that promoting 

active travel and public transportation use may be cost-effective interventions in increasing 

physical activity and preventing obesity. This is crucial information for transportation planning 
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and public health policymakers seeking to improve the health of individuals and communities 

through modifications to the built or social environment that can lead to more active travel by 

residents, and thereby to better health outcomes for them. 

With respect to compactness measured as the density of intersections, findings of the 

present study imply that better general health may be linked with residing in a more compact, 

better connected metropolitan area than a compact neighborhood or county located within a 

sprawled metropolitan area. This is an important finding with policy implications. Constructing 

new compact neighborhoods with high intersection densities in the middle of sprawled suburban 

areas may not provide optimal public health benefits. Instead, it is the overall character of the 

metropolitan area that is more influential. Residing in a connected neighborhood or county can 

potentially yield more health benefits in a metropolitan area with similar street network structure 

than in a metropolitan area with a disconnected street network—a conclusion also reached by 

Marshall et al. (2014). Thus, city planning strategies and urban design policies aiming at building 

compact metropolitan areas with better connected street networks can promote public health. 

As regards crime rates, interventions that help reduce fear-producing behavior and promote 

crime-related safety can potentially improve health of residents within a metropolitan area. 

Examples of such interventions are improving street lighting; improving lighting as well as 

visibility from surrounding buildings and stores at transit stations, bus stops, and parking lots; 

reducing the number of vacant lots and dilapidated buildings as well as providing emergency 

pedestal phones and call boxes along walking and bicycling pathways in parks. Another important 

strategy to lower crime rates within cities can be increasing surveillance or “number of eyes” on 

streets (Jacobs 1961) by promoting urban designs that encourage continuous presence of people 

on city streets. In that respect, mixed land use developments can be effective.  
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Presence of various establishments such as restaurants, stores, and other public places that 

are open by later hours of the evening can generate constant presence of people, which by 

increasing the number of eyes and ears, helps in monitoring the street and reducing the number of 

crimes. However, as findings of this study indicate an optimal threshold may exist for cities to 

become mixed in terms of land use and still remain beneficial to public health. Therefore, urban 

design policies aiming at increasing the extent of mixed-use development within metropolitan 

areas should be developed based on optimization of such trade-offs.  

Overall, evidence found in this study supports the notion that adverse health outcomes can 

be ameliorated through interventions that target the environment, built and social. The analysis 

framework and findings presented in this research can assist policy decision-makers in assessment 

of built and social environment attributes—at various levels of geography—that have a potential 

to influence health outcomes of residents. This in turn, can help in making more informed decisions 

and developing more effective policies based on interventions that would yield the most efficient 

use of resources and the greatest health benefits.  

Such policies can improve individuals’ health conditions in various ways and lead to a 

better state of health for the communities and the society as a whole.  

The annual societal healthcare cost of lack of physical activity and its resultant negative 

health outcomes in the U.S. is estimated to be around $117 billion (DHHS 2018). Bearing that in 

mind, the conclusions of this study can be considered in creating policies that spatially optimize 

modifications to the built and social environments, and thereby reduce the burden of healthcare 

costs on the society. 
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5.2.3 Contributions 

The analyses presented in this chapter contribute to the body of knowledge on the 

interrelationships between physical activity, health, and the environment (built and social) in terms 

of theoretical framework, methodology, empirical findings, and policy debates. 

Regarding theoretical contributions, this research considers the principles of the ecological 

model of behavior as well as past research that emphasizes the role of multiple levels of the 

environment in health outcomes (Joshu et al. 2008) to drive a theoretical framework for 

disentangling the interrelationships among physical activity (e.g., active travel), built and social 

environments, and health. In probing the role of environmental factors in physical activity levels 

and health outcomes, prior research has paid a considerable amount of attention to micro-level 

(i.e., neighborhood) and meso-level (i.e., county-level) built environment attributes.  

However, literature suggests that urban structural characteristics, such as urban sprawl, also 

have a potential to influence the health of residents. Although few previous studies examined the 

health impacts of macro-level built environment factors, the role of macro-level (i.e., metropolitan 

area-level) environment in residents’ health remains appreciably under-investigated, particularly 

within an integrated theoretical framework that includes both social and built environment factors 

at various spatial levels. The theoretical framework presented in this study allows for testing the 

health impacts of various dimensions of the environment at various spatial levels simultaneously, 

and thereby offers a comprehensive approach that has rarely been applied to empirical data. 

Regarding methodological contributions, this analysis employs sophisticated statistical 

techniques—scarcely applied in a transportation context—to examine the causality of the links 

between physical activity (e.g., active travel), health, and the built environment. It should also be 

borne in mind that the complex interrelationships between these three entities introduce 
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interdependencies resulting from reverse causality as well as from a clustered data structure. Often 

neglected in analysis of the links between physical activity, health outcomes, and the built 

environment, the former kind of interdependencies may subject the analysis to endogeneity bias 

but can be accounted for by using Structural Equation Models (SEMs). The latter kind of 

interdependencies may subject the analysis to spatial autocorrelation issues and can be controlled 

for by employing multilevel (i.e., hierarchical) models.  

Multilevel modeling techniques can be combined with SEM techniques to form a 

multilevel Structural Equation Model (multilevel SEM). By employment of a multilevel SEM, 

both kinds of above-mentioned interdependencies can be accounted for and the complexity of the 

relationship between physical activity, the built environment, and health can be more thoroughly 

examined and understood.  

Despite having numerous capabilities and a tremendous potential to be used in travel 

behavior research, multilevel SEMs remain rarely found in a transportation context—as also noted 

by Chung et al. (2004). Only two empirical studies were located by the author of this dissertation 

that used multilevel SEMs in conducting travel behavior research (Chung et al. 2004; Kim et al. 

2004). The employment of multilevel SEM techniques in travel behavior research has also been 

proposed in another study (Van Acker et al. 2010); however, to the best of the author’s knowledge, 

multilevel SEM techniques have never been applied to empirical data to investigate the health 

impacts of physical activity (e.g., active travel) and environmental factors, particularly in terms of 

the built environment. 

The present study contributes to the body of knowledge by employment of multilevel 

SEMs to test the causal pathways between physical activity and health, as well as by adverting to 

the potential of such techniques for being applied in travel behavior and public health research. 
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In terms of empirical contributions, the current study expands on the previous work in a 

number of ways. First, this study systematically tests the link between travel behavior—including 

active travel behavior—and health outcomes, using two unit-of-analysis levels: the individual (i.e., 

person-level health models) and the county (i.e., county-level health models, which are presented 

in Appendix I).  

Findings of the study add to the existing empirical knowledge on the link between measures 

of travel behavior and health outcomes by providing insights into the extent of comparability and 

consistency between results from the two different analyses (i.e., person-level model results vs. 

county-level model results). 

Further, by including objectively measured and individually observable measures of the 

built environment (instead of subjective measures or composite indices) the present study 

contributes to facilitated interpretation of empirical findings to draw more effective policy 

strategies and interventions that can promote public health. The use of objective measures also 

facilitates the generalization and transferability of the findings of this research to other 

metropolitan areas in the U.S.   

The study results provide evidence that in addition to meso level (i.e., county level) built 

environment factors, macro level (i.e., metropolitan area level) built environment factors play an 

important role in residents’ health status. Therefore, strengthening and complementing the existing 

empirical knowledge on the role of the built environment in human health is another contribution 

of this study. 

Moreover, this research contributes to the body of empirical knowledge on the link between 

travel behavior and health by including measures of telecommuting behavior as well as those of 

teleshopping behavior in the analysis.  
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More specifically, the study findings shed light on the role of telecommuting behavior in 

physical health outcomes as very little empirical knowledge exists on that topic. Further, although 

a few previous studies investigated the relationship between telecommuting and measures of 

psychological health (e.g., job satisfaction, job performance), the role of telecommuting in 

psychological health remains somewhat ambiguous due to inconsistent empirical findings. The 

findings of the present study provide additional insights into the influence of telecommuting 

behavior on psychological health outcomes.  

Further, empirical studies with respect to health impacts of teleshopping are—to the best 

of author’s knowledge—nonexistent. Thus, this study contributes by filling that gap in research by 

empirically testing the link between measures of teleshopping behavior and physical as well as 

psychological health outcomes. 

In terms of contributions to policy and practice, the study findings contribute to the ongoing 

policy debates concerning the role of the built environment in health behavior such as physical 

activity as well as in health outcomes.  

As this research focuses on the influence of the macro-level environment (i.e., built and 

social environments) on health, the research findings particularly shed light on the most promising 

policy interventions that can improve public health through modifications to the built and social 

environments within the metropolitan areas.  

This will enable transportation planning, urban design, and public health decision-makers 

to develop more effective policies that optimize the efficiency of resource usage as well as the 

societal health benefits. 
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5.2.4 Study Limitations and Future Research 

The current study has a few limitations. First, due to lack of a database that provided concurrent 

data on travel behavior, health, and the built environment, several databases were linked to obtain 

a combined dataset for this analysis. Also, due to privacy issues with health data, travel behavior 

data were aggregated to the county level in this study. Using a comprehensive database that 

provides health status as well as travel behavior information at the person level and location data, 

preferably at the neighborhood level, can enhance analysis of the links between individuals’ health, 

their travel behavior, and the built and social environment attributes of their residential location.  

Such database, however, remains scarce—limiting the boundaries of research. Ideally, 

national travel and health surveys can be modified in the future in such way to provide data on 

travel behavior, health outcomes, and the built environment in one database. This will also allow 

compilation of a rich inventory of travel behavior, health, and built environment data over time, 

which will facilitate future longitudinal analysis of the interrelationships between the three. 

Another data-related limitation was the incomplete consideration of transportation-specific 

physical activity in the health database used for the person-level health models in this analysis (i.e., 

2009 BRFSS) owing to the survey: i) not distinguishing between active travel and other forms of 

physical activity; and ii) not including the amount of work-related active travel in its questionnaire. 

Concerning the first issue, it should be borne in mind that moderate physical activity has 

been defined in 2009 BRFSS as “brisk walking, bicycling, vacuuming, gardening, or anything else 

that causes some increase in breathing or heart rate”. The specific amount of walking/bicycling by 

each respondent, therefore, is not clear as it is combined with other physical activities that the 

respondent may have engaged in. Previous research suggested that travel-related physical activity 

may interact with other physical activity, and therefore, substitutions of different forms of physical 
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activity should be considered in probing the link between physical activity (e.g., active travel) in 

health (van Wee and Ettema 2016). Thus, separating the influence of active travel from that of 

other forms of physical activity on health outcomes in the person-level health models was an 

infeasible task due to usage of the BRFSS database in the analysis.  

Regarding the second issue, and as also noted in previous research (National Research 

Council 2005), it seems that the BRFSS is mainly focused on leisure-time physical activity, which 

results in lack of data on the amounts of work-related active travel. Nonetheless, surveys such as 

the BRFSS are the most promising sources of physical activity and health data that can be linked 

to built environment factors (Boarnet 2004). Therefore, future research on the interrelationships 

among physical activity, the built environment, and health can greatly benefit from refined 

versions of such surveys that allow recordation of exercise and utilitarian active travel separately 

from each other, and also separately from other forms of leisure-time physical activity. 

Furthermore, the present study relies on self-reported data on health and health-related 

behavior (i.e., the BRFSS database). For various reasons, survey respondents may not always 

report the most accurate information about their health, which makes the data collected subjective 

and not objective.  

In addition, the health data used for developing the person-level health outcome models 

came only from metropolitan areas within the state of Florida. While the metropolitan areas 

selected for this study are not perfectly representative of the U.S. metropolitan areas, they offer a 

basis for examining the health status of residents of different urban areas based on differences in 

their travel behavior and environmental attributes of their residential location. Nevertheless, the 

macro-level factors will have more variations if they come from various parts of the country. Thus, 

data from additional metropolitan areas in other U.S. states can be analyzed in the future to 
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investigate the health impacts of travel behavior including nonmotorized travel, telecommuting, 

and teleshopping behaviors as well as those of the meso- and macro-level built and social 

environments. Such enhanced database will allow better examination of the effects of various 

measures of travel behavior and various scales of the environment on individuals’ health within 

an ecological model framework. Future analysis based on data from additional metropolitan areas 

can also provide insights into the generalizability of the findings of the present study.  

Further, as in many previous studies, a major limitation of the current study is the usage of 

cross-sectional data. The employment of SEM techniques—to some extent—allowed for 

examination of causal links between physical activity (in both its general form as well as its 

specific form of active travel) and health outcomes. Nonetheless, the use of cross-sectional survey 

data is a practical drawback to these techniques, limiting the ability to make true causal inferences.  

Since causality is a time-ordered process (National Research Council 2005), consideration 

of temporal precedence of events is essential in examining causal links. For instance, influences 

between physical activity and health outcomes most likely do not occur instantaneously; a period 

of time passes before these influences are fully exerted. Although a bidirectional relationship was 

assumed between measures of physical activity and health in examining causality, the role of 

temporal precedence between physical activity and health outcomes was not taken into account 

due to the cross-sectional nature of data.  

In addition, changes in the built environment are slow and may occur over time. Thus, any 

effect these changes may have on levels of physical activity and health status of residents are not 

instantaneous. For example, an improvement in the built environment to make it more pedestrian- 

or bicyclist-friendly may not lead to an increase in active travel levels immediately but may do so 

within a few months.  
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It should further be noted that the link between health outcomes and the built environment 

may also be bidirectional as healthier people may self-select themselves into health-promoting 

residential areas. The bidirectional effects between health outcomes and the built environment 

were not accounted for in this study.  

All the above limitations are examples of arguments by Kline (2011) who emphasized the 

impracticality of a single study meeting all the conditions required for inference of causality 

including temporal precedence of the presumed cause in relation to that of the presumed effect49. 

Kline further suggested that causal links hypothesized in structural models (SEMs) should be 

deemed as causal links that “may or may not correspond to causal sequences in the real word” 

(Kline 2011). Hence, although implying causal links between the built environment and health 

outcomes in this particular sample, the findings of the present study may not have established the 

causality of such links for the processes occurring in the real world.  

On the other hand, research based on longitudinal study designs enables the analyst to 

evaluate the temporal influence of various factors (Gochman 1997), and strengthens the ability to 

infer causality by clearly establishing temporal precedence (Bagley and Mokhtarian 2002).  

Therefore, future research can benefit from analyzing longitudinal data to better examine 

causal links between physical activity, the built environment, and health outcomes. Usage of 

longitudinal data in combination with employment of advanced statistical methods such as the 

SEM can yield more robust causal inferences on these complex interrelationships. As Cao et al. 

(2009) suggested research designs that use longitudinal structural equations modeling with control 

groups would meet all causality requisites; however, those designs would require sizable amount 

of time and resource allocation. 

 
49 See page 98 of Kline (2011) for a list of general conditions that must be met to infer a cause-effect relation. 
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Findings of this study also reveal a few avenues for further research. For instance, in terms 

of the under-investigated effects of telecommuting and teleshopping behaviors on health, the 

findings of the present study suggest that living in counties where telecommuting and teleshopping 

are prevalent among residents may lead to unfavorable physical and psychological health 

outcomes. Due to little empirical research on the role of telecommuting in health and the almost 

nonexistent research on the health impacts of activities related to online shopping, these findings 

remain open to further research and evaluation.  

Also, based on the findings of the health outcome models developed in this chapter, it can 

be concluded that although suggestive, the evidence is not very compelling with respect to the 

promotive role of increased private vehicle use in obesity, diabetes, and poor physical health. 

Further, the role of private vehicle use in mental health status remains unclear with findings of the 

county-level health models (presented in Appendix I) and person-level health models (presented 

in this chapter) suggesting opposite directions of influence.  

Moreover, the findings suggest that albeit related to lower rates of obesity and diabetes, 

increased public transit use may lead to adverse general health outcomes. Therefore, a conclusion 

cannot be reached regarding the benefits of transit use and the drawbacks of private vehicle use as 

related to health outcomes. Future research can focus on examining these effects to more 

thoroughly evaluate the net health impacts of public transit use and private automobile use. 

Further, of notable absence among the factors included in this analysis are biological 

susceptibility factors. While there is an underlying genetic basis for health status of individuals 

and their level of susceptibility to disease, the role of genetic predispositions in an individual’s 

health outcomes was not controlled for in the person-level health models presented in this study. 

The reason for this was unavailability of data on biological factors. An individual’s health 



 

331 

 

outcomes including his/her physical activity levels are, nevertheless, dependent on biological 

factors and heredity (see e.g., Trost et al 2002; Zick et al. 2013; Ewing et al. 2014). Thus, future 

research can benefit from including genetic factors in the analysis to disentangle the relationships 

between physical activity levels, built and social environment factors (including those from the 

macro spatial levels), and health outcomes. 

Also, the effects of several other built environment factors on health status of individuals 

were not considered in this study and can be examined in future analysis. These include, but are 

not limited to, availability and cost of parking, and existence as well as extent of traffic calming 

measures within the residential area. 

Lastly, the effects of physical activity (e.g., nonmotorized travel), telecommuting, and the 

built as well as social environments (including at the macro level) on other important health 

indicators such as high blood pressure, heart disease, stroke, cancer, and safety-related health 

outcomes (e.g., injuries and fatalities from crashes) can be examined in future work. 
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Chapter 6: Closing Remarks 

Probing the nexus between the environment, active travel, and public health requires a holistic 

approach that considers various theoretical frameworks and empirical methods from various 

scientific disciplines including transportation engineering and planning, urban planning and 

design, psychology, and public health.  

Promotion of health can be a common motivator to inspire new collaborations—including 

in research and data collection efforts—between professionals from these disciplines. In particular, 

the inadequate link between databases providing data on travel behavior, the built environment, 

and health highlights the need for close collaborations, which can result in collection of combined 

data from these fields.  

For instance, large-scale health surveys (e.g., BRFSS) can be modified to include more 

specific questions about walking and bicycling for transportation as well as questions about 

respondents’ travel behavior as related to other travel modes. Similarly, large-scale travel surveys 

(e.g., NHTS) can be modified to include more questions about the health status of respondents 

such as their overall health and other key health outcomes50. 

Such collaborated efforts can result in refined surveys and compilation of rich databases, 

which allow comprehensive analysis and a deeper understanding of the complexities involved in 

the interrelations between environmental factors, physical activity such as active travel, and public 

health outcomes. The importance of such research efforts is recognized through reiteration of the 

alarming physical inactivity and public health trends and the disturbing statistics and facts. 

 
50 The survey questionnaire of the most recent National Household Travel Survey (2017 NHTS) included questions 

regarding respondents’ general health.  
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Facts adduced by the U.S. Department of Health and Human Services (DHHS 2018) are 

that currently: 

• nearly half of American adults have one or more preventable chronic diseases; 

• most of the common chronic diseases are favorably impacted by regular physical 

activity; 

• about 80 percent of American adults do not meet the recommended physical activity 

levels; and 

• the lack of physical activity is linked to approximately $117 billion in annual healthcare 

costs and about 10 percent of all premature deaths in the U.S. 

Active travel can help! By incorporating physical activity into people’s daily routines, 

walking and bicycling—for both utilitarian and recreational purposes—can contribute to improved 

public health outcomes and reduced societal healthcare costs.  

Research suggests that investment into creating more walkable and bikeable communities 

is an efficient strategy to increase physical activity levels and improve public health (see e.g., 

McCann and Ewing 2003). The health-related benefits of active travel (including the lower 

healthcare costs) should, therefore, be compared to the costs of incentives that stimulate walking 

and bicycling to determine the cost-effectiveness of policies promoting active travel.  

Nonetheless, the challenges of determining what factors encourage people to walk and 

bicycle are many. In general, disentangling mechanisms of human behavior is a difficult endeavor. 

The complexity of the maze that is human decision-making process adds to the intricacies of 

predicting and explaining observed human behavior.  
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With regards to active travel behavior, the potential theoretical frameworks include the 

utility-maximization demand theory and the ecological model of behavior. The potential empirical 

evidence can come from using travel or health survey data.  

However, each current source of information allows only certain features of active travel 

behavior to be examined. Travel surveys provide data on sociodemographic and socioeconomic 

characteristics and daily trips of individuals but may not fully capture information on personal 

preferences and attitudes toward travel. Health surveys provide information on health-related 

behavior and health status of respondents but fail to separate the amount of active travel (i.e., 

walking and bicycling) from other physical activity performed by the respondents. Moreover, both 

types of surveys do not provide comprehensive data on the built environment of the respondents’ 

residential and workplace areas. Thus, the many aspects of active travel behavior hardly lend 

themselves to examination using simple theoretical or empirical methods. 

To deduce health-related behavior such as active travel, this research finds the ecological 

model of behavior the most promising theoretical framework. By conceptualizing multilevel 

influences on behavior, the ecological model provides the most integrated framework for modeling 

human behavior and allows for reframing of active travel behavior as the outcome of influences 

across various ecological levels including internal influences (e.g., preferences and attitudes) as 

well as external influences (e.g., the built and social environments).  

The findings of this research also emphasize the role of the environment in active travel 

behavior. Considering both the utility maximization theory and the ecological model of behavior, 

researchers probing to explain active travel behavior can only hope that given full knowledge about 

alternatives and a supportive environment, most travelers would make the “rational” decision. 

However, providing full information about each alternative mode of travel is not feasible in the 
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real world. Moreover, even fully informed travelers may not always choose the “rational” decision 

with regards to the trips they make. This can be due to factors such as attitudes, preferences, or 

health-related restrictions, which can be powerful influences on trip-making decisions. This means 

that for instance, there may always be those who would not make the switch to active travel modes 

regardless of supportive environmental attributes. And then, there are those who may, and that is 

what makes using environmental interventions as change agents to influence people’s active travel 

behavior as well as their health status an issue worth examining. 

Further, due to their dependency on environmental factors, health outcomes can also be 

more thoroughly examined within an ecological framework. With regards to environmental 

factors, it should be borne in mind that based on an ecological framework, multiple interacting 

levels of built and social environments may be at work to impact health-related behavior (such as 

active travel and other physical activity levels) as well as health outcomes. Parallel to these various 

levels of influences are various levels of potential interventions that can be implemented to 

promote active travel and improve public health. For instance, modifications to the built 

environment can be made not just within neighborhoods but also within the county as well as the 

entire city to promote a seamlessly healthy urban development.  

Examples of such modifications at the smallest level—the neighborhood—can be building 

more walkable and well-connected street networks, mixing residential and commercial land uses, 

and constructing more compact developments. The neighborhood has the most potential to 

increase active travel levels within the city through increased levels of walkability and bikeability. 

Therefore, the focus of modifications to the built environment at the micro level (neighborhood 

level) should be pedestrian- and bicyclist-friendly planning and design principles.  
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At the meso and macro levels, the principles guiding modifications to the built environment 

should still stress the importance of pedestrian- and bicyclist-friendly designs but also focus on 

increasing access to a variety of health-promoting land uses, increasing access to public transit, 

discouraging urban sprawl, and encouraging revitalization as well as promoting infill and retrofit 

developments. Examples of such modifications can include: building or improving street networks 

in such ways to make them more bicycle- and pedestrian-oriented; facilitating access to transit 

stations and bus stops by means of walking and bicycling; building new or facilitating access to 

parks, green spaces, and other recreational facilities that promote physical activity; building new 

or facilitating access to healthy food outlets; retrofitting sprawling suburban areas to provide 

increased access to various destinations, particularly by foot or bicycle; revitalizing high-crime or 

high-poverty neighborhoods with a potential of being walkable and bikeable by constructing new 

housing developments for various income levels; productively reusing vacant properties; and 

similar investments.  

Together, these multilevel interventions can encourage healthy travel behavior such as 

walking and bicycling, facilitate access to various local opportunities, foster daily social life and 

community engagement by catalyzing interactions between people, create opportunities for 

spending more time in the nature, and ultimately promote healthier and more livable 

neighborhoods, communities, and cities. As noted by Smith et al. (2008), the challenges of 

implementing multilevel interventions targeting the built (or social) environment are, however, not 

to be under-estimated as most of these changes require time and perhaps a political process. 

Evidence from travel behavior research points to a latent demand for active travel. Many 

travel surveys that include questions on attitudinal factors indicate some inclination by respondents 

toward walking and bicycling given a supportive built or social environment. Further, the most 
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recent National Travel Survey (NHTS) shows that a considerable percentage (over 21%) of 

automobile trips in the U.S. are either shorter than or approximately one mile in distance51. These 

trips have a potential to be substituted by nonmotorized trips (i.e., walking and bicycling) as 

conditioned partly by the features of the surrounding built environment. 

On the other hand, evidence from health research reveals that the adverse health effects 

associated with unhealthful lifestyles are largely due to preventable conditions (e.g., lack of 

physical activity including active travel) (Gochman 1997). Health research further indicates that 

the built environment is also influential in promotion of health-related behavior such as physical 

activity and active travel as well as in prevention of chronic diseases.  

Research in the past has provided ample evidence on the factors influencing active travel 

and health outcomes as noted in Chapter 2 (and Appendix B). The findings of the present study 

add to the empirical evidence; advance the discussion on the links between active (i.e., 

nonmotorized) travel behavior, the built environment, and health; and inform policymakers on the 

most effective strategies for future interventions.  

Although the existing knowledge can always be improved by further research, much is 

already well-known and established regarding the influence of active travel on health and the 

influence of the built environment on both active travel and health. What is now required is action! 

Too long have the city design and development patterns in the U.S. been automobile-

oriented and too long have the walking and bicycling modes of travel been marginalized in the 

U.S. Considering the arguments presented in the preceding paragraphs, it is time to reverse the 

unhealthy trends of physical inactivity associated with automobile-oriented urban development. It 

is time to make active modes of travel integral parts of transportation planning and urban planning 

 
51 2017 NHTS Popular Vehicle Trips Statistics: https://nhts.ornl.gov/vehicle-trips 
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processes in the U.S., to increase investments in building pedestrian- and bicyclist-friendly 

infrastructure within American cities, and to encourage walking and bicycling trips—both for 

utilitarian and recreational purposes.  

These efforts will undoubtedly create urban environments that support a vibrant and active 

public life; one that will be more promotive of better public health through downstream effects of 

physical activity and active travel.  

Indeed, active living is the nexus of transportation planning, urban design, and public 

health efforts. This research reveals that the pursuit of wellness and the retreat from illness can be 

achieved by persuading people to adopt healthier lifestyles and behavior (e.g., more active travel) 

as well as by providing them with the built environment that facilitates doing so.  

All aspire better health. After all, “the groundwork of all happiness is health” (Leigh Hunt). 

Thus, health is a pillar of happiness, and staying active and living in an area where being active is 

supported by the built environment are pillars of health. The former part of that argument is 

intuitive, and research findings—including those presented in this dissertation—provide evidence 

for the latter part. 

The next step should be to close the gap between aspiration and operation. By harnessing 

the existing empirical evidence and by taking a holistic approach, policymakers can make positive 

impacts on public health through urban designs that foster active travel and active lifestyles. 
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Appendices 

Appendix A 

Nonmotorized Travel Behavior, the Built Environment, and Health:  

A More Detailed Discussion on Background and Research Motivations for this Dissertation 

A.1 Travel Behavior 

Travel behavior as noted by McFadden is a “complex and multifaceted” phenomenon that includes 

making short-term daily travel decisions about the purpose, frequency, timing, destination, and 

mode of each trip in the context of long-term lifestyle decisions such as vehicle ownership, housing 

location, and employment location (McFadden 1974).  

To put it more simply, travel behavior is how people get where they need to or desire to 

be. It is the constant practice of making decisions about whether at all to travel, where to travel, 

when to travel, how to travel, how many times to travel, and with whom to travel. Travel behavior 

research usually involves asking questions about these decisions in a survey of travelers. The data 

obtained through responses provided are analyzed by researchers to quantify and understand the 

choices that individuals make with regards to the Ws and Hs of travel (i.e., whether or not, why, 

where, when, with whom, how, how many times, etc.) 

A.1.1 Travel Behavior Research and Theories 

Leipmann’s 1945 study (Leipmann 1945) is considered by some researchers a pioneering work on 

derivation of an organized theory of travel behavior (see e.g., Scuderi 2005). Liepmann analyzed 

data from 1930s on commuting travel (i.e., daily journey to work) in England and was the first to 

bring attention to the roles of time, cost, and strain of travel in workers’ travel behavior, particularly 

in their commute mode choice.  



 

340 

 

Later, McFadden (1974) proposed a utility-maximization demand theory—derived from 

the fields of psychology and economics—to be applied to travel behavior modeling and research. 

The fundamental assumption of the utility-maximization demand theory is that people are 

presented with the choice of different alternatives. The theory’s basic proposition is that “people 

make decisions to advance their self-interest” (McFadden 2002). This self-interest is quantified by 

an indicator termed utility, which is a measure of the satisfaction obtained by a consumer from 

consuming a good. The theory assumes that in making decisions about what good to consume, 

consumers act rationally and invariably choose the alternative that maximizes their utility. 

Applied to travel behavior research, as proposed by McFadden, the maximization of self-

interest (i.e., utility) proposition would mean that given the option and full knowledge of all travel 

alternatives, rational travelers make travel decisions to maximize their benefits (i.e., self-interest 

or utility)—usually by minimizing their monetary cost, travel time, or effort. For example, one 

would assume that individuals would be more likely to use nonmotorized modes if conditions for 

making such trips become safer or more suitable, or if using alternative modes (e.g., automobile) 

becomes more expensive or less feasible. Although the assumptions of the theory (i.e., rational 

decision-making, full knowledge of alternatives, and perfect accuracy in computation of benefits) 

may not hold in the real world, McFadden’s utility-maximizing framework has been heavily 

employed in travel demand analysis.  

However, this framework has been primarily used to model motorized travel demand. To 

make the framework suitable for modeling nonmotorized travel demand, modifications are needed 

including specification of benefits for nonmotorized trips and incorporation of built environment 

attributes into the framework (National Research Council 2005). This would mean that to be 
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maximized, the utility (i.e., benefits) of nonmotorized travel would need to be better defined for 

the travelers providing them with “full knowledge” of these travel alternatives. 

Travel behavior research has also benefitted from the perspectives of behavioral theories 

from the field of psychology including: i) the social cognitive theory (Bandura 1986), which 

considers the role of social environment in behavior; ii) the theory of planned behavior (Ajzen 

1991), which considers the role of attitudes, subjective norms, and perceived behavioral control in 

behavior; and iii) the ecological model of behavior (Sallis et al. 2008), which considers the role of 

multiple-level influences including those of the physical (i.e., built) environment in behavior.  

The application of the psychological behavioral theories in travel behavior research has 

been focused on nonmotorized travel behavior as part of a broader research on health behavior 

such as physical activity. Thus, these theories and their principles will be further elaborated under 

the sections discussing health behavior theories (Subsections A.2.3 and B.2.1). 

A.1.2 Travel in the U.S. 

For several decades, automobile has been the dominant mode of transportation in U.S. 

metropolitan areas, particularly for commuting (National Research Council 2005; Chen et al. 2008; 

Schneider 2015). Consequently, levels of highway traffic congestion have been increasing over 

the past decades in all U.S. urban areas. The Bureau of Transportation Statistics (BTS) estimates 

that of the nearly 5.4 trillion person-miles of travel (PMT) in the U.S. during the year 2014, almost 

70% was in private vehicles (BTS 2016). In addition, between the years of 2000 and 2014, the 

annual highway vehicle miles traveled (VMT) increased by nearly 10%, while the average annual 

congestion delay (hours) per commuter increased by approximately 14%. Further, by 2014, 

travelers in major metropolitan areas had to allow an average of at least 150% more travel time 

during peak periods to arrive at their destinations on time (BTS 2016).  
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As a result of statistics such as the ones mentioned above, concerns are growing over the 

ever-worsening traffic congestion conditions, pollution emission levels, high fuel and energy 

consumption levels as well as the adverse impact of land development on the natural environment, 

especially in urbanized and metropolitan areas (Badoe and Miller 2000; Boarnet and Crane 2001; 

Ewing and Greene 2003; Targa and Clifton 2005; Plaut 2005; Goddard et al. 2006; Fan 2007; 

Marshall et al. 2009; Cervero and Murakami 2010). 

 

Figure A-1. Highway Vehicle Miles Traveled (VMT) in the U.S. by Year52 

This is in part due to evidence that shows the U.S. economy has been impacted by traffic 

congestion, pollution levels, and high energy consumptions—particularly in growing urban areas. 

Research has shown that in 2011, traffic congestion caused Americans who lived in cities to spend 

an extra 5.5 billion hours traveling and purchase an additional 2.9 billion gallons of fuel (Milne 

and Melin 2014). Other statistics reveal that between 2000 and 2014, the economic cost of 

congestion in urban areas increased by 40% due to the average commuter wasting 19 gallons of 

 
52 Source of data: Bureau of Transportation Statistics web site - Table 1-35 - U.S. Vehicle-Miles: 

https://www.bts.gov/archive/publications/national_transportation_statistics/table_01_35 
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fuel in 2014 as a result of congestion and by 2016, the transportation sector accounted for 

approximately 70% of the total petroleum consumed in the U.S. (BTS 2016). Moreover, the 

transportation sector is responsible for a high portion of greenhouse gas (GHG) emissions and 

other harmful pollutants. According to the U.S. Environmental Protection Agency (EPA), 

transportation activities accounted for approximately 35% of U.S. carbon dioxide (CO2) emissions 

from fossil fuel combustion, and 27% of total GHG emissions in 2015 (EPA 2017).   

The recent travel trends not only place mounting pressure on the natural environment, but 

also can potentially impact the social environment, overall quality of life, and ultimately, human 

health in a negative way. Obesity, asthma, diabetes, high blood pressure, and many other health 

problems have reached alarming levels in the U.S. in recent decades (McCann and Ewing 2003; 

Ewing et al. 2003b; Plantinga and Bernell 2007; Forsyth et al. 2008; Hirsch et al. 2014). Thus, the 

value of adopting a healthier and more sustainable lifestyle has been increasingly recognized by 

academics, practitioners, and decision-makers. Concerns over the social costs (i.e., adverse effects 

of automobile travel externalities on public health, economy, and the environment) have motivated 

a surge of research efforts and policies to find effective long-term solutions to mitigate these 

problems. Reduction of the amount of automobile travel seems to be the most popular and 

promising proposed solution so far (Friedman et al. 1994; Cervero and Radisch 1996; Pucher et 

al. 1999; Krizek 2003b; Dill and Carr 2003; Lee and Moudon 2004; Goddard et al. 2006; Fan 

2007; Ewing and Cervero 2010; Cervero and Murakami 2010; Tajalli and Hajbabaie 2017).  

A.1.3 Nonmotorized Travel Behavior 

Nonmotorized (i.e., walking and bicycling) modes of travel have received increased scholarly 

attention as cost-effective, sustainable, viable, low-polluting, and energy-conserving alternatives 

to driving and appropriate remedies for health issues, which can ultimately improve quality of life 
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(see e.g., Handy 1996b; Porter et al. 1999; Pucher et al. 1999; Lumsdon and Mitchell 1999; Davis 

and Wicklatz 2001; Dieleman et al. 2002; Lee and Moudon 2004; Leslie et al. 2007; Giles-Corti 

et al. 2009; Heinen et al. 2010; Pucher et al. 2010; Handy and Xing 2011; Schneider 2015; Mindell 

2015; Tajalli and Hajbabaie 2017).  

Benefits of nonmotorized travel are not difficult to discern. Nonmotorized modes are 

deemed as indicators of sustainability, livability, equity, efficiency, and viability. Walking is the 

most natural way of transportation and both walking and bicycling incorporate the added value of 

physical activity. In addition to having numerous health and social benefits—at both individual 

and community levels—nonmotorized travel is inexpensive, enjoyable, and available to almost all 

(Pucher et al. 1999; Mahmoudi and Zhang 2018a). Yet, the most recent National Household Travel 

Survey (NHTS), which was conducted in 200953, showed that of all trips taken in the U.S., the 

shares of walking and bicycling trips were only 11% and 1%, respectively compared to automobile 

travel, which accounted for nearly 83% (Figure A-2). Moreover, approximately 70% of trips 

shorter than one mile were made by private automobile (Milne and Melin 2014). These statistics 

provide further support for the claim that automobile is the prevailing mode of travel in America 

as research in the past also has found (see e.g., National Research Council 2005).  

Within a transportation context, the dominance of the private vehicle as the main mode of 

travel in the U.S. can be considered as a challenge to promoting nonmotorized modes of travel.  

This is because with the interwoven relationship between transportation and land use, high levels 

of automobile usage can lead to more automobile-oriented built environment designs and land 

development patterns, which in turn, can result in more obstacles to using the nonmotorized travel 

modes (Fan 2007).  

 
53 At the time this research was conducted, 2009 NHTS was the most recent dataset. The 2017 NHTS data were 

released in March 2018, and after this study was conducted. 
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Many researchers are motivated by statistics such as those presented in Figure A-2 to 

determine the factors that influence one’s decision in making a nonmotorized trip. Identification 

of the factors that play a role in nonmotorized travel behavior, and determination of how to better 

model nonmotorized trips can greatly deepen the understanding of decision-makers on the most 

effective policies that can promote bicycle and pedestrian trips (Porter et al. 1999).  

Within a public health context, identification of the factors that impact nonmotorized travel 

behavior is also critical in development of transportation planning policies and urban designs that 

promote healthier behavior, and thereby lead to healthier citizens, communities and societies. 

 

Figure A-2. Percentage of NHTS Trips by Travel Mode (Mode Share) 

NOTES: 

Percentages calculated from the 2009 NHTS “Weighted Frequency” field; 

The “Private Vehicle” mode includes car, van, SUV, pick-up truck, other trucks, recreational vehicle, and motorcycle; 

The “Public Transit” mode includes local public transit, commuter bus, charter/tour bus, city to city bus, shuttle bus, Amtrak/intercity 

train, commuter train, subway, trolley/streetcar; 

 The “Other” mode includes golf cart, taxicab, ferry, airplane, special-transit-people with disabilities, school bus, and the “other” modes. 

Considering the benefits of nonmotorized modes, federal legislations such as the 

Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 and its successors, the 

Transportation Equity Act of 21st Century (TEA-21) in 1998 as well as the Safe, Accountable, 

Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) in 2005 

82.7%

2.5%

11%

1%

2.8%

Private Vehicle

Public Transit

Walking

Biking

Other

https://en.wikipedia.org/wiki/Safe,_Accountable,_Flexible,_Efficient_Transportation_Equity_Act:_A_Legacy_for_Users
https://en.wikipedia.org/wiki/Safe,_Accountable,_Flexible,_Efficient_Transportation_Equity_Act:_A_Legacy_for_Users


 

346 

 

increased public investments and funding for nonmotorized transportation infrastructure 

improvements. These resources can be used to promote nonmotorized trips in U.S. urban areas. 

Although more conducive to motorized trips, most U.S. urban areas have the potential to 

also provide a reasonably comfortable and safe setting for walking and bicycling trips due to denser 

designs, which allow pedestrians and bicyclists quickly access destinations. Also, considering that 

all transit trips (and most vehicular trips) eventually result in walking trips along city streets 

(Murga 2004), urban areas may be the most suitable candidates for initial and retrofitting designs 

that are promotive to nonmotorized trips. In fact, urbanized and metropolitan areas have been 

mentioned in past research as the most promising areas in the U.S. to promote nonmotorized travel 

modes (Delmelle et al. 2012). Literature specifically underlines the importance of bicycling as a 

healthy and prominent activity in metropolitan areas despite of its underutilization in U.S. 

metropolitan areas (Moudon et al. 2005). 

A.1.4 Travel Behavior and the Role of the Built Environment 

To better understand the factors that influence nonmotorized travel behavior, one should start with 

gaining a sound understanding of the factors that affect travel behavior in general. The built 

environment characteristics of the place of residence are among the factors that have been proved 

to have an impact on travel behavior of individuals. The built environment as defined by Cervero 

and Kockelman (1997) refers to “the physical features of the urban landscape that collectively 

defines the public realm”.  

According to Handy (2005), the built environment consists of three components: 1) land 

use patterns (i.e., spatial distribution of activities); 2) the transportation system (i.e., transportation 

infrastructure and services); and 3) design features (i.e., design of buildings and public spaces). 

Each of the built environment components has multiple dimensions. A few examples include 
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location and size of commercial outlets, location and size of employment centers (for land use 

patterns); sidewalks, bike paths, bus stops (for transportation system); and textures of buildings 

(for design feature). Together, these elements can facilitate or constrain travel. Specifically, the 

built environment can provide accessibility or create barriers, provide proximity or create a 

distance, and provide opportunities for some activities at the expense of some other activities 

(Næss 2005). Mainly acting as surrogates for unobserved environmental attributes, built 

environment factors capture characteristics of the environment that even though may not be 

observed, are essential determinants of travel mode choice (Rodríguez and Joo 2004).  

Further, built environment factors can influence travel behavior by affecting the 

generalized travel cost to various destinations (Boarnet and Sarmiento 1998). For example, the 

low-density development patterns associated with decentralization of housing and jobs may 

increase reliance on private automobile, and ultimately, may lead to more automobile travel and 

more gasoline consumption (Handy 1993; National Research Council 2005). Another example is 

building neighborhoods with compact development patterns and effective job-housing balance 

within decentralized metropolitan areas; a practice which may shorten trip and commute distances 

(by locating employment and home sites close to each other), and thereby facilitate walking and 

bicycling (Levine 1998; Fan 2007).  

Additionally, existing literature on the relationship between the built environment and 

travel behavior suggests that two built environment-related concepts can be influential in people’s 

travel behavior outcomes, particularly in their mode choice and destination choice. These are: 

mobility and accessibility.  

Mobility has been defined in literature as the movement of people or goods—typified by 

highway level of service and speeds (Levine 1998; Handy 2005; Litman 2011). In essence, as 
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Handy puts it: “mobility is the ability to travel with a reasonable level of performance (i.e., at 

uncongested and reliable speeds)” (Handy 2005). As an indicator of speed at which an individual 

can travel through space within a certain time period, mobility has a potential to influence travel 

behavior through mode and destination choices. For instance, an individual who drives a private 

vehicle may reach a higher number of destinations during the day than a person who uses a 

nonmotorized mode of travel (Næss 2005). Mobility concepts assume that increased travel distance 

or speed benefits the society (Litman 2011). Increased mobility, particularly throughout the urban 

and metropolitan areas, enables individuals to broaden their destination options by traveling farther 

and quicker to reach additional desired destinations. Consequently, residents are no longer limited 

to opportunities in their own locality (or region) as their travel behavior becomes more dependent 

on the built environment factors of larger-scale spatial areas, such as those of the entire 

metropolitan area (Nasri and Zhang 2012). Mobility concepts intertwine with accessibility 

concepts to shape travel choices by residents of metropolitan areas. 

Accessibility is the degree to which land use and transportation system enable travel 

between destinations by a particular travel mode or a combination of travel modes (Geurs and van 

Wee 2003). Accessibility is an indicator of the level of access to essential societal activities such 

as employment and social services; hence, it is a major factor in a region’s economic and social 

development, and it can determine the locational advantage of a region relative to other regions 

(Schürmann et al. 1997; Geurs and van Wee 2003).  

Various definitions have been provided for accessibility in the past. Handy (1996b) defined 

accessibility as the pattern of activities, which can be operationalized by “quantity, quality, variety, 

proximity and connectivity”. Other literature suggested that accessibility consists of two factors: 

1) an activity factor—which reflects the spatial distribution of activities to be reached—such as 
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employment, shops and residences; and 2) a transportation factor—which reflects the ease of travel 

to reach those activities—measured by travel distance, time, or cost (Handy 1993; Schürmann et 

al. 1997). Based on this point of view, accessibility captures the combined effect of a travel 

impedance factor and an attractiveness factor. Moreover, Litman (2011) defined accessibility as 

“the ability to reach desired goods, services, activities and destinations (collectively called 

opportunities)”, whereas Hansen’s definition of accessibility was the “potential of opportunities 

for interaction” (Hansen 1959). The latter study operationalized accessibility as the number of 

activities (e.g., employment, residential, commercial) around a zone adjusted for some measure of 

impedance (e.g., time, distance, cost) for traveling to those activities. Together, these definitions 

establish that accessibility is the ability to reach opportunities and activities.  

Accessibility is often measured within the context of a certain model of travel (or a 

combination of travel modes). Additionally, accessibility can be measured at local and regional 

levels where local accessibility is considered accessibility to activities within a community and 

regional accessibility is considered accessibility to regional centers of activity from that 

community (Handy 1993). In that sense, accessibility is considered by some researchers a more 

descriptive measure of activity intensity than density because accessibility can be regional in scope 

and not limited to a local area (Kockelman 1997).  

Local accessibility is determined by nearby activities. It is associated with distance to 

destinations and can be represented by the number of establishments (i.e., shopping stores, 

employment opportunities, banks, restaurants, etc.) within or around one’s neighborhood or by 

having the option and ease of travel to any such desired destination within a specified distance by 

means of a specific mode of travel—for example, by walking. Increased local accessibility may 

lead to less vehicular travel (Handy 1993).  
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Regional accessibility is less dependent on distance to destinations and can be represented 

by the number of or ease of travel to employment opportunities as well as retail and commercial 

centers within the region, which can attract customers from a wide geographic area. Higher levels 

of regional accessibility mean decreased travel distances to regional destinations and may lead to 

changes in travel modes. However, Handy (1993) suggested that although increased regional 

accessibility shortens distances, it does little in reducing the frequency of trips, meaning that 

individuals travel a certain amount regardless of the distance because they may not find everything 

they need in their local area.  

By evaluating both the local and the regional accessibility of a neighborhood, the 

accessibility characteristics of the neighborhood and the region it is located in as well as the quality 

of the links between the neighborhood and the region can be accounted for (Handy 1993). This 

means that together, measures of local and regional accessibility can lay out a good picture of the 

spatial structure of a metropolitan area and help in differentiating between communities within the 

region (Handy 1993). Thus, in probing factors that influence travel behavior, the extent of both 

local and regional accessibility matters.  

Like increased mobility, increased local or regional accessibility can influence destination 

choice or mode choice. In terms of destination choice, the regional structure of a neighborhood 

may provide more destination opportunities, which can lead to more travel in general, or it can 

minimize the effects of any destination variations in the neighborhood structure on travel behavior 

(Krizek 2003b). In other words, having more destination options farther away from the 

neighborhood may encourage additional and/or longer trips. In fact, Handy (1996b) found that 

having a greater variety of destination options leads to more frequent trips and longer trip distances. 

In terms of mode choice, past research suggests that higher local accessibility may lead to less 
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vehicular travel (Krizek 2003a; Handy et al. 2005). For local accessibility to influence travel 

behavior, variety, location, and type of destinations are critical characteristics (Krizek 2003a).  

The above arguments suggest that mobility and accessibility characteristics are linked to 

built environment and land use patterns and can both play key roles in travel behavior by 

influencing people’s mode and destination choices. For example, by concentrating trip origins near 

trip destinations (accessibility) and by influencing travel speeds (mobility), compact designs can 

affect travel cost (Boarnet and Sarmiento 1998), which in turn, can influence mode and destination 

choices of residents. Accessibility and mobility concepts—as defined by Hansen (1959) and 

Litman (2011)—were developed for vehicular travel and did not take into consideration the 

nonmotorized traveler, whose trips are at much lower speeds and shorter distances (National 

Research Council 2005). Nonetheless, both accessibility and mobility have a potential to indirectly 

impact nonmotorized travel through influencing motorized travel choices including mode and 

destination choices, as argued in previous paragraphs. 

A.1.4.1 Travel Behavior and the Spatial Scales of the Built Environment 

Heinen et al. (2010) described travel as a matter of bridging a gap between locations. One aspect 

of taking “location” into account is the matter of geographical scales. Past literature suggests that 

in travel behavior research, consideration of various geographical scales is important (Handy 1993; 

Boarnet and Sarmiento 1998; Boarnet and Crane 2001; Boarnet 2004; Fan 2007).  

The built environment can be measured at various geographical scales including at: the 

building or site level, the block level, the neighborhood level, and the regional level. Each of these 

levels can influence travel behavior by facilitating or constraining certain modes of travel. Based 

on arguments by past research (National Research Council 2005), for example, certain features of 

buildings or sites such as access to other structures may facilitate the walking travel mode between 
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these structures. On the other hand, lack of these features may make it difficult to walk between 

structures and require the driving mode to do so. The street block size as well as the built 

environment attributes of the neighborhood such as network design patterns (i.e., grid-like vs. cul-

de-sac designs), extent of mixed land use, and availability of pedestrian and bicycle facilities can 

also influence travel mode choice and level of nonmotorized travel. Further, the built environment 

characteristics of the entire region such as its size, distribution of jobs, and supply of transportation 

facilities can influence travel behavior (National Research Council 2005) including mode choices 

as well as commute durations.  

Thus, with regards to the built environment, the travel behavior of individuals may be most 

likely influenced by: i) the characteristics of the neighborhood of residence (or workplace); ii) the 

position of the neighborhood in the larger region; and iii) the spatial structure of the region (Handy 

1993; Krizek 2003b).  

The various scales of the built environment may also interact with each other to influence 

travel behavior. That is, the influence of the built environment on travel behavior at one spatial 

scale may depend on the influence of the built environment at another spatial scale, and the same 

factor may exert different effects or magnitudes at different scales (National Research Council 

2005; Fan 2007). Further, the effect of the built environment at various spatial scales on travel 

behavior is likely to differ by the type of travel behavior—most importantly—the travel mode. For 

example, access to various land uses within walking or bicycling distance is likely to promote 

destination-oriented nonmotorized trips, whereas access to various land uses within the entire 

metropolitan area may encourage more destination-oriented automobile trips. 

It should be noted that although various spatial scales of the built environment have been 

identified in the literature (e.g., neighborhood, region), there seems to be no consensus among 
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different studies on the exact size of some of these scale categories. For example, the definition of 

neighborhood in prior travel behavior studies is based on geographical areas ranging from a small 

buffer zone around the trip origin and/or destination (e.g., Lee and Moudon 2006; Fan 2007; 

Chatman 2009) to an area as large as a traffic analysis zone (TAZ) (e.g., Cervero 2001; Zhang 

2004; Mitra and Buliung 2012). Similarly, the region has been defined as a county in some travel 

behavior studies (e.g., Nasri and Zhang 2014), whereas others argue that in an urban context, the 

region may be defined as the metropolitan area (National Research Council 2005). 

While the geographical unit of analysis in studies that probe the link between the built 

environment and travel behavior varies from the street block at the smallest scale to the 

metropolitan area in its entirety at the largest scale (Ryan and Frank 2009), in general, two 

distinctive geographical scales for the built environment have been defined in literature. These are: 

1) the micro-level built environment, which considers the built environment characteristics of the 

local or neighborhood; and 2) the macro-level built environment, which examines the built 

environment characteristics of regional urban areas (Handy 1993; Badoe and Miller 2000; Murga 

2004; Joshu et al. 2008; Ryan and Frank 2009; Nasri and Zhang 2012).  

A three-level hierarchy for the built environment has been brought to attention by King et 

al. (2002) and Ewing et al. (2003b), which consists of: 1) the micro level (e.g., immediate local 

area/neighborhood); 2) the meso level (e.g., neighborhood/community); and 3) the macro level 

(e.g., metropolitan area or county). Consideration of these hierarchical structures can be useful in 

conceptualization of study frameworks that are designed to examine the role of various spatial 

scales of the built environment in travel behavior. These comprehensive frameworks will help 

researchers to identify the built environment factors that exert the greatest influence on travel 

behavior—including nonmotorized travel behavior—at each spatial scale. 
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A.1.5 Why the Macro-level Built Environment Matters in Nonmotorized Travel 

Behavior Research 

As indicated previously, because most nonmotorized travel is spatially constrained, smaller 

geographic units of analysis (e.g., neighborhoods) have been assumed by researchers to yield more 

information on the built environment characteristics that impact nonmotorized trips. However, 

there are reasons to think beyond the neighborhood boundaries in conducting nonmotorized travel 

behavior research. These reasons are discussed below. 

A.1.5.1 The Macro-level Built Environment, Travel Behavior, and Calls in the Literature 

Over the past two decades, researchers have been suggesting that the analysis of the link between 

the built environment and travel behavior can be improved by inclusion of macro-level built 

environment factors. Early on, this literature suggested that the structure of the metropolitan areas 

should be considered in travel behavior research (Handy 1996c) as the overall physical form of 

cities and regions (e.g., the distribution of population and employment within the city and its road 

and transit networks) can shape people’s travel outcomes (Cervero 2002; Bento et al. 2005). 

Nonetheless, very few empirical studies included built environment measures of larger-scale 

spatial areas in travel behavior analysis during those years.  

An example of the studies that did take into account the role of the built environment at 

larger scales in travel behavior research is a 1998 study by Boarnet and Sarmiento. The study 

tested the hypotheses that: i) the built environment and land use characteristics of larger-scale 

spatial areas such as those of the zipcode and metropolitan areas affect travel behavior; and ii) 

compared to those of the neighborhood, land use characteristics of larger geographical areas might 

be even better determinants of travel behavior. The authors concluded that the effect of zipcode-

level land use factors on automobile travel was not different from that of the neighborhood (census 
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block group/census tract)-level factors, and that zipcode-level land use characteristics did not 

significantly impact the number of non-work automobile trips (Boarnet and Sarmiento 1998). 

Later, He and Zhang (2012) suggested that by interacting with the neighborhood-level built 

environment, the overall built environment of the metropolitan area can impact travel behavior 

over time. Other empirical research showed that metropolitan area-level built environment 

characteristics influence households’ vehicle miles traveled (Nasri and Zhang 2012, 2014).  

As regards nonmotorized travel behavior, the issue of geographic scale and the role of 

macro-level built environment have been underexamined in research (Boarnet 2004; National 

Research Council 2005). Although too often neglected, there have been calls in the literature for 

consideration of various levels of geographic context including larger-scale spatial areas in the 

analysis of nonmotorized travel behavior. 

For instance, a 1999 study suggested that larger area/zonal-level factors that represent the 

relative attractiveness of making nonmotorized trips should be further developed and tested in 

analysis of such trips (Porter et al. 1999). Another study suggested that in probing the link between 

the built environment and physical activity (including walking and bicycling as common forms of 

physical activity), data should provide multiple levels of geographic detail, with special focus on 

neighborhood-level built environment factors (Boarnet 2004).  

Other literature also argued that the built environment at many geographic scales—

including the neighborhood, and the region—can influence the propensity of being physically 

active (e.g., engaging in walking or bicycling activities) (National Research Council 2005). This 

study characterized the lack of consideration of the built environment at scales larger than the 

neighborhood and the limited attention given to the role of district or regional-level built 

environment characteristics a “notable gap” in research concerning nonmotorized travel behavior. 
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The referenced study then suggested that future research should consider the impact of larger 

geographical-scale factors on physical activity (e.g., nonmotorized travel behavior) (National 

Research Council 2005). Further, Mitra and Buliung (2012) argued that in the interaction between 

human behavior (e.g., walking and bicycling activities) and the built environment, different 

processes at different spatial scales may be at operation. 

These calls in the literature provide grounds for the hypothesis that nonmotorized travel 

behavior is not just influenced by micro-level built environment characteristics, but also by macro-

level built environment characteristics. This means that in influencing nonmotorized travel 

behavior, neighborhoods are not acting as isolated geographic entities, but as an interwoven part 

of the larger geographical context of the metropolitan area they belong to.  

In a sense, while the built environment of the neighborhood can encourage nonmotorized 

travel by providing short distances to various destinations, the extent and distribution of 

opportunities in the metropolitan area and the availability of transportation alternatives (e.g., 

regional transit) may be the determinant factors for the choice of a nonmotorized mode for regional 

travel, such as commuting or traveling to malls (National Research Council 2005). 

A.1.5.2 Travel Behavior Implications of Sprawl, Decentralization, and Commuting 

Although existing research on the role of metropolitan built environment and travel behavior has 

been focused on vehicular travel behavior, it can be hypothesized that the overall built environment 

of the metropolitan area has a potential to impact nonmotorized travel behavior—at least through 

its impact on motorized travel behavior.  

Particularly, urban sprawl and decentralization are important metropolitan area-level built 

environment factors with the potential to influence nonmotorized travel behavior. 
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Urban sprawl has been defined as a combination of measures that describe a city’s physical 

shape, spatial distribution of population and employment, and jobs-housing balance as well as its 

public transit characteristics, which together can influence the VMT and mode choices of 

households (Bento et al. 2005). For a metropolitan area, sprawling features can be characterized 

as highly car-dependent designs, suburbanization of activities (e.g., employment), low-density, 

single-use developments, poor street network connectivity, and polycentric land use (as opposed 

to monocentric cities). These features lead to increased trip distances, which in turn, can promote 

automobile use and discourage nonmotorized modes of travel by making them unsafe or 

impractical. Specifically, as Ewing et al. (2003b, 2008) noted, the most common characteristic of 

urban sprawl is poor accessibility in term of walking where trip destinations are not within safe 

and easy walking distance of trip origins. Urban sprawl is now considered the dominant 

development pattern in the U.S. (Ewing et al. 2014).  

Decentralization has been defined in the literature as the movement of people and jobs 

away from city centers—a trend in urban development for over a century in the U.S. (National 

Research Council 2005).  

By increasing travel distances between origins (e.g., residences) and destinations (e.g., 

work sites, service locations), decentralization and urban sprawl restrict accessibility based on 

travel time, and thereby influence travel mode choices (Burbidge and Goulias 2008).  

Considering the convenience and mobility offered by the private automobile, 

decentralization and urban sprawl have been associated with encouraging automobile dependency, 

and its consequential limited and less feasible non-automobile mobility (i.e., walking and 

bicycling) as well as sedentary lifestyle patterns (Pucher et al. 1999; Dieleman et al. 2002; King et 
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al. 2002; Stinson and Bhat 2004; Handy et al. 2005; Leslie et al. 2007; Plantinga and Bernell 2007; 

Cao et al. 2007; Burbidge and Goulias 2008; Cao et al. 2010; Siu et al. 2012; Ewing et al. 2014).  

Urban sprawl and decentralization usually produce long commutes for residents. Sprawling 

metropolitan areas with longer commutes can affect physical activity (e.g., walking for exercise) 

by cutting leisure times short (Ewing et al. 2014).  

Past empirical research has found that longer commute times negatively impact the amount 

of time allocated to discretionary activities such as leisure activities (Kitamura et al. 1992), which 

could include recreational walking and bicycling activities. Other research showed that spending 

more time on work-related activities (e.g., commuting) can lead to spending less time on 

recreational activities (e.g., walking and bicycling for leisure) (Chung et al. 2004).  

Previous studies have also suggested that longer commutes can interfere with having an 

active lifestyle due to diversion of time from health-promoting activities such as exercise and 

physical activity (see e.g., Evans and Wener 2006; Plantinga and Bernell 2007; Hansson et al. 

2011; Künn -Nelen 2015). In addition to the potential to affect recreational walking and bicycling, 

longer commute times may also lead to fewer utilitarian nonmotorized trips as past research found 

that longer commute times negatively correlated with the amount of time allocated to non-work 

travel (Kitamura et al. 1992), which could include utilitarian nonmotorized travel.  

Thus, it is evident that sprawling designs have a potential to promote sedentary behavior 

by discouraging nonmotorized travel choices, as other studies also argued (see e.g., Leslie et al. 

2007; Cao et al. 2009).  

In light of these research arguments, consideration of measures representing the level of 

sprawl and commuting duration within the metropolitan area in the analysis of nonmotorized travel 

behavior seems a plausible idea. 
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A.1.5.3 The Origin, the Destination, and the Route Connecting Them 

Literature suggests that the overall travel behavior is influenced primarily by the built environment 

characteristics of the trip origin (most often the home location), and secondarily by the built 

environment characteristics of the employment location, and thirdly by the characteristics of the 

route from home to the employment location (Krizek 2003c).  

The same argument holds true in the case of nonmotorized travel; the choice and extent of 

nonmotorized trips are influenced by the quality of the environment (e.g., physical condition, 

safety, convenience) surrounding the trip origin and destination as well as along the route between 

the two (see e.g., Handy 1996a; Moudon and Lee 2003; Lee and Moudon 2004, 2006).  

Inclusion of macro-level built environment measures in the analysis of nonmotorized travel 

behavior allows the analyst to account for the effect of the overall built environment of the study 

area on nonmotorized travel behavior. This allows for conceptualization of nonmotorized travel 

behavior using a more integrated approach to operationalizing the built environment, which 

includes the built environment attributes of the origins and the destinations of nonmotorized trips 

as well as the routes that connect them, all in one analysis framework. 

A.1.5.4 Neighborhood Location in the Context of Metropolitan Area 

Past research suggests that among factors that influence travel behavior, the location of the 

neighborhood matters in terms of the surrounding area’s built environment. For instance, if the 

overall built environment of the metropolitan area (macro-level built environment) is heavily car-

dependent, the walkable design of a particular neighborhood (micro-level built environment) may 

not matter much in promoting the walking mode choice within that neighborhood.  

Islands of neotraditional neighborhoods (i.e., dense and mixed-use development 

neighborhoods that support walking and bicycling) surrounded by typical car-dependent, low-
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density, suburban neighborhoods in a sprawled metropolitan area may not lead to fundamental 

changes in the overall travel behavior of residents of those neotraditional neighborhoods 

(Friedman et al. 1994; Cervero and Gorham 1995). 

Further, clusters with just one feature of neotraditional urban design may not change travel 

behavior in favor of nonmotorized travel. For example, a dense residential-only neighborhood far 

from nonresidential services does little in discouraging driving and promoting nonmotorized travel 

due to distances between residences to service land uses, just as a neighborhood with a mix of land 

uses may not promote walking if it is surrounded by high-speed highways (Krizek 2003b).  

The larger geographical context (e.g., regional context) within which a neighborhood 

locates has been too often neglected in past research (Krizek 2003b). However, as the above 

literature suggests, larger geographical contexts bear importance in shaping travel behavior of 

people, and should therefore be considered in the analysis of nonmotorized travel behavior. 

A.1.5.5 People Do Not Stay within Their Neighborhoods 

Research to date that explored the relationship between nonmotorized travel behavior and the built 

environment has been almost solely concentrated on neighborhood-level built environment 

factors. The underlying assumption for this has been that compared to other trips (e.g., bus, car, 

train trips), walking and bicycling trips are short trips—most often originating and concluding in 

the neighborhood of residence—and hence, investigation of the factors that affect nonmotorized 

travel should only include the built environment characteristics of a small geographical area such 

as that of the neighborhood (see e.g., Cervero and Duncan 2003; Moudon and Lee 2003; Boarnet 

et al. 2008). However, a recent study referred to this assumption as “just an assumption” as adults 

spend most of their daily hours away from their home (Ewing et al. 2014).  
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Moreover, as a report by the National Research Council (2005) suggested, interest in the 

influence of residential neighborhood’s built environment factors on travel behavior is consistent 

with emphasis on home-based trips. Yet, a simple calculation reveals that “Home” is listed as the 

trip’s destination for approximately 35% of 2009 NHTS trips, meaning these were non-home-

based trips. This figure is consistent with Ewing et al. (2014), which estimated that nearly 30–40% 

of all trips are non-home-based trips. These statistics show that a sizable proportion of trips do not 

originate at the residence location and may not stay within the neighborhood boundaries.  

Other studies suggest that most U.S. metropolitan areas have an extensive transportation 

network; therefore, the assumption that households select residential locations close to their 

employment location may not hold (Krizek 2003a). Also, as people’s desired activities or 

consumer goods/services at desired prices are often not located within their neighborhood, their 

activity space extends well beyond their neighborhood and therefore, they may travel beyond their 

neighborhood boundaries for their activities or shopping and service needs (Badoe and Miller 

2000; Krizek 2003a).  

These out-of-neighborhood employment/shopping/service trips may lead to unplanned 

nonmotorized trips at a location far from the neighborhood of residence. In contrast, the out-of-

neighborhood trips may substitute for nonmotorized trips, which would have otherwise occurred 

within the neighborhood. 

In addition, recreational nonmotorized travel behavior may not always occur or stay within 

the neighborhood. Literature suggests that a substantial proportion of recreational walking trips 

occurs outside the neighborhood and walking that takes place outside the neighborhood is less 

likely to be affected by neighborhood built environment characteristics than walking that takes 

place within the neighborhood (Nehme et al. 2016).  
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Other literature hints about broadening the scope of walking travel behavior beyond the 

neighborhood in case the surrounding areas are also walkable (Weinberger and Sweet 2012). Past 

research has also found that the neighborhood built environment measures were not significant in 

explaining recreational bicycling and suggested that people may drive to locations far from their 

residence to bicycle for recreation, and therefore, their neighborhood environment may not matter 

in their bicycling travel behavior (Ma and Dill 2015). 

The above discussion is not to imply that the neighborhood built environment is not 

important in nonmotorized travel, but rather to impart the importance of the overall built 

environment of the metropolitan area (i.e., macro-level built environment) in walking and 

bicycling trips. If the overall built environment of the metropolitan area is supportive of 

nonmotorized travel, it can influence individuals’ choices of travel modes and destinations. In such 

encouraging environment, residents may go beyond their neighborhoods and travel to farther 

destinations within their city/urban area to perform walking and bicycling activities.  

For example, people may make out-of-neighborhood trips to:  

• take advantage of a new walking or bicycling trail in the adjacent county; or  

• conduct additional utilitarian activities using nonmotorized modes (such as when 

students take their bicycle to a school campus, which is located on the other side of the 

metropolitan area, and ride the bicycle from and to different campus buildings); or  

• take advantage of additional social interaction opportunities (such as when people drive 

to a historic site within their metropolitan area and walk around to visit various tourist 

attractions that are located there).  

In all the above examples, walking and bicycling activities occur regardless of the 

individual’s neighborhood built environment and owing to the supportive nature of the 
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metropolitan area’s built environment. Therefore, it is likely that built environment factors at both 

micro level and macro level are relevant to understanding nonmotorized travel behavior.  

In that case, inclusion of macro-level built environment characteristics (such as those of 

the metropolitan area in which people reside, work, and conduct other activities) can represent the 

broad settings that shape people’s travel choices, and provide a more comprehensive picture of the 

influence of the built environment on nonmotorized travel behavior. 

A.1.5.6 The Potential Influence of Regional Accessibility on Nonmotorized Travel Behavior 

As discussed previously, regional accessibility influences travel behavior outcomes such as mode 

choice and destination choice. Increased regional accessibility (in terms of the number of activities 

within a given travel time from home) has been found in previous research to reduce a household’s 

vehicular travel (Ewing 1995). Thus, it can be hypothesized that regional accessibility 

characteristics have a potential to indirectly affect nonmotorized travel behavior through affecting 

vehicular travel behavior. 

For instance, if members of households drive less because they have more regional transit 

options and more transit-accessible destinations within their region, they may make more transit-

related walking trips. Another example is that a pedestrian-friendly neighborhood located in a 

region without much regional accessibility can encourage more walking trips within the 

neighborhood. This is because in a region with low regional highway or transit accessibility, 

residents may find it difficult to travel to farther destinations and so, they may choose destination 

options within their neighborhoods. If their neighborhood is walkable, these residents may choose 

to make more walking trips to nearby destinations rather than making vehicular trips to farther, 

hard-to-reach destinations.  
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Literature provides support for the arguments above. A 2005 report by the National 

Research Council (National Research Council 2005) emphasized the importance of considering 

the effects of regional accessibility on nonmotorized travel and argued that by influencing mode 

choice and destination choice, accessibility has a potential to influence nonmotorized travel 

behavior. Scenarios of how increased regional accessibility throughout the metropolitan area of 

residence can influence nonmotorized travel outcomes by influencing mode and destination 

options may occur during any typical day.  

In terms of the role of regional accessibility in destination choice, for instance, the 

following scenarios may be considered:  

Scenario 1): individual X would like to make a walking trip to a neighborhood restaurant. 

Individual X has friends who live in a town that locates within the same metropolitan area and is 

accessible by transit. Individual X’s friends ask her to join them at their town for taking a walk 

around town and to eat at a restaurant there. Individual X takes the train and meets her friends at 

the other town where they walk for several hours and enjoy shopping and dining together. In this 

scenario, regional transit accessibility directly influenced individual X’s destination choice for her 

walking activities.  

Scenario 2): individual Y drives to a bicycle trail far away from his house to bicycle for 

exercise. In this case, regional automobile accessibility to the trail directly influenced the choice 

of destination for individual Y’s bicycling activities. This example is in line with past literature 

that suggested good accessibility can encourage residents to travel beyond their neighborhoods to 

reach other opportunities for recreation and exercise (National Research Council 2005). 

In terms of the role of regional accessibility in mode choice, one can consider the following 

scenarios:  
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Scenario 3): individual Z would like to go shopping. She has the option to walk to a few 

local stores to purchase the goods she desires to buy. However, she thinks that the stores at a 

shopping mall, which happens to locate far away from her place of residence, offer a more variety 

of goods. Since this individual resides in a region with high automobile accessibility, the long 

distance to the shopping mall in combination with ample free parking—a common feature of major 

shopping centers in the U.S.—encourages her to drive to the mall for shopping instead of walking 

to the local stores within her neighborhood. In this scenario, good regional accessibility by means 

of automobile influenced individual Z’s travel mode choice. This scenario aligns with what 

previous studies suggested: i) longer distances can encourage people to make the trip using a faster 

and more convenient mode (such as the automobile) (National Research Council 2005); and ii) 

high accessibility to major shopping centers may promote trips by private cars, in part due to site 

designs (e.g. abundant free parking) (Cervero and Murakami 2010).  

Scenario 4): if the same individual in scenario 3 has the option to take the transit to the 

shopping mall, this may tip the balance in favor of taking the bus. She takes the bus to the mall 

where she walks from the mall to subsequent destinations (e.g., a restaurant or a library) nearby 

because she does not have her automobile with her to drive. In this scenario, regional transit 

accessibility affected the mode choice of individual Z twice: first, she chose the transit mode over 

the vehicle mode for traveling to the shopping mall and second, she walked the short distance from 

the mall to the restaurant/library instead of driving there (a mode choice that she most likely would 

not have made if she had her car and was able to drive). This scenario aligns with what a previous 

study suggested; transit accessibility can facilitate nonmotorized travel at trip ends as taking transit 

to a destination (e.g., workplace or shopping center) requires walking to subsequent destinations 

instead of driving (De Bourdeaudhuij et al. 2003).  
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The above scenarios show how increased regional accessibility (by both automobile and 

transit) throughout the metropolitan area of residence can provide alternative options for travel 

mode (e.g., transit and walking modes) and alternative activity opportunities (e.g., substitute 

destinations for eating, recreation, and shopping). Higher regional accessibility to employment can 

also play a potential role in travel behavior outcomes including the extent of nonmotorized travel. 

For example, if accessibility to employment opportunities is increased within the entire region or 

metropolitan area, residents may be encouraged to trade longer commutes for better jobs, and 

thereby spend more time in a vehicle than conducting walking or bicycling activities.  

 The preceding paragraphs provide examples of how increased regional accessibility may 

encourage residents to leave their neighborhoods, and go farther distances to reach additional 

employment, shopping, recreation, and exercise destinations. In such cases, it is not the local 

accessibility (a micro-level built environment factor) that affects nonmotorized travel occurring as 

a result of additional mode and destination options, but instead, it is the regional accessibility 

throughout the metropolitan area (a macro-level built environment factor). Thus, the role of 

regional accessibility in influencing nonmotorized travel is critical and merits further investigation.   

Moreover, local and regional accessibility may interact to influence nonmotorized travel 

outcomes (e.g., frequency and mode choice) in a neighborhood. In terms of frequency of trips, a 

high level of local accessibility may lead to more walking trips within the neighborhood and fewer 

regional trips by automobile, whereas a high level of regional accessibility may lead to more trips 

to regional centers and fewer local trips (Handy 1993) including any potential local walking trips. 

Regarding the trip mode choice, in areas with high regional automobile accessibility, residents 

may choose the automobile mode due to: a) convenience of the automobile mode; and b) 

availability of a greater variety of destinations farther away from their residence.  
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On the other hand, highly accessible areas may also mean shorter distances to local 

destinations. In this case, residents have the option of choosing the nonmotorized modes and may, 

for instance, choose to walk to their destination instead of driving to it (Handy 1996b; Kockelman 

1997). The possibility of substitution of shorter, within-neighborhood nonmotorized trips for 

longer, out-of-neighborhood automobile trips in pedestrian-oriented neighborhoods with high 

local accessibility have been discussed in past research (Handy 1993; Cervero and Radisch 1996; 

Handy et al. 2005). Hence, consideration of the interaction between local and regional accessibility 

and the potential resulting trade-offs between trips made by motorized and nonmotorized modes 

of travel are important in understanding how neighborhood design influences travel behavior of 

residents, not just on its own, but in the context of the region that it locates in.  

The above arguments provide motivation for considering regional accessibility as an 

essential factor when examining people’s nonmotorized travel mode and destination choices. 

A.2 Health 

In its Preamble of Constitution, the World Health Organization (WHO) defines health as “a state 

of complete physical, mental and social well-being and not merely the absence of disease or 

infirmity” (WHO 2017). Each of the three dimensions of health is characterized on a continuum 

with positive and negative directions; positive health is associated with enjoying life even in face 

of challenges (and not just absence of disease), and negative health is associated with illness or 

even premature death (DHHS 2008).  

Health in both individual and community contexts is a salient and desirable life quality. In 

a way, every other life quality and function depends on being healthy. Health itself, is a quality 

that has many complex aspects and depends on many individual-level and community-level 

attributes. These include factors related to the individual’s biology, social and socioeconomic 
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status, race and ethnicity, gender (Ewing et al. 2014) as well as his/her health-related behavior 

(e.g., physical activity, diet, smoking habits,), the natural and built environments of his/her 

residence and workplace, and in a transportation context, his/her travel behavior.  

From a transportation standpoint, identification of the factors that influence human health, 

and understanding the extent and direction of these effects are essential to development of 

transportation planning policies and urban designs that promote health provisions for more livable 

and healthier communities. 

A.2.1 Physical Activity or a Lack Thereof (i.e., Physical Inactivity) 

Being an important health-related behavior, physical activity has been identified as a major 

contributing factor to human health (see e.g., Andersen et al. 2000; Troped et al. 2001; National 

Research Council 2005; Burbidge and Goulias 2008; Marcus 2008; Sallis et al. 2008; DHHS 2008, 

2018). Physical activity has been defined by the U.S. Department of Health and Human Services 

(DHHS) as “any bodily movement produced by the contraction of skeletal muscle that increases 

energy expenditure above a basal level” (DHHS 2008).  

The health benefits of regular physical activity include reduced levels of weight gain, 

obesity, and depression, as well as lower risk of diabetes; high blood pressure; breast, colon, and 

lung cancers; coronary heart disease; stroke; and premature death (see DHHS 2008, 2018).  

The DHHS provides comprehensive physical activity guidelines for all age groups of the 

population (i.e., children and adolescents, adults, older adults) as well as for individuals with 

special considerations (i.e., pregnant women, adults with disability, and people with chronic 

medical conditions). These guidelines are also recommended by the Centers for Disease Control 

and Prevention (CDC) and the World Health Organization (WHO). The current guidelines on 

physical activity recommend at least 150 minutes per week of moderate physical activity for adults 
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and at least 60 minutes per day of physical activity for children and adolescents (DHHS 2008, 

2018; WHO 2018b). 

Despite all the benefits that physical activity offers, statistics on physical activity levels in 

the U.S. are alarming. The concern is that physical inactivity has become a trend in the U.S. over 

the past half century—most likely due to factors such as decentralization of metropolitan areas and 

urban sprawl, technological innovations, as well as a tendency for sedentary activities and 

lifestyles (King et al. 2002; National Research Council 2005).  

Based on annual data available from years 1998 to 2015, Figure A-3 graphs the annual 

percentage of American adults who reported no leisure-time physical activity.  

 

Figure A-3. Trends in Leisure-time Inactivity Among U.S. Adults (Aged 18+) 

NOTES:  

Inactivity has been measured as the percentage of adults who did not meet the CDC physical activity guidelines; 

The graph is based on age-adjusted data (see source of data); 

Source of data: Health, United States, 2016 - Individual Charts and Tables, CDC - Table 057: 

(https://www.cdc.gov/nchs/hus/contents2016.htm). 

The figure reveals that during the past two decades, on average, approximately 50% of U.S. 

adults did not meet the recommended physical activity requirements. Although inactivity levels 

show a slight decrease around year 2007 and onward, the percentages are still high as they hover 

around 50%. This indicates that half of the adult population of the U.S. do not meet the 
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recommendations of health agencies (DHHS, CDC, and WHO), which is a minimum of 150 

minutes per week of moderate-intensity physical activity, and may be at risk of adverse health 

effects of physical inactivity. Research in the past two decades echoes that physical inactivity has 

become a concerning public health issue in the U.S. (see e.g., Sallis et al. 1998; Lumsdon and 

Mitchell 1999; Troped et al. 2001; King et al. 2002; Hoehner et al. 2005; National Research 

Council 2005; Leslie et al. 2007; Marcus 2008; Marshall et al. 2009).  

There are serious long-term, premature morbidity and mortality-related health risks due to 

physical inactivity (CDC 1999; McMillan 2003; Anderson et al. 2005). In contrast to benefits of 

physical activity, physical inactivity and a sedentary lifestyle are known risk factors for many 

chronic diseases (DHHS 2008; Sallis et al. 2008) including obesity, heart disease, diabetes, stroke, 

hypertension, depression, and cancer (Ewing et al. 2003b, 2008; National Research Council 2005; 

Anderson et al. 2005; DHHS 2008; Burbidge and Goulias 2008; Marcus 2008; Kent and Thompson 

2012; Frank et al. 2016; Liao et al 2016; Sener et al. 2016).  

It is notable that at least four of the ten top leading causes of death in the U.S. are linked to 

physical inactivity. These are: heart diseases (number 1 cause of death), cancer (number 2 cause 

of death), stroke (number 5 cause of death), and diabetes (number 7 cause of death). In 2015, these 

diseases and health conditions accounted for approximately 1.5 million deaths—over 50% of the 

total number of deaths—in the U.S. (National Center for Health Statistics 2017).  

Physical inactivity has also been identified as the fourth leading risk factor for global 

mortality causing an estimated 3.2 million deaths around the world each year (WHO 2018a). Thus, 

the DHHS and CDC inform the American public on the health benefits of regular physical activity 

and recommend that all individuals (including those with disabilities) avoid inactivity by engaging 

in physical activity, even if a small amount (DHHS 2008, 2018). 
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A.2.2 Sounding Alarms on Health Issues 

In 2003, researchers stated “obesity has reached epidemic levels” (McCann and Ewing 2003; 

Ewing et al. 2003b). The same year, obesity and physical inactivity were reported to be the cause 

of for more than 300,000 premature deaths each year (Ewing et al. 2003b). A decade and a half 

later, the obesity rates and the overall population health are still deteriorating in the U.S.  

Figure A-4 depicts the prevalence of obesity by U.S. state in 2017. As seen in the figure, 

obesity has the highest prevalence in states of Alabama, Arkansas, Louisiana, Mississippi, and 

West Virginia. 

 

Figure A-4. 2017 Obesity Prevalence by U.S. State 

NOTES:  

Map is not to scale;  

The positions of Alaska, Hawaii, and District of Columbia are not geographically accurate and are for illustration purposed only. 

 

 

Figure XX 2017 Obesity Prevalence by State 
Notes: Map is not to scale; The positions of the States of Alaska, Hawaii and District of Columbia are not set to geographical accuracy and are for illustration purposed only. 
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In addition to obesity, which continues to top the list of poor health indicators as nearing 

“epidemic proportions” (Handy and Xing 2011), the troubling trends in health in U.S. cities include 

diabetes, hypertension (i.e., high blood pressure), physical inactivity, and stress (Jackson 2003; 

McCann and Ewing 2003; Dannenberg and Sener 2015). The CDC reports show that during years 

2011 to 2014, 36.5% (more than one third) of the U.S. adult population was obese (Ogden et al. 

2015); 8.8% suffered from asthma (Akinbami and Fryar 2016); 12% had diabetes; and over 30% 

lived with high blood pressure (National Center for Health Statistics 2017).  

Figure A-5 shows trends in prevalence of these major health problems among adults aged 

20 and over in the U.S. during the past three decades.  

 

    Figure A-5. Trends in Prevalence of Major Health Problems Among U.S. Adults (20+)  

NOTES:  

The graph is based on age-adjusted data (see source of data); 

Source of data:  

Diabetes and Hypertension: Health, United States, 2016 - Individual Charts and Tables, CDC – Tables 040 and 

054 (https://www.cdc.gov/nchs/hus/contents2016.htm); 

Obesity: NCHS Data Brief No. 219, CDC (https://www.cdc.gov/nchs/data/databriefs/db219.pdf); 

Asthma: NCHS Data Brief No. 239, CDC (https://www.cdc.gov/nchs/data/databriefs/db239_table.pdf#4). 
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As seen from Figure A-5, prevalences of almost all health problems graphed above show 

increasing trends with obesity having the steepest increasing slope. Hypertension prevalence 

shows a slightly decreasing slope between years 2004 and 2010; however, it regains its increasing 

trend after year 2010, although at a very slow rate. The slight decrease in asthma prevalence 

between years 2005 and 2009 also gives way to an increasing slope from 2009 onward. 

These trends make these health problems more than just a personal problem!  

Aside from the physical and emotional suffering endured by people who are dealing with 

them, the above health issues impose a financial burden on individuals, families, and the society 

as a whole. The annual medical expenses of health problems such as obesity have been estimated 

to be tens of billions in the U.S. by past studies (Cervero and Duncan 2003; Khattak and Rodriguez 

2005). A more recent report estimates the annual healthcare cost of lack of physical activity and 

its resultant negative health outcomes in the U.S. to be around $117 billion (DHHS 2018). 

A.2.3 Health Research and Behavioral Theories 

As elaborated in preceding sections, being a key health-related behavior, physical activity or lack 

thereof contributes to human health or lack thereof. Thus, to better understand health, researchers 

have turned to theories that explain human behavior including health behavior such as physical 

activity. As a result, research on physical activity has benefited largely from theories in the field 

of psychology. One such theory is the theory of planned behavior developed by Ajzen.  

The theory of planned behavior considers the role of three factors in performing or not 

performing a certain behavior: 1) attitudes; 2) subjective norms; and 3) perceived behavioral 

control. Attitudes toward the behavior are individuals’ evaluations of the behavior, which can be 

favorable or unfavorable toward the behavior. Subjective norms are the perceived social pressure 

that individuals feel in performing or not performing the behavior (Ajzen 1991). In other words, 
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subjective norms represent the approval or disapproval of the family, peers, society, or other 

groups deemed important to the individual in performing a certain behavior. In that sense, 

subjective norms can be representative of the sociocultural characteristics of the social 

environment in which the individual lives. Perceived behavioral control over the behavior was 

defined by Ajzen as individuals’ “perception of ease or difficulty of performing the behavior of 

interest”. The perceived behavioral control also represents past experience. With regards to a 

certain behavior, it is assumed that more favorable attitudes, more encouraging subjective norms, 

and greater perceived behavioral control can lead to higher likelihood of performing the behavior. 

The application of the theory of planned behavior to physical activity—and more 

specifically, to active travel—would mean that whether or not an individual engages in active 

travel is influenced by the individual’s attitudes toward active travel, his/her perceptions of ability 

to perform active travel, and his/her beliefs about social and cultural norms toward active travel.  

The theory of planned behavior also assumes that behavior results from rational decisions 

(Gochman 1997; Van Acker et al. 2010)—an assumption similar to the assumption of the utility-

maximization theory of travel behavior. Attitudes and social norms are notions that are absent from 

the utility-maximization framework for explaining travel behavior; therefore, the theory of planned 

behavior may be a better framework to model health behavior such as active travel compared to 

the utility-maximization framework.  

The shortcomings of the theory of planned behavior in explaining health behavior such as 

physical activity (i.e., active travel in this context) is that two important concepts—the social 

environment and the physical environment—are not included in the framework of this theory, at 

least in the sense of objective measures. For instance, although attitudes and perceptions about the 

physical (i.e., built) environment can be included in the framework (subjective measures), the 
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theory does not consider objective measures of the physical environment in its framework to 

explain behavior (National Research Council 2005).  

Because an individual is a member of the society, lives within a physical neighborhood, 

and travels to various destinations (Van Acker et al. 2010), the social and physical (i.e., built) 

environments have a potential to influence individuals’ behavior and can play a crucial role in 

physical activity. Thus, to more comprehensively conceptualize model frameworks that explain 

physical activity, researchers more often rely on the social cognitive theory (Bandura 1986) and 

its more recent variant, the ecological model of health behavior.  

The social cognitive theory was introduced by Bandura and explains an individual’s 

behavior in terms of reciprocal and interacting relationships between the individual’s 

characteristics, his/her behavior, and the social environment in which the behavior is performed. 

The most important setting within the individual’s social environment is the household (Gochman 

1997; Handy 2005; National Research Council 2005; Van Acker et al. 2010). In other words, social 

cognitive theory posits that both the individual and his/her social environment influence each other 

(i.e., the concept of reciprocal determinism). In clarifying the concept of reciprocal determinism, 

Bandura defined reciprocal as “the mutual action between causal factors” (Bandura 1986).  

Although reciprocal determinism is a key component of the social cognitive theory, the 

role of other concepts such as that of “observational learning” in human behavior is also considered 

within the social cognitive theory. Humans learn and form rules of behavior by observing others 

and modeling actions based on this observation (Bandura 1986); thus, if an observer’s environment 

is supportive of the new behavior, observational learning may lead to behavioral change 

(McAlister et al. 2008). The social cognitive theory framework provides a better understanding of 

the role of various individual and social factors in human behavior as well as those of the 
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behavioral learning processes. This makes the social cognitive theory a suitable framework for 

modeling health behavior outcomes such as levels of physical activity. Such a model can capture 

the influence of personal characteristics (e.g., beliefs and attitudes) and observed behavior (e.g., 

sociocultural norms) on physical activity. 

An extension of the social cognitive theory, the ecological model of behavior, 

conceptualizes multiple interacting levels of various influences for an individual’s behavior. These 

levels often include: the intrapersonal level (e.g., biological, psychological), the interpersonal level 

(e.g., social environment, sociocultural norms), the organizational level, the community level (e.g., 

physical environment), and the policy level (Handy 2005; Sallis et al. 2008). Any influence on 

activity and behavior is thought to interact across these multiple levels of influence.  

Since the ecological model of behavior stems from the social cognitive theory, it includes 

all the components of that theory in its framework (i.e., personal characteristics and behavior as 

well as the social environment). In addition, the framework of the ecological model of behavior 

incorporates a policy level as well as additional environmental (both physical and social) levels of 

influence each of which may operate at various levels. These include the broader community and 

organizational levels of influence. In a sense, the social cognitive theory focuses on the social 

environment, whereas the ecological model emphasizes the influence of the spatial environment 

(Handy 2005; Van Acker et al. 2010).  

Equipped with individual, social, and spatial dimensions and multiple levels of influence, 

ecological models can provide a more integrated and more comprehensive framework for 

modeling human behavior including health behaviors such as physical activity and its travel-

related form, active travel. Based on the ecological model framework, a change in a particular 

health behavior is expected to be maximized when the change affects all or most of the levels of 
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influence: i) the individuals are motivated to make a choice toward that health behavior (i.e., the 

intrapersonal level); ii) the social and cultural norms are supportive of the behavior (i.e., the 

interpersonal level); iii) the environments are conducive to the behavior (i.e., the environmental 

level); and iv) the policies are promotive of the behavior (i.e., the policy level) (Sallis et al. 2008).  

Applied to the active travel concept, the ecological model implies that individuals will be 

more likely to engage in active travel if: i) they are motivated to do so; ii) there is an encouraging 

culture toward active travel within the society; iii) the built environment is pedestrian- and bicycle-

friendly; and iv) policies promoting active travel are in place. Ecological models have gained 

increasing popularity in health research during the past two decades. This is partially due to the 

ability of these models to guide comprehensive framework and intervention approaches—at each 

level of influence—for changing health behaviors that can lead to reduced risks of prevalent health 

problems (Sallis et al. 2008). The simple basic premise of ecological models makes it a promising 

framework to guide modeling efforts of health behavior and development of more effective 

multilevel interventions that can encourage individuals to make healthful choices. 

A.2.4 Health and Nonmotorized Travel Behavior  

As previously indicated, regular physical activity can provide substantial health benefits to all 

segments of the population including adults, children, and individuals with disabilities. The 

DHHS, the CDC, and the WHO currently recommend a minimum of 150 minutes per week of 

moderate-intensity physical activity for adults, and a minimum of 60 minutes per day of moderate-

intensity physical activity for children (DHHS 2008, 2018; WHO 2018b). As forms of health-

enhancing physical activity recommended by the DHHS, the CDC, and the WHO, walking and 

bicycling (i.e., nonmotorized travel) can help satisfy these physical activity recommendations to 

attain health benefits and sustain a healthy lifestyle. 
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Walking and bicycling are inexpensive (Oja et al. 1998; Lee and Moudon 2004) and 

available to all people of all ages and socioeconomic status. Therefore, these modes are considered 

sustainable modes of travel that can be easily incorporated into individuals’ daily activities, and 

thereby contribute to their daily physical activity and health status. Walking and bicycling can help 

improve the overall health and well-being of individuals by protecting against various types of 

chronic diseases and health problems such as obesity, diabetes, high blood pressure, metabolic 

syndrome, and cardiovascular diseases (see e.g., Oja et al. 1991; Ross 2000; Leslie et el. 2007; 

Gordon-Larsen 2009; Pucher et al. 2011; Oja et al. 2011; Musselwhite et al. 2015; Barr et al. 2016; 

Sener et al. 2016) and by relieving anxiety and depression and promoting mental well-being 

(McCann and Ewing 2003; Musselwhite et al. 2015; Tsunoda et al. 2015). 

Moreover, walking is the most fundamental form of transportation (Agrawal and Schimek 

2007). It is also a natural, common, popular, and low-cost form of physical activity, which may be 

the predominant form of physical activity for lower income groups (Hovell et al. 1992; Siegel et 

al. 1995; Lumsdon and Mitchell 1999; Lee and Moudon 2004; Handy et al. 2006; Gordon-Larsen 

2009; Nehme et al. 2016; Carver et al. 2016). Bicycling, in turn, has been mentioned as a low-cost, 

environmentally friendly transportation mode, which can be an important means for reaching 

destinations and achieving physical activity goals (Handy and Xing 2011; Ma and Dill 2015).  

A.2.5 Health and the Role of the Built Environment 

Health is a function of health behavior. Thus, to better understand the factors that influence human 

health, one should start with gaining a better understanding of factors that affect health behavior. 

Health behavior has previously been defined in many ways. Gochman (1997) defined health 

behavior as “overt behavior patterns, actions and habits that relate to health maintenance, to health 

restoration and to health improvement”. Based on this definition, health behavior can basically be 
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any activity undertaken by individuals to improve their health and well-being and/or to prevent 

health problems and disease. Health behaviors can include physician visits and medical screenings, 

dietary consciousness and consumption of healthy food as well as regulating levels of physical 

activity, smoking, and alcohol consumption. This makes health behavior research an 

interdisciplinary and multidisciplinary area of research (Gochman 1997).  

Many forms of health behavior are not independent of environmental settings, especially 

the built environment surrounding the place of residence. Health behavior such as physical activity 

and active travel can particularly be affected by environmental factors. Literature suggests that 

travel behavior is the outcome of opportunities and constraints at three levels: 1) the individual 

level (i.e., personal socio-psychological characteristics such as attitudes and perceptions); 2) the 

social level (i.e., sociodemographic, socioeconomic, and sociocultural characteristics such as 

gender, income, and ethnicity); and 3) the spatial level (i.e., quantity and quality of built/natural 

environment characteristics such as density, diversity, and design) (Van Acker et al. 2010; Harms 

et al. 2014). Therefore, as a form of travel behavior, active travel can be influenced by built 

environment factors. In addition, the ecological model of behavior emphasizes the role of the built 

environment in behavior including health behavior such as physical activity and active travel. The 

built environment characteristics of the place of residence have been empirically proved to have 

an impact on health behavior such as physical activity, particularly in its active travel form (i.e., 

walking and bicycling) (see e.g., Giles-Corti and Donovan 2003; Frank et al. 2004; Rodríguez et 

al. 2009 among many others as elaborated in Chapter 2). Thus, it can be assumed that the built 

environment can influence human health through influencing physical activity and active travel. 

Further, the built environment has a potential to affect health of individuals more directly. 

For example, the air quality in a certain area can influence health of residents and depends on 
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various built environment-related factors such as the existence of industrial sites, level of traffic 

and congestion on roadways, and existence of green spaces. Also access to healthy food options—

a built environment factor—can potentially affect individuals’ health status. Thus, the built 

environment has the potential to influence individuals’ health both directly by providing or 

preventing qualities such as standard ambient air and healthy dietary needs as well as indirectly 

through facilitating or constraining health behaviors such as physical activity (e.g., active travel). 

Therefore, built environment attributes are essential components of health research and 

many researchers include them in modeling health behavior and health outcomes (see e.g., Frank 

et al. 2004; Smith et al. 2008; Samimi et al. 2009; Samimi and Mohammadian 2009; Ewing et al. 

2014; Marshall et al. 2014). Meanwhile, health-promoting elements of the built environment are 

emerging from these research efforts. Studies are finding that compactness, land use diversity, and 

design of communities play a role in residents’ health and undesirable health trends can be partially 

caused by the effects of the built environment characteristics of individuals’ residential location 

(see e.g., Ewing et al. 2003b; Frank et al. 2004; Marshall et al. 2014; Ewing et al. 2014). 

A.2.5.1 Health and the Spatial Scales of the Built Environment 

The built environment as Joshu et al. (2008) puts it is a “multidimensional construct” that can be 

categorized by scale. As previously stated, the multiple hierarchical dimensions (i.e., spatial scales) 

of the built environment can include the building or site, the street block, the neighborhood, and 

the region. In a health context, each of these scales can play a role in individuals’ health—either 

directly or indirectly—through facilitating or constraining health behavior such as active travel or 

other forms of physical activity. 

The building or site may have certain features such as stairwells that facilitate physical 

activity (National Research Council 2005) and have a potential to indirectly impact the health 
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status of individuals. The street block size as well as the neighborhood’s built environment 

attributes such as network design patterns (i.e., grid-like vs. cul-de-sac), level of land use mix, and 

availability of recreational facilities can also impact health outcomes directly or indirectly by 

influencing levels of physical activity and active travel. Further, the built environment 

characteristics of the region such as the region’s size, distribution of employment opportunities, 

and supply of transportation facilities influence commute times, travel choices, and physical 

activity levels (National Research Council 2005), and can thereby impact residents’ health status.  

In addition, the influence of the built environment on health behaviors such as physical 

activity at one spatial scale may affect the influence of the built environment at another spatial 

scale (Handy 2005). In other words, the built environment at a certain spatial scale may interact 

with the built environment at a different scale to influence health outcomes. Literature argues that 

built environment factors exhibit differing patterns at each geographical scale, and in any analysis 

of multiple attributes of the built environment, various areas may trade off one attribute for the 

other (Marshall et al. 2009).  

It is noteworthy to mention that although various spatial scales of the built environment 

have been identified by past studies, the exact size and boundaries of the areas falling in each scale 

category are still ambiguous in literature. For instance, the neighborhood has been arbitrarily 

defined in past health-related studies as an area with a size ranging from a buffer zone around the 

residence (see e.g., Frank et al. 2004 and Timperio et al. 2010) to the census tract of the home 

address (see e.g., Ross 2000). The region can be considered a county as many health studies have 

conducted their analysis at the county level (see e.g., Samimi et al. 2009; Ewing et al. 2014); 

however, some researchers argue that in an urban context, the region may be defined as the 

metropolitan area (National Research Council 2005).  
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To probe the link between the built environment, health behavior and health outcomes, a 

three-level built environment hierarchy has been proposed in past research. These three levels 

include: 1) the micro level (e.g., immediate local area/neighborhood); 2) the meso level (e.g., 

neighborhood/community); and 3) the macro level (e.g., metropolitan area or county) (King et al. 

2002 and Ewing et al 2003b). This hierarchical structure can be used in conceptualization of 

comprehensive frameworks to examine the role of various spatial scales of the built environment 

in health as well as in identification of factors that exert the greatest effect on health behavior and 

health outcomes at each scale. 

A.2.6 Why the Macro-level Built Environment Matters in Health Research 

A.2.6.1 The Macro-level Built Environment, Health, and Calls in the Literature 

Health promotion research is increasingly shifting toward ecological orientations, which provide 

more comprehensive frameworks by considering influence and interventions at multiple scales and 

in various contexts (Kent and Thompson 2012). As a basis for research on health behavior, the 

ecological model of behavior posits that factors from multiple levels of influence including the 

individual level, the social/sociocultural level, as well as the physical (i.e., built) environment level 

can affect health behavior. Within these levels, concepts that operate at multiple levels themselves 

are the sociocultural and the built environment levels (Sallis et al. 2008). The ecological model 

puts special emphasis on the role of multiple levels of the built environment in health behavior, 

which can impact health outcomes.  

An important type of health behavior is physical activity and its travel-related form, active 

travel (i.e., walking and bicycling). Research on physical activity suggests that the built 

environment at many geographic scales—including the micro-level (i.e., neighborhood) as well as 

the macro-level (i.e., the region)—can influence the propensity of being physically active 
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(National Research Council 2005). On the other hand, more comprehensive ecological frameworks 

recognize the role of larger-scale (i.e., macro-level) economic and other factors that shape the 

factors at the local (i.e., micro-level) context (Kent and Thompson 2012). Therefore, considering 

the characteristics of the macro-level built and social environments in frameworks of health 

research is essential.  

While the ecological models provide a comprehensive framework to examine the role of 

multiple levels of the built environment in health behavior, very few empirical studies have 

included macro-level spatial factors in their analysis. In addition, studies that consider the macro-

level spatial factors together with micro-level spatial factors in one model are scarce. The studies 

that did consider macro-level built environment variables in their analysis found that the macro-

level built environment influences physical activity, and may influence health outcomes in the long 

run (Braun and Malizia 2015). Further, health promotion and health policy research increasingly 

rely on multilevel interventions to solve health problems such as the obesity epidemic through 

improving the environment (e.g., built and social) to promote physical activity (Sallis et al. 2008).  

Considering the hints in the literature and the limited empirical research regarding the 

potential role of the macro-level built environment in health behavior and health outcomes, it is 

crucial to broaden the spatial scope of the analysis to include macro-level spatial factors in the 

research framework. Such comprehensive framework can help researchers and policymakers 

determine the role of the overall structure of cities in residents’ health behavior and health status. 

A.2.6.2 Health Implications of Sprawl, Decentralization, and Commuting 

The steady trends in decentralization of metropolitan areas and urban sprawl in the U.S. after 

World War II has turned most American cities into “automobile cities”. The dispersed locations 

of suburban developments have resulted in increased travel distances to many daily destinations 
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(e.g., school, grocery store, bank, gym) for many Americans. More importantly, increased 

commute distances and travel times have also made active travel (i.e., walking or bicycling) to 

many employment sites impractical. Further, other common features of sprawling urban design 

such as high-speed roads and vast parking lots for commercial sites have made walking and 

bicycling to destinations unsafe, unpleasant, and unsuitable (McCann and Ewing 2003). As a 

result, the automobile has become the main mode of travel as it is most often the only practical 

mode of travel. Long commutes and the dominance of the automobile as the mode of travel has 

led to a decline in physical activity levels both in the forms of active travel (i.e., walking and 

bicycling) and leisure-time exercise. This is a problem!  

As elaborated previously, physical inactivity and sedentary behavior influence individuals’ 

health both in terms of physical and mental health. Researchers have been long suspecting that 

sedentary lifestyles associated with automobile dependency can be partially blamed for the 

declining health trends (Cervero and Duncan 2003; Khattak and Rodriguez 2005). Thus, by 

increasing commute distances and durations, decentralization and urban sprawl promote physical 

inactivity and sedentary behavior, which can affect downstream health outcomes for residents. 

For instance, the influence of urban sprawl can be considered three-fold as related to 

physical inactivity and one of its subsequent health outcomes—obesity. These influences include: 

1) increased trip distances due to sprawling designs can lower physical activity levels by 

encouraging automobile use and making active travel impractical; 2) sprawling suburban designs 

can lead to long commute times and traffic congestion, which divert time from activities such as 

exercising; and 3) suburban developments do not provide recreational facilities such as parks that 

allow physical activity (Plantinga and Bernell 2007). Each of these three effects can result in lower 

physical activity levels and consequently, higher obesity levels.  
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It is evident from existing research that a movement from compact urban neighborhoods 

to sprawling suburban communities has meant a reduction in daily levels of physical activity 

(McCann and Ewing 2003)—an important health behavior with crucial downstream health effects. 

Urban sprawl has been linked to factors that have a potential to influence health (e.g., long private-

vehicle commute distances and times, physical inactivity, poor air quality, and lack of social 

capital) as well as health outcomes (e.g., obesity, coronary heart disease, and traffic fatalities) 

(Ewing et al. 2014). In addition, lower regional transit accessibility affects levels of automobile 

use as well as public transportation ridership and active travel levels— all of which can influence 

downstream health outcomes. Therefore, consideration of macro-level sprawl measures, regional 

accessibility, and commute-related characteristics in the analysis of health outcomes is essential. 

A.2.6.3 Neighborhood Location in the Context of Metropolitan Area 

So far, it has become clear that individuals’ health is influenced by their health behavior such as 

physical activity, which may in turn be influenced by multiple levels of the built environment 

including the micro-level (e.g., neighborhood-level) and the macro-level (e.g., metropolitan-level) 

built environments. However, there is a possibility that these levels may not operate separately and 

can interact to exert joint effects on physical activity levels of residents. Literature suggests that 

by interacting with the neighborhood-level built environment, the overall built environment of the 

metropolitan area can impact travel behavior over time (He and Zhang 2012).  

Thus, it can be hypothesized that active travel (i.e., physical activity) can be also influenced 

by interactions between neighborhood-level and metropolitan area-level built environment factors. 

In addition, the ecological model of behavior specifies that influences on behavior (e.g., physical 

activity) interact across multiple levels (Sallis et al. 2008) including the various levels of spatial 

influence (i.e., built environment) such as the micro (i.e., the neighborhood) level and the macro 
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(i.e., the metropolitan area) level. Hence, with regards to health behavior such as physical activity, 

the location of the neighborhood in the context of the metropolitan area is of importance. 

Researchers argue that although micro-level built environment factors are associated with physical 

activity, the prevalence and relevance of micro-level factors depend on the macro-level built 

environment factors as well as the interaction between built environment factors at the micro and 

macro levels (Joshu et al. 2008). Others stated that it is unclear which specific macro-level factors 

may have the strongest influence on physical activity behavior, either by themselves or in 

combination with other levels (i.e., meso or micro levels) (King et al. 2002).  

Therefore, the context of the metropolitan area (i.e., macro-level built environment) within 

which the neighborhood (i.e., micro-level built environment) is located is an important 

consideration in the analysis. Such analysis can help in determining the separate effects that each 

level of the built environment may have on physical activity and health outcomes for residents. 

A.2.6.4 People Do Not Stay within Their Neighborhoods 

In probing the link between the built environment and health, Braun and Malizia (2015) noted that 

most of previous studies investigated built environment characteristics within the neighborhood of 

residence. Nonetheless, people do travel outside of their neighborhoods. Also, built environment 

attributes exhibit differing spatial patterns, and in any analysis of multiple attributes of the built 

environment, various areas may trade off one attribute for the other (Marshall et al. 2009). For 

instance, a specific built environment attribute at the county level can be influential in health of 

residents, whereas the same attribute at the city level may not have a significant health impact.  

As individuals may travel to different places at different distances each day, they may 

experience a wider range of attributes for some aspects of the built environment than for others. 

Therefore, various spatial levels may impact health of individuals. Particularly, built environment 
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characteristics beyond the residential neighborhood such as those of the macro level (e.g., county 

or metropolitan area) may potentially influence health behavior (such as physical activity) and 

health outcomes. These factors recognize that individuals travel beyond their neighborhood 

boundaries to conduct various activities (Braun and Malizia 2015). Thus, consideration of the 

effects of built environment factors at various levels of geography including those beyond the 

neighborhood boundaries is important in promoting essential health provisions. 

A.2.7 Health, Telecommuting, and Teleshopping 

As technology rapidly and continuously evolves, it offers more advanced applications, which 

facilitate communication and electronic access to information. Termed Information and 

Communication Technologies (ICT), these applications can influence travel behavior.  

In general, ICT exert their influence on travel through two major effects. These include:  

1) the substitution effect; and 2) the complementarity effect (see e.g., Mokhtarian 2002; Banister 

and Stead 2004; Konrad and Wittowsky 2018). As travel-related applications of ICT, 

telecommuting and teleshopping may, therefore, impact travel behavior through substitution or 

complementarity effects. For instance, by substituting commute trips with telecommuting, workers 

can eliminate actual trips to or from their workplaces.  

As a consequence of advances in ICT, a growing number of employers have been offering 

telecommuting options to their employees in recent years. A 2011 report on the status of 

telecommuting in the U.S. concluded that telecommuting grew by over 60% between years 2005 

and 2009, and over 2% of the non-self-employed workers telecommuted as a primary means of 

transportation to work (Lister and Harnish 2011). The same study also found that while nearly 3 

million individuals telecommute in the U.S., 45% of the U.S. workforce has a job that can be 

performed—at least part-time—by telecommuting.  
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But, how does telecommuting affect human health? or does it at all? 

Telecommuting has been suggested in prior research to have many psychological benefits. 

Lower levels of occupational stress, improved job performance, and greater job satisfaction are 

among the benefits that telecommuting can offer employees (Baruch 2001; Steward 2001; 

Robertson et al. 2003; Ganendran and Harrison 2007; Henke et al. 2015). These aspects of 

telecommuting can potentially improve psychological health of employees in the long term.  

On the other hand, there are negative aspects to telecommuting. Previous research lists 

extended work hours and workload, blurriness of work and personal time limits, social isolation, 

and increased work-related stress among the disadvantages of telecommuting with a potential to 

impact psychological health of employees (Robertson et al. 2003; Henke et al. 2015).  

Moreover, psychological and physical well-being can be interrelated (van Wee and Ettema 

2016) as a positive link between psychological and physical health has been confirmed (Gochman 

1997). Considering the effects of telecommuting on psychological health, it can therefore be 

hypothesized that telecommuting has a potential to affect individuals’ physical health as well. For 

instance, telecommuting may pose negative effects on employees’ physical health because of 

psychological pressure and stress levels that it can potentially impose to them. 

Stress has, in fact, serious psychological and health consequences (Wener and Evans 2011). 

Chronic stress is related to lower levels of favorable health outcomes (Lloyd et al. 2005; Hammen 

2005; Kiecolt-Glaser et al. 2015; Künn-Nelen 2015), and thereby it is a risk factor for many health 

problems including obesity, hypertension, coronary heart disease, and cardiovascular disease 

(McEwen 1998; Henke et al. 2015).  

Research suggests that commuting to work is stressful (Evans et al. 2002; Evans and Wener 

2006; Ganendran and Harrison 2007). With regards to the mode of commute, although longer 
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commutes by rail have been suggested to be linked to stress (Evans and Wener 2006; Künn-Nelen 

2015), commuting by train and bicycle or on foot have been deemed less stressful than commuting 

by car (Wener and Evans 2011; Rissel et al. 2014). 

Driving on congested roads has been suggested to be a major contributor to stress (Stokols 

et al. 1978; Evans et al. 2002; Jackson 2003; Evans and Wener 2006; van Wee and Ettema 2016). 

Car commuting stress has been suggested to be related with increased elevated cardiovascular 

outcomes (Evans and Wener 2006) as well as increased cognitive impairment and illness and lower 

overall life satisfaction (Rissel et al. 2014).  

Aside from stress, many negative health-related outcomes—including elevated pulse and 

blood pressure as well as lowered frustration tolerance—have been suggested to have a link with 

commuting (White and Rotton 1998). Also, longer car commuting duration has been found to be 

associated with higher body mass index (BMI) (Frank et al. 2004; Lindström 2008). Additionally, 

a recent study found that adverse health effects impacted car drivers more than commuters who 

used public transit; for car drivers, longer commuting time was related to lower health satisfaction, 

lower health status and more visits to health providers as well as a higher BMI (Künn-Nelen 2015). 

Thus, it is evident that unnecessary commutes—particularly by automobile—can impose 

health risks to individuals including the risk of elevated: stress, fatigue, and blood pressure levels 

due to encountering traffic congestion (Evans et al. 2002; Rissel et al. 2014; Künn-Nelen 2015). 

Other health issues related to car commuting include having poorer health due to inhaling polluted 

air and an increased possibility of being involved in traffic crashes and sustaining crash-related 

injuries (or even death). Lack of or unsafe transportation has been postulated to be a “toxic stress”, 

which has adverse health impacts (Corburn 2015). Moreover, chronic exposure to toxic stressors 
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such as long commute times, pollution, and noise contributes to many other health problems 

including hypertension (Schulz et al. 2012; Corburn 2015). 

Telecommuting, on the other hand, eliminates the unnecessary commute to and from the 

office, and thereby has a potential to lower traffic-related stress levels and health risks for the 

telecommuter. Existing literature on telecommuting brings these health-related issues to attention, 

even if not directly focusing on a health context (see e.g., Lister and Harnish 2011; Khan 2015). 

By eliminating the commute to work, telecommuting can provide employees some extra time 

during the day. Lister and Harnish (2011) suggest that individuals can regain approximately one 

week worth of spare time per year by telecommuting. This free time can be spent on physical 

activity or other health-promoting activities, which can affect the health status of the individual. 

Besides having the above-mentioned potentials to influence the health of the 

telecommuters, telecommuting has a potential to impact the health of other individuals living in 

the community. The potential role of the telecommuting phenomenon in mitigating traffic 

congestion and reducing the number of peak-period work trips has been discussed by many 

researchers in the past (see e.g., Mokhtarian 2003; Balaker 2005; Lister and Harnish 2011; Khan 

2015). By alleviating congestion on streets and highways within an area, high rates of 

telecommuting can lead to lower health risks (such as those of traffic-related stress) for non-

telecommuter residents who can enjoy commuting on less-congested networks.  

Further, all residents of a high-rate telecommuting community can enjoy the lower levels 

of transportation-related air pollution within the area, which is a benefit of telecommuting. 

Even though telecommuting provides all the advantages above, the effects of 

telecommuting on physical health can go two ways. On the one hand, and as indicated previously, 

telecommuters may have more time at hand to spend on physical and exercise activities due to less 
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commute time. This may lead to an improved weight and other favorable health outcomes for 

them. On the other hand, telecommuting has a potential to encourage a sedentary lifestyle. The 

telecommuter does not have to leave his home (or even his chair) to go to work, and this may 

decrease the level of individual’s daily physical activity. Excessive participation in computer-

related activities has been postulated to decrease physical activity levels (King et al. 2002). 

Telecommuting is a perfect example of computer-related activities, which can promote 

sedentary behavior and physical inactivity. Further, telecommuting may affect the individual’s 

diet. Working from home provides the telecommuter with constant and convenient access to the 

refrigerator. Over-snacking and overeating may become problems and over time, can affect weight 

and health status of the telecommuter. Another caveat is that telecommuters may end up working 

additional hours since there is no specific time to end work activities and return home. This may 

lead to fatigue and its related adverse physical health effects.  

Thus, if telecommuting frequency is high, and the telecommuter does not take a more 

disciplined approach toward her/his diet, exercise, and work schedule, she/he may not get the basic 

amounts of physical activity that is necessary to maintain a healthy weight; an issue which can 

affect her/his physical health. The potential of telecommuting to negatively affect eating and 

exercise habits has been mentioned in previous research (Henke et al. 2015). These effects may 

lead to obesity or other related health problems.  

Considering the above arguments, it seems that telecommuting can act as a double-edge 

sword when it comes to its role in health in terms of both physical and phycological health 

outcomes. Examining the effects of telecommuting on health—particularly physical health—is an 

interesting area of research which very few empirical studies have so far explored.  
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Along the same lines of argument is the role of teleshopping in health. The potential of 

teleshopping to impact health is derived from its potential to influence business-related travel 

behavior. As a travel-related application of ICT, teleshopping can impact business-related trips 

through substitution or complementarity effects.  

The potential of teleshopping to substitute for business-related trips applies to customer 

trips to or from stores; teleshopping eliminates the need for customers to make actual trips to 

different stores to purchase their desired goods. The potential of teleshopping to exert 

complementarity effects on travel applies to trips made by business associates; teleshopping can 

lead to generation of an increased number of trips due to deliveries or pick-ups of online orders.  

With respect to health impacts, activities related to teleshopping can either promote or 

discourage physical activity, which in turn, affects the health status of individuals. For instance, 

by eliminating the need to make actual trips (i.e., substitution effect), teleshopping may save some 

time during the day, which can be used for exercise. Conversely, elimination of actual trips can 

also mean that individuals do not have to leave their homes to purchase their needed goods. This 

latter case may lead to development of sedentary behaviors and lower levels of physical activity—

particularly for frequent and regular online shoppers—and thereby, adversely affect their health. 

Moreover, the delivery and pick-up activities related to goods purchased through online 

shopping services may lead to generation of additional automobile or nonmotorized trips by 

deliverers. Regular deliveries by automobile can limit the time, energy, or willingness for 

performing physical activity, which may result in adverse health outcomes over time. On the other 

hand, delivery trips made by bicycle incorporate physical activity into the delivery trip and may 

lead to health benefits for the deliverer. The same can be said in the case where a deliverer walks 

to several destinations—located close to each other—to distribute items after parking her/his 
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vehicle. Supporting these arguments are the findings of Frank et al. (2004) who found a higher 

likelihood of obesity was related to more time spent in a vehicle, whereas a lower likelihood of 

obesity was associated with higher levels of walking.  

In addition to the customers and deliverers themselves, teleshopping can potentially impact 

the health status of other residents in the community through elimination or generation of vehicular 

trips. For example, consider the scenario of purchase returns. That is, an online purchase not only 

requires a delivery trip, but also may require a pick-up trip if the customer is not satisfied with the 

item. This process can be repeated several times, generating several vehicular trips for the purchase 

of a single item until the customer is satisfied with the purchase; a task that could have been 

completed with one vehicular trip to the store by the customer. In such scenarios, the increased 

number of automobile trips within an area due to activities related to repeated deliveries and return 

pick-ups may lead to higher levels of air pollution, which can affect the respiratory health of 

residents.  

Other scenarios can also be hypothesized with regards to the role of teleshopping in health. 

However, the effects of teleshopping on health outcomes have not been previously examined in 

empirical research and is an open field of hypotheses. 
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Appendix B 

Nonmotorized Travel Behavior, the Built Environment, and Health:  

A Comprehensive Review of the Literature 

The purpose of this literature review is mainly to synthesize what previous research reveals about 

the interwoven relationships among nonmotorized travel, the built environment, and health. 

Specifically, this appendix provides a comprehensive review of the literature on: i) pedestrian and 

bicyclist travel behavior and the role of the built environment in their activities; and ii) the health 

impacts of nonmotorized travel and telecommuting behaviors and the built environment.  

The review starts with a general overview of the literature on nonmotorized travel behavior 

from various fields of research. It continues with a discussion of studies focusing on the 

relationship between the built environment and nonmotorized travel. This is followed by a detailed 

review of the effects of various factors that—based on literature—play a key role in walking and 

bicycling. Next is the literature on the relationship between health and nonmotorized travel, the 

role of built and social environments in health, and the health impacts of telecommuting behavior.  

This comprehensive review of literature provides the foundation of the discussion in 

Chapter 2 of this dissertation regarding the current state of research on nonmotorized travel 

behavior and health outcomes, identification of the remaining gaps and limitations in the existing 

literature, as well as how the present research aims to fill some of those gaps. 

B.1 Overview of Nonmotorized Travel Behavior Literature 

The topic of nonmotorized (i.e., walking and bicycling) travel behavior and factors affecting it cuts 

across multiple scientific disciplines and it has been referred to as a “multidisciplinary” issue by 

some researchers (see e.g., Lee and Moudon 2004; McMillan 2005). As concepts such as active 

living by design gain more momentum in academic, government and public discourses (Fan 2007), 
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numerous researchers have made endeavors in the walking and bicycling travel behavior subject 

matter. As a result, the existing literature comes from various academic disciplines including 

transportation planning, urban design, public health, psychology, sports and preventive medicine. 

B.1.1 Transportation Planning/Urban Design Literature 

Many studies in the field of transportation planning and urban design have contributed to the 

discussion on walking and bicycling travel behavior. These modes of transportation are often 

referred to as nonmotorized modes of travel in the transportation planning/urban design literature 

(see e.g., Frank and Pivo 1994; Cervero 1996; Handy 1996b; Kitamura et al. 1997; Cervero and 

Kockelman 1997; Porter et al. 1999; Desyllas et al. 2003; Rodríguez and Joo 2004; Targa and 

Clifton 2005; Schwanen and Mokhtarian 2005; Plaut 2005; Cao et al. 2006; Agrawal and Schimek 

2007; Mitra and Buliung 2012; Schneider 2015). The utility-maximization framework—widely 

used for analysis of travel behavior in transportation planning and urban design studies in the form 

of discrete choice models (Ben-Akiva and Lerman 1985; Train 2009)—is also applied to model 

nonmotorized travel choices within these disciplines. The effects of many factors have been tested 

and several methodologies have been employed in previous research to analyze various travel 

behavior outcomes including the walking and bicycling mode choice, the frequency of 

nonmotorized trips, and the proportion of such trips.  

Within the transportation planning/urban design community, investigation into the topic of 

walking and bicycling modes as alternatives to the private automobile mode has intensified during 

recent years with the emergence of new concepts such as smart growth, new urbanism, transit-

oriented development (TOD), complete streets, livable communities, and sustainable 

transportation. The main principle common to all these concepts is to shift views from traditional 

land use planning, network design, and travel behavior with the private vehicle being the main 
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mode of travel to planning and designing frameworks that are more conducive to nonmotorized 

travel modes and sustainable travel behavior (Friedman et al. 1994; Cervero and Radisch 1996; 

Cervero and Kockelman 1997; King et al. 2002; Rodríguez and Joo 2004; Wood et al. 2010).  

B.1.2 Public Health/Preventive Medicine/Psychology Literature 

As the interactions between transportation and public health are increasingly recognized (BTS 

2016), many studies in non-transportation fields such as public health, preventive medicine, and 

even psychology have also examined walking and bicycling travel behavior (see e.g., Oja et al. 

1991; Lumsdon and Mitchell 1999; Bauman et al. 1999; Andersen et al. 2000; Ross 2000; Troped 

et al. 2001; Giles-Corti and Donovan 2002, 2003; Cervero and Duncan 2003; Moudon and Lee 

2003; Pucher and Dijkstra 2003; Boer et al. 2007; Bassett et al. 2008; Shephard 2008; Gordon-

Larsen et al. 2009; Giles-Corti et al. 2009; Rodríguez et al. 2009; Pucher et al. 2010; Merom et al. 

2010; Buehler et al. 2011; McDonald et al. 2011; Pucher et al. 2011; Schauder and Foley 2015; 

Ma and Dill 2015; and Nehme et al. 2016 among many other studies).  

Generally, these disciplines examine nonmotorized trip-making activities with an emphasis 

on the effects of psychological and social factors on such activities, and not on the utility- 

maximization concept, which is one of the main frameworks used in transportation and planning 

research (McMillan 2005). Walking and bicycling are often referred to as active travel, active 

transportation, or physical activity in this literature. Active travel is considered a form of physical 

activity from the viewpoint of these disciplines.  

The health benefits of active travel—for both the individual who participates in such 

activity as well as the public as a whole—seems to be the incentive that has generated the interest 

in studying walking and bicycling travel among researchers in these fields of science (see e.g.,  

Ross 2000; Shephard 2008; Bassett et al. 2008; Merom et al. 2010; Nehme et al. 2016).  
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As a growing number of studies have shown the crucial role of walking and bicycling in 

human health, health professionals have become more involved in research on these modes of 

travel. Through these research efforts, the many health benefits of walking and bicycling have 

been revealed, and the complexity and interdisciplinary nature of the subject has been established.  

B.2 Nonmotorized Travel Behavior and Built Environment Literature 

The studies mentioned in the previous section constitute the theoretical and empirical foundation 

based on which the effectiveness of policy and land use planning interventions concerning walking 

and bicycling travel modes can be evaluated, and future policy decisions can be made. While these 

studies have significantly contributed to a deeper understanding of walking and bicycling modes, 

many questions remain unanswered. One reason is that each of these fields examines walking and 

bicycling based on its own discipline-related perspectives. Therefore, different views have been 

given and different factors have been tested for their potential impact on walking and bicycling.  

Regardless of the field of study, however, the overview of literature (Section B.1) reveals 

that characteristics of the built environment play a crucial role in nonmotorized travel behavior. 

Thus, a detailed review of the literature focusing on the relationship between the built environment 

and walking and bicycling is in order. Literature and research findings on the relationship between 

built environment factors and walking/bicycling travel behavior is abundant, and this research has 

evolved over several decades (see e.g., Frank and Pivo 1994; Cervero 1996; Cervero and Radisch 

1996; Shriver 1997; Cervero and Kockelman 1997; Kitamura et al. 1997; Hess et al. 1999; Black 

et al. 2001; Greenwald and Boarnet 2001; Handy and Clifton 2001; McMillan 2003; Cervero and 

Duncan 2003; Kerr et al. 2007; Forsyth et al. 2008; van Loon and Frank 2011; and Schneider 

2015). Accumulating evidence provided by these studies supports the existence of a correlation 

between built environment factors and nonmotorized travel behavior. 
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This section discusses the supportive theories of the link between the built environment 

and active travel and provides a review of the existing empirical evidence. Based on the discussion 

presented in Section B.1, the present section will interchangeably use the terms nonmotorized 

travel and active travel when referring to walking and bicycling depending on the context within 

which these activities are discussed (i.e., transportation or health contexts, respectively). 

B.2.1 Theoretical Foundations 

The theoretical foundations of the interactions between the environment and human behavior come 

from a variety of disciplines. The main established theories include the utility-maximization 

demand theory, which comes from the field of economics, as well as the theory of planned 

behavior; the social cognitive theory and its extension; the ecological model of behavior, which 

come from the field of psychology. The utility-maximization framework assumes homogeneity in 

the decision-making process, while the framework of models in psychology emphasize individual 

differences and behavior changes (Fan 2007).  

As discussed previously, the utility-maximization demand theory assumes that each choice 

offers a certain value—termed utility in this concept—to an individual. It further assumes that given 

a choice set, a rational individual who is fully informed about all the alternative choices and can 

compute with perfect accuracy, makes a choice to maximize his/her utility. In travel behavior 

research this framework conceptualizes behavior as discrete choices (Handy 2005). 

Applied to the concept of the role of the built environment in travel behavior in general, 

the utility-maximization demand theory would mean that any built environment characteristic that 

influences the utility of a certain mode of travel can have an impact on travel behavior choices. 

Utility of a travel mode can be quantified as the travel cost, travel time, comfort, convenience, or 

safety of that certain travel mode. For example, by placing origins and destinations in proximity 
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to each other, pedestrian-friendly neighborhood designs and more mixed-use developments are 

intended to alter either travel time or travel cost across various modes of travel (Boarnet and Crane 

2001). Application of the utility-maximization demand theory to the connection between the built 

environment and active travel in particular, can mean that individuals would make the choice to 

make walking or bicycling trips if their utility (e.g., travel cost, travel time, safety, convenience) 

is somehow maximized by doing so. For example, better sidewalk connectivity can increase the 

utility of walking and encourage more walking trips. 

The theory of planned behavior focuses on psychological attributes that influence behavior 

such as the influence of beliefs on behavior (National Research Council 2005; Van Acker et al. 

2010). More specifically, this theory considers the role of beliefs (i.e., personal attitudes and 

perceptions), subjective norms (i.e., sociocultural norms or perceived social pressure), and 

perceived behavioral control (i.e., expected impediments and obstacles) in likelihood of 

performing a specific behavior (Ajzen 1991; Montano and Kasprzyk 2008). In terms of the built 

environment, the theory of planned behavior allows personal attitudes and beliefs about the built 

environment to be incorporated in its framework. It should be noted, however, that attitudes and 

beliefs are only subjective measures, and therefore, the framework of this theory only allows 

inclusion of subjective (and not objective) measures of the built environment.  

Applied to active travel research, this theory highlights the role of attitudes, perceptions, 

and beliefs in making the choice to walk or bicycle. In the context of nonmotorized travel behavior, 

subjective norms can represent perceived social pressure and sociocultural norms that may 

encourage or discourage walking and bicycling. Also, perceived control in this context can be 

considered one’s perception of how easy or difficult it is to walk or bicycle. As an example, it can 

be assumed that existence of bicycle lanes and observing other people ride a bicycle can increase 
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an individual’s perceived control of bicycling; an effect that may encourage the individual to 

engage in bicycling. However, inclusion of similar subjective measures is as far as the theory of 

planned behavior can go with respect of the role of the built environment in behavior. This theory 

does not consider objective measures of physical environment in its framework to explain behavior 

(National Research Council 2005) such as nonmotorized travel behavior.  

The social cognitive theory considers a role for the social environment in influencing 

behavior in addition to that of personal characteristics (e.g., attitudes). More specifically, this 

theory emphasizes the concept of reciprocal determinism in human behavior, which means that 

individuals and their social environment influence each other. This theory also provides a better 

understanding of the role of behavioral learning processes in behavior. However, it does not 

include built environment factors in its framework. Nevertheless, it can be assumed that by 

considering the reciprocal relations between personal characteristics, the social environment and 

behavior (Bandura 1986; Van Acker et al. 2010), the social cognitive theory may somewhat allow 

accounting for attitudes toward the built environment (i.e., subjective measures) in its framework, 

if applied to the nonmotorized travel behavior concept.  

Used in nonmotorized travel behavior (i.e., active travel) research, the social cognitive 

theory framework would imply that individuals’ walking and bicycling travel behavior is 

influenced by their social environment—mainly, the household—as well as their observed 

behavior (e.g., sociocultural norms regarding walking and bicycling activities). 

While the theory of planned behavior and the social cognitive theory focus on identifying 

psychological and social attributes that influence behavior such as individuals’ attitudes and beliefs 

(Handy 2005) as well as sociocultural norms, the ecological model of behavior—a variant of the 

social cognitive theory—emphasizes the influence of the built (i.e., physical) environment and 
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policy on behavior (Sallis et al. 2008). In addition, the ecological model incorporates all the 

concepts of the theory of planned behavior and the social cognitive theory. Thus, the advantage of 

this model over the theory of planned behavior and the social cognitive theory is that it allows 

inclusion of objective built environment factors in its framework.  

A signature feature of the ecological model of behavior is that it is conceptualized as a 

multilevel framework with factors representing multiple interacting levels of various influences 

on human behavior. These levels include intrapersonal (e.g., biological, psychological), 

interpersonal (e.g., social factors, sociocultural norms), organizational, community (e.g., physical 

environment), and policy (Handy 2005; Sallis et al. 2008). In terms of the built environment, the 

ecological model can include factors representing various geographical levels. Thus, ecological 

models can provide a more integrated and more comprehensive framework for modeling human 

behavior as it incorporates all the components of the theory of planned behavior and the social 

cognitive theory and adds to them the influence of the built environment and policy on behavior. 

Applied to nonmotorized travel behavior, the principles of the ecological model suggest 

that walking and bicycling travel behavior can be influenced by attributes of the physical (i.e., 

built) environment’s at various spatial levels including the micro level (e.g., the neighborhood), 

the meso level (e.g., the county), and the macro level (e.g., the city, the region or metropolitan 

area) (Handy 2005; Van Acker et al. 2010).  

With regards to the theories from the field of psychology (e.g., theory of planned behavior, 

the social cognitive theory, and the ecological model theory), it should be kept in mind that they 

pose some challenges at the operational level. Past research argues that although these theories 

explain the role of attitudes and social norms in behavior, their implementation by practicing 
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planners and engineers is not without challenges due to difficulties in operationalizing reliable 

measures of the complex psychological constructs involved (Fan 2007).  

Overall, these theories provide the basis for conceptual models that researchers developed 

in the past to explain nonmotorized travel behavior (i.e., walking and bicycling) and identify the 

built environment factors that influence walking and bicycling behaviors. Each of these theories 

suggest that the link between the built environment and nonmotorized travel behavior is guided by 

a more complex conceptual model than the specific framework that they provide. Thus, it should 

be noted that although none of these theories can perfectly explain behavior, together, they might 

add up to a complete framework (Handy 2005), which can be utilized in explaining behavior 

including nonmotorized travel behavior. 

B.2.2 Empirical Studies 

To date, a tremendous amount of empirical research on the link between walking and bicycling 

travel behavior and the built environment has been developed. A detailed review of a few of these 

studies helps in identifying built environment and non-built environment factors that influence 

nonmotorized travel behavior as well as areas where further research is needed. 

          Handy (1996b) found that the number of walking trips was positively correlated with shorter 

travel distances to destinations and street design factors. The study also found that the average 

frequency of walking trips to commercial areas and the percentage of pedestrians who walked to 

commercial areas were higher in neighborhoods with a traditional design compared to those that 

had a modern design.  

Kitamura et al. (1997) found that generation of nonmotorized trips was strongly associated 

with land use characteristics. In addition, distances to the nearest bus stop and the nearest park 

were negatively associated with the fraction of nonmotorized trips in that study. 
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Cervero and Kockelman (1997) examined the relationship between travel demand and 

three dimensions of the built environment: density, diversity, and design. The study findings 

supported the idea that compact, mixed-use developments, and pedestrian-oriented designs were 

associated with higher levels of nonmotorized travel. Hess et al. (1999) investigated the 

relationship between site design and pedestrian activity in a mixed-use, medium-density context. 

The researchers found that pedestrian volumes were associated with neighborhood’s site design—

specifically, with measures of block size and the extent of sidewalk completeness.  

Greenwald and Boarnet (2001) found that while neighborhood population density was a 

strong determinant of number of non-work walking trips, median trip distance was the most 

important factor in determining number of such trips. Troped et al. (2001) found that steep hills, 

higher volumes on streets to be crossed, and greater distance were negatively associated with the 

use of a community bicycle trail. Craig et al. (2002) examined the impact of environmental factors 

on walking to work. The study employed hierarchical linear modeling and showed that walking to 

work was significantly associated with the neighborhood environment after controlling for income, 

university education, poverty, and degree of urbanization. Giles-Corti and Donovan (2003) found 

that increased access to public open space as well as living on streets with minor traffic, sidewalks, 

and/or retail shops were associated with higher odds of attaining the recommended amount of 

walking in terms of health benefits. 

          McMillan (2003) used urban design factors from school neighborhoods as well as parent 

survey data on children’s travel to school to investigate the role of urban form on children’s 

walking trips to school. The research used data from California’s Safe Routes to School program. 

Results indicated that some urban form factors such as abandoned buildings, street lights and street 

widths influenced children’s walking to school; however, these effects were moderate compared 
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to other factors such as the perceived convenience of driving, perceived distance between home 

and school, supportive attitudes of family toward walking, neighborhood traffic conditions, and 

the parent’s country of birth. Cervero and Duncan (2003) examined the relationship between 

demographic characteristics, the built environment, and nonmotorized travel. The study concluded 

that built environment factors had weaker influences on walking and bicycling travel behavior 

compared to demographic characteristics (e.g., race, age, gender), travel impedance factors (e.g., 

travel time, travel distance), and natural environment factors (e.g., topography, rain, nightfall).  

Rodríguez and Joo (2004) examined the association between several measures of the local 

physical environment and travel behavior. The study results indicated that presence of sidewalks 

was significantly associated with individual’s propensity to walk to destinations and topography 

had an effect on the propensity to bicycle. Additionally, the authors suggested that issues related 

to the role of preferences for travel modes and how these preferences are formed should also be 

further investigated to address self-selection bias and causality issues.  

Plaut (2005) examined the factors that affected the propensity of employed individuals to 

use the nonmotorized modes of travel for commuting. The study found that living in the central 

city of the Metropolitan Statistical Area (MSA) was significantly correlated with the probability 

of walking and bicycling commuting. The author argued that nonmotorized transportation policies 

should focus on households as well, and not just on individual trip-makers.  

McDonald (2005) examined children’s travel behavior (including children’s school trip 

mode choice and after school activities) as well as the influence of land use on children’s’ walking 

to school. The author found that travel time and distance played a significant role in children’s 

walking trips. Population density had a weak but positive correlation with walking to school. This 

research did not include bicycling travel behavior of children.  
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          As one of the very few studies that analyzed bicycling behavior, Moudon et al. (2005) 

investigated the relationship between the likelihood of bicycling in neighborhoods and the built 

environment. The researchers concluded that sociodemographic factors had a more important role 

in making the decision to bicycle. Also, they concluded that bicycling was moderately associated 

with the neighborhood built environment and it was more an individual’s decision that did not 

seem to be depending on supportive built environment factors. Cao et al. (2005) found that built 

environment characteristics had an impact on walking after accounting for preferences toward 

neighborhoods conducive to walking. Targa and Clifton (2005) investigated the impact of 

neighborhood-level built environment on walking trip generation rates. The results indicated that 

variables capturing built environment attributes such as urban density, street connectivity, grid-

like streets, and mixed land use were associated with frequency of walking. Also, accessibility to 

bus transit lines was found to be associated with higher frequency of walking in that study. 

Cao et al. (2006) examined the influences of the built environment and self-selection on 

pedestrian trips. The study found that residential self-selection impacted strolling trips, and it was 

the most important factor in explaining pedestrian shopping trips. This result also suggested that a 

preference for walking was a more important factor in frequency of pedestrian trips than the 

neighborhood built environment factors. The authors also found that after controlling for self-

selection, neighborhood attributes were more important in the frequency of strolling trips, whereas 

characteristics of local commercial areas had an impact on generating pedestrian shopping trips.  

Kerr et al. (2007) investigated the relationship between objectively measured urban form 

variables and walking trips by youths. The study found that urban form was strongly correlated 

with walking among White youth, but it was not as significantly related to walking for non-White 

youth. Also, urban form variables were not as significantly associated with walking in low-income 
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groups and youth whose households did not own a car. In addition, living in mixed use-areas and 

having access to recreational space were associated with walking among youth. Boer et al. (2007) 

found that higher levels of business diversity and a higher percentage of four-way intersections 

were associated with higher amounts of walking. The study also suggested that housing density 

affected walking in an inconsistent pattern and that block length was not correlated with walking. 

          Frank et al. (2008) found that reductions in highway travel time were associated with less 

walking and bicycling. Land use variables for this study were calculated for a one-kilometer buffer 

area around the survey respondent’s location of residence or work. The study results confirmed 

that factors that measured land use mix, residential density, retail density, and street connectivity 

were statistically significant and associated with the likelihood of walking and bicycling for home-

based tours. Forsyth et al. (2008) investigated the impact of design and diversity of destinations 

on walking. The results indicated that location attributes influenced walking. The study concluded 

that sidewalk length, traffic calming, smaller blocks, and other measures of connected street 

patterns were positively associated with walking. However, no positive correlation was found 

between mixed use factors and amount of walking. 

          In a meta-analysis of the built environment-travel connection literature, Ewing and Cervero 

(2010) concluded that walking was most strongly associated with mixed land use, intersection 

density, and the number of destinations within walking distance. Heinen et al. (2010) conducted a 

comprehensive review of academic literature on commuting by bicycle and suggested that certain 

aspects of the built environment including shorter trip distance, land use mix, and access to bicycle 

storage facilities increased bicycling to work. The study also argued that the effects of denser 

network layout, block size, and higher densities were still a bit ambiguous. The authors concluded 

that further research was needed into the relationship between bicycling and the built environment.  
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Merom et al. (2010) examined changes in walking and bicycling between the years of 1997 

and 2007 by population subgroups. The results showed significant increasing trends for all walking 

indicators in most population subgroups. Bicycling rates were low (less than 1.5%) but had 

significant increasing trends for all indicators and selected subgroups. The authors stated that the 

small sample size on bicycling trips did not allow for establishment of significant differences in 

bicycling among sociodemographic groups. Further research to explore the effect of fuel prices on 

health-enhancing active travel was also suggested by the authors of that study.  

McDonald et al. (2011) found that distance to school exerted the strongest effect on the 

probability of walking to school by children. Pucher et al. (2011) found that frequency, duration, 

and distance of walk trips per capita and walk mode share increased between years 2001 and 2009. 

The study also indicated that walking and bicycling declined for women, children, and older adults 

but increased among men, the middle-aged, employed, the well-educated as well as among 

individuals without a private vehicle. Mitra and Buliung (2012) examined the potential impact of 

the modifiable areal unit problem (MAUP) on the relationship between the built environment and 

nonmotorized school trips of children. The authors concluded that the statistical significance, size, 

and the direction of the built environment effects varied across various spatial scales for data 

aggregation, which confirmed the existence of MAUP and zoning effects. The study results also 

indicated that travel distance was an important factor in the likelihood of children’s walking or 

bicycling to school as children who lived closer to their school were more likely to walk/bicycle 

to school. Also, children were more likely to walk or bicycle to school if they lived or went to 

school in areas where other people also walked to work or school. The authors suggested that 

future research should study the relationship between children’s travel to school and the built 

environment at various levels of geographical aggregation.  
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B.3 Influential Factors in Nonmotorized Travel Behavior 

The studies reviewed and discussed in Section B.1 and Section B.2 provide evidence of the 

influence of several factors on walking and bicycling trips. These factors can be categorized into 

three major groups:  

1) built environment factors;  

2) psychological factors; and  

3) socioeconomic and sociodemographic factors.  

Next is a more comprehensive review of literature focusing on factors related to each of 

these categories and their effects on walking and bicycling as suggested by different research 

studies in the past. 

B.3.1 Built Environment Factors 

Using a variety of techniques in a variety of regions, the existing literature on correlations between 

the built environment and travel demand provides considerable evidence that in general, the built 

environment influences travel behavior through factors famously known as the five Ds of the built 

environment. These are: density, diversity, destination accessibility, design, and distance to transit 

(Cervero and Kockelman 1997; Ewing and Cervero 2010). Almost all of the reviewed studies on 

the relationship between the built environment and nonmotorized travel behavior included one or 

more of the D factors in their analysis (see e.g., Kitamura et al. 1997; Cervero 2001; Reilly and 

Landis 2003; Cervero and Duncan 2003; Zhang 2004; Targa and Clifton 2005; Kerr et al. 2007; 

and Frank et al. 2008 among many more studies).  

Findings of a few of these studies on the effects of the micro-level (i.e., neighborhood-

level) D factors on nonmotorized travel behavior are reviewed below. Existing literature on the 

macro-level built environment as related to nonmotorized travel behavior is also briefly discussed. 
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B.3.1.1 Density 

With respect to the built environment, density represents the intensity of human activity (Lin and 

Chang 2010). It is measured as the ratio of the variable of interest (usage level) to the unit of 

geographical area (Marcus 2008; Ewing and Cervero 2010). Literature suggests that elevated 

levels of density—typically, resulting from new urbanism designs—can mean increased numbers 

of people and places, which in turn, can encourage interactions and provide a greater sense of 

community (Handy 1996a; Forsyth et al. 2008). In addition, high densities can affect travel 

behavior by reducing distance between origins and destinations; an element that can encourage 

nonmotorized trips and discourage automobile trips. 

For example, researchers such as Boarnet and Sarmiento (1998) argued that new urbanism 

and neo-traditional community designs feature high neighborhood densities, which encourage 

walking and discourage automobile travel—at least at the neighborhood level. High densities are 

also postulated in previous studies to increase parking costs, reduce automobile travel (and thereby 

reduce congestion levels and improve quality of air), increase transit usage, and encourage 

nonmotorized travel behavior (Kockelman 1996; Handy 1996a; Cervero and Kockelman 1997; 

Kitamura et al. 1997; Boarnet and Sarmiento 1998; Krizek 2003b; Zhang 2004; Stinson and Bhat 

2004; Forsyth et al. 2008; Chatman 2009; Lin and Chang 2010). 

Past empirical evidence has confirmed that high density plays a key role in generating 

nonmotorized trips. However, these findings are not always consistent, and mixed results have 

been reported by different studies. Various measures of density have been considered in the past 

including population density, residential density, housing density, employment density, and 

activity density (i.e., [population + employment]/unit area) to investigate the relationship between 

nonmotorized travel behavior and land use.  
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Some studies found that density measures exert positive and significant effects on 

nonmotorized travel. Frank and Pivo (1994) found that the proportion of walking trips within a 

census tract (i.e., neighborhood) was positively and significantly correlated with population 

density at trip origin for work trips, and population density at destination for shopping trips. 

Kitamura et al. (1997) concluded that higher residential density was associated with more person 

and nonmotorized trips, higher fractions of nonmotorized trips, and lower fractions of automobile 

trips. Badoe and Miller (2000) concluded that increased employment density had a significant, 

positive effect on walking. From a review of literature, Agrawal and Schimek (2007) found a 

positive association between walking trips and population density. McDonald et al. (2011) argued 

that living in urban clusters, which they suggested have higher densities compared to rural area, 

increased the probability of walking to school by children.    

Other studies reported either mixed, negative, or insignificant effects. For instance, Badoe 

and Miller (2000) concluded that the empirical evidence regarding the role of residential density 

in determination of walking and bicycling travel was very mixed. Reilly and Landis (2003) found 

that population density did not affect the likelihood of walking for entertainment trips. Cervero 

and Duncan (2003) found that although employment density was positively correlated with 

walking, its effect was not statistically significant. They also found that higher employment density 

decreased the likelihood of bicycling, but this result was also not statistically significant.  

Zhang (2004) found that higher population densities at origins were associated with 

increased probability of nonmotorized trip-making for work trips but not for non-work trips, 

whereas higher population density at destinations mattered for both work and non-work trips. This 

latter study also found that even though higher employment density at trip destinations were 
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associated with a higher probability of choosing nonmotorized modes for work trips, higher 

employment density at the origin was insignificant for both work and non-work trips.  

Rodríguez and Joo (2004) found that population density measured at the block group of 

each respondent’s home location was not consistently related to nonmotorized mode choices. The 

authors stated that one reason for this may be that block group is not the appropriate unit of analysis 

for measuring neighborhood density. The other reason they suggested can be that mode choice is 

more related to employment density at destinations than residential densities at origins.  

Scuderi (2005) found that residential density influenced vehicular trips more than walking 

trips. Kerr et al. (2007) indicated that residential density was significantly associated with higher 

walking rates. Also, they found that residential density was not significantly linked to walking of 

youth in the lowest income group, but it was strongly and significantly associated with youth 

walking behavior in the highest income group. Additionally, Boer et al. (2007) suggested that the 

effects of housing density on walking were inconclusive. Forsyth et al. (2008) reported that 

residing in high-density areas was positively associated with utilitarian walking but negatively 

associated with recreational walking. Weinberger and Sweet (2012) suggested that the effect of 

population density on walk mode share was unclear.  

          From this review of literature, it is revealed that various measures of density including 

population density, employment density, and residential density have been tested by researchers 

for their relationship with nonmotorized travel behavior. Many of the above-mentioned studies as 

well as many other studies suggested that densities were positively correlated with nonmotorized 

travel (see e.g., Frank and Pivo 1994; Cervero 1996; Ewing and Cervero 2001; Cervero 2001; 

Ewing et al. 2003a; Targa and Clifton 2005; Zhang and Kukadia 2005; Salon 2006; Boarnet et al. 

2008; Marcus 2008; Rodríguez et al. 2009; Lin and Chang 2010; Wang 2013). 
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However, in many other studies, densities yielded mixed, negative, and/or insignificant 

effects (see e.g., Cervero and Duncan 2003; Zhang 2004; Bento et al. 2005; Scuderi 2005; Kerr et 

al. 2007; Boer et al. 2007). The trip purpose (e.g., work vs. non-work trips) and the focus location 

of the analysis (e.g., trip origin vs. trip destination) can be among the factors leading to the 

inconsistent findings. Additionally, as Chen et al. (2008) suggested many studies on the impact of 

density on travel behavior did not include confounding factors (e.g., residential self-selection, 

accessibility measures, access to transit stations, and level of mixed use), which can lead to 

inconsistencies in findings. Another reason can be that even though due to providing shorter 

distances to destinations, high-density neighborhoods are intuitively expected to lead to fewer 

automobile trips and more nonmotorized trips (such as walking trips), shorter trips may actually 

stimulate more automobile trips; in this case, the net result for both automobile and nonmotorized 

travel is unclear (National Research Council 2005). 

Density is the most commonly used D factor (and sometimes, the only variable used) in 

research probing the link between travel behavior and the built environment—likely because it can 

easily be operationalized (Krizek 2003b). However, since in most cases high-density developments 

coexist with increased levels of mixed land use, transit service, and pedestrian-friendly designs, 

many studies suggested that density may act as a proxy or surrogate for other measures such as 

accessibility, transit service levels, pedestrian-friendly streets, mixed land use, demographics, 

distance, and car ownership levels (see e.g., Kockelman 1996; Kockelman 1997; Boarnet and 

Crane 2001; Krizek 2003b; Handy 2005; Forsyth et al. 2008; Cervero and Murakami 2010; Ewing 

and Cervero 2010). Thus, a few studies have cautioned against using measures of density due to 

the following reasons: i) lack of a sound strategy to integrate population and employment density 

and capture the effect of both on travel as interrelated (and not separate) factors (Krizek 2003b); 
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and ii) the potential of density to serve as a proxy variable for other built environment factors 

(Handy 2005; National Research Council 2005). In the latter case, density is correlated with other 

characteristics of the built environment and its role in travel behavior (including nonmotorized 

travel behavior) can be considered ambiguous.  

B.3.1.2 Diversity (Land Use Mix) and Destination Accessibility 

The diversity and destination accessibility dimensions of the built environment overlap (Ewing 

and Cervero 2010); therefore, they are discussed together in the following paragraphs. 

Within the transportation and urban planning context, diversity refers to variety in terms of 

land use and how mixed various land uses are in a specific geographical area. The extent of mixed 

land use or the presence of diverse destinations are considered in transportation planning theories 

as key trip generators (Forsyth et al. 2008). Destinations refer to the commercial, service, and 

recreational land uses (e.g. stores, restaurants, banks, parks) contained in a geographical area 

(Giles-Corti et al. 2009). By shortening travel distances between origins and destinations, the 

proximity of these various land uses to one another allows residents to enjoy opportunities within 

their community (Dieleman et al. 2002; Krizek 2003b). Shorter travel distances may influence 

travel mode choice. Literature suggests that the higher the degree of mixed land use, the less likely 

the people are to drive and the more likely they are to use nonmotorized modes of travel (Friedman 

et al. 1994; Cervero 1996; Krizek 2003b; Ryan and Frank 2009; Lin and Chang 2010). 

Many of the studies reviewed here included measures that represented land use diversity 

(or lack thereof) and the extent of mixing of land uses in their analysis of the relationship between 

the neighborhood built environment and nonmotorized travel behavior. Various measures were 

used for this purpose including existence of mixed-use development, the number or fraction of 

establishments in each land use classification, and availability of commercial destinations. More 
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often, however, land use diversity is measured in travel behavior studies using the entropy index. 

An entropy index measures how mixed land uses within a given area are. Low values of the entropy 

index represent non-diverse land uses, whereas high values represent more mixed land uses. 

Empirical findings on how the extent of neighborhood’s mixed land use affects walking 

and bicycling of residents are, at best, mixed! This is because on the one hand, there are studies 

that argue mixed land use and availability of local shopping opportunities encourage nonmotorized 

travel and, on the other hand, findings of other studies do not support that hypothesis.  

Examples of studies in the former group are Cervero and Kockelman (1997), which found 

that presence of neighborhood convenience stores induced nonmotorized trips within the 

neighborhood. Also, Lund (2003) found that destination-oriented walking trips were significantly 

higher in neighborhoods with local access to retail shops either by themselves or in combination 

with local access to parks. Further, Cervero and Duncan (2003) found that land use diversity at 

trip origin location had a positive impact on the likelihood of walking and bicycling, whereas 

existence of retail services around the trip origin location increased the likelihood of walking and 

bicycling. Moreover, Plaut (2005) concluded that existence of commercial properties nearby had 

a positive effect on the propensity of workers to walk to work. Kerr et al. (2007) indicated that 

youth who lived in areas with more than one commercial land use were twice as likely to walk 

than their counterparts who lived in areas with no or just one commercial land use.  

Among studies that reported mixed or no effects on the role of land mix use in 

nonmotorized travel is Frank and Pivo (1994), which concluded that even though local land use 

mix had a significant effect on walking for work trips, it was not significantly correlated with 

walking for shopping trips. Hess et al. (1999) concluded that pedestrian volumes were not 

associated with the size of commercial centers (measured in that study by the number of businesses 



 

415 

 

and types of retail facilities provided within a 0.5-mile pedestrian catchment area). Additionally, 

Rodríguez et al. (2009) found that having a higher level of mixed land use was associated with 

walking for exercise for more than 90 minutes/week, and that self-reported ease of access to 

destinations was related to higher levels of exercise walking for a sample of older adults. However, 

the study also found that even though availability of retail was positively associated with utilitarian 

walking, entropy was not correlated with utilitarian walking trips.  

Further, Handy and Clifton (2001) suggested that local shopping did not prove to induce 

travel by walking. The study concluded that existence of local shops was not a significant factor 

in reducing vehicular travel and encouraging walking. Reilly and Landis (2003) found that for 

shopping trips, the proportion of commercial land uses within the neighborhood did not have a 

significant impact on walking, whereas for entertainment trips, neighborhoods with a higher mix 

land use encouraged walking. McMillan (2003) found that increased mixed land use was 

associated with decreased likelihood of children walking/bicycling to school. Moudon et al. (2005) 

concluded that even though presence of a mix of offices, clinics/hospitals, and fast food restaurants 

was a significant built environment factor that contributed to increased likelihood of bicycling, 

presence of convenience stores had a negative impact on bicycling. Moreover, presence of parks 

was found to be an insignificant factor in this study. Forsyth et al. (2008) reported that no positive 

correlation was found between walking and mixed land use factors. 

Other studies examined the role of destination accessibility in nonmotorized travel 

behavior. Destination accessibility refers to factors that measure ease of access to destinations. As 

mentioned previously, accessibility can be regional or local (Handy 1993). Regional accessibility 

is the number of destinations reachable within a given travel time and is usually measured by the 

gravity model of trip attraction, whereas local accessibility is often quantified as the distance from 
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the origin (typically, place of residence) to the closest destination (such as a shopping center) 

(Ewing and Cervero 2010). An increase in the trip’s distance results in an increase in the time and 

effort needed for traveling (Heinen et al. 2010); thus, the assumption is that proximity to local 

destinations such as stores can induce more nonmotorized trips or allow them to substitute for 

motorized trips (Cervero 1996).  

Many papers reviewed for this literature review included distance to local stores as a 

measure of accessibility to local commercial destinations in their examination of the role of 

neighborhood built environment factors in nonmotorized travel behavior. Compared to the role of 

land use diversity, research findings are more consistent with regards to the role of distance to 

local destinations—mainly commercial establishments—in nonmotorized travel behavior.  

Although Reilly and Landis (2003) found that for home-based shopping trips, distance to 

the nearest commercial land use did not have a significant impact on walking, several other studies 

found that shorter distance to commercial opportunities within the neighborhood promoted 

walking and bicycling. For instance, Handy (1996a, 1996b) found that having commercial areas 

within walking distance encouraged walking. Additionally, Handy and Clifton (2001) found that 

the tendency to walk to local stores was strongly correlated with distance; in neighborhoods where 

there was a greater distance between the location of stores and the residents, fewer residents 

indicated tendency to walk to stores. The study also suggested that each additional quarter mile of 

distance decreased the number of an individual’s walking trips by one per month. 

Also, Cervero and Duncan (2003) found that the likelihood of walking and bicycling 

decreased with an increase in distance to retail activity destinations. Further, the presence of 

destinations within walking distance from places of residence was found to be the strongest 

correlate of home-based walking trips in the Hoehner et al. (2005) study. Handy et al. (2006) 
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concluded that destination accessibility in terms of having shops and services (e.g., banks) nearby 

was the most important factor in increasing walking activity. Further, Lee and Moudon (2006) 

found that shorter distances from homes to routine local destinations (e.g., grocery stores, eating 

and drinking places, banks) were positively associated with walking. Cao et al. (2006) reported 

that distance to the nearest store was highly significant in explaining frequency of pedestrian trips 

to the store. Later, Cao et al. (2010) found that distance to the nearest grocery store was negatively 

associated with frequency of walking to stores. In addition, Schneider (2015) found that walking 

was associated with shorter trip distances (in terms of travel times) to local shopping opportunities. 

Regarding bicycling, Heinen et al. (2010) interestingly related the importance of distance 

to the spatial scale of city and its bicycling mode share as they suggested that the highest bicycle 

shares in small and medium-sized cities in the Netherlands were a result of the proximity of 

destinations in these cities. The authors suggested that in the choice of commuting by bicycle, 

distance to destinations was the most important built environment factor. Later, Ma and Dill (2015) 

found that the number of retail jobs within 1/2-mile circular buffers around home was negatively 

associated with bicycling. The authors argued that this result was because individuals who lived 

near retail stores (1/2-mile) probably preferred walking over bicycling to these destinations. 

Based on research findings similar to the above, some studies consider distance to local 

destinations (e.g., commercial establishments) the most important local built environment factor 

to influence nonmotorized trips, particularly walking trips (Pivo and Fisher 2011).  

Distance also plays a key role in nonmotorized travel to non-commercial destinations. 

Among non-commercial destinations, schools have received tremendous scholarly attention—

likely because as some researchers argued travel to schools and shopping stores provide the highest 

potential for walking trips (Demetsky and Perfater 1975).  
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Based on a review of literature on children’s school trips, McMillan (2005) suggested that 

distance from home to school may be the biggest barrier to children’s walking or bicycling to 

school. This finding was confirmed by Schlossberg et al. (2006) who found that distance to school 

was highly associated with walking and bicycling to and from school, and by Yarlagadda and 

Srinivasan (2008) who found that the distance between home and school was strongly and 

negatively associated with the choice of walking to and from school. Also, in a review of literature, 

Giles-Corti et al. (2009) suggested that distance was one of the key factors that affected children’s 

walking or bicycling to school. Later, Mitra and Buliung (2012) also concluded that distance was 

an influential factor in determining the likelihood of children’s walking and bicycling to school.  

Work locations are the other destinations that have been examined in past research. Studies 

have found that distance to work destinations impacts nonmotorized travel behavior. One example 

is a study by Stinson and Bhat, who found that distance to the employment location had a very 

strong influence on the propensity to commute by bicycle (Stinson and Bhat 2004).  

B.3.1.3 Design (Neighborhood Design and Transportation Infrastructure) 

Design represents the conditions of the neighborhood’s physical environment and transportation 

network (Lin and Chang 2010). The role of neighborhood and transportation network design in 

nonmotorized travel has been considered and explored by many research studies in the past. For 

example, Cervero and Gorham (1995) concluded that neighborhood design influences the degree 

to which people walk or bicycle, and Handy and Clifton (2001) suggested that whether or not 

people feel safe and comfortable walking around neighborhood stores is an important element, 

which emphasizes the role of design and pedestrian-oriented infrastructure in the choice to walk.  

Various aspects of design have been represented by different measures in previous studies 

to capture the differences between automobile-oriented environments and pedestrian- as well as 
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bicycle-friendly environments. These measures include, but are not limited to, variables 

representing: i) street patterns (e.g., block length, block size and density of intersections); ii) 

vehicular network and facility conditions and vehicular traffic (e.g., width and number of traffic 

lanes, traffic volume and speeds, parking availability); and iii) pedestrian and bicyclist amenities 

and facility conditions (e.g., presence and extent of connectivity of sidewalks and bicycle lanes).  

Literature related to each of these categories are discussed below. 

Street Patterns 

Past research has often quantified the extent of grid-like street patterns by using variables that 

measure the size of the blocks in the study area. These variables generally include those that either 

measure the size of the block directly (e.g., block size/area/perimeter, block length) or indirectly 

(e.g., density of intersection). It is notable that although smaller blocks found in grid-like designs 

are postulated to encourage nonmotorized trips in theory, the empirical findings on the relationship 

between street pattern-related variables and nonmotorized travel have not reached consensus.  

For example, pedestrian volumes were found to be associated with neighborhood site 

design and street patterns—specifically, with block size—in Hess et al. (1999). This is while 

Cervero and Duncan (2003) argued that pedestrian- and bicycle-friendly designs represented by 

variables such as block size and intersection configuration did not affect the likelihood of walking. 

Further, Moudon et al. (2005) found that when objectively measured, street block size was not a 

significant factor in predicting the likelihood of bicycling. Also, Boer et al. (2007) suggested that 

block lengths did not seem to be correlated with walking. 

In addition, block size is also considered to capture the degree to which streets are 

interconnected. For example, suburban cul-de-sac designs with superblocks although may appear 

short-blocked but are actually large in total area (Ewing et al. 2003a); therefore, controlling for 
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street connectivity is essential in nonmotorized travel behavior research. In a general sense, 

connectivity has been defined as “the directness of travel to destinations” in past studies (National 

Research Council 2005).  

Street and network connectivity have been controlled for in many empirical studies 

including Zhang (2004) who found that although marginally significant, increased network 

connectivity at trip origins promoted nonmotorized travel. Also, Targa and Clifton (2005) found 

that among built environment factors, street network connectivity (measured as the perimeter of 

the census block in that study) had the largest elasticity with respect to frequency of walking. Cao 

et al. (2006) showed that providing connections for pedestrians between the street and stores 

encouraged pedestrian shopping trips. Dill and Voros (2007) found that a higher level of street 

connectivity was correlated with more utilitarian bicycling trips. 

Another variable used in past research to represent street patterns and connectivity is 

intersection density. Kerr et al. (2007) indicated that for youth whose households owned more than 

two cars and for those who came from households with higher income, intersection density was 

significantly related to higher youth walking rates regardless of gender. Additionally, existence 

and density of four-way intersections have been suggested to influence nonmotorized travel. 

Cervero and Kockelman (1997) argued that existence of numerous four-way intersections 

promoted nonmotorized trips—particularly walking trips—by providing controlled street 

crossings and additional access points. Boer et al. (2007) suggested that increasing the number of 

intersections shortens the distance between destinations and may promote walking. They found 

that higher percentages of four-way intersections were positively correlated with walking. 

Intersection density was also a strong determinant of children’s walking trips to and from 

school in other research (Schlossberg et al. 2006). Further, Lin and Chang (2010) reported that 
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increased number of intersections dissuaded children from walking to school. From computing 

elasticity in a meta-analysis of past empirical studies, Ewing and Cervero (2010) concluded that 

intersection density (i.e., a proxy for block size) was a more important variable in walking behavior 

than street connectivity. The authors stated that this finding was intuitive because even with well-

connected street networks, walkability may be limited when blocks are long. Later, Mitra and 

Buliung (2012) found that higher density of four-way intersections was associated with lower 

likelihood of active travel to school by children. Among other street pattern measures used in 

previous research is density of major roads near school or home, which did not show association 

with active travel of children to school in the latter study (Mitra and Buliung 2012). 

Vehicular Traffic, Network and Facility Conditions 

Past research findings reveal that vehicular traffic (e.g., traffic volumes and speeds) as well as 

conditions of the vehicular network (e.g., width and number of lanes, signalized vs. unsignalized 

intersections, grades) and vehicular facilities (e.g., parking availability) can influence 

nonmotorized travel behavior.  

For instance, Appleyard (1981) and Gehl (1987) found that greater traffic volumes 

decreased the amount of walking activity. Harkey et al. (1998) found that variables representing 

traffic speed and volumes had the greatest impact on the perceived comfort levels of potential 

bicyclists. However, Moudon et al. (2005) found that when objectively measured, traffic speed 

and volume were insignificant factors in predicting the likelihood of bicycling. Also, Cao et al. 

(2006) showed that a higher traffic volume in commercial streets was associated with a reduction 

in the number of pedestrian trips. Nehme et al. (2016) concluded that recreational walking was 

associated with percentage of street length with speed limits less than 25 miles per hour (mph). 
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Regarding vehicular network conditions, Harkey et al. (1998) showed that lane width was 

an important variable in modeling the perceived comfort levels of potential bicyclists, whereas 

Moudon et al. (2005) found that objectively measured number of traffic lanes and slope were 

insignificant variables in predicting the likelihood of bicycling. Additionally, from a 

comprehensive review of literature on commuting by bicycle, Heinen et al. (2010) concluded that 

traffic lights and stop signs negatively affected the perception of bicyclist; however, the study 

indicated that the effects of these perceptions on frequency of bicycle use or on bicycle mode 

choice were not clear. Finally, Mitra and Buliung (2012) found that children who lived and went 

to school in an area where a larger proportion of intersections were signalized (within a 250-meter 

buffer distance of home or the TAZ of the school) were more likely to walk or bicycle to school. 

Vehicular facilities—most importantly—availability of parking, have also been linked to 

nonmotorized travel behavior. For instance, Cervero and Kockelman (1997) found that paid 

parking encouraged nonmotorized trips to shops and other non-work destinations within the 

neighborhood and Harkey et al. (1998) found that on-street parking had an impact on the perceived 

comfort levels of potential bicyclists. 

Pedestrian and Bicyclist Amenities and Facility Conditions  

Pedestrian and bicyclist friendliness of the neighborhood and its transportation facilities is also 

another design element suggested by past research to influence nonmotorized travel behavior. 

Kitamura et al. (1997) found that presence of sidewalks was positively associated with the number 

of nonmotorized trips, and Hess et al. (1999) found that pedestrian volumes were associated with 

the extent of sidewalk completeness in the neighborhood. Additionally, Rodríguez and Joo (2004) 

showed that a higher percentage of sidewalk available in the shortest route to a destination was 

correlated with a higher propensity to choose to walk to work or school.  
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Ewing et al. (2004) found that the proportion of arterials and collectors with sidewalks 

along them had the most significant influence on children’s walking to school. Targa and Clifton 

(2005) reported that people who perceived the condition of sidewalks as being “a little and 

somewhat of a problem” (as opposed to “a big problem”) were more likely to walk more 

frequently. Also, Nehme et al. (2016) concluded that recreational walking was associated with 

presence of walking trails.  

Regarding bicycling, Harkey et al. (1998) found that the presence or absence of a bicycle 

lane or paved shoulder had the largest effect on the Bicycle Compatibility Index—an index which 

captured individuals’ comfort level ratings to ride a bicycle on specific roadway segments or 

through intersections with right-turning traffic. Additionally, Dill and Carr (2003) found that each 

additional mile of bicycle lane per square mile was associated with an increase of approximately 

one percentage point in the bicycle commute mode share.  

However, Rodríguez and Joo (2004) showed that the presence of walking and bicycling 

paths was not consistently related to mode choice as related to nonmotorized trips. Confirming the 

latter finding were Ewing et al. (2004) who did not find associations between the proportion of 

arterials and collectors with bicycle lanes and bicycling, as well as Hoehner et al. (2005) who 

found that utilitarian bicycling was significantly associated with perceived presence of bicycle 

lanes but was not associated with the corresponding objective measure.  

Moudon et al. (2005) also found that although perceived presence of bicycle lanes was 

positively associated with the likelihood of bicycling, when objectively measured, presence of 

bicycle lanes was an insignificant factor in predicting the likelihood of bicycling. Finally, Dill and 

Voros (2007) found that residing in a neighborhood with a higher density of bicycle lanes was not 

associated with utilitarian bicycling. 
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B.3.1.4 Distance to Transit 

Access to transit has been quantified in previous studies using various measures including distance 

to transit, number of transit stations within a unit area, or number of transit stations per unit area 

(i.e., transit station density). Literature suggests that as a measure of access to mass transit service, 

distance to transit station is an important attribute of the built environment (Chen et al. 2008). This 

factor has a potential to influence nonmotorized trips. 

Access to transit may induce walking and bicycling trips by eliminating the necessity to 

drive. According to a previous study, 90% of all public transit trips involve walking at both ends 

of the trip for access and egress, and bicycling can also be a potentially important mode of access 

to public transportation (Pucher et al. 2011). Residents may be encouraged to walk or bicycle to 

bus stops or metro stations if these facilities are nearby.  

The impact of distance to local transit and other measures of access to transit on 

nonmotorized travel have been investigated by researchers in the past, although perhaps not to the 

extent of the impact of the other Ds of the built environment. 

In an investigation of the effects of local transit accessibility, Kitamura et al. (1997) 

concluded that access to the Bay Area Rapid Transit (BART) system was associated with a 

tendency to make more nonmotorized trips. Also, bus accessibility (distance to nearest bus stop) 

was negatively correlated with fraction of nonmotorized trips in that study.  

Cervero (2001) found that reasonable proximity to a rail transit station (measured in that 

study as time from residence to nearest rail station in highway network minutes) increased the 

likelihood of walking to the station (walking access trips). The same study found that distance 

from rail station to destination (measured in highway network miles) increased the likelihood of 

egress walking trips.  
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Later, Reilly and Landis (2003) showed that availability of local transit did not affect the 

likelihood of walking to entertainment destinations. De Bourdeaudhuij et al. (2003) found that 

perceived convenience of walking to a transit stop was associated with more walking.  

Targa and Clifton (2005) concluded that accessibility to bus transit was associated with 

higher frequency of walking. Also, Ryan and Frank (2009) suggested that having transit stops 

nearby may encourage walking. Further, Durand et al. (2016) found that longer distances were 

associated with lower probabilities of walking to transit stops. 

B.3.1.5 The Macro-level Built Environment 

The previous discussions indicate that the relationship between micro-level (i.e., neighborhood 

level) built environment attributes and walking and bicycling travel behavior has been extensively 

examined. On the other hand, literature also suggests that to exert effects on travel, micro-level 

environmental factors may interact with macro-level factors (Joshu et al. 2008). 

Macro-level built environment attributes, however, have not been tested in previous studies 

for their potential role in nonmotorized travel behavior. The most likely reason for this is that 

nonmotorized trips have been considered short trips occurring within the neighborhood 

boundaries. Nonetheless, there have been small hints in the literature for considering the effects of 

macro-level built environment factors on nonmotorized travel. 

For example, one study that reviewed the existing literature on the relationship between 

physical activity such as nonmotorized travel and the built environment suggested that 

accessibility (at both micro level and macro level) emerges from the literature as a key factor that 

impacts physical activity (e.g., walking and bicycling); thus, the impact of larger geographical-

scale factors such as regional accessibility on such activities should be examined in the future 

(National Research Council 2005).  
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As previously mentioned, different studies measure neighborhood (micro-level) 

accessibility in different ways (e.g., distance or travel time to transit or destinations, number of 

transit stations or stores in the area). Nevertheless, all of these methods quantify either destination 

or transit accessibility.  

In a metropolitan area (macro-level) context, Hansen (1959) defined accessibility as the 

total number of activities (e.g., employment, residential, commercial) around a zone, adjusted for 

some measure of travel impedance (e.g., time, distance, cost). The paper formulated a relatively 

simple method for calculating accessibility within metropolitan areas, which can be used to 

compute macro-level accessibility measures and examine their effects on nonmotorized travel 

within the metropolitan area. 

The literature also discusses the potential role of urban sprawl, automobile-oriented urban 

designs, and the associated sedentary lifestyles in walking and bicycling travel behavior. For 

example, King et al. (2002) suggested that automobile-oriented urban designs restrict utilitarian 

walking or bicycling to work or stores.  

Plantinga and Bernell (2007) suggested that urban sprawl increases trip distances, which 

makes active travel impractical.  

Also, Braun and Malizia (2015) argued that macro-level built environment factors such as 

urban sprawl at the regional or metropolitan level can potentially influence health behavior (e.g., 

walking and bicycling). 

A very limited number of studies tested the effects of macro-level built environment 

attributes on nonmotorized travel behavior. In an attempt to examine the impact of regional-level 

land use on walking behavior, Greenwald and Boarnet (2001) included zipcode-level population 

density and retail employment density in their analysis. The study concluded that regional densities 
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were not important factors in determining walking. The authors suggested that the effects of 

regional density attributes as well as other regional-level built environment measures (such as 

pedestrian environment and percentage of street grid orientation) should be examined in the future 

to allow inferences about the impact of the built environment beyond the local level. 

Other studies found that the extent of urban sprawl impacted walking travel behavior. 

These studies used metropolitan area-level sprawl index by combining many built environment 

variables representing density, land use diversity, degree of centralization, and street accessibility. 

The studies suggested that metropolitan area-level compactness promoted walking (Ewing et al. 

2003b; Ewing et al. 2008).  

Also, Dill and Carr (2003) analyzed city-level data from 42 U.S. cities to examine the 

relationship between city-level built environment and the percentage of workers in the city that 

commuted by bicycle. The study found that higher levels of bicycle infrastructure in the cities were 

positively correlated with higher percentages of commuting by bicycle.  

Leslie et al. (2007) hypothesized that the built environment characteristics of different 

urban regions were not homogenous. They found significant sub-regional differences in walking 

behavior. Particularly, living in the city inner region positively affected the likelihood of walking 

to a store. The study also suggested that the sprawling design of suburban areas encouraged 

sedentary behavior by discouraging active living choices including active travel choices.  

Later, Weinberger and Sweet (2012) concluded that the influence of Walk Score (i.e., a 

measure for walkability of an area) on walking mode share functions at two levels: 1) the local 

level; and 2) the regional level. The study further concluded that potentially important differences 

may exist in the effects of regional built environment characteristics versus those of local built 

environment characteristics between trips with different purposes.  
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B.3.2 Psychological Factors 

B.3.2.1 Attitudes, Perceptions, and Preferences 

An attitude has been defined by Heinen et al. (2010) as the “expectation of all the outcomes of an 

activity, and the personal value of these outcomes”. Others described attitudes as a reflection of 

“an individual’s specific opinions, intentions, affections, and beliefs about something” (Handy and 

Xing 2011). The differences between perceptions, attitudes, and preferences have been described 

by Van Acker et al. (2010) who stated that perceptions are the way a person perceives different 

aspects of the built environment, activities, and travel and develops attitudes as an evaluation and 

ranking of these characteristics and formulates preferences based on these attitudes and 

perceptions. 

The influence of the built environment as well as that of the health and travel-related 

attitudes (including those toward walking and bicycling) on travel behavior have been recognized 

and discussed in many research studies (see e.g., Kitamura et al. 1997; Handy and Clifton 2001; 

Bagely and Mokhtarian 2002; Lund 2003; Rodríguez and Joo 2004; Handy et al. 2005; Targa and 

Clifton 2005; Næss 2005; Agrawal and Schimek 2007; Cao et al. 2010; Handy and Xing 2011; Ma 

and Dill 2015).  

These studies argue that pro-walking, pro-bicycling, pro-health, and pro-environment 

individuals are more likely to choose nonmotorized modes of travel, even if built environment 

attributes do not provide much support for these modes. Conversely, individuals who have pro-car 

and pro-driving attitudes will choose the automobile mode, even if the built environment provides 

relatively adequate support for alternative modes including for walking and bicycling. 

Findings and arguments of a few studies related to the effects of attitudes, perceptions, and 

preferences on nonmotorized travel are summarized below. 
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          Handy (1996a) found that in the decision to walk, individual motivations and limitations 

were more important than perceptions on neighborhood built environment characteristics. Further, 

Kitamura et al. (1997) found that factors related to individual’s attitudes had a stronger influence 

on travel behavior (including nonmotorized travel behavior) than land use and socioeconomic 

factors. The study also found that pro-environment and pro-transit attitudes both had positive and 

significant effects on nonmotorized travel behavior. Porter et al. (1999) suggested that by 

interacting strongly with built environment and policy factors, personal attitudes affected travel 

behavior and mode choice, particularly for bicycling. 

          Later, Handy and Clifton (2001) suggested that attitudes and preferences played a role in the 

choice of walking to grocery stores more frequently. Bagely and Mokhtarian (2002) found that 

residential location type (i.e., neighborhood type) had little independent influence on 

nonmotorized travel behavior once attitudinal and lifestyle factors were controlled for. Lund 

(2003) suggested that factors representing personal attitudes were the most significant factors in 

determining the number of walking trips, even after controlling for built environment variables. 

Stinson and Bhat (2004) indicated that pro-health and pro-environment attitudes affected 

bicycling in a positive direction. Targa and Clifton (2005) used attitudinal and perceptual data as 

proxies for psychological characteristics and found that both attitudinal and built environment 

attributes helped to better explain walking travel behavior. Moudon et al. (2005) found that an 

attitude toward physical activity benefits (i.e., a pro-health attitude) was positively associated with 

bicycling, and Shay et al. (2006) found that pro-walking attitudes were associated with increased 

numbers of walking trips. Also, Handy et al. (2006) found that pro-walking/bicycling attitudes 

were positively associated with walking trips for shopping as well as for strolling trips. Cao et al. 

(2006) concluded that a preference for walking—rather than the neighborhood built 
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environment—explained residents’ walking frequencies to shops. Goddard et al. (2006) found that 

pro-walk/bicycle/transit attitudes were associated with more walking for shopping. Agrawal and 

Schimek (2007) suggested that cultural attitudes toward walking may contribute to differences in 

the amount of individuals’ walking for both utilitarian and recreational trips.  

Additionally, Dill and Voros (2007) showed that negative attitudes toward driving as well 

as pro-bicycling and pro-environment attitudes increased the likelihood of commuting by bicycle. 

Gatersleben and Appleton (2007) also suggested that pro-bicycling attitudes were related to 

bicycling to work. From conducting a meta-analysis of the literature on the link between the built 

environment and travel behavior, Ewing and Cervero (2010) concluded that while the built 

environment seemed to play a more significant role in travel behavior, attitudes and preferences 

were also influential in making travel choices. Cao et al. (2010) found that pro-walking/bicycling 

attitudes were positively associated with both frequency of walking trips to store and strolling trips.  

Handy and Xing (2011) found that attitudinal factors including higher scores on bicycling 

comfort, liking of bicycle riding, and willingness to limit driving were associated with increased 

likelihood of bicycle commuting. Ma and Dill (2015) found that pro-walking/bicycling/transit and 

pro-environment attitudes were significantly associated with utilitarian bicycling propensity, and 

pro-bicycling/pro-transit attitudes were significantly associated with the frequency of utilitarian 

bicycling trips. This study also suggested the objective built environment attributes may influence 

bicycling through affecting individuals’ perceptions of the environment.  

Finally, Schneider (2015) found that enjoyment of walking did not have a statistically 

significant association with walking to shopping districts, whereas Aditjandra et al. (2016) found 

that changes in walking were determined mostly by built environment characteristics rather than 

travel attitudes. 



 

431 

 

B.3.2.2 Self-selection 

An important stream of nonmotorized travel behavior research—particularly as related to the built 

environment—addresses the issue of correlation or causality. Here, the argument is that existence 

of a correlation between built environment characteristics and nonmotorized travel behavior does 

not guarantee existence of a causal link between the two. This research specifically investigates 

the role of residential self-selection in explaining nonmotorized travel behavior. As Handy et al. 

(2005) suggested “understanding the role of self-selection is the key to understanding the causal 

relationship between the built environment and travel behavior”.  

Theoretical Foundations 

Theoretically, self-selection confounds the analysis of the link between nonmotorized travel and 

the built environment due to ambiguity in the spurious or causal nature of the link. Thus, research 

on self-selection aims to determine whether a causal relationship exists between built environment 

factors and nonmotorized travel, or if the correlation observed between the two is the effect of a 

spurious relationship. In the latter case, the spuriousness can be due to the concurrent influence of 

attitudes on both the travel choices and the residential location choice (and thereby the resulting 

built environment) (Handy 2005; Cao et al. 2009). Figure B illustrates such spurious relationship.  

The policy implications are crucial: while existence of correlations does not imply that a 

change in the built environment would necessarily lead to a change in nonmotorized travel 

behavior, causal effects will help policy arguments for interventions aiming at promoting 

nonmotorized travel behavior through changing the built environment. In other words, while a 

simple correlation cannot confirm a causal link or provide sufficient and robust evidence for policy 

development (Fan 2007), causal relations can provide supportive evidence for developing policies 

that promote pedestrian- and bicycle-friendly designs. 
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Figure B. Spurious Relationship between Residential Location  

and Nonmotorized Travel Behavior 

In theory, residential self-selection can result from socioeconomic characteristics and/or 

personal attitudes (Næss 2005; Cao et al. 2009). For example, individuals with a low income or no 

private vehicles may choose to locate in more walkable or bikeable neighborhoods. In this case, it 

is not the pedestrian- or bicyclist-friendly facilities and designs but individuals’ socioeconomic 

constraints that influence their choice of walking and bicycling modes. Further, from the preceding 

discussion, it is logical to think that individuals’ attitudes toward travel, environment, or health are 

tightly interwoven with their choices of residential location, and given the chance, individuals may 

choose to reside in locations that satisfy their travel preferences and personal attitudes.  

In other words, the theoretical idea behind the issue of self-selection mechanism as related 

to attitudes toward nonmotorized travel is that individuals who prefer to walk or bicycle may self-

select themselves into walkable and bikeable residential locations. In this case, individuals’ 

residential location choices—and not the effect of built environment attributes—can be considered 

as a possible explanation for nonmotorized travel occurring at those locations.  

Therefore, observing a correlation between nonmotorized travel and the built environment 

does not necessarily mean that changing the built environment would lead to changes in people’s 
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nonmotorized travel behavior as individuals who prefer nonmotorized modes may select to live in 

neighborhoods that support that preference (Handy et al. 2006). In a sense, the self-selection 

argument takes into consideration individual preferences and attitudes when making residential 

location and travel choices. This indicates that self-selection is closely tied to attitudes and 

preferences, and by accounting for attitudinal predispositions, many studies have in fact been 

attempting to address the issue of self-selection (Handy et al. 2005). 

These arguments establish that self-selection plays a key role in travel behavior, and 

omitting it from the analysis of the link between the built environment and travel behavior may 

have consequences in terms of accuracy of results and magnitude of built environment effects. Cao 

et al. (2009) formulated the relationship between the built environment and travel behavior as: 

TB = f (BE, X) + ε                                                                                    Equation B-1 

where,  

TB = observed travel behavior outcome (i.e., the dependent variable); 

BE = observed built environment variable; 

X = other observed variables (e.g., socioeconomic factors); and 

ε = the error term (i.e., unobserved variables such as attitudes and self-selection).  

The standard Ordinary Least Squares (OLS) estimation of such models requires that the 

observed independent variables (BE and X) be nonrandom and uncorrelated with the unobserved 

independent variables (i.e., ε). If these requirements are violated—that is, if an observed 

independent variable in Equation B-1 is a random function of other independent variables in the 

model or is correlated with the error term—the model will become subject to the endogeneity bias, 

which produces biased and inconsistent estimations for standard errors and coefficients (National 

Research Council 2005; Cao et al. 2009).  
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For instance, if the choice of residential location (and thereby the built environment near 

the residence) is influenced by unobserved attitudes toward nonmotorized modes of travel (i.e., 

self-selection), then variables representing the built environment attributes of the residence (i.e., 

BE) can be correlated with the error term (i.e., ε —which may contain the effects of attitudes). In 

this case, the endogeneity bias manifests itself as the self-selection bias (National Research 

Council 2005). The self-selection of individuals into residential locations will produce biased 

parameter estimates if the OLS regression is used to model the travel behavior outcome (i.e., TB). 

This is because existence of a correlation between BE and ε will turn BE into an endogenous 

variable in the model (hence, the phrase endogeneity bias). An endogenous variable is one that is 

jointly determined with the outcome variable or is otherwise correlated with variables that 

influence the outcome variable despite not being included in the model (Schauder and Foley 2015).  

Thus, the endogeneity bias may occur if travel attitudes and residential self-selection are 

not accounted for in the analysis of the link between the built environment and travel behavior. 

Supporting this argument are arguments by Chen et al. (2008), National Research Council (2005), 

and van Wee and Ettema (2016). The referenced studies suggested that in probing the role of the 

built environment in travel behavior or transportation-related physical activity (e.g., walking and 

bicycling), a study should control for residential self-selection, or it may run the risk of producing 

biased results by overestimating the effect of the built environment on travel choices. Other 

scholars agree that biased results can be produced if self-selection is not statistically controlled for 

(see e.g., Pinjari et al. 2007; Chatman 2009; Cao 2010; Schneider 2015).  

Self-selection Studies and Empirical Findings 

The role of self-selection in travel behavior has been discussed in many studies and its effects have 

been investigated in many empirical analyses including those focusing on the topic of 
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nonmotorized travel behavior (see e.g., Handy 1996a; Boarnet and Sarmiento 1998; Greenwald 

and Boarnet 2001; Handy and Clifton 2001; Ewing and Cervero 2001; Lund 2003; National 

Research Council 2005; Khattak and Rodriguez 2005; Handy et al. 2005, 2006; Salon 2006; Cao 

et al. 2006, 2007, 2009; Frank et al. 2008; Burbidge and Goulias 2008; Chatman 2009; Cao 2010; 

Handy and Xing 2011; Wang 2013; Schneider 2015; van Wee and Ettema  2016).  

The available empirical evidence confirms the existence of a correlation between the built 

environment and nonmotorized travel behavior. However, the existence of a causal link between 

the two requires further research as only a limited number of studies have provided formal 

evidence of causality. Moreover, within the existing empirical studies, ambiguity remains about 

the issues of causality and residential self-selection as the results from different studies are mixed.  

A summary of the literature and empirical findings with respect to residential self-selection 

is provided below. 

           Handy and Clifton (2001) found that individuals with a preference to walk to stores selected 

to live in neighborhoods that supported this predilection. Thus, they concluded that self-selection 

of these residents into walk-supportive neighborhoods was a key factor in the correlation observed 

between walking and the neighborhood stores.  

Also, Ewing and Cervero (2001) suggested that the prevalence of walking and bicycling in 

more traditional urban neighborhoods may be due to the self-selection effects of residents with 

preferences toward nonmotorized modes who chose to live in the neighborhood that supported 

their travel preferences (i.e., traditional neighborhood).  

Further, Greenwald and Boarnet (2001) concluded that after considering the possibility of 

self-selection, certain characteristics of the neighborhood built environment remained significant 

determinants of non-work walking frequency. 



 

436 

 

Later, Lund (2003) suggested that traces of self-selection bias existed in the analysis due 

to residents with walking preferences self-selecting into neighborhoods with local access to retail 

stores.  

Additionally, Rodríguez and Joo (2004) suggested that the role of preferences for travel 

modes and how these preferences are formed and reinforced should further be investigated in 

nonmotorized travel behavior research to address self-selection and causality issues. As they 

suggested, this should examine more integrated frameworks of residential location decisions and 

travel behavior that explicitly address the role of residential location characteristics that attract or 

repel individuals with particular travel preferences.  

          Cao et al. (2006b) examined the influences of built environment and self-selection factors 

on pedestrian strolling and shopping trips. The study found that residential self-selection impacted 

both types of trips, and it was the most important factor in explaining destination-oriented walking 

(i.e., walking for shopping purposes). Also, they inferred that after controlling for the self-selection 

effect, perceived characteristics of the neighborhood and local commercial areas influenced 

frequency of strolling and pedestrian shopping trips, respectively. Consistent with those findings, 

Handy et al. (2006) showed that the effects of neighborhood characteristics on walking behavior 

were significant, even after controlling for self-selection factors. The authors stated that this result 

suggested a direct causal effect by the built environment on walking behavior.  

Chatman (2009) found the residential self-selection bias to be modest and not rendering 

the influence of the built environment insignificant. Cao et al. (2009) reviewed 38 self-selection 

studies and concluded that the nature and extent of the causality between the built environment 

and travel behavior were not clear. Also, in their meta-analysis of past studies, Ewing and Cervero 

(2010) concluded that including residential self-selection measures in the analysis increased the 
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absolute magnitude of elasticities for influential built environment effects. Further, Cao (2010) 

found that neighborhood type played a more important role in influencing walking than did the 

self-selection effect. Lastly, Handy and Xing (2011) found that self-selection influenced bicycle 

commuting significantly as people who chose to live in locations with bicycling-friendly 

environment were more likely to use their bicycles to commute.  

Methodologies to Circumvent Self-selection (i.e., Endogeneity) Bias 

As the literature review above reveals, different researchers have tried to control for self-selection 

bias in different ways. The main methodologies used to address self-selection include: direct 

survey-based questioning, statistical control, sample selection, instrumental variables analysis, 

propensity score, structural equations modeling techniques, and longitudinal designs among others 

(Cao et al. 2009). For brevity, the discussion below will focus on a few of the most important of 

these methodologies—namely—instrumental variables analysis, structural equations modeling 

techniques, and longitudinal designs. 

Many researchers have used instrumental variable techniques to account for the potential 

effect of self-selection bias. As indicated before, if the observed independent variable representing 

the residential location choice in Equation B-1 (i.e., BE) is correlated with the error term (i.e., ε), 

the parameter estimates produced by the OLS regression model can be biased and inconsistent due 

to the endogeneity bias.  

Using instrumental variables to cleanse BE of its correlation with the error term (ε) is a 

common solution to remedy the endogeneity problem in the analysis. To achieve this, one must 

use instrumental variables that are highly correlated with the built environment variable (i.e., BE—

reflecting the residential choice) but not significantly correlated with the error term (i.e., ε—

reflecting preferences and attitudes) in the model (Greenwald and Boarnet 2001; Cao et al. 2009).  
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Thus, this technique is basically, regression analysis with multiple endogenous variables. 

This is because in the case of self-selection, both BE (i.e., the residential choice) and TB (i.e., the 

travel choice) become endogenous variables. 

Using the same notations in Equation B-1 (Cao et al. 2009), and based on Wooldridge 

(2010), the instrumental variable analysis can be formulated by the two following equations: 

BE = f (Z, X) + µ                                                                                      Equation B-2  

TB = f (BÊ, X) + ʋ                                                                                    Equation B-3 

where,  

TB = the endogenous observed travel behavior outcome; 

BE = the endogenous observed built environment variable (representing the residential 

location choice); 

X = other exogenous observed variables (e.g., socioeconomic variables); 

Z = instrumental variables representing residential location attributes that influence the 

choice to live in a certain location but not travel choices; 

µ = the error term (i.e., unobserved variables influencing residential location choice); and 

ʋ = the error term (i.e., unobserved variables such as travel-related attitudes influencing 

travel behavior). 

The instrumental variable analysis consists of two stages: in the first stage, BE is modeled 

as a function of instruments Z, which are strongly correlated with the endogenous independent 

variable (i.e., BE) but are uncorrelated with the error term of the Equation B-1 (i.e., ε). In the 

second stage, the observed BE in Equation B-1 is replaced with its estimated value from the first 

stage of analysis (BÊ, estimated from Equation B-2).  
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In other words, the first stage of the instrumental variable analysis is a regression of the 

endogenous independent variable (BE) on the instrumental variables (Z) and the control variables 

(X), whereas the second stage is a regression of travel behavior outcome (TB) on estimated values 

of BE from the first stage (BÊ) and the control variables (X).  

By assumption, the error term in Equation B-3 (i.e., ʋ) is uncorrelated with (BÊ) and the 

control variables (X), so the OLS can now consistently estimate the parameters in Equation B-3. 

Thus, the endogeneity bias in Equation B-1 due to BE being correlated with ε is corrected by using 

the instrumental variables analysis as formulated in Equations B-2 and B-3. 

In should be noted that the instrumental variable analysis assumptions require that the Z 

variables (i.e., instruments) be variables that influence the residential location choice (BE) but do 

not also influence the travel behavior outcome of interest (TB). Because many socioeconomic and 

sociodemographic characteristics that influence residential location choices may also influence 

individuals’ travel choices, caution must be taken in specifying the instrumental variables and 

regression models (National Research Council 2005).  

Variables such as quality of neighborhood schools, tax levels, having a large backyard, and 

median age of the housing stock in surrounding neighborhoods have been proposed by Greenwald 

and Boarnet (2001) and Khattak and Rodriguez (2005) as potential instruments for the residential 

location choice. These two studies used instrumental variable techniques to control for the choice 

of residential location in examining how built environment characteristics of neo-traditional 

neighborhoods influenced walking trips as well as other travel behavior outcomes. 

Another method to deal with self-selection bias is employment of Structural Equations 

Modeling (SEM) techniques. The SEM method allows for estimation of coefficients for multiple 

interrelated regression equations, simultaneously. Each equation represents a hypothesized 
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direction of causality; thus, the SEM approach accounts for multiple directions of causality 

(National Research Council 2005) between multiple endogenous variables in the model.  

In addition, the SEM techniques can estimate both direct and indirect effects of one 

endogenous variable on another. As indicated formerly, in presence of self-selection bias, both the 

travel behavior variable (i.e., TB) and the residential location choice variable (i.e., BE) are assumed 

to be endogenous variables in the model.  

Applied to the concept of residential self-selection, the SEM techniques can account for 

multiple causal links such as the bidirectional relationships between the travel behavior and 

residential location choice endogenous variables, influence of attitudes on both travel and 

residential location, and the influence of residential location on travel behavior after controlling 

for attitudes. The direct and indirect effects of the residential location choice endogenous variable 

on the travel behavior outcome variable can be estimated by SEM as well. Literature suggests that 

allowing multiple directions of causality is a conceptual improvement that SEM techniques offer 

over the single-equation regression methodology (Cao et al. 2009).  

Several past studies applied the SEM techniques to address self-selection and examine the 

causality of the links between travel behavior (including nonmotorized travel behavior) and the 

built environment.  

For instance, Bagley and Mokhtarian (2002) used SEM to concurrently account for 

multiple directions of causality in examining the link between travel behavior and the 

neighborhood built environment. Their models took into consideration the effects of attitudes on 

travel and residential location, and the effect of residential location on travel behavior once 

attitudes were controlled for. Also, Cao et al. (2007) employed SEM to investigate the relationships 

between changes in the built environment and changes in travel behavior including walking.  
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The SEM has also been used in examining the link between nonmotorized travel behavior 

and the built environment in other countries (see Scheiner and Holz-Rau 2007).   

Finally, longitudinal designs can be employed in the analysis of self-selection bias to avoid 

reliance on cross-sectional designs, which are used in many studies due to available sources of 

travel data. One example of application of longitudinal designs is conducting intervention studies, 

which allow for comparisons of behavior before and after an intervention (i.e., change) is applied. 

In the context of the role of built environment in nonmotorized travel behavior, an intervention 

can be defined as changes (i.e., improvements) to the existing built environment of the current 

residence (or workplace) (Burbidge and Goulias 2008).  

Boarnet et al. (2005) is one such study, which considered travel behavior changes as a 

result of changes to the current built environment. The study provided an assessment of the impact 

of improvements in the built environment on walking and bicycling of children to school. The 

changes in the built environment were due to implementation of the Safe Routes to School (SR2S) 

program in California. The study concluded that built environment interventions related to the 

SR2S program increased children’s walking and bicycling to school. 

Another example of a built environment intervention is a move to a new location with a 

different built environment. In this case, employment of the longitudinal design allows the 

researcher to observe the longitudinal changes in the travel behavior of an individual who moves 

to a new residential location. The goal is to investigate the link between changes in the built 

environment around the new residence (in relation with the old one) and changes in travel behavior 

of the individual. Handy et al. (2005) used travel survey and preferences data from 688 movers in 

California to examine the influence of changes in the built environment on changes in travel 

behavior including walking, as well as to control self-selection and establish causality. 
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Wasfi et al. (2016) studied approximately 3,000 individuals who lived in Canada and found 

that moving to a neighborhood with better walkability increased the odds of moderate and high 

utilitarian walking by nearly 60% compared with other types of residential moves.  

Also, Hirsch et al. (2014) conducted a longitudinal study to estimate the impact of 

neighborhood walkability on utilitarian walking of 701 older adults (45 to 84 years old) who 

moved to a new residential location. The study found that moving to a more walkable 

neighborhood (a 10-point higher Walk Score) was associated with an increase in utilitarian 

walking and meeting a goal of “walking more than 150 min/week”. The authors concluded that 

their study provided longitudinal evidence that utilitarian walking shifted in response to relocation 

to a residential neighborhood with higher walkability.  

Causal relationships can be validly established by before-after research designs (Handy et 

al. 2005); thus, performing an intervention (i.e., before-after) study is a more direct way of testing 

for causality and self-selection. Longitudinal designs are favored over cross-sectional designs due 

to substantial improvements and more robust causal inferences that they provide on the link 

between the built environment and travel behavior (Cao et al. 2009). 

Although all the different methodologies mentioned above deal with the issue of 

endogeneity bias (i.e., self-selection bias in this context), the strength or weakness of the specific 

methodology to correct for the bias depends on the data used and the complexity of the model 

framework. After reviewing 38 studies that controlled for self-selection bias, Cao et al. (2009) 

recommended the use of longitudinal structural equations modeling with control groups; a design 

which they argued “is strong with respect to all causality requisites.” 

Table B lists all the self-selection papers reviewed for this literature review along with the 

methodology they used to address self-selection and a summary of their findings. 
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                      Table B. Overview of Self-selection Studies 

Study Sample 
Nonmotorized Travel 
Behavior Measure(s) 

Built Environment 
Measures 

Attitudinal 
Measures 

Methodology Conclusions 

Review of Self-selection Studies 

Cao et al., 2009 38 studies Various Various Various 
Review of past 
studies 

Nine methodologies exist for controlling self-

selection: direct questioning (survey-based), 

statistical control, instrumental variable analysis, 

sample selection, propensity score, joint discrete 

choice models, structural equations models, 

mutually dependent discrete choice models and 

longitudinal designs.  

The study recommended usage of longitudinal 
structural equations modeling with control 
groups. 

Survey-based/Statistical Control 

Handy, 1996d 

250 respondents 
from six 
neighborhoods in 
Austin, TX 

Frequency of walking 
to the store; and 
frequency of strolling 
trips 

Perceptions on 
attributes of the 
neighborhood built 
environment including 
distance to store; 
parking; sidewalks and 
trees 

Several variables on 
individual attitudes 
toward walking 

Simple correlations 

BE and SS.  
In the decision to stroll, individual attitudes are 
more important than the urban form.  
Distance from home to store is the most 
important urban form factor in the decision to 
walk to store.  
Self-selection has an effect in walking frequency 
of residents in traditional neighborhoods. 

Shriver, 1997 

214 pedestrians 
from four 
neighborhoods in 
Austin, Texas 

Walking trip purpose; 
distance; and duration 

Perceptions on: 
continuous sidewalks 
or trails; canopy of 
trees/shades; good 
lighting; destinations 
within walking 
distance; traffic 

 
Several attitudinal 
variables on the 
importance of 
conditions for 
walking and 
importance of 
walking as an 
opportunity to 
maintain health and 
be around people 

Descriptive 
analysis; 
Spearman's 
correlations 

BE and SS.  
In traditional neighborhoods, walkable distances 
to stores, work, entertainment and transit are 
more important factors as well as the attitudes 
toward being outdoors.  
In modern neighborhoods, walkway continuity 
and trees are more important built environment 
factors, and as are the attitudes toward 
maintaining health and fitness. 

Kitamura et al., 
1997 

963 households in 
the San Francisco 
Bay Area, 
California, 1993 

Number of 
nonmotorized trips; 
fraction of 
nonmotorized trips 

Residential density; 
land use mix; and rail 
transit accessibility 

Several attitudinal 
factors 

Linear regression 

BE < SS. 
Attitudes have more explanatory power in 
explaining the variation in travel behavior, but 
residential environment also exerts influence on 
travel behavior.  
Making walking and bicycling trips is strongly 
associated with attitudes toward the 
environment and public transit. 
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Handy and 
Clifton, 2001 

1,368 individuals 
and 75 interview 
participants in 
Austin, TX, 1995 

Frequency of walking 
to store 

Distance to store; 
neighborhood 
dummy; perceived 
store characteristics 

Several attitudinal 
factors representing 
perceptions on 
walking safety and 
comfort 

Descriptive 
analysis; and 
linear regression 

BE and SS. 
Distance to local stores and the characteristics of 
stores influence the frequency of walking; 
however, the authors also suggested that 
"having the option to walk to the store is to 
some extent an effect of the desire to walk to 
the store". 

Shay et al., 2005 

348 adult 
residents of 
Southern Village 
in Chapel Hill, 
North Carolina 

Number of internal 
utilitarian walking 
trips; and  
walk mode choice  

Distance from home 
to commercial center 

 
Personal attitudinal 
factors on: enjoying 
walking; considering 
environment 
important; and 
valuing stores and 
services nearby 

Negative 
binomial 
regression 

BE and SS.  
Positive attitudes toward walking are associated 
with more walking trips.  
Distance is negatively related to walking. 

Næss, 2005 
1,406 residents of 
Copenhagen, 
Denmark 

Trip distance by 
walk/bicycle mode on 
weekday 

 
 
Local area density; 
location of the 
residence relative to 
downtown; distance 
from the residence to 
closest second-order 
center; distance from 
the residence to the 
closest urban rail 
station 

Additive indices for 
attitudes toward 
transport and 
environmental issues 

OLS 

BE < SS.  
Having car-oriented attitudes is related to lower 
proportions of walk/bike travel.  
The influences of the built environment variables 
are considerably lower than the effects of travel-
related attitudes. 

Handy et al., 
2006b 

1,480 (walking to 
store) and 1,534 
(strolling) 
respondents in 
Northern 
California, 2003 

Frequency of walking 
to store; and 
frequency of strolling  

 
Objective measures of 
"Neighborhood Type" 
(neighborhood 
selection based on 
neighborhood type, 
size of the metro area, 
and region of the 
state); and 
neighborhood 
destination 
accessibility 
 

Various measures for 
residential 
preferences and 
travel attitudes 

Negative 
binomial 
regression 

BE and SS.  
Pro-bike/pro-walk and pro-transit attitudes as 
well as preferences for physical activity options 
and having stores within walking are positively 
associated with both utilitarian walking and 
strolling frequency.  
Neighborhood built environment characteristics 
are significant in the analysis, even after 
accounting for attitudes and preferences; thus, 
the built environment has a causal influence on 
walking.  
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Cao et al., 2006 
1,368 individuals 
in Austin, TX, 1995 

Frequency of strolling; 
and frequency of 
walking to store 

Objective and 
perceived 
neighborhood 
characteristics (safety, 
traffic, shade, etc.); 
and perceived store 
factors (pedestrian 
connections, traffic, 
walk comfort, etc.) 

Residential 
preference based on 
stores being within 
walking distance 

Negative 
binomial 
regression 

BE and SS. 
Residential preference is the most important 
factor explaining the frequency of walking to 
store.  
Among built environment factors:  
a) neighborhood characteristics (particularly, 
perceptions of these characteristics) influence 
strolling frequency; and  
b) characteristics of local commercial area 
influence walking trips to stores. 

Salon, 2006 

 
 
4,382 respondents 
to the Regional 
Travel-Household 
Interview Survey 
in New York City  

Walking level (none, 
some, a lot) 

Population density  Multinomial logit 
model 

BE > SS. 
Residential self-selection accounts for between 
one-third and one-half of the total effect of the 
built environment (population density in this 
study) on walking level. 

Fan, 2007 

 
 
7,422 respondents 
in Orange, 
Durham, and 
Wake Counties in 
North Carolina 

Walking trip duration; 
and bicycling trip 
duration 

 
Population density; 
employment density; 
% of retail uses; % of 
industrial uses; land 
parcel count; retail 
count; industrial 
count; connected 
node ratio; and 
sidewalk coverage 

 
 
Household location 
choice factors (length 
of commute and 
access to transit) to 
represent attitudes 
toward travel time; 
travel distance; 
alternative mode 
choice; and self-
selection  

OLS 

BE and SS.  
Positive attitudes toward transit are associated 
with more time allocated to walk and bike trips. 
Built environment attributes of residence 
location also influence walk/bike trip time 
allocation. 

Chatman, 2009 

999 adults in San 
Francisco and San 
Diego metro 
areas, California, 
2003 and 2004 

Number of non-work 
walk/bicycle trips  

 
Objective measures: 
number of retail 
workers; residents per 
road mile; four-way 
street intersections; 
presence of a heavy-
rail station; presence 
of a light-rail station; 
distance to the 
nearest major CBD. 
Subjective measure: 
whether there is a 
sidewalk on both sides 
of the street 

Preferences for 
neighborhood 
characteristics and 
travel modes (auto, 
transit, walk/bicycle) 

Negative 
binomial 
regression 

BE > SS. 
Mode preferences affect nonwork walk/bicycle 
travel; and 
The built environment independently affects 
nonwork walk/bicycle travel after controlling for 
preferences. 
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Ma and Dill, 
2015 

616 adults in 
Portland, Oregon 

Propensity of 
utilitarian bicycling in 
the past month; 
number of days of 
utilitarian bicycling in 
the past month 

Objective measures 
(for 1/2-mile circular 
buffers around home) 
including miles of off-
street bike path; miles 
of bike lanes; miles of 
minor streets; number 
of retail jobs; terrain 
(% area with a slope 
greater than 25 
percent) 

Factor scores on 
attitudes: pro-walk, 
pro-bike, pro-transit, 
safety, pro-
environment, anti-
car 

Two-step modeling: 
first, binary logistic 
model; second, 
multivariate linear 
model 

 
BE and SS.  
Miles of bicycle path and bicycle lanes, miles of 
minor streets, and number of retail jobs within 
the neighborhood influence the utilitarian 
bicycling propensity.  
Pro-bike/pro-walk/pro-transit and pro-
environment attitudes are significantly 
associated with utilitarian bicycling propensity. 
Pro-bike/pro-transit attitudes are significantly 
associated with utilitarian bicycling trip 
frequency.  
Perceived and objective measures of 
destinations within bicycling distance as well as 
perceptions on quiet streets are positively 
associated with bicycling frequency. 

Quasi-longitudinal Analysis and Longitudinal Designs 

Handy et al., 
2005 

688 movers in 
Northern 
California, 2003 

Change in walking 

Objective measures of 
"Neighborhood Type" 
(neighborhood 
selection based on 
neighborhood type, 
size of the metro. 
area, and region of the 
state); and 
neighborhood 
destination 
accessibility 

Various measures for 
residential 
preferences and 
travel attitudes 

Simple bivariate 
analysis 

BE > SS. 
Neighborhood characteristics have the strongest 
association with changes in walking.  
Perceptions on higher neighborhood 
accessibility, physical activity options, safety, 
socializing, and attractiveness promote walking. 

Boarnet et al., 
2005 

862 respondents 
to the SR2S 
program across 10 
schools in 
California, 2002 

Walking/bicycling to 
school 

SR2S project 
improvements 
including 
sidewalk, crossing and 
traffic control 
improvements 

 

Two-sample t-test 
(for a pre-test and 
post-test research 
design) 

BE. 
All built environment improvements supported 
by the SR2S program appear to increase 
children's walking/bicycling to school. 

Handy et al., 
2006b 

1,505 movers in 
Northern 
California, 2003 

Change in walking 
(including walking to 
the store and strolling 
as well as other 
walking in the 
neighborhood); and 
change in bicycling 

 
 
Objective measures 
of: "Neighborhood 
Type" (neighborhood 
selection based on 
neighborhood type, 
size of the metro. 
area, and region of the 
state); and 
neighborhood 
destination 
accessibility 

Various measures for 
residential 
preferences and 
travel attitudes 

Ordered probit 
model 

BE and SS. 
An increase in perceptive neighborhood 
attractiveness and higher levels of the pro-
bike/walk attitudes has a positive impact on 
changes in walking and bicycling.  
Changes in measures of the built environment 
and destination accessibility measures also have 
a positive impact on changes in walking and 
bicycling, even after controlling for residential 
preferences and attitudes. 
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Hirsch et al., 
2014 

 
 
701 movers in 
Baltimore, MD; 
Chicago, IL; 
Forsyth County, 
NC; Los Angeles, 
CA; New York, NY; 
and St. Paul, MN, 
2000–2002 

Minutes of transport 
walking/week; 
minutes of leisure 
walking/week; meet 
the goal of "walking 
minutes ≥ 150/week"; 
BMI 

Walk Score  

Chi-squared test;  
t-test; and analysis 
of variance 
(ANOVA)  

BE. 
Moving to a location with higher walkability is 
associated with an increase in transport walking 
and a decrease in BMI.  

Wasfi et al., 2016  
2,976 individuals 
in Canada 

Four levels of 
utilitarian walking 
from none to high (≥ 6 
hours per week) 

Walk Score  Binary logistic 
regression model 

BE. 
Moving to more walkable neighborhoods is 
associated with increases in utilitarian walking. 

Aditjandra et al., 
2016 

192 movers from 
10 communities in 
the metropolitan 
area of Tyne and 
Wear, in northeast 
England 

Changes in walking 

 
 
Subjective 
neighborhood 
measures (factor 
scores) based on 
safety, accessibility, 
residential 
spaciousness and 
attractiveness 

Various measures on 
residential 
preferences and 
travel attitudes 

Ordered logit 
model 

BE > SS.  
Changes in walking are determined by built 
environment attributes such as accessibility.  
Pro-walk attitudes promote walking. 

Propensity Score Analysis 

Boer et al., 2007 
10 metropolitan 
areas in the 1995 
NPTS 

Choice of walking 

Land use mix; housing 
density; housing age; 
block length; parking 
pressure; share of 
four-way intersections 

 Propensity Score 
Matching 

BE and SS. 
Built environment factors have a limited (and 
sometimes insignificant) effect on walking after 
propensity score matching analysis. 

Cao, 2010 
1,553 residents 
from Northern 
California, 2003 

Frequency of strolling; 
frequency of walking 
to the store  

Neighborhood Type: 
Traditional vs. 
suburban 
neighborhoods 

Various measures for 
residential 
preferences and 
travel attitudes 

Propensity score 
stratification and 
binary logistics 
regression  

BE > SS. 
Neighborhood type plays a more important role 
in influencing walking than does self-selection. 
However, not controlling for self-selection may 
lead to overestimation of the causal effects of 
neighborhood type for both utilitarian and 
recreational walking frequency.  
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Instrumental Variable Analysis 

Greenwald and 
Boarnet, 2001 

1,091 individuals 
from the 1994 
Household 
Activity and Travel 
Behavior Survey in 
Portland, Oregon 

Frequency of non-
work walking trips per 
person over two days 

Population density; 
retail employment 
density; 
street grid pattern; 
and pedestrian 
environment factor at 
census block group, 
census tract and zip 
code levels 

 
Instrumental 
variable 
regression 

BE. 
Built environment attributes influence the 
frequency of non-work walking at the 
neighborhood level, even after controlling for 
the residential self-selection effects. 

Khattak and 
Rodriguez, 2005 

Survey of 453 
households in 
Chapel Hill and 
Carrboro, North 
Carolina 

Frequencies of walking 
trips; trip distance; 
and trip duration 

Neo-traditional and 
suburban 
neighborhoods 

 
 
Eight attitudinal 
factors (attitudes 
toward residential 
spaces and the 
environment) 

Instrumental 
variable 
regression 

BE. 
The built environment influences most measures 
of travel behavior, even after controlling for 
attitudes toward residential location.  
Neo-traditional neighborhood households 
substitute alternative modes (e.g., walking) for 
driving trips. 

Structural Equation Modeling (SEM)  

Bagley and 
Mokhtarian, 
2002 

515 individuals in 
the San Francisco 
Bay Area, 
California, 1993 

Average daily miles 
traveled by 
walking/bicycling 

 
Neighborhood type 
(traditional vs. 
suburban 
neighborhoods) factor 
scores based on 
various measures such 
as residential density 
and land use mix 

Various lifestyle and 
attitude factor scores 

Structural 
equations 
model 

BE < SS. 
Residential location (neighborhood) type does 
not influence nonmotorized travel behavior. 
Attitudinal and lifestyle factors have a more 
important impact on nonmotorized travel 
behavior. 

Cao et al., 2007 

547 mover 
respondents from 
Northern 
California, 2003 

Respective changes in 
walking (and driving) 

 
Number of different 
types of businesses 
within specified 
distances; distance to 
the nearest locations 
of each business type. 
Subjective 
neighborhood 
characteristics and 
their changes 

Various measures for 
residential 
preferences and 
travel attitudes 

Structural 
equations model 
(with a quasi-
longitudinal 
analysis) 

BE and SS. 
Attitudes and residential self-selection influence 
walking travel behavior; and 
The built environment also has a separate (i.e., 
independent) effect on walking. 

Scheiner and 
Holz-Rau, 2007 

Survey of 2,691 
residents in 
Cologne, 
Germany, 
2002–2003 

Nonmotorized mode 
use 

Quality of transit; 
density of supply (sum 
of retail, services and 
leisure opportunities 
per km squared); and 
mixed use 

Lifestyle and life 
situation factors and 
attitudes toward 
residential choice 

Structural 
equations model 

BE and SS. 
Lifestyle factors and attitudes influence both the 
choice of residential location and nonmotorized 
travel behavior; and 
Built environment factors are also associated 
with nonmotorized trips. 

                                                                           NOTES: also, see Table 1 in Cao et al. (2009) for more information on studies addressing self-selection; BE = Built environment; SS = Self-selection 
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B.3.2.3 The Social Environment: Social and Cultural Norms, Crime, and Perceptions of Crime 

Research suggests that factors related to the social environment such as social and cultural 

differences influence nonmotorized travel. Many studies suggest that factors representing social 

norms, social values, public image, and prestige appear to impact nonmotorized travel (Pucher et 

al. 1999; McMillan 2005; Plaut 2005; McDonald 2005; Agrawal and Schimek 2007; Boer et al. 

2007; Yarlagadda and Srinivasan 2008; Giles-Corti et al. 2009; Heinen et al. 2010; Handy and 

Xing 2011; Harms et al. 2014; Musselwhite et al. 2015; Gowdin and Price 2016).  

Social norms have been defined by Heinen et al. (2010) as values and “norms held by a 

society, or by smaller groups, which influence and regulate individual behavior by functioning as 

informal social controls”. It is assumed that to better fit a society or group, individuals may adapt 

their behavior in line with the norms of that society or group (Heinen et al. 2010). Others simply 

described social norms as the perceived need to comply with the perceived beliefs of the society 

(van Loon and Frank 2011), or perceived social pressure to perform or not perform a certain 

behavior (Montano and Kasprzyk 2008; Van Acker et al. 2010).  

Literature postulates that social norms can influence travel behavior by socializing the 

residents of a certain area into a travel culture, which may be influenced by the structural 

characteristics of an urban area (Næss 2005). In this context, social norms can play an important 

role in the choice of alternatives to driving such as walking and bicycling as well as riding the 

public transit (Handy 2005). For example, Ross (2000) argued that due to walking being an outdoor 

and visible activity, individuals may see others walking for various purposes and adopt that 

behavior themselves. Also, based on a thorough literature review, Heinen et al. (2010) suggested 

that social norms and values have a significant effect on commuting by bicycle; if the individual 
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lives or works where social norms and values accept bicycling to business or work, then there is a 

higher chance that the individual will bicycle to work.  

The effects of social norms and culture on nonmotorized travel can come from a variety of 

sources including the geographic context of current or prior residence (i.e., country, region, 

metropolitan area, and city). In line with this argument, Handy (1996c) suggested that in travel 

behavior research, geographical context is important due to the role of culture, and Bauman et al. 

(1999) suggested that cultural norms regarding physical activity (including walking) can be 

interrelated with geographical location and can subsequently influence human behavior.  

Two empirical studies lend support to this hypothesis as they found that the likelihood of 

children walking and bicycling to school decreased if they had a parent who was born in the U.S. 

(McMillan 2003), and that neighborhoods with higher percentages of immigrants had higher levels 

of walking to school by children (McDonald 2005). The former study concluded that these findings 

confirmed that cultural and societal differences may exist when it comes to “accepted/preferred 

modes of travel”—which in this case, validates the “popular image of the U.S. car-dominated 

culture” (McMillan 2003). The latter study suggested that further research into the role of 

neighborhood’s social environment on children’s school and non-school travel was needed.  

Moreover, literature suggests that differences in nonmotorized travel behavior exists 

among different metropolitan areas. In examining data from the Baltimore metropolitan region, 

Targa and Clifton (2005) mentioned some concern regarding the potential transferability of the 

results to other geographical locations (presumably, other metropolitan areas or cities).  

Other research suggested that the culture and nature of nonmotorized travel vary among 

different countries. Pucher et al. (1999) stated that in some European countries such as the 

Netherlands and Denmark, bicycling for all purposes by all people in considered a “normal thing” 
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regardless of age, social status, or income levels, whereas in the U.S., bicycling is mainly 

recreational and performed by men. The authors suggested that culture and custom (social norms) 

are key factors in affecting bicycling levels in a country.  

In her review of the literature, McMillan (2005) briefly discussed the differences in modal 

splits—particularly walking and bicycling modes—between the U.S. and many other countries. 

The author suggested that although these differences in modal distributions may be partially due 

to the more pedestrian- and bicycle-friendly urban form in other countries, “cultural” differences 

may also play a role, and research is needed to determine if these cultural differences would still 

hold if an individual moved to the U.S. (McMillan 2005).  

Giles-Corti et al. (2009) suggested that cross-cultural differences may exist for families in 

children’s walking activities with more supportive societal attitudes in European countries 

compared with Australia and the U.S. The authors suggested that these cross-cultural differences 

merited further investigation. Several other studies have discussed differences in levels of 

nonmotorized travel among different countries (see e.g., De Bourdeaudhuij et al. 2003; Heinen et 

al. 2010; Pucher et al. 2010; Buehler et al. 2011).  

Social norms and sociocultural values have a potential to influence nonmotorized travel 

behavior in both positive and negative directions. With regards to a positive influence, the concept 

of observational learning—defined within the social cognitive theory—and the concept of 

contagion perspective can be applied to nonmotorized travel behavior. Observational learning 

influences human behavior in the direction of performing the behavior. The contagion perspective 

concept posits that behavior can be spread within the community because individuals are 

influenced by others around them and may copy their behavior (Ross 2000).  
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Based on both the notions of observational learning and contagion perspective, it can be 

assumed that individuals who see others walk and bicycle are encouraged to engage in such 

activities. Literature suggests that social and cultural support including frequently observing others 

engage in physical activity increases the levels of such activity (Trost et al. 2002), which can 

include walking and bicycling. Others argued that in cities where more workers engage in 

commuting by means of walking or bicycling, these alternatives to driving may be culturally more 

acceptable or even admired (Godwin and Price 2016). Other research suggested that seeing others 

walk, may lead to adopting that behavior (Ross 2000).  

Empirical research by Dill and Voros (2007) confirms these arguments as they found adults 

who stated they observed others bicycle on their street once a week or more were more likely to 

be regular bicyclists themselves. Further, although not explicitly stated in their paper, Mitra and 

builing (2012) operationalized the concept of observational learning by using a “walking density” 

variable (defined as total work and school-related walking trips produced by residents of a TAZ 

divided by the area of the TAZ) in modeling children’s active travel mode choice to school. They 

found that the walking density near both the place of residence and school was associated with 

active travel to school, which showed that a child was more likely to walk or bicycle to school in 

locations where others also walked.  

Another empirical study also found that propensity for utilitarian bicycling was associated 

with a supportive social environment such as having family members, friends, or colleagues who 

rode a bicycle for utilitarian purposes (Ma and Dill 2015). In addition, Nehme et al. (2016) found 

that neighborhood recreational walking was associated with perceptions about others being 

physically active (engage in walking and bicycling among other activities).  
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On the other hand, the social environment and sociocultural norms can negatively influence 

nonmotorized travel behavior through concepts such as public prestige and social stigma. 

Researchers have suggested that existence of societal barriers such as the social stigma attached to 

utilitarian walking or bicycling may discourage these activities (Lumsdon and Mitchell 1999). 

 Moreover, it is likely that other factors such as crime rates, which are related to the social 

environment, play an integral role in the decision to walk or bicycle (Demetsky and Perfater 1975; 

Boer et al. 2007; Agrawal and Schimek 2007). Past research found higher levels of crime to be 

associated with lower levels of walking to school (McDonald 2005). Nonetheless, in a review of 

the literature that examined the link between neighborhood crime and physical activity such as 

walking, Foster and Giles-Corti (2008) stated that studies probing this link have reached 

inconsistent findings. Thus, they concluded that there is insufficient evidence on the link between 

crime-related safety and physical activity (inclusive of walking). The authors also suggested that 

perceptions of crime may have a stronger influence on behavior than objective crime measures.  

Empirical findings by Nehme et al. (2016) showed that neighborhood recreational walking 

was inversely associated with concerns about crime. The findings confirmed that perceptions of 

crime were more strongly linked with walking than objective measures of crime as walking and 

the number of violent crimes within the neighborhood were not significantly associated.  

Joh et al. (2009) found that violent crime rates had a negative effect on walking, even after 

controlling for built environment variables. The study suggested that crime and perceptions of 

crime may have a stronger effect on walking than built environment factors. Other empirical 

research also found that perceptions of crime were negatively associated with nonmotorized 

travel—particularly with walking (Ross 2000). Other researchers did not find any relation between 

walking and perceived safety from crime (De Bourdeaudhuij et al. 2003). 
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B.3.3 Socioeconomic and Sociodemographic Factors 

Many empirical studies have included socioeconomic and sociodemographic attributes such as 

age, gender, income, status of driver’s license, and car ownership status in their analyses to 

investigate how these factors affect nonmotorized travel behavior by individuals.  

Age and gender did not enter as significant factors in the non-work trip model in Cervero 

and Kockelman’s study (1997); however, their personal business and work trip models indicated 

that the probability of making a nonmotorized trip was lower for males. The authors suggested that 

individuals with limited access to personal vehicles, without a driver’s license, of younger age, 

and from poorer households were more likely to walk or ride bicycles. Also, Kitamura et al. (1997) 

found that age was an insignificant determinant of nonmotorized trip generation. Vehicle 

ownership and having a driver’s license were both found to be negatively associated with the use 

of nonmotorized modes of travel in that study. 

Hess et al. (1999) found that in suburban areas a substantial share of pedestrian trips was 

made by young individuals (under age 18). Considering the race of walkers, this study also found 

that a disproportionately high number of non-White individuals walked in both urban and suburban 

areas. Ross (2000) concluded that residents of low-income (i.e., poor) neighborhoods as well as 

residents of neighborhoods where a high percentage of residents had a college education were 

more likely to walk. Troped et al. (2001) found that age and gender were associated with bicycling 

as males and younger individuals used the bicycle trail under investigation more. They also found 

that higher education was positively related to the use of the bicycle trail. 

Cervero and Duncan (2003) found that physical disability and household’s car ownership 

were negatively associated with the likelihood of walking. Additionally, they found that compared 

with Whites and Asian Americans, African Americans were more likely to walk or bicycle. Study 
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findings further indicated that males were more likely to walk and bicycle than females. The results 

of this study also suggested that living in a low-income neighborhood had a negative correlation 

with walking and bicycling, although this correlation was not statistically significant. 

Targa and Clifton (2005) found that individuals who were younger, male, non-licensed 

driver, full-time worker, healthy as well as individuals with higher educational levels, with a lower 

number of vehicles and with a higher number of bicycles in the household, and individuals from 

lower-income households walked more frequently. Plaut (2005) found that age was correlated with 

a higher propensity of walking to work and that higher income was associated with a lower 

likelihood of nonmotorized commuting. The study also reported that non-White workers and 

females were less likely to walk or bicycle to work and car ownership was strongly correlated with 

lower probabilities of choosing the walking or bicycling modes.  

McDonald (2005) found that a child’s age had a strong effect on the likelihood of walking 

to school. Being female decreased the probability of walking to school only by a slight amount 

according to the results of this study, so the author suggested that gender may not have an effect 

on walking to school. Further, race was not an important factor in predicting the probability of 

walking trips to school. The study also found that high-poverty neighborhoods had higher levels 

of walking. Moudon et al. (2005) found that the likelihood of bicycling increased for White, 

middle-aged, and male individuals as well as for individuals who owned a bicycle. Based on the 

results of this study, household income did not indicate a significant relationship with the 

likelihood of bicycling. On the other hand, the number of cars in the household was positively 

associated with the likelihood of bicycling. This study argued that in the case of bicycling, 

socioeconomic characteristics play a more important role than built environment factors. 
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Cao et al. (2006) found that older individuals were more likely to stroll around the 

neighborhood, and presence of children in the household induced more strolling trips but fewer 

shopping trips. Kerr et al. (2007) found that in general, the lowest income group was significantly 

more likely to walk than the highest income group in their sample. Further, the study found that 

more urban form variables were related to youths’ walking in households with more cars. Agrawal 

and Schimek (2007) showed that higher income was correlated with more recreational pedestrian 

trips but fewer utilitarian trips. The study found that race and ethnicity had an impact on walking 

and suggested that cultural attitudes toward walking and physical activity could contribute to the 

differences between the likelihood of walking by individuals with different races.  

Merom et al. (2010) found that significantly lower levels of health-enhancing walking were 

reported by men, middle-aged adults and people with more cars in their household. Also, higher 

levels of health-enhancing bicycling were reported by men, younger individuals, full-time 

workers, and high-income earners. Further, Heinen et al. (2010) concluded that the relationship 

between bicycling and age, income, and gender was unclear. However, car ownership had a 

negative effect on bicycling, whereas bicycle ownership had a positive effect on bicycling. 

McDonald et al. (2011) found that being male was positively associated with walking to 

school by children. The study also concluded that children who lived in households that did not 

own a vehicle had a higher probability of walking or bicycling to school. Mitra and Buliung (2012) 

argued that a household’s car ownership was negatively associated with walking/bicycling to 

school and that the male students were more likely to walk and/or ride their bicycle to school.  

Further evidence for the effects of socioeconomic and sociodemographic factors on 

nonmotorized travel behavior has been provided by many previous studies on walking and 

bicycling travel. 
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B.4 Health Literature 

The reason for the interest of public health researchers in the topic of walking and bicycling is 

twofold: 1) concerns about the deterioration of the public health; 2) concerns about the costs of 

these health problems. According to Khattak and Rodriguez (2005), in 2000, approximately 65% 

of the U.S. population was overweight and approximately 30% was obese and these health 

problems cost tens of billions annually. The authors suggested that automobile dependency (less 

nonmotorized travel) was partially to blame for these health issues; therefore, the health impacts 

of transportation activities were crucial and needed to be examined (Khattak and Rodriguez 2005). 

A more detailed review of the studies that examined the association between health, 

nonmotorized travel behavior, and built environment characteristics is presented in this section. 

Additionally, the role of other travel-related behavior such as that of telecommuting in health will 

be reviewed per the limited literature that exists in this area of research.  

B.4.1 Health and Nonmotorized Travel Behavior Literature 

The impact of nonmotorized travel or active travel—as more typically called in the health-

disciplined literature—on health has been studied by many researchers in the past. Active travel 

has been defined by Ciles-Corti et al. (2009) as travel by means of walking, bicycle, and other 

nonmotorized vehicles. Walking and bicycling are considered common and popular types of 

physical activity (Boarnet 2004; Lee and Moudon 2004; DHHS 2008); therefore, some health 

studies refer to these activities simply as physical activity.  

Previous research also deems walking and bicycling as important, more affordable, more 

effective, and more sustainable means of staying physically active, and therefore, means to benefit 

the public health (Lee and Moudon 2004; Moudon et al 2005; Frosyth et al. 2008).  
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Active travel has been suggested to lower risks of an array of health problems and diseases 

including mortality, overweight, obesity, and other chronic diseases (Andersen et al. 2000; 

Lindström 2008; Buehler et al. 2011; Nehme et al. 2016; Liao et al. 2016).  

The health benefits of even a small amount of walking and bicycling are well documented 

(Pollock et al. 1978; DHHS 1996; Oja et al. 1998; National Research Council 2005; Oja et al. 

2011). To attain health benefits, the U.S. Department of Health and Human Services (DHHS) and 

the Centers for Disease Control and Prevention (CDC) recommend 150 minutes of moderate-

intensity physical activity (e.g., brisk walking or bicycling) per week for adults, which can translate 

into 30 minutes of physical activity each day for five days a week (DHHS 2008, 2018; CDC 2019). 

Although many types of physical activity can satisfy these recommendations, literature suggests 

that walking and bicycling (i.e., unstructured physical activity) are more cost effective than 

structured exercises (Moudon and Lee 2003; Moudon et al. 2005; Burbidge and Goulias 2008).  

Empirical evidence for health benefits of walking and bicycling is abundant. For instance, 

Andersen et al. (2000) found that bicycling to work destinations lowered the risk of mortality by 

approximately 40%, after adjusting for other factors including leisure time physical activity. 

 Frank et al. (2004) found a reduction in the likelihood of obesity by approximately 5% for 

each additional kilometer walked per day. In contrast, the study results also showed an increase of 

6% in the likelihood of obesity for each additional hour spent in a car per day. The study concluded 

that travel behavior patterns (including walking behavior) are important predictors of obesity and 

policy interventions aimed at distance walked can be supportive of health.  

Further, Smith et al. (2008) concluded that higher levels of walking among neighborhood 

residents helped lowering individuals’ risk of obesity as higher proportions of residents who 

walked to work were associated with lower BMI and lower risk of overweight and obesity.  



 

 

 

459 

 

Samimi and Mohammadian (2009) and Samimi et al. (2009) examined the effects of travel 

behavior on health outcomes including obesity. Although nonmotorized travel behavior was not 

controlled for in these studies, their findings did show that increased automobile use was correlated 

with higher rates of obesity and lower rates of general health. Increased transit use was associated 

with lower rates of obesity, improved general health, but also with higher levels of asthma.  

Schauder and Foley (2015) used individual-level survey data to examine the effects of 

number of minutes of walking and bicycling on ten health outcomes including BMI, obesity, 

cholesterol, and general health. The study found that after accounting for endogeneity, active travel 

was negatively correlated with weight variables (BMI and obesity) and cholesterol levels.  

Tajalli and Hajbabaie (2017) showed that walking was associated with lower probabilities 

of obesity, hypertension, diabetes, and mental disorders. 

B.4.2 Health and Built Environment Literature 

Researchers argue that increasing daily levels of active travel through interventions that improve 

the pedestrian friendliness and bikeability of the built environment can be more effective than 

encouraging people to participate in structured physical activities such as exercise classes (Samimi 

et al. 2009; Samimi and Mohammadian 2009). Therefore, examination of the effects of active 

travel on health has more often been conducted in a framework that included built environment 

factors as well.  

The relationship between the built environment and health is rather a complex one. That is 

in part due to the potential of the built environment to influence health both directly through 

availability/absence of services and qualities that can improve/worsen health (e.g., level of access 
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to healthy food outlets, ambient air quality), and indirectly through promoting health-behavior 

(e.g., active travel choices).  

Kent and Thompson (2012) identified three key domains through which the built 

environment can influence human health: 1) physical activity; 2) social interaction; and 3) access 

to healthy food. The authors suggested that these three domains address three major health risk 

factors for chronic diseases—namely—physical inactivity, social isolation, and obesity.  

Other literature also suggests that built (i.e., physical) environment attributes can play 

important roles in physical (in)activity (see e.g., Trost et al. 2002) by facilitating or constraining 

physical activity (King et al. 2002; National Research Council 2005).  

Moreover, McCann and Ewing (2003) argued that the design of communities (i.e., the built 

environment) can influence weight by encouraging or discouraging physical activity. For example, 

a built environment supportive of active travel (with pedestrian and bicyclist facilities and 

infrastructure) can promote a healthy weight by promoting walking and bicycling, which are 

important types of physical activity.  

A comprehensive study of the effects of the built environment on physical activity 

(National Research Council 2005) provided a conceptual framework, proposing that the built 

environment of both the neighborhood and the region may play important roles in the amount of 

physical activity (e.g., walking and bicycling) performed by residents. 

Further, a built environment that is supportive of physical activity—especially in the form 

of walking—can create opportunities for social interaction (Boniface et al. 2015), which can in 

turn, have a positive health impact. Social interaction can also be influenced by the built 

environment in various other ways. For instance, existence of public spaces (e.g., parks, playing 

fields, outdoor food courts) as well as mixed-use developments can encourage individuals to spend 
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time outside, engage in social activities, and interact with other community members—all of which 

can contribute to their psychological health.  

In addition, the built environment can impact health by facilitating or constraining access 

to healthy food. An example of facilitated access to healthy food through the built environment is 

existence of farmers markets within communities, which facilitates access to fresh produce 

including farm-produced fruits, vegetables and herbs. Literature has postulated that sprawling 

metropolitan areas can impact health of residents through restricting access to healthy food (see 

e.g., Ewing et al. 2014). 

The role of the built environment in health as discussed in past research is reviewed in the 

next subsections with respect to applicable theoretical foundations as well as the findings of 

empirical studies. 

B.4.2.1 Theoretical Foundations 

As mentioned previously, the influence of the built environment on health is mainly viewed 

through the lens of indirect effects of the built environment on health outcomes by promoting or 

restricting health behavior such as physical activity. Therefore, the behavioral theories discussed 

in Subsection B.2.1 can provide the basis for physical activity behavior (e.g., active travel 

behavior) in health-related research.  

 Specifically, the theory of planned behavior (Ajzen 1991) enables researchers to account 

for the influence of subjective measures of the built environment (i.e., attitudes and beliefs about 

the surrounding built environment) on health behavior such as physical activity.  

The social cognitive theory (Bandura 1986) would allow focusing on reciprocal 

relationships between personal characteristics (e.g., attitudes about the built environment features), 
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the social environment (e.g., social and cultural attributes of the surrounding environment) and 

health behavior (e.g., physical activity levels). 

Evolved from the social cognitive theory, the ecological models of behavior can also be 

used to model health behavior such as physical activity and active travel. Ecological models of 

behavior incorporate objective measures of the built environment in their frameworks; therefore, 

they offer a more comprehensive approach to examine the link between the built environment and 

health behavior (Sallis et al. 2008) such as physical activity and active travel. 

Although not explicitly a theory, the theory on the direct influence of the built environment 

on health consists of an assembly of ideas about certain qualities or characteristics of the built 

environment that may influence health directly (e.g., ambient air quality, access to healthy or 

unhealthy food outlets). 

B.4.2.2 Empirical Studies 

Various aspects of the built environment have been found in prior research to affect various aspects 

of health. The health indicators under investigation in these studies range from obesity and other 

weight-related indicators to respiratory diseases including asthma (see e.g., Ewing et al. 2003b; 

Kelly-Schwartz et al. 2004; Frank et al. 2004, 2005; Smith et al. 2008; Samimi et al. 2009; Samimi 

and Mohammadian 2009; Timperio et al. 2010; Marshall et al. 2014; Schauder and Foley 2015). 

Most of the attention, however, seems to be concentrated on obesity.  

The CDC defines obesity as having a body mass index (BMI) of 30 or higher, and 

overweight as a BMI between 25 and 30 (CDC 2018). The main cause of overweight and obesity 

have been noted as an imbalance between calories consumed through food and beverages and 

calories expended through physical activity as well as other activities (DHHS 2008; Ewing et al. 

2014). Obesity is the condition at which health problems are likely to develop (Gochman 1997). 
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The association of obesity with several health conditions and diseases including hypertension, 

diabetes, asthma, cancer, and heart disease is well established (Mokdad et al. 2001; McCann and 

Ewing 2003; Kelly-Schwartz et al. 2004; Maddock 2004; Frank et al. 2004; Smith et al. 2008; 

Ewing et al. 2014; Meehan 2015). Due to being a contributing factor to having these chronic health 

issues, obesity is considered a risk factor and the culprit behind many health problems. 

Empirical finding provide evidence that built environment factors can affect health 

outcomes including obesity. A summary of a few of studies probing the link between the built 

environment and health outcomes is provided below. 

Empirical Findings on the Link between Physical Health and the Built Environment 

Frank et al. (2004) examined the relationship between obesity, BMI, the built environment of the 

immediate neighborhood, and travel behavior including walking. The built environment factors 

were objectively measured within a one-kilometer network distance of the survey participants’ 

home. The results showed a reduction in the likelihood of obesity by approximately 12% for a 1-

quartile increase in land-use mixing. The study concluded that measures of built environment are 

among the essential predictors of obesity, and that policy interventions aimed at increasing land 

use mix can promote health. Street connectivity (i.e., intersection density) and residential density 

showed insignificant effects in the obesity model in this study. 

Frank et al. (2005) concluded that mixed land use, residential density, and intersection 

density were correlated with minutes of moderate physical activity per day (representing a health 

outcome). Smith et al. (2008) concluded that the risk of obesity was lower among persons living 

in older and in more pedestrian-friendly neighborhoods. Also, a difference in body weight was 

observed between individuals living in most and least walkable neighborhoods. The study also 

found that pedestrian-friendly street network designs lowered the risks of being overweight or 
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obese. Also, the authors suggested that future studies examining the link between weight-related 

measures and the built environment would benefit from including measures of the food 

environment as an environmental factor that supports healthy behavior. 

Samimi et al. (2009) showed that larger block sizes had positive effects on general health. 

County-level road density, intersection density, and population density did not show significant 

impacts on general health. Block size showed a positive correlation with obesity, whereas road 

density, intersection density, and population density exhibited negative effects in the obesity 

model. The authors suggested that people living in urban areas were less likely to be obese.   

Samimi and Mohammadian (2009) found that larger average block sizes were associated 

with higher obesity rates but also with improved general health. Average block size was negatively 

related to asthma rates in this study. Population density did not show any significant impact on 

general health, asthma, or obesity. Timperio et al. (2010) found that children’s BMI z-score was 

inversely associated with the number of sport/recreation public open spaces and the length of local 

roads, whereas the BMI of mothers was associated with the length of walking/bicycling tracks. 

Their other results showed that the proportion of four-way intersections within the neighborhood 

was negatively associated with a change in the BMI z-score among children.  

Further, literature suggests that residents of more compact counties have lower BMIs 

(Ewing et al. 2003b, 2008; Ewing et al. 2014), and lower probabilities of obesity, diabetes, high 

blood pressure, and heart disease (Ewing et al. 2014). In the latter study, however, moderate 

physical activity was negatively related to county compactness. Compactness was measured based 

on a sprawl index, which combined factors representing density, land use mix, centering of jobs 

and population, and street network design. 
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The possibility of bidirectional causality between physical health indicators and the built 

environment has also been examined in past research. Using samples of recent movers whose 

county of residence changed between 1998 and 2000, Plantinga and Bernell (2007) found that BMI 

influenced residential self-selection of individuals into low- and high-sprawl areas; and therefore, 

suggested that sprawl is an endogenous determinant of BMI. The authors concluded that moving 

to denser counties resulted in weight loss and such areas were unlikely to be chosen by individuals 

with a high BMI. Also, in their analysis of the relationship between neighborhood walkability and 

BMI, Zick et al. (2013) found that while no significant association between neighborhood 

walkability and BMI was revealed when using standard cross-sectional estimation, once residential 

self-selection was controlled for, neighborhood walkability had statistically significant effects on 

BMI. The authors, therefore, concluded that residential self-selection understates of the causal 

effects of neighborhood walkability features on BMI. 

Empirical Findings on the Link between Psychological Health and the Built Environment  

While studies examining the influence of the built environment on physical health are abundant, 

the role of the built environment in mental and psychological health has not been thoroughly 

examined. Literature hints that the built environment has the potential to not only influence 

physical health but also mental health (Giles-Corti et al. 2009). The built environment seems to 

exert its effects on mental health through factors such as sense of community, interaction with 

neighbors, social inclusion (or exclusion), and cohesion among community members (Foster and 

Giles-Corti 2008; Mackett and Thoreau 2015; Corburn 2015). For instance, it can be argued that 

pedestrian-oriented (as opposed to car-oriented) street environments can provide more social 

encounter, more effective civic engagement, and more interaction opportunities for individuals, 
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and thereby can impact community sentiments and residents’ mental health state over time (Lund 

2002, 2003; Leyden 2003; Ryan and Frank 2009; Wood et al. 2010).  

Past studies provide some insights on the potential of the built environment in affecting 

mental health of individuals. Handy (1996a) found that seeing neighbors when walking had the 

highest correlation with strolling frequency. As indicated previously, more walking has a potential 

to increase social interaction, which may lead to a better state of mental health; therefore, this 

finding is noteworthy. A more direct link between social interaction and the built environment was 

drawn by Leyden (2003) who found that pedestrian-friendly neighborhoods with mixed-use 

developments affect social capital (e.g., feeling connected to the community, knowing neighbors, 

trust others), and thereby may influence physical and mental health. In addition, Lund (2003) found 

that frequency of unplanned social interactions and neighboring behaviors were significantly 

higher in neighborhoods with local access to parks, whether by themselves or in combination with 

local access to retail stores. 

Examining the link between the built environment and sense of community, Lund (2002) 

found that walkable neighborhoods were associated with a greater overall psychological sense of 

community score, which was a tool developed to measure sense of community at the individual 

level. Others found that sense of community was positively associated with recreational walking, 

but it was negatively associated with presence of mixed-use development (Wood et al. 2010).  

Health, the Macro-level Built Environment Literature, and Empirical Findings  

As evident from preceding discussions, the built environment can influence health in many ways 

including through affecting health-related behavior. The influence of multiple levels of the 

physical (i.e., built) environment on health has been emphasized in studies that discuss and/or 
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suggest incorporation of the ecological models of behavior in health-related research (see e.g., 

King et al. 2002; Trost et al. 2002; De Bourdeaudhuij et al. 2003; Handy 2005; Sallis et al. 2008).  

In explaining health behavior such as physical activity, the ecological model framework 

allows incorporation of the influence of built environment attributes at various levels including the 

micro level (e.g., the individual or household), the meso level (e.g., the neighborhood or perhaps 

the county), and the macro level (e.g., the city, the region, or the metropolitan area) (King et al. 

2002; Handy 2005; Van Acker et al. 2010). Some researchers argue that the influence of built 

environment attributes on physical activity (e.g., active travel) as well as health promotion theories 

and interventions should be considered at all of these spatial levels, ranging from micro to meso 

to macro levels (King et al. 2002). In addition, it has been postulated that in excreting their effects, 

micro-level environmental factors may interact with macro-level factors; however, these potential 

interactions have not been considered in past empirical research (Joshu et al. 2008).  

Many studies have shown that micro-level (i.e., neighborhood-level) built environment 

factors can influence health outcomes (see e.g., Frank et al. 2004; Smith et al. 2008; Marshall et 

al. 2009; Timperio et al. 2010 among others). These studies found that built environment attributes 

at the micro level including pedestrian friendliness of designs, extent of land use mix, and 

accessibility to parks and other recreational facilities were associated with health behavior such as 

physical activity as well as health outcomes such as obesity. Further, many other studies examined 

the connection between health and the meso-level (i.e., county-level) built environment (see e.g., 

Ewing et al. 2003b; Samimi et al. 2009; Samimi and Mohammadian 2009). These studies showed 

that built environment attributes at the meso level such as county-level compactness and the 

average size of blocks can impact health outcomes such as obesity, BMI, and general health. 
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Moving one level higher in the spatial hierarchy, the macro-level (e.g., city- or metropolitan 

area-level) built environment will be next. Literature suggests that urban structural (i.e., macro-

level built environment) characteristics and city designs play a role in health behavior (e.g., 

physical activity) of residents. According to King et al. (2002), while most cities are composed of 

both automobile-oriented and pedestrian-oriented designs, the latter provides residents with 

opportunities for physical activity associated with daily life, whereas the former does not. The 

referenced study also argued that automobile-oriented urban designs particularly restrict utilitarian 

active travel (e.g., walking or bicycling to workplace or stores), and thereby can influence health 

outcomes down the line. Other researchers also argued that the macro-level built environment can 

play a role in residents’ health. Specifically, urban sprawl and its consequential automobile 

dependency and sedentary lifestyle have been blamed for escalating health problems of Americans 

including their high levels of obesity (Cervero and Duncan 2003; Khattak and Rodriguez 2005).  

 A more specific argument in linking obesity and urban sprawl came from Plantinga and 

Bernell (2007) who suggested that urban sprawl may lead to obesity by discouraging physical 

activity and encouraging sedentary behavior. The authors provided three reasons for their 

arguments: first, sprawling designs increase trip distances, which makes active travel impractical; 

second, sprawling designs discourage public transit use and encourage automobile use, which may 

lead to traffic congestion and consequently, diversion of time from activities such as physical 

activity; third, suburban development—a feature of urban sprawl—does not adequately provide 

recreational facilities such as parks that promote physical activity (Plantinga and Bernell 2007). 

All of the above suggests that macro-level built environment factors such as urban sprawl can 

influence health outcomes such as obesity by influencing physical activity and active travel levels. 

Another study agreeing with this argument is Leslie et al. (2007) who suggested that the sprawling 
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design of suburban areas promotes sedentary behavior by discouraging active living choices 

including active travel choices.  

Other studies highlight the role of sprawling designs in reduced levels of social interaction, 

which can influence mental health outcomes. For instance, (Næss 2005) argued that urban sprawl 

negatively affects people’s participation in community activities. Other literature on the role of 

macro-level environment on health suggests that communities vary in built as well as social 

environments—depending on the level of urbanization—as the extent of urbanization can 

influence the extent of walkability and mixed development in an area (Joshu et al. 2008).  

Also, Schauder and Foley (2015) concluded that building cities that are supportive of active 

travel can be an effective policy intervention toward the betterment of residents’ health and 

lowering healthcare costs. Braun and Malizia (2015) suggested that macro-level built environment 

characteristics beyond the residential neighborhood—such as urban sprawl at the regional or 

metropolitan area level—have a potential to influence health behavior (e.g., active travel) as well 

as health outcomes. 

Empirical studies on the role of macro-level built environment in health are, however, 

scarce and their findings are sparse. A summary of the studies that considered the built 

environment attributes of larger scale (i.e., macro-level) geographical areas—including those of 

metropolitan areas—in their analysis is provided below. 

Ewing et al. (2003b) analyzed health data from individuals living in approximately 450 

different U.S. counties (over 80 metropolitan areas) to investigate the relationship between urban 

sprawl and health outcomes. The study found that increased county-level sprawl was associated 

with reduced walking levels and increased BMI, obesity, and hypertension levels. The results also 

showed that people in more sprawling counties weigh more regardless of how much they walk for 
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exercise. At the metropolitan area level, higher sprawl was associated with lower walking levels 

but not with health indicators.  

Kelly-Schwartz et al. (2004) integrated data on individuals’ health from 29 Primary 

Metropolitan Statistical Areas (PMSAs) with data on sprawl from Ewing et al. (2002) to examine 

health outcomes. The study found that residents of areas with more street network connectivity 

had higher health ratings, whereas those living in more densely populated urban areas had lower 

health ratings. Results showed that living in less-sprawling counties was correlated with walking 

more and having lower BMIs. However, measures of sprawl did not show a significant relationship 

with frequency of walking, BMI, or chronic diseases when PMSAs were the unit of analysis. 

Additionally, the authors suggested that “various dimensions of sprawl affected health in different 

and contradictory ways”. They further concluded that the influence of sprawl on health was both 

positive and negative; higher street connectivity correlated with better health ratings, but higher 

density was associated with poorer overall health ratings.  

Joshu et al. (2008) evaluated environmental correlates of obesity at both the micro and 

macro geographical levels using a sample of adults in the U.S. The goal of the study was to 

determine whether personal and neighborhood barriers differed by the level of urbanization and as 

related to BMI of residents. Findings showed that associations between perceived neighborhood 

and personal barriers and obesity differed by urbanization level, and that differences also existed 

in micro-level (neighborhood) barriers across levels of urbanization. The macro-level analysis 

indicated that living in a more compact county was inversely associated with BMI. 

Marshall et al. (2014) used data from 24 cities in the state of California to examine the 

effects of three measures of street network design including street connectivity, street network 

density, and street configuration on various health outcomes. The study analyzed the effects of 
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street design at two different spatial levels: neighborhood level and city level. The results showed 

that increased intersection density was significantly correlated with reduced rates of obesity at the 

neighborhood level, and reduced rates of obesity, diabetes, high blood pressure, and heart disease 

at the city level. The study also suggested that in terms of health, citywide intersection density (a 

proxy for compactness) was more important than the neighborhood-level intersection density. The 

authors concluded that with respect to public health outcomes, “the overall character of the city 

makes a bigger difference” than the character of each individual neighborhood (Marshall et al. 

2014). The referenced study also found that increased street connectivity at the neighborhood level 

was associated with lower rates of obesity and heart disease. Street connectivity factors at the city 

level were not found to be associated with health outcomes. A higher percentage of major streets 

with bicycle lanes at the city level was associated with lower diabetes rates. Also, in terms of food 

environments, the study found that having more fast food restaurants was associated with lower 

high blood pressure rates at the neighborhood level, and higher diabetes rates at the city level. 

Braun and Malizia (2015) developed a composite downtown vibrancy index for 48 cities 

in the U.S. to examine the association of this index with public health outcomes (e.g., obesity, 

diabetes). The downtown vibrancy index incorporated several built environment characteristics at 

both the local and metropolitan area levels. The index also captured the cultural aspect of vibrancy 

(% of the downtown population whose primary language was not English) as a proxy for social 

and cultural diversity. The analysis was conducted at the county level.  

The results indicated that the vibrancy index was significantly associated with physical 

inactivity but not with diabetes, premature death, and obesity. This study also disaggregated the 

vibrancy index into four components: compactness/density, destination accessibility, local 

connectivity (i.e. street design), and mixed land use and examined their association with physical 
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inactivity. The results showed that limited destination accessibility and street connectivity were 

associated with higher physical inactivity levels. The authors also reported that greater street 

connectivity was correlated with higher prevalence of obesity. 

B.4.3 Health and Social Environment Literature 

The social environment can impede or support human behavior (Bandura 1986). Based on social 

cognitive theory and the ecological model, one can assume that the social environment plays a role 

in health behavior such as active travel (i.e., walking and bicycling) as well as other types of 

physical activity. Through influencing health behavior, the social environment has a potential to 

influence health outcomes. In addition, the social levels of influence on behavior proposed by the 

ecological model framework (i.e., social groups such as families, organizations, and institutions) 

reflect the culture in which they exist (Gochman 1997). Thus, the role of culture in health behavior 

and health outcomes should not be overlooked. 

Past research argues that modern society is becoming more aware that culture is an 

important factor of the environment and human health is associated with the surrounding 

environment (Jackson 2003). Literature suggests that social support (e.g., supporting social and 

cultural norms) promotes health behavior such as physical activity, meaning observing others 

engage in physical activity has positive, encouraging effects for individuals to do the same (see 

e.g., Trost et al 2002). Others suggest that the effects of macro-level built and social environments 

on physical activity and health outcomes are interwoven. Thus, changes in the macro-level built 

environment can potentially override individuals’ attitudes by changing social norms (Joshu et al. 

2008) and culture. Therefore, together, the built and social environments can encourage health 

behavior such as physical activity, and consequently influence health outcomes such as BMI.  
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Further, concerns about safety may be a barrier to physical activity (CDC 1999). Chronic 

exposure to community violence and crime have been named as examples of social environment 

factors that can influence levels of physical activity (King et al. 2002).  

Many studies in the past have found a relationship between social environment factors such 

as social and cultural norms as well as crime on levels of active travel and physical activity. This 

literature has been elaborately discussed in Subsection B.3.254.  

Regarding the role of crime in physical activity, two points should be noted: 1) a study by 

the CDC reported that individuals who perceived their neighborhood to be unsafe were more likely 

to be physically inactive (CDC 1999); and 2) it is also worth highlighting the findings of a study 

by Foster and Giles-Corti (2008) who concluded that research findings on this topic are 

inconsistent and future research is needed to determine the link between physical activity and real 

and perceived crime-related safety. 

B.4.4 Health and Telecommuting Literature 

The role of telecommuting in health has been examined and discussed in the past (see e.g., Baruch 

2001; Steward 2001; Spinks 2002; Ganendran and Harrison 2007; De Croon et al. 2010; and Henke 

et al. 2015). However, a review of the available literature reveals that many studies that discussed 

the health effects of telecommuting did so within a psychological and mental health context. 

 Existing literature suggests that telecommuting can offer employees a number of 

psychological benefits. These can range from lower levels of occupational stress to improved job 

performance and greater job satisfaction (see e.g., Baruch 2001; Steward 2001; Robertson et al. 

2003; Ganendran and Harrison 2007).  

 
54 See Subsection “B.3.2.3 The Social Environment: Social and Cultural Norms, Crime, and Perceptions of Crime”. 
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On the other hand, negative aspects of telecommuting have also been discussed in past 

studies. These can include longer work hours, the blurriness of work and personal times (as work 

time encroaches into personal time), social isolation (as a result of less face-to-face time and less 

interaction with colleagues and the society), and increased work-related stress (as a result of 

colleague jealousy or employer pressure) (see e.g., Robertson et al. 2003; Henke et al. 2015).  

To provide a snapshot of the state of knowledge, findings of a few studies on the influence 

of telecommuting in health are summarized below.  

Using a system approach for the teleworking process, Baruch (2001) recognized quality of 

life and lower levels of stress (i.e., individual-level outcomes) as well as environment and 

community improvements (i.e., society-level outcomes) as positive impacts of telecommuting. 

Potential isolation from human interactions (at both individual and society levels) was listed in 

this study as a negative impact of telecommuting. The study also suggested that health impacts of 

telecommuting can be a beneficial topic for future studies.  

Robertson et al. (2003) proposed a work system design approach for telecommuting 

programs to explain the impact of workplace factors including the psychosocial factors on 

telecommuters’ health and safety. 

De Croon et al. (2010) conduced a systematic review of the literature on how concepts 

related to place of work such as office location (conventional vs. telework from home), office lay 

out (open vs. cellular), and office use (fixed vs. shared work stations) affected employee work 

conditions (e.g., autonomy or interpersonal relations at work), short-term reactions (e.g., 

physiological or psychological reactions or job satisfaction), as well as long-term reactions (e.g., 

performance and health). The study argued that there was insufficient evidence to conclude about 

the effects of telecommuting on either employee short-terms reactions or long-term reactions. The 
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study suggested that further research is needed to examine the health effects of telecommuting as 

this practice gains popularity and stress-related health problems gain higher prevalence. The 

authors stated that considering the issues above “this gap in knowledge is remarkable.” 

Research on physical health impacts of telecommuting is limited, if not scarce. There have 

been few hints in the literature that telecommuting can affect physical health. For example, 

Steward (2001) investigated health experiences of telecommuters by collecting and analyzing 

longitudinal survey data on work and health of these individuals over a six-month period. The 

survey results indicated that telecommuters—especially if female—experienced a high level of 

stress-related illnesses. However, the data on illness were self-reported by survey-takers; therefore, 

the results of the study were not based on an empirical analysis of the relationship between 

telecommuting and objective measures of a health outcome (i.e., illness). 

Other researchers postulated that excessive participation in sedentary behavior, computer-

related activities and high levels of informational overload have a potential to reduce physical 

activity levels (King et al. 2002), and thereby can lead to adverse physical health outcomes. 

Telecommuting is a perfect example of computer-related activities, which can be accompanied by 

an overload of information and work, leading to lower levels of physical activity and as a result, 

affecting the health status of the telecommuter. Regarding other physical health effects of 

telecommuting, Lister and Harnish (2011) suggested that telecommuters may benefit from fewer 

illnesses. However, there are not many empirical studies to support this hypothesis. 

By the time the proposal for this dissertation research was presented to the Dissertation 

Advisory Committee, the author had been able to find only one empirical study that examined the 

effects of telecommuting on physical health: Henke et al. (2015). Confirming the lack of empirical 

evidence on the role of telecommuting in physical health outcomes, the referenced study 
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investigated the effects of telecommuting intensity on health of employees. The researchers 

included measures of telecommuting status and intensity as well as eight measures on health risk 

status (e.g., obesity, depression, stress, and physical inactivity) in their analysis.  

The results of the above-mentioned study indicated that health status varied by 

telecommuting intensity. Employees who did not telecommute were at greater risk for being obese 

and physically inactive. The results also showed that workers who telecommuted 8 or fewer hours 

per month during regular work hours had a reduced risk for depression over time compared to 

workers who did not telecommute. The authors indicated that their study did not find any 

association between telecommuting and stress (Henke et al. 2015).  

More recently and after the proposal for the present dissertation was written and presented 

to the Committee), Tajalli and Hajbabaie (2017) also investigated the effects of telecommuting on 

physical health outcomes. They found that telecommuting was associated with mental health 

disorders but not with indicators of physical health (i.e., obesity, blood pressure, and diabetes). 

B.5 Conclusions of the Literature Review and Discussion of Research Gaps/Limitations 

This review of literature on the factors that impact nonmotorized travel behavior and human health 

provides insights into the theoretical bases as well as empirical research findings on these topics.  

Based on this comprehensive literature review, Chapter 2 of this dissertation summarizes 

the main conclusions reached with respect to the existing research and empirical findings on the 

relationships between nonmotorized travel behavior, the built environment, and health.  

Chapter 2 also identifies the gaps in existing research and discusses opportunities for 

further research as well as how the present dissertation aims to take advantages of those research 

opportunities to fill some of the gaps in knowledge in this research areas. 
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Appendix C 

Nonmotorized Travel Behavior: A Baltimore, Maryland and Washington, D.C. Case Study 

C.1 The Baltimore-Washington, D.C. Case Study  

In this case study, statistical models are developed to examine the relationship between built 

environment factors of the place of residence and the extent of nonmotorized travel by residents. 

The case study focuses on the Baltimore, Maryland and Washington, D.C., metropolitan areas. 

These two metropolitan areas were chosen for this analysis because their travel surveys and land 

use data collection were conducted concurrently, resulting in consistent datasets.  

The two metropolitan areas locate close to each other, which facilitates mapping and 

comparison efforts. Even though the two metropolitan areas are similar in many ways such as their 

highway systems, they are adequately different in terms of income levels, built environment, and 

regional accessibility characteristics as well as public transit systems to allow a statistical model 

to capture the most significant effects of the built and social environments on travel behavior.  

C.1.1 Baltimore-Washington, D.C. Data 

The final database for the Baltimore-Washington, D.C. nonmotorized travel behavior statistical 

models consists of the following individual datasets: i) metropolitan household travel survey data; 

ii) metropolitan land use data; iii) metropolitan highway and transit skimming matrices; iv) Walk 

and Bike Score data; and v) spatial data (GIS shapefiles). These datasets are described below. 

C.1.1.1 Metropolitan Household Travel Survey 

The metropolitan household travel survey data come from Baltimore, Maryland and Washington, 

D.C., metropolitan areas in the U.S. These data were obtained from the Baltimore Metropolitan 

Council (BMC) and the Metropolitan Washington Council of Governments (MWCOG). The most 
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recent travel surveys within these areas were conducted in 2007 and included 11,000 households 

in Washington, D.C. and 4,650 households in the Baltimore metropolitan area.  

These travel survey data provide information on each surveyed household’s Transportation 

Analysis Zone (TAZ), household socioeconomic/demographic attributes (e.g., household size, 

income, number of vehicles, number of licensed drivers) as well as detailed information on trips 

made by individuals within each household during a particular day. The trip information includes 

the mode of travel, travel time, and distance traveled for each trip made. Figure C-1 shows mode 

shares for trips in the study area based on the 2007 BMC- MWCOG household travel survey data. 

 

Figure C-1. Baltimore-Washington, D.C. Trip Mode Share (2007) 

The travel survey data also indicate that of the 9,969 pedestrian and bicycle trips: 

- 2,760 trips (i.e., approximately 28%) listed “Home” as trip destination; 

- 837 trips (i.e., over 8%) went beyond 1.5 miles in trip distance; 

- 791 trips (i.e., approximately 8%) lasted longer than 30 minutes in trip duration; and 

- 5,270 trips (i.e., approximately 53%) did not stay within the TAZ they originated in. 

These statistics show that a sizable proportion of the Baltimore-Washington D.C. 

pedestrian and bicyclist trips did not originate at the home location and did not stay within the 

neighborhood boundaries. 
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C.1.1.2 Metropolitan Land Use 

The most recent land use data for Baltimore and Washington, D.C. metropolitan areas were 

obtained from the BMC and the MWCOG.  

The land use data were collected in 2005 and provide detailed information on land use in 

the two metropolitan areas including the total number of establishments in each land use type class 

(e.g., retail, office, industry) in addition to housing, population, and employment information for 

each TAZ within the two metropolitan areas.  

C.1.1.3 Highway and Transit Skimming Matrices 

BMC and MWCOG zone to zone highway and transit skimming matrices have also been used in 

the analysis of nonmotorized travel behavior within the Baltimore-Washington, D.C. study areas.  

These matrices provide information on highway and transit travel times between various 

origin-destination (OD) pairs in the two metropolitan areas as well as terminal times in the case of 

transit travel. The OD zones considered in the skimming matrices are TAZs.  

For the transit matrix, the information includes in-vehicle times, wait times, transfer times 

between stations, as well as walk access times. 

C.1.1.4 Walk/Bike Score Data, and Spatial Data  

Detailed information about Walk Score and Bike Score data is provided in Section 3.2 of this 

dissertation (see Subsection 3.2.10). Also, Walk/Bike Score categories are listed in Appendix D. 

With regards to spatial data, TAZ-level shapefiles come from BMC and MWCOG. Further, 

U.S. Census Bureau’s Topologically Integrated Geographic Encoding and Referencing 

(TIGER)/Line shapefiles have been used to obtain census block-level and county-level spatial data 

within the Baltimore-Washington, D.C. study area. Additional information on TIGER/Line 

Shapefiles spatial data can be found in Section 3.2 of this dissertation (see Subsection 3.2.7). 
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C.1.1.5 Final Database  

The travel survey data provided information on the residential location of each household at the 

TAZ level, the household TAZ code was used to spatially link the built environment attributes of 

each household’s residential location to the walking/bicycling trips of the household members by 

utilizing GIS tools. Through these data manipulations, the final integrated database for the models 

was obtained, which combines information from all the independent datasets described previously. 

C.1.2 Baltimore-Washington, D.C. Models: Dependent Variables 

The nonmotorized trips of the households within the study area have been considered for statistical 

modeling. Four separate models are developed based on the following four dependent variables: 

1) household’s number of daily per capita walking trips; 

2) household’s number of daily per capita bicycling trips; 

3) household’s total number of daily walking trips; and 

4) household’s total number of daily bicycling trips.  

The total numbers of household’s daily walking and bicycling trips were computed by 

aggregating the number of walking (or bicycling) trips recorded in the travel survey during the 

travel day for all of the members of that particular household.  

To obtain the household’s number of daily per capita walking trips, the total number of 

household’s walking trips was divided by the total number of household members.  

Similarly, the household’s number of daily per capita bicycling trips was computed by 

dividing the total number of household bicycling trips by the total number of household members.  

Table C-1 provides information on the frequency and percentage of the Baltimore-D.C. 

household’s total number of daily walking and bicycling trips.  
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      Table C-1. Number and Proportion of Baltimore-D.C. Household Nonmotorized Trips 

        NOTES: — = Not applicable; Source of data: 2007 MWCOG-BMC metropolitan household travel survey. 

The table indicates that the maximum number of trips was 21 and 11 for walking and 

bicycling trips, respectively.  

Also, as it can be seen from Table C-1, a considerable percentage (68%) of households did 

not report any walking trips. This percentage is even higher in the case of bicycling trips as almost 

98% of households did not report any bicycling trips during the day of travel survey.  

Number 

of Trips 

Frequency Percent 

Walking Bicycling Walking Bicycling 

0 6,448 9,281 68.01 97.89 

1 568 17 5.99 0.18 

2 1,266 110 13.35 1.16 

3 273 26 2.88 0.27 

4 396 24 4.18 0.25 

5 139 9 1.47 0.09 

6 147 8 1.55 0.08 

7 64 1 0.68 0.01 

8 70 3 0.74 0.03 

9 24 — 0.25 — 

10 28 1 0.30 0.01 

11 10 1 0.11 0.01 

12 17 — 0.18 — 

13 2 — 0.02 — 

14 5 — 0.05 — 

15 5 — 0.05 — 

16 4 — 0.04 — 

17 3 — 0.03 — 

18 6 — 0.06 — 

19 2 — 0.02 — 

20 3 — 0.03 — 

21 1 — 0.01 — 

Total 9,481 9,481 100.00 100.00 
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The average number of daily household walking and bicycling trips were 0.99 trips and 

0.06 trips, respectively. These low figures are consistent with previous studies that suggested trips 

using the nonmotorized modes of travel occur at very low rates compared to trips using other 

modes of travel (see e.g., Friedman et al. 1994; Agrawal and Schimek 2007; Marcus 2008; 

Kuzmyak et al. 2014). 

Figures C-2 and C-3 map the average daily number of household’s per capita walking and 

bicycling trips for each TAZ within the Baltimore-Washington D.C. study area. The figures show 

that the average daily number of household’s per capita walking and the average daily number of 

household’s per capita bicycling trips are generally higher in TAZs closer to the central business 

district (CBD) of the two metropolitan areas (i.e., the Baltimore and the Washington, D.C. 

metropolitan areas). 

The figures also show that the average daily number of household’s per capita walking and 

bicycling trips in some suburban communities within the study area are relatively high, especially 

in the Baltimore metropolitan area. This may be reflecting leisure walking and bicycling trips by 

residents of those suburban communities.  

In addition, Figures C-2 and C-3 reveal that compared to households located in the 

Baltimore metropolitan area, household in the Washington, D.C. metropolitan area are located 

within TAZs farther from the CBD. 
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    Figure C-2. Average Daily Number of Household Per Capita Walking Trips by TAZ 
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    Figure C-3. Average Daily Number of Household Per Capita Bicycling Trips by TAZ 

 

 

 

 

 

NOTES:  

 

Study area: the Baltimore, Maryland and Washington, D.C. metropolitan areas;  

Source of data for figures: 2007 MWCOG-BMC metropolitan household travel survey. 
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C.1.3 Baltimore-Washington, D.C. Models: Independent Variables 

The independent variables for the statistical models have been chosen based on the principles of 

the ecological model of behavior as well as findings of previous research (see Chapter 2 and 

Appendix B). The independent variables are categorized into four sets representing four potential 

ecological levels of influence on walking and/or bicycling behavior: 1) household control 

variables, which provide information on socioeconomic attributes of households; 2) 

neighborhood-level built environment variables; 3) county-level built environment variables; and 

4) regional accessibility variables. 

Household has been selected as the unit of analysis in this study. This choice was made in 

part because the social cognitive theory considers the household as the most important setting 

among the social environment levels of influence that determine an individual’s behavior 

(Gochman 1997; Van Acker et al. 2010). Moreover, a previous study argued that households (as 

opposed to individuals) are the appropriate unit of analysis in travel research (Ewing 1995). 

Households have been used as units of analysis in many past travel behavior studies including in 

research on nonmotorized travel behavior (see e.g., Friedman et al. 1994). 

The built environment factors have been included in the model based on the ecological 

model of behavior, which emphasizes the role of the physical (i.e., built) environment on behavior. 

As previously mentioned over half (53%) of the nonmotorized trips in this sample crossed the 

boundaries of the neighborhood (i.e., did not start and end in the same TAZ). Also, because many 

of the nonmotorized trips had a long travel distance (>1.5 miles) or travel time (>30 minutes), it is 

possible that the built environment patterns of geographical areas larger than the neighborhood 

influenced these trips.  



 

 

 

486 

 

Thus, the built environment characteristics have been measured utilizing two geographical 

scales (i.e., neighborhood and county) to capture the impact of two levels of built environmental 

influence on nonmotorized travel behavior: the micro-level and the meso-level.  

Further, variables representing regional accessibility have been included in the models to 

capture the potential influence of regional accessibility characteristics on nonmotorized travel 

behavior of residents. 

The independent variables are categorized and computed as described below. 

C.1.3.1 Household Control Variables  

Examples of the measures of household ties that can influence behavior such as walking and 

bicycling are household size and working status of adults (Gochman 1997). Such variables along 

with many other household-level variables, have been used in previous research on nonmotorized 

travel behavior (see Chapter 2 and Appendix B).  

For the present study, household-level variables provide information on the socioeconomic 

attributes of each household including the household’s: 

- size (i.e., number of household members); 

- annual income; 

- number of students; 

- number of workers;  

- number of vehicles owned; 

- number of licensed drivers; and  

- number of bicycles owned. 

The values for these variables are taken directly from the relevant metropolitan area (i.e., 

Washington, D.C. or Baltimore) travel survey data. 
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C.1.3.2 Micro-level (i.e., Neighborhood-level) Built Environment Variables  

These variables provide information on neighborhood-level built environment and land use for 

each household location. In this case study, the neighborhood-level built environment variables 

are represented by the attributes of the TAZ where the household is located. Past research suggests 

that many walking and bicycling trips occur within a TAZ (National Research Council 2005), and 

TAZ-level built environment factors have been used to represent neighborhood built environment 

characteristics in previous nonmotorized travel behavior research (Ewing and Schroeer 2004; 

Zhang 2004; Zhang and Kukadia 2005; Boarnet et al. 2008; Mitra and Builing 2012; Weinberger 

and Sweet 2012). A relatively recent report, which assessed the factors influencing walking and 

bicycling, suggested that a spatial scale finer than TAZ should be used in future studies (Kuzmyak 

et al. 2014). In the present study, however, TAZ was selected as the geographical area to represent 

neighborhood because geocoded data for household locations were not available (which made 

using smaller geographical areas such as block group or buffer distances infeasible). Thus, TAZ 

was the smallest geographical area for which travel survey and land use information was available. 

The neighborhood-level variables include:  

- population density; 

- employment density; 

- average block size; 

- local transit accessibility; 

- Walk Score; 

- Bike Score;  

- Transit Oriented Development (TOD) status; and  

- entropy. 
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Some of these variables—including the population and employment density variables, 

average block size, local transit accessibility, and the entropy variables—have been chosen based 

on past research (see Chapter 2 and Appendix B).  

Walk Score and Bike Score variables have been included in the model due to previous 

research showing Walk Score as a better predictor of walking mode choice across various trip 

purposes compared with population density (Weinberger and Sweet 2012) as well as other research 

conclusions, which found Walk Score to be a reliable measure for walkability and destination 

accessibility (See Subsection 3.2.10 in this dissertation). 

 Population and employment density variables have been calculated for each TAZ by 

dividing the corresponding total population or employment numbers by the area of the TAZ 

(acres). Block size (measured in area or length) has been postulated in previous studies to capture 

the extent to which street networks are interconnected (see e.g., Ewing et al. 2003a; National 

Research Council 2005). Thus, the average block size has been selected in the present study to 

represent the extent of street network connectivity. This variable has been computed by averaging 

the areas of all blocks within the TAZ where the household locates in.  

Moreover, the number of rail transit stations and bus stops in each TAZ have been added 

together and the sum is used to represent the value of the local transit accessibility variable. The 

rail transit stations include rail stations that are served by the Washington Metropolitan Area 

Transit Authority (WMATA), MARC Train, Maryland Transit Administration’s Light Rail and 

Metro Subway, as well as the AMTRAK railroad services. The bus stops include stops served by 

WMATA and the Maryland Transit Administration’s bus transit services.  

In addition, a variable indicating the status of Transit Oriented Development (TOD) has 

been included in the model. Past research defines TODs as “projects that involve mixed-use 
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development (i.e., residential and commercial) near public transit stations” (National Research 

Council 2005). TODs have been suggested to create a friendly environment for nonmotorized 

travel, particularly for walking trips (Roshan Zamir et al. 2014); therefore, controlling their effects 

in nonmotorized travel behavior models is reasonable. TOD data for the Baltimore and D.C. 

metropolitan areas came directly from Roshan Zamir et al. (2014). These data are dichotomous in 

format, indicating whether or not a TAZ in the study area is identified as a TOD. 

The entropy variable captures the extent of mixed-use development in the neighborhood 

(TAZ). The values for this variable have been computed using the following well-established 

formula used in previous research (see e.g., Frank and Pivo 1994; Cervero and Kockelman 1997; 

Cervero 2001; and Cervero and Duncan 2003): 

Entropy =  −∑
𝑃𝑗∗𝑙𝑛(𝑃𝑗)

𝑙𝑛(𝐽)𝑗                                                                           

where, 

𝐽 =  number of land use classes in the household TAZ; and 𝑃𝑗 = proportion of land use in 

the jth class. Five land-use classes have been considered for this case: residential, retail, office, 

industry and other (i.e., 𝐽 = 5). The value of the entropy variable ranges from 0 to 1, representing 

non-diverse (one-class-only) land use to most diverse (well- mixed) land use, respectively. 

The Walk Score variable—measured as the Walk Score for the centroid of each TAZ—has 

been included in the walking model as a proxy for neighborhood destination accessibility. As 

mentioned in Chapter 3 (see Subsection 3.2.10), this objectively measured score provides 

information on walkability of locations based on a destination-accessibility approach.  

Similarly, the Bike Score for the centroid of each TAZ has been included in the bicycling 

model as a proxy for neighborhood bikeability.  
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An interaction variable of the two scores has also been considered for inclusion in the 

bicycling model to account for the tendency of bicyclists to ride their bicycle in a neighborhood 

with walking-supportive characteristics but not much bicycling-supportive features. For instance, 

if the neighborhood has sidewalks but not bicycle lanes, it may still encourage bicycling as 

individuals may ride their bicycles on the sidewalks around the neighborhood. 

In urban settings, bicycling on sidewalks is usually prohibited by law and bicycling is 

typically restricted to shared-use roadways or bicycle lanes that share the right-of-way with 

vehicular traffic (National Research Council 2005). Nonetheless, the tendency of bicyclists to use 

sidewalks has been noted in previous studies (Rodríguez and Joo 2004), and this behavior can be 

observed in various occasions and places (see Figure C-4). 

 

 

Figure C-4. Bicycling on Sidewalk 
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C.1.3.3 Meso-level (County-level) Built Environment Variables  

These variables capture the connectivity and accessibility of the street network, the extent of 

mixed-use development, as well as population and employment densities of the household’s 

county. To obtain the county-level measures, the TAZ-level measures were aggregated for each 

household’s county and the mean of each measure was obtained at the county-level.  

Aggregation of data at smaller scales to obtain the mean of the explanatory variables at 

larger scales provides a meaningful contextual variable (i.e., the group mean) for inclusion in the 

multilevel mixed-effects models (Snijders and Bosker 2012). This method of calculation of the 

built environment for larger scales has been suggested to prevent measurement biases (Nasri and 

Zhang 2014). The county-level variables included in the models are:  

- average total population density; 

- average employment density; 

- average block size; and  

- average entropy. 

C.1.3.4 Regional Accessibility Variables 

Literature suggests that the effects of regional-level accessibility on nonmotorized travel behavior 

should be examined in future research (Handy 2005). Thus, measures of regional accessibility have 

been included in the models to capture the effects of regional accessibility on a household’s 

walking and bicycling travel behavior.  

Regional accessibility can be measured in various ways. Ewing and Cervero (2010) stated 

that some studies calculate regional accessibility as simply the distance to the central business 

district (CBD), whereas others calculate regional accessibility as the number of employment 
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opportunities or other attractions reachable within a given travel time. In the latter case, the gravity 

model of trip attraction can be used to measure destination accessibility.  

The regional accessibility variables in the present study have been measured in such way 

to provide information on household’s location relative to the regional urban centers as well as the 

number of employment opportunities and working population within a certain travel time.  

First, a variable representing the distance from the residential location to the center of the 

city has been included in models as a proxy for regional accessibility. This variable is computed 

as the measure of a straight line connecting the centroid of the household’s TAZ to the CBD of the 

metropolitan area where the household resided (i.e., MWCOG or BMC area). Downtown areas 

(i.e., CBDs) are often the geographical point of gravity of the employment offices and service 

facilities (Næss 2005); hence, distance to CBD has been used in previous research as a proxy for 

accessibility to regional jobs and other destinations (see e.g., Miller and Ibrahim 1998; Renne et 

al. 2015). 

Distance to CBD can influence nonmotorized travel behavior in many ways. For example, 

the closer the household locates to the CBD, the shorter the distances to work and other 

destinations may be, which can encourage nonmotorized mode choices. Conversely, the farther 

the residence from the CBD, the longer the distances to destinations may become, which may 

encourage more driving trips and discourage nonmotorized trips. Moreover, since the CBD is 

usually the major node for public transit lines, transit trips from a household in one suburb to a 

destination in another suburb can be longer the farther from the CBD the household is located 

(Næss 2005). This may adversely influence the transit mode choice and since transit trips are often 

associated with walking or bicycling trips, any decline in the number of transit trips may mean a 

decline in the nonmotorized trips associated with those transit trips. 
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Second, measures of zone-to-zone accessibility have also been included in the models to 

capture the effects of interzonal (regional) accessibility on household’s walking and bicycling 

trips. Interzonal accessibility has been computed based on Hansen’s formula, which provides a 

relatively simple method for calculating accessibility for regions (see Hansen 1959): 

𝐴𝑖𝑗 = ∑
𝑆𝑗

𝑇(𝑖𝑗)
𝑒𝑗                                                                                           

where, 

𝐴𝑖𝑗  = relative accessibility measure at zone 𝑖 to an activity that is located within zone 𝑗; 

𝑆𝑗    = size of the activity in zone 𝑗 (i.e., the number of jobs in zone 𝑗 for employment 

accessibility, or the number of people in zone 𝑗 for population accessibility); 

𝑇(𝑖𝑗) = travel time or distance between zones 𝑖 and 𝑗; and  

𝑒     = exponent capturing the effects of travel time between zones 𝑖 and 𝑗.  

The value of exponent 𝑒 differs for various types of trips depending on the trip purpose. 

The more important the trip purpose is, the smaller the exponent 𝑒 will be. A smaller 𝑒 indicates 

individuals’ willingness to travel farther for activities that they consider more important (e.g., work 

trips). The total accessibility index for each zone 𝑖 to some activity (i.e., employment, shopping, 

population, etc.) in zone 𝑗 is the sum of the accessibilities to each of the individual zones 𝑗 

neighboring zone 𝑖. The accessibility index of zone 𝑖 increases as this sum increases.  

It is noteworthy to mention that Hansen’s accessibility is one of the earliest forms of what 

later was termed potential accessibility. Reminiscent of Newton’s gravity model, potential 

accessibility includes in its formula an inverse power function and is measured based on the 

assumption that the attraction of a destination increases with its size and decreases with some 

indicator of impedance such as travel distance, travel time, or travel cost (Schürmann et al. 1997). 
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Two types of activities have been considered in the regional (interzonal) accessibility 

computations in the present case study: employment and population activities. The exponent 𝑒 for 

these activities was found previously to be equal to 2.20 for employment, and 2.35 for population 

accessibility when travel time between zones was expressed in terms of travel time plus terminal 

times (Hansen 1959). This case applies to the present case study.  

In constructing accessibility indicators, Cervero and Kockelman (1997) used travel times 

between zones estimated for regional highway networks and numbers of jobs as measures of 

destination attraction. Thus, for the present case study, MWCOG and BMC off-peak zone-to-zone 

highway and transit skimming matrices have been used to calculate travel times and terminal times 

between TAZs in the study area. Further, the employment and population accessibilities for each 

TAZ have been added together to obtain one accessibility measure for each TAZ.  

Through these computations, three variables are obtained capturing the interzonal 

accessibility. These include:  

- highway accessibility index; 

- transit-drive accessibility index; and 

- transit-walk accessibility index.  

These accessibility indices measure accessibility (by mode) of each TAZ to all other TAZs 

in the region. Thus, they are referred to as regional accessibility (or interzonal accessibility) in the 

present case study.  

Table C-2 summarizes all the independent variables used in the Baltimore-Washington, 

D.C. nonmotorized travel behavior models along with brief descriptions, method of computation, 

and data sources.  
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Together, the micro-level (neighborhood) and the meso-level (county) built environment 

variables and the regional (macro-level) accessibility variables represent the built environment at 

multiple levels of influence as conceptualized within the ecological model framework.  

Table C-3 presents the descriptive statistics for the dependent and independent variables. 

The table indicates that the average number of household’s total and per capita daily walking trips 

are higher in the Baltimore metropolitan area, whereas the average number of household’s total 

and per capita daily bicycling trips are higher in the Washington, D.C. metropolitan area. 

Table C-2. Variable Descriptions and Data Sources for Baltimore-D.C. Models  
 

Variable Method of Computation Data Source 

Household Socioeconomics: The Household 

Number of Members (Size) Data provided MWCOG/BMC Travel Survey 

Number of Students Data provided MWCOG/BMC Travel Survey 

Number of Workers Data provided MWCOG/BMC Travel Survey 

Number of Vehicles Owned Data provided MWCOG/BMC Travel Survey 

Number of Bicycles Owned Data provided MWCOG/BMC Travel Survey 

Number of Licensed Drivers Data provided MWCOG/BMC Travel Survey 

Annual Income (1,000s of $) Data provided MWCOG/BMC Travel Survey 

Micro-Level Built Environment (TAZ Level): The Neighborhood 

Population Density  Total population/acre MWCOG/BMC Land Use Data 

Employment Density  Jobs/acre MWCOG/BMC Land Use Data 

Average Block Size  Average block size (acres) for the TAZ Census TIGER Block Shapefiles 

Transit Accessibility Number of (transit stations + bus stops) MWCOG/BMC Land Use Data 

Transit Oriented Development TAZ is a TOD? 1 = yes, 0 = no Roshan Zamir et al. (2014) 

Walk Score Data provided Walk Score® 

Bike Score Data provided Walk Score® 

Entropy Entropy formula MWCOG/BMC Land Use Data 

Meso-Level Built Environment (County Level): The County 

Mean Population Density TAZ densities averaged for the county MWCOG/BMC Land Use Data 

Mean Employment Density TAZ densities averaged for the county MWCOG/BMC Land Use Data 

Mean Block Size Average block size (acres) for the 

county 

Census TIGER Block Shapefiles 

Mean Entropy TAZ entropies averaged for the county MWCOG/BMC Land Use Data 

Regional Accessibility: The Region 

Distance to CBD (miles) Straight line from zone centroid to CBD MWCOG/BMC Land Use Data 

Highway Accessibility Index Accessibility formula (Hansen 1959) MWCOG/BMC Skim Matrices 

Transit-Drive Accessibility Index Accessibility formula (Hansen 1959) MWCOG/BMC Skim Matrices 

Transit-Walk Accessibility Index Accessibility formula (Hansen 1959) MWCOG/BMC Skim Matrices 
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Table C-3. Descriptive Statistics for Baltimore-D.C. Nonmotorized Travel Behavior Models 

NOTES: SD = Standard deviation; — = Not applicable; a = Dimensionless. 
 

Also, some variation exists in the household socioeconomic characteristics between the 

two metropolitan areas. The average numbers of household members (household size) is slightly 

higher for households within the Washington, D.C. metropolitan area, whereas the average number 

Variable Metropolitan Planning Organization Area 

 Washington, D.C. 

(within MWCOG area) 

Baltimore, MD 

(within BMC area) 

 Mean SD Mean SD 

Dependent Variables 

Household’s Number of Daily per Capita Walking Trips 0.51 1.09 0.58 1.07 

Household’s Number of Daily per Capita Bicycling Trips 0.03 0.24 0.02 0.24 

Household’s Total Number of Daily Walking Trips 0.96 1.99 1.14 2.08 

Household’s Total Number of Daily Bicycling Trips 0.06 0.47 0.05 0.41 

Independent Variables 

Household-level Socioeconomic Attributes: The Household 

Number of Members (Size) 2.20 1.22 

 

2.17 

 

1.25 

 Number of Students 0.53 

 

0.91 

 

0.57 

 

0.94 

 Number of Workers 1.25 

 

0.81 

 

1.13 

 

0.86 

 Number of Vehicles 1.68 

 

0.99 

 

1.51 

 

1.01 

 Number of Bicycles 1.12 

 

1.48 

 

0.96 

 

1.47 

 Number of Licensed Drivers 1.65 0.73 

 

1.49 

 

0.77 

 Annual Income (1,000s of dollars) 75 - 100 — 50 - 60 

 

— 

Micro-level Built Environment (TAZ Level): The Neighborhood 

Population Density (total population/acre) 22.35  36.42  23.14  36.44 

Employment Density (jobs/acre) 8.72  26.52  9.69  32.65  
Average Block Size (acres) 17.84  26.11  12.77  22.07  
Transit Accessibility (number of transit stations + bus stops) 23.94  18.95  15.35  19.36  
Walk Scorea 40.94  31.05  49.52  28.35  
Bike Scorea 22.61  34.13  21.47  30.44  
Entropya 0.43  0.22  0.49  0.22  
Meso-level Built Environment (County Level): The County 

Mean Residential Population Density  

(residential population/acre) 

8.18 

 

5.97 

 

11.59 

 

6.47 

 

Mean Employment Density (jobs/acre) 14.94 

 

18.87 

 

18.25 

 

13.92 

 Mean Block Size (acres) 27.33 

 

23.86 

 

20.05 

 

19.71 

 Mean Entropya 0.44 

 

0.07 

 

0.53 

 

0.02 

 Regional Accessibility: The Region 

Distance to CBD (miles) 14.34 

 

13.21 

 

8.54 

 

7.80 

 Highway Accessibility Indexa 2,920 4,490 

 

6,362 

 

5,399 

 Transit-Drive Accessibility Indexa 2,828 

 

2,686 

 

3,772 

 

2,017 

 Transit-Walk Accessibility Indexa 1,603 1,401 

 

4,688 

 

4,892 

 Number of Observations (Households) 7,547 1,934 

Number of TAZs 867 413 

Number of Counties 13 12 
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of household students is higher in Baltimore. Households within the Washington, D.C. 

metropolitan area have a higher average number of workers and on average, earn a higher annual 

income than households in Baltimore. 

Additionally, D.C. households have more licensed drivers and own more vehicles and 

bicycles compared to Baltimore households. These statistics are consistent with what a previous 

study of the two metropolitan areas reported (Roshan Zamir et al.  2014). The lower household 

average annual income in Baltimore likely explains many of the observed differences in the 

household socioeconomic characteristics between the two metropolitan areas. 

Variations also exist between built environment attributes of household locations for the 

two different metropolitan areas. At the micro level (i.e., neighborhood/TAZ level), Table C-3 

indicates that Baltimore households have higher population and employment densities. Baltimore 

households are also located in neighborhoods with smaller average block sizes and a higher level 

of mixed-use development (i.e., entropy). The entropy and block size statistics variation are 

consistent with descriptive statistics on entropy and block size reported in previous studies of the 

two metropolitan areas (Nasri and Zhang 2012; Roshan Zamir et al.  2014).  

The average Walk Score for household neighborhood is higher within the Baltimore 

metropolitan area, whereas the average neighborhood Bike Score is slightly higher for households 

within the Washington, D.C. area. Also, Washington, D.C. households have access to a larger 

number of transit stations and bus stops within their neighborhood.  

In terms of meso-level (i.e., county-level) built environment variables, average population 

and employment densities are higher for counties in the Baltimore study area. Baltimore has a 

smaller average block size and a higher entropy at the county level. These statistics indicate that 
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Baltimore households are located within counties with better street network connectivity and a 

higher extent of mixed-use development.  

The descriptive statistics for the regional (interzonal) accessibility variables also indicate 

differences between Washington, D.C. and Baltimore households. On average, Baltimore 

households have a higher accessibility to highways and transit (by both driving and walking 

means). These statistics may be explained by the descriptive statistics on the Distance to CBD 

variable. Looking at this variable, it can be seen from Table C-3 as well as from the maps presented 

in Figures C-2 and C-3 that compared to the Baltimore households, the Washington D.C. 

households locate at a greater distance from the CBD. This indicates that D.C. neighborhoods (i.e., 

TAZs) in this sample locate farther from the core city where the core of activities (population and 

employment) locates. This may be the reason for lower average statistics on regional highway and 

transit accessibility indices as well as those of the population and employment densities, Walk 

Score, and entropy variables for households located within the Washington D.C. study area. 

C.1.4 Baltimore-Washington, D.C. Nonmotorized Travel Behavior Models 

The analysis of nonmotorized travel behavior has been performed using linear mixed-effects (i.e., 

multilevel) models as well as ordered probit models.  

First, mixed-effects models have been developed to relate the number of household’s daily 

per capita walking and bicycling trips to household’s socioeconomic characteristics (i.e., social 

environment), neighborhood- and county-level built environment characteristics, as well as 

regional accessibility measures. Then, ordered probit models have been developed to predict the 

total number of household’s daily walking or bicycling trips based on the same factors above.  

The results of the two types of models are used for comparison purposes.  
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C.1.4.1 Linear Mixed-effects Models (i.e., Multilevel Models) 

Specification of Models: Baltimore-DC Mixed-effects Nonmotorized Travel Models    

Mixed-effects (multilevel) models have been employed in this analysis to examine the association 

between nonmotorized travel behavior and social as well as built environment characteristics at 

two geographical scales: the micro-level (i.e., neighborhood) and the meso-level (i.e., county).  

The reason for selecting the linear mixed-effects model to analyze the household 

nonmotorized travel behavior is the capability of this type of model to deal with clustered data 

where correlations may exist between observations from the same cluster. These correlations 

violate the iid assumption of the ordinary regression modeling techniques, whereas the mixed-

effects model enables the analyst to relax this assumption. Therefore, the mixed-effects modeling 

technique is a more appropriate statistical technique when treating clustered data as elaborated in 

Subsection 3.3.1. Also, research in the past suggests that application of mixed-effects models to 

travel behavior analysis is a suitable choice due to capabilities of these models to parameterize 

interrelationships of clustered data (Reilly and Landis 2003).  

Data for the current case study are assumed to be clustered as groups of surveyed 

households locate within similar geographical areas (e.g., neighborhoods) and there may be 

correlations between households that locate in the same area. Thus, the clustered nature of 

observations warrants the use of mixed-effects models for this case study. As previously 

mentioned, clustered datasets such as the one at hand contain two types of observations:  

i) observations within a particular cluster: these observations are likely to have similar 

characteristics. For example, travel behavior of households within the same neighborhood 

may be correlated because of the common neighborhood built environment characteristics;  
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ii) observations from different clusters: these observations have independent characteristics 

from each other. For instance, the travel behavior choices of households that locate in 

different neighborhoods are made independently of each other and each other’s 

neighborhood built environment. 

Considering the two types of observations above, two sources of variation are assumed for 

clustered datasets:  

i) variations within clusters (i.e., intraclass variance): for example, differences in travel 

behavior of households within the same neighborhood; 

ii)  variation between clusters (i.e., interclass variance): for example, differences in travel 

behavior of households that locate in two different neighborhoods. 

The between-cluster variations can be assumed across different levels due to households 

being nested within aggregated levels (e.g., neighborhood, county) of the sample dataset.  

With their multilevel structure, mixed-effects models allow for capturing the effects of the 

two sources of variation among clustered data as well as the effects of the various levels of data 

clustering. In the latter case, the model introduces random effects for each level of the data.  

Applying the mixed-effects model concepts to the Baltimore-D.C. case study, TAZs (i.e., 

neighborhoods) have been considered as clusters. This case study specifies random effects at the 

TAZ-level (i.e., neighborhood-level) in the mixed-effects models due to the importance of effects 

of neighborhood-level built environment. This model design introduces two levels: the first level 

is the household, and the second level is the TAZ. The use of the mixed-effects (multilevel) model 

is appropriate for the data used in this analysis because there are households that live in the same 

TAZ (cluster), but the individual household’s characteristics differ from each other. This 

introduces two sources of variation in the model: the variation between different TAZs (i.e., 
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interclass variance), and the variation within each TAZ (i.e., intraclass variance). These variations 

are also estimated by the model. 

Based on the general formulas for the linear mixed-effects model (Equations 1 and 2), the 

Baltimore-D.C. nonmotorized travel behavior mixed-effects models are specified as follows: 

Y = 𝛽0 + 𝛽1
′SEHH + 𝛽2

′BETAZ + 𝛽3
′BECounty + 𝛽4

′RA + 𝑢TAZ𝐑𝐄TAZ +  휀        Equ. C-1 

where, 

𝛽0 = model intercept; 

𝛽1 
′ − 𝛽4 

′  = column vectors of model parameters; 

𝑢TAZ = vector of iid TAZ-level random effects; 

휀 = vector of model error terms; 

SEHH = column vector of household social environment (i.e., household socioeconomics);  

BETAZ = column vector of micro-level (i.e., neighborhood) built environment attributes; 

BECounty = column vector of meso-level (i.e., county) built environment attributes; 

RA = column vector of regional accessibility attributes;  

RETAZ = matrix of neighborhood-level covariates for TAZ-level random effects; and 

Y = vector of observations (household’s number of per capita walking or bicycling trips). 

It is assumed that the slope of similar covariates contained within the random portion of 

the model (i.e., RETAZ) is constant across TAZs. Therefore, the TAZ random effects are simplified 

to a TAZ-specific effect, which captures an effect that is common to all households within the 

same TAZ (𝑢0TAZ ). In other words, the model specified in Equation C-1 becomes a random 

intercept model (Equation C-2), which assumes that TAZs add a random offset to households’ 

nonmotorized travel behavior (i.e., household’s number of daily per capita walking or bicycling 

trips) due to TAZ-level random (unexplained) processes. 
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The simplified (i.e., random intercept) model formula is: 

Y = 𝛽0 + 𝛽1
′SEHH + 𝛽2

′BETAZ + 𝛽3
′BECounty + 𝛽4

′RA + 𝑢0TAZ +  휀          Equation C-2 

Since TAZs represent the neighborhoods in this study, the variance estimates (random 

effects) computed by the mixed-effects model provide information as to how random differences 

between neighborhoods affect the walking and bicycling travel behavior of residents. The model 

estimates also provide information on the existence and the extent of any effects exerted by meso-

level (county) built environment factors on the levels of walking or bicycling of the households.  

The walking and bicycling mixed-effect models relate the dependent variables 

(household’s number of daily per capita walking and household’s number of daily per capita 

bicycling trips) to the independent variables summarized in Table C-3.  

The dependent variables are extremely skewed toward zero, meaning that a majority of 

households reported no walking or bicycling trips. This introduces the potential that the data may 

need zero-inflated treatment due to over-dispersion. However, as Kim and Susilo (2013) suggested 

over-dispersed data should not be used as an ultimate criterion for rejecting models; the 

appropriateness of different modeling techniques needs to be determined based on empirical 

analysis. Therefore, this study proceeds with testing the mixed-effects models for examination of 

the factors that are associated with nonmotorized travel behavior. 

Pearson pairwise correlation coefficients have been calculated to examine the correlations 

between all original independent variables. The issue of high correlations between built 

environment factors is a concern mentioned in many past studies (see e.g., Cervero and Radisch 

1996; Cervero and Kockelman 1997; Greenwald and Boarnet 2001; Krizek 2003b; Ewing et al. 

2003a; Cervero and Duncan 2003; Frank et al. 2004; Næss 2005; Lee and Moudon 2006; Frank et 

al. 2008; Wood et al. 2010). This is in part due to the fact that denser urban designs often coexist 
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with other features that are friendly to pedestrians and bicyclists. For example, Cervero and 

Kockelman (1997) stated that factors such as neighborhood densities, extent of mixed land use, 

and sidewalk provisions can be highly collinear due to the tendency of dense neighborhoods to 

have higher levels of land use mix, shorter blocks, and better sidewalk networks. Also, Rodríguez 

and Joo (2004) suggested that population density can act as a surrogate for mixed land use and 

improved street connectivity. Moreover, high correlations between population and housing 

densities were observed by Langerudi et al. (2015). 

According to Franke (2010), correlation coefficients higher than 0.8 or 0.9 between 

independent variables are considered as excessively collinear and are indicators of 

multicollinearity. Two basic remedies have been proposed to deal with extreme collinearity 

between variables: 1) elimination of variables with extreme collinearity; and 2) replacement of 

highly correlated variables with a composite variable obtained from some kind of combination 

function (e.g., summing or averaging the values) (Kline 2011).  

Therefore, one way to remedy the issue of high correlations between built environment 

variables is the usage of techniques such as factor analysis to combine the highly correlated 

variables into a composite factor. However, it should be borne in mind that a high correlation 

between built environment variables does not mean that these variables represent the same thing. 

Ewing et al. (2003a) suggested that while density and mixed land use are often correlated, they are 

very different constructs. As discussed in Subsection 2.5.3.55, composite variables lack specificity 

and do not allow the contributions of individual independent variables to the outcome variable to 

become apparent.  

 
55 See the “Health and Macro-level Built Environment” part under Subsection “2.5.3 Health and Environmental 

Factors: Gaps and Limitations in Research”. 
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Although many past studies used composite indices in their analysis to deal with highly 

correlated built environment variables (see e.g., Cervero and Kockelman 1997; Ewing et al. 2002; 

Ewing et al. 2003b; Braun and Malizia 2015), many other researchers voiced concerns regarding 

the use of composite indices and challenges it presents in interpreting the results, inferring 

conclusions, and making policy decisions (see e.g., Cervero and Radisch 1996; Humpel et al. 2002; 

Kelly-Schwartz et al. 2004; Rodríguez and Joo 2004; Lee and Moudon 2006; Fan 2007; Foster 

and Giles-Corti 2008). Distinct built environment factors—while sometimes highly correlated—

have been suggested to represent distinct characteristics of the built environment and have been 

included in the past studies regardless of high correlations observed (see e.g., Ewing et al. 2003a; 

Ewing et al. 2014; Kelly-Schwartz et al. 2004). Therefore, to gain a better understanding of the 

effects of each of the built environment variables on nonmotorized travel, the use of composite 

indices has been avoided—to the extent possible—in this dissertation. 

The alternative to using composite indices is to include highly correlated variables, which 

theory suggests can influence nonmotorized travel behavior, but select a reasonable threshold for 

high correlation tolerance. Previous research can assist in selection of an appropriate high 

correlation threshold. A few examples from past studies are discussed below. 

The measures of density and street connectivity were highly correlated in Kelly-Schwartz 

and co-authors’ study (r = 0.788) and the researchers indicated that this high correlation suggested 

the fact that many highly gridded urban streets also tend to be relatively dense (Kelly-Schwartz et 

al. 2004). Further, Bento et al. (2005) indicated that the correlation of their measures of population 

density and bus supply measure was 0.73. Fan (2007) eliminated a variable representing bus stop 

density due to being highly correlated with the sidewalk coverage variable. That study considered 

a Pearson correlation index greater than 0.8 as an indication of a high correlation between the two 
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variables (Fan 2007). The correlations between density, land use mix, employment and population 

centering, and street accessibility factors fell in a range of 0.399 to 0.647 in the Ewing et al. (2014) 

study. The researchers suggested that these correlations were expected; however, the built 

environment factors “seem to represent distinct constructs based on their bivariate correlations”. 

Finally, Marshall et al. (2014) stated that none of the independent variables used in their analysis 

had a Pearson correlation coefficient higher than 0.5 with another independent variable.  

Table C-4 provides the Pearson correlation matrix for the independent variables used for 

the present case study. As expected, a few of the built environment variables show high 

correlations with each other, which is consistent with what researchers in the past suggested. This 

introduces the risk of multicollinearity, which can cause the models developed based on such data 

to drop potential key variables from the analysis.  

The final independent variables were selected based on the Pearson correlations between 

them. Based on the above guidelines from the literature regarding dealing with highly correlated 

variables, efforts were made to reduce the risk of multicollinearity in the models. For example, 

due to a high correlation between variables representing the number of household vehicles and 

licensed drivers (r = 0.79), the latter was excluded from the models.  

Also, the interacted variable of Walk Score and Bike Score, which was initially considered 

for inclusion in the bicycling model, was removed due to a high correlation with the Bike Score 

variable (r = 0.94).  

Further, since the variables representing population and employment densities at the county 

level were highly correlated (r = 0.89), these variables were replaced with an activity density 

variable (i.e., the Average Activity Density variable) that quantifies the density of total population 

plus employment opportunities within each county.  
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Table C-4. Pearson Correlation Matrix for Independent Variables 

Household-level Socioeconomic Attributes 

Variable  

Number 

of 

Members 

Number  

of  

Students 

Number  

of  

Workers 

Number  

of  

Vehicles 

Number 

of 

Bicycles 

Number 

of 

Licensed 

Drivers 

Annual 

Income 

Household Size  1.0000       

Number of Students 0.7622 1.0000      

Number of Workers 0.4931 0.3027 1.0000     

Number of Vehicles 0.4616 0.2362 0.4674 1.0000    

Number of Bicycles 0.5341 0.5102 0.3315 0.3351 1.0000   

Number of Licensed Drivers 0.6246 0.3023 0.5936 0.7961 0.3341 1.0000  

Annual Income 0.2716 0.1155 0.4449 0.4517 0.3155 0.4715 1.0000 

Micro-level (Neighborhood) Built Environment 

Variable 
Population 

Density 

Employment 

Density 

Average 

Block 

Size 

Transit 

Accessibility 
TOD 

Walk  

Score 

Bike 

Score 

Population Density  1.0000       

Employment Density  0.4061 1.0000      

Average Block Size  -0.3261 -0.1441 1.0000     

Transit Accessibility -0.0455 0.0762 -0.1219 1.0000    

TOD 0.3401 0.3176 -0.1598 0.0120 1.0000   

Walk Score 0.6344 0.3971 -0.5001 0.0881 0.4050 1.0000  

Bike Score 0.6372 0.3416 -0.2970 0.3742 0.3742 0.6977 1.0000 

Entropy 0.0404 0.3277 -0.0202 0.0782 0.4101 0.2589 0.1979 

Meso-level (County) Built Environment and Regional Accessibility 

Variable   

Mean 

Population 

Density 

Mean 

Employment 

Density 

Mean  

Block  

Size 

Distance to 

CBD 

Highway 

Acc. 

Index 

Transit-

Drive 

Acc. 

Index 

Transit-

Walk 

Acc. 

Index 

Mean Population Density 1.0000       

Mean Emp. Density 0.8997 1.0000      

Mean Block Size -0.6715 -0.6109 1.0000     

Mean Entropy 0.4540 0.3697 -0.2161 -0.1141    

Distance to CBD -0.6368 -0.5797 0.6899 1.0000    

Highway Acc. Index 0.6701 0.6444 -0.5394 -0.5841 1.0000   

Transit-Drive Acc. Index 0.6774 0.5847 -0.5906 -0.6688 0.6354 1.0000  

Transit-Walk Acc. Index 0.6980 0.6847 -0.5741 -0.6614 0.7256 0.8194 1.0000 

NOTE: Acc. = Accessibility 

In the real world, however, the effects of many built environment factors are correlated and 

there is not an easy way to separate these correlations (Reilly and Landis 2003). Therefore, a 
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correlation threshold of |p| > 0.7 has been used to eliminate highly correlated independent 

variables, as suggested by previous research (Kim and Susilo 2013)56.  

Any continuous variable with a correctable skewed distribution was normalized by 

transformation into its naturally logged form before inclusion in the model. Logarithmic 

transformation is a convenient means of transforming a highly skewed variable into one that is 

more approximately normal (Benoit 2011). Many previous studies also used the log transformation 

method to treat variables with skewed distributions (see e.g., De Bourdeaudhuij et al. 2003; Handy 

et al. 2005; Evans and Wener 2006; Fan 2007; Gordon-Larsen 2009; Cao et al. 2010; Renne et al. 

2015). Log-linear transformations are advantageous, since they enable interpretation of the 

coefficients as elasticities—reflecting the sensitivity (i.e., percentage change) in the dependent 

variable to a 1% change in each of the independent variables, holding all other variables constant 

(Cervero and Murakami 2010). Also, log-log transformations enable interpretation of the 

coefficients as arc elasticities (Renne et al. 2015).   

Many variables in the present analysis, however, either showed a normal (or nearly normal 

distribution) or did not show improvement in their distribution curve by transformation to naturally 

logged form (including the dependent variables). In the latter case, the variable was included in 

the model in its original form.  

Moreover, since the natural log of zero is undefined, if the value of an independent variable 

was equal to zero, it was changed to 0.25 before the variable was log-transformed—a practice also 

used in previous research (see e.g., Schauder and Foley 2015). 

 
56 Variables with correlation coefficients slightly ≥ 0.70 were retained in the models if they reached a significance 

level of 0.05 or if there was a theoretical reason for retaining the variable; for example, if the variable was deemed to 

play a key role in generation of nonmotorized trips based on previous studies. 
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Discussion of Results: Baltimore-DC Linear Mixed-effects Nonmotorized Travel Models    

Table C-5 summarizes the estimation results of the mixed-effects walking and bicycling models 

for the two metropolitan areas. The results show strong associations between household 

nonmotorized travel behavior—especially walking—and the built environment attributes at both 

micro-level (neighborhood) and meso-level (county). The results also indicate that regional 

accessibility measures have a statistically significant association with nonmotorized travel.  

Household Control Variables Findings: The effects of the socioeconomic status of 

households were estimated by controlling for households’ number of members (household size), 

number of students and number of workers as well as household vehicle and bicycle ownership.  

The results show that household size has a negative correlation with walking and bicycling 

trips; being a member of a larger household may mean making fewer nonmotorized trips. Although 

Plaut (2005) found that household size had positive effects on the likelihood of choosing 

nonmotorized modes, the household size was defined in that study in terms of square foot floor 

space of the housing unit, and not the number of household members as in the present study.  

The coefficient of the variable for the number of household students in both the walking 

and bicycling models has a negative sign, which is expected; households with a larger number of 

students are more likely to choose driving (and not walking or bicycling) as their mode of travel 

to and from school and perhaps other destinations.  

Past literature lends support to these statements suggesting that automobile has become the 

predominant mode for school trips in the U.S., even for short-distance trips, while rates of walking 

and bicycling to school have declined (CDC 2002; Ewing and Greene 2003; McMillan 2003, 2005; 

National Research Council 2005; McDonald 2005; Schlossberg et al. 2006; McDonald et al. 2011).  
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Table C-5. Results:Baltimore-D.C. Multilevel (Mixed-effects) Nonmotorized Travel Models 
 

Dependent Variable: Number of Household’s Daily Per Capita Walking/Bicycling Trips 

 Walking Model Bicycling Model 

Independent Variable Coefficient p-value Coefficient p-value 

Household-level Socioeconomic Attributes (SEHH): The Household 

Number of Members (Size) -.0424058*** 0.006 -.0089737** 0.013 

Number of Students -.0323689* 0.076 -.0071362* 0.099 

Number of Workers .0422162*** 0.008 .0099524*** 0.008 

Number of Vehicles -.1732062*** 0.000 -.0116361*** 0.000 

Number of Bicycles .0358879*** 0.000 .0267977*** 0.000 

Annual Income (1,000s of dollars) .0089051* 0.052 -.0001983 0.853 

Micro-level Built Environment (BETAZ): The Neighborhood 

Population Density (total population/acre) .0030982*** 0.009 .0001035 0.676 

Employment Density (jobs/acre)  .0023263*** 0.000 -.0002976** 0.014 

Average Block Size (acres) - logged -.0609581*** 0.013 .0004346 0.926 

Transit Accessibility  

(number of transit stations + bus stops) 
.0007898* 0.080 .0001584* 0.091 

Transit Oriented Development .0546366* 0.097 .0051992 0.592 

Walk Scorea .0022659*** 0.005 — — 

Bike Scorea — — .0005874*** 0.000 

Entropya .2339221*** 0.001 .0208084* 0.054 

Meso-level Built Environment (BECounty): The County 

Average Activity Density  

[(population + employment)/acre]  
.0057054*** 0.000 -.0002024* 0.078 

Average Block Size (acres) - logged -.2166408*** 0.000 .0020607 0.789 

Average Entropya -.0326816 0.870 -.0496237* 0.082 

Regional Accessibility (RA): The Region 

Distance to CBD (miles) - logged -.1383853*** 0.000 .0047567 0.518 

Highway Accessibility Indexa - standardized -.0600699*** 0.000 -.0048065* 0.060 

Transit-Drive Accessibility Indexa - standardized -.0474197*** 0.000 .0007805 0.748 

Transit-Walk Accessibility Indexa - standardized .0448405*** 0.001 .0026444 0.343 

Variance Estimates (Random Effects) 

TAZ (i.e., The Neighborhood) .0315613*** 0.000 .0004021* 0.085 

Residuals  .9668831*** 0.000 .05538*** 0.000 

Model Goodness Parameters 

Likelihood Ratio Test vs. Linear Regression:    χ2  =  43.54*** 0.000 χ2  =  2.13*     0.073 

R2  Marginal     0.1463989 0.0297893 

R2  Conditional 0.1752696 0.0367733 

Observations; Clusters 9,481; 1,280 9,481; 1,280 

 

NOTES:   

*, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively; 

a Dimensionless. 
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For example, McDonald et al. (2011) used data from the 2009 NHTS to provide a summary 

of children’s trips to school and find trends in such trips by comparing the results of analysis of 

the 2009 data with those obtained from analyzing similar national data from 1969, 1995, and 2001. 

The analysis showed that walking trips to school decreased between 1969 and 2009 as more 

students were making automobile trips to school in 2009 compared to 1969.  

With respect to non-school trips of households with students, McMillan (2003) suggested 

that all of children’s trips (and not just school trips) were greatly dependent on automobile travel, 

while Dieleman et al. (2002) found that households with children were more likely than others to 

use the private vehicle mode instead of other modes of travel. In addition, from analyzing the 2001 

NHTS data, McDonald (2005) found that automobile accounted as the travel mode for most of 

children’s trips for all trip purposes (i.e., school, shopping, sports, socializing).  

However, it is noteworthy that a few past studies found correlations between being a 

student and nonmotorized travel behavior. For example, Rodríguez and Joo (2004) found that 

being a university student was associated with higher propensity to walk and bicycle. Being a high 

school student was also found to be associated with prevalence of health-enhancing walking and 

bicycling levels in Merom et al. (2010).  

Therefore, it would be helpful to have more details in travel surveys on the level of school 

that is being attended by the student(s) instead of just collecting data on the “number of students 

in the household”. Nonetheless, this variable shows a significant correlation (at the 10% 

significance level) in both the walking model and the bicycling model in the present study. 

The number of household workers is positively and significantly correlated with household 

walking and bicycling travel. The correlation between household income and walking is positive 
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and significant, even though Plaut (2005) found that higher income was associated with a lower 

likelihood of nonmotorized commuting.  

The positive impact of income on walking in the present study is probably reflecting 

recreational walking of individuals within wealthier households as suggested by previous studies 

(Kockelman 1997; Leslie et al. 2007; Agrawal and Schimek 2007; Roshan Zamir et al. 2014). The 

negative effect of income on bicycling can mean that to reach destinations, wealthier individuals 

use their private vehicles more instead of bicycling. However, the coefficient of income variable 

in the bicycling model does not reach a statistical significance threshold; a result which is 

consistent with that of Moudon et al. (2005) who found household income did not indicate a 

significant link with the likelihood of bicycling.  

Dill and Carr (2003) also concluded that income had no significant effect in bicycling 

travel. In the latter study, income was included at the aggregate level (i.e., city level) and the 

authors suggested that in analysis of bicycling trips, socioeconomic variables such as income might 

be significant at the disaggregate level (Dill and Carr 2003). The results of the present case study, 

however, do not support that statement as the coefficient of the variable representing the household 

income is insignificant in the bicycling model. 

The number of household vehicles is significantly and negatively correlated with 

household’s number of daily per capita walking and bicycling trips. These results confirm previous 

findings (see e.g., Cervero 1996; Cervero and Radisch 1996; Kitamura et al. 1997; Stinson and 

Bhat 2004; Plaut 2005; Mitra and Buliung 2012) and are intuitive; one can expect that members 

of households with more vehicles be encouraged to drive more and walk or bicycle less. By 

contrast, the number of household bicycles is significantly and positively correlated with 
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households’ walking and bicycling. This is expected and consistent with previous findings 

(Cervero and Duncan 2003; Targa and Clifton 2005; Moudon et al. 2005; Heinen et al. 2010). 

Although owning a bicycle is a natural prerequisite for bicycling (Moudon et al. 2005), this 

variable is potentially capturing general preferences toward nonmotorized travel in a household; 

the more bicycles a household owns, the more nonmotorized trips—including walking trips—is 

expected from members of that household.  

Micro-level (Neighborhood-level) Built Environment Variables Findings: A few micro-

level built environment variables are significantly correlated with household nonmotorized travel 

behavior. Population and employment densities seem to have significant and positive correlations 

with household’s number of daily per capita walking trips. However, population density does not 

have a significant correlation with the number of daily per capita bicycling trips, whereas 

employment density seems to have a significantly negative correlation with bicycling. These 

results mean that increased levels of residents’ walking are associated with increased 

neighborhood population and employment densities. However, higher levels of employment 

opportunities within a neighborhood are associated with lower levels of bicycling—a finding that 

was also reported in previous research (Cervero and Duncan 2003). The referenced study 

suggested that denser urban employment settings create many roadway conflict points, which may 

deter bicyclists due to safety concerns. Overall, the results on the role of neighborhood-level 

density measures in nonmotorized travel confirm the findings of previous studies that reported 

densities at the local level were associated with nonmotorized travel behavior (Frank and Pivo 

1994; Cervero and Duncan 2003; Næss 2005; Targa and Clifton 2005; Boarnet et al. 2008). 

The Average Block Size variable exhibits a significant and negative association with 

walking, but its coefficient is not significant in the bicycling model. This variable is considered a 
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proxy for street network connectivity and pedestrian friendliness in this study and has the expected 

direction in the walking model; smaller block sizes indicate more connected and walkable streets 

within the neighborhood with shorter distances to destinations, which thereby can encourage more 

pedestrian trips. When measured objectively, block size has been found in past research to be an 

insignificant factor in bicycling travel behavior (Moudon et al. 2005) and the results of the present 

study confirms that finding.  

Table C-5 also indicates that higher accessibility to local transit (i.e., higher number of 

transit stations and bus stops within the neighborhood) is significantly and positively associated 

with nonmotorized trips, which is consistent with findings of previous studies (see e.g., Kitamura 

et al. 1997; Targa and Clifton 2005; Ewing and Cervero 2010). The results also show that 

proximity to transit has a significant correlation with walking; living in transit-oriented 

neighborhoods is estimated by the model to be correlated with walking more—a finding suggested 

in previous research (Roshan Zamir et al. 2014). However, transit-oriented development does not 

seem to play a role in generating bicycling trips. 

The Walk Score and Bike Score variables exhibit significant and positive correlations with 

households’ walking and bicycling, respectively. In part, this outcome corroborates past findings 

of a strong positive relationship between Walk Score and walking (Weinberger and Sweet 2012). 

Together, the coefficients of the Average Block Size and Walk Score variables confirm past 

findings that suggested neighborhood walkability influenced walking (see e.g., Giles-Corti et al. 

2009). The coefficients of the Walk Score and Bike Score variables also confirm findings of 

previous studies that neighborhood destination accessibility—particularly distance to desired local 

destinations such as stores and schools—is an influential factor in estimating nonmotorized trips 

(Cervero and Kockelman 1997; Handy and Clifton 2001; Schlossberg et al. 2006).  
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Neighborhood-level entropy (a variable representing the extent of mixed-use development) 

shows positive correlations with walking and bicycling trips. This indicates that as expected, 

higher levels of neighborhood mixed land use are associated with more nonmotorized trips. These 

findings parallel those of previous research (see e.g., Cervero and Kockelman 1997; Cervero and 

Duncan 2003; Moudon et al. 2005; Kerr et al. 2007; Lin and Chang 2010).  

Together, these outcomes confirm that neighborhood-level built environment factors are 

influential elements in the nonmotorized travel behavior of residents. 

Meso-level (County-level) Built Environment Variables Findings: At the county level, the 

Average Activity Density variable exhibits significant correlations with both walking and 

bicycling; however, the directions of impact are opposite of one another. Average activity density 

is positively associated with the household’s number of daily per capita walking trips, but it is 

negatively associated with the household’s number of daily per capita bicycling trips. This 

indicates that higher levels of walking by residents of a county are associated with higher 

population and employment densities within the county.  

Conversely, living in highly populated counties with more employment opportunities is 

associated with fewer bicycling trips. Pucher et al. (1999) suggested that high-density 

environments attract utilitarian bicycling due to existence of more destinations within a short 

bicycling distance. On the other hand, Cervero and Duncan (2003) argued that denser urban 

employment settings may deter bicyclists due to safety concerns related to the many roadway 

conflict points created by these environments. The results of the present study are consistent with 

the latter argument. These results confirm the hypothesis of this study that densities at the county 

level can be significantly associated with household’s nonmotorized travel behavior. The results 

also show that built environment characteristics can affect walking and bicycling differently.  
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The direction of the coefficient of the statistically significant Average Block Size variable 

at the county level further supports the hypothesis that a smaller average block size (i.e., better 

street network connectivity) within the county is associated with more walking. This means that 

as street network connectivity improves within the county, there may be more walking trips 

generated by residents. The coefficient of this variable is not significant in the bicycling model. 

The sign of the coefficient of the Average Entropy variable at the county level is negative 

in both the walking and bicycling models. It should be noted, however, that the coefficient of the 

average county-level entropy variable is only significant in the bicycling model. This means that 

a higher extent of mix land use within the county is associated with fewer bicycling trips. This 

result is unexpected. Improved mixed-use development throughout the region is expected to lower 

the extent of driving by residents because they can reach various destinations in their own locality. 

Previous studies confirmed this hypothesis by reporting a negative association between average 

county-level entropy and household Vehicle Miles Traveled (VMT) (Nasri and Zhang 2012). This 

finding intuitively gives rise to expectations of having more nonmotorized trips associated with 

higher levels of county-level entropy variable. However, as it can be seen from Table C-5, the 

findings of the present analysis do not support that hypothesis. 

Together, these results confirm that county-level built environment factors can play a role 

in the nonmotorized travel behavior of residents. 

Regional Accessibility Variables Findings: The Distance to CBD variable exhibits a 

significantly negative correlation with walking. This implies that living in suburban areas with 

greater distances from households to the city’s business district is negatively associated with 

walking trips of the household members. This finding stands in agreement with findings of Boarnet 

et al. (2008) as well as arguments by other researchers (see e.g., Næss 2005; Leslie et al. 2007; 
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Cao et al. 2007; Cao et al. 2009). The consistency in these findings lends some degree of 

confidence to the results. Intuitively, this result is expected; due to greater distances from suburban 

residences to various destinations, driving is probably the preferred and practical mode of travel 

for members of these households. This statement is supported by previous studies that suggested 

residents of suburban areas drive more (Cao et al. 2007), as well as those that suggested 

decentralization and urban sprawl contribute to automobile dependency (see e.g., Cao et al. 2010; 

Siu et al. 2012; Ewing et al. 2014). On the other hand, distance to CBD does not seem to play a 

significant role in generating bicycling trips according to the results of the present study, although 

Dill and Voros (2007) found that individuals who lived in neighborhoods closer to downtown were 

more likely to make a utilitarian bicycle trip. 

The coefficients of the Highway Accessibility and Transit-Drive Accessibility indices are 

both significant in the walking model. As expected, these variables are negatively associated with 

walking, which confirms the hypothesis that increased regional accessibility by means of driving 

on the roads and/or driving to transit stations may discourage walking. The Transit-Walk 

Accessibility Index exhibits a positive correlation with household’s number of daily per capita 

walking trips. This implies that higher access to transit by means of walking throughout the region 

is associated with making additional walking trips. This result is expected because as walking 

access to transit increases, it is more likely that residents are encouraged to walk to and from transit 

stations. However, except for the Highway Accessibility Index, which shows a negative sign, none 

of the other regional accessibility variables are statistically significant in the bicycling model. This 

result can mean that as regional accessibility by means of driving on roads increases, households 

may generate fewer numbers of daily per capita bicycling trips.  
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Together, these findings provide evidence that accessibility at the regional level—

especially in terms of highway accessibility—can be significantly associated with nonmotorized 

travel behavior, just as it is at the local (i.e., neighborhood) level. 

Interpretation of Results: Baltimore-DC Mixed-effects Nonmotorized Travel Models    

The results presented in Table C-5 can be interpreted using standard interpretation methods for 

regression coefficients. For brevity, only a few examples are provided here for interpretation of 

the model coefficients. The coefficient estimated for the household vehicle ownership in the 

walking model (-0.1732062), for instance, indicates that each additional private automobile that is 

available to the household is associated with a decline of approximately 0.17 in the number of 

daily walking trips for each household member (0.17 fewer daily walking trips/person for each 

additional household vehicle). Also, the coefficient of the variable representing the TOD status of 

the neighborhood in the walking model (0.0546366) indicates that approximately 0.06 additional 

daily walking trips per household member are generated if the household is located within a TOD 

neighborhood rather than in a non-TOD neighborhood. The entropy index is in a proportion form, 

meaning its value ranges between 0 and 1. Therefore, the coefficient of the county-level entropy 

variable in the bicycling model (-0.0496237) indicates that all else being equal, an increase of one 

unit (i.e., 0.01) in the entropy index within the county of residence is associated with 0.049 fewer 

bicycling trips generated by each household member for households located in that specific county. 

A few of the built environment variables in the models are log-transformed variables which 

should be considered in the interpretation of the coefficient estimates. For example, the coefficient 

of the county-level Average Block Size variable in the walking model (-0.2166408) means that all 

else being equal, if the average block size within the county of residence doubles (an increase of 

%100 in the value of the county-level Average Block Size variable), the number of daily walking 



 

 

 

518 

 

trips per household member drops by nearly 0.22 trips (walking trips/person).  Also, the coefficient 

estimate of the Distance to CBD variable in the walking model (-0.1383853) indicates that if the 

distance (in miles) of a particular household to the center of the city doubles, the number of daily 

walking trips generated by each household member drops by nearly 0.14 trips (walking 

trips/person). For standardized variables (i.e., regional accessibility indices), the coefficient 

estimates can be interpreted in terms of the standard deviation. For example, the coefficient 

estimate on the Highway Accessibility Index in the walking model (-0.0600699) can be interpreted 

as: all else being equal, a one standard deviation increase in the value of Highway Accessibility 

Index is associated with a decrease of (0.06 × standard deviation) in the number of daily walking 

trips for each household member. 

The above interpretations serve as examples for quantifications of the correlations between 

a household’s nonmotorized trips and neighborhood-level, county-level, and regional built 

environment characteristics as estimated by the models. 

As mentioned previously, the random effects of TAZs have been considered in the above 

mixed-effects models to assess how differences between neighborhoods affect nonmotorized 

travel behavior of residents. The between-TAZ (level two) component of variance (i.e., the 

variance component corresponding to the random intercept) is 𝜎𝑢
2= 0.0315613 in the walking 

model and 𝜎𝑢
2= 0.0004021 in the bicycling model. These estimates are statistically significant, 

which indicates that after controlling for the various variables in the models, there remains some 

TAZ-level variance unaccounted for. Thus, there appears to be significant variation in the means 

of the number of households’ per capita walking/bicycling trips across TAZs.  

With respect to the walking model, the between-TAZ (level two) component of variance 

(𝜎𝑢
2= 0.0315613) is much smaller that the within-TAZ (level one) component of variance (𝜎𝑒

2= 
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0.9668831). This result is probably because the number of households in each TAZ (number of 

observations per cluster) is relatively small (an average of 8 observations per cluster), whereas the 

number of TAZs (clusters) that are compared to each other is large (1,280 TAZs)57. This finding 

(i.e., 𝜎𝑒
2 > 𝜎𝑢

2) also indicates the considerable variability of the number of households’ per capita 

walking trips from household to household within a TAZ. The two variance components can be 

used to partition the variance across the two levels in the model. The total variance for the walking 

model is 𝜎𝑢
2 + 𝜎𝑒

2= 0.0315613 + 0.9668831= 0.9984444. The degree of resemblance between 

level-one units (i.e., households) belonging to the same level-two cluster (i.e., TAZs) can be 

expressed by the intraclass correlation coefficient (see Snijders and Bosker 2012). The intraclass 

correlation coefficient (i.e., variance partition coefficient) is equal to 0.0315613/0.9984444 = 

0.0316, which indicates that 3.16% of the variance in the number of households’ daily per capita 

walking trips is attributable to TAZ-level random (unexplained) processes that affect the number 

of households’ daily per capita walking trips58 (i.e., TAZ random intercept effects). 

Considering the bicycling model, it can be seen from Table C-5 that the between-TAZ 

component of variance (𝜎𝑢
2= 0.0004021) is much smaller that the within-TAZ component of 

variance (𝜎𝑒
2= 0.05538). This difference is also attributable to the fact that the number of 

households in each TAZ (number of observations per cluster) is relatively small (an average of 8 

observations per cluster), but a large number of TAZs (clusters) are being compared to each other 

 
57 The small number of households in each TAZ (i.e., number of observations per cluster) further justifies employment 

of mixed-effects modeling techniques and computing random effects in this analysis. Per Demidenko (2004), a small 

number of clusters with a large number of observations per cluster constitutes the treatment of the cluster-specific 

coefficients (i.e., random effects containing the effects of clustering of the observations under various levels) as fixed 

effects, whereas having a large number of clusters with a small number of observations per cluster, necessitates the 

treatment of the cluster-specific coefficients as random effects. 
58 Computations based on examples in Leckie (2010), Albright and Marinova (2010), and Rabe-Hesketh and Skrondal 

(2012). 
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(1,280 TAZs). The total variance for the bicycling model is 𝜎𝑢
2 + 𝜎𝑒

2= 0.0004021 + 0.05538 = 

0.0557821. Thus, the intraclass correlation coefficient (i.e., variance partition coefficient) is equal 

to 0.0004021/0.0557821 = 0.0072, which indicates that approximately 0.7% of the variance in the 

number of households’ daily per capita bicycling trips is attributable to differences between TAZs 

(TAZ random intercept effects).  

The p-values of the TAZ random effects are significant in both walking and bicycling 

models. These results suggest that random differences between neighborhoods (i.e., TAZ random 

effects) play a small but statistically significant role in nonmotorized travel behavior of residents. 

Thus, it can be inferred that contextual effects such as those of the neighborhood structure 

can play an autonomous role in nonmotorized travel choices. Literature agrees that neighborhood 

differences such as impediments or stimulants to walking and bicycling are likely to vary greatly 

among different types of neighborhoods such as inner-city neighborhoods, suburban 

developments, and rural communities (National Research Council 2005). 

Further, the results of the Likelihood Ratio tests in both models are statistically significant 

as evidenced by the value of chi-squared (χ2) and the corresponding p-values. These results mean 

that in both models, the multilevel (i.e., mixed-effects) modeling technique offers improvements 

over an ordinary linear regression model with fixed effects only. These results justify taking into 

consideration the random effects of individual TAZs on walking and bicycling behavior and using 

the multilevel models instead of ordinary linear regression models. It should be noted that although 

statistically significant at 10% significance level, the improvements offered by the multilevel 

model in the bicycling model are not very robust (p-value = 0.073).  

The marginal R-squared values provide information on variance explained by fixed factors, 

whereas the conditional R-squared is for variance explained by both fixed and random factors; 
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thus, differences between values of the two reflect how much variability exists in random effects 

(Nakagawa and Schielzeth 2013). The referenced paper recommended that both marginal and 

conditional R-squared be reported in publications because they convey unique information.  

Elasticities: Table C-6 shows the elasticities computed for the multilevel mixed-effects 

models with all the independent variables set to their mean values. Elasticities measure the 

percentage change in the dependent variable due to a 1% change in the independent variable. 

Basically, an elasticity is the ratio (dimensionless measure) of the percentage change in one 

variable (i.e., dependent variable) associated with the percentage change in another variable (i.e., 

independent variable) (Ewing and Cervero 2010).  

Among the household socioeconomic attributes, the elasticity of the number of household’s 

daily per capita walking trips is highest with respect to the number of vehicles owned by the 

household (-0.528005). The elasticity indicates that an increase by 100% in the number of vehicles 

(i.e., if number of household vehicle doubles) is associated with a decrease of approximately 53% 

in the number of household’s daily per capita walking trips. Among the micro-level built 

environment characteristics, the Walk Score variable has the highest statistically significant 

elasticity (0.1793713), meaning an increase in the neighborhood Walk Score by 100% (i.e., if the 

Walk Score doubles) is associated with an increase by approximately 18% in the number of 

household’s daily per capita walking trips. At the meso level (i.e., county), Average Block Size 

with an elasticity of -0.40173, and among the regional accessibility variables, Distance to CBD 

with an elasticity of -0.2566162 have the highest elasticities in the walking model.  

These results further emphasize the role of vehicle ownership, neighborhood destination 

accessibility, street connectivity at the county level, and distance to the center of the city in 

generating walking trips.  
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Table C-6. Elasticities: Baltimore-D.C. Multilevel Nonmotorized Travel Models 

NOTES:  

*, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively; 
a Dimensionless. 

Similarly, the elasticities of the independent variables in the bicycling model indicate the 

important role of vehicle and bicycle ownership, neighborhood bicycle-friendliness, and extent of 

neighborhood and county mixed land use among other factors in bicycling trip generation. While 

the bicycle ownership variable (i.e., Number of Bicycles) has the largest elasticity in the bicycling 

model, the entropy variables at both the neighborhood and county level also exhibit large 

Dependent Variable: Number of Household’s Daily Per Capita Walking/Bicycling Trips 

 Walking Model Bicycling Model 

Independent Variable Coefficient            p-value   Coefficient             p-value                  

Household-level Socioeconomic Attributes (SEHH): The Household 

Number of Members (Size) -.172466*** 0.006 -.7316617** 0.016 

Number of Students -.0325094* 0.077 -.1436839 0.103 

Number of Workers .0960777*** 0.008 .4540818*** 0.010 

Number of Vehicles -.528005*** 0.000 -.7111199*** 0.001 

Number of Bicycles .0726418*** 0.000 1.087422*** 0.000 

Annual Income (1,000s of dollars) .1226014* 0.052 -.0547232 0.853 

Micro-level Built Environment (BETAZ): The Neighborhood 

Population Density (total population/acre) .0769952*** 0.009 .051561 0.676 

Employment Density (jobs/acre)  .0364353*** 0.000 -.0934592** 0.016 

Average Block Size (acres) - logged -.1130383** 0.013 .0161547 0.926 

Transit Accessibility  

(number of transit stations + bus stops) 
.0144692* 0.084 .0581854* 0.095 

Transit Oriented Development .0121823* 0.099 .0232404 0.593 

Walk Scorea .1793713*** 0.005 — — 

Bike Scorea — — .4885906*** 0.000 

Entropya .1917095 0.001 .3418802* 0.055 

Meso-level Built Environment (BECounty): The County 

Average Activity Density  

[(population + employment)/acre]  
.2590538*** 0.000 -.1842209* 0.082 

Average Block Size (acres) - logged -.40173*** 0.000 .0766082 0.789 

Average Entropya -.0278555 0.870 -.8479248* 0.084 

Regional Accessibility (RA): The Region 

Distance to CBD (miles) - logged -.2566162*** 0.000 .1768309 0.518 

Highway Accessibility Indexa - standardized -.045429*** 0.000 -.0728727* 0.064 

Transit-Drive Accessibility Indexa - standardized -.0532558*** 0.000 .0175724 0.748 

Transit-Walk Accessibility Indexa - standardized .050781 0.001 .0600361 0.345 

Observations; Clusters 9,481; 1,280 9,481; 1,280 
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elasticities in the bicycling model. These variables were included in the model to represent land 

use mix; thus, a better mix of residential, retail, office and other uses within the neighborhood and 

county are among the most important built environment attributes in determining bicycling, which 

is in line with previous findings (Moudon et al. 2005). 

Multicollinearity Check: To further check for multicollinearity in the models, Variance 

Inflation Factors (VIFs) are estimated and listed for all the independent variables in Table C-7.  

      Table C-7. Variance Inflation Factors (VIFs) for Independent Variables  

                                                            Models 

 

Independent Variables 

Walking Model 

 

 VIF      1/VIF 

Bicycling Model 

 

  VIF       1/VIF 

Household-level Socioeconomic Attributes: The Household 

Number of Members (Size) 3.37 0.2969 3.37 0.2970 

Number of Students 2.67 0.3752 2.67 0.3752 

Number of Workers 1.63 0.6132 1.63 0.6132 

Number of Vehicles 1.90 0.5271 1.90 0.5277 

Number of Bicycles 1.56 0.6402 1.56 0.6398 

Annual Income (1,000s of dollars) 1.53 0.6540 1.54 0.6513 

Micro (Neighborhood)-Level Built Environment (TAZ Level) 

Population Density (total population/acre) 2.29 0.4358 2.33 0.4293 

Employment Density (jobs/acre) 1.51 0.6635 1.50 0.6653 

Average Block Size (acres) -logged 3.69 0.2708 2.95 0.3392 

Transit Accessibility (number of transit stations + bus stops) 1.19 0.8407 1.22 0.8168 

Transit Oriented Development 1.59 0.6288 1.59 0.6271 

Walk Score 3.93 0.2547 — — 

Bike Score     —      — 4.44 0.2249 

Entropy 1.69 0.5918 1.63 0.6135 

Meso-level Built Environment (County Level) 

Average Activity Density [(population + employment)/acre] 5.56 0.1799 6.40 0.1562 

Mean Block Size (acres) - logged 7.77 0.1287 7.71 0.1297 

Mean Entropy 1.64 0.6096 1.74 0.5755 

Regional Accessibility 

Distance to CBD (miles) - logged 8.05 0.1242 8.14 0.1228 

Highway Accessibility Index - standardized 3.37 0.297 3.36 0.2978 

Transit-Drive Accessibility Index - standardized 3.59 0.2789 3.66 0.2732 

Transit-Walk Accessibility Index - standardized 5.45 0.1834 5.46 0.1829 

Mean  3.20 0.4297 3.24 0.4279 
 

 

All the estimated VIFs are less than 10, which is considered the threshold for redundancy 

of variables (Kline 2011) and significant and potentially harmful collinearity (Franke 2010). The 

latter reference also states that “collinearity creates fewer problems when sample sizes are large, 
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predictors have high variances relative to that of the criterion variable”—as is the case in the 

sample for the present case study. Thus, it can be concluded that multicollinearity is not a problem 

in the Baltimore-DC mixed-effects (i.e., multilevel) nonmotorized travel models. 

Summary of Findings: Baltimore-DC Linear Mixed-effects Nonmotorized Travel Models    

Taken together, the results of the multilevel (i.e., mixed-effects) models confirm previous findings 

that walking and bicycling are associated with household socioeconomic characteristics including 

vehicle ownership as well as the micro-level (i.e., neighborhood-level) built environment attributes 

of the place of residence. The results of the present study show that living in more compact and 

pedestrian- and bicycle-friendly neighborhoods with improved street connectivity, higher levels 

of mixed land use, and increased transit accessibility is associated with a higher number of daily 

nonmotorized trips. The results also suggest that random differences between neighborhoods may 

play a role, albeit humble, in walking and bicycling of people. 

The analysis adds to the body of knowledge that meso-level (i.e., county-level) built 

environment characteristics as well as regional accessibility attributes may also play important 

roles in nonmotorized travel behavior. Particularly, living in highly populated counties with more 

employment opportunities is associated with more walking trips but fewer bicycling trips. 

Moreover, living in counties with better street connectivity throughout is associated with more 

walking trips. Higher levels of mixed-use development throughout the county is associated with 

fewer bicycling trips. Also, increased highway accessibility as well as increased accessibility to 

transit by means of driving throughout the entire county are associated with fewer walking and 

bicycling trips, whereas higher regional accessibility to transit by means of walking is associated 

with more walking trips. Additionally, walking trips are negatively associated with residing in 

locations farther away from the city center. 
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C.1.4.2 Ordered Probit Models  

Specification of Models: Baltimore-DC Ordered Probit Nonmotorized Travel Models    

Similar to the multilevel models, ordered probit models have been employed to examine the 

association between nonmotorized trips and built environment attributes at micro-level (i.e., 

neighborhood) and meso-level (i.e., county) geographical scales. This allows comparison of the 

model results and confirmation of the findings. 

Ordered probit models allow modeling of discrete choices and enable the analyst to deal 

with ordinal dependent variables. These models can be applied to ordinal dependent variables that 

are coded as consecutive integers. The total number of household’s daily walking or bicycling trips 

represent discrete choices; therefore, the ordered probit model is an appropriate technique to be 

employed in modeling them.  

Applying the ordered probit modeling concepts to the Baltimore-D.C. case study, the total 

number of household’s daily walking (or bicycling) trips can be defined as the observed ordinal 

dependent variable (y). This observed variable is assumed to take on a series of values—from zero 

to the maximum number of trips in the dataset (21 for walking trips and 11 for bicycling trips, 

based on Table C-1)—depending on the value of the unobserved latent variable 𝑦∗.  

Based on Equation 10 (see Subsection 3.3.2 in this dissertation), the equation for the 

ordered probit model for the total number of nonmotorized trips can be formulated as: 

𝑦∗ = 𝛽1
′SEHH + 𝛽2

′BETAZ+ 𝛽3
′BECounty+ 𝛽4

′RA +  휀                                      Equation C-3 

where, 

𝛽1 
′ − 𝛽4 

′ = column vectors of model parameters; 

휀 = an iid error term with a normal distribution (휀 ~ 𝑁 (0, 1)); 

SEHH = column vector of household social environment attributes (i.e., socioeconomics); 
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BETAZ = column vector of micro-level (i.e., neighborhood) built environment attributes; 

BECounty = column vector of meso-level (i.e., county-level) built environment attributes; 

RA = column vector of regional accessibility attributes; and 

𝑦∗ = value of the unobserved latent variable. 

The probability of a certain number of walking (or bicycling) trips having been generated 

from a certain household, i, is computed by the ordered probit model through relating the observed 

number of household trips, y, to the unobserved latent variable 𝑦∗. That probability is given by: 

Probability (𝑦𝑖 = 𝑦𝑛) =  Φ (𝛼𝑛 − 𝑥𝑖𝛽) −  Φ (𝛼𝑛−1 − 𝑥𝑖𝛽)                         

where, 

𝑦𝑛      =  an integral number of walking (or bicycling) trips; 

Φ      = the cumulative normal distribution function; 

𝛼𝑛    =  the upper threshold for the range of 𝑦∗ which corresponds to n trips; 

𝛼𝑛−1 =  the lower threshold for the range of 𝑦∗ which corresponds to n trips; 

𝑥𝑖      =  vector of independent variables containing SEHH, BETAZ, BECounty and RA; and 

𝛽      = column vector of the parameters   𝛽1−4
′   (in Equation C-3).  

Given the representation above, ordered probit models can be estimated for the household’s 

daily number of walking (or bicycling) trips based on household’s socioeconomic characteristics, 

neighborhood- and county-level built environment characteristics, as well as regional accessibility 

characteristics. The model also estimates the thresholds (cut points) as y* crosses them. 

Discussion of Results: Baltimore-DC Ordered Probit Nonmotorized Travel Models  

Table C-8 summarizes the estimation results of the ordered probit model for the two metropolitan 

areas (i.e., Washington, D.C. and Baltimore). The results of the ordered probit models generally 

agree with those of the mixed-effects models in terms of the sign of the coefficient estimates.  
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Household Control Variables Findings: Similar to the results of the mixed-effect models, 

household size shows a significant and negative association with household’s walking and 

bicycling travel in the ordered probit models. 

Table C-8. Results: Baltimore-D.C. Ordered Probit Nonmotorized Travel Behavior Models 

Dependent Variable: Number of Household’s Daily Walking/Bicycling Trips 

 Walking Model Bicycling Model 

Independent Variable Coefficient            p-value   Coefficient             p-value                  

Household Socioeconomics (SEHH): The Household 

Number of Members (Size) -.1946126*** 0.000 -.0200455** 0.016 

Number of Students -.0269893 0.224 .0011314 0.983 

Number of Workers .1064911*** 0.000 .1687302*** 0.002 

Number of Vehicles -.2685013*** 0.000 -.2077118*** 0.000 

Number of Bicycles .0660427*** 0.000 .2896479*** 0.000 

Annual Income (1,000s of dollars) .020404*** 0.000 .0204818 0.172 

Micro-level Built Environment (BETAZ): The Neighborhood 

Population Density (total population/acre) .0017949* 0.091 -1.54e-06 1.000 

Employment Density (jobs/acre)  .0010783** 0.049 -.0034208* 0.076 

Average Block Size (acres) - logged -.0380194* 0.073 -.0235782 0.721 

Transit Accessibility  

(number of transit stations + bus stops) 
.0000921 0.153 .0028038* 0.087 

Transit Oriented Development .0199667* 0.084 -.048641 0.651 

Walk Score .0021871*** 0.010 — — 

Bike Score — — .0057826*** 0.004 

Entropy  .2626597*** 0.001 .4403056** 0.025 

Meso-level Built Environment (BECounty): The County 

Average Activity Density  

[(population + employment)/acre]  
.0043551*** 0.000 -.0015022* 0.080 

Average Block Size (acres) - logged -.1468318*** 0.000 .0536983 0.616 

Average Entropy -.3166882** 0.017 -1.374268** 0.040 

Regional Accessibility (RA): The Region 

Distance to CBD (miles) - logged -.2372252*** 0.000 -.1001062 0.303 

Highway Accessibility - standardized -.0025195** 0.027 -.0098194 0.724 

Transit-Drive Accessibility - standardized -.0360983*** 0.003 .0307451 0.310 

Transit-Walk Accessibility - standardized .0587439*** 0.000 .0025355 0.939 

Model Goodness Parameters 

Likelihood Ratio Test  1425.38 (DF=20) 374.77 (DF=20) 

Pseudo R2     0.0623 0.1483 

Log likelihood  -10734.719 -1075.9936 

Observations (households) 9,481 9,481 

NOTES:  

DF=Degrees of freedom;  

*, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively; 

For brevity, the cut point estimates are not reported in the table. 
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Also similar to what is estimated by the mixed-effects models (see Table C-5), the ordered 

probit models show that the number of household workers positively and significantly correlates 

with household’s number of walking and bicycling trips. In addition, household’s annual income 

has a positive association with walking and bicycling trips, although its coefficient is not 

significant in the bicycling model. The number of vehicles owned by the household shows a 

significant and negative correlation with household’s daily number of walking and bicycling trips, 

whereas the number of household’s bicycles owned exhibits a significant and positive correlation 

with walking and bicycling. These results are also consistent with results from the mixed models.  

Micro-level (Neighborhood-level) Built Environment Variables Findings: Considering the 

neighborhood built environment variables, the ordered probit models indicate that population and 

employment density significantly and positively correlate with the number of household’s daily 

walking trips. Population density does not have a significant correlation with the number of 

bicycling trips, whereas employment density seems to have a significantly negative correlation 

with those trips. The Average Block Size variable shows a significant and negative correlation with 

household walking. This variable does not reach a significance threshold in the bicycling model. 

Higher proximity to transit is significantly and positively correlated with walking as 

indicated by the coefficient estimate on the Transit Oriented Development variable in the walking 

model. The Walk Score and Bike Score variables are significantly and positively associated with 

household’s number of daily walking and bicycling trips, respectively. The neighborhood-level 

Entropy variable shows a positive correlation with walking and bicycling trips. Together, these 

outcomes confirm the results of the mixed-effects models (Table C-5) regarding the correlations 

of neighborhood-level built environment factors with the number of nonmotorized trips. 
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Meso-level (County-level) Built Environment Variables Findings: At the county level, the 

Average Activity Density variable is positively and significantly associated with the household’s 

number of walking trips but negatively associated with the household’s number of bicycling trips 

(as it was in the mixed-effects models). County-level Average Block Size and Average Entropy 

variables show negative and significant associations with the number of walking trips. County-

level entropy also shows a negatively significant correlation with the number of bicycling trips.  

Regional Accessibility Variables Findings: The Distance to CBD variable in the ordered 

probit walking model exhibits the same direction and extent of significance as it did in the mixed-

effects walking model. Moreover, for both the walking and bicycling models, the direction and 

extent of significance of the other regional accessibility variables are consistent in the ordered 

probit models and the mixed-effects models. A small difference is that the coefficient of the 

Highway Accessibility Index becomes insignificant in the bicycling ordered probit model, whereas 

it showed a significant effect in the mixed-effects bicycling model. 

Interpretation of Results: Baltimore-DC Ordered Probit Nonmotorized Travel Models    

Although Table C-8 provides initial insights into the direction and significance of the coefficients 

of different independent variables on the number of household’s nonmotorized trips, a more 

precise interpretation of the results of ordinal regression models is possible by computing the 

marginal effects. Marginal effects are a popular method that can be used to make the effects of 

variables in nonlinear models more intuitive and meaningful (Williams 2012). The marginal effect 

is the partial derivative of the dependent variable with respect to a specific independent variable. 

For nonlinear models, the value of the marginal depends on the specific values of all of the 

independent variables (Long and Freese 2006). More specifically, marginal effects measure the 

change in the probability of a certain category of the ordinal dependent variable occurring when 
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the independent variable changes by one unit. Marginal effects can be interpreted as changes in 

percentage points. Since the “unit” may be very small (infinitesimal), a change in the unit 

represents the instantaneous change for continuous independent variables (Wasfi et al. 2016). 

Therefore, the marginal is the instantaneous rate of change (Long and Freese 2006) for continuous 

variables. For binary independent variables, the meaning of “one unit” is clearer as the change 

represents moving from 0 to 1. For binary variables, the discrete change is computed instead of 

the marginal effect as the variable changes from 0 to 1 (Long and Freese 2006). 

In this case study, the ordinal categories of the dependent variable consist of various values 

of household’s “total number of daily walking or bicycling trips”. Consequently, marginal effects 

can be computed for each specific total number of trips to obtain the probability of a household 

generating that exact number of walking or bicycling trips. Since the “total number of daily 

walking or bicycling trips” consist of too many ordinal categories (0-21 for walking trips; 0-11 for 

bicycling trips), reporting marginal effects for all categories is cumbersome and interpretation of 

results may become ambiguous.  

To facilitate interpretations, the average marginal effects have been computed for the case 

of a household that did not report any walking/bicycling trips during the travel survey day. This 

means that average marginal effects are computed for a total number of waking (or bicycling) trips 

equal to zero. The marginal effects in this case represent the expected change in the probability of 

the household reporting no walking/bicycling trips during the travel survey day, associated with a 

one-unit change in a certain independent variable. Since ordered probit model is a nonlinear model, 

that effect varies from household to household. The average marginal effect computes the effect 

for each observation (i.e., household) and then computes the average for all observations.  
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Table C-9 summarizes the average marginal effects along with the p-values estimated after 

the ordered probit models for a total number of “zero” daily walking and bicycling trips generated 

from a household. The average marginal effects are interpreted as the average probability of the 

household generating exactly “zero” walking/bicycling trips during a day.  

Table C-9. Average Marginal Effects: Baltimore-D.C. Ordered Probit Models  

Average Marginal Effects for Number of Household’s Daily Nonmotorized Trips = 0 

 Walking Model Bicycling Model 

Independent 

Variable 

Average 

Marginal 

Effects 

  

   p-value 

Average 

Marginal 

Effects 

 

p-value                  

Household Socioeconomics (SEHH): The Household 

Number of Members (Size) .0622333*** 0.000 .0008346** 0.016 

Number of Students .0086306 0.224 .0000471 0.983 

Number of Workers -.0340538*** 0.000 -.0070254*** 0.002 

Number of Vehicles .0858614*** 0.000 .0086485*** 0.000 

Number of Bicycles -.0211191*** 0.000 -.0120601*** 0.000 

Annual Income (1,000s of dollars) -.0065248*** 0.000 .0008528 0.173 

Micro-Level Built Environment (BETAZ): The Neighborhood 

Population Density (total population/acre) -.000574 0.091 6.39e-08 1.000 

Employment Density (jobs/acre)  -.0003448** 0.049 .0001424* 0.077 

Average Block Size (acres) - logged .0121579 0.073 -.0009817 0.721 

Transit Accessibility  

(number of transit stations + bus stops) 

-.0000294 0.153 -.0001167* 0.088 

Transit Oriented Development -.0064121* 0.085 -.0019725 0.642 

Walk Score -.0006994*** 0.010 — — 

Bike Score — — -.0002408*** 0.004 

Entropy  -.0839934*** 0.001 -.018333** 0.025 

Meso-Level Built Environment (BECounty): The County 

Average Activity Density  

[(population + employment)/acre]  

-.0013927*** 0.000 .0000625* 0.080 

Average Block Size (acres) - logged .0469539*** 0.000 -.0022358 0.616 

Average Entropy .1012706** 0.017 .0572203** 0.041 

Regional Accessibility (RA): The Region 

Distance to CBD (miles) - logged .0758599*** 0.000 .0041681 0.304 

Highway Accessibility - standardized .0008057** 0.027  .0004088 0.724 

Transit-Drive Accessibility - standardized .0115435*** 0.003 -.0012801 0.311 

Transit-Walk Accessibility - standardized  -.018785*** 0.000 -.0001056 0.939 

Observations (households) 9,481 9,481 

Model Prediction for Total Number of Household’s 

Trips = 0 (all variable set to their mean values) 

.69588*** .99044*** 
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Due to the ordered probit model being a nonlinear model, for interpretation purposes here, 

it is assumed that the average marginal effects of a unit change in a certain independent variable 

on the probability of the household generating exactly “zero” walking (or bicycling) trips during 

a day is conditional on the distribution of all the model variables being as they are in the dataset. 

The average marginal effect can be interpreted for a certain independent variable as if it represents 

the response to a unit change59.  

For instance, the average marginal effect on the household vehicle ownership in the 

walking model (0.0858614) indicates that each additional private vehicle that is available to the 

household is associated with an increase of approximately 8.6 percentage points in the average 

probability of the household generating no walking trips (i.e., households are less likely to generate 

walking trips if they own more vehicles).  

Furthermore, the average marginal effects on the household bicycle ownership in the 

bicycling model (-0.0120601) indicates that owning an additional bicycle is associated with a 

decrease of approximately 1.2 percentage points in the average probability of the household 

generating zero bicycling trips (i.e., households are more likely to generate bicycling trips if they 

own more bicycles). 

As another example, the sign and magnitude of the average marginal effect for the 

neighborhood employment density variable in the walking model (-0.0003448) suggests that for 

each additional 100 employees per acre of the TAZ, the average probability of a household within 

that TAZ generating no walking trips decreases by approximately 3.4 percentage points (i.e., 

 
59 See Stata 13 Manual “margins — Marginal means, predictive margins, and marginal effects”: 

https://www.stata.com/manuals13/rmargins.pdf 
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households are more likely to generate walking trips if employment density within the 

neighborhood is higher). 

The average marginal effect of the variable for distance (in miles) to city center in the 

walking model is 0.0758599. Since this variable is log-transformed, this result implies that an 

increase of 1 in the value of the natural logarithm of distance of the household to the center of the 

city60 is associated with an increased average probability (by nearly 7.6 percentage points) of 

households generating no walking trips (i.e., households are less likely to generate walking trips if 

they locate farther from the CBD).  

Also, the average marginal effects of the Transit-Walk Accessibility Index in the walking 

model (-0.018785) indicates that as the value of this variable increases by one standard deviation, 

the average probability of households generating no walking trips decreases by approximately 1.9 

percentage points (i.e., higher accessibility to transit by means of walking is associated with a 

higher probability of generation of walking trips from households).  

The probability of a household generating no walking trips if the independent variables are 

set at their mean values is 70% (model prediction is 0.69588). The probability of a household 

generating no bicycling trips if independent the variables are set at their means is 99% (model 

prediction is 0.99044), which is another indication of the low levels of bicycling. 

These results are in line with results obtained from the mixed-effects model estimation in 

both the direction and significance of estimates and further emphasize the role of socioeconomic 

characteristics, neighborhood- and county-level built environment factors, as well as regional 

accessibility characteristics in in generating or eliminating nonmotorized travel. 

 
60 An increase of 1 in the value of the natural log (x) means that x is multiplied by e=2.718. Therefore, the absolute 

increase in x will be equal to 2.718x – x=1.718x, which means a 171.8% increase in x. 
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Summary of Findings: Baltimore-DC Ordered Probit Nonmotorized Travel Models    

Tables C-8 and C-9 provide evidence that the results of the ordered probit models are consistent 

with those of the mixed-effects models in terms of the association of micro-level (i.e., 

neighborhood) and meso-level (i.e., county) built environment factors as well as that of the 

regional accessibility characteristics with nonmotorized trips. The ordered probit model 

estimations confirm that members of households located in compact, pedestrian- and bicyclist-

friendly neighborhoods with improved street connectivity, and higher levels of mixed-use 

development are more likely to walk or bicycle.  

Furthermore, findings show that county-level built environment characteristics and 

regional accessibility play key roles in nonmotorized travel behavior, especially walking. Densely 

populated counties with more employment opportunities are associated with more walking trips 

but fewer bicycling trips. More walking trips are also associated with living in counties with better 

street connectivity. High extents of mixed-use developments throughout the county are associated 

with fewer number of nonmotorized trips, in both walking and bicycling cases.  

Also, higher accessibility to highways as well as higher accessibility to transit (by means 

of driving) throughout the entire county are correlated with fewer walking trips by residents. By 

contrast, increased numbers of walking trips are associated with better regional accessibility to 

transit by means of walking. Residing in locations farther away from the CBD has a negative 

association with household’s number of walking trips.  

C.2 Conclusions of the Baltimore-Washington, D.C. Case Study and Next Steps 

Findings from the Baltimore-D.C. case study corroborate research findings in the past that 

nonmotorized travel behavior is associated with household socioeconomic characteristics as well 



 

 

 

535 

 

as the micro-level (i.e., neighborhood) built environment attributes of the place of residence. 

Moreover, the results shed light on the potential role of the meso-level (i.e., county-level) built 

environment attributes and regional accessibility in nonmotorized travel behavior. The findings 

provide insights into the long-overlooked relationship between built environment characteristics 

of locations beyond the neighborhood and walking as well as bicycling trips of residents. 

Nevertheless, to develop a better understanding of the potential link between the built 

environment of geographical areas larger than the neighborhood and nonmotorized travel 

behavior, an analysis of additional case studies will be helpful. Further, the role of the social 

environment in nonmotorized travel behavior needs to be more thoroughly tested since the direct 

influence of travel emerges by exposure of travelers to both the built and social environments (van 

Wee and Ettema 2016). Thus, inclusion of social environment factors beyond the household level 

in the analysis can contribute to improvement of the models and enhancement of the findings. The 

Florida case study (Section 4.1) addresses these limitations in the Baltimore-D.C. case study. 

As mentioned previously, a few studies discussed consideration of a three-level ecological 

hierarchy for the influence of the built environment on physical activity such as nonmotorized 

travel. These include: the micro level (e.g., neighborhood), the meso level (e.g., county), and the 

macro level (e.g., metropolitan area) (see e.g., King et al. 2002; Ewing et al. 2003b). For instance, 

King et al. (2002) suggested that the influence of built environment attributes on physical activity 

(e.g., nonmotorized travel) should be considered at the micro, meso, and macro levels.  

This three-level hierarchical structure has been adopted in the Florida case study to develop 

models that link walking and bicycling trips to household characteristics as well as environmental 

attributes in terms of both the built and social environments (see Section 4.1 of this dissertation). 
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Appendix D 

Walk and Bike Score Categories 

Score Label Description 

Walk Score 

90 - 100 Walker’s Paradise Daily errands do not require a car 

70 - 89 Very Walkable Most errands can be accomplished on foot 

50 - 69 Somewhat Walkable Some errands can be accomplished on foot 

25 - 49 Car-Dependent Most errands require a car 

0 - 24 Car-Dependent Almost all errands require a car 

Bike Score 

90 - 100 Biker’s Paradise Daily errands can be accomplished on a bike 

70 - 89 Very Bikeable Biking is convenient for most trips 

50 - 69 Bikeable Some bike infrastructure exists 

0 - 49 Somewhat Bikeable Minimal bike infrastructure exists 

Source: www.walkscore.com (https://www.walkscore.com/methodology.shtml) 
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Appendix E 

Pearson Correlation Matrix for Independent Variables 

(Florida Household-level Nonmotorized Travel Behavior Models) 
 

Household-level Variables 

Variable  
Number 

of 

Adults 

Number 

of 

Vehicles 

Number  

of  

Workers 

Annual 

Income 
   

Number of Adults 1.0000       

Number of Vehicles 0.5347 1.0000      

Number of Workers 0.4598 0.4667 1.0000     

Annual Income 0.2797 0.4193 0.4070 1.0000    

Neighborhood-level Variables 

Variable 
Activity 

Density  
Entropy 

Intersection 

Density 

Pedestrian

-friendly 

Network 

Density  

Local 

Transit 

Service 

Local 

Transit 

Accessibility 

Percentage 

of HHs with 

No Cars 

Activity Density 1.0000       

Entropy -0.0437 1.0000      

Intersection Density 0.1136 0.0842 1.0000     

Ped-friendly Network Density 0.3184 -0.1718 0.0697 1.0000    

Local Transit Service 0.6021 0.0035 0.0507 0.2167 1.0000   

Local Transit Accessibility -0.1257 0.0127 0.0132 -0.0424 -0.1493 1.0000  

Percentage of HHs with No Cars 0.2957 -0.0344 0.1345 0.1881 0.3007 -0.0758 1.0000 

County-level Variables 

Variable   

Mean 

Activity 

Density 

Mean 

Entropy 

Mean 

Intersection 

Density 

Mean 

Regional 

Diversity 

Mean Ped-

friendly 

Network 

Density 

Mean 

Transit 

Service 

Mean 

Automobile 

Accessibility 

Mean Activity Density 1.0000       

Mean Entropy -0.3259 1.0000      

Intersection Density 0.6992 -0.0793 1.0000     

Mean Regional Diversity 0.1264 0.5975 0.4019 1.0000    

Mean Ped-friendly Network Density 0.8487 -0.2897 0.6561 0.1804 1.0000   

Mean Transit Service 0.6578 -0.4609 0.7067 -0.0268 0.6200 1.0000  

Mean Automobile Accessibility 0.6735 -0.1518 0.6985 0.2436 0.6369 0.6407 1.0000 

Mean Transit Accessibility 0.7069 -0.4471 0.6454 0.0204 0.6333 0.7847 0.8453 

Metropolitan-level Variables 

Variable   

Mean 

Activity 

Density 

Mean 

Entropy 

Mean Total 

Road 

Network 

Density 

Percentage 

of 0.01 

Blocks 

Mean 

Automobile 

Accessibility 

Mean 

Transit 

Accessibility 

Average 

Percentage 

of 2+ Car 

HHs 

Mean Activity Density 1.0000       

Mean Entropy -0.3706 1.0000      

Mean Total Road Network Density 0.2789 0.1538 1.0000     

Percentage of 0.01 Blocks 0.6925 -0.3289 0.2754 1.0000    

Mean Automobile Accessibility 0.7301 -0.2883 0.3798 0.6257 1.0000   

Mean Transit Accessibility 0.7549 -0.6309 0.1886 0.6686 0.7991 1.0000  

Average Percentage of 2+ Car HHs -0.3091 0.7038 0.0890 -0.4675 -0.2603 -0.4397 1.0000 

Correlations not shown in the table are all below the |p| > 0.7 threshold adopted in this study. 
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Appendix F 

Data Structure  

(Florida Person-level Nonmotorized Travel Behavior Models) 
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Appendix G 

Attitudinal Data Fields in the Florida 2009 NHTS Add-on Person File 

 

Variable Description Observations 

Missing 

Observations 

Total 

Observations 

Percentage of 

Missing Data 

DTACDT a Safety concerns 4,125 26,827 30,952 87% 

DTCONJ a Highway congestion 4,223 26,729 30,952 86% 

DTCOST a Price of travel (fees, tolls and gas) 6,831 24,121 30,952 78% 

DTRAGE a Aggressive/distracted drivers 4,527 26,425 30,952 85% 

DTRAN a Access or availability of public transit 1,632 29,320 30,952 95% 

DTWALK a Lack of walkways or sidewalk 738 30,214 30,952 98% 

SCHSPD b Walk/Bike issue: speed of traffic along route 1,744 29,208 30,952 94% 

SCHTRAF b Walk/Bike issue: amount of traffic along route 1,747 29,205 30,952 94% 

SCHCRIM b Walk/Bike issue: violence/crime along route 1,738 29,214 30,952 94% 

 
NOTES:   

 
a  Response categories included: Appropriate skip, Refused, Don’t know, Not ascertained, Not a problem, A little problem, Somewhat of a problem; 

 
b  Response categories included: Appropriate skip, Refused, Don’t know, Not ascertained, Not an issue, A little bit of an issue, Somewhat of an issue, 

Very much an issue, A serious issue.
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Appendix H 

Variable Labels for Multilevel SEM Structure 

(Florida Person-level Nonmotorized Mode Share Models—Figure 7) 

Independent Variable Label 

Person Level: The Individual 

Age (person’s age in years) age 

Race (person’s race: 1 = White, 0 = otherwise) racewhite 

Gender (person’s gender: 1 = male, 0 = female) gendermale 

Employment Status (employed? 1 = yes, 0 = no) worker 

College Education (college degree? 1 = yes, 0 = no) college 

Social Environment  

Micro Level: The Household 

Number of Members hhsize 

Number of Vehicles hhveh 

Number of Workers hhworkers 

Annual Income (1,000s of dollars) hhincmedian 

Number of Daily Transit Trips (count of daily transit trips by all members of the household) hhtransittripcount 

Number of Daily Nonmotorized Trips (count of daily nonmotorized trips by all hh members) hhpbtrips 

Micro Level (Census Block Group): The Neighborhood 

Percentage of Households with No Cars 

 

pa0_cbg 

Meso Level (County): The County 

Average Walking Density [average (number of walking trips in CBG/CBG area in acres)] ave_wd_co 

Average Bicycling Density [average (number of bicycling trips in CBG/CBG area in acres)] ave_bd_co 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Average Percentage of Households with 2+ Cars (%) ave_pa2_cbsa 

Average Percentage of Low-Wage Workers (workers earning ≤ $1250/month) (%) ave_plw_cbsa 

Average Walking Density [average (number of walking trips in CBG/CBG area in acres)] ave_wd_cbsa 

Average Bicycling Density [average (number of bicycling trips in CBG/CBG area in acres)] ave_bd_cbsa 

Annual Public Transportation Passenger-Miles (millions) ave_ptm_cbsa 

Average State Gasoline Cost (dollars/gallons) ave_gp_cbsa 

Average Median Age (years) ave_ma_cbsa 

Average Percentage of Foreign-Born Population (%) ave_fb_cbsa 

Average Crime Rate (annual crimes/100,000 population) ave_cr_cbsa 

Built Environment 

Micro Level (Census Block Group): The Neighborhood 

Activity Density [(employment + housing units)/acres)] ad_cbg 

Entropy (dimensionless) en_cbg 

Intersection Density (auto-oriented intersections/mi2) id_cbg 

Pedestrian-friendly Network Density (facility miles of pedestrian-oriented links/mi2) pf_cbg 

Local Transit Service (aggregate frequency of transit service/mi2) tf_cbg 

Local Transit Accessibility (distance from centroid to the nearest transit stop in meters) dt_cbg 
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Meso Level: The County 

Mean Activity Density [average (employment + housing units)/acres)] ave_ad_co 

Mean Entropy (dimensionless) ave_en_co 

Mean Intersection Density [ave. (auto-oriented intersections/mi2)] ave_id_co 

Mean Pedestrian-friendly Network Density [ave. (facility miles of pedestrian-oriented links/mi2)] ave_pf_co 

Mean Transit Service [ave. (aggregate frequency of transit service per mi2)] ave_tf_co 

Mean Local Transit Accessibility [ave. (distance to the nearest transit stop in meters)] ave_dt_co 

Mean Temporal Automobile Accessibility (ave. number of jobs within a 45-minute auto commute) ave_aa_co 

Mean Temporal Transit Accessibility (ave. number of jobs within a 45-minute transit commute) ave_ta_co 

Mean Walk Score (dimensionless) ws_co 

Macro Level (Core Based Statistical Area): The Metropolitan Area 

Mean Activity Density [average (employment + housing units)/acres)] ave_ad_cbsa 

Mean Entropy (dimensionless) ave_en_cbsa 

Mean Total Road Network Density [ave. (total road network miles/mi2)] ave_rd_cbsa 

Percentage of 0.01 Blocks (% blocks with an area smaller than 0.01mi2) pb01_cbsa 

Mean Temporal Automobile Accessibility (ave. number of jobs within a 45-minute auto commute) ave_aa_cbsa 

Mean Temporal Transit Accessibility (ave. number of jobs within a 45-minute transit commute) ave_ta_cbsa 

Mean Walk Score (dimensionless) ws_cbsa 

Mean Roadway Congestion Index (dimensionless) ave_rci_cbsa 

Random Intercepts 

Household-level Random Intercept HHID1 

Neighborhood-level Random Intercept CBGID1 

 

NOTES: 

ave. = Average; 

hh/HH = Household. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

542 

 

Appendix I 

Health Impacts of Active Travel and the Built Environment: A County-level Analysis 

I.1 County-level Health Outcome Models 

Most sources that provide health data rely on the Behavioral Risk Factor Surveillance System 

(BRFSS) data—the world’s largest health dataset available to the public61. However, due to the 

confidential nature of health data, the BRFSS data are only available at the county level. This 

means that the smallest geographical scale for which nonproprietary health data can be obtained is 

the county. Consequently, many analyses of the health impacts of the built environment are 

conducted at aggregate levels of geography as only aggregate-level health data are publicly 

available (Langerudi et al. 2015). For a similar reason, county has been selected as the unit of 

analysis for the health models in the present study. Past research suggested that county may be an 

appropriate scale for health research in auto-oriented societies such as the U.S. (Ewing et al. 2014). 

The county-level health models have been developed using county-level data from various 

states in the U.S. including Florida, Maryland, Virginia, Washington, D.C., and West Virginia62. 

For the most part, the study area for the county-level health models is the same as the study areas 

from which data were utilized in the analysis of nonmotorized travel behavior (Chapter 4).  

Past findings emphasize consideration of multiple levels of the environment within an 

ecological framework when investigating the role of environmental factors in health (Joshu et al. 

2008). Thus, the models developed in this section examine the link between county-level health 

indicators and the built and social environment attributes at two levels of geography: the county 

level (i.e., meso level), and the CBSA within which the county locates (i.e., macro level). 

 
61 Centers for Disease Control and Prevention “Behavioral Risk Factor Surveillance System”: 

https://www.cdc.gov/brfss/index.html 
62 A full list of the counties included in the county-level models is provided at the end of this Appendix (Table I-4). 
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I.1.1 County-level Health Outcome Models: Data 

The database for the county-level health outcome models consists of the following datasets:  

- Smart Location Database (SLD); 

- Community Health Status Indicators (CHSI); 

- County Health Rankings & Roadmaps (CHR&R);  

- American Community Survey (ACS); 

- Walk Score data;  

- Woods & Poole Complete Economic and Demographic Data Source (CEDDS); and 

- Census Bureau’s TIGER/Line Shapefiles. 

The SLD database provided information on land use and built environment characteristics 

(i.e., the Ds of the built environment) of counties. These data include population and employment 

densities, extent of mix land use development, network design factors, and transit accessibility.  

The CHSI and the CHR & R datasets provided information on population health behavior 

and other health factors that influence population health status and health outcomes. Health 

outcomes provided in these datasets are based on measures of mortality (e.g., premature death) 

and morbidity (e.g., self-reported fair or poor health, number of poor physical or mental health 

days). Health factors are represented in these datasets by health behavior measures, clinical care 

measures, socioeconomic measures, and the physical environment measures. Basically, health 

outcomes measured by CHSI and the CHR & R datasets represent how healthy the population of 

a county is, while health factors are factors that can influence the public health within a county. 

County-level travel behavior and telecommuting measures were obtained from the 

American Community Survey (ACS). These measures include the county-level mode shares for: 

nonmotorized, private vehicle, and transit travel modes as well as telecommuting. ACS also 
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provided information about other social environment factors of counties (i.e., 

socioeconomic/demographic attributes such as average median age, median household income and 

percentage of minorities within the county). The Woods and Poole’s CEDDS provided information 

about county-level total employment and employment by each industry. Also, county-level 

shapefiles were obtained from the U.S. Census Bureau’s TIGER/Line database. GIS tools were 

used to spatially link travel behavior, telecommuting behavior, and socioeconomic/demographic 

data to built environment and health data and obtain the final integrated database for statistical 

modeling of health outcomes. Chapter 3 provides more information on all of the datasets used. 

I.1.2 County-level Health Outcome Models: Dependent Variables 

The dependent (i.e., endogenous) variables for the county-level health models have been selected 

based on county-level health outcomes provided in the CHSI and the CHR & R datasets63. The 

health outcomes provided in these datasets are based on measures of mortality and morbidity. Six 

separate models have been developed for the following six county-level health outcomes: 

1)   prevalence of adult obesity64; 

2)   prevalence of adult diabetes; 

3)   prevalence of fair or poor health; 

4)   poor physical health days; 

5)   poor mental health days; and  

6)   premature death. 

 
63 The 2012 data have been used in this study. It should be noted that CHSI and CHR & R data provide information 

on health profiles and health rankings for each county, which are often produced based on multiyear estimates. 

Therefore, the 2012 data provide information based on several previous years.  

 
64 Many past studies have treated obesity as a health outcome alongside other health outcomes (e.g., Mokdad et al. 

2003; Samimi and Mohammadian 2009). Therefore, obesity is considered a health outcome in the present study, albeit 

listed as a health factor in CHR & R. Nonetheless, obesity is a risk factor for many chronic diseases (e.g., Mokdad et 

al. 2001; Kelly-Schwartz et al. 2004; Maddock 2004; Smith et al. 2008; Ewing et al. 2014; and Meehan 2015). 
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Maps presented in Figures I-1 to I-6 show the prevalence of each of the above indicators 

for counties within the study area based on the data available from the 2012 CHR & R datasets.  

 

 
 

Figure I-1. Prevalence of Obesity for Counties within the Study Area 

(Average of Years 2006 – 2009 Based on 2012 CHR & R Data) 
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Figure I-2. Prevalence of Diabetes for Counties within the Study Area 

(CHR & R Data Available for Year 2009) 
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Figure I-3. Prevalence of Poor or Fair Health for Residents of Counties in the Study Area  

(Average of Years 2002 – 2010 Based on 2012 CHR & R Data) 
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Figure I-4. Average Number of Poor Physical Health Days for County Residents  

(Average of Years 2002 – 2010 Based on 2012 CHR & R Data) 
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Figure I-5. Average Number of Poor Mental Health Days for County Residents  

(Average of Years 2002 – 2010 Based on 2012 CHR & R Data) 
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Figure I-6. Years of Potential Life Lost (Premature Death) for County Residents 

(Average of Years 2004 – 2008 Based on 2012 CHR & R Data) 
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As seen from the above figures, obesity is prevalent within most West Virginia counties. 

This is consistent with findings of a previous study, which reported that West Virginia had the 

highest obesity prevalence in the U.S. (Maddock 2004). West Virginia counties also show some 

of the highest rates of diabetes, fair or poor health as well as the highest average number of poor 

physical or mental health days compared to other counties within the study area. Premature death 

shows the highest prevalence within some West Virginia and Florida counties. 

I.1.3 County-level Health Outcome Models: Independent Variables 

To avoid misleading results, a key element of modeling health impacts is to include the recognized 

causes of unhealthiness (Samimi et al. 2009). Therefore, the independent (i.e., exogenous 

variables) for the statistical models in the present study have been considered based on previous 

research as well as the proposed conceptual framework presented in Figure 1. The values for the 

health-related independent (i.e., exogenous) variables come from the health factors’ data provided 

in CHSI and the CHR & R datasets. The independent variables are categorized as follows: 

I.1.3.1 Built Environment Variables 

Built environment variables have been included in the health models to account for the most 

important built environment factors that, based on the literature, can influence the health status of 

individuals. These factors include those with a potential to directly affect people’s health through 

access to services and qualities that can impact health (e.g., level of access to healthy/unhealthy 

food outlets, level of access to parks and other recreational facilities, ambient air quality) and those 

that can affect people’s health indirectly through promoting health behavior such as active travel 

(e.g., compactness of neighborhood and urban designs, pedestrian friendliness of streets).  



 

552 

 

These factors basically highlight the three domains identified by Kent and Thompson 

(2012) through which the built environment can influence human health. These three domains are: 

physical activity, social interaction, and access to healthy food. 

Within the context of the built environment, Joshu et al. (2008) defined micro-level 

environmental factors as neighborhood and/or street-level characteristics, and macro-level 

environmental factors as large-area characteristics such as the level of urbanization and land-use 

patterns. However, due to confidentiality issues, the health data utilized for the present study did 

not provide information on the neighborhood of residence. This means that data on micro-level 

built environment were unavailable and county was the smallest spatial scale at which this analysis 

could be conducted. Therefore, built environment attributes have been included in the county-level 

health outcome models at two levels of geography: the meso level (i.e., the county level) and the 

macro level (i.e., the CBSA level). 

Meso-level (County-level) Built Environment Variables 

Census block group-level built environment and land use measures provided by SLD were 

aggregated to obtain the average county-level built environment measures. Other built 

environment variables at the county level are related to health factors and come from the CHSI 

and the CHR&R datasets. These variables include data on the level of access to clinical healthcare, 

unhealthy food, and recreational facilities for the population residing within a county as well as 

the air quality within the county. Walk Score data have also been used. The meso-level (i.e., 

county-level) built environment variables included in the county-level health models are:  

- average activity density; 

- average entropy (i.e., mixed land use); 

- average network density in terms of pedestrian-friendly links; 
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- Walk Score; 

- prevalence of fast food restaurants; 

- prevalence of liquor stores; 

- access to recreational facilities; 

- access to primary care physicians; and  

- ambient air pollution. 

Together, these variables represent important built environment factors at the county level 

that, based on the literature, may play a role in the health of the population. For instance, the fast 

food restaurant variable has been included in the models because literature suggests that in 

examining weight-related health outcomes, measures of the food environment should be 

incorporated in the analysis (see e.g., Smith et al. 2008), and that the prevalence and unequal 

distribution of fast food restaurants throughout the U.S. can impact obesity rates (Maddock 2004; 

Plantinga and Bernell 2007). Also, Ewing et al. (2008) suggested that future research should relate 

the density of fast food restaurants to obesity rates. 

Macro-level (CBSA-level) Built Environment Variables 

To capture the effects of various levels of geography on health outcomes, this study includes 

measures representing the macro-level built and social environments in the analysis. The macro-

level variables have been defined based on the Core Based Statistical Area (CBSA) of residence. 

For county-level health models, CBSAs include both metropolitan areas and micropolitan areas65. 

Counties for which CBSA information was not available were excluded from the analysis.  

 
65 According to the United States Census Bureau web site, “the general concept of a metropolitan or micropolitan 

statistical area is that of a core area containing a substantial population nucleus, together with adjacent communities 

having a high degree of economic and social integration with that core.”;  and “Each metropolitan statistical area must 

have at least one urbanized area of 50,000 or more inhabitants. Each micropolitan statistical area must have at least 

one urban cluster of at least 10,000 but less than 50,000 population.” (see “Delineating Metropolitan and Micropolitan 

Statistical Areas”: https://www.census.gov/programs-surveys/metro-micro/about.html). 
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Census block group-level built environment measures were aggregated to obtain the average 

CBSA-level built environment measures for each county. The macro-level built environment 

variables are:  

- average activity density; 

- average entropy; 

- average total road network density; and 

- average transit accessibility (i.e., average distance to local transit). 

These variables capture a good picture of the overall physical environment (i.e., built 

environment and land use characteristics) of the CBSAs in the study area including the extent of 

compactness, mixed land use, road network, and access to transit within those urbanized areas. 

I.1.3.2 Social Environment Variables  

Social environment factors have been included in the county-level health models at two spatial 

levels: the county (i.e., the meso level) and the CBSA (i.e., the macro level).  

Meso-level (County-level) Social Environment Variables  

County-level socioeconomic/sociodemographic attributes have been included in the county-level 

health models to represent the meso-level social environment. These variables are:  

- median age; 

- median household income; 

- percentage of population of the White race; 

- percentage of industry employment that can be performed by telecommuting. 

These variables provide information on key socioeconomic and sociodemographic 

characteristics of a county that, based on the literature, can play a role in health outcomes of the 

residents. 
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Macro-level (CBSA-level) Social Environment Variables  

CBSA-level socioeconomic and sociodemographic characteristics have been included in the 

county-level health models to represent the macro-level social environment. The CBSA-level 

social environment variables are:  

- average percentage of low-wage workers; and 

- average percentage of the minority population. 

These variables control for the effects of macro-level sociodemographic and 

socioeconomic factors on county population health outcomes. 

 I.1.3.3 Travel Behavior and Telecommuting Behavior Variables  

Consistent with many past studies, measures of travel behavior have been included in health 

models developed in the present study to examine county-level health outcomes. The travel 

behavior measures were obtained from ACS and provide consistent information about the extent 

of travel by each travel mode within each county in the study area.  

The county-level travel behavior measures include: 

- nonmotorized travel mode share;  

- private vehicle mode share; and 

- transit mode share. 

Additionally, this study includes a variable in the health models to capture the effects of 

telecommuting on population health. Telecommuting behavior has been represented by the 

percentage of the county workers who, according to the ACS, reported working at home (i.e., 

telecommuting) as their means of transportation to work. In a sense, this variable reflects the 

telecommute mode share within the county. The travel behavior and telecommuting behavior 

variables potentially represent another aspect of the social environment of the county.  
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This is because, cumulatively, these measures characterize each county in terms of its 

“travel culture”, and thereby can be considered measures of the sociocultural characteristics of the 

county—or in other words, measures of the county’s social environment. Several other county-

level social environment variables including unemployment and poverty levels, percentage of the 

uninsured population, crime rates, as well as various additional built environment at both county 

and CBSA levels were considered for inclusion in the statistical models. The final variables were 

selected in such way to obtain parsimonious models with a reduced risk of multicollinearity.  

The final database included in the county-level health models is presented in Table I-1. 

Table I-2 provides descriptive statistics for the exogenous and endogenous variables included in 

the county-level health models by state.  

Table I-1. County-level Health Model Variable Descriptions and Data Sources 

Independent  

Variable 

Represented 

Effect 

Variable 

Description/Units 

Data  

Source 

Data Field 

(Computation) 

Social Environment 

Meso Level (County): The County 

Median  

Age 
Sociodemographics 

Median age  

within county (years) 

2006-2010 ACS 

5-year estimates 
HC01_EST_VC35 

Median Annual  

Household Income 
Socioeconomics 

Median household annual 

income within county (dollars) 

2008-2010 ACS 

3-year estimates 
HC01_EST_VC13 

Percent  

White 
Sociodemographics 

Percentage of population of the 

county that is of the White race 

2006-2010 ACS 

5-year estimates 
HD01_VD02 

Percent of  

Telecommutable66 

Jobs 

Extent of 

Telecommutability66 

of Employment/ 

Socioeconomics 

Percentage of jobs in the 

county that fall into the 

“Information”, “FIRE” 

(Finance, Insurance, Real 

Estate), “Services” and 

“Government” sectors 

Woods and 

Poole67 

(sum of jobs in  

“Information” 

“FIRE”, 

“Services” and 

“Government” 

sectors)/(total jobs) 

Macro Level (Core Based Statistical Area): The Metropolitan/Micropolitan Area 

Average Percentage of 

Low-Wage Workers 
Socioeconomics  

Average percentage of workers 

earning $1250/month or less 
SLD 

R_PctLowWage 

(Averaged)a 

Average Percentage of  

Minority Population 
Sociodemographics 

Percentage of population of the 

CBSA that is of non-White 

(minority) races 

2006-2010 ACS 

5-year estimates 

HD01_VD03 to  

HD01_VD08 

 

 
66 Although not found in official English language dictionaries, the words telecommutable and telecommutability have 

previously been used in scholarly papers (see e.g., Buckinger 1994; Handy and Mokhtarian 1996; Mariani 2000). 

 
67 Source:  Woods & Poole Economics, Inc. Washington, D.C.  Copyright 2018.   

Woods & Poole does not guarantee the accuracy of this data.  The use of this data and the conclusion drawn from it 

are solely the responsibility of the author of this dissertation. 
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Travel Behavior 

Meso Level (County): The County  

 

Nonmotorized Travel  

Mode Share  

 

Travel 

Behavior/ 

Sociocultural 

 

Walking and bicycling 

mode share within county 
2010 ACS  

5-year estimates 

HC01_EST_VC11 

& 

HC01_EST_VC12 

 

Private Vehicle Travel  

Mode Share 

 

Travel 

Behavior/ 

Sociocultural 

 

Private vehicle  

(car, truck, or van)  

mode share within county 

2010 ACS  

5-year estimates 
HC01_EST_VC03 

 

Public Transit Travel  

Mode Share 

 

Travel 

Behavior/ 

Sociocultural 

 

Public transit  

(excluding taxicab)  

mode share within county 

 

2010 ACS  

5-year estimates 
HC01_EST_VC03 

 

Telecommuting  

Mode Share 

 

Travel 

Behavior/ 

Sociocultural 

 

Telecommuting  

(working at home)  

mode share within county 

2010 ACS  

5-year estimates 
HC01_EST_VC14 

Built Environment 

Meso Level (County): The County   

Mean  

Activity Density 
Density 

(Employment + Housing units) 

on unprotected land in county 
SLD 

D1d 

(Averaged)a 

Mean  

Entropy 

Land use  

Diversity 

5-tier employment entropy  

for county 
SLD 

D2b_E5Mix  

(Averaged)a 

Mean Ped-friendly  

Network Density 

Urban  

Design 

Average facility miles of 

pedestrian- oriented links/mi2  

 

SLD 
D3apo 

(Averaged)a 

Walk Score 
Destination 

Accessibility 

Walk Score 

of the centroid of the county 

(dimensionless) 

Walk Score® Data provided 

Primary Care Physician  
Access to  

Health Care 

Primary care provider rate per 

100,000 population 
CHR&R 

PCP  

Rate 

Percentage of  

Fast Food Restaurants 
Access to  

Unhealthy Food 

Percent of all restaurants  

that are fast food 

establishments b 

CHR&R 
Fast Food 

Restaurants 

Liquor Store  

Density 

Access to  

Unhealthy Food 

Number of liquor stores per  

10,000 population 
CHR&R 

Liquor Store 

Density 

Recreational Facilities 

Density 

Access to 

Recreational 

Facilities 

Number of recreational 

facilitiesc per 100,000 

population 

CHR&R 

 

Access to 

Recreational 

Facilities 

Ambient  

Air Pollution 

Air  

Pollution 

Number of unhealthy  

air quality days 
CHR&R Air Pollution Days 

Macro Level (Core Based Statistical Area): The Metropolitan/Micropolitan Area  

Mean  

Activity Density 
Density 

(Employment + Housing units) 

on unprotected land in CBSA 
SLD 

D1d 

(Averaged)a 

Mean  

Entropy 
Land use Diversity 

5-tier employment entropy  

for CBSA 
SLD 

D2b_E5Mix  

(Averaged)a 

Mean Total Road  

Network Density 
Urban Design 

Average (total road network 

miles/mi2) in CBSA 
SLD 

D3a  

(Averaged)a 

Mean Distance to Transit 

(Transit Accessibility) 

Mean  

Distance to Transit 

Average distance to nearest 

transit stop (meters) for CBSA 
SLD 

D4a 

(Averaged)a 

NOTES: 
a  Measure was computed by averaging values of the referenced field provided in data source over the relevant  

geographical area (i.e, county or CBSA); 
b  Data on fast food restaurants considered in CHR&R come from the County Business Patterns (CBP) economic data; 
c  CHR&R defines recreational facilities as “establishments primarily engaged in operating fitness and recreational 

sports facilities, featuring exercise and other active physical fitness conditioning or recreational sports activities such 

as swimming, skating, or racquet sports.” 
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   Table I-2. Descriptive Statistics for County-level Health Outcome Models’ Variables (by State) 
 

 

Variable (Units) 

District  

of 

Columbiaa 

Maryland Virginia 
West 

Virginia 
Florida 

 Mean Mean SD Mean SD Mean SD Mean SD 

Dependent (i.e., endogenous) Variables: County Level 

Prevalence of Adult Obesity  

(% of adults that report a BMI ≥ 30) 

 

21.50 29.55 4.27 29.35 3.32 33.51 2.44 29.21 4.73 

Prevalence of Adult Diabetes  

(% of adults aged 20 and above with diabetes) 
8.20 10.07 1.69 10.41 1.69 12.73 1.43 11.19 1.64 

Prevalence of Fair or Poor Health  

(% of adults reporting fair or poor health) 
12.70 13.12 2.74 13.68 4.81 20.61 5.09 17.54 3.69 

Number of Poor Physical Health Days  

(average number in past 30 days) 
2.90 3.27 0.46 3.31 0.98 4.66 1.10 3.93 0.79 

Number of Poor Mental Health Days  

(average number in past 30 days) 
2.94 3.41 0.63 3.30 0.89 4.40 0.93 3.62 0.69 

Premature Death  

(years of potential life lost before age 75 per 100,000 population) 
11660.7 7455.1 2211.9 7810.5 2170.9 9103.2 1512.3 8888.5 1566.6 

Independent (i.e., exogenous) Variables: County Level 

Social Environment 

Meso Level: The County 

Median Age (years) 33.8 39.77 3.73 39.16 5.62 41.64 3.00 41.46 5.91 

Median Annual Household Income (dollars) 59822 67863 19164 56509 19414 38653 7122 43565 7217 

Percent White (%) 38.50 70.91 19.29 73.49 16.61 95.11 3.56 76.64 8.23 

Percent of Telecommutable Jobs (%) 84.65 55.98 7.11 55.40 9.50 48.08 6.27 54.33 8.08 

Macro Level (Core Based Statistical Area): The Metropolitan/Micropolitan Area 

Average Percentage of Low-Wage Workers  

(workers earning ≤ $1250/month) (%) 
18.59 22.82 3.18 25.25 3.54 26.79 2.71 27.78 1.89 

Average Percentage of Minority Population (%) 30.05 26.37 8.24 27.15 12.03 5.44 5.27 23.36 8.23 
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Travel Behavior 

Meso Level: The County 

Nonmotorized Travel Mode Share (%) 14.10 3.01 2.43 2.79 3.18 2.70 1.31 2.25 1.68 

Private Vehicle Travel Mode Share (%) 42.40 87.68 6.54 89.82 6.44 92.56 2.36 90.67 3.80 

Public Transit Travel Mode Share (%) 37.60 4.11 5.44 2.22 4.37 0.67 0.84 1.33 2.50 

Telecommuting Mode Share (%) 4.70 4.20 1.72 4.11 1.58 2.94 0.82 3.93 1.43 

Built Environment 

Meso Level: The County 

Mean Activity Density  

[average (employment + housing units)/acres)] 
34.09 3.57 4.00 3.11 4.98 2.42 4.43 2.58 2.64 

Mean Entropy (dimensionless) 0.38 0.53 0.15 0.54 0.10 0.46 0.11 0.54 0.08 

Mean Pedestrian-friendly Network Density  

[average (facility miles of ped.-oriented links/mi2)] 
18.91 6.91 4.39 6.99 5.14 5.76 3.25 8.57 4.23 

Walk Score (dimensionless) 74.64 17.25 18.69 21.20 25.41 4.05 7.83 8.21 16.28 

Primary Care Physician Rate  

(primary care provider rate per 100,000 population) 
223.99 100.07 54.09 101.97 85.46 81.77 64.77 66.69 37.15 

Percentage of Fast Food Restaurants  

(percent of all restaurants that are fast food establishments) 
51.91 53.06 9.46 46.60 12.29 49.17 14.90 45.64 9.66 

Liquor Store Density  

(number of liquor stores per 10,000 population) 
3.04 2.04 0.83 .69 0.73 0.24 0.37 0.84 0.62 

Recreational Facilities Density  

(number of recreational facilities per 100,000 population) 
10.84 12.55 4.72 10.53 7.47 6.93 5.90 7.65 5.23 

Ambient Air Pollution  

(number of unhealthy air quality days due to Ozone & Fine PM) 
13.00 7.19 4.46 1.81 2.75 2.67 2.88 2.42 1.97 

Macro Level (Core Based Statistical Area): The Metropolitan/Micropolitan Area 

Mean Activity Density  

[average (employment + housing units)/acres)] 
12.15 6.87 4.21 4.70 3.61 3.87 3.71 3.82 2.16 

Mean Entropy (dimensionless) 0.47 0.52 0.06 0.52 0.04 0.50 0.06 0.56 0.06 

Mean Total Road Network Density  

[average (total road network miles/mi2)] 
16.05 13.56 5.39 11.64 3.72 9.73 2.43 15.34 9.68 

Mean Local Transit Accessibility  

[average (distance to the nearest transit stop in meters)] 
372.71 415.99 128.60 452.61 52.65 854.82 111.67 677.12 63.86 

Number of Counties: 201; Number of CBSAs: 65 

    NOTE:
  a 

District of Columbia is considered one county and one CBSA; therefore, no standard deviation is included in the table for District of Columbia data.
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I.1.4 County-level Health Outcome Models: Methodology and Results 

County-level health models have been developed based on variables included in Table I-2. As 

previously mentioned, many other built and social environment variables were considered for 

inclusion in the county-level health models and several different model specifications were 

considered. However, inclusion of these additional variables did not contribute to an improvement 

in the models. At the end, the most parsimonious model specifications representing logical cause-

effect relationships were selected with consideration of reducing the risk of multicollinearity. 

Since the nature of the data is cross-sectional and reverse causality may exist between 

health outcomes and nonmotorized travel behavior and/or the built environment, the analysis is 

susceptible to endogeneity bias. Addressing this issue requires the use of an advanced 

methodology to analyze the link between health outcomes, travel behavior factors, and built 

environment attributes, while controlling for any potential endogeneity bias.  

Therefore, the health impacts of county-level measures characterizing the travel and 

telecommuting behavior of a county’s residents as well as the meso-level (i.e., county level) and 

macro-level (i.e., CBSA level) social and built environment factors have been estimated by using 

multilevel Structural Equation Modeling (i.e., multilevel SEM) techniques.  

The employment of multilevel SEM allows examination of the complex relationships and 

causal links among health outcomes, active travel, and built as well as social environment factors, 

while accounting for endogeneity bias.  

In addition, the capabilities of the multilevel SEM make it a suitable model to deal with 

any potential multicollinearity problems in the models and can also help in statistical treatments 

of any spatial autocorrelation issues, which may exist due to interdependencies among clustered 

data (i.e., counties clustered in CBSAs).  
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I.1.4.1 Specification of Models: County-level Health Outcome Models 

The first step in estimating a SEM is to postulate causal relationships, which are typically 

expressed as a path diagram (Kelloway 1998; Cervero and Murakami 2010). Figure I-7 shows the 

multilevel SEM model structure (i.e., path diagram) describing the causal links among endogenous 

variables as well as between exogenous and endogenous variables for the county-level health 

models as hypothesized in this study. Table I-5 at the end of this Appendix lists variable labels as 

depicted in Figure I-7. 

 

        Figure I-7. Multilevel SEM Structure — County-level Health Models 
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Per SEM conventions, latent (i.e., unobserved) variables are represented in ovals or 

ellipses, whereas observed variables are represented in squares or rectangles (Kelloway 1998; 

Kline 2011). Therefore, the path diagram used in the multilevel SEM is shown with rectangles 

representing observed variables, and ovals representing latent variables. Endogenous and 

exogenous variables are connected by arrows indicating the direction of influence coming from 

the exogenous variables and heading toward the endogenous variables. The path diagram includes 

bidirectional arrows to incorporate the reciprocal causation, which may potentially exist between 

nonmotorized travel and health outcomes. Although requiring the assumption of equilibrium68—

which is difficult to directly evaluate when data are cross-sectional—the estimation of reciprocal 

causation between variables measured concurrently in cross-sectional designs is the only viable 

alternative to longitudinal designs (Kline 2011). 

Since in this sample counties reside within CBSAs, CBSAs are considered as clusters in 

the models and their random effects can be estimated by the multilevel SEMs. The double-ringed 

oval variable in Figure I-7 indicates the random intercept latent variable at the CBSA level. This 

variable stays constant within the same CBSA but varies across different CBSAs; thus, this 

variable represents the random effects at the CBSA level in the model. 

As mentioned previously, six models have been developed for six county-level health 

outcome endogenous variables including prevalence of adult obesity, prevalence of adult diabetes, 

prevalence of fair or poor health, number of poor physical health days, number of poor mental 

health days, and premature death.  

 
68 The assumption of equilibrium implies that any changes in the system with a presumed reciprocal relation have 

already exerted their effects and the system is in an equilibrium state (Kline 2011). 
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The path diagram shown in Figure I-7 can be represented by the following two simplified 

regression equations for the county-level health outcomes and the nonmotorized travel mode share 

(Equations I-1 and I-2): 

County − level health outcome𝑖 (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) = 𝛽𝑖 + 𝛽1
′SECounty +

𝛽2
′SECBSA + 𝛽3

′TBCounty+ 𝛽4
′BECounty + 𝛽5

′BECBSA + 𝑢0CBSA + 휀2              Equation I-1 

County − level nonmotorized travel mode share(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) = 𝛼𝑖 +

𝛽7
′HO𝑖 (County) + 𝛽8

′SSECounty + 𝛽9
′SBECounty + 휀1                                         Equation I-2 

where, 

𝛼𝑖, 𝛽𝑖 = model intercepts; 

𝛽1 
′ − 𝛽9 

′  = column vectors of model path coefficients; 

SECounty = a column vector of meso-level (county) social environment attributes; 

SECBSA = a column vector of macro-level (CBSA) social environment attributes; 

TBCounty = a column vector of meso-level (county) travel behavior attributes; 

BECounty = a column vector of meso-level (county) built environment attributes; 

BECBSA = a column vector of macro-level (CBSA) built environment attributes; 

𝑢0CBSA = the CBSA-level random intercept (random effects); 

HOi (County) = the county-level health outcome i; 

SSECounty = a subset column vector of meso-level (county) social environment attributes; 

SBECounty = a subset column vector of meso-level (county) built environment attributes; 

휀1, 휀2 = model error terms. 

To simplify interpretation of the results a few of the continuous variables with skewed 

distributions were normalized by transformation into their naturally logged form before inclusion 

in the models. Nonetheless, the distribution of two of the observed variables—namely, the 



 

564 

 

Nonmotorized Travel Mode Share variable and the Public Transit Travel Mode Share variable—

remained non-normal in the analysis as these variables were not normalized by log-transformation. 

This was because the mode share variables are in the form of a percentage and log-transformation 

will make interpretation of the results difficult. However, it is assumed that by using the maximum 

likelihood estimation (MLE) method—commonly used in practice (Cao et al. 2007)—in 

estimation of the multilevel SEMs, the non-normality of the two above-mentioned variables did 

not pose a problem to the model results. This is due to the usage of the Generalized Structural 

Equation Modeling (GSEM) mode of the Stata software for model estimation.  

In standard linear SEMs, the validity of MLE depends on the SEM meeting the assumption 

of multivariate (i.e., joint) normality of all model variables, observed and latent. However, the 

MLE method used in GSEM is applied to a different likelihood function, which assumes only 

conditional normality (i.e., for latent variables only), and does not require the full joint-normality 

assumption for the observed variables as in the standard linear SEMs (StataCorp 2013)69. Applying 

the MLE method has the bonus of dealing with endogeneity bias in the county-level models since 

in estimating bidirectional relationships, potential endogeneity bias can be statistically corrected 

by using MLE (Cervero and Murakami 2010).  

The Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) 

were used for model evaluation and to select the best model for each of the six health outcomes. 

AIC and BIC are usually used for model comparison and selection. The AIC and/or BIC for several 

 
69 See Stata Structural Equation Modeling Reference Manual Release 13, Pages 43-45 “Differences in assumptions 

between sem and gsem”: https://www.stata.com/manuals13/sem.pdf 
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models can be calculated and compared, and the “best” model is the candidate model with the 

smallest value for these criteria (Kelloway 1998; Kline 2011; Fabozzi, et al. 2014)70. 

I.1.4.2 Discussion of Results: County-level Health Outcome Models 

Table I-3 summarizes the estimation results of the multilevel SEM models for the six county-level 

health indicators of interest. The table provides side-by-side comparison of the estimates for the 

models that—in a comprehensive framework—link physical and psychological health indicators 

of a community (i.e., county) to its active travel, motorized travel, and telecommuting behavior as 

well as built and social environment factors at different spatial levels. The direction of arrows in a 

SEM path diagram represents the effect priority as hypothesized (i.e., X → Y implies that X affects 

Y) (Kline 2011). Therefore, the results of the multilevel SEMs are discussed considering such links 

as causal relations. The results show that county-level health outcomes are linked with built and 

social environment characteristics at the meso level (i.e., county) and the macro level (i.e., CBSA). 

The results also show statistically significant paths between county-level travel behavior 

characteristics (including telecommuting behavior) and county-level health indicators. 

The Health Outcome Equation Findings 

Social Environment Variables Findings 

Social environment factors have been included in the county-level health models at two spatial 

levels: the county (i.e., the meso level) and the CBSA (i.e., the macro level). At both levels of 

geographical scale, sociodemographic and/or socioeconomic factors prove to play important roles 

in a community’s (i.e., county) health profile. 

 
70 The values of the minimum AIC and BIC for each health outcome model are not reported in the model results. This 

is because the process of model selection is not discussed in this dissertation, and as literature argues the AIC/BIC for 

just one model in isolation are meaningless (Fabozzi, et al. 2014). 
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Meso-level (County-level) Social Environment Variables Findings: The effects of 

sociodemographic and socioeconomic factors on a community’s health outcomes have been 

controlled for by including county-level: median age and median annual household income as well 

as the percent of the county population that is of the White race and the percent of total 

telecommutable jobs available within the county. The variable representing the median age of the 

county shows a positive link with all health outcomes (prevalence of obesity, prevalence of 

diabetes, prevalence of fair/poor health, number of poor physical health days, number of poor 

mental health days, and premature death). This means that older age is linked to adverse health 

outcomes, which is a reasonable finding and corroborates past findings (see e.g., Lindström 2008; 

Joshu et al. 2008; Langerudi et al. 2015). 

From the results, it appears that the racial composition of the county plays a role in county-

level health outcomes as higher percentages of White residents within the county are linked with 

lower rates of obesity, diabetes, and premature death. With respect to obesity, these results are 

consistent with those of Joshu et al. (2008) who found that BMI was positively associated with 

being of the “non-Hispanic black” or “other” race compared to being of the “non-Hispanic white” 

as well as findings by Ewing et al. (2008) and Ewing et al. (2014) that BMI was higher for Blacks 

and Hispanics compared to Whites. Also, the results of the county-level health models developed 

in the present study indicate that higher median household incomes are related to lower prevalence 

of obesity, lower prevalence of diabetes, lower prevalence of fair or poor health, and lower levels 

of premature death. These results corroborate past findings that higher income levels are associated 

with lower rates of obesity (see e.g., Samimi and Mohammadian 2009; Marshall et al. 2014) as 

well as better general health (see e.g., Samimi and Mohammadian 2009; Langerudi et al. 2015) 

and lower rates of premature death (see e.g., Braun and Malizia 2015).  
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Table I-3. Results: County-level Health Outcome Models (Multilevel SEMs) 
 

              Endogenous Response 

                         Variables 

Exogenous  

and Endogenous  

Predictor Variables 

Prevalence of 

Adult Obesity 

Prevalence of 

Adult Diabetes 

Prevalence of 

Fair or Poor 

Health 

Number of 

Poor Physical 

Health Days 

Number of 

Poor Mental 

Health Days 

Premature 

Deatha, c 

Path 

Coefficient 

p- 

value 

Path 

Coefficient 

p- 

value 

Path 

Coefficient 

p- 

value 

Path 

Coefficient 

p- 

value 

Path 

Coefficient 

p- 

value 

Path 

Coefficient 

p- 

value 

The Health Outcome Equation 

Social Environment 

Meso Level: The County 

Median Age 1.021887* 0.075 1.218937* 0.076 2.934992* 0.100 .2019078** 0.016 .2544379*** 0.007 .0060282** 0.023 

Median Annual Household Incomea  -6.000631** 0.047 -2.207459* 0.068 -13.40427* 0.056 NS NS NS NS -.626315*** 0.000 

Percent of White Population -.4513066** 0.020 -.2183968*** 0.000 NS NS NS NS NS NS -.002959** 0.013 

Percent of Telecommutable Jobs .3856962* 0.057 NS NS NS NS  .0578596* 0.063  .0698131* 0.100 NS NS 

Macro Level (Core Based Statistical Area): The Metropolitan/Micropolitan Area 

Ave. Percent of Low-Wage Workers  .9473392* 0.093 .431751* 0.078 NS NS NS NS NS NS  .012174** 0.017 

Ave. Percent of Minority Population  NS NS NS NS NS NS NS NS NS NS NS NS 

Travel Behavior 

Meso Level: The County 

Nonmotorized Travel Mode Shareb  -1.920880** 0.023 -1.587329*** 0.000 -4.37055* 0.087 -.388474*** 0.001 -.431648*** 0.002 -.0088538* 0.097 

Private Vehicle Travel Mode Share 1.536219** 0.022 NS NS 3.526575* 0.085 .2891368*** 0.001 .3214949*** 0.002 NS NS 

Public Transit Travel Mode Share -1.452743** 0.024 -1.224258* 0.095 3.454486* 0.084 .2760268*** 0.001 .3064172*** 0.002 NS NS 

Telecommuting Mode Share 1.480438** 0.025 NS NS  3.368343* 0.091  .258565*** 0.002 .2871268*** 0.003 NS NS 

Built Environment 

Meso Level: The County 

Mean Activity Densitya  NS NS NS NS 8.33899* 0.070 .7550993* 0.056 1.032327** 0.034 -.0265743* 0.056 

Mean Entropy  NS NS NS NS NS NS NS NS NS NS NS NS 

Mean Ped-friendly Network Densitya -4.655807* 0.076 NS NS -9.833479* 0.067 -.9612095** 0.037 -1.2561** 0.046 -.0354871* 0.083 

Primary Care Physician Rate  -.0435531* 0.079 -.0569483* 0.099 -.183371** 0.048 -.017753*** 0.005 -.0170922** 0.016 -.0003359* 0.096 

Percent of Fast Food Restaurants .1444621** 0.048 NS NS NS NS NS NS NS NS . 0014469** 0.042 

Liquor Store Density  — — 0.0212266** 0.027 — — — — — — .0066186*** 0.000 

Access to Recreational Facilities NS NS NS NS -.6751073** 0.047 -.0318808* 0.067 -.0146593** 0.049 NS NS 

Ambient Air Pollution — — — — NS NS NS NS NS NS .0074849* 0.081 

Macro Level (Core Based Statistical Area): The Metropolitan/Micropolitan Area 

Mean Activity Densitya NS NS NS NS NS NS NS NS NS NS -.071602*** 0.009 

Mean Entropy .05482797* 0.098 .06697445** 0.016 .200335* 0.097 .122036** 0.035 .128634** 0.047 NS NS 

Mean Total Road Network Densitya  NS NS NS NS NS NS NS NS NS NS .0124712*** 0.002 

Mean Distance to Local Transit .0120661* 0.080 .0149588* 0.085 .0403235* 0.064 .0041299** 0.041 .0038276* 0.080 NS NS 
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The Nonmotorized Mode Share Equation 

Health Outcome 

Meso Level: The County 
Prevalence of Adult Obesityb (%) -2.906638*** 0.000 — — — — — — — — — — 

Prevalence of Adult Diabetesb (%) — — -1.083103** 0.015 — — — — — — — — 

Prevalence of Fair or Poor Healthb (%) — — — — -1.741682*** 0.000 — — — — — — 

Number of Poor Physical Health Daysb — — — — — — -.744672*** 0.000 — — — — 

Number of Poor Mental Health Daysb — — — — — — — — -1.60396** 0.035 — — 

Premature Deathb — — — — — — — — — — — — c 

Social Environment 

Meso Level: The County 

Median Age -.685114*** 0.000 -1.200585** 0.048 -.1592093* 0.069 -.3398*** 0.000 NS NS -.180648*** 0.000 

Median Annual Household Incomea  -1.580434*** 0.000 -3.547685** 0.014 -1.899436*** 0.000 -1.30980*** 0.000 -1.987423** 0.035 -1.256101** 0.032 

Percent of White Population .094803** 0.017 .1818724* 0.066 .0643224** 0.039 .1269255*** 0.002 .2362414* 0.061 NS NS 

Built Environment 

Meso Level: The County 

Mean Activity Densitya  4.644115*** 0.000 5.723195** 0.046 NS NS NS NS NS NS .534013** 0.012 

Mean Entropy  .1247384** 0.024 .2615506** 0.047 .130786*** 0.005 .0932844** 0.037 .214506* 0.084 .2043407* 0.093 

Mean Ped-friendly Network Densitya 3.811178*** 0.003 7.437143** 0.045 NS NS 1.471607* 0.069 2.38445* 0.070 -.5882365* 0.052 

Walk Score .0965907* 0.059 NS NS NS NS NS NS NS NS .0281987*** 0.001 

Other Model Factors 

CBSA Variance Estimates  

(i.e., CBSA Random Effects) 

NS NS NS NS NS NS 

Log likelihood -713.8606 -524.00906 -703.36816 -405.36923 -410.3505 -330.1273 

Observations (Counties) 71 ; CBSAs 201; 65 201; 65 192; 65 192; 65 194; 65 201; 65 

 

NOTES: 
a Variable was log-transformed;  
b Endogenous variable;  
c This model does not include bidirectional links (no link was considered from the Premature Death variable to the Nonmotorized Travel Mode Share variable); 

NS = Not statistically significant;  

— = Not included in the model;  

*, **, *** = Path coefficient is significant at the 10%, 5% and 1% significance level, respectively.

 
71 SEM is a large sample technique; a sample of approximately 200 observations has been deemed as an appropriate sample size for models of moderate complexity 

(Kelloway 1998; Kline 2011). Therefore, the sample size for county-level models developed here are assumed to be adequate for model estimations. 
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This is an expected result since higher incomes mean higher levels of affordability for 

better quality goods and services including those that can affect health. For instance, high-income 

individuals can afford organic and healthy food, better healthcare services, as well as gym and 

sports facilities memberships—all of which may favorably influence their health status.  

Most notably, the results of the multilevel SEMs indicate that the level of 

“telecommutability” of employment opportunities within counties can affect residents’ health 

status. Higher percentages of telecommutable jobs within the county are linked with adverse health 

outcomes including higher levels of obesity as well as higher numbers of poor physical and mental 

health days. These findings imply that the extent of telecommutability of employment within a 

county can influence its residents’ physical and psychological health status. The direction of these 

effects, however, indicate that higher levels of telecommutability of jobs within a county may lead 

to unfavorable health outcomes for county residents. 

Macro-level (CBSA-level) Social Environment Variables Findings: The results of the 

models suggest that macro-level socioeconomic factors can also be influential in the health status 

of communities (i.e., counties) as evidenced by the effects of the CBSA-level Average Percent of 

Low-Wage Workers variable on levels of obesity, diabetes, and premature death. Higher rates of 

obesity, diabetes, and premature death are linked to higher average percentages of low-income 

workers within the CBSA. These results are consistent with the direction of effects of the meso-

level (i.e., county-level) income variable and suggest that higher income levels within the CBSA 

(i.e., metropolitan/micropolitan area) of residence are related to better community health 

outcomes. On the other hand, percentage of minority population within the CBSA does not seem 

to exert any effects on community health status as the path coefficient for this variable does not 

reach a statistical significance threshold in any of the health outcome models.  
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Travel Behavior and Telecommuting Behavior Variables Findings 

Meso-level (County-level) Travel Behavior Variables Findings: The multilevel SEM 

results indicate that travel behavior (i.e., extent of usage of each travel mode) of residents of a 

county influences the health outcomes within the county. Most importantly, the path coefficients 

of the nonmotorized travel mode share variable are negatively linked to all health outcomes 

including prevalence of obesity and prevalence of diabetes as well as the number of poor physical 

and mental health days. These findings are in line with those of Lindström (2008) who found that 

the odds ratios of being overweight and obese among individuals who walked or bicycled were 

significantly lower (compared to the driving base category in that study) as well as findings by 

Tajalli and Hajbabaie (2017) who found that compared to using private vehicles, walking was 

associated with a lower probability of obesity, diabetes, and mental disorders. In the case of 

obesity, the results are also consistent with other previous research (Frank et al. 2004; Gordon-

Larsen 2009; Schauder and Foley 2015).  

Also, in terms of mental health, the results indicate that the higher the extent of active travel 

within the county, the fewer the average number of mentally unhealthy days for the residents. This 

means that an improved mental health status for residents of the county is more likely to occur if 

residents engage in more walking and bicycling activities. These results are expected and 

consistent with past research (Leyden 2003). Thus, according to the results, higher levels of 

walking and bicycling within the county can lead to better physical and psychological health status 

for residents of a community (i.e., county). 

Equally important is the model estimations on the effects of telecommuting behavior. The 

results indicate that higher levels of the telecommuting mode share within the county are linked to 

higher prevalence of obesity, higher prevalence of poor/fair health, as well as higher numbers of 
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poor physical and mental health days. These results confirm the direction of effects of the variable 

capturing the extent of telecommutability of employment within the county.  

Research in the past has postulated that excessive participation in computer-related 

activities has a potential to reduce physical activity levels (King et al. 2002). Therefore, one 

possible explanation for these findings can be that more working from home can lead to less 

physical activity, which in turn, can lead to obesity and other adverse physical and mental health 

outcomes. In the case of obesity, it is also possible that easy access to food—as provided by 

working from the convenience of one’s home—can lead to an increase in the individual’s overall 

food consumption. If telecommuting is a frequent event, the additional food intake—while staying 

at home—may lead to obesity. However, Henke et al. (2015) found that individuals who did not 

telecommute were at greater risk for being obese, while Tajalli and Hajbabaie (2017) did not find 

a statistically significant association between telecommuting and obesity.  

These past findings are not consistent with the results obtained in the current study. It 

should be noted, however, that both Henke et al. (2015) and Tajalli and Hajbabaie (2017) 

conducted their study at the individual level, whereas the present study investigates the effects of 

telecommuting at the county level. Nevertheless, the inconsistency in results suggests a need for 

further investigation into the relationship between obesity and telecommuting.  

In addition, telecommuting has been found in previous studies to be negatively linked with 

psychological health. Past research suggests that telecommuting may lead to social isolation and 

mental exhaustion (see e.g., Baruch 2001; Tajalli and Hajbabaie 2017). The latter study found that 

compared with using private vehicles, telecommuting was associated with a higher probability of 

having mental disorders (Tajalli and Hajbabaie 2017). The results from the present study 

corroborate those findings as the model estimations indicate that a higher telecommuting mode 
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share within the county is related to a higher average number of poor mental health days for 

residents. On the other hand, Henke et al. (2015) found that that employees who telecommuted 

during regular work hours had a reduced risk for depression over time compared to workers who 

did not telecommute. Considering the inconsistencies in the findings, further research may be 

required to clarify the role of telecommuting in psychological health outcomes, particularly with 

regards to the direction of effects. Further, similar to what Tajalli and Hajbabaie (2017) reported, 

this study does not find a statistically significant link between telecommuting and diabetes. 

Nonetheless, these findings provide evidence that telecommuting affects health outcomes in terms 

of both physical and psychological health.  

Also, the results indicate that more traveling by means of private vehicle is linked with 

adverse health outcomes. Specifically, higher private vehicle mode shares are related to higher 

prevalence of obesity and poor/fair general health as well as higher numbers of poor physical and 

mental health days. In terms of general health, these results can be a manifestation of the effects 

of increased exposure to other people, higher disease diffusion rates and its negative impact on 

health status, as Widener and Hatzopoulou (2016) suggested. The referenced study argued that the 

level of exposure to other people increases via increased levels of mobility offered by private 

vehicles; the more interactions between people, the more opportunities for diseases to spread, 

which can negatively affect personal health (Widener and Hatzopoulou 2016). 

The results can also be indicative of the health impacts of being exposed to chronic stress 

related to operating an automobile as well as other factors associated with automobile use such as 

congestion levels, long commute duration, pollution, noise, and other stressors such as road rage. 

Commuting by automobile has been suggested to be associated with higher levels of stress and a 

negative mood (Galovski and Blanchard 2004; Wener and Evans 2011). Further, car commuting 
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stress has been suggested to be linked with adverse physical and psychological health outcomes 

such as lower levels of subjective well-being (van Wee and Ettema 2016), increased elevated 

cardiovascular outcomes (Evans and Wener 2006), increased cognitive impairment and lower 

overall life satisfaction (Rissel et al. 2014), and higher body mass index (BMI) (Frank et al. 2004; 

Lindström 2008). For car drivers, a longer commuting time was also found to be related to lower 

health satisfaction, lower levels of general health status, more visits to health providers, and a 

higher BMI (Künn-Nelen 2015). In addition, Leyden (2003) suggested that long commutes— 

resulted from suburbanization—are among the factors contributing to the decline in social capital, 

which is a measure for mental health. Social capital was defined in that study as social interactions 

that inspire trust and community connections among individuals. Past research also found that 

increased automobile use within a county was associated with higher levels of obesity as well as 

lower levels of good general health for residents (Samimi and Mohammadian 2009; Samimi et al. 

2009). The findings of the present study corroborate these past findings. 

According to the results of the multilevel SEMs, higher levels of public transit mode share 

within the county are related to lower levels of obesity and diabetes but higher levels of fair/poor 

health as well as higher numbers of poor physical and mental health days. These findings indicate 

that traveling by public transportation influences physical and psychological health outcomes. 

Literature argues that a positive association exists between public transit use and active travel, 

particularly walking, as using public transportation involves walking (and/or bicycling) to, from, 

and within the transit stations (Cervero 2001; Lindström 2008; Liao et al. 2016; Barr et al. 2016; 

Sener et al. 2016). Therefore, the negative link between public transportation mode share and 

prevalence of obesity and diabetes can be a result of the active travel involved in transit trips at 

each end, as also suggested by past research (Langerudi et al. 2015). Although, the direction of 
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effects in the multilevel SEM models developed in the present study is favorable in the case of 

obesity and diabetes, the effects of public transit use on other physical and psychological health 

outcomes is not desirable. 

In terms of physical health, Tajalli and Hajbabaie (2017) found that compared to use of 

automobiles, use of subway for commuting was associated with lower probability of obesity and 

diabetes, whereas using the city bus was linked with a higher probability of obesity. Other studies 

reported that using public transportation was associated with better weight-based health outcomes 

such as a lower odds ratio of overweight and obesity among men (Lindström 2008), a lower risk 

of overweight (Liao et al. 2016), and improved BMI and obesity (Sener et al. 2016). Other 

empirical research found that higher transit use within a county was associated with lower levels 

of obesity (Samimi et al. 2009), and better general health status for residents (Samimi and 

Mohammadian 2009; Samimi et al. 2009). 

Overall, the results of the current study are consistent with the literature suggesting that 

public transit use is associated with improved weight-based health outcomes such as obesity. 

However, the results reveal that increased public transit use may adversely affect general health as 

evidence by the positive direction of effects of public transit mode share on other physical health 

outcomes such as the prevalence of fair/poor health and number of physically unhealthy days per 

month in the models. The findings can be indicative of the adverse health effects of conditions 

typically associated with public transit use such as long wait times; higher stress levels due to 

unpredictability of vehicle arrival; exposure to inclement weather conditions; exposure to crowded 

stations; exposure to higher levels of air pollution due to transit vehicle operations, congestion 

delays, and vehicle idle times behind traffic signals; as well as interaction with other users who 

may be ill. Past studies suggest that rail transit commuters experience higher levels of perceived 
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stress, particularly due to factors such as long duration of commute and unpredictability (e.g., 

Evans et al. 2002; Evans and Wener 2006). The higher levels of stress experienced by public transit 

riders can lead to adverse physical and mental health outcomes. 

Looking from a different angle, the adverse effects of transit use on general health can be 

a result of inhaling harmful pollutants produced by transit vehicles. Past research suggests that 

walkers and bicyclists may disproportionally be affected by vehicle emissions (Sener et al. 2016), 

and that air pollution from traffic negatively impacts health (Mackett and Thoreau 2015). 

Empirical findings have shown that more walkable, near-transit areas have higher concentrations 

of Nitric Oxide (NO)—an indicator of air pollution due to direct vehicle emissions (Marshall et al. 

2009). Therefore, it can be assumed that walking, bicycling, or waiting related to public transit use 

can negatively affect health due to inhaling polluted air. Empirical research found that more 

county-level transit use was correlated with higher rates of asthma infection, and suggested that 

this effect was due to transit riders being more exposed to polluted air because of the additional 

walking trips associated with transit use (Samimi and Mohammadian 2009).  

On the other hand, the adverse effects of transit use on general health can also be indicative 

of the effects of increased exposure to other riders and disease diffusion rates among transit users. 

The more interactions between individuals, the more opportunities for diseases to spread, which 

can have a negative effect on personal health (Widener and Hatzopoulou 2016). All considered, 

the findings warrant additional examination of the role of public transit in general health outcomes.  

Concerning mental health, van Wee and Ettema (2016) suggested that using public transit 

may lead to lower levels of subjective well-being due to exposure to incidents such as undesired 

interactions with personnel or other travelers, which may evoke negative emotions. Therefore, in 
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the case of recurrent travel such as commuting by public transit, these negative emotions may lead 

to an increased number of mentally unhealthy days for the traveler.  

Overall, the findings of the present study on the effects of different travel modes on health 

outcomes are consistent with past findings. It should be noted that the effects of travel and 

telecommuting mode share variables on county-level health outcomes potentially entail the role of 

a county’s “travel culture” in the health status of its residents. In that sense, the travel behavior 

measures partially characterize each county in terms of its sociocultural characteristics, and 

thereby they can be considered another aspect of the county’s social environment. 

Built Environment Variables Findings 

The effects of built environment on health outcomes have been controlled for at two levels of 

geography: the meso (i.e., county) level and the macro (i.e., CBSA) level. Several built 

environment factors show statistically significant effects in the health outcome models. 

Meso-level (County-level) Built Environment Variables Findings: County-level built 

environment variables have been included in the health models to control for the most important 

built environment factors that can influence the health status of residents of a county. These 

variables characterize each county based on levels of compactness (i.e., activity density), mixed 

land use (i.e., entropy), pedestrian friendliness of street network design, access to clinical 

healthcare, access to recreational facilities, access to unhealthy food outlets, as well as ambient air 

pollution. The model estimates provide evidence that the built environment factors of the county 

of residence play an important role in the collective health profile of the community. 

The model estimates show that the county-level Mean Activity Density variable, which 

represents population and employment densities combined, has a positive link with prevalence of 

fair/poor health as well as the number of poor physical and mental health days. This indicates that 
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the higher the densities (i.e., higher compactness) within a county, the more unfavorable the 

physical and mental health effects. These results line up neatly with arguments of a previous study 

which suggested that even though high-density developments may foster nonmotorized travel (and 

thereby promote health), dense urban areas can also lead to negative mental and physical health 

effects due to their potentially stressful environments (Samimi and Mohammadian 2009).  

Other research also found that neo-traditional developments with higher population 

densities (i.e., compact designs) were less consistent with people’s general health condition 

(Langerudi et al. 2015). Based on such findings, past studies suggested that the highly stressful, 

polluted, and crowded conditions in dense urban areas may be detrimental to residents’ health 

status despite their potential pedestrian- and bicyclist-friendly designs (Langerudi et al. 2015), and 

that denser urban environments may be less inviting and more stressful, and thereby may adversely 

affect health of individuals (Kelly-Schwartz et al. 2004). The consistency in these past findings 

and the findings of the present study lends some degree of confidence to the results obtained.  

The Mean Activity Density variable at the county level does not exhibit a statistically 

significant path coefficient with obesity and diabetes in the present study. These findings are 

consistent with the findings of a few past studies including those of the Samimi and Mohammadian 

(2009) who reported a statistically insignificant association between county-level population 

density and obesity. Further, Smith et al. (2008) suggested that population density at the census 

block group was not consistently related to weight measures, and Frank et al. (2004) reported that 

residential density at one-kilometer buffer around the household was insignificant in the obesity 

model. Population density, however, was found to be correlated with lower rates of obesity in 

another study, suggesting that people living in dense urbanized areas were less likely to be obese 

(Samimi et al. 2009). Also, Ewing et al. (2003b) found that residents of counties with higher levels 
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of sprawl (i.e., an index obtained by combining residential density and street accessibility variables 

in that study) had a higher BMI and were more likely to be obese. However, no statistically 

significant link between county-level sprawl and diabetes was found in that study. Other studies 

also suggested that residents of more compact counties had lower BMIs (Joshu et al. 2008; Ewing 

et al. 2014), and lower probabilities of obesity and diabetes (Ewing et al. 2014).  

Therefore, the findings of the present study, which imply that county-level activity density 

does not impact the obesity and diabetes rates within the county, are in line with a few previous 

research efforts but inconsistent with a few others. It should be noted that the latter studies 

measured compactness based on a sprawl index, which combined factors representing different 

dimensions of the built environment—namely—density, land use mix, centering of jobs and 

population, and street network design. Thus, the different methods of operationalization of activity 

density and compactness may have contributed to the inconsistent results. Further research may 

be needed to clarify the role of compactness (i.e., population and/or employment density) in 

obesity and diabetes. Moreover, the path coefficient of the county-level Mean Activity Density 

variable shows a negative sign in the premature death model, indicating that increased 

compactness within the county of residence may lead to lower rates of premature death (i.e., fewer 

years of potential life lost before age 75 per 100,000 county population). 

The Mean Entropy variable at the county level does not show a statistically significant path 

coefficient in any of the health outcome models. Langerudi et al. (2015) suggested that mixed-use 

and presence of recreational facilities in a neighborhood along with retail stores and malls can lead 

to improved general health. However, that study might not have completely captured the effects 

of land-use mixing. The reason is that even though the study controlled for presence of specific 

land uses including recreational centers, retail stores, and medical centers, it did not control for the 
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level of mixing of these land uses. For instance, it is not clear from that study how the effect of the 

presence of retail stores on general health of residents would change if retail stores were the only 

type of land use present (i.e., an entropy of zero, indicating non-diverse land use); or, if retail stores 

were present in conjunction with the other land uses (i.e., an entropy of more than zero, indicating 

diverse land use). Further research may be needed to shed light on the role of county-level mixed 

land use in health outcomes for residents. 

The results also indicate that increased pedestrian friendliness of the network design within 

the county is linked with lower prevalence of obesity, lower prevalence of poor/fair health, fewer 

numbers of poor physical and mental health days, as well as lower rates of premature death. These 

findings highlight the importance of a network design that is conducive to active travel in 

promoting both physical and mental health.  

Many studies in the past included measures of street network connectivity and pedestrian 

friendliness of the network in their health impact analysis. General findings suggest that street 

designs that foster walking and bicycling are associated with better physical and psychological 

health outcomes. For instance, Leyden (2003) found that pedestrian-friendly neighborhoods may 

affect social capital, and thereby may influence physical as well as mental health. In terms of 

mental health, past research provided evidence for a positive link between walkable and 

pedestrian-friendly designs and a greater psychological sense of community score, which is a 

proxy for mental health state (Lund 2002).  

Regarding obesity, the results of the present study are consistent with those of Smith et al. 

(2008) who found that pedestrian-friendly street network designs lowered the risk of being 

overweight or obese for residents as well as findings by Samimi et al. (2009) who found that higher 

levels of intersection density (a proxy for connectivity and pedestrian friendliness of the street 
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network) were correlated with lower rates of obesity. Also, Samimi and Mohammadian (2009) 

reported that a smaller average block size (another proxy for connectivity and pedestrian 

friendliness of the street network) was associated with lower rates of obesity. Nonetheless, Frank 

et al. (2004) found that intersection density within one-kilometer buffer around the household was 

insignificant in the obesity model. These findings may be indicative that neighborhood may not be 

a suitable geographical area to capture the effects of street connectivity and pedestrian friendliness 

on obesity and these effects are exerted at larger spatial levels such as counties. Together, the 

results of the present study corroborate findings in the past that indicate that a pedestrian-friendly 

network design within the county is linked with better health outcomes. 

Other built environment factors included in the models capture the effects of access to 

clinical healthcare, access to unhealthy food, and access to healthy natural environments on 

county-level health outcomes.  

Not surprisingly, access to clinical care shows a positive impact on health outcomes. This 

is evidenced by the direction of the estimated effects (i.e., path coefficients) for the Primary Care 

Physician Rate variable in the health models. The models’ estimates mean that as the number of 

primary care physicians per 100,000 county population increases, the prevalence of obesity, 

diabetes, and fair/poor health within the county declines. The models’ path coefficients also imply 

that increased access to clinical care within the county leads to fewer number of physically and 

mentally unhealthy days, and lower rates of premature death for county residents. These results 

are intuitive and consistent with research in the past that suggested living in an area where access 

to physicians and pharmacies is facilitated encourages healthcare-seeking behaviors (Widener and 

Hatzopoulou 2016), and thereby can lead to better health outcomes. These findings highlight the 

importance of access to healthcare in the health profile of the community. 
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Also, as it is essential for any research that examines the relationship between the built 

environment and health to account for food environments (Marshall et al. 2014), this study 

included variables representing access to unhealthy food (i.e., fast food restaurants and liquor 

stores) in the analysis. The significance of access to fast food outlets in health outcomes has been 

discussed in previous research. For instance, Joshu et al. (2008) suggested that by encouraging 

unhealthy food choices and discouraging physical activity, “obesogenic” environments promote 

obesity in the population, and Plantinga and Bernell (2007) pointed to prevalence of fast food 

restaurants as one of the factors that may explain the rise in obesity rates in the U.S.  

The results of the models developed in the present study confirm the existence of a positive 

link between prevalence of fast food restaurants and prevalence of obesity within the county. This 

finding also corroborates past empirical findings suggesting that prevalence of fast food restaurants 

is positively related to obesity (Maddock 2004). In addition, the results indicate that prevalence of 

fast food restaurants contributes to premature deaths of the county residents. However, prevalence 

of fast food restaurants within the county does not show statistically significant path coefficients 

with other county-level health outcomes. 

The direction of the effect of the Liquor Store Density variable in the diabetes model 

suggests that having more liquor stores per population of the county can lead to higher rates of 

diabetes for residents. This variable was included in the diabetes model as a proxy for alcohol 

consumption levels of county residents. Literature suggests that diabetes may be related to the 

levels of alcohol consumption. However, studies on the link between alcohol consumption and 

diabetes have produced inconsistent results in terms of the direction of the effect—a conclusion 

also reached by Wannamethee et al. (2003). Nonetheless, the general finding of previous research 

is that although light to moderate alcohol intake may be associated with a reduced risk of diabetes, 
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high levels of liquor intake is associated with increased risk of diabetes (Rimm et al. 1995; 

Wannamethee et al. 2003; Howard et al. 2004). Further, the density of liquor stores within the 

county shows a positive link with premature death of residents. This finding is in line with that of 

Zhao et al. (2013) who reported that increases in the density of private liquor stores were associated 

with increases in alcohol-attributable mortality rates. The present study’s finding on the adverse 

effect of higher access to liquor stores on premature death is also in line with findings of a more 

recent international study that concluded “alcohol  use  is  a  leading  risk  factor  for  disease  

burden  worldwide,  accounting  for  approximately  10% of  global  deaths among  populations  

aged  15–49  years” (Griswold et al. 2018). 

The variable representing access to recreational facilities is negatively linked with 

prevalence of fair or poor health as well as the numbers of physically and mentally unhealthy days. 

This implies that having recreational facilities within the county can influence residents’ physical 

and psychological health status in a positive direction. Recreational and outdoor fitness facilities 

can be frequently used for physical activity (Lee and Moudon 2004); thus, these results are 

reasonable as having access to fitness and recreational facilities can encourage people to exercise 

more and be physically more active leading to lower likelihood of having physical health problems.  

On the other hand, more exercise has been linked to higher levels of mental well-being and 

improved life satisfaction (Zayed et al. 2018); therefore, having access to recreational facilities to 

perform physical activities can boost life satisfaction, and thereby lead to a better mental health 

status. Further, these facilities also foster human interaction and social inclusion, which can 

promote mental health.  

The Ambient Air Pollution variable represents the number of ambient air pollution days for 

each county and has been obtained by combining the annual number of unhealthy air quality days 
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due to Ozone and Fine Particulate Matter. These air pollutants have been included in the analysis 

since both pollutants have been associated with adverse health effects (WHO 2006). The results 

indicate that higher numbers of ambient air pollution days within counties are positively linked to 

premature death of residents. This finding is in line with that of Tainio (2015) who found that most 

of all disability-adjusted life-years (i.e., years of life lost due to premature mortality or fatality or 

years lived disabled or injured) due to air pollution were attributable to natural mortality caused 

by Fine Particulate Matter (PM 2.5). It is also noteworthy to mention the findings of the 2015 

WHO European Region document, which provided estimates of the economic costs of air pollution 

with respect to premature death. Based on that report, as of 2010, the annual economic costs of 

premature deaths from air pollution across the countries on the WHO European region stood at 

U.S. $1.431 trillion, and the overall annual economic cost of health impacts and mortality from air 

pollution stood at U.S. $1.575 trillion (WHO 2015). 

Macro-level (CBSA-level) Built Environment Variables Findings: CBSA-level built 

environment variables have been included in the health models to control for the most important 

macro-level built environment factors that can influence the health status of residents of a 

metropolitan/micropolitan area (i.e., urbanized areas). These variables characterize each CBSA 

based on levels of compactness (i.e., activity density), mixed land use (i.e., entropy), road network 

density, and access to transit within the CBSAs. The results of the multilevel SEM models reveal 

that the built environment attributes of the CBSA play a role in health status of residents. 

The CBSA-level Mean Activity Density variable (representing combined population and 

employment densities) exhibits a negative link with premature death indicating that higher levels 

of compactness within CBSAs may lead to lower rates of premature death for residents. The 

direction of the effect is consistent with that of the county-level Mean Activity Density, which 
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implies that residents of more compact counties and urban areas may have a lower risk of 

premature death. Compactness within the CBSA (within which the county of residence locates) 

does not seem to affect any other county-level health outcome. 

The Mean Entropy variable at the CBSA level shows a positive link with prevalence of 

obesity, prevalence of diabetes, prevalence of fair/poor health, as well as the number of physically 

and mentally unhealthy days for residents. These effects claim that higher mixed-use development 

within metropolitan/micropolitan areas may lead to adverse physical and psychological health 

outcomes within communities (i.e. counties). In terms of physical health, these results are 

somewhat unexpected. Considering the case for obesity, Frank et al. (2004) reported that higher 

mixed land use at one-kilometer buffer from the place of residence was associated with lower odds 

of obesity. Although this can be the case at the neighborhood level, the results of the current study 

suggest that higher mixed land use throughout the entire CBSA area (i.e., higher macro-level 

entropy) can lead to the opposite effects (i.e., higher rates of obesity).  

One possible explanation is that higher mixed land use within macro-scale geographies 

such as metropolitan/micropolitan areas can mean additional destinations at farther distances. 

Additional remotely located destinations can lead to more driving and less walking/bicycling travel 

(i.e., active travel), which in turn, can lead to obesity. Similarly, other health outcomes can be 

influenced through the potential increased levels of driving to additional destination options 

offered by higher extent of mixed-use development within the CBSA. With regards to 

psychological health, the findings of the present study are in line with those of Wood et al. (2010) 

who found an inverse relationship between sense of community (a proxy for mental health state) 

and mixed land use. Nevertheless, further research with additional data may be required to confirm 
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these results and to investigate the effects of macro-level mixed land use on physical and 

psychological health of residents. 

The extent of transit accessibility within the entire urban area (i.e., mean distance to transit 

stops at the CBSA level) also influences community health outcomes. This is evidenced by the 

statistically significant path coefficients of the Mean Distance to Local Transit variable in all of 

the health models developed (except the premature death model). The path coefficients of this 

variable indicate that an increased average distance to the nearest transit stop within the entire 

CBSA of residence is linked to higher prevalence of obesity, higher prevalence of diabetes, higher 

prevalence of fair/poor health, as well as increased numbers of physically and mentally unhealthy 

days for residents.  

These findings can be indicative of the state of health for residents of suburban areas. While 

past findings indicate that near-transit areas are more walkable (Marshall et al. 2009), areas farther 

away from transit stops are most likely the sprawled suburban areas, which are less inviting to 

active travel. This can lead to lower levels of walking and bicycling, and consequently, to higher 

levels of obesity and other health problems for residents of those areas.  

Literature suggests that sprawl—a feature representative of suburban developments in the 

U.S.—is related to higher obesity rates (see e.g., McCann and Ewing 2003; Handy et al. 2006; 

Ewing et al. 2014). By promoting either sedentary or active behavior and increasing either social 

exclusion or an active social life, the degree of urban sprawl also has a potential to affect other 

physical and mental health outcomes (Cervero and Duncan 2003; Khattak and Rodriguez 2005; 

Næss 2005; Plantinga and Bernell 2007; Leslie et al. 2007; Melis et al. 2015). The results of the 

current analysis imply that living in sprawled suburban areas with lower levels of access to transit 

may lead to obesity and other adverse health effects. 
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The Mean Total Road Network Density variable does not show statistically significant path 

coefficients in any health model except in the premature death model where it shows a positive 

link with premature death of residents. This means that higher levels of road network density 

within the CBSA may lead to more premature deaths. The possible explanations for premature 

deaths to be linked with road network density within urban areas could be: i) fatalities due to 

vehicle crashes; ii) deaths due to diseases caused by long-term exposure and inhalation of 

pollutants emitted from vehicles on dense urban road networks; and iii) deaths due to diseases 

caused by the sedentary lifestyle and physical inactivity levels associated with increased 

automobile dependency and use in urban areas with dense road networks. It should be noted that 

although the effects of county-level ambient air pollution and automobile use have already been 

controlled for in the premature death model, the role of these factors at the macro level (i.e., CBSA 

level) have not been included in the model. Therefore, the extent of road network density within 

the CBSA can be acting as a proxy for any of the factors mentioned above.  

Accordingly, the positive link between road network density within the CBSA and the rate 

of premature deaths as found in this analysis is probably capturing one or more of the following 

effects:  

i) higher rates of vehicle-crash fatalities occurring on denser and more congested road 

networks within urbanized areas;  

ii) higher rates of premature deaths associated with higher levels of exposure to polluted 

air resulted from vehicle emissions on dense and more congested urban road networks; 

and/or  

iii) higher rates of premature deaths associated with higher levels of physical inactivity due 

to driving on denser and more congested urban road networks. 
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The Nonmotorized Mode Share Equation Findings 

In the multilevel SEM equation system for each of the six health outcomes, the second equation 

(i.e., Equation I-2) estimates the effects of county-level social and built environment factors on 

county-level nonmotorized travel (i.e., active travel) mode share. Due to the possibility of reverse 

causality between health outcomes and health behavior such as walking and bicycling (Schauder 

and Foley 2015), this equation also includes a direct link to the particular health outcomes being 

modeled by the set of equations in the SEM system.  

This model framework allows for estimating bidirectional effects between health outcomes 

and nonmotorized travel behavior (see Figure I-7). By applying the MLE estimation method for 

multilevel SEMs, this model framework also deals with any endogeneity bias that may exist in the 

county-level models. This is because in estimating bidirectional relationships, potential 

endogeneity bias can be statistically corrected by using MLE (Cervero and Murakami 2010). 

The results of the Nonmotorized Mode Share Equation for all of the six health outcome 

models are consistent and they corroborate findings of the nonmotorized travel behavior models 

developed and estimated in Chapter 4 of this dissertation as well as findings of previous studies 

(see Chapter 2 and Appendix B). These results are discussed below. 

Social Environment Variables Findings  

The results of the multilevel SEMs indicate that a county’s social environment factors influence 

the level of nonmotorized mode share within the county. As expected (and consistent with the 

results of the person-level nonmotorized mode share model developed in Chapter 4), the Median 

Age variable exhibits a statistically significant and negative link with the nonmotorized travel 

mode share in all models (except in the Number of Poor Mental Health Days model). This means 

that as the median age within the county increases, the nonmotorized travel mode share within the 
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county decreases. Age has also been found in previous research to negatively correlate with 

nonmotorized travel (see e.g., Boarnet et al. 2008; Siu et al. 2012). 

Moreover, the negative sign of the path coefficient of the Median Annual Household 

Income variable in all of the six health outcome models implies that higher median incomes within 

the county are linked with lower levels of county-level nonmotorized mode shares. This result is 

in line with past studies that found an association between higher income levels and lower levels 

of nonmotorized travel (e.g., Plaut 2005; Bento et al. 2005; Boarnet et al. 2008; Schneider 2015). 

A county’s racial composition also affects the level of nonmotorized travel mode share 

within that county. Results indicate that as the percentage of the White population increases within 

the county, so does the county’s nonmotorized travel mode share. A few past studies suggested 

that non-Whites were more likely to make nonmotorized trips (see e.g., Hess et al. 1999; Cervero 

and Duncan 2003; Scuderi 2005; Yarlagadda and Srinivasan 2008; Pucher et al. 2011). 

Nonetheless, the result of the present analysis is consistent with those of the Florida person-level 

nonmotorized travel behavior models developed in Chapter 4. 

Built Environment Variables Findings 

The results of the SEM models also indicate that a county’s built environment characteristics 

including the extent of compactness (i.e., activity density), mixed land use, and pedestrian 

friendliness of the street network impact the level of nonmotorized travel mode share within that 

county. These variables were found to be three key county-level (i.e., meso-level) built 

environment factors in estimating nonmotorized travel behavior in Chapter 4.  

The county-level Activity Density variable shows a positive link with the county-level 

nonmotorized travel mode share in a few models, meaning that higher levels of compactness within 

the county are linked with higher levels of nonmotorized travel mode share within the county.  
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This finding is consistent with those of many past studies that found higher density and 

compactness to be positively correlated with nonmotorized travel (see e.g., Frank and Pivo 1994; 

Badoe and Miller 2000; Ewing et al. 2003b; Zhang 2004; Kerr et al. 2007; Wang 2013).  

The extent of mixed-use development within the county is positively linked with the 

county-level nonmotorized mode share in all six models. This finding is consistent with those of 

past studies that found a higher extent of mixed land use had a positive association with 

nonmotorized travel (see e.g., Cervero and Duncan 2003; Kerr et al. 2007; Lin and Chang 2010). 

Finally, results indicate that the extent of walkability and pedestrian friendliness of the 

street network within the county positively affects the nonmotorized travel mode share within the 

county. This is evidenced by the positive sign of the path coefficient of the Mean Pedestrian-

friendly Network Density and the Walk Score variables in the models. These results are in line with 

the findings in Chapter 4 as well as those of previous research (see e.g., Ewing et al. 2004; Boer 

et al. 2007; Ewing and Cervero 2010; Mahmoudi and Zhang 2018a). 

Reverse Causality Between Health and Nonmotorized Travel  

Literature suggests that reverse causality may exist between health outcomes and health behavior 

such as walking and bicycling (i.e., nonmotorized travel) (Schauder and Foley 2015). Past research 

also suggests that individuals with poor health may perform lower rates of physical activity (Joshu 

et al. 2008), and that being overweight or obese can have a negative influence on physical activity 

levels (Trost et al. 2002).  

To account for the possibility of reverse causality between nonmotorized travel—a typical 

form of physical activity—and health outcomes, the framework of the multilevel SEM models 

included bidirectional links between each of the six county-level health outcomes and the 

nonmotorized travel mode share within the county. The results of the models indicate that reverse 
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causality does exist between health status of residents of a county and the extent of their 

nonmotorized travel.  

More specifically, the results show that higher prevalence of obesity, higher prevalence of 

diabetes, higher prevalence of fair/poor health, as well as increased numbers of physically or 

mentally unhealthy days lead to lower levels of nonmotorized travel mode share within the county. 

These results are in line with those of Wasfi et al. (2016) who reported that healthier individuals 

were more likely to walk for utilitarian purposes.  

These findings imply that the healthier the residents of a county are, the more they engage 

in health behavior such as active travel, which in turn, can help them sustain their healthy status. 

The opposite effect can also hold: an increased number of county residents with physical and 

mental health problems may lead to a reduction in active travel rates within the county, which in 

turn, may lead to even more adverse health effects for residents.  

These findings shed light on the crucial role of reverse causality between health outcomes 

and active travel—an issue most often ignored in research probing the link between health and 

walking/bicycling modes of travel. 

Random Effects  

The variance of the CBSA-level random intercept is estimated by all the models to be statistically 

insignificant. Therefore, it can be inferred that CBSA-level random effects (i.e., random 

differences between urban areas) do not play an important role in health outcomes for the residents.  

Further research may be needed to clarify the role of metropolitan/micropolitan random 

effects on health outcomes.  
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I.1.4.3 Summary of Findings and Conclusions: County-level Health Outcome Models 

Through employment of multilevel Structural Equation Modeling (multilevel SEM) techniques, 

the county-level health outcome models examine the link between county-level health status 

indicators and the built as well as social environment attributes at two spatial scales: the county 

(i.e., the meso level) and the CBSA (i.e., the macro level).  

Further, the framework of the county-level models includes bidirectional links between 

health outcomes and nonmotorized travel behavior to account for the possibility of reverse 

causality. The MLE estimation method was applied to the analysis. Together, the model design 

and the estimation method allow for examination of the causal links between health outcomes, 

nonmotorized travel behavior, and the built environment. Concurrently, the models address 

potential endogeneity bias issues, which may exist in the analysis. 

The results provide evidence that contextual effects—such as those of the residential 

location’s environmental attributes at various levels of influence—play a role in residents’ health. 

More specifically, the results indicate that county-level health outcomes are linked with built and 

social environment attributes at the meso level (i.e., county) and the macro level (i.e., CBSA). The 

results also indicate that statistically significant paths exist between county-level travel behavior 

(including telecommuting behavior) and county-level health indicators.  

Among meso-level (i.e., county-level) social environment attributes, the median age of the 

county population shows a positive link with prevalence of obesity, prevalence of diabetes, 

prevalence of fair/poor health, number of poor physical health days, number of poor mental health 

days, and premature death within the county. Also, a higher percentage of White residents within 

the county is linked with lower levels of obesity, diabetes, and premature death. Higher median 
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household incomes are found to be linked to lower rates of obesity, diabetes as well as lower 

prevalence of fair/poor health, and premature death.  

In addition, higher percentages of telecommutable jobs within the county are related to 

adverse health outcomes for the county population such as higher levels of obesity as well as higher 

numbers of physically and mentally unhealthy days. These findings imply that meso-level social 

environment characteristics such as the median age, median household income, racial composition, 

and the extent of telecommutability of employment opportunities within the county can affect the 

physical and psychological health status of residents. 

Findings also indicate that macro-level social environment factors such as income levels 

can impact the health status of communities (i.e., counties). Higher rates of obesity, diabetes, and 

premature death are found to be related to higher average percentages of low-income workers 

within the CBSA, which suggests that higher income levels within the urban area of residence may 

lead to better community health outcomes. Based on the model estimations, however, the 

percentage of minority population within the CBSA does not exert any effects on community 

health status—a finding that may need further examination. 

Moreover, the results of the county-level health impact models provide evidence that travel 

behavior of residents of a community (i.e., county) influences the health profile of that community. 

The model estimations reveal that a higher nonmotorized travel mode share within the county is 

linked with lower rates of obesity, diabetes, fair/poor health, premature death, as well as decreased 

numbers of poor physical and mental health days for residents. These findings suggest that 

increased levels of nonmotorized travel by residents of a community (i.e., county) may lead to 

improved physical and psychological health outcomes for them, and thereby to a better overall 

health status for the community.  
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The findings also suggest that telecommuting affects both physical and psychological 

health outcomes. An increased level of telecommuting mode share within the county is linked with 

higher rates of obesity and poor/fair health as well as higher numbers of poor physical and mental 

health days. These results suggest that higher rates of telecommuting within the county can lead 

to adverse physical and mental health effects for residents. With respect to obesity as a physical 

health outcome, these findings are not consistent with those of two previous studies that found 

non-telecommuters to be at greater risk for being obese (Henke et al. 2015), or did not find a 

statistically significant association between telecommuting and obesity (Tajalli and Hajbabaie 

2017). The inconsistency in findings suggests a need for further investigation into the link between 

obesity and telecommuting. In terms of mental health, the findings of the present study, albeit 

consistent with the existing literature (see e.g., Baruch 2001; Tajalli and Hajbabaie 2017), are in 

contradiction with at least one study which suggested that employees who did not telecommute 

were at a higher risk of experiencing depression (i.e., mental unhealthiness) than those who 

telecommuted (Henke et al. 2015). These inconsistencies in study findings suggest a need for 

further investigation into the role of telecommuting in psychological health.  

Additionally, the findings indicate that higher levels of private vehicle usage are linked 

with adverse health outcomes as a higher level of private vehicle mode share within the county is 

related to higher rates of obesity and poor/fair health as well as increased numbers of poor physical 

and mental health days. In contrast, a higher public transit mode share within the county is related 

to lower rates of obesity and diabetes. However, increased public transit usage may lead to adverse 

general health outcomes as according to the results, a higher public transit mode share is related to 

higher levels of fair/poor health as well as higher numbers of poor physical and mental health days. 

These findings indicate that traveling by public transportation influences physical and 
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psychological health outcomes; but, the direction of these effects vary based on the health indicator 

under investigation and the ultimate effect may not be favorable in terms of the general health of 

residents. Based on these findings, further examination of the role of public transportation in 

communities’ general health status may be required. 

The results of the county-level health impact models also provide evidence that the built 

environment at two spatial levels (i.e., the meso or county level and the macro or CBSA level) 

influences communities’ health outcomes. Among the meso-level built environment factors, 

county compactness (i.e., mean activity density) shows a positive link with prevalence of fair/poor 

health as well as the number of poor physical and mental health days. This indicates that higher 

densities within a county can lead to adverse physical and mental health effects. Nevertheless, 

county compactness does not show a statistically significant link with rates of obesity and diabetes 

within the county. Also, increased levels of compactness within the county of residence may lead 

to lower rates of premature death according to the model results.  

The extent of a county’s mixed-use development does not seem to affect health outcomes 

within the county. Also, a pedestrian-friendly network design within the county is linked with 

lower rates of obesity, poor/fair health, and premature death, as well as fewer numbers of unhealthy 

physical and mental days. These findings suggest that network designs that are supportive of active 

travel promote both physical and mental health for residents of communities. 

The findings also provide evidence that as the number of primary care physicians per 

100,000 county population increases, the rates of obesity, diabetes, fair/poor health, and premature 

death within the county decline. Increased access to primary care physicians within the county also 

leads to fewer number of physically or mentally unhealthy days for the county residents. These 
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findings imply that access to clinical healthcare positively influences health outcomes for the 

population, as one would expect.  

With respect to unhealthy food, the results indicate a positive link between prevalence of 

fast food restaurants and prevalence of obesity and the rate of premature death within the county. 

The links between prevalence of fast food restaurants and other county-level health outcomes are 

statistically insignificant. Further, according to model estimations, higher levels of liquor stores 

density within the county can lead to higher rates of diabetes and premature death for residents. 

Increased access to recreational facilities is negatively linked with prevalence of fair or poor health 

as well as with the average number of physically or mentally unhealthy days within the county. 

This implies that having better access to recreational facilities within the county can improve 

residents’ physical and psychological health status. Findings also suggest that increased ambient 

air pollution is positively linked to premature death of residents of a county. 

Among the macro-level built environment factors, CBSA compactness (i.e., mean activity 

density) is negatively linked with prevalence of premature death, meaning that higher levels of 

compactness within CBSAs may lead to lower rates of premature death for residents. On the other 

hand, increased mixed-use development within the CBSA is positively linked with higher rates of 

obesity, diabetes, and fair/poor health, as well as increased numbers of physically or mentally 

unhealthy days for county population. These findings suggest that increased levels of mixed land 

use within metropolitan/micropolitan areas may lead to adverse physical and psychological health 

outcomes for residents. Further research may be needed to confirm these findings and to 

investigate the health impacts of macro-level mixed-use development.  

Increased average distance to the nearest transit stop within the entire CBSA of residence 

is linked to higher rates of obesity, diabetes, fair/poor health, as well as increased numbers of 
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unhealthy physical and mental days for residents. These findings indicate that the extent of transit 

accessibility within the entire urban area affects the health status of residents. Particularly, residing 

in sprawled suburban areas with lower levels of access to transit (greater distances to transit stops) 

may lead to adverse physical and psychological health effects.  

Results also show that higher levels of road network density within the CBSA may lead to 

more premature deaths—a finding that is probably capturing a combination of effects associated 

with using denser and more congested road networks within urbanized areas. These can include 

but may not be limited to: higher rates of fatalities due to vehicle crashes, higher rates of premature 

deaths due to more exposure to vehicle emissions and other transportation-related air pollutants, 

and higher rates of premature deaths due to higher levels of physical inactivity caused by long-

duration commutes using the automobile mode. Together, the results of the multilevel SEM models 

provide evidence that the built environment attributes of CBSAs (i.e., macro-level built 

environment factors) play a role in health status of residents. 

Additionally, the results of the county-level health impact models provide further evidence 

that social and built environment characteristics influence nonmotorized travel behavior. In terms 

of social environment factors, findings imply that increased median age and increased median 

household incomes within the county are linked with lower nonmotorized mode share within the 

county. Also, having a higher percentage of White residents within the county is linked with higher 

levels of county-level nonmotorized mode shares. A county’s built environment factors including 

the extent of compactness, mixed land use, and pedestrian friendliness of the street network also 

impact the level of nonmotorized mode share within the county. Results suggest that higher levels 

of compactness, mixed lad use, walkability and pedestrian friendliness of the street network within 

the county are linked with higher levels of nonmotorized travel mode share within the county. 
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Results also confirm existence of reverse causality between health outcomes for residents 

of a county and the extent of their nonmotorized travel. Considering that reverse causality is often 

ignored in research examining the link between health and active travel, this is a notable finding. 

The model estimations show that higher rates of obesity, diabetes, fair/poor health, as well as 

increased numbers of physically or mentally unhealthy days for the county population are linked 

to lower levels of nonmotorized travel mode share within the county. Finally, results reveal that 

CBSA-level random effects (i.e., random differences between CBSAs) do not seem to affect health 

outcomes for residents. Nevertheless, further research may be required to clarify the role of 

metropolitan/micropolitan random differences on health outcomes for residents. 

I.1.5 County-level Health Outcome Models: The Counties  

The counties included in the county-level health models are listed in Table I-4. Data in the table 

indicates that the five most highly populated counties in the sample all locate in Florida (counties 

of Orange, Hillsborough, Palm Beach, Broward, and Miami-Dade). The average median age is 

highest in Florida counties of Highlands, Sarasota, Citrus, Charlotte, and Sumter, whereas five 

Virginia counties seem to have the lowest average median age within the sample (i.e., counties of 

Radford, Harrisonburg, Williamsburg, Montgomery, and Charlottesville).  

Petersburg County, Virginia as well as Prince George’s and Baltimore Counties, Maryland 

have the highest average percentage of minority population, whereas a few West Virginia counties 

have the lowest percentage of their population being of the minority races (counties of Lincoln, 

Clay, Wayne, Wirt, Boone, and Marshall).  

Median income levels are highest in Virginia counties of Arlington, Fairfax, Falls Church, 

Loudoun, and Howard County, Maryland. The lowest median incomes within the sample belong 

to the Martinsville County, Virginia; Fayette County, West Virginia; and Dixie County, Florida. 
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Table I-4. Counties Included in the County-level Health Models 

 

 

County 
FIPS 
Code 

County 
Name 

State 
County 

Population 

County 
Average 
Median 

Age 

County 
Average 

% 
Minority 

County 
Average 

% Foreign 
Born 

County 
Median 

Household 
Income 

CBSA 
Code 

CBSA 
Name 

Metro/ 
Micro 
Area 

CBSA 
Population 

CBSA 
Average 
Median 

Age 

CBSA 
Average 

% 
Minority 

CBSA 
Average 

% 
Foreign 

Born 

1 11001 
District of 
Columbia DC 601,723 33.8 61.50 15.37 60,729 47900 

Washington-
Arlington- 
Alexandria Metro 5,416,691 37.2 30.05 16.02 

2 12001 Alachua  FL 247,336 29.7 26.26 9.27 40,656 23540 Gainesville Metro 260,930 29.4 26.26 9.27 

3 12003 Baker  FL 27,115 36.1 28.67 7.14 45,802 27260 Jacksonville Metro 1,319,195 36.7 28.67 7.14 

4 12005 Bay  FL 168,852 38.7 17.36 5.19 44,364 37460 

Panama City- 
Lynn Haven- 
Panama City Beach Metro 166,798 38.9 17.36 5.19 

5 12009 Brevard  FL 543,376 44.6 15.68 8.24 46,331 37340 
Palm Bay-Melbourne-
Titusville Metro 540,583 43.8 15.68 8.24 

6 12011 Broward  FL 1,748,066 39.2 28.94 36.73 47,917 33100 

Miami-Fort 
Lauderdale- 
Pompano Beach Metro 5,478,869 39.4 28.94 36.73 

7 12013 Calhoun  FL 14,625 38.4 17.36 5.19 34,054 37460 

Panama City- 
Lynn Haven- 
Panama City Beach Metro 166,798 38.9 17.36 5.19 

8 12015 Charlotte  FL 159,978 54.8 9.83 9.65 41,991 39460 Punta Gorda Metro 159,385 52.8 9.83 9.65 

9 12017 Citrus  FL 141,236 53.5 6.68 5.49 36,174 26140 Homosassa Springs Micro 140,686 51.4 6.68 5.49 

10 12019 Clay  FL 190,865 37.5 28.67 7.14 57,913 27260 Jacksonville Metro 1,319,195 36.7 28.67 7.14 

11 12021 Collier  FL 321,520 45.8 13.50 22.86 53,341 34940 Naples-Marco Island Metro 316,931 44.8 13.50 22.86 

12 12023 Columbia  FL 67,531 39.5 22.01 12.65 34,870 29380 Lake City Micro 66,964 37.7 22.01 12.65 

13 12027 DeSoto  FL 34,862 37 19.37 23.68 33,966 11580 Arcadia Micro 34,557 36.0 19.37 23.68 

14 12029 Dixie  FL 16,422 44.5 26.26 9.27 30,967 23540 Gainesville Metro 260,930 29.4 26.26 9.27 

15 12031 Duval  FL 864,263 35.4 28.67 7.14 46,112 27260 Jacksonville Metro 1,319,195 36.7 28.67 7.14 

16 12033 Escambia  FL 297,619 37.3 23.39 5.20 41,428 37860 
Pensacola- 
Ferry Pass-Brent Metro 445,778 37.8 23.39 5.20 

17 12035 Flagler  FL 95,696 47.2 15.11 12.19 45,685 37380 Palm Coast Metro 91,806 45.8 15.11 12.19 

18 12037 Franklin  FL 11,549 43.6 38.13 5.83 34,522 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

19 12039 Gadsden  FL 46,389 38.2 38.13 5.83 35,704 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

20 12041 Gilchrist  FL 16,939 39.5 26.26 9.27 38,517 23540 Gainesville Metro 260,930 29.4 26.26 9.27 

21 12045 Gulf  FL 15,863 42.5 17.36 5.19 39,403 37460 

Panama City- 
Lynn Haven- 
Panama City Beach Metro 166,798 38.9 17.36 5.19 
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22 12047 Hamilton  FL 14,799 37.5 22.01 12.65 31,820 29380 Lake City Micro 66,964 37.7 22.01 12.65 

23 12049 Hardee  FL 27,731 33.4 17.86 12.65 33,732 48100 Wauchula Micro 27,521 32.6 17.86 12.65 

24 12051 Hendry  FL 39,140 31.7 30.98 28.13 37,220 17500 Clewiston Micro 39,030 30.6 30.98 28.13 

25 12053 Hernando  FL 172,778 47 18.34 12.01 37,867 45300 

Tampa-St. 
Petersburg-
Clearwater Metro 2,745,350 40.7 18.34 12.01 

26 12055 Highlands  FL 98,786 50.7 14.97 11.50 34,469 42700 Sebring Micro 98,807 48.6 14.97 11.50 

27 12057 Hillsborough  FL 1,229,226 35.8 18.34 12.01 46,043 45300 

Tampa-St. 
Petersburg-
Clearwater Metro 2,745,350 40.7 18.34 12.01 

28 12059 Holmes  FL 19,927 41.5 18.99 12.68 33,696 18880 
Crestview-Fort 
Walton Beach-Destin Metro 182,076 41.0 18.99 12.68 

29 12061 Indian River  FL 138,028 48.1 12.47 10.10 47,525 42680 Sebastian-Vero Beach Metro 135,518 46.3 12.47 10.10 

30 12063 Jackson  FL 49,746 40.2 38.13 5.83 37,351 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

31 12065 Jefferson  FL 14,761 44.7 38.13 5.83 39,113 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

32 12067 Lafayette  FL 8,870 35.1 26.26 9.27 36,001 23540 Gainesville Metro 260,930 29.4 26.26 9.27 

33 12069 Lake  FL 297,052 45.2 28.16 15.77 42,343 36740 
Orlando- 
Kissimmee-Sanford Metro 2,083,626 36.3 28.16 15.77 

34 12071 Lee  FL 618,754 44.6 15.21 14.68 44,377 15980 
Cape Coral-Fort 
Myers Metro 606,165 43.4 15.21 14.68 

35 12073 Leon  FL 275,487 29.3 38.13 5.83 42,393 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

36 12077 Liberty  FL 8,365 37 38.13 5.83 37,815 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

37 12079 Madison  FL 19,224 40.2 38.13 5.83 31,942 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

38 12081 Manatee  FL 322,833 45 18.99 12.68 44,990 35840 
North Port-
Bradenton-Sarasota Metro 694,819 41.0 18.99 12.68 

39 12083 Marion  FL 331,298 46.7 17.12 7.21 37,162 36100 Ocala Metro 326,833 44.5 17.12 7.21 

40 12085 Martin  FL 146,318 48.9 19.92 13.65 49,539 38940 Port St. Lucie Metro 413,981 43.4 19.92 13.65 

41 12086 Miami-Dade  FL 2,496,435 37.7 28.94 36.73 40,145 33100 

Miami- 
Fort Lauderdale-
Pompano Beach Metro 5,478,869 39.4 28.94 36.73 

42 12087 Monroe  FL 73,090 45.7 10.24 16.45 50,388 28580 Key West Micro 73,065 46.3 10.24 16.45 

43 12089 Nassau  FL 73,314 42.2 28.67 7.14 57,605 27260 Jacksonville Metro 1,319,195 36.7 28.67 7.14 

44 12091 Okaloosa  FL 180,822 37.6 18.99 12.68 51,173 18880 

Crestview- 
Fort Walton Beach-
Destin Metro 182,076 41.0 18.99 12.68 

45 12093 Okeechobee  FL 39,996 39 15.12 12.65 35,417 36380 Okeechobee Micro 39,883 36.6 15.12 12.65 

46 12095 Orange  FL 1,145,956 33.4 28.16 15.77 45,105 36740 
Orlando- 
Kissimmee-Sanford Metro 2,083,626 36.3 28.16 15.77 

47 12097 Osceola  FL 268,685 35.2 28.16 15.77 42,165 36740 
Orlando- 
Kissimmee-Sanford Metro 2,083,626 36.3 28.16 15.77 
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48 12099 Palm Beach  FL 1,320,134 43.1 28.94 36.73 49,891 33100 

Miami-Fort 
Lauderdale- 
Pompano Beach Metro 5,478,869 39.4 28.94 36.73 

49 12101 Pasco  FL 464,697 43.4 18.34 12.01 42,184 45300 

Tampa-St. 
Petersburg-
Clearwater Metro 2,745,350 40.7 18.34 12.01 

50 12103 Pinellas  FL 916,542 45.6 18.34 12.01 42,628 45300 

Tampa-St. 
Petersburg-
Clearwater Metro 2,745,350 40.7 18.34 12.01 

51 12105 Polk  FL 602,095 39.4 22.15 10.31 41,184 29460 
Lakeland- 
Winter Haven Metro 590,116 38.5 22.15 10.31 

52 12107 Putnam  FL 74,364 42.4 20.55 12.65 33,300 37260 Palatka Micro 74,715 41.1 20.55 12.65 

53 12109 St. Johns  FL 190,039 41.8 28.67 7.14 60,841 27260 Jacksonville Metro 1,319,195 36.7 28.67 7.14 

54 12111 St. Lucie  FL 277,789 41.9 19.92 13.65 39,378 38940 Port St. Lucie Metro 413,981 43.4 19.92 13.65 

55 12113 Santa Rosa  FL 151,372 38.7 23.39 5.20 51,208 37860 
Pensacola- 
Ferry Pass-Brent Metro 445,778 37.8 23.39 5.20 

56 12115 Sarasota  FL 379,448 51.7 18.99 12.68 46,047 35840 
North Port-
Bradenton-Sarasota Metro 694,819 41.0 18.99 12.68 

57 12117 Seminole  FL 422,718 37.7 28.16 15.77 57,381 36740 
Orlando- 
Kissimmee-Sanford Metro 2,083,626 36.3 28.16 15.77 

58 12119 Sumter  FL 93,420 61.4 16.03 12.65 45,165 45540 The Villages Micro 85,891 46.8 16.03 12.65 

59 12123 Taylor  FL 22,570 40 38.13 5.83 35,343 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

60 12127 Volusia  FL 494,593 44.4 15.90 7.54 41,368 19660 
Deltona-Daytona 
Beach-Ormond Beach Metro 496,053 42.9 15.90 7.54 

61 12129 Wakulla  FL 30,776 39.2 38.13 5.83 47,566 45220 Tallahassee Metro 360,391 32.1 38.13 5.83 

62 12131 Walton  FL 55,043 42 18.99 12.68 44,622 18880 
Crestview-Fort 
Walton Beach-Destin Metro 182,076 41.0 18.99 12.68 

63 12133 Washington  FL 24,896 41.2 17.36 5.19 35,378 37460 

Panama City- 
Lynn Haven-Panama 
City Beach Metro 166,798 38.9 17.36 5.19 

64 24001 Allegany  MD 75,087 40.9 10.80 2.20 37,083 19060 Cumberland Metro 102,434 42.4 5.93 0.92 

65 24003 Anne Arundel  MD 537,656 38.4 24.60 8.61 80,908 12580 Baltimore-Towson Metro 2,683,160 39.7 27.28 7.92 

66 24005 Baltimore  MD 805,029 39.1 35.40 12.19 62,300 12580 Baltimore-Towson Metro 2,683,160 39.7 27.28 7.92 

67 24009 Calvert  MD 88,737 40.1 18.60 3.04 86,536 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

68 24013 Carroll  MD 167,134 41.1 7.10 3.62 80,291 12580 Baltimore-Towson Metro 2,683,160 39.7 27.28 7.92 

69 24015 Cecil  MD 101,108 38.9 10.80 3.30 61,506 37980 
Philadelphia-
Camden-Wilmington Metro 5,911,638 38.9 10.80 3.30 

70 24017 Charles  MD 146,551 37.4 49.70 6.32 83,078 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

71 24019 Dorchester  MD 32,618 43.3 32.40 3.95 39,630 15700 Cambridge Micro 32,287 43.3 32.40 3.95 

72 24021 Frederick  MD 233,385 38.6 18.50 10.32 80,216 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 
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73 24025 Harford  MD 244,826 39.4 18.80 5.54 71,848 12580 Baltimore-Towson Metro 2,683,160 39.7 27.28 7.92 

74 24027 Howard  MD 287,085 38.4 37.80 21.34 100,992 12580 Baltimore-Towson Metro 2,683,160 39.7 27.28 7.92 

75 24029 Kent  MD 20,197 45.6 19.90 4.25 49,017 12580 Baltimore-Towson Metro 2,683,160 39.7 27.28 7.92 

76 24031 Montgomery  MD 971,777 38.5 42.50 34.44 88,559 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

77 24033 
Prince 
George's  MD 863,420 34.9 80.80 22.24 69,524 47900 

Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

78 24035 Queen Anne's  MD 47,798 42.6 11.30 3.95 78,503 12580 Baltimore-Towson Metro 2,683,160 39.7 27.28 7.92 

79 24037 St. Mary's  MD 105,151 36 21.40 4.58 81,559 30500 Lexington Park Micro 102,086 44.9 29.83 4.04 

80 24039 Somerset  MD 26,470 36.5 46.50 4.99 38,134 41540 Salisbury Metro 123,362 36.1 38.90 6.79 

81 24041 Talbot  MD 37,782 47.4 18.60 5.88 56,806 20660 Easton Micro 37,361 47.4 18.60 5.88 

82 24043 Washington  MD 147,430 39.7 14.90 5.29 51,610 25180 
Hagerstown-
Martinsburg Metro 264,648 40.8 9.93 3.54 

83 24045 Wicomico  MD 98,733 35.7 31.30 8.58 47,702 41540 Salisbury Metro 123,362 36.1 38.90 6.79 

84 24047 Worcester  MD 51,454 48.1 18.00 4.59 55,492 36180 Ocean Pines Micro 51,133 46.4 26.35 5.56 

85 24510 Baltimore  MD 620,961 34.4 70.40 7.81 38,186 12580 Baltimore-Towson Metro 2,683,160 39.7 27.28 7.92 

86 51003 Albemarle  VA 98,970 38.2 19.40 10.45 61,845 16820 Charlottesville Metro 197,279 40.3 20.29 5.43 

87 51007 Amelia  VA 12,690 42.7 26.50 0.24 49,057 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

88 51009 Amherst  VA 32,353 42 21.40 1.69 42,063 31340 Lynchburg Metro 248,742 39.2 22.54 2.21 

89 51011 Appomattox  VA 14,973 42.8 22.50 0.95 44,479 31340 Lynchburg Metro 248,742 39.2 22.54 2.21 

90 51013 Arlington  VA 207,627 33.4 28.30 24.77 93,231 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

91 51015 Augusta  VA 73,750 42.9 6.60 1.94 50,534 44420 
Staunton-
Waynesboro Micro 117,892 44.7 8.86 2.28 

92 51019 Bedford  VA 68,676 44.3 8.60 2.47 51,656 31340 Lynchburg Metro 248,742 39.2 22.54 2.21 

93 51023 Botetourt  VA 33,148 44.9 5.10 2.66 63,528 40220 Roanoke Metro 304,995 44.1 9.65 2.50 

94 51031 Campbell  VA 54,842 41.1 17.90 2.63 42,158 31340 Lynchburg Metro 248,742 39.2 22.54 2.21 

95 51033 Caroline  VA 28,545 38.9 34.70 2.97 52,779 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

96 51036 Charles City  VA 7,256 46.6 59.10 1.63 45,916 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

97 51041 Chesterfield  VA 316,236 37.6 31.70 8.34 69,190 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

98 51043 Clarke  VA 14,034 44.9 9.80 3.56 67,962 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

99 51045 Craig  VA 5,190 44.8 1.30 0.02 44,882 40220 Roanoke Metro 304,995 44.1 9.65 2.50 

100 51047 Culpeper  VA 46,689 38.2 24.90 8.03 56,897 19020 Culpeper Micro 45,749 41.6 18.60 4.94 

101 51049 Cumberland  VA 10,052 41.6 36.10 0.42 39,394 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

102 51053 Dinwiddie  VA 28,001 40.7 36.10 2.90 50,535 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 
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103 51059 Fairfax  VA 1,081,726 37.3 37.30 31.74 102,726 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

104 51061 Fauquier  VA 65,203 41.3 14.70 6.56 83,176 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

105 51065 Fluvanna  VA 25,691 41.1 19.30 2.88 63,869 16820 Charlottesville Metro 197,279 40.3 20.29 5.43 

106 51067 Franklin  VA 56,159 44.1 11.50 2.17 40,931 40220 Roanoke Metro 304,995 44.1 9.65 2.50 

107 51069 Frederick  VA 78,305 39.1 10.70 6.31 62,173 49020 Winchester Metro 125,382 40.5 10.44 5.76 

108 51071 Giles  VA 17,286 43.2 3.30 0.78 40,773 13980 

Blacksburg-
Christiansburg-
Radford Metro 161,013 39.2 7.86 3.72 

109 51073 Gloucester  VA 36,858 42.6 12.80 2.22 58,893 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

110 51075 Goochland  VA 21,717 45.2 22.50 3.54 81,938 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

111 51079 Greene  VA 18,403 39.3 12.40 4.71 57,592 16820 Charlottesville Metro 197,279 40.3 20.29 5.43 

112 51085 Hanover  VA 99,863 41 13.30 3.53 72,319 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

113 51087 Henrico  VA 306,935 37.5 40.80 12.44 59,128 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

114 51089 Henry  VA 54,151 44.7 27.10 2.74 32,669 32300 Martinsville Micro 68,889 44.2 38.60 2.83 

115 51093 Isle of Wight  VA 35,270 43.8 28.20 2.00 62,224 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

116 51095 James City  VA 67,009 44.9 19.70 7.17 74,241 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

117 51097 
King and 
Queen  VA 6,945 45.2 32.90 2.79 44,277 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

118 51101 King William  VA 15,935 39.4 22.80 1.91 64,205 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

119 51107 Loudoun  VA 312,311 34.8 31.30 27.13 119,075 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

120 51109 Louisa  VA 33,153 42.6 21.60 3.31 50,101 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

121 51115 Mathews  VA 8,978 50.1 12.00 1.30 53,418 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

122 51121 Montgomery  VA 94,392 26.6 12.40 8.71 42,827 13980 

Blacksburg-
Christiansburg-
Radford 

Metro 161,013 39.2 7.86 3.72 

123 51125 Nelson  VA 15,020 47.6 16.70 3.28 47,368 16820 Charlottesville Metro 197,279 40.3 20.29 5.43 

124 51127 New Kent  VA 18,429 42.4 18.30 3.01 67,979 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

125 51143 Pittsylvania  VA 63,506 44.2 24.50 2.15 41,031 19260 Danville Metro 106,934 43.4 38.40 2.67 

126 51145 Powhatan  VA 28,046 41.6 16.20 2.20 70,025 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

127 51149 Prince George  VA 35,725 38 38.90 4.48 59,346 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

128 51153 Prince William  VA 402,002 33.5 42.20 25.16 91,290 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

129 51155 Pulaski  VA 34,872 44.1 7.50 1.33 41,184 13980 

Blacksburg-
Christiansburg-
Radford 

Metro 161,013 39.2 7.86 3.72 

130 51161 Roanoke  VA 92,376 43.3 10.00 5.61 57,720 40220 Roanoke Metro 304,995 44.1 9.65 2.50 
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131 51165 Rockingham  VA 76,314 40.4 6.70 5.43 49,158 25500 Harrisonburg Metro 122,328 36.8 10.70 7.83 

132 51169 Scott  VA 23,177 44.7 2.10 0.95 33,797 28700 
Kingsport-Bristol-
Bristol Metro 307,637 41.8 5.64 1.64 

133 51177 Spotsylvania  VA 122,397 36.4 24.50 7.58 72,463 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

134 51179 Stafford  VA 128,961 34.6 27.50 9.50 93,185 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

135 51181 Surry  VA 7,058 45 48.70 0.62 46,112 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

136 51183 Sussex  VA 12,087 40.6 60.70 2.81 37,019 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

137 51185 Tazewell  VA 45,078 43.2 4.90 0.79 35,485 14140 Bluefield Micro 106,550 43.3 5.50 1.04 

138 51187 Warren  VA 37,575 39.7 9.10 3.32 55,758 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

139 51191 Washington  VA 54,876 43.7 3.00 1.60 39,690 28700 
Kingsport-Bristol-
Bristol Metro 307,637 41.8 5.64 1.64 

140 51199 York  VA 65,464 39.4 23.60 8.26 77,070 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

141 51510 Alexandria  VA 139,966 35.6 39.10 30.06 78,023 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

142 51515 Bedford city  VA 6,222 42.9 23.60 1.58 35,664 31340 Lynchburg Metro 248,742 39.2 22.54 2.21 

143 51520 Bristol  VA 17,835 41.3 9.10 1.24 33,149 28700 
Kingsport-Bristol-
Bristol Metro 307,637 41.8 5.64 1.64 

144 51540 Charlottesville  VA 43,475 27.8 30.90 12.73 42,686 16820 Charlottesville Metro 197,279 40.3 20.29 5.43 

145 51550 Chesapeake  VA 222,209 37 37.40 5.21 67,674 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

146 51570 
Colonial 
Heights  VA 17,411 41.9 17.70 7.56 48,883 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

147 51590 Danville  VA 43,055 42.6 52.30 3.20 31,153 19260 Danville Metro 106,934 43.4 38.40 2.67 

148 51600 Fairfax  VA 22,565 39.1 30.40 29.30 83,413 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

149 51610 Falls Church  VA 12,332 39 20.10 18.15 105,124 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

150 51630 Fredericksburg  VA 24,286 28.8 35.80 10.50 43,460 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

151 51650 Hampton  VA 137,436 35.5 57.30 4.60 50,923 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

152 51660 Harrisonburg  VA 48,914 22.7 21.60 17.62 37,179 25500 Harrisonburg Metro 122,328 36.8 10.70 7.83 

153 51670 Hopewell  VA 22,591 36.5 44.60 4.50 37,226 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

154 51680 Lynchburg  VA 75,568 30.3 35.60 6.10 36,397 31340 Lynchburg Metro 248,742 39.2 22.54 2.21 

155 51683 Manassas  VA 37,821 32.1 38.30 30.12 64,274 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

156 51685 Manassas Park  VA 14,273 30.9 44.10 36.85 67,948 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

157 51690 Martinsville  VA 13,821 43.6 50.10 2.92 29,887 32300 Martinsville Micro 68,889 44.2 38.60 2.83 

158 51700 
Newport 
News  VA 180,719 32.3 51.00 7.13 49,228 47260 

VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 
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159 51710 Norfolk  VA 242,803 29.7 52.90 7.20 41,015 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

160 51730 Petersburg  VA 32,420 39.8 83.90 3.42 32,435 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

161 51735 Poquoson  VA 12,150 43.5 4.90 2.95 79,229 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

162 51740 Portsmouth  VA 95,535 35.7 58.40 2.72 42,740 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

163 51750 Radford  VA 16,408 22.4 13.00 3.84 34,009 13980 

Blacksburg-
Christiansburg-
Radford 

Metro 161,013 39.2 7.86 3.72 

164 51760 Richmond  VA 204,214 32 59.20 6.89 39,214 40060 Richmond Metro 1,235,365 40.6 39.58 3.67 

165 51770 Roanoke  VA 97,032 38.5 35.80 7.52 37,486 40220 Roanoke Metro 304,995 44.1 9.65 2.50 

166 51775 Salem  VA 24,802 40.5 11.80 3.24 46,636 40220 Roanoke Metro 304,995 44.1 9.65 2.50 

167 51790 Staunton  VA 23,746 42.2 16.30 3.13 40,855 44420 
Staunton-
Waynesboro Micro 117,892 44.7 8.86 2.28 

168 51800 Suffolk  VA 84,585 37.9 47.70 3.83 62,419 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

169 51810 VA Beach  VA 437,994 34.9 32.30 9.30 63,354 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

170 51820 Waynesboro  VA 21,006 38.8 17.80 5.14 40,256 44420 
Staunton-
Waynesboro Micro 117,892 44.7 8.86 2.28 

171 51830 Williamsburg  VA 14,068 23.8 26.00 9.66 46,285 47260 
VA Beach-Norfolk-
Newport News Metro 1,663,070 40.6 35.30 4.26 

172 51840 Winchester  VA 26,203 35.1 25.50 12.16 41,008 49020 Winchester Metro 125,382 40.5 10.44 5.76 

173 54003 Berkeley  WV 104,169 37.6 12.20 3.58 50,923 25180 
Hagerstown-
Martinsburg Metro 264,648 40.8 9.93 3.54 

174 54005 Boone  WV 24,629 40.7 1.50 0.25 38,126 16620 Charleston Metro 304,033 42.1 2.90 0.58 

175 54009 Brooke  WV 24,069 44.8 3.00 0.92 38,197 44600 Steubenville-Weirton Metro 125,101 45.1 3.65 1.22 

176 54011 Cabell  WV 96,319 38.7 8.40 1.69 36,274 26580 Huntington-Ashland Metro 287,112 40.0 4.90 1.14 

177 54015 Clay  WV 9,386 41.5 1.20 0.23 31,232 16620 Charleston Metro 304,033 42.1 2.90 0.58 

178 54017 Doddridge  WV 8,202 42.4 3.00 0.82 34,444 17220 Clarksburg Micro 93,257 42.0 4.30 0.91 

179 54019 Fayette  WV 46,039 43 6.50 0.68 30,856 36060 Oak Hill Micro 46,138 43.0 6.50 0.68 

180 54027 Hampshire  WV 23,964 42.6 2.80 0.64 33,991 49020 Winchester Metro 125,382 40.5 10.44 5.76 

181 54029 Hancock  WV 30,676 45.3 4.30 1.52 38,501 44600 Steubenville-Weirton Metro 125,101 45.1 3.65 1.22 

182 54033 Harrison  WV 69,099 41.8 4.00 0.89 40,441 17220 Clarksburg Micro 93,257 42.0 4.30 0.91 

183 54037 Jefferson  WV 53,498 38.9 12.40 5.30 63,156 47900 
Washington-
Arlington-Alexandria Metro 5,416,691 37.2 30.05 16.02 

184 54039 Kanawha  WV 193,063 42.4 10.90 1.65 43,110 16620 Charleston Metro 304,033 42.1 2.90 0.58 

185 54043 Lincoln  WV 21,720 41.2 1.00 0.28 34,119 16620 Charleston Metro 304,033 42.1 2.90 0.58 

186 54049 Marion  WV 56,418 41 5.70 1.15 38,856 21900 Fairmont Micro 56,356 41.0 5.70 1.15 
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187 54051 Marshall  WV 33,107 44.3 2.00 0.91 37,206 48540 Wheeling Metro 148,354 44.2 3.37 1.02 

188 54053 Mason  WV 27,324 42.4 2.30 0.64 36,279 38580 Point Pleasant Micro 57,959 42.4 2.30 0.64 

189 54055 Mercer  WV 62,264 42.5 8.40 1.06 32,366 14140 Bluefield Micro 106,550 43.3 5.50 1.04 

190 54057 Mineral  WV 28,212 42.3 4.70 0.50 38,629 19060 Cumberland Metro 102,434 42.4 5.93 0.92 

191 54061 Monongalia  WV 96,189 29.1 9.00 5.79 42,247 34060 Morgantown Metro 125,691 40.0 3.73 2.16 

192 54065 Morgan  WV 17,541 45 2.70 1.73 40,636 25180 
Hagerstown-
Martinsburg Metro 264,648 40.8 9.93 3.54 

193 54069 Ohio  WV 44,443 43.5 6.80 1.71 38,997 48540 Wheeling Metro 148,354 44.2 3.37 1.02 

194 54073 Pleasants  WV 7,605 42.4 2.70 0.14 40,416 37620 
Parkersburg-
Marietta-Vienna Metro 162,214 43.6 1.97 0.51 

195 54077 Preston  WV 33,520 42 2.40 1.01 42,529 34060 Morgantown Metro 125,691 40.0 3.73 2.16 

196 54079 Putnam  WV 55,486 40.9 3.20 1.13 52,942 16620 Charleston Metro 304,033 42.1 2.90 0.58 

197 54081 Raleigh  WV 78,859 41.1 11.50 1.66 37,915 13220 Beckley Micro 78,513 43.1 6.77 0.77 

198 54091 Taylor  WV 16,895 42.3 2.50 0.75 36,846 17220 Clarksburg Micro 93,257 42.0 4.30 0.91 

199 54099 Wayne  WV 42,481 41.3 1.40 0.59 36,360 26580 Huntington-Ashland Metro 287,112 40.0 4.90 1.14 

200 54105 Wirt  WV 5,717 44.4 1.50 0.00 36,037 37620 
Parkersburg-
Marietta-Vienna Metro 162,214 43.6 1.97 0.51 

201 54107 Wood  WV 86,956 42.2 3.60 0.99 39,456 37620 
Parkersburg-
Marietta-Vienna Metro 162,214 43.6 1.97 0.51 
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Table I-5. Variable Labels for Multilevel SEM Structure 

(County-level Health Models—Figure I-7) 

Variable (Units) Label 

Dependent (i.e., endogenous) Variables: County Level 

Prevalence of Adult Obesity (% of adults that report a BMI ≥ 30) 

Prevalence of Adult Diabetes 

Fair or Poor Health 

Poor Physical Health Days 

Poor Mental Health Days 

Premature Death 

ho_1_co 

Prevalence of Adult Diabetes (% of adults aged 20 and above with diagnosed diabetes) ho_2_co 

Prevalence of Fair or Poor Health (% of adults reporting fair or poor health) ho_3_co 

Number of Poor Physical Health Days (average number in past 30 days) ho_4_co 

Number of Poor Mental Health Days (average number in past 30 days) ho_5_co 

Premature Death (years of potential life lost before age 75 per 100,000 population) ho_6_co 

Independent (i.e., exogenous) Variables: County Level 

Social Environment 

Meso Level: The County 

Median Age (years) ave_ma_co 

Median Annual Household Income (dollars) ave_hi_co 

Percent White (%) ave_pw_co 

Percent of Telecommutable Jobs (%) ave_ptpj_co 

Macro Level (Core Based Statistical Area): The Metropolitan/Micropolitan Area 

Average Percentage of Low-Wage Workers (workers earning ≤ $1250/month) (%) ave_plw_cbsa 

Average Percentage of Minority Population (%) ave_pmp_cbsa 

Travel Behavior 

Meso Level: The County 

Nonmotorized Travel Mode Share (%) nmms_co 

Private Vehicle Travel Mode Share (%) pvms_co 

Public Transit Travel Mode Share (%) ptms_co 

Telecommuting Mode Share (%) tcms_co 

Built Environment 

Meso Level: The County 

Mean Activity Density [average (employment + housing units)/acres)] ave_ad_co 

Mean Entropy (dimensionless) ave_en_co 

Mean Pedestrian-friendly Network Density [average (facility miles of ped.-oriented links/mi2)] ave_pf_co 

Walk Score (dimensionless) ws_co 

Primary Care Physician Rate (primary care provider rate per 100,000 population) pcpr_co 

Percentage of Fast Food Restaurants (percent of all restaurants that are fast food establishments) pffr_co 

Liquor Store Density (number of liquor stores per 10,000 population) lqsd_co 

Recreational Facilities Density (number of recreational facilities per 100,000 population) recd_co 

Ambient Air Pollution (annual number of unhealthy air quality days due to Ozone and Fine PM) ave_aad_co 

Macro Level (Core Based Statistical Area): The Metropolitan/Micropolitan Area 

Mean Activity Density [average (employment + housing units)/acres)] ave_ad_cbsa 

Mean Entropy (dimensionless) ave_en_cbsa 

Mean Total Road Network Density [average (total road network miles/mi2)] ave_rd_cbsa 

Mean Local Transit Accessibility [average (distance to the nearest transit stop in meters)] ave_dt_cbsa 

CBSA-level Random Intercept CBSA2 
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Appendix J 

Summary of Study Findings and Discussion 

A summary of the findings of the analysis conducted and models developed in the main body of 

this dissertation is provided and discussed below. 

Florida Household-level Nonmotorized Travel Behavior Models: Linear Mixed-effects Models 

In Chapter 4, the Florida household-level mixed-effects (i.e., multilevel) models examine the link 

between walking and bicycling travel behavior and social as well as built environment factors at 

multiple levels of influence. The results of the models show that nonmotorized travel behavior is 

correlated with household-level socioeconomic characteristics including the number of adults 

living in the household, the number of vehicles owned by the household, and the annual income 

of the household. These findings are consistent with results obtained by previous studies as well 

as those of the Baltimore-D.C. case study, the latter of which are presented in Appendix C. 

In addition, the analysis shows that at various levels of influence, the most important 

socioeconomic factor determining the extent of household walking and bicycling is vehicle 

ownership. At the household level, the variable representing the number of household vehicles is 

significantly and negatively correlated with the number of daily per capita nonmotorized trips. At 

the neighborhood level, the variable representing the percentage of households with no vehicles 

has a significant and positive correlation with walking. At the metropolitan area, the variable 

representing the percentage of households that own more than two vehicles is negatively correlated 

with the number of daily per capita nonmotorized trips generated from households locating in that 

metropolitan area.  

These results add to the body of empirical knowledge by providing evidence that the 

influence of vehicle ownership on walking and bicycling goes beyond the household and 
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potentially operates at multiple levels of influence including at the neighborhood and metropolitan 

area levels.  

These findings imply that the role of vehicle ownership in nonmotorized travel behavior 

may be far more important and complex than previously considered. As the highest elasticities in 

the bicycling model belong to the metropolitan area-level car ownership and worker income 

variables, the results also emphasize the key role that social environment factors at the 

metropolitan area level play in bicycling trips of residents. 

The present case study also corroborates previous findings on the effects of the micro-level 

(i.e., neighborhood) built environment on nonmotorized travel behavior. The results indicate that 

increased numbers of walking and bicycling are associated with higher levels of neighborhood 

mixed land use, higher levels of pedestrian friendliness of the street network within the 

neighborhood, higher frequencies of local transit service as well as higher gross activity 

(residential and employment) density and intersection density within the neighborhood. Among 

these factors, neighborhood mixed land use and the pedestrian friendliness of the street network 

are the most important ones in terms of the elasticity of nonmotorized trips with respect to the 

neighborhood-level factors. Consistent with the Baltimore-D.C. case study (see Appendix C), the 

results of the Florida household-level analysis also suggest that random differences between 

neighborhoods may play a small but statistically significant role in walking/bicycling of residents. 

The analysis further adds to the body of knowledge by providing evidence that meso-level 

(i.e., county) built environment also plays a significant role in nonmotorized travel behavior. The 

results indicate that higher numbers of daily walking trips are correlated with living in more 

compact counties (where activity density is higher) as well as a higher extent of county-level 

mixed-use development, a higher extent of pedestrian friendliness of the county street network, 
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and increased transit service frequency within the county. In terms of bicycling trips, county-level 

compactness shows a negative correlation with these trips, whereas a higher extent of county-level 

pedestrian friendliness of the street network and increased intersection density have positive 

correlations with bicycling trips. Further, higher county-level automobile accessibility to 

employment opportunities is negatively correlated with both nonmotorized travel modes.  

Compared to the Baltimore-D.C. case study (see Appendix C), the Florida household-level 

study adds macro level (i.e., metropolitan area level) factors to the analysis of nonmotorized travel 

behavior. The results indicate that metropolitan area-level built environment attributes are 

associated with walking but do not seem to have a strong association with bicycling. Most notably, 

the correlation of the entropy variable (i.e., extent of mixed land use) with walking trips switches 

direction and becomes negative as mixed land use increases within the entire metropolitan area. 

This is probably an indication of the destination choice effect. Higher mixed land use within the 

metropolitan area means that additional destinations within longer distances become available to 

residents. This may encourage more driving trips, and thereby may lead to a reduction in the 

number of walking trips that would otherwise have been made to nearby destinations. 

Further, improved street connectivity (i.e., smaller blocks) throughout the entire 

metropolitan area is strongly and positively associated with walking. This metropolitan area-level 

variable also exhibits the highest elasticity in the walking model. Higher road network density 

within the metropolitan area shows a negative correlation with walking.  

The findings also indicate that higher transit accessibility to employment opportunities 

throughout the metropolitan area is negatively correlated with bicycling. Also, based on the results, 

compactness of activities (i.e., higher residential and employment density) throughout the entire 

metropolitan area does not seem to be associated with nonmotorized travel behavior of residents. 
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Florida Household-level Nonmotorized Travel Behavior Models: Ordered Probit Models 

Results of the Florida household-level ordered probit models, which are developed and estimated 

in Chapter 4 of this dissertation, are in line with those of the Florida household-level mixed-effects 

models (also presented in Chapter 4) in terms of the effects of multiple levels of social and built 

environment influence.  

The results of the ordered probit models confirm that walking and bicycling are correlated 

with household-level socioeconomic attributes including the number of adults and workers living 

in the household, the number of vehicles owned by the household, and household’s annual income. 

These findings are also consistent with results obtained in the Baltimore-D.C. case study (see 

Appendix C).  

As in the mixed-effects models, vehicle ownership proves to be the most important 

socioeconomic factor at various levels of influence in the ordered probit nonmotorized travel 

behavior models. These results support the statement that in influencing walking and bicycling, 

vehicle ownership operates at multiple levels of the social environment including the household, 

the neighborhood, and the metropolitan area levels. 

The ordered probit model estimates also confirm the results of the mixed-effects models 

regarding the effects of the micro-level (i.e., neighborhood) built environment on nonmotorized 

travel behavior.  

Increased numbers of daily walking and bicycling trips are associated with residing in 

neighborhoods with a higher level of mixed-use development and higher extent of pedestrian 

friendliness of the street network. Further, higher numbers of daily walking trips are associated 

with compact neighborhoods (i.e., higher activity density) as well as neighborhoods with higher 
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frequencies of local transit service. Increased numbers of bicycling trips are also correlated with a 

higher intersection density within the neighborhood.  

The results of the ordered probit models also indicate that micro-level entropy variable 

(i.e., neighborhood mixed land use) may be the most important neighborhood-level built 

environment factor with respect to households’ daily number of nonmotorized trips due to having 

the largest average marginal effects among the neighborhood-level built environment variables in 

the models.  

Among the meso-level (i.e., county) built environment factors, higher compactness, higher 

density of pedestrian-friendly street network, higher levels of mixed land use are correlated with 

higher numbers of daily walking trips.  

Increased transit accessibility to employment opportunities within 45 minutes of transit 

commute is correlated with fewer daily walking trips. Compactness at the county level is 

negatively correlated with the number of household bicycling trips. On the other hand, a higher 

extent of county-level pedestrian-friendly street network density and higher intersection density 

are positively correlated with these trips.  

The results of the ordered probit models further indicate that macro-level (i.e., metropolitan 

area-level) built environment attributes are associated with walking but not with bicycling.  

Consistent with results of the mixed-effects models, the correlation of the macro-level 

entropy variable with the number of walking trips is negative. The negative direction of the 

correlation can be capturing the effects of having additional destination choices within the 

metropolitan area, which may lead to more vehicular travel to more distant destinations and fewer 

walking trips to nearby neighborhood destinations.  
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The number of walking trips are also negatively correlated with higher road network 

density within the metropolitan area and positively correlated with better street network 

connectivity and walkability (i.e., higher percentage of smaller blocks) throughout the entire 

metropolitan area.  

The largest average marginal effect for the built environment factors at the macro level in 

the walking model belongs to the entropy variable indicating that mixed land use within the 

metropolitan area is an important built environment element in the daily number of walking trips 

generated from households.  

As in the mixed-effects models, the only macro-level built environment variable exhibiting 

a significant coefficient in the bicycling model is the Mean Temporal Transit Accessibility 

variable. This indicates that higher transit accessibility to jobs within the metropolitan area is 

negatively correlated with households’ number of bicycling trips.  

These results are further indicative of the role that macro-level (metropolitan area-level) 

built environment characteristics plays in nonmotorized travel behavior of residents, especially in 

their walking activities.  

Overall, the results of the Florida household-level mixed-effects models and those of the 

Florida household-level ordered probit models provide additional evidence for the results obtained 

in the Baltimore-D.C. case study (Appendix C).  

The findings further confirm the main hypothesis of this study that nonmotorized travel 

behavior is correlated with meso-level (i.e., county-level) as well as macro-level (i.e., metropolitan 

area-level) built and social environment attributes, and not just with the micro-level (i.e., 

neighborhood-level) environmental attributes. 
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Florida Person-level Nonmotorized Travel Behavior Models: Multilevel Structural Equation 

Models (Multilevel SEMs) 

Guided by the existing literature on nonmotorized travel behavior and the framework of the 

ecological model of behavior and through employment of multilevel Structural Equation Modeling 

(multilevel SEM) techniques, the Florida person-level nonmotorized travel behavior models are 

developed and estimated in Chapter 4.  

These models examine the relationship between walking and bicycling mode shares at the 

individual level with consideration of the effects of built and social environment factors at multiple 

levels. These models also include individual-level socioeconomic and demographic characteristics 

to incorporate the ecological model’s emphasis on the impact of factors representing the 

intrapersonal level of influence on behavior. Further, the person-level models control for the 

residential self-selection effect (i.e., endogeneity bias) in the link between nonmotorized travel 

behavior and the built environment. 

The results show that individuals’ socioeconomic and demographic characteristics (i.e., the 

intrapersonal level of ecological influence) such as their age, race, gender, employment status, and 

educational attainment impact their nonmotorized travel mode share. As age increases, the daily 

walking and bicycling mode shares decrease for individuals. Being of the White race leads to 

increased levels of daily walking mode share, whereas being male leads to increased levels of daily 

bicycling mode share. Also, having a college degree is linked to higher walking mode shares, 

whereas being employed is linked to lower person-level daily walking and bicycling mode shares. 

The results also indicate that contextual effects—such as those of the residential location’s 

environmental factors at various levels of influence—play a role in people’s nonmotorized travel 

behavior.  
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Specifically, social environment factors (i.e., the interpersonal level of ecological 

influence) at multiple levels (i.e., micro, meso, macro levels) impact individuals’ nonmotorized 

travel mode share. 

Among the socioeconomic and sociodemographic factors, increased car ownership at the 

household and neighborhood levels (i.e., micro level) as well as at the metropolitan area level (i.e., 

macro level) influences individuals’ nonmotorized travel mode share in a negative direction.  

Increased household income (i.e., micro level) shows a positive influence on individuals’ 

walking mode share, whereas the direction of the effects of the income variable at the metropolitan 

area (i.e., macro level) implies that increased income levels within the metropolitan area negatively 

affect individuals’ walking mode share.  

Additionally, the results show that a higher average gasoline price within the metropolitan 

area (i.e., macro level) encourages higher person-level walking and bicycling mode shares. 

Further, as the average median age within the metropolitan area (i.e., macro level) increases, the 

person-level bicycling mode share decreases. 

With respect to sociocultural factors, increased numbers of household (i.e., micro level) 

transit trips lead to more nonmotorized trips by individuals—perhaps highlighting the positive 

influence of a household “transit travel culture” on its members’ walking and bicycling travel 

behavior.  

In addition, variables representing the county-level (i.e., meso-level) and metropolitan 

area-level (i.e., macro-level) average walking and bicycling density show positive effects on 

individuals’ nonmotorized travel behavior. This suggests that people who frequently see others 

walk and bicycle (as a result of living in counties or metropolitan areas with higher 

walking/bicycling densities) engage in such activities at higher rates.  
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Moreover, the variable measuring the annual public transportation passenger-miles within 

the metropolitan area (i.e., macro level) exhibits a positive effect on both walking and the bicycling 

mode shares of individuals. This implies that metropolitan areas with a “public transportation 

travel culture” may promote nonmotorized travel. 

Overall, these results mean that walking and bicycling are influenced by the “cultural 

effects” of the social norms toward nonmotorized travel and public transit existing within the area 

of residence.  

Further, the results of the Florida person-level nonmotorized travel behavior models 

provide evidence that higher percentages of foreign-born population living within the metropolitan 

area (i.e., macro level) influence individuals’ walking mode share in a positive direction—perhaps 

capturing the influence of the cultural norms of the country of origin on nonmotorized travel 

behavior of people. 

The metropolitan area-level (i.e., macro-level) crime variable does not show significant 

effects on residents’ daily walking and bicycling mode shares. 

The model estimations also confirm the impact of the built environment characteristics at 

multiple levels of geography (micro, meso, macro levels) on person-level walking and bicycling 

mode shares.  

Activity density at the neighborhood level (i.e., micro level) as well as the county level 

(i.e., meso-level) influences individuals’ walking mode share in a positive direction, meaning that 

compactness promotes walking as also found in many past studies (see Chapter 2). Neighborhood 

or county-level compactness, however, acts as a deterrent to bicycling trips as evidenced by the 

negative direction of influence of the variables representing activity density in the models. 
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 Increased mixed-use development (i.e., entropy) within the neighborhood (micro-level 

variable) is linked to higher walking and bicycling mode shares for residents; however, increased 

regional diversity (i.e., meso-level variable) and increased mixed-use development throughout the 

entire metropolitan area (i.e., macro-level variable) are linked to lower walking and bicycling 

mode shares. The latter findings can be a result of increased vehicular trips to additional destination 

options within the county and metropolitan area instead of making walking or bicycling trips to 

neighborhood destinations.  

These findings imply that with regards to nonmotorized trips, mixed-use development may 

be a stimulating factor at lower geographical scales such as the neighborhood. However, as 

metropolitan areas become more diverse in terms of land use, residents may be encouraged to drive 

to various additional destinations rather than using nonmotorized travel modes to reach the 

destinations located within their neighborhoods.  

Therefore, perhaps an optimal threshold exists for mixed-use development within 

metropolitan areas; one that allows sufficient diversification of land use within neighborhoods to 

promote trips using sustainable modes of travel but does not attract vehicular trips from distant 

locations due to providing very different and more unique destination options. 

Higher intersection density at the neighborhood and county levels (i.e., micro and meso 

levels) positively affects person-level bicycling mode share, whereas higher percentage of smaller 

blocks throughout the entire metropolitan (i.e., macro level) positively affects person-level 

walking mode share. These results suggest that improved street connectivity at various scales of 

geography encourages walking and bicycling.  

Also, more pedestrian-friendly networks and more walkable environments at the micro, 

meso, and macro levels of geography promote individuals’ nonmotorized mode share. This is 
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evidenced by the positive direction of effects of the neighborhood-level and county-level 

Pedestrian-friendly Network Density variables and the metropolitan area-level Walk Score variable 

in the person-level nonmotorized travel behavior models. Moreover, increased person-level 

walking mode share is linked to higher frequency of local transit service (i.e., micro-level variable).  

The results also provide evidence that higher levels of automobile accessibility to jobs 

within the county as well as higher levels of automobile and transit accessibility to jobs within the 

metropolitan area are related to decreased levels of nonmotorized mode shares for residents.  

Also, having lower levels of mobility (i.e., higher levels of roadway congestion) within the 

metropolitan area encourages nonmotorized trips by residents. 

Many significant paths in the person-level nonmotorized travel behavior multilevel SEM 

models make theoretical sense and confirm the results of the household-level models developed in 

this dissertation as well as those of the past empirical studies.  

Model estimations also indicate that individuals’ self-selection—shaped by their 

households’ social environment (i.e., household’s socioeconomic status as well as the transit and 

nonmotorized travel culture within the household)—influences their choice of residential location. 

These findings mean that, as found in many previous studies (see Appendix B), nonmotorized 

travel behavior is influenced by built environment characteristics as well as residential self-

selection. 

The impact of household-level random effects (i.e., random differences between 

households) also proves statistically significant in individuals’ nonmotorized trip mode share, 

which further emphasizes the importance of the household’s taste and role in individuals’ 

nonmotorized travel behavior. 
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Person-level Health Outcome Models: Instrumental Variable Binary Probit Models and 

Multilevel Structural Equation Models (Multilevel SEMs) 

Person-level health outcome models are developed in Chapter 5 of this dissertation to probe the 

factors that influence individuals’ health. These models examine the link between individual-level 

health status indicators, travel behavior, built environment attributes within the residential area at 

two spatial scales: the county level (i.e., meso level), and the metropolitan area level (i.e., macro 

level) as well as social environment attributes at three levels of influence: the household (i.e., micro 

level), the county (i.e., meso level), and the CBSA (i.e., macro level). The person-level health 

models utilize data from the state of Florida. 

Through comprehensive framework designs and employment of instrumental variable and 

multilevel Structural Equation Modeling (multilevel SEM) techniques, the person-level health 

outcome models also allow for addressing any potential spatial autocorrelation, endogeneity bias, 

and reverse causality between health outcomes and physical activity in the models.  

The results provide evidence that individual-level health outcomes are linked with person 

and household attributes, health behavior, travel behavior, as well as built and social environment 

attributes at meso level (i.e., county) and macro level (i.e., CBSA). 

Sociodemographic characteristics of the individual including age, race, gender, as well as 

the number of children in the household prove to play important roles in individuals’ health. 

Adverse physical and psychological health outcomes are linked with older age. These include an 

increased number of poor mental health days; a higher likelihood of obesity, asthma, or diabetes; 

a lower likelihood of having a good or excellent general health; and a lower likelihood of meeting 

the CDC-recommended levels of physical activity. Being of the White race is generally associated 

with better health outcomes such as a lower likelihood of obesity or diabetes, an increased 
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likelihood of having a good or excellent general health, and an increased likelihood of meeting the 

CDC-recommended levels of physical activity. Additionally, being male is associated with a 

higher likelihood of obesity, a lower likelihood of asthma, fewer numbers of poor mental health 

days, and a higher likelihood of meeting the CDC-recommended physical activity levels. Living 

with more children is associated with an increased likelihood of having a good or excellent general 

health and fewer numbers of poor physical health days. Due to some inconsistencies between 

findings of the present study and those of past research, further investigation into the role of 

presence of children in the household in health status of individuals is warranted.  

Socioeconomic characteristics such as employment status, educational attainment, and 

household’s income are also influential in individuals’ general health. Being employed is 

associated with an increased likelihood of having good or excellent general health as well as fewer 

numbers of poor physical and poor mental health days. Having a college degree is related to a 

higher likelihood of having good or excellent general health, fewer numbers of poor physical 

health days, and a higher likelihood of meeting the CDC-recommended physical activity levels. 

Higher household income levels are associated with a lower likelihood of asthma or diabetes, an 

increased likelihood of meeting the CDC-recommended physical activity levels and having a good 

or excellent general health, as well as fewer numbers of poor physical and mental health days. 

Moreover, results provide evidence that health-related behavior such as fruit and vegetable 

consumption, alcoholic beverages consumption, smoking habits, and level of physical activity can 

also impact individuals’ health. Higher levels of fruit and vegetable consumption are associated 

with better health outcomes including a lower likelihood of obesity, a higher likelihood of having 

a good or excellent general health and meeting the CDC-recommended physical activity levels, 

and fewer numbers of poor physical and mental health days. Being a current smoker contributes 
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to having a lower likelihood of being overweight or obese, and a lower likelihood of having 

diabetes. Nonetheless, being a smoker is associated with adverse health effects including a higher 

likelihood of asthma, a lower likelihood of having a good or excellent general health and meeting 

the CDC-recommended physical activity levels, as well as having an increased number of poor 

physical and mental health days. Former smokers have a higher likelihood of obesity, diabetes, or 

asthma; a lower likelihood of having a good or excellent general health; and increased numbers of 

poor physical and mental health days. Higher levels of alcohol consumption show a positive 

association with increased likelihood of being diagnosed with diabetes. Also, equally influencing 

individuals’ health is their level of physical activity. Higher physical activity levels are associated 

with a lower likelihood of obesity, asthma, and diabetes; lower numbers of poor physical or mental 

health days; and an increased likelihood of good or excellent general health. 

The results of the person-level health models also provide evidence that the built 

environment at two spatial levels (i.e., meso or county level and macro or metropolitan area level) 

influences individuals’ health outcomes. Among the meso-level built environment factors, higher 

county compactness (i.e., density) is on the one hand, related to a higher likelihood of meeting the 

CDC recommendations on physical activity and a lower likelihood of asthma, and on the other 

hand, related to increased likelihood of obesity and perhaps diabetes, a lower likelihood of having 

a good or excellent general health, as well as to having more mentally unhealthy days. Further 

research is needed based on consistent definitions of compactness to clarify the role of county-

level (i.e., meso-level) compactness as related to risks of obesity, diabetes and asthma for residents. 

In addition, increased mixed land use within the county is associated with an increased 

likelihood of meeting the CDC physical activity recommendations, and a lower likelihood of 

obesity, but also with a few adverse health outcomes including a higher likelihood of asthma or 
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diabetes, and having more unhealthy mental days. However, additional research may be needed to 

further clarify the impact of county-level mixed land use on residents’ health outcomes.  

Increased automobile-oriented intersection density within the county is associated with a 

higher likelihood of having a better general health, but also with a higher likelihood of asthma, 

and a lower likelihood of meeting the CDC-recommended physical activity levels. This factor does 

not show a statistically significant effect on other individual-level health outcomes including 

obesity—a finding consistent with that of a past study (Samimi and Mohammadian 2009) but in 

contrast with that of another (Samimi et al. 2009). Thus, further research into the role of meso-

level (i.e., county-level) intersection density in individuals’ health may be needed, particularly 

with regards to obesity. On the other hand, higher walkability (i.e., higher Walk Score) within the 

county is linked with a lower likelihood of obesity or asthma, a higher likelihood of having a good 

or excellent general health, and also with fewer numbers of poor physical health days. 

Moreover, albeit associated with a lower likelihood of asthma, increased distances from 

transit stops (i.e., a lower level of accessibility to local transit) are related to adverse health effects 

such as a higher likelihood of obesity or diabetes, and a lower likelihood of having a good or 

excellent general health—findings that may be capturing the health profile of residents of sprawled 

suburban areas. On the other hand, higher temporal accessibility to jobs within the county by 

means of transit (i.e., number of employment opportunities within 45 minutes of transit travel time) 

is associated with fewer numbers of poor physical health days, a lower likelihood of obesity, and 

probably with a lower likelihood of diabetes. Although, due to the average marginal effects of the 

latter result not being statistically significant in the model, further research may be needed to 

clarify the role of temporal transit accessibility to jobs as related to risk of diabetes. Higher 

temporal accessibility to jobs within the county by means of automobile is related to fewer poor 
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mental health days, a lower likelihood of meeting the CDC recommendations on physical activity 

levels, and an increased likelihood of obesity or diabetes. The findings on the adverse physical 

health effects of higher automobile accessibility to jobs may be capturing the effect of long 

automobile commutes. Results also suggest that increased levels of temporal accessibility to jobs 

by both automobile and transit may lead to increased risk of asthma. Cumulatively, the findings 

suggest that increased temporal automobile accessibility to employment opportunities within the 

county may lead to better psychological health, whereas increased temporal transit accessibility to 

employment opportunities may result in better physical health outcomes.  

Other meso-level (i.e., county-level) built environment factors such as access to clinical 

care, access to healthy/unhealthy food outlets and parks also prove to play key roles in individuals’ 

health. Higher access to clinical healthcare within the county is associated with a lower likelihood 

of obesity, a higher likelihood of having good or excellent general health, and fewer numbers of 

poor physical health days. Higher densities of fast food restaurants within the county are associated 

with a higher likelihood of obesity, diabetes, and asthma; a lower likelihood of meeting the CDC 

recommendations on physical activity; a lower likelihood of having a good or excellent general 

health; and increased numbers of poor physical health days. Increased access to healthy food 

outlets within the county, on the other hand, is associated with a lower likelihood of obesity, 

diabetes, and asthma; and a higher likelihood of meeting the CDC-recommended physical activity 

levels and having a good or excellent general health; as well as fewer poor mental health days.  

Higher access to parks is associated with a lower likelihood of diabetes, a higher likelihood 

of meeting the CDC physical activity recommendations, fewer numbers of poor physical and 

mental health days, and may be associated with a lower likelihood of obesity (although, the average 

marginal effects does not reach a statistical significance threshold in the obesity model). Higher 
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access to parks, however, is also linked with a higher risk of asthma. Furthermore, increased air 

pollution within the county is positively associated with the risk of asthma diagnosis, and is 

negatively associated with the likelihood of having a good or excellent general health as well as 

with more physical and mental unhealthy days. 

Macro-level (i.e., metropolitan area-level) built environment factors including measures of 

compactness, mixed-use development, street design, distance to transit, regional accessibility, and 

mobility also influence health outcomes for residents. Higher compactness (i.e., activity density) 

within the entire metropolitan area is linked with increased numbers of poor mental health days, 

an increased risk of obesity, and may also be related to a higher risk of diabetes for residents (the 

average marginal effects is not significant in the diabetes model). A higher extent of mixed-use 

development throughout the metropolitan area is positively associated with the likelihood of 

meeting the CDC physical activity recommendations and having a good/excellent general health, 

but is also associated with adverse health outcomes such as higher risks of asthma and diabetes.  

Increased automobile-oriented intersection density throughout the metropolitan area is on 

the one hand, associated with a higher likelihood of asthma and diabetes, and on the other hand, 

related to a higher likelihood of having a better general health status, and fewer number of poor 

physical health days. Increased distances to the nearest local transit stop (i.e., lower levels of 

accessibility to local transit) are associated with lower likelihood of asthma, but also with higher 

likelihood of obesity or diabetes, and increased numbers of physically or mentally unhealthy days. 

Additionally, increased temporal accessibility to jobs within the metropolitan area by 

means of transit is associated with a lower likelihood of obesity, and perhaps diabetes (the average 

marginal effects is not significant in the case of diabetes), a higher likelihood of meeting the CDC-

recommended physical activity levels, and a higher likelihood of having a good/excellent general 
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health status. However, higher transit accessibility to jobs within a metropolitan area is also linked 

to an increased number of poor mental health days, and may be associated with a higher likelihood 

of asthma (the average marginal effects is not significant in the case of asthma). Increased temporal 

accessibility to jobs within the metropolitan area by means of automobile (i.e., number of 

employment opportunities within a 45-minute car commute) may be associated with an increased 

likelihood of obesity, asthma, or diabetes and a lower likelihood of good/excellent general health. 

However, due to the average marginal effects only being statistically significant in the general 

health model, further investigation into the link between metropolitan area-level automobile 

accessibility and health outcomes is warranted. Higher temporal accessibility to jobs within a 

metropolitan area by means of automobile is also linked with fewer poor mental health days. 

Increased congestion levels within the metropolitan area are associated with a lower 

likelihood of meeting the CDC-recommended physical activity levels and having a good or 

excellent general health as well as with higher risks of obesity and asthma, and may also lead to 

an increased number of physically unhealthy days. 

Social environment factors at two spatial levels (i.e., meso or county level and macro or 

metropolitan area level) also influence individuals’ health outcomes. Among the meso-level social 

environment factors, sociodemographic factors such as the median age and racial composition 

within the county are influential. Increased median age within the county is associated with an 

increased likelihood of asthma and diabetes (average marginal effect is insignificant in the case of 

diabetes), a lower likelihood of having a good or excellent general health and meeting the CDC-

recommended physical activity levels, as well as with more poor physical and mental health days. 

 A higher percentage of White residents within the county is associated with an increased 

likelihood of asthma, but also with an increased likelihood of meeting the CDC-recommended 
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physical activity levels and having a good or excellent general health, and is also linked with a 

lower number of poor physical health days. As regards socioeconomic factors, higher county-level 

median household income is associated with a lower likelihood of asthma and/or diabetes.  

Among the macro-level social environment factors, socioeconomic factors such as the 

percentage of low-wage workers, average gross regional product, and percentage of households 

with no automobiles prove to be important factors in residents’ health outcomes. Cumulatively, 

the results on these variables suggest that a higher socioeconomic status within a metropolitan area 

is linked with a lower number of poor physical and mental health days, and is also associated with 

a lower likelihood of obesity and/or asthma, a higher likelihood of meeting the CDC 

recommendations on physical activity, and a higher likelihood of having a good or excellent 

general health status for residents. Higher crime rates within the metropolitan area are associated 

with a lower likelihood of meeting the CDC-recommended physical activity levels, having a good 

or excellent general health, and having asthma. Higher metropolitan-level crime rates may also be 

associated with a higher likelihood of obesity and/or diabetes; however, due to the corresponding 

average marginal effects not being statistically significant, further examination of the link between 

metropolitan area-level crime rates and the risk of obesity and diabetes for residents is needed.  

Increased densities of active travel within a metropolitan area are associated with lower 

risks of asthma and/or diabetes, and a higher likelihood of having a good/excellent general health 

status, and are also linked with fewer number of poor mental health days. Further, increased public 

transit usage within the metropolitan area is associated with a lower likelihood of obesity and/or 

diabetes, a higher likelihood of asthma, a lower likelihood of having a good or excellent general 

health status, and an increased number of physically unhealthy days. An increased commuter stress 
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index for residents of a metropolitan area is associated with a higher likelihood of obesity, a lower 

likelihood of having a good or excellent general health, and more physically unhealthy days. 

Results also indicate that travel behavior factors also impact individuals’ health outcomes. 

A higher nonmotorized travel mode share within the county is associated with a lower likelihood 

of obesity, a higher likelihood of having a good or excellent general health, as well as fewer 

numbers of poor physical and mental health days. An increased private vehicle travel mode share 

within the county is associated with a higher likelihood of asthma, and perhaps a higher likelihood 

of diabetes (the average marginal effects is statistically insignificant in the case of diabetes). The 

results also show a negative link between private vehicle travel mode share within a county and 

the number of poor mental health days for residents. A higher public transit mode share within the 

county is on the one hand, associated with a lower likelihood of obesity and/or diabetes, a higher 

likelihood of meeting the CDC recommendations on physical activity, and on the other hand, 

associated with a higher likelihood of asthma, a lower likelihood of having a good or excellent 

health, and an increased number of poor mental health days. Owing to inconsistencies among 

findings of a few previous studies and those of the present study regarding the role of public transit 

use within an area in general health of residents, additional research on this subject may be needed.  

Moreover, a higher average frequency of telecommuting within the county is associated 

with a higher likelihood of obesity, a lower likelihood of having a good or excellent general health 

status, and a lower likelihood of meeting the CDC recommendations on physical activity. 

Increased average frequency of telecommuting within the county is also associated with a lower 

likelihood of asthma. Also, an increased percentage of the county population with an option to 

telecommute is associated with a lower likelihood of asthma, a lower likelihood of meeting the 

CDC recommendations on physical activity, and an increased number of poor mental health days. 
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Further examination of the relationship between telecommuting and health indicators—

particularly obesity, physical activity, and mental health outcomes—may shed light on the 

inconsistencies between results of the present study and those of a few past studies. Other travel 

behavior measures including online shopping-related activities also prove to be of importance. 

Increased numbers of online purchases and/or deliveries are associated with a lower likelihood of 

asthma, but also with a lower likelihood of meeting the CDC-recommended physical activity 

levels, a lower likelihood of having a good or excellent general health, a higher likelihood of 

obesity, and an increased number of physically and mentally unhealthy days. 

The results also provide evidence that individuals’ attributes affect their physical activity. 

Older age is linked with fewer minutes of weekly physical activity by individuals, whereas being 

male and having a college education are linked with more minutes of weekly physical activity.  

The results also confirm existence of endogeneity bias in the obesity, diabetes, and asthma 

models and the appropriateness of employment of instrumental variable techniques to account for 

the endogenous physical activity independent variable in modeling these health outcomes.  

The results of the multilevel SEMs for the number of poor physical and mental health days 

imply that no reverse causality exists between these health outcomes and the extent of individuals’ 

physical activity per week. This finding is somewhat inconsistent with the results of the county-

level health models (see Appendix I), which indicate significant links between county-level active 

travel (i.e., physical activity) and health outcomes. Thus, further research is required to examine 

reverse causality between health outcomes and physical activity.  

Lastly, results of the person-level health models indicate that random differences between 

metropolitan areas (i.e., metropolitan-level random effects) do not play a role in health outcomes 

for the residents; a result which is consistent with that of the county-level health outcome models. 
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