
ABSTRACT

Title of dissertation: SEGMENTATION, RECOGNITION, AND ALIGNMENT
OF COLLABORATIVE GROUP MOTION

Ruonan Li

Dissertation directed by: Professor Rama Chellappa

Modeling and recognition of human motion in videos has broad applications in be-

havioral biometrics, content-based visual data analysis, security and surveillance, as well

as designing interactive environments. Significant progress has been made in the past two

decades by way of new models, methods, and implementations. In this dissertation, we

focus our attention on a relatively less investigated sub-area called collaborative group mo-

tion analysis. Collaborative group motions are those that typically involve multiple objects,

wherein the motion patterns of individual objects may vary significantly in both space and

time, but the collective motion pattern of the ensemble allows characterization in terms of

geometry and statistics. Therefore, the motions or activities of an individual object consti-

tute local information. A framework to synthesize all local information into a holistic view,

and to explicitly characterize interactions among objects, involves large scale global reason-

ing, and is of significant complexity. In this dissertation, we first review relevant previous

contributions on human motion/activity modeling and recognition, and then propose sever-

al approaches to answer a sequence of traditional vision questions including 1) which of the

motion elements are those relevant to a group motion pattern of interest (Segmentation); 2)

what is the underlying motion pattern (Recognition); and 3) how two motion ensembles are

similar and how we can ’optimally’ transform one to match the other (Alignment). Our pri-

mary practical scenario is American football play, where the corresponding problems are 1)

who are offensive players; 2) what are the offensive strategy they are using; and 3) whether

two plays are using the same strategy and how we can remove the spatio-temporal misalign-

ment between them due to internal or external factors. The proposed approaches discard

traditional modeling paradigm but explore either concise descriptors, hierarchies, stochastic



mechanism, or compact generative models to achieve both effectiveness and efficiency. In

particular, the intrinsic geometry of the spaces of the involved quantities is exploited and

statistical models are established on these nonlinear manifolds. These initial attempts have

identified new challenging problems in complex motion analysis, as well as in more general

tasks in video dynamics. The insights gained from nonlinear geometric modeling and anal-

ysis in this dissertation may hopefully be useful toward a broader class of computer vision

applications.
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Chapter 1

Introduction

Modeling and recognition of human motion in video data has broad applications

in vision such as behavioral biometrics, content-based visual data analysis, security and

surveillance, designing interactive environments, as well as animation and synthesis. Re-

search in this area has seen promising contributions including new models, methods, and

implementations. In this dissertation, we focus our attention on a relatively less investigated

sub-area called collaborative group motion analysis. Practically, collaborative group motion

will involve multiple participating objects rather than a single one. The motion patterns

among individual objects may vary significantly in both space and time, and we want to

identify models and/or design discriminative tools for the collective motion pattern of the

object ensemble. Note that in this setting the motions or activities of an individual object

constitute local information, and the framework to fuse all local information into a holistic

view and to explicitly characterize interactions and cooperations among objects necessities

large scale inference and is of significant complexity. In this dissertation, we first review

related prior work on human motion/activity related vision problems, and more important-

ly, propose solutions to several novel problems including 1) which of the motion elements

among all are the ones relevant to a group motion pattern of interest (Segmentation); 2)

what is the underlying motion pattern (Recognition); and 3) how two motion ensembles are

similar and how we can ’optimally’ transform one to match the other (Alignment). Our

primary practical scenario is American football plays, in which we want to locate, recognize,

and match the offensive strategies using the motion trajectories extracted from football play

videos. The proposed models and algorithms, at the same time, can also be used toward

various dynamic visual data as well. Overviews about these contributions are given in the

following four sections and are further elaborated in later chapters. These initial attempts

have identified many challenging new problems in complex motion analysis, as well as in

more general tasks in video dynamics. These potential research topics will be discussed in

the end as potential future work.
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1.1 Group Motion Recognition on Discriminative Temporal Interaction Man-

ifold

In the first contribution we explore a ‘data-driven’ scheme to recognize the offensive

play strategies in a football play. For this purpose, we assume that the players’ roles and

their motion trajectories are already available. For the former, we may recognize the roles

from the initial play formation with the help of landmark shape theory [14], and for the

latter we may employ a multi-object tracker [15]. These two problems are still being re-

searched and are not considered in this dissertation. Specifically, we describe a group motion

pattern with a full four-dimensional object-time interaction array, and learn an optimized

array reduction kernel to condense it to a discriminative temporal interaction matrix. The

temporal interaction matrix serves as a compact ‘descriptor’ for the group activity pattern,

and has been empirically observed to be stable under view changes. More importantly,

given a Riemannian metric the set of all temporal interaction matrices forms a Riemanni-

an manifold, on which we are able to establish a probabilistic framework to characterize

a given group motion pattern. We call this manifold Discriminative Temporal Interaction

Manifold (DTIM). To learn a multi-modal ‘likelihood’ density for each class, we create a

basic exponential density component on the manifold, and incrementally build up the com-

plete manifold-resided densities with the basic components. Within this framework, a MAP

classifier is used to recognize a new group motion observation. In addition we show that

many other spatio-temporal features also fall into this framework and the proposed method

is therefore applicable to other scenarios as well.

1.2 Group Motion Segmentation using a Hierarchical Driving-Force Model

In the second contribution we consider the ‘group motion segmentation’ problem

and provide a solution for it. The group motion segmentation problem aims at analyzing

motion trajectories of multiple objects in videos and finding among them the ones involved

in a ‘group motion pattern’. This problem is motivated by and serves as the basis for

the recognition problem. By ‘segmenting’ a group motion we mean dividing all objects

in motion into two sets, one of which behaves according to a group-wise motion pattern.

In a football play only the offensive players follow the offensive strategy of interest, while

the whole trajectory set also includes those of defensive players which should be ‘filtered

2



out’. Specifically, we learn a Spatio-Temporal Driving Force Model to characterize a group

motion pattern and design an approach for segmenting the group motion. Note that our

segmentation is based on motion only, i.e., we do not use other discriminative features.

We illustrate the approach using videos of American football plays, where we identify the

offensive players, who follow an offensive motion pattern, from motions of all players in

the field. Since motion trajectories arise in other scenarios, such as tracks of local spatio-

temporal interest points, we will also demonstrate the applicability of the model to generic

trajectory ensembles, for the purpose of discovering a relevant group of motion of interest.

1.3 Matching Two Motion Ensemble: A Stochastic Optimization on the

Alignment Manifold

In the third contribution we investigate the spatio-temporal alignment of two group

motion patterns, and more generally, videos or features/signals extracted from them. Specif-

ically, we formally define an alignment manifold and formulate the alignment problem as

an optimization procedure on this non-linear space by exploiting its intrinsic geometry. We

focus our attention on semantically meaningful videos or signals, e.g., those describing or

capturing human motion or activities, and propose a new formalism for temporal alignment

accounting for executing rate variations among realizations of the same video event. By

construction, we address this static and deterministic alignment task in a dynamic and s-

tochastic manner: we regard the search for optimal alignment parameters as a recursive

state estimation problem for a particular dynamic system evolving on the alignment mani-

fold. Subsequently, a Sequential Importance Sampling iteration on the alignment manifold,

as well as an extended version incorporating stochastic gradient information, are designed

for effective and efficient alignment. We demonstrate the performance on not only motion

ensembles but also several other types of input data that arise in vision applications.

1.4 A Generative Model for Joint Segmentation and Recognition

In the final contribution we jointly recognize and segment coordinated group motions

by proposing a generative model which describes the spatial coordination among objects.

Under this compact but comprehensive graphical model, we start from an offensive play

strategy, take all the factors contributing to an football play into consideration, and end
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up with the observed tracks for the players. With the Bayesian framework we are able to

jointly perform segmentation and recognition. This work can be seen as extending the ‘static’

problem of shape segmentation [16] to a ‘dynamic’ case. In particular, in this framework

we also statistically characterize the variations due to view changes for group activities, and

achieve view-invariant recognition and segmentation. As a by-product, we also show that

the co-occurrence function occurring as a component of the framework, is a discriminative

feature itself, and thus can be used for group motion recognition as well.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we present a brief

literature survey on human motion and activity recognition from videos. Then, we discuss

the recognition problem using a statistical formulation on DTIM in Chapter 3. We elaborate

on the group motion segmentation problem in Chapter 4, followed by a detailed discussion

about the alignment manifold and two particle filters implemented on it in Chapter 5.

Then, we present the probabilistic generative model of group motions together with a joint-

recognition-and-segmentation method in Chapter 6. Finally, in Chapter 7 we discuss future

research directions.
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Chapter 2

Related Work on Human Motion Recognition

In this chapter we give a brief literature review regarding human motion modeling

and recognition. After an overview section we discuss simple low-level features and non-

parametric methods for human motion and activities. Then we turn to more complex

models as well as invariance issues in recognition problems. In particular, we describe recent

works on multi-object group motion recognition, which is closely related to our work. This

chapter is largely based on a recent survey by Turaga et.al. [17], which is one of the most

comprehensive surveys on past and current research realted to this dissertation. In addition,

we briefly review differential geometric approaches in computer vision as the background of

using analytical manifolds for group motion analysis.

Human motion is closely related to human actions and activities. We repeatedly see

the terms ‘action’ and ‘activity’ in the vision literature at times in a non-distinguishable way.

In [17], the authors suggest the following definition. By ‘action’ they refer to a simple motion

pattern usually executed by a single person, and mostly lasting for short durations of time

typically on the order of a few seconds. Examples of this type include bending, walking etc.,

captured in standard datasets like KTH dataset. On the other hand, by ‘activity’ they refer

to the complex sequence of actions performed by several people who could be interacting

with each other in a constrained manner. The activities are typically observed over much

longer durations, for example, two persons shaking hands, a football team scoring a goal or

a coordinated bank attack by multiple robbers. However, in fact it is not trivial to find a

well defined boundary between the two categories and there is a ‘transition zone’ between

the two extremes. For example, the gestures of a music conductor conducting an orchestra,

or the constrained dynamics of a group of humans, can neither be classified as a simple

‘action’ nor as a complex ‘activity’ following the above interpretation. In this dissertation

we do not pursue a precise distinction among ‘human motion’, ‘action’, or ‘activity’, but use

the term ‘human motion’ in a loose sense. In the context of a specific problem, an explicit

interpretation will not be difficult.

Other survey papers on topics related to human motion modeling and recognition

from videos have appeared over the past two decades. The following ones have been widely
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cited. Aggarwal and Cai [18] divided a complete action recognition system into three compo-

nents – extraction of human body structure from images, tracking across frames, and finally,

recognizing the action, and then discussed each of them. Cedras and Shah [19] presented a

survey on motion-based approaches to recognition as opposed to structure-based approach-

es. They argue that motion is a more important cue for action recognition than the structure

of the human body. Gavrila’s survey [20] mainly focused on tracking of hands and humans

via 2D or 3D models and presented a discussion of action recognition techniques. Moeslund

et al [21] recently summarized problems and approaches in human motion capture including

human model initialization, tracking, pose estimation and activity recognition. For a survey

about the new progress made in the recent past, one may refer to [22].

As pointed out in [17], a generic human motion recognition system can be viewed

as proceeding in a series of steps, from a sequence of images to a higher level seman-

tic characterization. The major steps involved are sequentially 1)Extraction of descrip-

tive/discriminative low-level features; 2)Mid-level representations from low-level features,

if necessary; and 3)High-level semantic interpretations from primitive motions. Lower-level

modules of detection and tracking as those discussed in length in the above surveys as well as

in [15] are beyond the scope of this dissertation, and in this chapter we will mostly focus on

the mid to high level vision tasks – modeling and recognition, assuming that pre-processing

has been done to a reasonable extent.

2.1 Features and Simple Non-Parametric Methods

In this section, we discuss relevant aspects on low-level features extracted from raw

videos containing the human motion of interest. We also present a list of basic tools that

make use of these features for human motion recognition.

The reason for feature extraction is due to the fact that video consist of massive

amounts of raw information, and not all content in videos is directly relevant to the task

of understanding and identifying the activity captured in the video. Johansson [23] demon-

strated that humans can perceive gait patterns from point light sources placed at a few limb

joints without additional information. Additional visual information in terms of color of the

clothing, illumination conditions, background clutter do not contribute more to the recog-

nition task. The following popular low-level features have been widely adopted in research

and practical applications.
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Optical flow, defined as the apparent motion of individual pixels on the image plane,

frequently serves as a good approximation of the true physical motion projected onto the

image plane. Brightness constancy assumption is the basis of most methods for computing

optical flow. Optical flow provides a local description of both the regions of the image

undergoing motion and the velocity of motion. In practice, computation of optical flow

significantly suffers from noise and illumination changes. Applications as early as [24] used

optical flow to detect and track vehicles in an automated traffic surveillance scenario.

Point trajectories of moving objects are also among popular features for characterizing

the motion of the object. The image-plane coordinates of trajectories may be useful only

in limited cases, as the absolute locations will change with typical transformations like

translations, rotations and scaling. Augmented features like trajectory velocities, trajectory

speeds, spatio-temporal curvature, relative-motion etc have been shown to be invariant to

some of these variations. See [19] for relevant approaches. Extracting unambiguous point

trajectories from video is sensitive to nuisance factors such as occlusions, noise, background

clutter etc., which highlights the necessity of accurate tracking, another very challenging

research topic [15].

Background subtracted blobs come from background subtraction, a popular method

for identifying moving regions of a scene by segmenting it into background and foreground.

Several approaches to background modeling exist, among which the most popular one may

be the one that learns a statistical distribution of pixel intensities from the background as

in [25]. By adaptively updating the background model according to incoming data, the

method can also be applied to scenarios with changing background.

Shape of the human silhouette plays a very important role in perceiving human mo-

tions. Approaches to quantify human shape include global, boundary and skeletal based

ones. Global methods compute the numerical shape descriptors from the whole region of the

moving object, e.g., shape moments [26]. Boundary methods, on the other hand, consider

only the shape contour as the characterization of the shape. Chain codes [27] and landmark-

based statistical shape descriptors [28] belong to this category. Skeletal methods represents

a complex shape as a set of 1D skeletal curves, for example, the medial axis transform [29].

Applications include shape-based dynamic modeling of the human silhouette [30] for gait

recognition.

With low-level features in hand we may turn our attention to the design of classifiers.
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Classifiers for recognizing human motion vary from simple non-parametric ones to complex

parametric ones. Parametric approaches typically impose a model on the dynamics of the

motion. Non-parametric approaches rely on coarse representations drawn from data such

as motion-templates. We will first discuss the non-parametric methods in this section.

Parametric approaches, e.g., Hidden Markov Models (HMMs), Linear Dynamical Systems

(LDSs) etc., identify a model involving mathematical constraint and controlling parameters,

which for a class of human motions is normally estimated from training data. We will discuss

them in the next section.

One of the earliest attempts at motion/action recognition by Polana and Nelson [31]

resembles 2D-templates matching. Motion detection and tracking of humans in the scene

was first performed in their approach. Then a cropped sequence containing the human is

generated with the scaling effect compensated for. After that, ‘periodicity index’ is computed

for the given human motion to describe quantitatively how ‘periodic’ the underlying human

motion is. To perform recognition, the nearly periodic sequence is segmented into individual

cycles using the periodicity estimate and combined to get an average-cycle. The average-

cycle is divided into a few temporal segments and flow-based features are computed for each

spatial location in each segment. The flow-features in each segment are averaged into a

single representation. The average-flow frames within an activity-cycle form the templates

for each action class. Another early attempt for representation and recognition of quasi-

cyclic actions appeared in [32], which is also based on periodicity analysis and successfully

applied to quasi-periodic actions such as walking, running, swimming etc.

Alternatively, ‘temporal templates’ were proposed by Bobick and Davis [33] as models

for human motions. In their implementation, background subtraction comes first, followed

by an aggregation of a sequence of background subtracted blobs into a single static image.

They propose two methods of aggregation – the first method gives equal weight to all images

in the sequence, which gives rise to a representation called the ‘Motion Energy Image’ (MEI).

The second method gives decaying weights to the images in the sequence with higher weight

given to new frames and low weight to older frames. This leads to a representation called

the ‘Motion History Image’ (MHI). The MEI and MHI together comprise a ‘template’ for

a given action. From the templates, translation, rotation and scale invariant moments are

extracted which are then used as features for recognition. It turned out that MEI and

MHI have sufficient discriminating capability for several simple human motion classes such
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as ‘sitting’, ‘bending’, ‘crouching’ and other aerobic postures. However, it was also noted

that MEI and MHI do not perform well for long-term complex human motions due to over

aggregation.

In contrast to extracting features from individual frames of the video sequence, an-

other line of study directly regards human motions as 3-D spatio-temporal volumes. Chomat

et al. [34] model a segment of video as a spatio-temporal volume indexed by (x, y, t) and

compute local appearance models at each pixel using a Gabor filter bank at various orien-

tation and spatial scales and a single temporal scale. A given activity is recognized using

a spatial average of the probabilities of individual pixels in a frame. As activities are an-

alyzed at a single temporal scale, this method can only be employed without variations in

execution rate among activities. Extending this approach, local histograms of normalized

space-time gradients at several temporal scales are extracted by Zelnik-Manor and Irani

[35]. The sum of the chi-square statistic between histograms is used to match an input

video with pre-stored training samples.

The Bag-of-Features approaches have drawn sufficient attention from motion analysis

community in recent years, due to its promising performance in still object recognition.

Laptev and Lindeberg [36] initially proposed a spatio-temporal generalization of the Harris

interest point detector and applied it to modeling and recognition of actions. Subsequently,

Dollar et al. [37] modeled a video sequence using distribution of space-time (ST) feature

prototypes. The feature prototypes are obtained by k-means clustering of a large set of space-

time gradients extracted at extracted ST interest points. Neibles et al. [38] used a similar

approach where they use a bag-of-words model to represent actions. The bag-of-words model

is learnt by extracting spatio-temporal interest points and clustering of the features. Note

that since most interest points are obtained by linear operations such as filtering and spatio-

temporal gradients, the descriptors are sensitive to changes in appearance, noise, occlusions

etc.. Moreover, interest points are often sparse in space and time and certain types of actions

do not give rise to distinctive features [38, 37].

Also inspired by the success in still object recognition, researchers working on videos

tried to seek alternate representations of motion patterns as spatio-temporal objects. Syeda-

Mahmood et al. [39] proposed a representation of actions as generalized cylinders in the

joint (x, y, t) space. Yilmaz and Shah [40] represent actions as 3-D objects induced by

stacking together tracked 2-D object contours. A sequence of 2-D contours in (x, y) space
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can be treated as an object in the joint (x, y, t) space. This representation encodes both the

shape and motion characteristics of the human. From the (x, y, t) representation, concise

descriptors of the object’s surface are extracted corresponding to geometric features such

as peaks, pits, valleys and ridges. Since this approach is based on stacking together a

sequence of silhouettes, accurate correspondence between points of successive silhouettes

in the sequences needs to be established. Parallel to this approach, [41] proposed using

background subtracted blobs, instead of contours, which are stacked together to create an

(x, y, t) binary space-time volume. Since this approach uses background subtracted blobs,

the problem of establishing correspondence between points on contours in the sequence does

not exist. From this space-time volume, 3-D shape descriptors are extracted and used as

features for classifying different human motions.

2.2 Parametric Methods

In the previous section we focused on simple non-parametric representations and

models for human motion classes. The parametric approaches that we describe in this

section are much more powerful for modeling spatially and/or temporally complex activities.

Methods such as HMMs, LDSs are well suited for activities governed by complex temporal

dynamics. By comparison, simple non-parametric matching methods often require too many

templates or are too weak to capture the dynamics. Examples of such complex actions

include the steps in a ballet dancing video, a juggler juggling a ball and a music conductor

conducting an orchestra using complex hand gestures. Accurate modeling and recognition

of these complex motions requires more sophisticated methods that explicitly characterize

the temporal dynamics.

One of the most popular methods used for modeling complex temporal dynamics is

the so called state-space approaches. State-space approaches model the temporal evolution

of features as a trajectory in some configuration space, where each point on the trajectory

corresponds to a particular ‘configuration’ or ‘state’. Among different state-space models,

Hidden Markov Models or HMMs has been prevalent. In the discrete HMM formalism, the

state space is considered to be a finite set of discrete states. The temporal evolution is

modeled as a sequence of probabilistic jumps from one state to another. A useful source for

a detailed technical introduction to HMMs and its three core modules – Inference, Decoding

and Learning – is detailed in [42], targeted for speech precognition applications. Since the
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90’s, HMMs have been finding wide applicability in computer vision systems. One of the

earliest approaches to recognize human actions with HMMs was proposed by Yamato et al.

[43] where they recognized tennis shots such as backhand stroke, backhand volley, forehand

stroke, forehand volley, smash etc by modeling a sequence of background subtracted images

as outputs of class-specific HMMs. Several successful gesture recognition systems reported

in [44, 45], make extensive use of HMMs by modeling a sequence of tracked features such

as hand blobs as HMM outputs. Apart from gesture recognition, HMMs have also found

application in modeling the temporal evolution of human gait patterns both for human

motion recognition and biometrics (cf. Kale et al. [46], Liu and Sarkar [47]).

The HMM-based approaches assume that the feature sequence being modeled is the

result of a single person performing an action. Hence, they are not directly applicable to

applications where there are multiple agents performing an action or interacting with each

other. To extend its application beyond single-object activities, Brand et al [48] proposed a

coupled HMM to represent the dynamics of interacting targets. The superiority of their ap-

proach is demonstrated over conventional HMMs in recognizing two-handed gestures. Incor-

porating domain knowledge into the HMM formalism has been investigated by researchers

like Moore, Essa and Hayes [49]. They use HMMs in conjunction with object detection

modules to exploit the relationship between actions and objects. Hongeng and Nevatia [50]

incorporate a priori beliefs of state-duration into the HMM framework to get a ‘Hidden

semi-Markov Model’ (semi-HMMs). Recently, Cuntoor and Chellappa [51] have proposed

a mixed-state HMM formalism to model non-stationary activities, where the state-space is

augmented with a discrete label for higher-level behavior modeling. With both generative

and discriminative capabilities, HMMs have proved to be efficient for modeling temporal

data. HMMs are well-suited for tasks that require recursive probabilistic estimates or when

explicit segmentation into atomic action units is difficult. However, their utility is also re-

stricted due to the simplifying assumptions that the model is based on. Specifically, the

assumption of Markovian property and the time-invariant nature of the model restricts the

applicability of HMMs to relatively short-duration activities and in particular to stationary

temporal patterns.

Linear Dynamical Systems are special cases of state-space models, where the prob-

abilistic dynamics are usually constrained to be linear Gaussian ones, but also generalized

cases of HMMs in the sense that the state-space is not necessarily a finite set of symbols but
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can take on continuous values in Rk where k is the dimensionality of the state-space. One

of the simplest forms of LDS is the first order time-invariant Gauss-Markov process which

can be interpreted as a continuous state-space generalization of HMMs with a Gaussian

observation model. Quite a few of applications such as recognition of humans and actions

based on gait (Bissacco et al [52], Veeraraghavan et al [53], Mazzaro et al. [54]), as well as

dynamic texture modeling and recognition [55, 56] have been proposed using LDSs. First

order LDSs were used by Vaswani et al [2] to model the configuration of groups of people

in an airport setting by considering a collection of moving points (humans) as a deforming

shape. Advances in system identification theory for learning LDS model parameters (c.f.

from data [57]) and distance metrics on the LDS space [58] have given rise to the popularity

of LDSs for learning and recognition of high-dimensional time-series data. Studies on ex-

tended LDS models enable novel application such as dynamic boosting [59], kernel density

estimation [60], and kernel distances [61].

To further extend LDS in order to cope with more involved dynamics, Switching

Linear Dynamical Systems (SLDS) have been proposed. To motivate SLDS, consider the

following long-term motion – a person bends down to pick up an object, then walks to a

nearby table and places the object on the table and finally rests on a chair. This activity

is composed of a sequence of short segments each of which can be modeled as a LDS. The

entire process, therefore, switches among different LDSs. SLDS is also called Jump Linear

Systems (JLS), consisting of a set of LDSs with a switching function that causes model

parameters to change by switching between models. As a prototype of SLDS, a multi-

layered approach is presented by Bregler [62] to recognize complex movements consisting

of several levels of abstraction. The lowest level is a sequence of input images. The next

level consists of ‘blob’ hypotheses where each blob is a region of coherent motion. At

the third level, blob tracks are grouped temporally. The final level, consists of a HMM

which represents the complex behavior. North et al [63] augment the continuous state

vector with a discrete state component to make a ‘mixed’ state. The discrete component

represents a mode of motion or more generally a ‘switch’ state. Corresponding to each

state, a Gaussian Auto-Regressive Process (ARP) model is used to represent the dynamics.

A maximum likelihood approach is used to learn the model parameters for each motion class.

Pavlovic and Rehg [64] model the non-linearity in human motion in a similar framework,

where the dynamics are modeled using LDS and the switching process is modeled using a
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probabilistic finite state-machine. Though the SLDS framework has greater modeling and

descriptive power than LDSs, learning and inference in SLDS is much more complicated,

often requiring approximations [65]. In practice, determining the appropriate number of

switching states is challenging and often require large amounts of training data. Apart

from maximum likelihood (ML) approaches, algebraic approaches that can simultaneously

estimate the number of switching states, the switching instants and also the parameters

of the model for each switch state have been proposed by Vidal, Chiuso and Soatto [66],

though they are often not robust to noisy data as well as outliers.

HMMs and LDSs belong to the class of a graphical model or a Bayesian network

(BN). A BN is a statistical model that encodes complex conditional dependencies between a

set of random variables using a graph. Specifically, A BN consists of nodes representing ran-

dom variables and directed edges representing causality relations. Dynamic Belief networks

(DBNs) are a special class of the general BNs, which incorporate temporal dependencies

among random variables. A HMM can be seen as one of the simplest DBNs. In general,

DBNs encode more complex conditional dependence relations among several random vari-

ables than just one hidden random variable in the case of HMMs. Development of efficient

algorithms for learning and inference in graphical models (c. f. [67, 68]) have made them

popular tools to model structured activities [24]. Methods to learn the topology or struc-

ture of BNs from data [69] have also been investigated in the machine learning community.

Other typical applications of BNs in activity-related problems include: 1) [70], which uses

BNs to capture the dependencies between scene layout and low-level image measurements

for a traffic surveillance setting; 2) [71], which presents an approach using DBNs for scene

description at two levels of abstraction — agent level descriptions and inter-agent interac-

tions; 3) [6], which uses BNs for multi-agent interactions where the network structure is

automatically generated from the temporal structure provided by an user; and 4)[72], which

proposes a pose-based hierarchical approach to recognize two-person interactions.

Petri Nets are not considered as a member of the statistical BN family, though they

still find use in human motion related applications. Particularly designed for describing rela-

tions between conditions and events, Petri Nets are useful to model and visualize behaviors

such as sequencing, concurrency, synchronization and resource sharing. Conditions refers

to the state of an entity, and events refer to changes in the state of the entity. Petri-Nets

were used by Castel et al [73] to develop a system for high-level interpretation of image
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sequences and by Ghanem et al [74] as a tool for querying surveillance videos. The concept

of a probabilistic Petri Net (PPN) is also introduced by Albanese et al [75].

2.3 Syntactic, Knowledge and Logic Based Approaches

Syntactic approaches for human motion recognition is a natural outcome of the suc-

cess achieved by syntactic pattern recognition approaches such as Context-free grammars

(CFG). They express the structure of a process using a set of production rules. To draw a

parallel to grammars in language modeling, the production rules specify how complex sen-

tences (human motions) can be constructed in a grammatically sound manner from simpler

words (human motion primitives), and how to recognize if a given sentence (video) conforms

to the rules of a given grammar (human motion model). Syntactic approaches are a good

alternative for parametric approaches discussed above, when the structure of a process is

difficult to learn but may be known a priori. Syntactic pattern recognition approaches were

firstly applied to still-image recognition tasks, and the outstanding performance in these

domains coupled with the success of HMMs and DBNs in action-recognition tasks, extend

syntactic approaches into human motion recognition problems. One of the earliest uses of

grammars for visual activity recognition was proposed by Brand [76], who used a grammar

to recognize hand manipulations in sequences containing disassembly tasks. They made use

of simple grammars with no probabilistic modeling or error analysis. Ryoo and Aggarw-

al [77] used the CFG formalism to model and recognize composite human activities and

multi-person interactions. They followed a hierarchical approach where the lower-levels are

composed of HMMs and Bayesian Networks. The higher-level interactions are modeled by

CFGs.

Despite the strength of CFG, algorithms for detection of low-level primitives are

frequently probabilistic in nature. Thus, Stochastic Context-free grammars (SCFGs) which

are a probabilistic extension of CFGs were found to be suitable for integration with real-

world vision modules. SCFGs appeared in Ivanov and Bobick’s work [78] to model the

semantics of activities whose structure was assumed to be known. They used HMMs for low-

level primitive detection. The grammar production rules were augmented with probabilities

and a ‘skip’ transition was introduced. This led to improved robustness to insertion errors

in the input stream and also to errors in low-level modules. Results on surveillance videos

and complex gestures of a music conductor showed promising results. Moore and Essa
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[79] used SCFGs to model multi-tasked human motions – human motions that have several

independent threads of execution with intermittent dependent interactions with each other,

as demonstrated in a Blackjack game with several participants. In addition to these efforts,

Ogale et al automatically [80] learn a probabilistic context-free grammar (PCFG) for human

actions from sequences of human silhouettes. Probabilistic attribute grammars have also

been used by Joo and Chellappa [81] for recognizing multi-agent activities in surveillance

settings.

Different from grammar based approaches, logic and knowledge-based approaches ex-

press human motions in terms of primitives and constraints on them. These methods can

incorporate far more complex constraints than grammar-based approaches. While gram-

mars can be efficiently parsed due to their syntactic structure, logical rules can lead to a

computational overhead due to constraint satisfaction checks. However, logical rules are

often far more intuitive and human-readable than grammatical rules.

Specifically, logic-based methods rely on formal logical rules to describe constraints

in activities. Logical rules are useful to express domain knowledge as input by a user or

to present the results of high-level reasoning in an intuitive and human-readable format.

Medioni et al. [82] propose a hierarchical representation to recognize a series of actions

performed by a single agent. Symbolic descriptors of actions are extracted from low-level

features through several mid-level layers. Then, a rule-based method is used to approximate

the probability of occurrence of a specific activity, by matching the properties of the agent

with the expected distributions (represented by a mean and a variance) for a particular

action. In a later work, Hongeng et.al. [83] extend this representation by considering

an activity to be composed of several action threads. Each action thread is modeled as a

stochastic finite-state automaton. Constraints between the various threads are propagated in

a temporal logic network. Shet et al [84] propose a system that relies on logic programming to

represent and recognize high-level activities. Low level modules are used to detect primitive

events. The high level reasoning engine then recognizes activities represented by logical

rules between primitives.

In practice, whichever of the afore-mentioned approaches is used for system deploy-

ment, symbolic motion definitions are constructed in an empirical manner. Though empir-

ical constructions are fast to design and probably work well in most cases, they are limited

in their utility to the specific deployment for which they have been designed. Hence, it
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turns out to be necessary for a centralized representation of human motion definitions or

ontologies for human motions which are independent of algorithmic choices. Ontologies

standardize human motion definitions, allow for easy portability to specific deployments,

enable inter-operability of different systems and allow easy replication and comparison of

system performance. Chen et al. [85] use ontologies for analyzing social interaction in nurs-

ing homes. Hakeem et al have used ontologies for classification of meeting videos [86]. Georis

et al [87] use ontologies to recognize activities in a bank monitoring setting. Bremond and

Thonnat [88] have investigated the use of contextual information in human motion recogni-

tion through domain ontologies. In the Video Event Challenge Workshops held in 2003 [89],

ontologies were defined for six domains of video surveillance - 1) Perimeter and Internal

Security, 2) Railroad Crossing Surveillance, 3) Visual Bank Monitoring, 4) Visual Metro

Monitoring, 5) Store Security, 6) Airport-Tarmac Security. This led to the development

of two formal languages - The Video Event Representation Language (VERL) [90], which

provides an ontological representation of complex events in terms of simpler sub-events, and

the Video Event Markup Language (VEML) which is used to annotate VERL events in

videos.

2.4 Invariance in Motion Analysis

One of the most significant challenges in motion/activity recognition is to find ‘in-

variants’, i.e., quantities or descriptors that can uniquely characterize the human motion

while are robust to the wide variability in features that is observed within the same activity

class. Sheikh et. al. [91] have identified three important sources that give rise to variability

in observed features. They are 1) Viewpoint, 2) Execution Rate, and 3) Anthropometry.

Any real-world human motion recognition system should aim to discover invariants to these

factors. In this section, we will review efforts and contributions in these areas.

A fundamental problem in video-based recognition of human motion/activity is achiev-

ing view invariance when representing these human motions. In general, it may be easy to

establish statistical models of simple actions based on the representations discussed so far

from a single view, but it is absolutely non-trivial to generalize them to other views even

for very simple action classes. This is due to the wide variations in motion-based features

induced by camera perspective effects and occlusions. A straight forward solution to this

problem is to keep templates from several canonical views as done by Bobick et al. [33] and
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interpolate across the stored views as proposed by Darrell, Essa and Pentland [92]. This

approach however is in general not scalable since one does not know how many views to

consider as canonical. Another approach is to assume that point correspondences across

views are available as in Syeda-Mahmood et al. [39] and compute a transformation that

maps a stored model to an example from an arbitrary view. Seitz and Dyer [32] present an

approach to recognize cyclic motion that is affine-invariant by assuming that feature cor-

respondence between successive time-instants is known. It is shown by Rao and Shah [93]

that extrema in space-time curvature of trajectories is preserved across views. The extrema

in space-time curvature of hand trajectories are denoted as ‘dynamic instants’. An action is

then considered as a sequence of dynamic instants which is preserved across several views.

Another example is the work of Parameswaran and Chellappa [94, 95], where a view invari-

ant representation of actions is defined based on the theory of 2D and 3D invariants. In this

approach, an action is considered to be a sequence of poses, and it is assumed that there

exists at least one key-pose in the sequence in which five points are aligned on a plane in the

3-D world coordinates. Using this assumption, a set of view-invariant descriptors is derived.

More recently, Weinland et al [96] extend the notion of motion-history [33] to 3-D, where

multiple views are combined from multiple cameras to obtain a three-dimensional binary

occupancy volume. Motion history is computed over these 3-D volumes and view-invariant

features are extracted by computing circular FFT of the volume.

The issue of Rate Invariance is brought by another major source of observed vari-

ability in features arising from the differences in execution rates while performing the same

action. Variations in execution style exist both in inter-person and intra-person settings.

State-space approaches have robustness toward minor changes in execution rates, but are

not rigorously rate-invariant since they do not explicitly address transformations of the

temporal axis ((c. f. Bobick and Wilson [97], Hoey and Little [98])). Mathematically, the

variation in execution rate can be described with a warping function of the temporal scale.

The simplest case of linear time-warps can be usually dealt with fairly easily (c. f. [33, 99]).

For those highly non-linear warping functions, typical methods are based on Dynamic Time

Warping of the feature sequence ( c.f. [100, 92, 101, 102, 103]).

Anthropometric Invariance aims to minimize the negative effect from variations in-

duced by the size, shape, gender etc. of humans, which is another important class of

variabilities that requires careful attention. Unlike viewpoint and execution-rate variabili-
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ties which have been well-studied, a systematic study of anthropometric variations has only

been receiving limited interests until in recent years. Ad-hoc methods which normalize the

extracted features to compensate for changes in size, scale etc. are usually employed when

no further information is available. Drawing on studies on human anthropometry, Gritai

et al. in [104] suggested that the anthropometric transformation between two different in-

dividuals can be modeled as a projective transformation of the image co-ordinates of body

joints. Based on this, they define a similarity metric between actions, by using epipolar

geometry to provide constraints on actions performed by different individuals.

2.5 Multi-Object Cooperative Group Motion

As reviewed up to this point, human motion analysis and classification has been

a research focus of computer vision community for at least two decades, and significant

contributions have been emerging over the years. However, most of these previous works

focused on single object cases, where the motion and dynamics of an individual object are

investigated. Activities of multiple objects exist widely in surveillance, sports, and biological

observation records, etc., and consequently modeling and analysis of multi-object activities

will be useful in these applications. Although the multi-object tracking problem has been

extensively studied [15], much less attention has been paid to putting the tracked motion

pattern of the whole group in a learning and recognition framework. Limited work on multi-

object coordinated group motions has been done only in the context of limited objects and

highly structured motion patterns, as will be briefly discussed below.

In a less complex scenario, where the individuals in a group undergo a structurally

fixed motion [1] (see Figure 2.1) or follow identical dynamics or trajectories [2] (see Figure

2.2). In the former [1] only a deviation from a modeled formation is detected; in the latter

[2], an ‘abnormal’ activity is claimed when the configuration of the individuals exceeds an

admissible bound. However, more meaningful semantics may be extracted for less-structured

but coordinated activities. In other words, the individual objects will have distinctive and

varying motion patterns but the group collectively demonstrates an underlying activity

with an explicit sematic identity. A most illustrative example is a football game, in which

we would like to recognize the strategy used in each play rather than individual players’

movements. Similar examples/applications exist in other domains, e.g., activities of a group

of social insects like bees [105].
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Figure 2.1: The structural group motion configuration considered in [1].

Figure 2.2: ‘Shape activity’ for anormaly detection in [2].
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Before the investigation into large-scale coordinated sport games or social behav-

iors, efforts have also been made on common group activities involving a smaller number

of objects. Cases include [106] which employs the causality of time-series to describe and

recognize pairwise activities, and [107] which looks into the multi-linear property of a multi-

dimensional tensor stacked from the trajectory ensemble arising from the activity partici-

pants. [3] follows the line of causality analysis and focus on the localized temporal effects

over short period in a long-term complex interaction (see Figure 2.3). [108] also makes

use of low-level motion features to discover events of interest in space and time. The work

closely related to our contribution [4] characterizes the interactive pattern with a descriptor,

which essentially encodes the spatio-temporal co-occurrences of atomic action elements as

in Figure 2.4.

A group activity usually occurs according to a planned goal. In each football play,

the offensive players will collaboratively follow a pre-determined strategy. The individual

action of each player, meanwhile, is also a result of interaction with and response to the

motion of other players. The same interpretation can be also made for conventional ev-

eryday interactive behaviors. A specific group activity pattern, therefore, is determined

by the interactions among objects and their temporal evolution. Modeling and recognizing

the temporal inter-object relationship (i.e., the group activity pattern) has been naturally

handled using a Bayesian network framework [109, 5, 110, 111, 112]. Figure 2.5 illustrates

the dynamic Bayesian networks used in [5].

Bayesian network formulation, though successfully applied to modeling activities of

single object or motion, is in a new position and has new challenges when dealing with

group activities. Intuitively, the spatio-temporal relationships among multiple agents easily

fall into the scope of dynamic Bayesian network, which is exactly supposed to explicitly

encode the causal constraint among the individual actions or elementary evens. On the

other hand, however, to completely characterize the roles of individual objects, their action

primitives, interactions, and overall plan, the complexity of the network turns out to be

high. This inherent difficulty manifested itself in previous work (e.g., [6], Figure 2.6),

where individual objects’ identities, roles and their individual action primitives were pre-

labeled. As simultaneous recognition of individual actions and group activity pattern is

computationally intensive, the number of objects considered previously, was usually small,

which is not the case for a large group as a football team. Compared to the size of the state
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Figure 2.3: Spectral feature extraction for causality analysis of multi-trajectories in [3].
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Figure 2.4: The design of contextual group activity descriptor in [4].
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Figure 2.5: Bayesian network for outdoor multi-agent activites in [5].

space and feature space of the network, the amount of available training data is insufficient.

Thus not only the probabilistic dependence might very possibly be ‘over-fitted’, but also

necessary priors are hard to learn from available data.

The difficulty on model scalability is alleviated to some extent in a recent effort

[7] where temporal modeling is eliminated and replaced by hierarchical modeling of the

overall collective motion, individual motion, and low-level features, while relationship among

entities is still explicitly manipulated, as in Figure 2.7. Syntactic construction using a

grammar or rules [113] is another alternative, while fine-scale modeling demands addressing

the challenges mentioned above.

Extensive work, meanwhile, has been done in sports video analysis, especially for

football or soccer [114, 115, 116]. These efforts attempted to detect or recognize specific

types of semantics in the games using camera motion, color, low-level motion, field mark-

ers, lines, texture, and so on, but did not treat the plays as multi-object group activities.

The perspective to treat motion patterns in sport videos as multi-agent group activities is
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Figure 2.6: Bayesian network pipeline for football play recognition in [6].

demonstrated in [6, 117], though the formalism falls into the category of parametric prob-

abilistic Bayesian networks again. Simplified statistical mechanism for trajectory segments

is proposed for basketball games [118] by representing rules and heuristics from basketball

domain into the probabilistic terms. Recent companion work [8] (Figure 2.8) uses logic net-

work instead, which turns out to be effective and efficient when capturing the coordinations

in a basketball game.

2.6 Differential Geometry in Computer Vision

An important contribution of this dissertation from the theoretical perspective is the

exploitation of differential geometry, or more specifically the study of analytical manifolds,

for representing visual motion. For this purpose we also summarize the state-of-art of

applications of geometric models and methods in computer vision. The material in this

section is based on [119], a recent survey on statistical analysis on differential manifolds.

Non-Euclidean treatment of visual data observed in practice has been considered

for many decades. The Euclidean motion group plays a fundamental role in rigid body

dynamics and uncertainties in modeling dynamic systems have been characterized using
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Figure 2.7: Hierarchical graphical relationship among group motion, individual motion, and

features proposed in [7].

Figure 2.8: Framework of rule based modeling of basketball games in [8].

25



probability measures on this group. Researchers have combined the strengths of geometry

and statistics in the area of stochastic control [120, 121] where system variables and controls

are constrained to be on certain non-Euclidean manifolds. The first major effort in using

geometry and statistics in pattern recognition, meanwhile, was introduced by Ulf Grenander

in the early 70s [122, 123]. Grenander created the field of pattern theory which has the fol-

lowing important components: 1) represent the systems of interest using algebraic structures

that favor rule-based compositions, 2) capture variability in these systems using probabilis-

tic super-structures, and 3) develop efficient algorithms for inferences using geometries of

underlying spaces. Over the last three decades, this philosophy has been implemented in a

number of contexts with explicit involvement of statistics on non-Euclidean manifolds. The

work on analyzing anatomical variability using noninvasive imaging (such as MRI, PET,

etc) involved probabilistic structures on high-dimensional deformation groups [124, 125].

An algebraic pattern theoretic approach has not been exclusive to medical imaging only. It

has also been used in addressing computer vision and image analysis problems. For example,

in the problem of recognizing objects in images, the variability due to viewing angle of the

camera is very important. [126] deals with the problem of estimating the pose as an element

of SO(3) and that of bounding the estimating error using statistical bounds. [127] studies

the problem of using Markov Chain Monte Carlo methods for performing estimation on

some matrix Lie groups e.g. SO(n), and their quotient spaces, e.g. a Grassmann manifold,

while [128] studies the problem of subspace tracking (in signal processing) as a problem of

nonlinear filtering on a complex Grassmann manifold. While these efforts involve statistical

inferences on manifolds, there is a strong literature on more general optimization problems.

For example, a major work in the area of optimization algorithms on Grassmann and Stiefel

manifolds was presented by Edelman et. al. [129, 130].

Another prominent area that employed statistical models and inferences on non-

Euclidean manifolds is shape analysis. Starting with a trend-setting paper by Kendall [28,

131], there has been a remarkable progress on representing and analyzing shapes of objects,

in images or otherwise, using a landmark based approach. In terms of statistical analysis,

this is perhaps the most mature area involving manifolds as domains [14, 132]. In more

recent years, there has been an extension of Kendalls shape theory to infinite-dimensional

representations of shapes of curves and surfaces [133, 134, 135]. The area of statistics and

inference on manifolds has seen a large growth in recent years. Many of the ideas have
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been formally introduced and advanced through the efforts of many researchers. One of the

landmark works in establishing mean estimation and central limit theorems for manifold-

valued variables is Bhattacharya and Patrangenaru [136, 137]. Another important piece of

work comes from Pennec [138] who has applied these notions for detection and classification

of anatomical structures in medical images. Recent applications in computer vision have

included study of Kendalls shape spaces for human gait analysis [53], and Hilbert sphere

modeling of time warp functions for human activities in [139]. Other applications include

classification over Grassmann manifolds for shape and activity analysis [140, 141], and face

recognition [142]. A recently developed formulation of using the covariance of features

in image-patches has found several applications such as texture classification [143], and

pedestrian detection [144]. Mean-shift clustering has been extended to general Riemannian

manifolds in [145].
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Chapter 3

Statistical Model on Discriminative Temporal Interaction Manifold for Group

Motion Recognition

3.1 The Group Motion Recognition Problem

In this chapter we present a method for modeling and recognizing collaborative group

motions involving multiple objects from videos by designing and exploiting a temporal

descriptor. We use football play modeling and recognition as our primary example and

in particular test our algorithm on football videos. The work [6], most similar to ours,

designed large connected Bayesian networks for football play recognition. In contrast, we

explore a ‘data-driven’ approach. Here we only assume that the players’ roles and their

motion trajectories are already available. For the former, we may recognize the roles from

the initial play formation with the help of landmark shape theory [14], and for the latter we

may employ a multi-object tracker [15]. These two problems are still being researched and

are beyond the scope of this chapter.

A central issue is the level of complexity needed for describing the interaction pat-

terns in a coordinated group activity, for the purpose of recognition. Is it possible that a

compact and discriminative descriptor, instead of large-scale probabilistic schemes, exists

and can be learned from videos? This work is motivated by these two fundamental con-

siderations. Specifically, we describe a group activity pattern with a full four-dimensional

object-time interaction tensor, and learn an optimized tensor reduction kernel to condense

it to a discriminative temporal interaction matrix. The temporal interaction matrix serves

as the compact descriptor for the group activity pattern, and is stable under view changes.

More importantly, the temporal interaction matrices are generic for various activity repre-

sentations. For videos of football games, from which we extract point trajectories of the

players, simple dynamic features give rise to the quantitative terms to measure interactions.

For videos with multiple articulated human actions, individual action descriptors will be

integrated in a particular way. We will show different approaches to reach the object-time

interaction array with different inputs, while the temporal interaction matrices will be the

unified output representing the group motion feature.
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A conventional deed with descriptors in hand is to connect them directly with a

learning machine, which can be typically a discriminative one such as K-Nearest Neighbor,

a supporting vector machine, or a boosting based classifier. Instead, one may integrate

the descriptors into simple generative mechanisms including, for example, naive Bayesian,

probabilistic latent semantic analysis, or latent Dirichlet allocation. No effort, to the best

of our knowledge, has been devoted to an exploitation of the space of the descriptors,

and to make use of the structure, or geometry, of the possibly non-linear manifold. Our

second contribution is to identify a Riemannian metric for the set of all temporal interaction

matrices which form a Riemannian manifold. On this manifold we are able to establish a

probabilistic framework to characterize every class of group activity pattern. We call this

manifold Discriminative Temporal Interaction Manifold (DTIM). To learn a multi-modal

‘likelihood’ density for each class, we create a basic exponential density component on the

manifold, and incrementally build up the complete manifold-resided densities with the basic

components. With the established framework, a MAP classifier is used to recognize a new

group activity.

The rest of this chapter is organized as follows. In Section 3.2 we obtain a view-

stable and discriminative temporal interaction matrix, via an optimized tensor reduction,

to compactly characterize each group activity. We will, in particular, show how different

motion features arising from different scenarios are unified under the same framework, and

discuss how we can achieve robustness when we have noisy input. Then in Section 3.3 we

focus on the space of temporal interaction matrices, i.e., DTIM, and in particular create a

basic probability density on this non-linear manifold by exploiting its geometric property.

To account for possibly multi-modal likelihood distribution of temporal interaction matrices

on DTIM, in Section 3.4 we introduce an incremental, or boosting procedure to build the

complete model with the basic components. Finally, we show the performance using data

from football plays and everyday common interactive behaviors in Section 3.5. See Figure

3.1 for a general flow chart of the proposed approach.

3.2 View-Stable Discriminative temporal interaction matrix

As mentioned, a coordinated group activity pattern is characterized by the temporally

evolving interactions among objects. To describe mathematically the interaction, we start

from the object-time interaction tensor as Y (t1, t2, p1, p2), where 1 ≤ t1, t2 ≤ T , 1 ≤ p1, p2 ≤
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Figure 3.1: The flowchart of the modeling and recognition framework.
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P . Here T is the duration during which we observe the group activity, and P is the total

number of objects involved in the activity (e.g., the total number of players in a football

play). The scalar term Y (t1, t2, p1, p2) describes the ‘interaction’ between object p1 at time

t1 and object p2 at time t2. The rationale of this construction lies in the consideration

that causal correlations in general exist between any pair of participants in a group activity

and between any pair of time instants during the occurrence of the event. By letting t1, t2

run through the whole time span and letting p1, p2 touch all involved objects, Y is able to

capture all the pairwise correlations. A natural question is whether all these information

is critical to describe a group activity and which are the critical ones if so. By reducing

the object-time interaction tensor to temporal interaction matrix as to be described below,

we actually select the significant and discriminative information in an automatic manner.

On the other hand, the scalar Y (t1, t2, p1, p2) serves as a quantity numerically encoding the

interaction, and its physical or semantic interpretation will be clear in the context of the

specific motion feature used. (One may think that a vectorial quantity may be possibly

more powerful in capturing a full set of information available: As an initial attempt to

formulate a group motion descriptor, we employ a scalar.) We will detail how to compute

the interaction tensor for different applications shortly, before which we first discuss the

optimal tensor reduction, i.e., the approach to reach temporal interaction matrix - the

group activity descriptor.

The four-dimensional tensor Y is possibly a redundant descriptor for the activity

pattern and now we now seek a more compact and discriminative descriptor, namely, the

temporal interaction matrix X(t1, t2) via a tensor reduction mapping R : Y 7→ X . The

motivation for this reduction, in addition to those mentioned above, is two-fold. On the

one side, as the tensor is in a high dimensional space, a dimensionality reduction step is

generally necessary so that the need for many training samples may be reduced. On the

other side, more importantly, the temporal interaction matrix empirically turns out to be

quite stable under view changes, though it is not strictly view-invariant. Figure 3.2 shows

this ‘view-stability’ of the temporal interaction matrix obtained from the discriminative

tensor reduction method presented below. Figure 3.2(a) and 3.2(b) show the players’

motion trajectories for the same play under different views, and Figure 3.2(c) and 3.2(d)

show the corresponding temporal interaction matrices, which appear quite close to each

other. Although the example is synthesized from a play diagram, the same behavior is
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also observed for real trajectories. The search for a discriminative and view-stable matrix

descriptor is also inspired by the previous work on video self-similarity [146] and a recent

one [147], in which view-stability is observed in ‘self-similarity matrix’ of point trajectories

for a single person action.

Instead of using an arbitrary tensor reduction mapping R, here we use a P×P matrix

reduction kernel A. Let Y (t1, t2) to be the P × P matrix sliced from tensor Y (t1, t2, p1, p2)

when t1, t2 are fixed, and we define

x(t1, t2) = tr(ATY (t1, t2)) (3.1)

and

X = R(Y ) =
x

∥x∥
. (3.2)

Note that both Y (t1, t2) and A are symmetric due to the interpretation of ‘interaction’

above. Similar notion of symmetry also holds for X. The normalization of x helps to

maintain a constant scale for X.

Note that A in fact weighs each element of Y (t1, t2) with its corresponding element.

Therefore, A serves as a pairwise interaction selector, which emphasizes the interaction

between the ith and the jth objects if A(i, j) is large. If we nomially take A to be the identity

matrix, i.e., discarding the interaction between different objects but only keeping the objects’

self-motion, then the resulting temporal interaction matrix X is essentially equivalent to the

one used in [147]. Therefore, the question is: is there another A (or weighting pattern) other

than the identity matrix, which can achieve intra-class view-stability as well as better inter-

class separability? To get such an optimized tensor reduction kernel, we mathematically

enforce view-stability and separability in our optimization target as described below. In

other words, we formally look for view stability instead of achieving it in an ad-hoc manner.

From now on we use different subscripts to denote temporal interaction matrices from

different sample group activities. A pairwise similarity between the kth sample Xk and the

lth sample Xl, s(k, l), is defined as

s(k, l) = tr(XT
k Xl) =

< xk, xl >

∥xk∥∥xl∥
. (3.3)
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Then the target function to be maximized is defined as

J(A) =
∑
k

(αβ
∑

l∈C1(k)

s(k, l) + α(1− β)
∑

l∈C2(k)

s(k, l)

−(1− α)
∑

l∈C3(k)

s(k, l))
(3.4)

where C1(k) is the set of same activities as k but from possibly different views, C2(k) is

the set of activities different from k but belonging to the same class as k, and C3(k) is the

set of activities not belonging to the class of k. By maximizing J(A) with respect to A

with the controllable parameters 0 < α, β < 1, we are able to find an optimized A such

that the cross-view similarity and intra-class similarity are both maximized while the inter-

class similarity is minimized. In other words, the resulting A will weigh the interactions

between every pair of objects properly such that view-stability and class separability are

simultaneously achieved.

To perform the above maximization, we take a gradient ascent based approach due

to the non-linearity of the target function with respect to A. To evaluate ∇AJ(A) = ∂J(A)
∂A ,

we evaluate ∂s(k,l)
∂A . After some calculations it can be shown that

∂s(k, l)

∂A
=

1

∥Xk∥∥Xl∥
(
∑
t1,t2

(Xk(t1, t2)Yl(t1, t2)

+Xl(t1, t2)Yk(t1, t2))− b(k, l))

(3.5)

where

b(k, l) = tr(XT
k Xl)(

∑
t1,t2

Xk(t1, t2)Yk(t1, t2)

∥Xk∥2

+

∑
t1,t2

Xl(t1, t2)Yl(t1, t2)

∥Xl∥2
).

(3.6)

The optimization steps are implemented as repeated line searches along the gradient direc-

tions specified in (5) and (6). Because a global maximum is not guaranteed, we initialize A

from multiple symmetric matrices in multiple optimization processes and pick out the one

yielding the maximum J(A).

3.2.1 Interaction Tensor from Point Trajectory Ensemble

We now discuss how we may compute the object-time interaction tensor from different

features available. If the involved objects are represented as mass points and their motion

33



across frames are in the form of point trajectories, we are in a position to compute Y from

the ensemble of trajectories. We assume that the objects are ID-specific, i.e. the football

players’ roles are associated with each trajectory. In practice, we need to find the IDs for

the objects. For this purpose, in football play videos we may recognize the roles from the

initial play formation with the help of landmark shape theory [14], or use simple heuristics

such as labeling the objects using the coordinates of their initial locations, from the left of

the field to the right side. In our experiments, we use the existing IDs provided with the

dataset. We also assume their motion trajectories are already available. Practically, to get

trajectories we may employ a multi-object tracker such as any appropriate one introduced in

[15]. In our experiments, we used the one we developed [9]. Automatic tracking is usually

non-robust and its output tends to be noisy. We will discuss how to handle non-robust

motion information in the third subsection, but assume that clean tracks are available for

now.

Denote the motion trajectory for object p as Tp(t), regarded as a one-dimensional

curve indexed by t, we may simply use the Euclidean distance (in the image plane) between

p1 at time t1 and p2 at time t2 as Y (t1, t2, p1, p2), i.e.,

Y (t1, t2, p1, p2) = ∥Tp1(t1)− Tp2(t2)∥. (3.7)

Alternatively, we may consider first-order information
∂Tp(t)
∂t , in which case the ‘interaction’

is the inner-product of the two velocities of the objects, i.e.,

Y (t1, t2, p1, p2) =<
∂Tp1(t1)

∂t1
,
∂Tp2(t2)

∂t2
> . (3.8)

A similar approach can be applied to the second-order information (acceleration), or even

higher order. For a more sophisticated consideration one may use a combination of the

quantities across multiple orders. In our experiments we used the distances and velocities

individually, and it turned out the performance of the accuracy is not sensitive toward the

two choices.

Samples of the computed temporal interaction matrices are given in Figure 3.2.

3.2.2 Interaction Tensor from Articulated Human Action Images

When high-resolution images of the involved articulated humans are available, we

exploit the low-level local features extracted from images. For this purpose we assume a
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Figure 3.2: (a-1)(a-2): Players’ trajectories from different view points of sample U60 in

GaTech Football Play Dataset; (b-1)(b-2): The corresponding temporal interaction matri-

ces obtained from pairwise distances using the view-stable optimization; (c-1)(c-2): The

corresponding temporal interaction matrices obtained from pairwise correlations of veloci-

ties using the view-stable optimization; (d)-(f): The same set of illustrations on sample V20

in the same order as (a)-(c).
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bounding box is available for each object/human, through human detection and/or tracking.

Again additional effort to handle noisy bounding boxes will be discussed separately in the

next subsection, while we regard the boxes here are clean and reliable.

Within each bounding boxes, various low-level local features are extractable. One

may, for example, fix a spatially regular grid (which may be as dense as pixels or as sparse

as partitioned rectangular blocks), and then compute optical flow, local tracks estimated

using a KanadeLucasTomasi feature tracker, spatio-temporal gradient, or spatio-temporal

SIFT descriptors. The ‘interaction term’ Y (t1, t2, p1, p2) may be simply taken as the di-

rect difference between the feature vectors, averaged or accumulated from within the two

bounding boxes (with sizes normalized, if necessary). The same type of feature can also be

extracted around spatio-temporal interest points instead of a regular grid.

A more noise-resistant and compact representation of the low-level local features is the

histogram of them. By this approach we apply vector quantization on the local descriptors

and reach a ‘code book’. Then motion in each bounding box is represented by a histogram

encoding the distribution of the quantized ‘visual words’ in that box. Denote the histogram

for object p at time t as Hp(t, b), where b = 1, 2, · · · , B and B is the total number of bins

of the histogram. Then, a natural choice for Y (t1, t2, p1, p2) originates from χ2 kernel, i.e.,

Y (t1, t2, p1, p2) = 1−
B∑
b=1

(Hp1(t1, b)−Hp2(t2, b))
2

1
2 (Hp1(t1, b) +Hp2(t2, b))

. (3.9)

Mid-level implicit features are also investigated, where the histograms of the low-level

features are input into simple learning machines such as Support Vector Machines, which

output the likelihood of each bounding box containing a particular type of individual action

[7] or a particular pose [4]. In this case, Hp(t, b) is the probability of object p executing

action b or posing toward direction b at time t, and we just compute Y (t1, t2, p1, p2) as

Y (t1, t2, p1, p2) =
B∑
b=1

Hp1(t1, b)Hp2(t2, b). (3.10)

Samples of the computed temporal interaction matrices using different local features

and distance measures are given in Figure 3.3, for the datasets used in [4] and [7].

3.2.3 Handling Non-Robust Input and Other Issues

The input to object-time interaction array is usually obtained from detection/tracking.

Though noisy input has been a common phenomenon, eventually it is still the responsibility
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(a)

(b)

(1) (2) (3) (4) (5) (6)

Figure 3.3: (a): temporal interaction matrices for a sample of the activity ‘crossing’; (b)

temporal interaction matrices for a sample of activity ‘talking’. (1) using Chi-square dis-

tance between histogram of flows; (2) using cosine distance between histogram of flows;(3)

using Euclidean distance between histogram of flows;(4) using Chi-square distance between

histogram of oriented gradients;(5) using cosine distance between histogram of histogram of

oriented gradients;(6) using Euclidean distance between histogram of histogram of oriented

gradients.

of detection module and tracking module to improve their performance so that complete,

continuous, and reasonable trajectories and/or bounding boxes are provided. However, we

do take non-robust input into account in our effort, as to be discussed now. Approaches to

handle noisy input are application specific. We now look into the cases that we experiment

with.

In football plays, colors suffice for differentiating offensive players from all players

in the field. When players are far apart from each other, the eleven offensive players will

be correctly identified and tracked, while the main issue is that tracks are missing when

occlusion/overlap happens and individual players are connected into large blobs. We begin

from the initial formation, follow through the initial period with eleven tracks, and stop at

the time instant when the number of tracks reduces. We then compute the displacements

between each of the previous eleven trajectories and each of the afterward trajectories, and

apply Kuhn-Munkres optimal assignment algorithm [148] to find the best association for

each of the afterward trajectories with the previous ones. For those non-matched previous

ones, we first identify those afterward blobs of large sizes, and then assign them to the

center of the nearest blob. We keep associating trajectories at every time instant when the
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number of tracks changes until we reach the end of the activity. This strategy to generate

a complete set of eleven trajectories is largely heuristic, but turns out to be effective as in

the experiments section.

A similar strategy can be used toward everyday collective activities, such as crossing,

waiting, queueing, talking, dancing, and jogging, as investigated in [4]. We identify the

total number of participants in the group activity by checking the detections in all frames,

locate the segments with the right number of participants, and check neighboring frames

forward and backward. For any segment with a constant number of participants, which

is however less than the correct number, we associate the bounding boxes in them with

those in neighboring segment with the desirable number, by comparing pairwise similarity

in terms of color histogram and spatial proximity. For any non-paired bounding boxes,

we perform local search around the detected/tracked location/size and look for the best

matched color histogram. In this way, we expect a constant number of reasonable bounding

boxes throughout the duration of the activity.

If the same category of activity involves varying numbers of participants, i.e., varying

P ’s, then a separate interaction tensor and reduction should be considered for each P . As

a unique ID, or labeling, is necessary for each participant to compute the interaction array,

we label the objects according to their initial locations in the image. We project the centers

of initial bounding boxes onto the directed line confirming to the overall dominant motion

direction of all boxes, and order the boxes from the smallest projected number to the largest.

3.3 Basic Exponential Distribution on the Discriminative Temporal Interac-

tion Manifold

With an optimized tensor reduction kernel A, we compute the temporal interaction

matrix Xi from the full interaction tensor Yi for the ith activity sample. As has been

shown, the temporal interaction matrices serve as compact, view-stable, and discriminative

descriptors for group activities, and we would like to establish a probabilistic generative

model for them to characterize the activity class distribution. However, note that X is

symmetric with a unit norm and thus the space of all X’s is not Euclidean. Therefore,

to establish the probabilistic setting we need to first exploit the geometric property of the

space and then build a probability distribution on it.
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3.3.1 The Riemannian Property of the Discriminative Temporal Interaction

Manifold

Although the set of all temporal interaction matrices is not an Euclidean space, with

a properly defined Riemannian metric, it becomes a Riemannian manifold. For any two

elements X ′
1 and X ′

2 in the tangent space TX at X, the Riemannian metric is defined as

< X ′
1, X

′
2 >, tr(X ′T

1 X ′
2). (3.11)

A related case was detailed recently in [149]. This manifold is what we mentioned above as

DTIM, denoted as X .

With the above defined Riemannian metric the basic geometry of DTIM is straight-

forward. The intrinsic distance between two temporal interaction matrices X1 and X2 is

given by

d(X1, X2) = arccos < X1, X2 >, (3.12)

where

< X1, X2 >, tr(XT
1 X2). (3.13)

The geodesic , i.e., the curve of minimum length connecting two temporal interaction ma-

trices X1 and X2 , is given by

X(λ) =
(1− λ)X1 + λX2

λ2 + (1− λ)2 + 2λ(1− λ) < X1, X2 >
(3.14)

where λ is a real parameter between 0 and 1.

The exponential map and logarithmic map are important for manipulations on the

Riemannian manifold. For DTIM defined above, the exponential map EX : TX → X for

X ′ ∈ TX is defined as

EX(X ′) = cos(< X ′, X ′ >
1
2 )X +

sin(< X ′, X ′ >
1
2 )

< X ′, X ′ >
1
2

X ′. (3.15)

The logarithmic map LX : X → TX , which is actually the inverse map of exponential

map, is then given by

LX(Xm) =
arccos(< X,Xm >)

< X∗, X∗ >
1
2

X∗ (3.16)

where

X∗ = Xm− < X,Xm > X. (3.17)
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It is worth noting that the temporal interaction matrix and the corresponding DTIM

investigated here are closely related to and rooted in the general theoretic framework of

information geometry [150, 151]. We only present the necessary geometric properties to be

employed in the subsequent section. For further study on information geometry the reader

is referred to [150, 151].

3.3.2 A Basic Exponential Distribution on DTIM and its Parameter Estima-

tion

It is expected that the temporal interaction matrices from different activity classes

will reside distinctively on the DTIM. This motivates us to establish a probabilistic approach

on DTIM to model the distribution of the temporal interaction matrices.

The ‘Gausssian’ distribution on a Riemannian manifold is initially addressed in [152]

with the help of exponential/logrithmic mapping between the manifold and the tangent

plane. Here, we take a direct approach to define a uni-modal exponential distribution for

the temporal interaction matrix as

p(X;µ, σ, z) =
1

z
exp(−d

2(X,µ)

2σ2
), (3.18)

where µ is regarded as the ‘center’ of temporal interaction matrices, σ characterizes the

scattering of the matrices on the manifold, and z is a normalization factor. Moreover, d is

the intrinsic distance defined in ( 3.12). A temporal interaction matrix intrinsically close to

the center will have a high probability value.

To estimate the parameters involved in the distribution p, a statistical approach based

on observed samples is practically useful. Generally, we will have a set of weighted samples

{(X1, w1), (X2, w2), · · · , (XN , wN )} observed from the distribution. We define the weighted

Karcher mean,

µ = argmin
ψ

N∑
i=1

wid
2(Xi, ψ), (3.19)

to be the mean parameter µ. To numerically find µ, the iterations

µ′(g+1) =

∑N
i=1 wiLµ(g)(Xi)∑N

i=1 wi
(3.20)

and

µ(g+1) = Eµ(g)(µ′(g+1)). (3.21)
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alternate and µ(g) will converge to the weighted Karcher mean as g increases. Here E and

L are the exponential and logrithmic maps given in ( 3.15) and ( 3.16) respectively.

Once the mean is determined, the scattering factor can be defined in a similar manner

as

σ = (

∑N
i=1 wid

2(Xi, µ)∑N
i=1 wi

)1/2. (3.22)

The calculation for the normalization factor z is analytically infeasible and we need to take

the Monte Carlo approach to find the integral

I =

∫
X

exp(−d
2(X,µ)

2σ2
)dX (3.23)

and consequently the estimate is z = 1/I. To perform the Monte Carlo integration we

need to generate uniformly distributed samples on DTIM. To achieve this note that a T ×T

temporal interaction matrix is essentially equivalent to a (1+T )T/2 dimensional unit vector.

Therefore we generate (1 + T )T/2 dimensional homogeneous Gaussian vectors and scale

them into unit length. Then we transform the unit length vectors to temporal interaction

matrices, which become uniformly distributed on DTIM.

3.4 Learning Multi-Modal Densities on DTIM

Suppose we have a training set {(X1, c1), (X2, c2), · · · , (XM , cM )} where ci ∈ {1, 2, · · · , C}

is the activity class label for the ith activity sample and there are totally C classes of group

activities. Trivially we may learn a uni-modal distribution for each activity class using the

method in the previous section. However, the actual scattering of temporal interaction ten-

sors on DTIM may not be well approximated by a uni-modal model. This motivates the

necessity to learn a multi-modal density for each activity class to achieve a better classifi-

cation performance.

We aim to model the joint probability density function of the temporal interaction

matrix Xi and the class label ci, denoted as P J(Xi, ci), defined as

P J (Xi, ci) =

J∑
j=1

bjf j(Xi, ci) =

J∑
j=1

bjπjcip
j
ci(Xi) (3.24)

where pjci(Xi) = p(Xi;µ
j
ci , σ

j
ci , z

j
ci) is the uni-modal exponential component introduced in

( 3.18). Here we regard the joint probability as a linear mixture of J uni-modal likelihood

functions where the jth component is pjci(Xi). b
j is taken as the mixing coefficient for the
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jth component, which for convenience is assumed to be independent of the class labels. πjci is

the class prior for class ci in the jth component. For simplicity we take πjci ≡
1
C regardless of

j or ci. Apparently, the ‘mixture-of-p’ distribution will behave as the ‘mixture-of-Gaussian’

in an Euclidean space, providing us the capability to approximate the irregular distribution

on a Riemannian manifold analytically.

The determination of a proper number of components J is non-trivial, preventing

us from directly applying an Expectation-Maximization (EM) procedure to learn all the

components and mixing coefficients. Instead, we build up this linearly-combined multi-

modal distribution in an incremental manner. In other words, we will ‘boost’ the distribution

on DTIM. Suppose that we have in some way achieved a J-component density P J(X, c) and

we want to update it into a (J+1)-component one by linearly mixing it with a new f(X, c),

P J+1(X, c) = (1− α)P J(X, c) + αf(X, c), (3.25)

and we aim to maximize the log posteriori class probability for all samples in the training

set
∑M
i=1 logP

J+1(ci|Xi). Expanding the expression we get

M∑
i=1

logP J+1(ci|Xi) =
M∑
i=1

log
P J+1(Xi, ci)

P J+1(Xi)

=
M∑
i=1

log
(1− α)P J(Xi, ci) + αf(Xi, ci)

(1− α)P J (Xi) + αf(Xi)

=
M∑
i=1

log
P J (Xi, ci) + ϵf(Xi, ci)

P J(Xi) + ϵf(Xi)

(3.26)

where P J(Xi) =
∑C
c=1 P

J(Xi, c), f(Xi) =
∑C
c=1 f(Xi, c), and ϵ =

α
1−α .

A practically feasible optimization method to determine both f(·, ·) and ϵ, is expand-

ing logP J+1(·|·) into a Taylor’s series around P J(·, ·) with ϵf as the deviation (or increment)

from P J(·, ·), and ignoring the higher order terms as

M∑
i=1

logP J+1(ci|Xi)
.
=

M∑
i=1

logP J(ci|Xi)

+ϵ
M∑
i=1

∂ logP J+1(ci|Xi)

∂P J (Xi, ci)
f(Xi, ci)

.
=

M∑
i=1

logP J(ci|Xi) + ϵ
M∑
i=1

1− P J(ci|Xi)

P J(Xi, ci)
f(Xi, ci)

=
M∑
i=1

logP J(ci|Xi) + ϵ
M∑
i=1

hif(Xi, ci).

(3.27)
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Here the gradient of logP J+1(·|·) w.r.t. P J(·, ·) is a functional gradient rather than the

usual one w.r.t. a variable. The approximate identity

∂ logP J+1(ci|Xi)

∂P J(Xi, ci)

.
=

1− P J(ci|Xi)

P J(Xi, ci)
, hi (3.28)

is derived in the Appendix. Note that samples with a small posterior probability will receive

a larger weight, i.e., the samples not well accounted for under the current model will be paid

more attention through weight h. For this reason the hi’s can be regarded as ‘discriminative

weights’.

It is now clear that once
∑M
i=1 hif(Xi, ci) is maximized we can easily find the best ϵ

(or α) such that the posteriori probability is maximized. Therefore, the key optimization is

to maximize
M∑
i=1

hif(Xi, ci) =

M∑
i=1

hiπcipci(Xi) (3.29)

by determining the corresponding µci , σci , zci (i.e., µc, σc, zc, c = 1, 2, · · · , C), taking dis-

criminative weights hi into account.

This ‘discriminatively weighted parameter estimation’ for each component falls well

into the EM framework. The E-step for this iterative procedure is

wi = (hif(Xi, ci))/(
M∑
i=1

hif(Xi, ci)) (3.30)

and the M-step is essentially to maximize
∑M
i=1 wi log f(Xi, ci) w.r.t. µc, σc, zc. The opti-

mal µc here, is exactly the weighted Karcher mean with weights wi introduced in Section

3.2. Therefore, to implement the M-step we need and only need to perform the parame-

ter estimation presented in 3.2 . After f is determined in this way, a line search for the

best ϵ is followed to achieve the maximum
∑M
i=1 logP

J+1(ci|Xi). If no ϵ can improve the

discriminativeness, the algorithm terminates and the final number of components is J .

The multi-modal density learning presented above follows the line of recent work on

boosting non-discriminative density functions [153] and is also inspired by the discriminative

boosting for sequence classification [154]. However, in this work we are investigating a multi-

class multi-modal probabilistic model for classification on a nonlinear manifold rather than

in the Euclidean space, and in particular, applying the method to group activity recognition.
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Figure 3.4: Play type hierarchy of GaTech Football Play Dataset.

3.5 Experiments

3.5.1 Experiments with Point Trajectories

The learning and recognition framework described above has been implemented on

GaTech Football Play Dataset. The dataset is produced by Georgia Tech Athletic Associa-

tion (who collect the videos) and the School of Interactive Computing, Georgia Tech (who

process and annotate the videos). The GaTech Football Play Dataset consists of a collec-

tion of 155 NCAA football game videos. Each video is a segmented one which records an

offensive play, i.e., the play starts at the beginning of the video and terminates at the end

of it. In our setting, the relevant activity type is defined as the offensive strategy in each

play performed by the eleven offensive players, and the motion trajectories from the eleven

defensive players are regarded as irrelevant ones. The offensive strategies in all videos have

been annotated in a hierarchical manner, where each video is on the first level divided into

either a ‘RUN’ play or a ‘PASS’ play, and on the subsequent levels divided into more specific

play types. The play type hierarchy is shown in Figure 3.4.

Accompanied with each video is a complete ground-truth annotation of the object

locations in each frame. Currently annotations for 56 videos are available for use. The anno-

tation includes coordinates in the image plane of all the 22 players as well as field landmarks

- the intersections of field lines. With the landmark information we can easily compute the

plane homographies and convert motion coordinates into ground plane trajectories. We
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Figure 3.5: Samples of GaTech Football dataset: snapshots of plays with annotations.

show samples of snapshots together with corresponding ground truth trajectories (in the

ground plane coordinates) in Figure 3.5, where red trajectories denote offensive player-

s, yellow ones denote defensive ones, and the background is colored with green for better

visualization.

A constant amount of time duration is used for all plays so as to maintain a constant

size of temporal interaction matrix. In particular, for activity samples with varing lengths,

we always normalize their time scales to T (We set T = 10), with trajectory interpolation

and temporal resampling if necessary. To find the time span of the occurrence of an activity

automatically, i.e., group activity detection, is not considered in this work.

We first perform experiments on ground-truth data, where tracks for each player are

manually labeled. The eleven trajectories for the eleven players on the offensive side are

thus obtained for each play. Though view points vary among different plays, no geometric

transformation is applied since view-stability will be enforced when learning the optimal

tensor reduction kernel. However, we do put the origin at the center of the objects and

normalize the distances between the objects and the center. From more than a hundred play
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Table 3.1: The confusion matrix of play recognition using distances between objects:

H,C,M,L, and R stand for HITCH Dropback, Combo Dropback, Middle Run, Wideleft

Run, and Wideright Run respectively.

C H M L R

C 93.1 0.2 5.6 0.4 0.7

H 0.1 71.0 6.5 15.2 7.2

M 1.6 1.3 77.2 12.4 7.5

L 0.4 0.6 0.6 95.4 3.0

R 0.8 0.1 0.1 2.5 96.5

samples we select five play types, including Combo Dropback, HITCH Dropback, Middle Run,

Wideleft Run and Wideright Run, totaling a number of 56 play samples. Other play types

with too few samples are not considered. To get a sufficient amount of training samples,

we generate multiple new play samples from different views for each of the existing plays.

To achieve this we apply view transformations to each of the 56 samples, with 12 typical

views selected from the original dataset. The view transformations are simply locally affine

ones whose parameters are determined by locating the landmark points of the football field.

Learning and then classification runs a multiple of times independently, each of which uses

a random division of sample collection into training (80%) and testing (20%) sets. Other

free parameters (e.g., α, β in Section 2) in the framework are determined by experimental

evaluation.

The average confusion matrices are shown in Table 3.1 and 3.2, indicating the per-

centage by which a specific play type is recognized as itself/another. An average recognition

rate of 87.9% and 85.5% is observed from the confusion matrices. The fully quantita-

tive comparison with previous work, especially [6], is difficult due to a completely different

framework as well as different datasets being used. Note that the previous work is based on

Bayesian network modeling with explicit domain knowledge about the football game being

incorporated. In contrast, the model in this chapter works in a data-driven manner and

thus easily extendable to other general coordinated group activities.

To evaluate the effectiveness of optimal tensor reduction as well as probabilistic mod-
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Table 3.2: The confusion matrix of play recognition using velocity correlations between

objects: H,C,M,L, and R stand for HITCH Dropback, Combo Dropback, Middle Run,

Wideleft Run, and Wideright Run respectively.

C H M L R

C 88.4 2.6 5.1 1.2 2.7

H 0.4 68.5 8.7 15.2 7.2

M 0.5 0.8 77.8 13.4 7.5

L 3.5 2.7 0.5 92.8 0.5

R 0.3 2.1 0.4 3.9 93.3

eling on DTIM, a comparative study is carried out with a baseline descriptor and three

baseline classifiers. The baseline descriptor to compare with is the ‘nominal’ temporal inter-

action matrix obtained from the trivial tensor reduction kernel - the identity matrix. The

baseline classifiers are selected as two nearest neighbor (NN) classifiers and supporter vector

machine (SVM) classifier. One of the two NN classifiers defines the distance between two

temporal interaction matrices as the usual Euclidean distance (NN Euclidean). The other,

instead, makes use of the intrinsic distance on DTIM (NN on DTIM). The SVM classifier

is employed from libSVM [155] where the multi-class classifier is implemented as a set of

one-to-one binary ones. In each of these SVMs a radial basis function kernel is used together

with the default parameter settings of the software. Classification is performed by taking

the majority of the votes from individual SVMs.

The overall correct recognition rates are shown in Table 3.3 and 3.4. In all cases

the improvement brought by optimized tensor reduction is clear. On the other side, by

comparing probabilistic modeling on DTIM with the other three baseline classifiers, we ac-

tually investigated its advantage over three typical philosophies besides a Bayesian network

paradigm. The NN Euclidean classifier ignores the intrinsic geometry of DTIM but regards

all temporal interaction matrices as elements in Euclidean spaces. The SVM takes into ac-

count the probable nonlinear phenomenon in the Euclidean space but bypasses it with the

kernel trick to pursue linear seperability. NN on DTIM, meanwhile, exploits the essential

geometry of the data space without a statistical point of view. The comparison among the
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Table 3.3: Comparison of recognition performance using distances between objects(%).

baseline optimized

NN Euclidean 73.2 83.7

NN on DTIM 75.8 84.5

SVM 69.3 79.8

Probabilistic modeling on DTIM 76.3 87.9

Table 3.4: Comparison of recognition performance using velocity correlations between ob-

jects (%).

baseline optimized

NN Euclidean 74.7 81.7

NN on DTIM 78.1 85.2

SVM 67.5 77.4

Probabilistic modeling on DTIM 76.7 85.5

four demonstrates an empirical performance merit of the combination of both geometrical

modeling and statistical modeling. Note that NN is only slightly weaker than the proposed

framework due to the relative ‘flatness’ of DTIM. Geometrical and probabilistic modeling

on more ‘curved’ manifold will potentially achieve more significant performance gain.

In the second round of experiment, we select a state-of-art multi-object tracker [9] to

provide trajectories for the testing activity samples, due to its good performance on tracking

soccer players. By this experiment we aim to investigate the robustness of our model toward

non-ideal input data in a practical scenario. The tracking results are shown as well in Figure

3.6 for the same plays shown in Figure 3.5, with snapshots with bounding boxes and the

tracks in the ground plane.

The experiment setting follows exactly as used in the first round of experiment,

except for the testing phase where no ground-truth is used but we apply tracking. The

eleven offensive trajectories are selected and identified from all trajectories by comparing
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Figure 3.6: Tracks provided by multi-object tracking using [9]: snapshots and computed

tracks in the ground plane coordinates.

their initial location coordinates with the annotation, and the complete trajectories are

generated according to the method introduced in previous section for handling non-robust

tracking. The confusion numbers and accuracy comparison with baselines are shown in Table

3.5, 3.6, 3.7, and 3.8 respectively. Robustness toward noisy tracking is demonstrated in

the gentle performance degradation of geometric modeling in terms of nearest neighbor on

DTIM and multi-modal density learning on DTIM, in contrast to a significant accuracy

drop for Euclidean nearest neighbor as well as SVM.

3.5.2 Experiments with Group Articulated Human Actions

We then demonstrate the performance of our method on group activities using image

features. The dataset we employ is the collective activity dataset previously used in [4, 7].

This dataset contains 74 sequences, each of which is in the length of several hundred frames.

Every tenth frame in each sequence is annotated with image locations of the humans, the size

of the bounding boxes, the pose direction, and the activity type. Seven activity types are

provided including crossing, waiting, queuing, walking, talking, dancing, and jogging. We
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Table 3.5: The confusion matrix of play recognition using distances between objects com-

puted trajectories: H,C,M,L, and R stand for HITCH Dropback, Combo Dropback, Middle

Run, Wideleft Run, and Wideright Run respectively.

C H M L R

C 89.5 1.3 6.2 1.3 1.7

H 1.1 67.4 8.2 15.3 8.0

M 2.5 2.0 74.0 13.2 8.3

L 1.7 1.9 1.9 90.2 4.3

R 2.0 1.2 1.3 3.6 91.9

Table 3.6: The confusion matrix of play recognition using velocity correlations between

objects on computed trajectories: H,C,M,L, and R stand for HITCH Dropback, Combo

Dropback, Middle Run, Wideleft Run, and Wideright Run respectively.

C H M L R

C 75.8 4.6 9.2 4.9 5.5

H 4.6 55.4 14.6 18.4 7.0

M 2.9 7.5 59.0 18.0 12.6

L 7.2 4.7 1.5 82.9 3.7

R 5.5 6.9 1.7 7.9 78.0
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Table 3.7: Comparison of recognition performance using distances between objects on com-

puted trajectories (%).

baseline optimized

NN Euclidean 61.6 75.4

NN on DTIM 74.1 81.8

SVM 59.0 63.9

Probabilistic modeling on DTIM 75.7 83.0

Table 3.8: Comparison of recognition performance using velocity correlations between ob-

jects on computed trajectories (%).

baseline optimized

NN Euclidean 63.4 69.1

NN on DTIM 62.4 72.2

SVM 55.4 65.9

Probabilistic modeling on DTIM 63.6 72.0
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additionally label the group activity in each tenth frame by taking the dominant individual

action type, and then look for a segment of consecutive ten annotations with a consistent

group activity label. We keep those segments involving four to eight participants, as fewer

people do not constitute a meaningful ‘group’ activity and segments with more than nine

participants are rare. Moreover, as suggested in the dataset ‘walking’ is dropped out of

consideration, and we also ignore ‘dancing’ with few segments available. Eventually, the

dataset used in this part includes five activity categories, each of which consists of segments

of equal length of ten sampled on the multiples of the tenth frames in the original sequence,

and with the number of involved objects varying from four to eight.

We learn a separate DTIM model for each number of participating objects. The order

of the objects is simply taken from the leftmost of the image to the rightmost in the first

frame. We test on six combinations of two local features and three distance measures. The

local features include Histogram of Optical Flow (HOF) densely estimated and Histogram

of Oriented Gradient (HOG) on Harris corners in the bounding boxes. The three distances

between histograms are χ2 distance, cosine distance, and Euclidean distance. All other

experimental settings follow the same as in previous subsection, in the form of multiple runs

of five fold cross validations on randomized division of all samples into training/testing.

We show the overall recognition accuracy in Figure 3.7, where the same set of baseline

methods are also used for comparison. Best performance is observed using our proposed

method for most cases, and manifold modeling or optimized tensor reduction generally gives

improved accuracies over Euclidean modeling or non-optimized tensor reduction.

We also briefly discuss our proposed method qualitatively as compared to [4, 7] who

also reported work on the same dataset. A fair quantitative comparison is difficult due

to different assumptions made in respective methods, unavailability of implementations, as

well as data usage protocols. In contrast to [4] which proposes a spatio-temporal correlation

histogram descriptor, our method marginalizes the spatial and inter-personal correlations

but mainly focuses on the temporal evolution of the overall interactions, and the resulting

descriptor - temporal interaction matrix - is more compact. More importantly, we manipu-

late the descriptors geometrically by exploiting the intrinsic topology of the space of them,

while no such effort is made in [4]. A direct read of the statistics reported in [4] shows

that our recognition performance is better than what is presented in [4]. On the other

hand, the probabilistic graphical model explicitly incorporating features, individual actions,
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(a) HOF and Chi-Square distance

(b) HOF and Cosine distance

(c) HOF and Euclidean distance

(d) HOG and Chi-Square distance

(e) HOG and Cosine distance

(f) HOG and Euclidean distance

Legend

Figure 3.7: Recognition accuracy on collective activity dataset.
53



global behavior, and their relationships is presented in [7], while our method ‘condenses’

these information into a single measurement. The accuracy numbers achieved by us are

gently lower than those in [7] while a significant drop in complexity is the main merit of our

method.

3.6 Summary

In this chapter we investigated the modeling and recognition of coordinated multi-

object activity in a data-driven manner. In particular, we proposed a temporal interaction

matrix to characterize a group activity view-stably and discriminatively. We established the

Riemannian geometry for the space of temporal interaction matrices, DTIM, and set up the

‘intrinsic’ probabilistic mechanism for random samples on DTIM. To better approximate

the possibly complex distribution on DTIM, we further recursively built multi-component

densities on DTIM in a way that inter-class separability is enhanced. We demonstrated the

effectiveness of the proposed framework using football plays and articulated human actions

as experimental data. We made little use of activity-specific domain knowledge and hope

that the framework is more generally extensible to a larger body of categories of group

activities.

3.7 Appendix: Derivation of ( 3.28)

By elementary calculus it is obvious that

∂ logP J+1(ci|Xi)

∂P J (Xi, ci)
=∑

c=1,··· ,C,c̸=ci P
J(Xi, c) + ϵ

∑
c=1,··· ,C,c ̸=ci f(Xi, c)

(P J (Xi, ci) + ϵf(Xi, ci))(P J(Xi) + ϵf(Xi))
.

(3.31)

Since ϵf is a local deviation from P J in Taylor’s expansion, here we may assume ϵf ≪ P J .

Hence we ignore the terms of ϵf and have the approximation

∂ logP J+1(ci|Xi)

∂P J(Xi, ci)

.
=

∑
c=1,··· ,C,c ̸=ci P

J(Xi, c)

P J(Xi, ci)P J (Xi)

=

∑
c=1,··· ,C,c ̸=ci P

J(c|Xi)

P J(Xi, ci)
=

1− P J (ci|Xi)

P J(Xi, ci)
.

(3.32)

Note that the best ϵ is determined after f is learned.
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Chapter 4

Group Motion Segmentation Using a Spatio-Temporal Driving Force Model

4.1 The Group Motion Segmentation Problem

In this chapter we turn our attention to the problem of group motion segmentation,

and propose a solution for it. The group motion segmentation problem arises in a large

body of video surveillance applications and sports video analysis. Specifically, we have in

hand point trajectories from consecutive frames of a video sequence, and aim to group them

into two or more clusters. While this may appear to be similar to the traditional motion

segmentation problems [156, 157, 158, 159, 11, 160, 161, 162, 163], it is actually different. As

has been discussed, during group motion the participating objects/people have distinctive

and varying motions but the group itself collectively demonstrates an underlying activity of a

particular pattern, while the non-participating group of objects/people does not demonstrate

that pattern. Recent developments on analyzing these motion patterns of the participating

group [1, 2, 109, 6, 110, 111, 5, 106, 107, 3, 113], to recognize the group motion pattern or

detect a change or an anomaly assume that all objects are involved in the activity, which

is far from realistic scenarios where only a portion of the objects/people contribute to the

specific group motion. The group motion segmentation problem explored here attempts to

divide the point trajectories into participating group and non-participating group, or into

multiple participating groups, each corresponding to a coherent group motion pattern.

In a football play, the offensive players are the participants in the offensive motion,

while the defensive players are non-participants. Different offensive participants will give

rise to different moving trajectories, while the group will collaboratively demonstrate an

ensemble motion pattern which can be identified as a semantic strategy represented as a play

diagram in the playbook. This group motion pattern manifests itself as the spatial constraint

and temporal co-occurrence among the interacting trajectories. Note that participants move

under the guidance of a play diagram but significant spatio-temporal variations exist among

different realizations. Also, as the participating and non-participating group are mixed

within the same area, they cannot be separated by simply partitioning the spatial domain.

For these reasons, we address the group motion segmentation problem in the context of

55



Figure 4.1: Examples of relevant motion mixed in irrelevant motion, sampled from GaTech

Football Play Dataset. The top row gives snapshots of videos of the plays and bottom row

contains corresponding trajectories. The red trajectories are offensive ones (participating

ones) and the blue defensive (non-participating) ones.

offensive player identification in football plays. Examples of participating group motion

mixed with unrelated or irrelevant motion under consideration in this chapter are given in

Figure 4.1. Note that our segmentation is based on motion only: we do not make use of

appearance based features, which may not be always available due to poor video quality or

other reasons.

There are additional challenges beyond the aforementioned ones. Though the par-

ticipating group of a football play consists of a constant number of objects, more generally

the group motion pattern may be executed by a varying number of agents in different real-

izations, and the number may change during the activity due to a participant’s departure

or the arrival of a new member. Moreover, as the motion trajectories are generated by

a tracking algorithm, they are noisy. The trajectories may be incomplete, fragmented or

missing due to limitations of the tracking algorithm, strong occlusion among objects, and

other issues such as video quality. Each of these challenges should be addressed by a vision

algorithm and indeed our method is able to handle them.

Looking at the traditional motion segmentation problems we find the majority of

them addressing trajectories of feature points from independent 3-D rigid objects [156, 157,

158, 159, 11, 160] and the problem eventually boils down to subspace clustering. Other works

also exploit dependant/articulated rigid body motion [162] or a motion model leading to

nonlinear manifold clustering [163]. The group motion segmentation problem considered

here has little in common with them. On the other hand, the non-rigid Structure-from-
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Motion problems [164, 165, 166] assume non-rigid shape to be linear combination of rigid

ones, and non-rigid motion segmentation [161] makes use of local piecewise subspace model,

while the group motion under our consideration does not belong to either of these cases. In

this work we employ Lie group theory [167] and in particular establish a statistical model

over Lie algebra. Lie group and Lie algebra based approaches play roles in invariant visual

modeling and recognition [168, 169], robotics [170], 3-D rigid motion estimation [171, 172,

173], as well as dense flow field modeling [174]. In this work, we discuss a new application

to group motion estimation.

Looking beyond group motions arising from multiple agents, it is in fact not difficult

to find analogies between the scenario involving multiple agents and cases where an ensemble

of trajectories is obtained from tracking local space-time interest points. Specifically, the

model proposed in this chapter can also be used toward single human articulated motion,

or other video dynamics of relevance, simply based on space-time interest points tracked

throughout a sequence. In realistic natural scenes the human actions are captured under

complex, cluttered and dynamic background, all of which contribute to space-time interest

points, while those points from the human body constitute only a portion of them. Con-

sequently, methods using the Bag-of-Words or Bag-of-Features framework tend to degrade

when directly applying space-time interest points detector regardless of the irrelevant points

from the background. Therefore, it is necessary that the points and associated trajectories

from the relevant motion are identified before we apply any machine learning methods which

assume clean background. This challenge falls right into the framework considered here and

we will apply the model to this case as an extension.

The proposed model is detailed in Section 4.2, and its application to group motion

segmentation is presented in Sections 4.3 and 4.4. Section 4.5 empirically demonstrates

the application of the approach, followed by extension to local space-time interest points in

Section 4.6. Finally discussions are presented in 4.7.

4.2 Spatio-Temporal Driving Force Model for A Group Motion Pattern

In this section we introduce a characterization for a group motion pattern, made of a

collection of spatio-temporal constrained trajectories possibly noisy, of varying number, and

undergoing spatio-temporal variation from realization to realization. The key idea is that

we model the group motion as a dynamic process driven by a spatio-temporal driving force
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densely distributed across the area where the motion occurs, instead of simply as a set of

discrete point trajectories. To be precise, the driving force is denoted as a 3× 3 real matrix

F (t0, tf , x, y) which moves an object located at X(t0) = (x(t0), y(t0), 1)
T in homogeneous

coordinates at time t0 to location X(tf ) = (x(tf ), y(tf ), 1)
T at time tf , by

X(tf ) = F (t0, tf , x, y)X(t0). (4.1)

Without loss of generality, we usually take t0 = 0 to be the starting time. It is obvi-

ous that once we have learned F for all tf , x, and y, then the group motion is com-

pletely characterized. To be able to learn F , we limit our attention to those parametric

F ’s which have the following properties: 1) F (t1, t2, x, y)F (t2, t3, x, y) = F (t1, t3, x, y); 2)

F (t1, t2, x, y)
−1 = F (t2, t1, x, y); and 3)

F (t, t+ 1, x, y) , F (t, x, y) =
F11(t, x, y) F12(t, x, y) F13(t, x, y)

F21(t, x, y) F22(t, x, y) F23(t, x, y)

0 0 1

 . (4.2)

The F (t, x, y)’s defined this way is in fact a Lie group and more specifically an affine group

[167]. By making use of Lie group theory we may achieve both generality and flexibility in

modeling complex motion patterns, as shown next.

F (t, x, y) characterizes the motion potential at time t for an object located at (x, y).

However, we may look into an alternative representation. Consider F (t, t + δt, x, y) and

X(t+δt) = F (t, t+δt, x, y)X(t), and we then haveX(t+δt)−X(t) = (F (t, t+δt, x, y)−I)X(t)

where I is the identity matrix. Dividing both sides by δt and letting δt → 0, we get

X ′(t) = f(t, x, y)X(t), in which X ′(t) = (x′(t), y′(t), 0)T is the speed of the object, and

f(t, x, y) =


f11(t, x, y) f12(t, x, y) f13(t, x, y)

f21(t, x, y) f22(t, x, y) f23(t, x, y)

0 0 0

 ,

lim
δt→0


F11(t,t+δt,x,y)−1

δt
F12(t,t+δt,x,y)

δt
F13(t,t+δt,x,y)

δt

F21(t,t+δt,x,y)
δt

F22(t,t+δt,x,y)−1
δt

F23(t,t+δt,x,y)
δt

0 0 0

 .
(4.3)

In fact, f(t, x, y) is the Lie algebraic representation of F (t, x, y) and the two are related by

the exponential map F (t, x, y) = exp(f(t, x, y)) =
∑∞
i=0

1
i! f(t, x, y)

i and logarithmic map

58



f(t, x, y) = log(F (t, x, y)) =
∑∞
i=1

(−1)i−1

i (F (t, x, y) − I)i [167]. In other words, we may

work equivalently with f instead of directly working with F for the driving force model.

The advantage of using f lies in the fact that the space of all f ’s, the Lie algebra, is a

linear one on which we may develop various statistical tools, while the Lie group of F ’s is a

nonlinear manifold not easy to work with. More importantly, X ′(t) = f(t, x, y)X(t) implies

that the location and speed of the object are linearly related by f , and both the location

and the speed are low-level features obtainable from the motion trajectories of the objects,

i.e., learning a single driving force model f(t, x, y) will be straightforward.

4.2.1 Learning a Spatial Hybrid Driving Force Model at a Time Instant

Suppose we fix a specific time instant t. Intuitively, different driving forces f(t, x, y)’s

induce different ‘affine’ motions for different (x, y)’s, and learning for all (x, y)’s in the whole

area of group motion is intractable. On the other hand, constant f(t, x, y) ≡ f(t) induces

a global ‘affine’ motion to all objects in the group, whose representative power is severely

limited. For this reason, we propose a spatial hybrid model, in which we assume K driving

forces in the area of group motion. The effective area of the kth (k = 1, 2, · · · ,K) force is

Gaussian distributed as (x, y)T ∼ N (µk,Σk). (We drop the argument t in this subsection

for simplicity.) In the effective area, there is a uniform ‘affine’ motion fk. For notational

convenience we write

fk =

 Ak bk

0T 0

 (4.4)

where Ak is the upper-left 2× 2 block of fk.

Consider the feature vector Y , (x, y, x′, y′)T extracted from an object motion tra-

jectory driven by the kth force, and it is obvious that

Y =

 I

Ak

 x

y

+

 0

bk

 . (4.5)

Taking into account the noise created due to approximating the speed (1st order derivative)

of point trajectories, we represent the observed feature vector as

y = Y +

 0

nk

 (4.6)
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where n ∼ N (0, T k). Then after some manipulations we find y ∼ N (νk,Γk), where

νk =

 µk

Akµk + bk

 (4.7)

and

Γk =

 Σk ΣkAkT

AkΣk AkΣkAkT + T k

 . (4.8)

We are now in a position to learn the spatial hybrid driving force model for a particular

time instant t, from a limited discrete number of objects in a group motion. Suppose we

have observed tM motion feature vectors {ym}tMm=1, then the learning task boils down to

fitting a Gaussian Mixture Model (GMM) of K component {(νk,Γk)}Kk=1 (using uniform

mixing coefficient 1
K ). An Expectation-Maximization procedure is employed to complete

the inference. After successfully learning the GMM, the spatial hybrid driving model, i.e.,

{(fk, µk,Σk)}Kk=1, is recovered. Note that by Gaussian assumption the learned effective areas

of different driving force components will overlap and cover the whole area; to eliminate this

ambiguity we technically partition the area such that the distance between the component’s

center and (x, y) is minimized.

It may be useful to recap what has been achieved till now by using the spatial hybrid

driving force model. In fact, at time t we partition the area into K subareas, and model

the instant motions of all the objects in one subarea to be an uniform ‘affine’ motion. In

this way we are actually establishing a dense ‘motion potential field’ across the area where

the group motion happens. Though the field may be learned from the motion features of

sparse objects, it exists everywhere, and any other group of objects giving rise to the same

field model is regarded as the same group motion pattern at time t, though participating

objects (which the motion features come from) may appear in different locations from one

group pattern to another. Figure 4.2 gives two examples of the spatial hybrid driving force

model, where the sparse objects for learning the model, the learned partition of the area,

as well as the learned driving force in each partition are all shown for two group motion

samples in the dataset.
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Figure 4.2: Two samples of 3-component driving force model at a time instant. The red

circles denote the relative objects (offensive players) and the red bars attached to them

denote the velocities of the objects. The blue arrow array gives the densely distributed

driving force learned from the sparse object motion observations. The contour lines enclose

the effective areas for the driving forces.

4.2.2 Learning Temporal Evolution of Driving Force Models for a Group

Motion Pattern

Having obtained a hybrid driving force model at a particular time instant, we turn

to the temporal evolution of the model, which eventually characterizes the complete group

motion. Denote the driving force model at time t as M(t) = {mk(t)}Kk=1 where mk(t) =

(fk(t), µk(t),Σk(t)), and assume we have learned models at time t = t1, t2, · · · , tT (which

may not be continuous, but intermittent instants due to fragmented trajectories). We then

learn a temporal sequence of these models in two steps: 1) component alignment between two

consecutive instants, and 2) learning a parametric representation for the temporal sequence.

Component alignment is performed on M(ti+1) with respect to aligned M(ti), start-

ing from M(t2) with respect to M(t1). Mathematically, let the vector (k1, k2, · · · , kK)T

denote the element-wise permutation of vector (1, 2, · · · ,K)T , then we aim to find an op-

timal permutation such that
∑K
j=1D(mj(ti),m

kj (ti+1)) is minimized, where D(m,m′) is

a properly defined dissimilarity between model m and m′. In other words, we are trying to

associate each driving force component at time ti+1 uniquely with one at time ti such that

within each associated pair are they as similar as possible. We then give each component
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at ti+1 a new component index which is nothing but that of the associated component at

ti. Obviously, after component alignment for a fixed k, mk(t) become similar, or change

smoothly, among all ti’s, which reduces the complexity of the parametric representation.

Note that the driving force model m includes the ‘force’ term f and the effective area

N (µ,Σ), and f lies on the Lie algebra which is a linear space. Therefore, we use

D(m,m′) = ∥f − f ′∥+

α(KL(N (µ,Σ)∥N (µ′,Σ′)) +KL(N (µ′,Σ′)∥N (µ,Σ)))
(4.9)

where KL(·∥·) denotes the Kullback-Leibler divergence. Then the optimal permutation can

be solved using the classical Hungarian assignment algorithm [148].

Now we are looking for a parametric representation of the temporal sequence M(t)

for t = 1, 2, · · · . Note that mk(t) is essentially composed of fk(t) , the space of which is a

Lie algebra (denoted as F), and N (µk(t),Σk(t)), which is on the nonlinear manifold of 2×2

Gaussian’s. As the nonlinearity brings analytical difficulty, we work with the parameters of

N (µk(t),Σk(t)), i.e., [µk1(t), µ
k
2(t), σ

k
11(t), σ

k
12(t)(= σk21(t)), σ

k
22(t)]

T , gk(t), rather than the

Gaussian distribution itself, and regard the space of gk(t)’s (denoted as G) to be linear as

well. (Though linearity does not rigorously hold, it is an effective approximation.)

We hence establish a parametric model for the temporal sequence M(t), t = 1, 2, · · ·

on the Cartesian product space F×G. We propose the linear model {(Wkt+wk+v1,U
kt+

uk + v2)}Kk=1 for {(fk(t),gk(t))}Kk=1, where

Wk =


W k

11 W k
12 W k

13

W k
21 W k

22 W k
23

0 0 0

 , (4.10)

Uk = [Uk1 , U
k
2 , U

k
3 , U

k
4 , U

k
5 ]
T , and v1,v2 are independent white Gaussian perturbation. With

this model, fk(t)’s (resp. gk(t)’s) for each component k, when t varies, will approximately

move in the one-dimensional subspace of F (resp. G). In other words, components of the

time-varying spatial hybrid driving force will evolve along straight lines in F×G. A visual

illustration for this idea is shown in Figure 4.3.

We use linear representations for the temporal sequence of driving forces basically

for simplicity and effectiveness (to be demonstrated in the experiment). We may attempt

advanced techniques but in this initial work on group motion segmentation we use linear

ones to begin with. The straight lines {(Wkt + wk,Ukt + uk)}Kk=1 in F × G are simply
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1

2
21

2

Figure 4.3: A pictorial illustration of the temporal evolution of driving force models. It only

shows the kth component. In all, there should be K ones, i.e., on left and right planes there

should be K straight lines respectively.

fitted using previously obtained models (fk(t),gk(t))’s at time t = t1, t2, · · · , tT in the least

square sense. However, once these lines are available, we may re-sample the lines at other

t’s to generate new spatial hybrid driving forces at those time instants. In this way, we

actually learn the group motion pattern within the whole time duration from only motion

information at limited time instants.

Up to now, a group motion pattern has been fully captured by {(Wkt +wk,Ukt +

uk)}Kk=1 , GM , by which the motions of participants of the group activity, at any location

and any time, are condensed into and may be recovered from the corresponding GM .

4.3 DP-DFM: Accounting for Group Motion Variation

The variation of group motion patterns from video to video leads to the variation of

GM ’s learned from video to video. To statistically model this variability among different

GM ’s, we establish a Dirichlet Process (DP) [175] over F×G, leading to a Dirichlet Process

- Driving Force Model (DP-DFM). The DP-DFM is essentially a Bayesian mixture model

good for handling an unknown number of mixing components. As we do not have prior

knowledge about the variability of the group motion patterns (i.e., GM ’s from different

offensive plays), DP-DFM is a natural choice.

Specifically, we regard the GM as a long vector consisting of the elements of Wk, wk,

Uk, uk, k = 1, · · · ,K, and suppose it comes in the following manner (called ‘Stick Break-

ing’): 1) Let vt ∼ Beta(1, η) and λt = vtΠ
t−1
l=1(1− vl); 2) Draw a sample from Σ∞

t=1λtδ(θt),

where δ(θt) is a point measure situated at parameter vector θt, and θt ∼ G0, which is a base

measure (Gaussian-Wishart in this work); 3) Draw a GM from a Gaussian whose mean and
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covariance are specified by θt. In this way the DP-DFM formulation has become a canonical

DP mixture problem and we employ the standard procedure [175] to complete the inference

of DP-DFM.

4.4 Probabilistic Segmentation

With a DP-DFM learned from training group motion patterns, we segment a new

testing motion pattern by synthesizing a set of Monte Carlo samples (i.e., spatio-temporal

DFM’s) from DP-DFM, matching the trajectories in the testing motion pattern with these

simulated models, and voting for the best matching motion trajectories as the segmentation

result. To simulate a Monte Carlo sample, we first draw a GM from the DP-DFM. Then we

recover the temporal sequence of spatially hybrid driving forces M(t) = {mk(t)}Kk=1, and

consequently the time-varying densely distributed driving forces F (t, x, y). As a result, at

each time instant t and for each object(trajectory) at t in the testing motion pattern, we may

predict its location at t+1 by (1), and measure the discrepancy between the predicted and

actual locations (The discrepancy is simply measured as the distance between the two in this

work). Those objects(trajectories) which accumulatively have the least discrepancies across

all t’s with all simulated driving force samples are finally determined as the participating

objects.

4.5 Experiments

We perform group motion segmentation on the football play dataset used in previous

chapter again, dividing players into participating (offensive) ones and non-participating (de-

fensive) ones solely by their motion trajectories. We designed three rounds of experiments,

the first of which employs ground-truth trajectories from training to testing. As in any

practical system the input trajectories will be noisy, in the second round we generate noisy

trajectories from the ground-truth and experiment with them. In the final round we test the

learned framework on tracks computed from videos with a state-of-art multi-object tracker

[9]. In each round of experiments, we carry out multiple passes of five-fold evaluations, i.e.,

in each pass we randomly divide 4/5 of the samples into the training set and the remaining

samples into testing set. The final statistics is aggregated from the average of all passes.

Empirically we find K = 5 is a good selection for the total number of components. For

64



Gaussian-Wishart prior G0, we set the Wishart scale matrix to be the inverse of sample co-

variance of training GM ’s, and the Gaussian mean to be the sample mean of training GM ’s.

The other free parameters in the framework are determined by experimental evaluation.

4.5.1 Experiment on Ground-Truth Trajectories

In the experiment with ground-truth trajectories, we have approximately 56 × 4/5

group motion samples, which may be captured in different views. For convenience and

without loss of generality, we apply a homographic transform to each of them to work in

a canonical view (ground plane in this work). To get sufficient exemplars to train the DP-

DFM, we augment the training sets by generating new training samples from the original

ones. For this purpose, we perturb each original trajectory by adding 2-D isotropic Gaussian

perturbations on ground-plane coordinates at multiples of 20% of the whole motion duration,

and polynomially interpolating the other time instants. In this way, we generate 25 new

motion patterns from each original one. When learning a single hybrid driving force model

within each (original or generated) motion pattern, we perform discriminative training, i.e.,

we not only collect location/speed pairs from relevant (offensive) trajectories, but also take

into account the irrelevant (defensive) trajectories away from the relevant ones, and include

the inverse speeds from them into consideration. In addition, each speed vector is replicated

a couple of times in the neighborhood of the corresponding location.

For comparison we set up three baselines. The first uses the homogeneous spatial

model, i.e., K = 1, and the second uses the time-invariant model, i.e., we use a fixed

hybrid driving force for all t’s. Note that the second baseline is in principle similar to the

model in [174]. In the third baseline, we simply regard the relevant trajectories as noisy

observations of the states of a linear time-invariant dynamic system and use standard system

identification approach [57] to learn the model.

We use the ratio of the correct segmented offensive players to the total offensive

players, namely segmentation rate, as the numerical criterion to evaluate the performance,

which is shown in Table 4.1. Samples of the segmentation results, are shown in Figure 4.4.

4.5.2 Experiment on Non-robust Trajectories

In this experiment, we simulate non-robustness by first randomly dropping a few tra-

jectories (1, 2, 3 when training and 1, 2, 3, 4, 5 when testing) from the ground-truth, and
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(a) Ground truth (b) Proposed DFM (c) Homogeneous Spatial 

model

(d) Time-invariant model 

(similar to [21])

(e) Linear time-invariant 

system ([23])

Figure 4.4: Samples of segmentation results. In each row are a ground-truth group motion

and corresponding segmentation results. Red trajectories denote the relevant objects and

blue ones are irrelevant ones.

Table 4.1: The segmentation rates comparison (%).

Proposed Driving Force Model 79.7

Homogeneous Spatial Model 74.8

Time-Invariant Model 73.3

Linear Time-Invariant System Model 70.7
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Figure 4.5: Segmentation statistics on non-robust trajectories.

then for the remaining trajectories randomly locating the durations during which we let the

trajectories disappear (using a 1/0 birth-death process model with λ/µ = 5). The training

samples are then augmented by perturbing trajectories in every continuous durations. The

statistics are shown in Figure 4.5. It turns out that the segmentation performance is in-

sensitive to the varying number of missing trajectories as well as interruptions, as expected

from having a dense field and continuous sequence.

4.5.3 Experiment on Trajectories from Tracking

In this evaluation, we employ a multi-object tracker [9] rather than directly using the

annotations. As before, the trajectories are then transformed into ground plane coordinates.

The multi-object tracking algorithm is based on foreground detection and tends to merge

multiple targets into a single one (thus loses objects) when objects are small, highly cluttered,

or strongly occluded. Note that in this case no numerical statistics can be calculated due to

difficulty in associating these non-robust tracks with the ground-truth. However, we show

the results in Figure 4.6 for a qualitative demonstration of the performance.

4.6 Extension: Segmenting Relevant Space-Time Interest Points from Clut-

ters

We demonstrate in this section that DP-DFM is applicable to trajectories of space-

time interest points, for the purpose to segment a relevant group of points arising from rele-

vant human actions in videos with complex cluttered background which produces irrelevant

space-time interest points as well. To locate a noise-free bag of words is critical to properly
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(a) Ground truth (b) Proposed DFM (c) Homogeneous Spatial

 model

(d) Time-invariant model 

(similar to [21])

(e) Linear time-invariant 

system ([23])

Figure 4.6: Samples of segmentation results on trajectories from tracking. In each row

are a ground-truth group motion and corresponding segmentation results on tracks. Red

trajectories denote the relevant objects and blue ones are irrelevant ones.
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employ the family of bag-of-words methods, and there has not been an effort devoted to the

removal of noisy points, to the best of our knowledge. Our model, therefore, is able to fill

in this gap. Technically, each point detected and tracked corresponds to a player in football

plays and then all terminologies and algorithmic steps are straightforwardly transplanted,

except for a global spatial warping effect of the DFM taken into account. Specifically, the

group of relevant space-time interest points may only occupy a small portion of the whole

area of view, and consequently we may need to shift, scale and warp the DFM globally

so as to reach a best match. To achieve this, after generating Monte Carlo DFM samples

in the segmentation algorithm introduced previously, we generate Monte Carlo samples of

affine transformations, and warp the DFMs with them before matching against the motion

extracted from the video. The mechanism of generating random affine transformations is

discussed in the next Chapter under the section ‘Spatial Misalignment Submanifold’.

We make use of the dataset in [176], in which five categories of articulated human

actions are recorded in natural scenes with complex and dynamic background, including

jumping jacks, one-handed waves, pickups, push buttons, and two-handed waves. For each

category, template videos with clean background as well as testing videos with noisy back-

ground are both provided. The testing videos are partially annotated with bounding boxes

and temporal durations of the relevant human actions of interest. We train a DP-DFM for

each category, using the template videos and some of the testing videos with (manually in-

spected and selected) good boxes. Space-time interest points are extracted using the Harris

corner detector and tracked by Kanade-Lucas-Tomasi tracker [177].

Sample results for segmenting relevant group of trajectories of local space-time inter-

est points are shown in Figure 4.7, where the red color marks the relevant motion in response

to the DP-DFM model learned from training videos with clean background or ground truth,

while red plus green colors mark all the detected and tracked corner points. Obviously, our

model effective eliminates the majority of background tracks and provides a significantly

clean version of the bag of words, which is hopefully helpful in subsequent learning and

inference.

4.7 Discussions

We briefly discuss a few related issues. The first is the fact that the group motion

segmentation algorithm can be used for temporal detection of the group motion, i.e., to
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Figure 4.7: Samples of segmentation results on local space-time interest point trajectories.
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determine the starting and ending location along the time axis. As the dataset used here

only provides temporally segmented video clips containing a complete play, we are unable

to empirically show this. However, for this purpose we simply initialize the segmentation

algorithm from different time instants and identify the one(s) with the most likely match(es).

Note that the algorithms can run in parallel.

A second issue is about estimating the spatial area of the group motion pattern. In

football plays the participants and non-participants are homogeneously mixed all across the

whole area of interest. However, in other applications the group motion pattern may only

occupy a small portion of the whole area of view. In this case, we may also re-scale the

field model into multiple scales and run the algorithm in parallel and in multiple scales.

Within each scale we run the algorithm in dense partitions of the whole field. Note that

scales and partitions with low matches in early stage can be eliminated from the candidate

pool and the computational cost will keep decreasing. This strategy is similar to the one in

the previous section where we explicitly model the global shift, scaling and deformation of

the DFM within the generative process, and is computational expensive.

While the football play involves only one participating group, the method we pre-

sented can be extended to scenarios with multiple groups without much effort. To do so

we learn a DFM per group and the testing motion pattern will be matched against every

model. To get the final segmentation we simply vote for the best match.

The model is not view-invariant. We need to learn a separate model for each static

view. However, static cameras are typical for surveillance and also commonly used for sports

recordings. Also, the synthesis and voting based method is not computationally economical,

and thus needs further improvement.

A final point is that though we designed methods in the context of group motion

segmentation, the learned model, or compact features derived from it, can potentially serve

as representatives of the underlying group motion. This implies a possibility that the pro-

posed framework can be used toward the motivating application - group activity recognition

addressed in previous chapter. Meanwhile, it is also expected that integration of the model

into a multi-object tracker will help to improve the tracking quality due to its capability to

predict potential motion. These open issues are under our further investigation.
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Chapter 5

Spatio-Temporal Alignment of Two Motion Patterns (Signals)

5.1 Motivation

In this chapter we consider the problem of aligning two group motion ensemble, or

more generally, two spatio-temporal signals (i.e., videos, their filtered versions, or spatio-

temporal features extracted from them.) which come from the same dynamic scene or

the same category of dynamics. The misalignment between the two signals, captured by

distinct cameras at the same time or by the same camera at different times, may result from

various internal or external factors. Specifically, the internal factors include but are not

limited to differences in view points, view angles, camera calibration parameters, as well as

temporal shifts and scaling. Previous work on video sequence alignment mostly focused on

this category of mismatch, and followed mainly two lines of approaches including feature-

based approaches [178, 179, 11, 180, 12, 181, 10] and direct approaches [182, 183, 13]. In

the former class, features like two-frame correspondences of interest points or trajectories of

tracked objects were used as inputs to the alignment algorithm, while in the latter, intensity,

color, or other pixel/patch level appearance attributes were employed. The spatial aspect

of the misalignment, in most of the work, was naturally modeled as one of the parametric

transforms including affine, homography, and perspective ones between the image plane

coordinates of the two signals, based on different assumptions made regarding imaging

conditions. The temporal misalignment, on the other hand, mainly took frame rate and

shift synchronization into account, modeled as a 1-D affine transform along the time axis.

The algorithms were exclusively designed for representations of the particular transforms

exclusively to achieve optimal alignments. The warping parameters were then obtained

using a numerical optimization method which is typically an exhaustive search or a greedy

method such as gradient descent.

The first step taken in this chapter is to revisit the issue of temporal misalignment,

which comes not only from the camera aspect (frame-rate and temporal shift), but also from

the external factors from the observed dynamics. We look into semantically meaningful vi-

sual dynamics beyond plain spatio-temporal volumes: one of the examples of semantically
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meaningful visual signals is videos recording human actions/activities. The same class of

activities (e.g., walking) may contain realizations executed at varying rates, though the

essential characterization for that activity category should be rate independent. This rate

change is in fact a temporal misalignments among realizations (signals) and is described

by a non-affine time warping [139, 184]. Therefore, a complete description of the temporal

misalignment regarding these signals should include time warping as well. A second concern

is about the spatial aspect of the alignment algorithm, which usually pertains particularly

to either feature-based methods or direct methods and is tuned to the assumed parametric

spatial transform assumed. Existing algorithms are far from being scalable and flexible to

easily adapt to different parametric model and different inputs. Moreover, it is always cru-

cial to strike a balance between computational complexity and convergence towards global

optimum. For example, exhaustive and greedy pursuit usually realize one of these goals at

the cost of not achieving the other.

Taking all these factors into account, we reformulate the spatio-temporal alignment

problem and provide a general framework and associated computational algorithms. To this

end, we propose the concept of the alignment manifold, which is the nonlinear space of all

possible spatio-temporal transformations with an intrinsic geometric characterization. We

detail the construction of the alignment manifold and discuss the algebra of basic manipu-

lations of the elements on it. The spatio-temporal signal alignment, consequently, becomes

an optimization procedure on the manifold, regardless of whether the inputs are features,

appearances, or other data instances from practice, provided that an objective function is

properly defined to measure the misalignment of the two signal under a spatio-temporal

transformation model. In particular, we present two Bayesian optimization algorithms on

the manifold based on Sequential Importance Sampling (SIS) [185] , to achieve both effi-

ciency and better convergence to the global optimum. The key idea is to regard the optimal

alignment as a static state to be recursively estimated from the observed misalignment such

that the posterior probability density of the estimated state reaches maximum at the true

optimal alignment. In the basic SIS algorithm, an isotropic Gaussian diffusion is construct-

ed for state particle propagation, which ignores the local first-order differential structure

and leads to slow convergence. In the second algorithm, namely the Stochastic Gradient

Sequential Importance Sampling (SG-SIS), we consider randomized gradient vector in the

tangent space of a particular particle, which is equivalent to an alternative state transition
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dynamics. Consequently, the search in the subsequent step is guided by that stochastic

gradient, and results in a more efficient convergence.

In short, the contributions of this chapter are (1) we present a general framework for

spatio-temporal alignment, incorporating temporal warping and various parametric spatial

transforms as well as inputs; (2) we introduce the alignment manifold, a manifold tuned to

the alignment task; and (3) a SIS algorithm and a SG-SIS algorithm specifically designed for

the alignment manifold to realize a numerically optimal solution to the alignment problem.

The rest of this chapter is organized as follows. We formulate the alignment problem

in Section 5.2 that includes typical examples in vision, followed by the construction of the

alignment manifold in Section 5.3. We propose the SIS optimization procedure on the

alignment manifold in Section 5.4, the SG-SIS algorithm in Section 5.5, and then validate

their effectiveness in Section 5.6 with experiments on various typical spatio-temporal signals

that arise in vision. Additional issues are discussed in Section 5.7.

5.2 The Framework of Alignment Problem

We investigate the two 3-dimensional spatio-temporal signals S1 and S2, whose el-

ements are denoted as S1(x, y, t) and S2(x, y, t) respectively, where x and y represent the

spatio coordinates, and t charts the temporal dimension. The spatio-temporal alignment

problem aims to solve the following optimization problem

min
p∈M

J(S1, S2,p) (5.1)

where p is the parameter vector specifying the alignment transform, M is the alignment

manifold, i.e., the space of all feasible p’s, and J is a measure of misalignment to be mini-

mized by an optimal p. As in previous efforts, we assume the relative calibrating parameters

of the two cameras to be fixed but unknown, i.e., the two cameras will remain both sta-

tionary, or move jointly. As a result, the spatial misalignment and temporal misalignment

become decoupled. In other words, we may split p into two components as p = [pTS ,p
T
T ]
T ,

so that the spatial and temporal misalignment can be independently handled. Note that

under a much more complicated and challenging imaging condition, cameras may be under

relative motion and hence the spatial misalignment and temporal misalignment are coupled.

We will consider this general case in a future work. With decoupling of spatial and temporal

factors, the alignment manifold M is accordingly decomposed into the Cartesian product of
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two submanifolds as M = MS×MT , where pS ∈MS and pT ∈MT . The explicit analytical

form of J depends on the specific spatial and temporal transforms involved, the measure of

misalignment, as well as the practical goal to be achieved. For a better illustration, we give

three typical examples arising from representative vision applications.

Example 1 S1 and S2 are grey-level videos, the spatial displacement is 2-D affine,

and temporal transform is 1-D affine. The misalignment is measured as the pixel-wise mean

square error. In this case,

J(S1, S2,p) =
∑
x,y,t

(S1(x, y, t)− S2(x+ u, y + v, t+ w))2, (5.2)

and 
u

v

w

 =


a11 a12 0 b1

a21 a22 0 b2

0 0 a b



x

y

t

1

 . (5.3)

The corresponding alignment parameter vectors are pS = (a11, a12, a21, a22, b1, b2)
T and

pT = (a, b)T with MS to be the 2-D affine group A(2) and MT to be R+ × R. �
Example 2 S1 and S2 are color videos, i.e., Si contain three channels Sij , j =

1, 2, 3, spatial transform is 2-D homography, and the temporal transform is a nonlinear time

warping. The misalignment is measured as the pixel-wise mean square error of the intensity.

In this case,

J(S1, S2,p) =
∑
j

αj
∑
x,y,t

(S1
j (x, y, t)− S2

j (x
′, y′, t′))2, (5.4)

x′ =
h11x+ h12y + h13
h31x+ h32y + h33

, (5.5)

y′ =
h21x+ h22y + h23
h31x+ h32y + h33

, (5.6)

and t′ = W (t), where αj ’s are the weights for the channels and W (t) is the time warping

function. If we denote H = [hi,j ]3×3 to be the homography matrix with the constraint

of unit determinant (i.e. detH = 1, without loss of generality), then we have pS = H,

pT =W , MS is the 3× 3 special linear group SL(3), and MT is the set of all possible time

warpings. �
Example 3 S1 and S2 contain N spaces-time point trajectories respectively, i.e.,

Si = {T ij}j=1,2,··· ,N and T ij = {(xij(t), yij(t))}t, where (x1j (t), y
1
j (t)) (x2j (t

′), y2j (t
′)) are as-

sumed to come from the jth tracked interest point corresponding to the same 3-D point,
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captured by two pinhole cameras. Then considering perspective misalignment of the trajec-

tories we have

J(S1, S2,p) =
∑
j

∑
t

∥[x1j (t), y1j (t), 1]F[x2j (W (t)), y2j (W (t)), 1]T ∥2. (5.7)

Here F is the 3× 3 fundamental matrix, and we may regard pS = F and MS to be the set

of all possible fundamental matrices. �
In practice, various objectives, besides these examples, are formulated depending

on the applications to be addressed and problems to be solved, whereas most of them

are essentially optimizations on the alignment manifold. As will be demonstrated, the

perspective of aligning on the manifold enables generic non-linear (and possibly randomized)

solutions for various formulations, in contrast to existing approaches that have been designed

for a specific transform or a specific scenario. More importantly, the objectives involving

realistic spatio-temporal signals are usually not analytical in the alignment parameters,

which actually necessitates a generic modeling and randomized design.

5.3 The Alignment Manifold

In this section we look into the alignment manifold M = MS ×MT , whose elements

characterize the alignment transforms under consideration. As the spatial and temporal

factors are considered independently in this work, we are in a position to discuss them

separately.

5.3.1 The Spatial Alignment Submanifold

The previous examples imply that the spatial alignment manifold MS is usually i-

dentical to a Riemannian manifold of the transformation/constraint matrices. Affine group

A(2) and special linear group SL(3) both belong to the matrix Lie group, which possess-

es several intrinsic geometric properties. We list a few used in this work: The geodesic

(intrinsic) distance between two elements V1,V2 on the matrix Lie group is

d(V1,V2) = || log(V−1
1 V2)||. (5.8)

The exponential map Evm : Tvm → G, which maps v′ in the tangent space TVm at Vm onto

the group G, is given by

EVm(V′) = Vm exp(V−1
m V′). (5.9)

76



The logarithmic map LVm
: G→ TVm

, meanwhile, is

LVm(V) = Vm log(V−1
m V). (5.10)

Here, the matrix exponential and logarithmic operation used here are defined as

exp(X) =
∞∑
i=0

1

i!
Xi (5.11)

and

log(X) =
∞∑
i=1

(−1)i−1

i
(X− I)i. (5.12)

For more discussions about the geometry of matrix Lie group the reader is referred to [167].

The space of fundamental matrices - F’s, as in Example 3, is the space of those

matrices with rank 2. To get a parameterization for this manifold, we employ the singular

value decomposition F = U1ΣUT
2 , where U1 and U2 are both 3 × 2 orthogonal matrices

and Σ is 2 × 2 diagonal positive. It is known that the spaces of all 3 × 2 orthogonal

matrices is the Stiefel manifold V2,3 [129] and thus the spatial alignment manifold MS =

V2,3 × R+ × R+ ×V2,3. For two elements V1,V2 on V2,3, an intrinsic distance is

d(V1,V2) =
√
2− tr(VT

1 V2). (5.13)

The tangent vectors at Vm, denoted as V′’s, can be represented as

V′ = VmA+ (I−VmVT
m)B, (5.14)

where A is skew-symmetric and B is arbitrary. The exponential map from V′ to V, mean-

while, can be obtained as

V = [Vm,Q] exp

 VT
mV′ −RT

R 0

 I

0

 (5.15)

where Q and R are the QR-decomposition of (I−VmVT
m)V′.

For each of the other types of spatial transformations, a proper representation for the

spatial alignment submanifold should be established, and the geometry of the space should

be well exploited so that computational manipulations on them are made feasible.

5.3.2 The Temporal Alignment Submanifold

As pointed out earlier, in this work we not only account for the temporal misalignment

due to synchronization problem and differences in frame rates of the cameras, but also
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Figure 5.1: Two realizations of the same activity ’coming to work’ but with rate variations

(temporal misalignment) along time axis.

exploit the rate variations among observed dynamic instances of the same category. As

a toy example, let us assume that the cameras are well synchronized and share the same

frame rate, while a global activity ‘coming to work’ is executed and observed twice during

the time span [0,30]. The sub-activities in the cascade comprising the global one - opening

the door, walking to the desk, and then sitting down - may occur in different time slots

of [0,30] (See Figure 5.1 for visual illustration). In this case we need to non-linearly warp

the sub-activities along temporal axis so that rate variation is removed among different

realizations for the unambiguous specification of the global activity ‘coming to work’.

Rate variation within a fixed time span, i.e.,[0,1], with global frame rate (scaling)

and shift eliminated, is well modeled as a diffeomorphism γ from [0,1] to [0,1] with γ(0) = 0

and γ(1) = 1 [139]. Then, any time warping or misalignment W (t) under consideration can

be written as

W (t) = k2γ(
t− l1
k1

) + l2, (5.16)

where k1, k2 are the positive global scaling factors and l1, l2 are the shift factors, defined for

l1 ≤ t ≤ k1 + l1. Obviously, when we take γ(t) = t, W (t) reduces to the temporal affine

transformation. Denoting the space of all possible γ’s as �, we can now formally define the

temporal alignment submanifold as MT = R+ ×R+ ×R×R× �, where R+ ×R+ accounts

for k1, k2 and R× R accounts for l1, l2.

If we let ψ =
√
γ̇ and the space of all ψ’s to be ⊖, then under Fisher-Rao metric (See
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[149, 186]), the intrinsic distance between ψ1 and ψ2 are

d(ψ1, ψ2) = cos−1(< ψ1, ψ2 >) (5.17)

where

< ψ1, ψ2 >=

∫ 1

0

ψ1(t)ψ2(t)dt. (5.18)

The exponential map Eψm : Tψm → ⊖ for ψ′ ∈ Tψm is defined as

Eψm(ψ′) = cos(< ψ′, ψ′ >
1
2 )ψm +

sin(< ψ′, ψ′ >
1
2 )

< ψ′, ψ′ >
1
2

ψ′. (5.19)

The logarithmic map Lψm : ⊖ → Tψm , which is actually the inverse map of exponential

map, is then given by

Lψm(ψ) =
arccos(< ψ,ψm >)

< ψ∗, ψ∗ >
1
2

ψ∗, (5.20)

where

ψ∗ = ψm− < ψ,ψm > ψ. (5.21)

Since we have used ψ instead of γ, the temporal alignment submanifold can also be equiv-

alently represented as MT = R+ × R+ × R× R×⊖.

It should be noted that under this model, temporal warping of the sequence of sub-

event components for global activity has been completely characterized. Changing the

temporal order of the sub-event components gives rise to another global activity, and the

cases with reordering effect are beyond the consideration of this work.

5.4 Sequential Importance Sampling on the Manifold for Optimal Alignment

It is now clear that the alignment problem (5.1) becomes an optimization problem on

the alignment manifold M. This problem differs from several previous works, which have

employed exhaustive or greedy strategies tuned to a specific spatio-temporal parameter

space, usually Euclidean. Meanwhile, the gradient or Newton methods as used previously

will tend to fall into local optimum as J defined on M is normally non-convex and multi-

modal, or even only locally but not globally analytical. In sum, it is desirable to find an

algorithm that accounts for the non-linear manifold of the arguments, tends to converge at

the global optimum, and has reasonable computational complexity.

Let us consider the following time-varying state-space model:
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 pS,h

pT,h

 =

 EpS,h−1
(uS,h)

EpT,h−1
(uT,h)

 (5.22)

yh = J(S1, S2,ph)− vh. (5.23)

where ph = [pTS,h,p
T
T,h]

T is the parameter state at step h. We assume that p∗, the optimal

alignment, is not directly observable, while at step t we observe yt. Moreover, we let

uS,h ∼ N (0, (σS/h)
2I), (5.24)

uT,h ∼ N (0, (σT /h)
2I), (5.25)

where σ2
S and σ2

T are both small numbers. By construction (details below) we may let vh to

be an non-negative random variable with an appropriate density function (e.g., exponential

E(λ) in this work). Equivalently, we may represent the state transition and observation

model as

p(pS,h|pS,h−1) ∼ exp(−d
2(pS,h,pS,h−1)

2(σT /h)2
), (5.26)

p(pT,h|pT,h−1) ∼ exp(−d
2(pT,h,pT,h−1)

2(σT /h)2
), (5.27)

where

p(ph|ph−1) ∼ p(pS,h|pS,h−1)p(pT,h|pT,h−1), (5.28)

and

p(yh|ph) ∼ exp(λ(yh − J(S1, S2,ph))). (5.29)

The motivation as to why we formulate a state space model is to be able to recursively

compute the Maximum A Posterior (MAP) estimate of the parameter state p(ph|yh,yh−1, · · · ,y0).

From the recursion

p(ph|yh,yh−1, · · · ,y0) ∝ (yh|ph)p(ph|yh−1,yh−2, · · · ,y0)

= p(yh|ph)
∫
p(ph|ph−1)p(ph−1|yh−1,yh−2, · · · ,y0)dph−1,

(5.30)

we know that the posterior probability of the alignment p(ph|yh,yh−1, · · · ,y0) is equal to

the posterior probability at the previous step p(ph−1|yh−1,yh−2, · · · ,y0) smoothed by the

state transition probability p(ph|ph−1) and weighted by the likelihood p(yh|ph). Therefore,

by constructing a decreasing sequence {yh}h=0,1,··· and letting σS , σT be small, p(ph|yh,yh−1, · · · ,y0)
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is expected to be continuously increasing and peaking at the the optimal alignment p∗. In

other words, the MAP estimate of the parameter state will give the optimal alignment.

The above Bayesian recursive estimation is realized in a Monte Carlo manner. In par-

ticular, the construction of appropriate observation sequence {yh}h=0,1,··· come up naturally

from the Monte Carlo samples. We propose the SIS algorithm on the alignment manifold

as follows. Note that the proposed algorithm handles states evolving on the Riemannian

manifold rather than the conventional Euclidean space, thus is different from most existing

particle filters and their variations. Bayesian recursive filtering using particles has been

proposed for specific manifolds in the context of tracking [187, 188, 189, 190], while the ap-

proach suggested is generally applicable for various alignment manifolds. Furthermore, we

formulate the static optimization problem into a dynamic state space model, which provides

insights on applications of SIS to new problems beyond tracking.

Algorithm 1 SIS on the alignment manifold.

1)Initialization. Specify an initial distribution p0 defined on M and draw i.i.d. sam-

ples {pk0}Kk=1 from p0. Let h = 1.

2)Importance Sampling. Sample p̂kh from p(pkh|pkh−1). For this purpose, generate

ukS,h from N (0, (σS/h)
2I) and ukT,h from N (0, (σT /h)

2I). Then apply exponential maps

p̂kS,h = Epk
S,h−1

(ukS,h) and p̂kT,h = Epk
T,h−1

(ukT,h).

3)Constructing observation. Let

yh = min
k
J(S1, S2, p̂kh). (5.31)

If yh > yh−1, yh ←− yh−1.

4)Weighting. Approximate the new posterior probability by

qh(ph) =
K∑
k=1

wkhδ(ph − p̂kh), (5.32)

where δ is the Kronecker delta, wkh ∝ p(yh|p̂kh) and
∑K
k=1 w

k
h = 1.

5)Importance resampling. Draw i.i.d. samples {pkh}Kk=1 from qh(ph).

6)Stop if a stopping criteria is satisfied; Otherwise, h←− h+ 1 and go to 2). �

Step 3) follows from the observation equation in the proposed state-space model, and

this construction of observation yh plays an important role in the above algorithm. By

letting yh to be the minimum value of the alignment cost function, Monte Carlo samples
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Figure 5.2: A visual illustration of SIS on the manifold. See the text for explanations.

that lead to a lower cost will receive higher importance weights when applying the weighting

step. Consequently, the Monte Carlo samples (particles) will tend to concentrate around

the minima of the alignment cost function, including the global minimum. With a proper

initialization of samples over M, the optimal p∗ will be located more and more accurately

during the coarse-to-fine particle propagation. The operation yh ←− yh−1 when yh > yh−1

guarantees a non-increasing sequence of yh and thus a continuously optimized solution.

A visualization of the above idea is shown in Figure 5.2, in reference to figures

in [130]. The black dots represent the initial particles. The green, blue, and cyanic dots

represent the particles after the first, second, and third iterations respectively. The particles

converge to the minimum at the red dot. Only a single minimum is shown in this picture,

while in practice particles will be concentrating around multiple local minima, and those

propagating around the global one will receive the highest importance weights.

The initialization of the particles is case dependant. For the spatial alignment sub-

manifold of A(2), we may generate independent, uniformly distributed samples over the

corresponding Lie algebra a(2) and exponentially map them onto A(2). For the temporal

alignment submanifold, we may also generate uniform distributed samples over the tangent

space at γ(t) = t together with uniform samples from R+ × R+ × R × R. The stopping

criteria, meanwhile, can be flexible as well. 0 < yh−1 − yh < ϵ is a useful one. The final
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MAP estimate of p∗, can be simply taken as p̂∗ = argmink J(S
1, S2, p̂kh) after the algorithm

stops at step h.

5.5 Stochastic Gradient Sequential Importance Sampling for Efficient Align-

ment

A closer examination of the dynamical model in the previous section, especially the

state transition dynamics (5.24) and (5.25), points out a drawback of the SIS algorithm

presented in the previous section. By assuming uS,h and uT,h to be isotropic Gaussian

vectors in the tangent space, we essentially assumed an isotropic diffusion pattern of the

states. Consequently, the randomized search, or particle propagation, is homogenous in

all ‘directions’ regardless of the likelihood of the observations, or values of the objectives.

Apparently, if the cost function descents more steeply along a particular direction than the

others, then more particles sampled toward that direction will probably lead to a lower cost

and a faster convergence. Gradient descent methods, or randomized versions like stochastic

gradient descent, are available for efficient search in the Euclidean space, but are not straight-

forward for Riemannian manifolds. An effort using stochastic gradient simulated annealing

on the Grassmann manifold was attempted in [191]. We develop a stochastic gradient SIS

(SG-SIS) algorithm by proposing new state transition models instead of (5.24) and (5.25),

taking into account the first-order differential information. We will sequentially address

the issues of 1) Gradient on the alignment manifold and its approximation due to the

unavailability of an analytical form; 2) formulation of the stochastic gradient; and 3) the

new SG-SIS algorithm.

5.5.1 Gradient on a Generic Manifold and Its Approximation

We commence by establishing the analogy from gradient descent in Euclidean case,

and first look into gradient descent on the manifold. For x ∈ RD and an analytical function

f(x), a gradient ∇f(x) exists, and the steepest descent direction is given by −∇f(x). To

look for the next position from current location, we simply search along the straight line

γ(t) : t −→ (x)− t∇f(x). Let us denote the objective J(S1, S2,p) defined at every p ∈M

as J(p) for simplicity, we expect the a similar vector, denoted as ∇J(p), exists, though it

can only be defined in the tangent space TpM. In this case, a geodesic γ(t) exists, and
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P*

Figure 5.3: A visual illustration of gradient descent on the manifold. See the text for

explanations.

satisfies γ(0) = p and γ̇(0) = −∇J(p). It is then obvious that a search along this geodesic

serves as a steepest descent procedure on M.

A visualization of this idea is give in Figure 5.3 (partially modified from [130]). At

the current point p the gradient ∇J(p) is computed and the next landing point is searched

on the geodesics γ(t) toward the direction −∇J(p) until it is found at p∗ which is most

close to the (local) minimum at the red dot.

It is shown in [130] that the gradient exists, and is the solution of the programming

∇J(p) = arg max
ξ∈TpM

D(J(p))[ξ], (5.33)

s.t.∥ξ∥ = 1. (5.34)

Here, D(J(p))[ξ], the directional derivative of J at p along the direction ξ, is defined by

D(J(p))[ξ] , ∂

∂t
J(γ(t))|t=0, (5.35)

where the geodesic is induced by γ(0) = p, and ˙γ(0) = ξ.

Note that the directional derivative D(J(p))[ξ] is not analytical in ξ for a general

misalignment cost J and a generic manifold, and consequently we are in a position to

approximate D(J(p))[ξ]. Assume that the manifold under consideration is N -dimensional
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(and so is the tangent space TpM), and we pick an orthonormal basis ξ1, ξ2, · · · , ξN (∥ξn∥ =

1, ∀n = 1, 2, · · · , N and < ξi, ξj >= 0, ∀i ̸= j) for TpM. Then any tangent vector ξ can

be represented as ξ =
∑N
n=1 anξn. The above programming for gradient correspondingly

becomes

∇J(p) = arg max
an,n=1,2,··· ,N

D(J(p))[
N∑
n=1

anξn], (5.36)

s.t.
N∑
n=1

a2n = 1. (5.37)

The first approximation we are taking is to replace the directional derivative along the linear

combination of basis vectors by the linear combination of the directional derivatives along

the basis vectors, i.e.,

∇J(p) .= arg max
an,n=1,2,··· ,N

N∑
n=1

anD(J(p))[ξn], (5.38)

s.t.

N∑
n=1

a2n = 1. (5.39)

The solution to this programming, apparently, is

an =
D(J(p))[ξn]

(
∑N
n′=1D(J(p))[ξn′ ])

1
2

. (5.40)

The second approximation is to approximate D(J(p))[ξn], and we simply use

D(J(p))[ξn]
.
= J(Ep(ξn))− J(p). (5.41)

up to this point we have achieved an approximate expression for the gradient on a generic

manifold.

5.5.2 Stochastic Gradient on a Generic Manifold

Deterministic gradient descent represents a greedy strategy and frequently converges

to a locally optimal solution. On the other hand, we adopt two major approximations

when computing the gradient on the manifold. These two facts necessitate a randomization

of the approximate deterministic gradient, inspired by stochastic gradient methods in the

Euclidean space, in the hope of converging to a global optimum. D(J(p)) points to the

direction of the maximal ascent, and we aim to allowing a directional perturbation. the
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matrix Langevin distribution L(N, 1, D(J(p))) [192], whose density function is given by

1

0H1(
1
2 ,

1
4D(J(p))TD(J(p)))

exp(tr(D(J(p))TX)), (5.42)

characterizes a random unit-norm (directional) vector X whose mean (mode, median) is at

D(J(p)). Here 0H1 is a hyper-geometric function. Therefore, we employ it as the generator

of a stochastic direction around D(J(p)). To generate a sample from L(N, 1, D(J(p))) we

adopt the acceptance-rejection method. Specifically, we generate a uniformly distributed

unit-norm random vector X ′ in TpM by simply normalizing an isotropic Gaussian random

vector to unit length. Then, we generate a uniform random variable u from (0, 1). If

u < exp(tr(D(J(p))TX ′ − 1)), (5.43)

we accept X ′ as X. Otherwise we reject and re-sample until we accept one.

After a random direction has been sampled, we are in a position to account for a

random scaling. A positive continuous random variable, while the choice depends on the

underlying scenario, suffices for this purpose. We use the exponential distribution in this

work. The stochastic gradient thus generated from D(J(p)) is denoted as D̃(J(p)).

5.5.3 Stochastic Gradient Sequential Importance Sampling on the Alignment

Manifold

We have been able to obtain a stochastic gradient for a generic manifold. Note that

the alignment manifold M is essentially the Cartesian product of MS and MT , on which the

stochastic gradients are D̃S(J(pS)) and D̃T (J(pT )) respectively. The stochastic gradient

D̃(J(p)), therefore, consists of the Cartesian product of the two components, i.e.,

D̃(J(p)) = (D̃S(J(pS)), D̃T (J(pT ))). (5.44)

At this point we are in the position to present the SG-SIS algorithm as below.

Algorithm 2 SG-SIS on the alignment manifold.

1)Initialization. Specify an initial distribution p0 defined on M and draw i.i.d. sam-

ples {pk0}Kk=1 from p0. Let h = 1.

2)Importance Sampling. Sample p̂kh from p(pkh|pkh−1). For this purpose, gener-

ate stochastic gradients D̃S(J(p
k
S,h−1)) and D̃T (J(p

k
T,h−1)) as introduced above, and let
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ukS,h = D̃S(J(p
k
S,h−1)) and ukT,h = D̃T (J(p

k
T,h−1)). Then apply exponential maps p̂kS,h =

Epk
S,h−1

(ukS,h) and p̂kT,h = Epk
T,h−1

(ukT,h).

3)Constructing observation. Let

yh = min
k
J(S1, S2, p̂kh). (5.45)

If yh > yh−1, yh ←− yh−1.

4)Weighting. Approximate the new posterior probability by

qh(ph) =

K∑
k=1

wkhδ(ph − p̂kh), (5.46)

where δ is the Kronecker delta, wkh ∝ p(yh|p̂kh) and
∑K
k=1 w

k
h = 1.

5)Importance resampling. Draw i.i.d. samples {pkh}Kk=1 from qh(ph).

6)Stop if a stopping criteria is satisfied; Otherwise, h←− h+ 1 and go to 2). �

To compare Algorithm 2 with Algorithm 1, we notice no major differences from

Algorithm 1, except for a ‘directed’ particle propagation with additional computations for

pursuing a steeper descent, rather than a non-informative Gaussian diffusion. This implicitly

implies a different state transition on the Riemannian manifold, though it is not straight

forward to express explicitly the state transition equation. Note that the computation of

a gradient expedites convergence, the approximation makes the computation of gradient

possible, and the randomization of direction and scaling enable the pursuit out of potential

local optimums. The extra effort spent on Algorithm 2 brings fast convergence in practice,

which will be demonstrated in the following section.

5.6 Empirical Evaluation

We have applied the algorithm described above to three different datasets for the

same purpose of spatial-temporal alignment, while these datasets represent different spatio-

temporal signals originated from videos. Specifically, we looked into the alignment of point

trajectories esembles, deforming shape sequences, as well as videos themselves. The align-

ment objectives and alignment manifolds corresponding to each datasets vary, while the SIS

procedure is the same for all. In each experiment, we select appropriate state-of-art methods

or design baseline(s) for comparison, while the purpose of these comparisons is simply to
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show how the inclusion of temporal warping submanifold, formulation of the aligning pro-

cedure as a recursive estimation of the state-space model, and the Monte Carlo approach

help advance the state-of-the-art performance on practical data.

5.6.1 Evaluation with Collaborative Group Motions

We first evaluate our method again on GaTech Football Dataset. Note that the

GaTech Football Play Multi-Trajectory Dataset is organized into categories, each of which

contains all realizations of the same play strategy (specified by the playbook). In other

words, trajectory sets in the same category are samples of the same ‘activity’, thus resem-

bling each other (on the ground plane) though intra-class variations exist. However, they

are observed in different viewpoint and executed at different and varying rates. In each set

the roles of players are annotated and thus the trajectory correspondence between two sets

is available to us. This enables us to focus on the alignment algorithm rather than worry

about possibly non-robust correspondence and tracking, and also provides a fair comparison.

Note that though in this dataset the trajectories come from motion of objects (players), in

general they can originate from local feature points extracted and tracked across consecutive

frames as well.

We model the spatial misalignments to be a planar homography and thus the spatial

alignment submanifold becomes SL(3). The misalignment cost J is simply taken as the

average distances between point pairs from all trajectory pairs across the whole time span.

We perform two types of experiments, in the first of which we select a set of trajectories

and transform it with a typical view change (homography) and a specific time warping to

get the other, and then we align the two. We do so on all 55 sets. In the second type, we

randomly select a total of 40 pairs of sets, each pair being the samples of the same play

type (activity), and then we align these pairs. For comparative purposes, we implemented

two state-of-art methods [10, 11] that address similar task as ours. The approach in [10]

assumes affine temporal misalignment only, and the strategy in [11] uses Dynamic Time

Warping (DTW) to determine the non-linear temporal misalignment. The preprocessing

modules of tracking and correspondence in the two methods are unnecessary as the dataset

has provided trajectory and correspondence information, and thus a common basis is shared

among all implementations for comparison. Note that [10] mainly focus on temporal align-

ment, and to add spatial alignment into it we simply estimate a planar homography with
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Table 5.1: Average residual misalignments between the aligned trajectory pairs.

Using [10] Using [11] SIS on manifold SG-SIS on manifold

mean 15.9 13.1 10.0 9.8

standard deviation 8.6 6.8 3.6 4.0

the points from the temporally aligned trajectories. Meanwhile, when using [11] we take

alternations between DTW and gradient-descent-based homography estimation (on all cor-

responding points collected from all temporally aligned frames) to get the final alignment

parameters. (Note that though DTW is globally optimal in 1-D temporal dimension, when

placed into alternations between spatial and temporal submanifolds the combined search

may not necessarily be so, and thus the alternating process is a greedy search.) For our

method, we get the initial particles by generating random samples in the tangent space at

the homography estimated from the first pair frames and in the tangent space at γ(t) = t.

Samples of the results are shown in Figure 5.4, where in the first two rows are

the two trajectory sets to be aligned toward each other, and the following two rows show

alignment results using the state-of-art methods and our method. Each of the three columns,

meanwhile, represents a typical experimental setting: in column (a) the target is a generated

misaligned version of the reference, in column (b) the reference and target are a real pair

with similar realization but undergoing significant misalignment, and in column (c) the two

are a real pair with significant variation from each other.

To quantitatively understand the performance of the alignment methods, we recorded

the average distance of point pairs from aligned trajectory pairs, and show the results in

Figure 5.8 and Table 5.1. Note that the statistics is from the 40 real pairs rather than the

generated ones.

It is also interesting to investigate the efficiency that the randomized gradient decent

search brings. In Figure 5.6(a) we show the average convergence curves for the basic SIS and

SG-SIS algorithms, where a faster descending residual is observed for the involved stochastic

gradient.
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(a-1) reference trajectories (b-1) reference trajectories (c-1) reference trajectories

(a-2) target trajectories (b-2) target trajectories (c-2) target trajectories

(a-3) result using [7] (b-3) result using [7] (c-3) result using [7]

(a-4) result using [3] (b-4) result using [3] (c-4) result using [3]

(a-5) result from SIS alignment (b-5) result from SIS alignment (c-5) result from SIS alignment

(a-6) result from SG-SIS alignment (b-6) result from SG-SIS alignment (c-6) result from SG-SIS alignment

Figure 5.4: Samples of the alignment results on point trajectories using baselines and the

two algorithms proposed in this paper.
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Figure 5.5: Residual misalignment of the 40 pairs of trajectory ensembles. Blue, green, red

and megenta dots represent the results using [10], using [11], using the basic SIS algorithm,

and using SG-SIS algorithm respectively.

91



(a) (b)

Figure 5.6: Average convergence curves for (a) 40 pairs from Gatech Multi-Trajectory

Dataset, and (b)20 pairs from USF Gait Database. The blue curve corresponds to the

residuals v.s. iterations for SIS algorithm, and the red curves corresponds to those for

SG-SIS algorithm.

5.6.2 Evaluation with Deforming Shape Sequences

Sequences of deforming shapes are typical mid-level features extracted from original

videos containing the deforming objects of interest. In this experiment we use silhouette se-

quences from the USF Gait Database [193] to demonstrate the performance of out method.

We randomly select 20 sequence pairs, each with the same shoe types, carrying conditions,

surface types, and walking directions, but observed at two different times. For efficiency,

in each sequence we only consider the segment of frames of the first two walking circles.

The spatial misalignment within each pair is modeled as affine and is actually less signifi-

cant compared to the GaTech Football Multi-Trajectory Dataset, and the main focus is on

the effect of taking non-linear rate warping into account in addition to linear scaling and

shift. For comparison, we implemented the gradient descent algorithm presented in [12]

and designed one more baseline. The designed baseline alternates between DTW (on all

frames from spatial alignment) and gradient-descent-based affine estimation (on all frame

pairs temporally aligned), and thus is a greedy search. The cost function is simply taken as

the sum of pixel-wise absolute differences. For [12], the initial spatial parameter is estimated

as a translation between the leading frames and the initial temporal parameter is taken as
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Table 5.2: Average residual misalignments between the aligned pairs of shape sequences.

Using [12] Alternating DTW/affine SIS on manifold SG-SIS on manifold

mean 23.5 26.7 21.3 21.0

standard deviation 7.1 6.8 7.1 8.0

γ(t) = t. For our method, Monte Carlo samples are generated from Gaussians in the tangent

spaces at the initial parameters.

We show three sample results in Figure 5.7, where each of the six rows for each

sequence pair is explained in the caption of the figure. The average residual misalignment

errors (in pixels) for all 20 pairs are shown in Table 5.2. Note that all three methods

perform well due to mild spatial misalignment and near-affine temporal misalignment, while

our method achieves improvement over [12] by allowing non-linear warping effect, and the

improvement over alternating DTW and affine estimation should be credited to better global

convergency. The average convergence curves for the basic SIS and SG-SIS algorithms are

shown in Figure 5.6(b).

5.6.3 Evaluation with Human Action Videos

In the third set of experiments, we work with human action videos directly. We use

the KTH database [194], in which the semantically meaningful signal is human motion. We

randomly select 30 pairs of sequences, each pair performing the same action, but moderate

variations in clothing, background, or view angle exist within the pair. For efficiency, again

for each sequence we only keep a segment of frames including human motion but discard

pure background frames. The spatial misalignment within each pair is affine [13], and

the misalignment cost is the spatio-temporal correlation used by [13] but on optical flow

extracted from consecutive frames. For comparison, we implemented [13] and the method

that alternates between DTW and affine estimation as in previous section. The initial spatial

parameter, when necessary, is estimated as the translation between the leading frames and

the initial temporal parameter is taken as γ(t) = t. Meanwhile, Monte Carlo samples are

generated from Gaussians in the tangent spaces at the initial parameters too.

We show three sample results in Figure 5.9, where each of the five rows for each
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(a)
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(c)

(d)

(e)

(f)

(Pair 1)

(a)

(b)

(c)

(d)

(e)

(f)

(Pair 2)

(a)

(b)

(c)

(d)

(e)

(f)

(Pair 3)

Figure 5.7: Samples of the alignment results on deforming shape sequences from the USF

Gait Database. For each pair, (a) is the reference sequence and (b) is the target. (c), (d),

(e) and (f) give the alignment results (transformed sequence overlaid onto target) using

SIS, SG-SIS, the method in [12], and the method that alternates between DTW and spatial

alignment. The red, green, blue, and white areas denote true positive, false negative, false

positive and true negative respectively. In other words, a larger red area implies a better

alignment.
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Figure 5.8: Residual misalignment of the 20 pairs of gait sequences. Blue, green, red and

megenta dots represent the results using [12], using DTW/Affine alternation, using the basic

SIS algorithm, and using SG-SIS algorithm respectively.
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(Pair 1)

(a) (b) (c) (d) (e) (f)

(a) (b) (c) (d) (e) (f)

(a) (b) (c) (d) (e) (f)

(Pair 2)

(Pair 3)

Figure 5.9: Samples of the alignment results on KTH dataset. For each pair, (a) is the

reference sequence and (b) is the target. (c), (d), (e), and (f) give the alignment results

using SIS, SG-SIS, the method in [13], and the method of alternation between DTW and

spatial alignment.
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sequence pair has the same interpretation as in the previous section. Substantial execution

rate variations exist within every pair, and changes in clothing, background, or view angle

also exist. There is not a numerical criterion to evaluate the performance on aligning real

videos, and by qualitative observation the proposed method performs comparatively well as

the baselines, and is visually more close to the target when undergoing a larger view change

(pair 3).

As is true for many efforts involving particle filters, the proposed method is compu-

tationally more demanding than greedy search, but much less expensive than exhaustive

approaches. This trade-off, however, leads to improved performance as demonstrated in the

previous subsections. The time complexity depends on the number of particles used. The

convergence, on the other hand, turns out to be fast. In this section all results are obtained

with 1000 particles and less than twenty iterations. Another issue is that � is by definition

infinitely dimensional, while in all experiments we approximated the γ’s with non-decreasing

sequences valued from 0 to 1 of length 20.

5.7 Discussion

This chapter assumes that the parametric manifolds are known a priori; alignment

problems without knowing the specific form of the manifolds deserve exploration as well. It

is also desirable to remove the assumption regarding relative stationarity between cameras.

Though we pursue global optimum in the algorithm and empirically observe improved solu-

tion, we have not theoretically proved any properties regarding asymptotic convergence. A

theoretical study on geometrical SIS and SG-SIS methods will be important. We will also

look into other efficient search schemes like stochastic gradient descent. By generalizing the

considered manifolds and cost functions, we will extend the proposed strategy of stochastic

optimization on geometric spaces for other problems (e.g. face alignment on Grassmann

manifold [142]). We hope this can bring new insights and improved performance to a larger

number of vision applications.

97



Chapter 6

A Generative Model for Joint Segmentation and Recognition

6.1 Motivation

In this chapter we jointly recognize and segment collaborative group motions involv-

ing multiple objects by proposing a generative model which describes the spatial coordina-

tions among objects. By ‘segmenting’ a group motion we again mean to divide all objects

in motion into two sets, one of which behaves according to a group-wise motion pattern.

Recognition of group motion and Segmentation of relevant group motion have been indi-

vidually addressed in Chapters 3 and 4, while simultaneous recognition and segmentation

has not been addressed and is now attempted in this chapter. The technical framework

to achieve this goal is straight-forward though not necessarily trivial: We build a genera-

tive model to incorporate all the semantic components contributing to a football play and

execute Bayesian inference on it. It is worth noting that another recent effort has been

devoted to recognizing and segmenting meaningful shapes from point cloud [16]. Our work

can be seen as extending their ‘static’ problem of shape to a ‘dynamic’ version that includes

motion. We emphasize that our segmentation is motion based only, i.e., we do not use other

discriminative features. In other words, we are not locating the offensive players by color

patterns of their clothing.

As reviewed in Chapter 2, view-invariance is one of the desirable properties for hu-

man motion/activity recognition. View-invariant techniques have been proposed in various

settings to different extents [195, 95, 39, 92, 196, 96, 197] where they are generally applied to

single object actions only. Group motion modeling and recognition, meanwhile, has taken

little view-invariance into account. In practice, many group motions occur in a restricted

spatial domain like a ground plane. This is the case for football and soccer plays which

take place on the field when we treat players as moving points. Meanwhile, the practically

possible view changes are normally non-uniform but also spatially constrained: the locations

of cameras observing football plays are not likely to spread all over the field. Under these

considerations we explicitly characterize the view variation statistically for group motions,

and consequently achieve view-invariant recognition and segmentation.
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We establish the generative model from group motion in detail in Section 6.2, followed

by the simultaneous recognition and segmentation algorithm in Section 6.3. Experimental

evaluation is presented in Section 6.4 with discussion. The co-occurrence function, a compo-

nent of the model, is also used as a discriminative descriptor to classify group group motion

s in Section 6.5. Discussions are in Section 6.6.

6.2 Probabilistic Generative Model for an Collaborative Group Motion Ob-

servation

Given an group motion observation O, we would like to classify it into A, one of the

group motion types of interest to us. We aim to achieve this by maximizing the posterior

probability P (A|O), which is usually evaluated as P (O|A)P (A). Then it follows that the

generative part P (O|A), which describes the formation of observation from a group motion

class, becomes crucial. The observed data O is essentially a collection of n motion trajecto-

ries in the image plane, among whichm(m < n) ones are those involved in the relevant group

motion and the other n−m are irrelevant ones. In football plays, for instance, we may take

n = 22 and m = 11 to recognize the offensive play from the whole motion information of all

players. To model the observation generating process from A to O, we decompose P (O|A)

into several components corresponding to sequential data-formation steps as follows

P (O|A) =
∫
f,D,T,v

P (O|T, v)P (v)P (T |D)

P (D|f,A)P (f |A)dfdDdTdv
(6.1)

where the Markovian property is assumed as needed.

Now we explain each of the above quantities and the corresponding data generating

step. 1) f is called the spatial co-occurrence function which is used to describe the spatial

distribution of different types of motion trajectories involved in the relevant group activity,

and P (f |A) characterizes the possible variation of f . 2) D is the collection of m trajectories

in the real ground area, and P (D|f,A) tells us how to generate the true motion for the

relevant activity in the field from a co-occurrence function. 3) T denotes the entire set of n

trajectories, including those from irrelevant objects, and P (T |D) provides the mechanism

giving rise to the complete motion information in the ground plane. 4) v, finally, is the view

transform which brings the trajectories from ground plane into image plane, while P (v) is

essentially the statistical characterization of the view change.
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Figure 6.1: The statistical generative model (graphical model) for a group activity.

We elaborate on each of these factors now in the following subsections. For a visual

illustration of the generative model, please see Figure 6.1.

6.2.1 From Motion Type to Co-occurrence Function

The spatial co-occurrence function f(w,Ω) is a two argument non-negative one with

w ∈ W as the label of a trajectory type and Ω ∈ Π as the label of a spatial area/partition of

the field where the motion occurs. If F (w,Ω) gives the number of occurrences of single-object

motion w within the spatial area Ω, then f is defined as the square root of F . A simple toy

example for football, just for illustration, is that W = {acceleration, deceleration, left turn,
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Figure 6.2: Top row: snapshots of plays; middle row: offensive trajectories in ground coor-

dinate; bottom row: corresponding co-occurrence functions.

right turn} and Π = {middle of the field, side of the field}. Then F (acceleration, middle

of the field) = 2, or f(acceleration, middle of the field) =
√
2, means there are two objects

accelerating in the middle of the field during the group activity. In practice, we do not

arbitrarily specify the trajectory types W as above, but learn a ‘vocabulary’ of all possible

types in an unsupervised manner, as explained in subsection 6.2.1. To effectively describe

the spatial distribution of each type of trajectories, we only take into account the minimum

square area enclosing all trajectories, and partition it into front, middle, rear vertically

and left, middle, right horizontally, totalling to nine possible spatial areas. Other partition

schemes, obviously, can also be attempted to achieve different performance/complexity,

while we use the above 3× 3 pattern for simplicity.
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A particular instance of a group motion, i.e., m motion trajectories in the field, will

correspond to a co-occurrence function, which in a sense serves as a ‘descriptor’ of that

activity. Given a group motion type A and its instances, a collection of co-occurrence

functions f ’s from these instances is available to characterize this type of activity. Figure

6.2 gives several samples of football plays and corresponding co-occurrence functions. To

statistically capture the variability of f for a particular A, i.e.,P (f |A), we propose to use a

parametric model as

P (f |A) = p(f ;µA, σA, zA) =
1

zA
exp(−d

2(f, µA)

2σ2
A

), (6.2)

which behaves as a ‘Gaussian’ distribution. The reason why it is not Gaussian is that the

space of all f ’s for a fixed number of objects is not Euclidean but a curved manifold, on

which the intrinsic distances between f1 and f2 is

d(f1, f2) = cos−1 < f1, f2 >

, cos−1(
∑
w∈W

∑
Ω∈Π

f1(w,Ω)f2(w,Ω)).
(6.3)

However, the parameters µA, σA, zA have similar physical meaning as the ‘center’, the ‘s-

cattering’ as well as the normalizing factor respectively. Note that we use the compact

parametric form above for its simplicity and effectiveness (as shown in the experiment), but

more complex and elegant ones can also be considered whenever possible and necessary.

To learn the parameters µA, σA, zA from a set of training co-occurrence functions

{fi}Ni=1, we need more knowledge about the geometry of the manifold of co-occurrence

functions, which are briefly listed in appendix. With them, the ‘center’ µA is obtained by

the iteration

µ
′(g+1)
A =

∑N
i=1 L

µ
(g)
A

(fi)

N
(6.4)

and

µ
(g+1)
A = E

µ
(g)
A

(µ
′(g+1)
A ) (6.5)

where L and E are logarithmic and exponential maps respectively (see appendix). The

‘scattering’ σA, then, is calculated as

σA = (

∑N
i=1 d

2(fi, µA)

N
)1/2. (6.6)

The normalizing number zA can be estimated by Monte Carlo simulation, which is however

unnecessary in this chapter. It is worth noting that the co-occurrence functions investigated
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here are closely related to and rooted in the theory of information geometry [150, 151], to

which interested readers are referred for further study.

To get a new instance of co-occurrence function f of type A, we need to generate new

samples from P (f |A). For this purpose, we generate a function f ′ in TµA
, the tangent space

at µA, such that < f ′, f ′ >= 1. Then we generate Gaussian random number r ∼ N (0, σ2
A)

and obtain the new co-occurrence function as

f = cos(r)µA + sin(r)f ′. (6.7)

One issue associated with this approach is that negative values of f may occur, and in this

case we discard the generated sample. Another issue comes from the integer requirement

of F which may not be satisfied by the generated function. To overcome it we change the

generated co-occurrence function to the closest one of integer value.

6.2.1.1 Learning a Vocabulary of Trajectories

Now we explain how to learn a vocabulary of trajectories, i.e., to find the set W in an

automatic manner. We assume trajectories of individual objects are available, and denote

a particular one as Xt, t ∈ T = {t0, t1, · · · , tf}.The collection of trajectories is evaluated

in a pairwise manner to define a (dis)similarity index between every pair. The trajectories

collected may take place with different starting times and locations, but the shape of the

curves are actually the same, representing the same ‘word’ in the vocabulary. Therefore,

a temporal and spatial alignment of the trajectories is necessary. With one trajectory Xt

defined above and another trajectory Ys, s ∈ S = {s0, s1, · · · , sf} we define the aligned

trajectories with respect to Y as

X ′
t = Xt+t0 −Xt0 , t ∈ T′ = {0, 1, 2, · · · , tf − t0} (6.8)

and

Y ′
s = Ys+s0 − Ys0 , s ∈ S′ = {0, 1, 2, · · · , sf − s0}. (6.9)

Note that essentially T′ = S′. By this temporal and spatial shifting, we relocate X as well

as Y at the spatial temporal origin. With the aligned trajectories X ′ and Y ′, the pairwise

dissimilarity measure is taken as

dis(X,Y ) =
∑
r∈T′

||X ′
r − Y ′

r || (6.10)
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which will be fed to the unsupervised clustering procedure.

We only take into account the path distance in the above treatment. As mentioned

before, the first and second order derivatives of X and Y may be strong features to describe

the motion, and accordingly the above distance can be easily extended to include more

features. Another possible approach is to incorporate a time warping when comparing two

trajectories as reported in (e.g.[198]). Here we do not regard an trajectory as a stationary

curve, but a time-indexed one, meaning that two events are different when they are executed

with varied rate. An acceleration and a deceleration, for example, though along the same

path across the same time span, are not regarded as same in our treatment.

To obtain a vocabulary, we cluster all training trajectories into subsets, where the

intra-subset similarity of the trajectories is high but inter-subset similarity is low. Each of

these subsets is identified as an ‘word’ and those in the subset are treated as instances of the

same word. Once pairwise dissimilarity (i.e. similarity) is established, an obvious strategy

for automatic clustering is spectral clustering (e.g. the popular Ncut method [199]) and

its extensions. Nevertheless, majority of spectral clustering have their disadvantages in a

word-mining setting as we have here. For a multiple-word discovery problem, the recursive

bi-partition using Ncut may suffer from unstable eigenvector problem. Alternatively, the K-

way simultaneous partition requires a pre-determined number k as the size of the vocabulary

(i.e. the number of subsets), which is actually unavailable as we have little prior knowledge

about the event primitives. In fact, a ’best’ size of vocabulary can hardly be decided a

priori. Therefore, we expect an ’automatic’ vocabulary discovery scheme, by which the set

of word clusters of a proper size is built up without subjective assistance.

To achieve this we use an iterated quadratic programming method. With dissimilarity

measure dis(Xi, Xj) between each pair of trajectories, we obtain a similarity value via

si,j =

 exp(−dis(Xi,Xj)
γ ), i ̸= j

0, i = j
(6.11)

and define the similarity matrix

S = (si,j)16i6N,16j6N . (6.12)
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Now the quadratic optimization problem w.r.t. x = (x1, x2, · · · , xN )T is posed as

max
x

xTSx

s.t.x > 0,
N∑
i=1

xi = 1.
(6.13)

It has been proved [200] that a maximum point x∗ for the above programming exactly corre-

sponds to a ’dominant’ subset of the training set, and the non-zero items in x∗ corresponds

to the elements in the dominant subset. A dominant subset has the property that the intra-

set similarity is high but similarity with the out-of-set part is much weaker. Therefore, the

dominant subset obtained from the quadratic programming becomes naturally a trajectory

‘word’.

Normally we should have more than one word in the vocabulary. Consequently after

we find the dominant word by running the optimization, we remove them and re-run the

optimization on the remaining samples in order to get the next word. This process is iterated

until all training trajectories have been assigned to an event word category. It is clear that

in this way we find one word by one pass of the quadratic optimization, and when we stop all

instances in the training set have been assigned their word label. This process will neither

be affected by the robustness of eigen-decomposition, nor incur an issue of pre-deciding or

post-validating the best subset numbers.

Solving the quadratic programming does not require a complicated optimization pro-

cedure. Just as [200] suggests, a replicator dynamics iteration as

xi(h+ 1) = xi(h)
(Sx(h))i

x(h)TSx(h)
(6.14)

will converge asymptotically to the maximum point.

6.2.2 From Co-occurrence Function to Ground Plane Motion Pattern

As mentioned, the complete motion trajectories in the ground plane consist of those

involving the relevant group motion, as well as those irrelevant ones. We have modeled

the generation of these motions in two steps: 1) generating the relevant ones from the

co-occurrence function, i.e., P (D|f,A); and 2) generating irrelevant motions P (T |D).

To generate the relevant group motion trajectories, we employ a look-up table ap-

proach. For each w in the index of the table, we maintain all exemplar trajectories in the
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training set. Then for a specific f(w,Ω) we randomly pick out F (w,Ω) trajectories from

w-labeled exemplar ones. Then we randomly distribute them over the area specified by Ω

to obtain a D.

We assume that the irrelevant motion trajectories are uniformly spread across the

whole involved area. For any D generated, we may randomly select a number of irrelevant

motions from the set and uniformly distribute them all over in order to reach T . However,

eventually we do not need to generate T in the algorithm, as will be explained in (6.18) and

Section 6.3. Up to this point we have simulated a complete group motion pattern from a

type A.

6.2.3 From Ground Plane to Image Plane: Statistical View Variability

The final step of our observation generating model is the map of the complete motion

pattern to image plane. The issue of view-invariance comes up here where view variations

usually happen among observed motions. We propose here to achieve view-invariance by

explicitly and analytically exploiting the statistical view change, instead of reaching an

‘invariant’ in a ‘brutal-force’ manner. The practical spatial restraint of the cameras mounted

in the real world, as mentioned above, provides us the feasibility to build a statistical model

for possible view variations under consideration.

Under the pinhole camera model, different views correspond to different coordinate

transforms between the ground plane and the image plane, which is exactly characterized

by a 2-D planar homography. Therefore, modeling the view variation is equivalent to mod-

eling the variation of homographies between image planes and the ground plane, i.e., v’s.

Analytically, v’s are 3 × 3 non-singular matrices which relate the homogenous coordinates

of points in the two planes.

We are now building a statistical model P (v) on the space of 3× 3 non-singular ma-

trices GL(3), i.e., the generalized linear group. As GL(3) is again a nonlinear manifold, we

exploit its intrinsic geometry. To account for possible complex distribution of v, we pro-

pose a ‘Curved Gaussian Mixture Model’ (CGMM) as a parametric distribution on GL(3).

Specifically, probability density function for a K-component CGMM is

P (v) =

K∑
k=1

πkpC(v;µk,Σk) (6.15)

where πk is the mixing probability, pC is a single ‘curved’ Gaussian distribution defined on
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GL(3), µk is the center of each Gaussian, and Σk the covariance defined in the tangent space

at µk.

We compute the plane homographies from each of the training activities by locating

landmark points of the ground plane in the image. For football videos they are field markers.

The CGMM, from a collection of training views {vj}Mj=1, is then learned as follows. We first

cluster vj ’s into different components by computing a pairwise intrinsic metric between each

pair v1, v2

d(v1, v2) = || log(v−1
1 v2)|| (6.16)

which is introduced in standard literature on Lie groups like [167]. From the pairwise

similarity metric we may employ any suitable unsupervised clustering technique to cluster

vj ’s. Here we make use of the repeated quadratic programming in [200]. Once we have

obtained K clusters (components), each of which contains Mk samples, we estimate the

mixing probabilities as

πk =
Mk

M
,k = 1, 2, · · · ,K. (6.17)

Then the center of each component is estimated from the samples clustered into that com-

ponent, using exactly the iterations between exponential map and logarithmic map as in

(6.4)(6.5), but replacing the maps with those for Lie groups (see appendix). Finally, the

covariance Σk is calculated as normally done in the tangent space at µk, which contains the

logarithmically mapped component samples from GL(3).

To simulate a new view from the learned CGMM, we randomly select a component

according to the mixing probability, locate the center, generate a Gaussian random matrix

with the covariance in the tangent plane, and finally exponentially map it to GL(3). One

possible issue is that the simulated homography may not be a practically valid one. However,

the probabilistic scheme, to be presented in Section 6.3, will assign low likelihood to invalid

views so that the simulation algorithm will work properly.

The last component involved in the observation generating model, P (O|T, v), is trivial

once a view transform v is given: The observation O will be determined by O = v(T ) or

T = v−1(O). Therefore, P (O|T, v) = δ(O = v(T )) or P (T |O, v) = δ(T = v−1(O)). Note

that factors as ‘observation noise’ or ‘disturbance’ have been implicitly taken into account

when modeling P (D|f,A) and P (T |D). Also note that the form of Kronecker delta for
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P (T |O, v) reduces (6.1) into

P (O|A) =
∫
f,D,v

P (v−1(O)|D)P (v)P (D|f,A)

P (f |A)dfdDdv.
(6.18)

6.3 Recognition and Segmentation

With all components of the generating model ready in hand, it is straightforward now

to employ Monte Carlo method to evaluate the posterior probability P (A|O). Specifically,

we pick up a motion class Ai according to class prior P (Ai) (assumed known), simulate a

co-occurrence function fij from P (f |Ai), generate a relevant motion pattern Dij according

to P (D|fij , Ai), and randomly select a view vj from P (v). Then the posterior probability

can be approximated as

P (Ai|O)
.
=

P (Ai)
∑
j P (v

−1
j (O)|Dij)∑

i P (Ai)(
∑
j P (v

−1
j (O)|Dij))

(6.19)

by Monte Carlo principle. It is worth noting that view invariance has been realized implicitly

by integrating all possible views.

Now it remains to evaluate P (v−1(O)|D). Based on the motion generating scheme

discussed in 6.2, we achieve this as follows. We look for a one-to-one correspondence of

the m trajectories tD1, tD2, · · · , tDm in D with m ones in v−1(O). In other words, we pick

up m trajectories t1, t2, · · · , tm from the n ones in v−1(O), such that the total distance

between the two group
∑m
i=1 d(tDi, ti) is minimized. Intuitively, we are finding a subset

of v−1(O) such that motions in it are the most likely ones corresponding to the relevant

activity. The distance between two trajectories d(tDi, ti) is simply calculated by summa-

tion of the Euclidean distances of point pairs between the two trajectories. Then with all

pair-wise distances between v−1(O) and D available, the desirable correspondence can be

determined by running the classical Kuhn-Munkres assignment algorithm [148]. Once the

best correspondence is found on t∗1, t
∗
2, · · · , t∗m, P (v−1(O)|D) is evaluated as

P (v−1(O)|D) , 1

N
exp(−

∑m
i=1 d

2(tDi, t
∗
i )

2α2
). (6.20)

After a Maximum A Posterior classification for the observed motion O into activity

type A∗, we are in a position to segment the trajectories related to the relevant activity.

This is now straightforwardly achieved by choosing the most likely correspondence between

the generated D’s from A∗ and v−1(O).
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6.4 Experiment

We perform experiments again on GaTech Football Play Dataset, employing full

ground-truth trajectories from training to testing. As in a practical system the trajectories

obtained from tracking will be noisy, we also propose possible modifications towards critical

steps in the framework to handle non-robust input data.

6.4.1 Experiments with Ground-truth Annotation

We pre-process activity samples with varying temporal duration by normalizing their

time scales to fixed value, with trajectory interpolation and temporal resampling done if

necessary. The 56 play samples are organized into three play types, including Dropback,

Middle&Right Run and Wideleft Run. The play type division takes into account both the

play type hierarchy and the balance of sample amount. The learning and then recognition

runs a multiple of times independently, each of which uses a random division of sample

collection into training (approximately 80%) and testing (approximately 20%) sets. The

homographies corresponding to the view changes are determined by locating the landmark

points on the football field. The free parameter α2 and γ is simply taken as the variation of

all pairwise distances between trajectories and the normalizing factor N cancels out when

calculating (6.19). Since the amounts of the training samples are limited, we augment the

size of training set during each training process as follows. We first learn a trajectory

vocabulary with the trajectories in the original training set. Then we perturb each original

trajectory to get new ones and search for the new ‘word’ label for the new trajectories.

The perturbation is realized by adding 2-D isotropic Gaussian variables on ground-plane

coordinates at particular time instants (0%,20%,40%,60%,80%,100% of the video duration)

and polynomially interpolating the other time instants. Moreover, we shift the location of

each trajectory (original and generated) entirely with another Gaussian. In this way, for

each of the original training play we get 20 new ones, and thus the eventual size of training

set is 20 times more than the original one.

For each testing play, we generate 5×104 Mote Carlo samples when evaluating (6.19)

as well as assume a uniform prior class probability. The confusion matrix for recognition

is shown in Table 6.1, indicating the percentage by which a specific play type is recognized

as itself/another. An average recognition rate of approximately 80% is observed from the
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Table 6.1: The confusion matrix of play recognition: D,M, and W stand for Dropback,

Middle&right Run, and Wideleft Run respectively.

D M W

D 69.1 24.4 6.5

M 2.1 86.3 11.6

W 6.7 6.2 87.1

Table 6.2: The segmentation rate for each type of play.

Dropback Middle&right Run Wideleft Run

75.8 76.5 78.2

confusion matrix. The average segmentation rate is given in Table 6.2, where the percentages

denote how many of the offensive players are correctly identified. We achieve more than

75% correct identification as a whole.

To evaluate the effectiveness of statistical view change modeling and optimal assign-

ment based segmentation, we design two baselines, which comes more intuitively than the

proposed probabilistic framework, for a comparative study. The first, namely ‘random view

selection’ (RVS), does not simulate a homography from the learned CGMM, but randomly

picks out one from all available training ones. The second baseline, denoted as ‘nearest

player selection’ (NPS), picks out the spatially closest player in the testing play to match

with each of the simulated relevant players, instead of performing the Kuhn-Munkres assign-

ment. At the same time, to investigate the performances with varying amount of irrelevant

objects, we randomly drop defensive players in the testing plays and re-run the recognition

and segmentation. The play recognition rate and segmentation rate vs. the number of

irrelevant players for RVS, NPS and proposed mechanism, are plotted in Figure 6.3 (a)(b)

respectively. Several segmentation results with full eleven irrelevant objects are shown in

Figure 6.4 for baselines and proposed framework. For better visualization all are shown on

the ground plane with field markers removed. Among them the proposed full mechanism

outperforms the other two in identifying the relevant motions.

The weakness of RVS approach comes mainly from a lack of generative capability.
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proposed

RVS

NPS

(a) Recognition rate comparison.

proposed

RVS

NPS

(b) Segmentation rate comparison.

Figure 6.3: Performance comparisons of the proposed complete framework and two baselines.

When a testing view coincides with one of the training ones, RVS may yield comparative

performance with the full scheme. However, CGMM modeling will allow more flexible view

changes other than exemplars in the training set, thus giving rise to improved performance.

NPS, on the other hand, greedily assigns each relevant motion in a simulated activity to the

nearest one in the testing activity, probably leading to assignment of multiple relevant mo-

tions onto a single testing one. The trajectory correspondence scheme used in the proposed

framework guarantees a one-to-one correspondence and thus achieves better segmentation.

Monte Carlo synthesis employed in our work is not computationally economical. How-

ever, an exhaustive approach, rather than probabilistic modeling, turns out to be much

more prohibitive. For an activity involving n objects of which m are relevant ones, by

exhaustive examination we have Cmn possible segmentations. Then if we compare each of

these candidates with all of the t training samples, each of which may undergo s possible

view changes, the total amount of comparisons will be tsCmn . In our experimental setting,

m = 11, n = 12, t = s = 0.8× 56 will lead to more than 109 comparisons for a single testing

activity, which is in sharp contrast to 5× 104 generated samples in our experiment.

6.4.2 Considerations to Handle Computed Tracks

In football plays, strong occlusions among players are more common, and motion of

a single player may switch frequently between stationary and moving. As a result, the track
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(a-0) The ground truth of an activity from 

DROPBACK  

(a-1) Segmentation result using the 

proposed method  

(a-2) Segmentation result using RVS  (a-3) Segmentation result using NPS  

(b-0) The ground truth of an activity from 

MIDDLE&RIGHT RUN  

(c-0) The ground truth of an activity from 

WIDELEFT RUN  

(c-1) Segmentation result using the 

proposed method  

(c-2) Segmentation result using RVS  (c-3) Segmentation result using NPS  

(b-1) Segmentation result using the 

proposed method  
(b-2) Segmentation result using RVS  (b-3) Segmentation result using NPS  

Figure 6.4: Activity examples and comparison of segmentation results. Red trajectories

denote those of relevant activity (offensive side) and Yellow denote irrelevant ones (defensive

side).
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for a single object is typically significantly fragmented, and the effective number of objects

(tracks) may be less than expected (twenty-two) at times and may change from time to

time. We modify the scheme by which we evaluate P (v−1(O)|D) as follows to address the

above issues.

First we identify continuous temporal durations, during each of which the tracker

produces a constant number (greater than m) of non-fragmented tracks. We denote one

of these duration as Tc and assume Nc tracks tc,1, tc,2, · · · , tc,Nc are computed from the

tracker during this period. Then from the Dm simulated trajectories we randomly select

nc = ⌈Dm2 + 1⌉, · · · , Dm trajectories tD1, tD2, · · · , tDnc and run Kuhn-Munkres assign-

ment between {tc,1, tc,2, · · · , tc,Nc} and {tD1, tD2, · · · , tDnc}. The best assignment yield-

ing the minimum average cost per trajectory-pair is recorded as {t∗c,1, t∗c,2, · · · , t∗c,n∗
c
} and

{t∗D1, t
∗
D2, · · · , t∗Dn∗

c
}.

For every duration Tc we will find a best assignment and the final evaluation of

P (v−1(O)|D) is realized by

P (v−1(O)|D) , 1

N
exp(−

β
∑

{Tc}(
m
n∗
c

∑n∗
c
i=1 d

2(t∗c,i, t
∗
Di))

2α2
). (6.21)

Here the normalizing factor

β =
l∑

{Tc} l(Tc)
(6.22)

where l is the length of the play and l(Tc) is the length of the duration Tc.

6.5 Extension: Activity Characteristic Curve for Classification

In this section we deviate from the generative model for a while and show that the

co-occurrence function, as a discriminative feature itself, can be used for group motion

recognition as well by learning a ‘Activity Characteristic Curve’ from them.

6.5.1 Learning the Activity Characteristic Curve on Co-occurrence Manifold

A single spatial co-occurrence function is a ’holistic’ but static description of a tra-

jectory ensemble, not taking temporal evolution or time constraint into account. Similar

descriptions have been invented for object recognition purpose in a still image [201, 202].

However, if we observe the group motion at different time-instants, each across a short

time span, the coordinated group motion is essentially a dynamic ensemble of trajectory
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segments. i.e., at time t we will have a distinct f(w,Ω; t). This temporal process also

critically determines the specific group motion pattern. Therefore, time-series modeling

is also a natural attempt toward a group motion characterization. The time sequence of

co-occurrence functions, nevertheless, is again not in Euclidean space, where we have rich

and powerful tools on hand. Instead, the motion is a time sequence on the co-occurrence

manifold. Evolution processes or time series on a Riemannian manifold, have received little

attention. Among the limited efforts [203] is a systematic treatment for the manifold of

directional data.

Let us denote f(w,Ω; t) by f(t) from now on for simplicity, and keep in mind that as

t varies f(t) is an evolving process. However, beyond this we can hardly make any stronger

assumptions. In this case, to find a proper quantitative feature for each group activity

pattern we are going to use activity characteristic curve defined as

C(t) = E(f(t)) (6.23)

which is nothing but the mean value curve for the evolution process f(t). With multiple

training sequences (i.e. realizations of the process) for the same type of group activity,

we are always able to find the mean sequence without further assumptions, though the

mean should be obtained from an average on the manifold rather than in Euclidean space.

It can be expected that different activity characteristic curve corresponding to different

activities will be located distinctively on the co-occurrence manifold, therefore providing us

the capability to classify a new sequence. In Figure 4.5 we visualize the above concepts.

The activity characteristic curve C(t), i.e. the expectation curve on the manifold is

explicitly defined as

C(t) = argmin
f

E(d2(f, f(t))) (6.24)

according to [152], where d is the intrinsic distance on the manifold induced by the Rieman-

nian metric rather than the usual Euclidean distance ||f−f(t)||. If there exists a probability

density function p(f(t)) for f(t), then we have

C(t) = argmin
f

∫
M

d2(f, f(t))p(f(t))dM (6.25)

where dM can be thought as a ’patch’ of the manifold. Also, note that the integration

is performed on the manifold only. Since we do not make more assumptions about p,

practically we estimate the density function by kernel method once provided with a set of
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Figure 6.5: Activity Characteristic Curve on the co-occurrence manifold. The sphere rep-

resents the manifold and each solid dot represents an average co-occurrence function at a

time instant. The Activity Characteristic Curve, therefore, is the temporally ordered dot

sequence.

training samples {(fi(t), ti)}i

p(f(t)) =

∑
iK(d2(f(t), fi), t− ti)

k(t)
(6.26)

where k(t) is the normalizing factor. For simplicity we make use of the Nadaraya-Watson

kernel[204, 205] so that K can be separated into a temporal factor and a spatial factor

p(f(t)) =

∑
iKHs(d

2(f(t), fi))KHt(t− ti)
k(t)

(6.27)

where Hs and Ht are the spatial and temporal ’bandwidths’ respectively.

Performing above minimization to get C(t) is equivalent to minimizing a ’variance’

defined on the manifold. Indeed, the quantity E(d2(f, f(t))) should be interpreted as a

variance measure of f(t) with respect to f . It has been proved [152] that the gradient of

E(d2(f, f(t))) with respect to f is

∇fE(d2(f, f(t))) = −2E(Lf (f(t))) (6.28)

Consequently an iterative gradient descent algorithm can be derived to conduct the min-

imization and eventually find the mean curve which again involves logarithmic and expo-

nential maps as

f̄ ′
(h)

= E(Lf(h)(f(t))) (6.29)

and

f (h+1) = Ef(h)(f̄ ′
(h)

). (6.30)
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Note the expectation here is performed in the tangent space Tf(h) , which is a vector space.

Therefore, an ordinary expectation can be employed in this step.

The logarithmic and exponential maps are straightforward from the discussion of

previous sections. The expectation in the tangent place, however, deserves a further inves-

tigation, since we only have finite training samples. Generally, in the Euclidean space the

finite-sample expectation can be obtained from a weighted sum of all the available samples.

In our case, it is

f̄ ′
(h)

=

∑
i wiLf(h)(fi)∑

i wi
(6.31)

Here we propose the following weighting strategy

wi =
∑
j

KHs(d
2(fj , fi))KHt(t− tj) (6.32)

By employing this weight involving both samples at close time instant and spatially neigh-

boring samples, we not only take the temporal correlation into account, but also get a

trade-off between the mean and the mode of the samples. In other words, we achieve both

flexibility and robustness toward variation of the data.

If we keep a temporal bandwidth Ht but let the spatial bandwidth Hs go to zero, the

weighting pattern reduces to a standard Nadaraya-Watson regressor [204, 205] as well as a

manifold version[206]. On the other hand, a small temporal bandwidth and a large spatial

bandwidth is equivalent to assuming that all samples at the same time are independently

drawn from p(f(t)) and samples from different time instants are mutually independent.

Thus our weighting pattern is a more general and flexible version which may be modified to

adapt to various practical scenario.

6.5.2 NACC Classifier for New Group Motion

With c types of group activities represented as C1(t), C2(t), · · · , Cc(t), we are in a

position to categorize a new incoming activity into one of these classes. The classification

is achieved in two steps.

In the first step, we identify each of the trajectories T in the incoming video as

one of the words. With W words w = 1, 2, · · · ,W learned in training phase, for each of

which word we have mw primitives Xw
1 , X

w
2 , · · · , Xw

mw
as its instances in the training set, we

evaluate the similarity between T and each word category {Xw
iw
}, and label the segment as

the word with which it shares the largest similarity. Note that the trajectory vocabulary is
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based on pairwise similarity of all training samples, and the clustering is realized recursively

by finding the dominant clique of the similarity graph. Consequently, we do not hold

a parametric or probabilistic model for each word category, and therefore a parametric

or probabilistic classifier is not straightforward. We start from pairwise similarity again

with the dissimilarities dis(X1
1 , T ), dis(X

1
2 , T ), · · · , dis(Xw

iw
, T ), · · · , dis(XW

mw
, T ) evaluated.

Then we simply apply a Maximum-Similarity classifier as following

Word(T ) = argmin
w

min
iw

dis(Xw
iw , T ) (6.33)

This is equivalent to the widely-used Nearest-Neighbor classifier. Though computationally

intensive, Maximum-Similarity classifier is probably the most feasible for our task.

In the second step we construct the evolving co-occurrence function sequence and

classify it into one of the activity types. The sequence of co-occurrence functions for a

testing activity is denoted as D(t). The Nearest Activity Characteristic Curve (NACC)

classifier is nothing but the decision rule

Activity(D(t)) = argmin
j

∑
t

d(D(t), Cj(t))

The classifier looks for the activity type of minimum manifold distance with the testing

activity. Also, the classifier can be interpreted as a correlator, which picks up the maximum

manifold correlation as the recognition result. In the language of signal processing, it can

also be viewed as performing matched filtering on a nonlinear manifold.

6.5.3 Experiment

The learning and recognition framework described above has been implemented on

GaTech Football Play Dataset once again. Similarly from all play samples we use five

play types, including Combo Dropback, HITCH Dropback, Middle Run, Wideleft Run and

Wideright Run, including a total of 56 play prototype samples. Learning and then clas-

sification runs a multiple of times independently, each of which uses a random division of

sample collection into training (80%) and testing (20%) sets. For those prototypes falling

into training set, we also generate new training samples by slightly disturbing the proto-

type trajectories both locally and globally using i.i.d. Gaussian. For the same play with

different formations, a separate activity characteristic curve is learned for each formation.

The spatial kernels include 16 overlapping blocks covering the activity area. The average
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Table 6.3: Confusion matrix of play recognition on groundtruth data: H,C,M,L, and R

stand for HITCH Dropback, Combo Dropback, Middle Run, Wideleft Run, and Wideright

Run respectively.

C H M L R

C 86.1 3.5 8.2 1.7 0.5

H 0.7 91.9 4.4 1.4 1.6

M 13.4 7.2 66.2 11.8 1.4

L 0.6 1.2 0.6 96.9 0.7

R 0.1 4.2 2.4 1.8 91.5

confusion matrix is shown in Table 6.3, indicating the percentage by which a specific play

type is recognized as itself/another.

An average correctness ratio of 86% is observed from the confusion matrix. The

fully quantitative comparison with previous work, especially [6], is still difficult due to a

completely different framework, unavailability of implementation details, as well as differ-

ent datasets being used. However, qualitatively it is seen from Figure 13 in [6] that we

achieve a recognition performance better than [6]. Note that the previous work used para-

metric Bayesian network modeling with explicit domain knowledge about football game

incorporated. In contrast, the event ensemble model works ’autonomously’ and is directly

extendable to more general coordinated group motions.

The main computational load comes from generating the pairwise similarity matrix

together with new event categorization, which compares the new incoming activity with all

event words available. The vocabulary discovery and activity characteristic curve learning

converge both quickly in several iterations.

6.6 Discussion

In this chapter we investigate the problem of simultaneous recognition and segmen-

tation of collaborative group motion pattern. Under a Bayesian Maximum A Posterior

formulation we achieve our purpose in an ‘analysis-by-synthesis’ fashion. We explicitly
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model every component of the motion generating process, during which we exploit the non-

Euclidean geometry of the co-occurrence manifold in a statistical manner. In particular,

we set up probabilistic CGMM to characterize view variation and achieve view-invariance

by statistical marginalization. We demonstrate the effectiveness of the proposed framework

using football plays as experimental data. However, note that we make little use of football-

specific domain knowledge and the framework is expected to be extendable to other types

of group activities.

Following this line, the following open issues may receive further investigation. Be-

sides object segmentation, temporal detection of a particular group motion pattern, espe-

cially with a changing number of involved objects, is also of interest. It also deserves to

model two or more groups of motions and interactions among groups (e.g., taking defensive

side into account as well). We may also consider incorporating articulated motion features,

besides simply point motion paths, to establish a ‘panoramic’ characterization for a group

motion, which may hopefully bring benefit for more accurate recognition. Finally, it will be

useful to look into group motions in broader domains, beyond football plays, to be unified

under this or another updated framework.

6.7 Appendix

We list the geometries of the co-occurrence function manifold and the matrix Lie

group. Under the defined Riemannian metric, the co-occurrence function manifold in fact

shares the same geometry as DTIM as discussed in Chapter 3, and the matrix Lie group

has been discussed in Chapter 5 as well. We reiterate these facts here for clarity and the

readers’ convenience.

6.7.1 Geometry of the Co-occurrence Function Manifold

The space of all spatial co-occurrence functions F is a Riemannian manifold with

the Riemannian metric defined as

< f ′1, f
′
2 >,

∑
w∈W

∑
Ω∈Π

f ′1(w,Ω)f
′
2(w,Ω) (6.34)

where f ′1, f
′
2 are the elements in the tangent spaces Tf at f . With the above defined

Riemannian metric, the intrinsic distance between two co-occurrence functions f1, f2 is
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given by (4.3). The geodesic, i.e. the curve of minimum length connecting two co-occurrence

functions f1, f2 , is given by

G(λ) =
(1− λ)f1 + λf2

λ2 + (1− λ)2 + 2λ(1− λ) < f1, f2 >
(6.35)

where λ is the real parameter between 0 and 1. The exponential map Efm : Tfm → F for

f ′ ∈ Tfm is defined as

Efm(f ′) = cos(< f ′, f ′ >
1
2 )fm +

sin(< f ′, f ′ >
1
2 )

< f ′, f ′ >
1
2

f ′ (6.36)

The logarithmic map LF : F → Tfm , which is actually the inverse map of exponential

map, is then given by

Lfm(f) =
arccos(< f, fm >)

< f∗, f∗ >
1
2

f∗ (6.37)

where

f∗ = fm− < f, fm > f. (6.38)

6.7.2 Geometry of Matrix Lie Group

The space GL(3) is a matrix Lie group and thus a Riemannian manifold, with the

intrinsic distances between two elements defined as (9). The exponential map Evm : Tvm →

GL(3) for v′ ∈ Tvm is given by

Evm(v′) = vm exp(v−1
m v′). (6.39)

The logarithmic map Lvm : GL(3)→ Tvm , meanwhile, is

Lvm(v) = vm log(v−1
m v). (6.40)

The matrix exponential and logarithmic operation used here are defined as

exp(X) =
∞∑
i=0

1

i!
Xi (6.41)

and

log(X) =
∞∑
i=1

(−1)i−1

i
(X − I)i. (6.42)

For more discussion about the geometry of matrix Lie group the reader is referred to [167].
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Chapter 7

Directions for Future Work

We have looked into collaborative group activities represented as an ensemble of mo-

tions, with the goal of inferring 1) the individuals relevant to a collaborative pattern of

interest (Segmentation); 2) the underlying group activity pattern (Recognition); 3) how

two motion ensembles are similar and how we can ’optimally’ transform one to the other

(Matching). Throughout the work we took football plays as a test case with the corre-

sponding problems 1) who are offensive players; 2) what are the offensive strategy they are

using; 3) whether two plays are using the same strategy and how we can remove the spatio-

temporal misalignment between them due to imaging conditions. We exploit the geometry

of the space of the involving features/descriptors/quantities and develop statistical model-

s/tools on these non-linear manifolds. These efforts motivate us both from an applied point

of view and a mathematical point of view to continue with a sequence of new interesting

problems, which will form the future directions of the research.

7.1 Other Research Topics on Complex Motion/Activities

Following the line of extracting meaningful temporal information to process multi-

object motion patterns, the problems discussed below would be also interesting for further

study. Firstly, the temporal interaction matrix relies on correctly obtaining point trajecto-

ries, which brings the need for a more robust descriptor from incomplete/errorneous trajec-

tories, since the latter will be the most probable outcome of a tracking module of a complete

vision system. Though the temporal interaction matrices turn out to be view-stable, a strict

view-invariant descriptor, beyond an empirically view-stable one, remains a challenge just as

for other vision applications. As has been mentioned, detection and segmentation of a par-

ticular group activity pattern, especially with a changing number of involved objects, is also

of interest. This requires us to locate the starting and ending positions on the temporal axis

as precisely as possible, and to provide an adaptive scheme by which the system can smooth-

ly alter the current status when participating objects changes. Although the interactions

among objects are currently captured in terms of numerical quantities in arrays/matrices,
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one can introduce syntactic approaches. The topological or geometrical characterization of

the space of ‘syntactic matrices’, if exists, will probably brings new insight to describe the

ensemble motion patterns.

On the other hand, the probabilistic generative model proposed for group activities

naturally brings up the following open issues. The defensive team in a football play, as

has been pointed out, actually follows another group motion pattern distinct from the of-

fensive one, instead of random and irrelevant movements. This convinces us the necessity

to model two or more groups of activities and interactions between groups, in addition to

the interactions between objects within a single group. In this case, group segmentation

becomes even more challenging due to the increased ambiguity of a local motion feature

belonging to multiple potential global patterns. We may also consider incorporating articu-

lated motion features of a single object/human being, besides simply point motion paths, to

establish a ‘panoramic’ characterization for a group activity, which may hopefully contribute

to more accurate recognition. With a standard Bayesian network formulation and contin-

uous advance in research on features/models, traditional methods may achieve improved

performance than early work reported in [6].

It will also be interesting to look into activities from other domains other than foot-

ball games: in surveillance scenario, the crowd motion and flow, for example, may also

need a concise descriptor for certain types of analysis. In indoor environments, interactive

behaviors include meetings and class sessions, where an expressive visual feature is the face

of every participant, together with the expressions and pose changes represented by local

facial feature tracking. How can we utilize facial expression, pose, and other dynamics to

assist analyzing the interactions among multiple objects? Classical and new tasks, including

temporal segmentation, automatic indexing, participant grouping, discriminant descriptor

extraction, as well as probabilistic network to model the mutual influence, will arise again

but under a different background of multiple interactive faces.

7.1.1 Example: Initial Considerations on Indoor Interactive Behaviors of

Multiple Faces

As an example of other domains involving collaborative behaviors, we may consider

an indoor environment where participants mainly remain still with sporadic but gentle head

motion. A typical scenario is a class session, where the students are seated with limited
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(a) (b) (c)

Figure 7.1: Illustration of Low-level processing for a classroom multi-face interactive motion:

(a) face detection and tracking; (b) KLT tracking; (c) face pose estimation.

face pose changes. Is it possible to infer meaningful group motion patterns from the motion

features at this level, and are there any state-of-the-art learning tools for analyzing these

patterns? We may apply the Viola-Jones face detector [207] to initially locate the faces,

and then apply a tracker such as in [208]. Within the boxes we apply Kanade-Lucas-Tomasi

feature tracker [177] to capture the face pose changes, and fit a global affine motion, denoted

by a single motion vector, to describe the overall orientation of the faces with respect to the

camera. An illustration is given in Figure 7.1.

Visual Interaction from Pose, Embedding, and Participant Grouping As a

first attempt, we may consider the vector −→u p→q pointing from person p to person q and the

accumulated pose direction −→v q of person q ( which is computed from the affine parameters),

we may get ‘visual’ influence of person q receiving from person p as

σp→q =
exp(−σ1∥−→u p→q∥) exp(−σ2⟨−→u p→q,

−→v q⟩)∑
p′ exp(−σ1∥

−→u p′→q∥) exp(−σ2⟨−→u p′→q,
−→v q⟩)

(7.1)

where the notation ⟨·, ·⟩ means the angle between the two vectors. Basically we believe that

when person q is looking at person p then q is receiving a strong influence from p, and vice

versa.

Given Σ = (σp→q)P×P computed from the previous step, we find the 1-D embed-

ding xp, p = 1, 2, · · · , P of the participants by minimizing
∑
p ωp

∑
q σp→q(xp − xq)2 where

ωp =
σp→q∑
q σp→q

. This number implies the ‘strength’ of influence that person p gives to all

other people. Intuitively, we want the pairs interactive with each other to stay close in the

embedded space, and the individual influential to others to be close to the influenced people.
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The embedding problem is essentially

min
x
xTLx (7.2)

where

L = Ω− ΩΣ+ ΣTΩ

2
(7.3)

and Ω = diag(ω1, ω2, · · · , ωP ). Proper regularization should be imposed such as xTΩx = 1.

Finally, a hard partition of the real axis gives the grouping of the participants.

Joint Temporal Segmentation and Indexing of Coherent Activities The next

task for consideration is unsupervised discovery of meaningful activities. Given a descriptor

matrix YM×N = [Ym,n], each column of which is a m× 1 descriptor (static 1st or 2nd order

one) for all people or a subgroup involved in an interaction in frame n, we optimize the

following objective

min
F,G
∥Y − FG∥2 + α∥GS∥0 + β∥G1∥0 (7.4)

s.t.F ∈ RM×K , (7.5)

G ∈ {0, 1}K×N , (7.6)

1TG = 1, (7.7)

SN×(N−1) =


−1 0 0 0 · · ·

1 −1 0 0 · · ·

0 1 −1 0 · · ·
...

...
...

...
. . .

 . (7.8)

We are interested in G, whose nth column is a sparse code for time n, and the fact of

G(k, n) = 1 means that at time n the group motion is of type k. ∥GS∥0 prevents frequent

changes between different types and ∥G1∥0 leads to limited activity types.

The objective above can be relaxed as

min
F,G
∥Y − FG∥2 + ∥G[R; γIN×N ]∥1 (7.9)

where

RN×N =



−α 0 0 · · · β

α −α 0 · · · β

0 α −α · · · β

...
...

...
. . .

...

0 0 0 · · · β


. (7.10)
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is non-singular. Denote A = [R; γIN×N ], and then we aim to solve

min
F,G
∥Y − FG∥2 + ∥GA∥1 (7.11)

Consequently, the optimization can be iterations of the following steps: (1) Solve F (J) =

argminF ∥Y − FG(J−1)∥2 using a proper dictionary learning method; (2) Solve G(J) =

argminG ∥Y −F (J)G∥2+∥GA∥1. To do this, we solve the following equivalent optimization

problem

min
G,T
∥Y − F (J)G∥2 + tr(1TT ) (7.12)

s.t.− T ≤ GA ≤ T. (7.13)

Learning Group Activity Ranking Function and Pairwise Interactive Struc-

ture From the previous step we obtained group activity indices y ∈ {1, 2, · · · , Y } and

the temporal durations for each of these segments by checking the dominant elements

in G. Using them we may extract a dynamic descriptor per person per segment dp ∈

{1, 2, · · · , D}, p ∈ {1, 2, · · · , P}, where P is the total number of people considered. The dy-

namic descriptor consists of two parts: the average Cp and the motion Ap (i.e. dp = (Cp, Ap).

The VQ of the dynamic descriptor into D words can be realized in an appropriate manner

(e.g., K-means). Consequently, for the ordered person pair (p, q) we may obtain a dynamic

influence descriptor dp→q = (Cp→q, Ap→q) ∈ {1, 2, · · · , G}, in which the two components

can be described as the ‘transformations’ from dp to dq.

We consider pairwise interactions between involving people and quantitatively char-

acterize them into a weighted directed graph Z = (zp→q)P×P , which is the ‘influence’ of

person p toward person q. Our goal is to learn an activity-specific parameter vector Wy for

each activity, where Wy = (WT
Ind,y,W

T
Pair,y)

T . Specifically, WInd,y is a D × 1 vector and

WPair,y is a G× 1 vector corresponding to dp an dp→q respectively.

Suppose we get N indexed segments among which the nth belongs to type y(n)

with corresponding descriptor dp(n), dp→q(n). To find Z and W , we optimize the following

discriminative objective

max
Z,Wy

∑
y

Φy(Wy, Z, d(1), d(2), · · · , d(N)) (7.14)

where Φy(Wy, Z, ·) = ϕ(Wy, Z, ·)−ϕy(Wy, Z, ·)−ϕ\y(Wy, Z, ·). More specifically, ϕ(Wy, Z, ·) =∑
n(φ(Wy, Z(n), d(n))−φ(Wy, Z(n), d(n)))

2−γtr((Z(n)−Σ(n))T (Z(n)−Σ(n))) and φ(Wy, Z(n), d(n)) =
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WT
Ind,yE(n)1 +WT

Pair,yF (n)diag(vec(Z(n)))1, where diag(vec(Z(n))) is a P 2 × P 2 diago-

nal matrix whose diagonal elements are the elements of Z(n),E(n) = (δ(dp(n) = d))D×P ,

F (n) = (δ(dp→q(n) = g))G×(P×P ), and Σ(n) is a a P × P matrix whose (p, q) element is

σp→q to be introduced soon.

Similarly ϕy(Wy, Z(n), ·) and ϕ\y(Wy, Z(n), ·) can be defined as ϕy(Wy, Z(n), ·) =∑
n,y(n)=y(φ(Wy, Z(n), d(n))−φ(Wy, Z(n), d(n)))

2 and ϕ\y(Wy, Z(n), ·) =
∑
n,y(n)̸=y(φ(Wy, Z(n), d(n))−

φ(Wy, Z(n), d(n)))
2.

Intuitively, we are looking for a best parameter vector Wy of the ranking function

φ(Wy, Z(n), d(n)) which is supposed to report large (resp. small) score for type y and small

(resp. large) score for non-type y activity d(n). When learning the vector, we use the

following optimal criteria: 1) The scores for samples of type y (resp. not of type y) are close

to each other as much as possible; 2) Scores for all samples are scattered as much as possible.

See In other words, we are looking for a discriminative signatureWy for each activity type y.

Note that we have introduced a ‘latent’ pairwise interaction quantity Z(n). Practically we

weight the contributions of interactions from different pairs using Z(n), and expect strong

interactions (large elements in Z(n)) may contribute more to the score. However, we do not

explicitly obtain Z but learn it in companion with W , while we do enforce the constraint

that it should not deviate from the ‘visual’ (heuristic) interaction Σ too much.

Though the notations appear messy, the overall cost is bilinear in Wy and Z(n) and

an alternating coordinate ascent in Wy and Z(n) will suffice. With proper regularization

(e.g., norm constraint for Wy, ∥Wy∥ = 1, and degree constraint for Z(n),1TZ(n) = 1T ),

either step will become eigen decomposition problem or quadratic programming, which can

be solved after standard derivation. For an incoming segment dtest together with Σtest, the

ranking is straightforward using φ(Wy, Ztest, dtest) with constraint tr((Ztest−Σtest)T (Ztest−

Σtest)) < ϵ.

7.2 From Complex Human Motions to Complex Dynamics in Videos

Complex human activities can be regarded as special cases of complex dynamics in

videos, and thus the study on the former brings new inspirations toward the latter. Ac-

tivities mainly refer to, or are related to, motions, i.e., dynamics of the geometric/spatial

locations, while dynamic appearances, in parallel with dynamic locations, are another ma-

jor family of dynamics emerging from videos. A typical sub-area of dynamic appearances
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is dynamic texture [55]. Video dynamics, apparently, is a coupling of both motion and

appearance variation, which we hereby call ‘complex dynamics’. This brings more chal-

lenges to the current mathematical models available, as we normally expect long-term and

non-stationary dynamics, of both motion and appearance variation, in real-world videos.

Even constrained within motions, a spatio-temporal generator or descriptor for long-term

non-stationary ensemble motions remains unsolved problem. Note that in Chapter 3 we

condense information onto temporal correlation and in Chapter 4 we condense them largely

on to the spatial distribution. We have not obtained a rigorous spatio-temporal approach.

Lie group and Lie algebra [167], exploited in Chapter 4 in the context of describing

relevant particle movements, bring potentially new insights. A linear time-invariant dynamic

system closely relates to a single element in the Lie group, and a mixture of them simply

becomes a set of points on the Lie group manifold. Moreover, a time-varying linear system,

under this formulation, simply becomes a path on the Lie group as well. Any combination

of these cases, will correspond to collection of points or paths on the manifold, which has

been well studied. Lie algebra is a direct linearization of Lie group, while the points on

Lie group will find their images under particular canonical mappings in the linear space of

Lie algebra , for which we already have a variety of powerful tools. The Lie theory has not

played an active role in video related problems and we believe new insight will be drawn

from further exploration of it.

Instead of making use of hybrid time-varying linear dynamics to model complex

events in video, we can also directly explore a nonlinear dynamic model. To overcome the

analytical difficulties that may potentially exist in analyzing a general nonlinear dynamic

process, we may focus on special cases, e.g., periodic or quasi-periodic motions, as well as

deterministically/stochastically mixed motion (chaos). In fact, these dynamics have broad

spectrum of applications in videos, such as repetitive human activities, fluctuated optical

flows induced by moving crowds, as well as dynamic textures. Last but not least, non-

parametric time-series will also probably find it new applications. For instance, it may

be interesting to develop a dynamic version of compressive-sensing-based methods, which

enforce sparsity in the joint spatio-temporal-exemplar space.

127



7.3 Statistics and Geometry

We have devoted efforts on establishing statistical inference methods on geometrically

distributed data. Boosting discriminative densities on DTIM, learning principal curve on

co-occurrence manifold, and constructing CGMM all fall into this category. With analyti-

cal intrinsic geometry or sample-based imbedded topology on hand, one can develop more

statistical tools for new applications whenever necessary.

We have also proposed two stochastic optimization algorithms on a geometric space.

To make use of the idea of importance sampling, we established state evolution models on the

manifold and derived corresponding local/global search strategies. Model-based optimiza-

tion with geometric constraint will be useful in a generic sense, not limited to the application

of spatio-temporal alignment. To make the sampling-based stochastic search more efficient,

improvement may be possibly achieved by introducing other greedy ingredients in.

In companion with statistics on geometric space, the geometric space of statistical

models has received little attention from vision community. The study on geometric space of

statistical models belongs to the scope of information geometry [150, 151], which we believe

is worth trying for understanding video dynamics as well.
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