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This dissertation examines the use of signatures that are intrinsically em-

bedded in media recordings for studies and applications in multimedia forensics.

These near-invisible signatures are fingerprints that are captured unintentionally in

a recording due to influences from the environment in which it was made and the

recording device that was used to make it. We focus on two types of such signatures:

the Electric Network Frequency (ENF) signal and the flicker signal.

The ENF is the frequency of power distribution networks and has a nominal

value of 50Hz or 60Hz. The ENF fluctuates around its nominal value due to load

changes in the grid. It is particularly relevant to multimedia forensics because ENF

variations captured intrinsically in a media recording reflect the time and location

related properties of the respective area in which it was made. This has led to

a number of applications in information forensics and security, such as time-of-

recording authentication/estimation and ENF-based detection of tampering in a

recording.

The first part of this dissertation considers the extraction and detection of



the ENF signal. We discuss our proposed spectrum combining approach for ENF

estimation that exploits the presence of ENF traces at several harmonics within

the same recording to produce more accurate and robust ENF signal estimates.

We also explore possible factors that can promote or hinder the capture of ENF

traces in recordings, which is important for a better understanding of the real-world

applicability of ENF signals.

Next, we discuss novel real-world ENF-based applications proposed through

this dissertation research. We discuss using the embedded ENF signal to identify

the region-of-recording of a media signal through a pattern analysis and learning

framework that distinguishes between ENF signals coming from different power

grids. We also discuss the use of the ENF traces embedded in a video to characterize

the video camera that had originally produced the video, an application that was

inspired by our work on flicker forensics.

The last part of the dissertation considers the flicker signal and its use in

forensics. We address problems in the entertainment industry pertaining to movie

piracy related investigations, where a pirated movie is formed by camcording media

content shown on an LCD screen. The flicker signature can be inherently created in

such a scenario due to the interplay between the back-light of an LCD screen and

the recording mechanism of the video camera. We build an analytic model of the

flicker, relating it to inner parameters of the video camera and the screen producing

the video. We then demonstrate that solely analyzing such a pirated video can lead

to the identification of the video camera and the screen that produced the video,

which can be used as corroborating evidence in piracy investigations.
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Chapter 1

Introduction

Multimedia forensics addresses a series of questions about a piece of multime-

dia recording of interest. Is it authentic? Has it been tampered with? When was it

recorded? Where was it recorded? What devices were used for recording it? The

answers to such questions are valuable in shedding light on the recording’s integrity,

history, and origins. They also provide important evidence and assurance in crime

solving, journalism, infrastructure monitoring, smart grid management and other

informational operations.

We have carried out research on signatures that are embedded in multimedia

recordings in an intrinsic way due to the environment in which the recordings were

made. We have focused on developing approaches to extract such signatures accu-

rately and on examining real-world applications in forensics and security that they

can be used towards. The two main signatures addressed in this dissertation are the

Electric Network Frequency (ENF) signal and the flicker signal.
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1.1 ENF Forensics

The Electric Network Frequency (ENF) signal has emerged in recent years as

an important tool for multimedia forensics. The ENF is the frequency of power

distribution networks. It has a nominal value of 60Hz in the United States, and

50Hz in most other parts of the world. The ENF is not typically constant at this

nominal value, but rather fluctuates around it due to load changes across the power

grid. These variation trends are almost identical in all locations of the same grid at

a given time due to the interconnected nature of the grid [1]. We define the ENF

signal as the changing instantaneous value of the ENF over time.

An important property of the ENF that makes it particularly relevant to mul-

timedia forensics is that ENF fluctuations are often intrinsically embedded in audio

or video recordings made in areas where there is electrical activity. It has been shown

that ENF traces can be captured by recorders connected to the power mains or by

battery-powered recorders. In audio recordings, this has been attributed to electro-

magnetic influences, the ambient acoustic mains hum and background noise emitted

by mains-powered equipment in the vicinity of the recorder being used [2, 3]. In

video recordings, the captured ENF traces have been attributed to the near-invisible

flickering of electric lighting [4].

The process of working with the ENF signal can be seen as a two-stage opera-

tion. The first stage requires the extraction of the ENF signal from media recordings.

The second stage involves using the extracted ENF signal to address a real-world

problem. Government agencies and research institutes of many countries have con-
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ducted ENF-related research and development work, with a large emphasis on the

extraction and detection of the ENF signal, and examining and improving applica-

tions that it can be used towards, in forensics and security, and in other fields as

well [5–8]. These agencies and institutes include academia and government in Roma-

nia [2,9–12], Poland [13], Denmark [14–16], the United Kingdom [17–19], the United

States [4–8,20–38], the Netherlands [39], Brazil [40–43], China [44,45], Egypt [46,47],

Israel [48], Germany [3], and Singapore [49].

When ENF traces are found in a signal, a typical approach to extract the

changing values of the ENF over time is to divide the signal into consecutive frames

and use a frequency estimation approach on each frame to determine its dominant

frequency close to the nominal 50/60Hz ENF value. Concatenating these frequency

estimates together gives an estimate of the captured ENF signal.

ENF traces captured in different recordings may be of varying quality. The

ENF traces captured in an audio/video recording will typically exhibit a low signal-

to-noise ratio (SNR), especially when compared to the ENF traces found in record-

ings that are recorded directly from the power mains, which we define as reference

power recordings. These reference recordings contain strong ENF traces and are

very valuable in ENF studies. The variations in the ENF signal extracted from two

simultaneously recorded signals should be very similar over the same time duration.

Figure 1.1 shows an example of the spectrograms of two simultaneously recorded

signals showing similar ENF variations, one a reference power signal and one a reg-

ular audio signal. The figure also shows the extracted ENF signal from the audio

recording. It is worth noting that the ENF traces may appear not just around the

3



Figure 1.1: (a) and (b) show the spectrograms of simultaneous recorded power and audio
signals from Lebanon, where the nominal ENF value is 50Hz. In this case, the ENF traces
were captured in the audio recording strongly at around 200Hz, a harmonic of the nominal
ENF value. (c) shows the ENF signal extracted from the audio recording.

nominal ENF value but around harmonics of the nominal ENF value as well, which

is the case of the audio recording in this example.

The similarity observed in the variations between ENF signals extracted from

simultaneously recorded signals motivated one of the early proposed ENF-based

forensics applications: using the ENF to authenticate or identify the time-of-recording

of a signal [2]. A database of reference ENF signals, with known times-of-recording,

can be used a guide against which the ENF signal extracted from a media record-

ing is compared to find the time duration where a match between the reference

and media ENF patterns exists, thus identifying its time-of-recording. Other pro-

posed ENF-based applications include detecting tampering/modification in media

files [41–43, 50], multimedia synchronization [7, 8], characterizing the video camera

producing an ENF-containing video [51], and determining the location-of-recording

among different power grids [34,37] and potentially within a grid [27,29].

As estimating ENF signals is typically the first step in most ENF-based ap-

plications, the validity of the final results of this application will strongly depend

on the accuracy of the extracted ENF signals. To this end, in the early part of

4



this dissertation, we focus on studying approaches to extract the ENF signals from

media recordings. We also propose a novel approach, the spectrum combining ap-

proach, which exploits the presence of the ENF traces at different ENF harmonics

in a media recording to obtain a more robust ENF signal estimate. Afterwards, we

present our study on examining factors that can promote or hinder the capture of

ENF traces in media recordings. A better understanding of these factors would lead

to a stronger understanding of the real-world applicability of the ENF signal and

can influence the way we use it.

We later discuss two novel ENF-based applications that we have proposed

through the work done for this dissertation. The first application exploits the ob-

served statistical differences in ENF variations between different grids to use the

ENF as a signature for the grid-of-origin of a media recording. We investigate

features based on these differences and use them in a multiclass machine learning

framework to identify the grid-of-origin of an ENF-containing signal. The second

application we discuss uses the ENF captured in a video to characterize the video

camera that originally produced the video. This application was actually inspired

by our work on the flicker signal, the second intrinsically embedded signature we

focus on in this dissertation.
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1.2 Flicker Forensics

The flicker signal is a signature that is created in videos made by camcord-

ing content shown on a Liquid Crystal Display (LCD) screen, resulting from the

interplay between the camcorder and the screen. Work based on this signature

addresses forensic problems in the entertainment industry for movie piracy related

investigations and deterrence.

Movie piracy is still a major concern for the entertainment industry today, with

the illegal releases of pirated copies before theatrical or Blu-ray release of movies

holding the potential to significantly harm revenues. To address this risk, content

owners have been relying on cryptography-based content to prevent consumers from

easily accessing the media content [52]. Nevertheless, this type of protection needs

to be lifted eventually, which leaves the content vulnerable for a pirate to place a

camera in front of a screen and record a pirated copy.

A second line of defense behind cryptography-based approaches is embed-

ding forensic watermarks within the media content, which would be able to sur-

vive digital-to-analog conversion [53]. Following this, if a pirated copy appears on

unauthorized distribution platforms, it would be possible to recover the underlying

watermark identifier and trace it back to the user or device that produced it [54].

A common way to produce a pirated video is to record a movie shown on on

an LCD screen. It is therefore relevant to evaluate the kind of distortion that may

appear when such a display is being recorded. Early works have focused on the

ability to recognize this type of piracy through the use of discriminating features

6



and artifacts, such as combing artifacts [55], video jitter [56], ghosting artifacts [57],

and the luminance flicker [58]. The latter artifact is the focus of our work here.

An example of how the flicker signal is presented in a pirated video is shown

in Figure 1.2. Flicker, a result of the interplay between the camcorder and the

LCD screen, is typically incarnated by more or less visible dark and bright strips

scrolling up or down the recaptured video. By design, an LCD screen makes use

of a source of light called a back-light that illuminates the liquid crystal cells of

the screen from behind. This back-light is a periodic signal whose frequency lies

within 120Hz-1kHz. Upon being captured by a camcorder, with a typical frame

rate in the 30-60fps range, the light is aliased to a lower frequency, making it visible

to humans. Many camcorders in use today employ a rolling shutter, which means

that they acquire rows of a video frame sequentially, each at a different time, rather

than all together at the same time. This rolling shutter effect results visually in the

movement of the dark and bright strips up/down the recaptured video.

Figure 1.2: Flicker artifact when recording an LCD screen displaying a uniformly gray
frame with a camcorder.
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In our work on flicker forensics, we go beyond the focus of previous work in the

literature that addressed using the flicker to identify the type of piracy – camcorder

piracy – that creates flicker. Working with flicker-containing videos, we discuss

various estimation techniques to extract parameters related to the flicker signature

and examine applications that this signature can be used towards. We demonstrate

how the flicker can be used to identify and characterize the camcorder and LCD

screen that were used to produce the flicker-containing video, which would allow it

to be used as an aid for movie piracy investigations.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows.

In Chapter 2, we discuss approaches to collect reference power recordings and

examine ENF signal estimation methods. This also includes a discussion on our

proposed spectrum combining approach for more robust ENF signal estimates.

In Chapter 3, we carry out a study examining the factors that can affect the

capture of ENF traces in recordings. Our focus is on audio recordings made by

battery-powered recorders, and the factors discussed are related to the environment

in which the recording was made and the recording device used to make it.

In Chapter 4, we present our proposed ENF-based application that seeks to

identify the grid-of-origin of a media recording using a learning framework that

exploits the statistical differences between ENF signals from different grids.
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In Chapter 5, we show how analyzing the ENF traces found in a video can

be used to characterize the video camera that originally produced this video, an

application that was inspired by our work on the flicker signal.

In Chapter 6, we focus on flicker forensics. We build an analytic model that

relates the parameters of the flicker captured in a pirated video to inner parameters

of the camcorder and LCD screen used to produce it. We then use this model to

build a flicker-based approach to identify and characterize the devices producing a

pirated video.

In Chapter 7, we conclude this dissertation and outline research avenues for

future work.
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Chapter 2

Extraction of ENF Signals

2.1 Chapter Introduction

As discussed in Chapter 1, the ENF signal can have a number of useful real-

world applications, in fields related to security and forensics as well as in other fields.

A major first step to any of these applications is to accurately extract and estimate

the ENF signal from an ENF-containing media signal. Following that, the validity

of the results of these applications will strongly depend on how accurate and robust

our estimates are. The focus of this chapter is on the approaches by which we can

extract this ENF signal.

The rest of this chapter is organized as follows. In Section 2.2, we discuss

approaches by which we can collect reference power signals, which will contain ENF

traces at a high signal-to-noise ratio (SNR) and are valuable for ENF studies. In

Section 2.3, we describe various ENF estimation approaches that have been proposed
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in the literature. In Section 2.4, we carry out a comparison on a group of the ENF

signal estimation approaches described in Section 2.3. We examine the effect of

varying the frame size and the signal’s SNR levels on the reliability of ENF signal

estimation. In Section 2.5, we present our proposed approach for ENF extraction,

which exploits the presence of ENF traces at different harmonics to produce more

robust estimates. We conclude the chapter in Section 2.6.

2.2 Reference power recordings

Reference power recordings can be very useful to ENF analysis. The ENF

traces found in these reference recordings are typically much stronger, and exhibit a

higher SNR than the ENF traces found in audio or video recordings. They are useful

for studying the properties of ENF signals and they can be used as a reference and a

guide for ENF signals extracted from media recordings. As mentioned in Chapter 1,

the variations in ENF signals from recordings that were simultaneously made in the

same power grid should be very similar. Given an audio recording and a simultane-

ously recorded reference power signal, the latter can provide confident a ENF signal

estimate that can be used to verify the integrity of the ENF-containing audio signal

and authenticate its time-of-location. In this section, we describe different methods

that can be used to acquire reference power recordings, including ones proposed in

the literature and ones that we adopted in our work at the University of Maryland.

The Power Information Technology Laboratory at the University of Tennessee,

Knoxville operates the North American Power Grid Frequency Monitoring Network
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Figure 2.1: Framework of the FNET system [59]

System (FNET). The FNET is a power grid situational awareness tool that col-

lects real-time, Global Position System (GPS) time-stamped measurements of grid

reference data at the distribution level [25].

A framework for FNET is shown in Figure 2.1. The FNET system consists

of two major components, which are the frequency disturbance recorders (FDRs)

and the information management system (IMS). The FDRs are the sensors of the

system; each FDR is an embedded microprocessor system that performs local GPS-

synchronized measurements, such as computing the instantaneous ENF values over

time. In this set-up, the FDR estimates the power frequency values at a rate of

10 records/s using phasor techniques [60]. The measured data is sent to the server

through the Internet, where the IMS collects the data, stores it and provides a

platform for the visualization and analysis of power system phenomena. More infor-

mation on the FNET system can be found in [59, 61–63]. Another system similar

to the FNET system, called the wide area management systems (WAMS), has been

set up in Egypt, where the center providing the information management functions

is at Helwan University [46,47].
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(a) (b)

Figure 2.2: (a) shows the reference recording measurement set-up that we use in our
work, and (b) shows the circuit schematic.

Systems like FNET and WAMS offer tremendous benefits in power frequency

monitoring, yet one does not need access to them in order to acquire ENF reference

signals. An inexpensive hardware circuit can be built to record a power reference

signal given access to an electric wall outlet. A step-down transformer is typically

used to get the voltage from the wall outlet voltage levels down to a level that an

analog-to-digital converter can capture. This is the approach that we have opted to

use in our ENF work for acquiring the power reference signals that we need.

There is more than one approach to building the sensor hardware. In [64],

an anti-aliasing filter is placed in the circuit along with a fuse for safety purposes.

In [3], the step-down circuit is connected to a a BeagleBone Black board, via a

Shmitt-trigger, that computes an estimate for the ENF signal directly.

In our work, the circuit is a simple voltage divider circuit, and it is connected

to a digital audio recorder that records the raw power signal. The recorded digital

signal is processed later using ENF estimation techniques, that are discussed in the

next section, to extract the reference ENF signal. Figure 2.2 shows the circuit set-
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up that we have used to collect our reference recordings1., and a schematic of the

circuit2.

2.3 Overview of ENF Estimation Approaches

As discussed earlier, accurately and reliably estimating ENF signals is key

to the validity of the final results of an ENF-based application. This is especially

important given that ENF traces found in media recordings tend to be of a low

SNR, which necessitates the development of robust extraction approaches.

A necessary stage before estimating the changing instantaneous ENF value

over time is pre-processing the signal. Typically, and as the ENF component is in

a low frequency band, a low-pass filter, with proper anti-aliasing, can be applied

to the ENF-containing signal to make the forthcoming computations of the estima-

tion algorithms easier. For some estimation approaches, it also helps to band-pass

the ENF-containing signal around the frequency band of interest, i.e., frequency

band surrounding the nominal ENF value, or the frequency band surrounding an

ENF harmonic where ENF traces are observed. This ENF-containing signal is then

divided into consecutive overlapping, or non-overlapping, frames. A frequency esti-

mation approach is applied on each frame to estimate its most dominant frequency

around the nominal ENF value, or its harmonics. This frequency estimate would

be the estimate of the instantaneous ENF value for this frame. Concatenating the

1We would like to thank Michael Luo for his assistance in building this circuit as part of his
participation in the MERIT REU program at UMD in Summer 2012.

2The circuit schema was drawn using the online application found at:
www.digikey.com/schemeit/.
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frequency estimates of all the frames together forms the extracted ENF signal. The

length of the frame, typically on the order of seconds, indicates the resolution of

the extracted ENF signal. A trade-off typically exists here. A smaller frame size

better captures the ENF variations but may result in poorer performance of the

frequency estimation approach, and vice versa. The frame size used will also af-

fect certain ENF-based applications, e.g., the temporal resolution in ENF-based

time-of-recording estimation in media recordings will be limited by this frame size.

Broadly speaking, ENF estimation approaches fall into one of three categories:

time-domain approaches, non-parametric frequency-domain approaches and para-

metric frequency-domain approaches.

2.3.1 Time-domain approach

The time-domain zero-crossing approach is fairly straightforward and is one of

the few ENF estimation approaches that is not preceded by dividing the recording

into consecutive blocks for individual processing. As described in [10], a band-pass

filter with 49-51Hz cutoff (or equivalently a 59-61Hz cutoff) is first applied to the

ENF-containing signal, without downsampling initially. This is done to separate

the ENF waveform from the rest of the recording. Afterwards, the zero-crossings

of the remaining ENF waveform are computed and the time differences between

consecutive zero values is computed to estimate the instantaneous period of the

power signal, and consequently used to compute the instantaneous ENF estimates.
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2.3.2 Non-Parametric Frequency-Domain Approaches

Non-parametric approaches do not assume an explicit model for the data.

The majority of these approaches are based on the Fourier analysis of a signal. The

main methods considered here are based on the spectrogram and the time recursive

iterative adaptive approach (TR-IAA).

Spectrogram: By far, the most commonly used non-parametric frequency-domain

approach is a spectrogram-based approach, or equivalently, a periodogram-based

approach or a Short Time Fourier Transform (STFT)-based approach. STFT is

usually used for signals with a time-varying spectrum, which is the case of the

ENF waveform captured in media recordings. After the ENF-containing signal is

segmented into frames, each frame undergoes Fourier analysis to determine the

strengths of the frequencies present. The spectrogram is then defined as the squared

magnitude of the STFT, and is usually displayed as a two-dimensional intensity plot,

with the two axes being time and frequency [27].

As the captured power signal in a frame can be considered to be a sinusoid

of a frequency close to the nominal ENF value (or to a harmonic of the nominal

ENF value), embedded in noise, the power spectral density (PSD) of it, estimated

by the spectrogram, should ideally exhibit a peak at the frequency of the sinusoidal

signal. Estimating this frequency well gives a good estimate for the ENF value of

this frame.

The straightforward approach to estimating this frequency would be finding
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the frequency that has the maximum spectral power component. Directly choosing

this frequency as the ENF value, however, typically leads to loss in accuracy, be-

cause the spectrogram is computed for a finite number of discrete frequencies and

the actual frequency with the maximum energy may not be among them. For this

reason, typically, STFT-based ENF estimation approaches carry out further com-

putations to obtain a more robust estimate. Examples of such operations are using

quadratic interpolation or a weighted energy approach.

Maximum energy with quadratic interpolation: In this approach, we begin

with finding the frequency that has the maximum spectral power component. Then,

quadratic interpolation is used to fit the PSD points corresponding to the range

about the discrete frequency with the maximum energy [24]. This interpolation is

outlined below based on the approach in [65].

As the computed PSD of each frame is a function of the discrete frequencies, we

can think of it as a function of frequency bin numbers, or simply indices. Denoting

the index of the frequency with the maximum energy as kmax, we can define a

coordinate system centered at (kmax, 0). We take the log magnitude value of the PSD

as y(k). Using three points of the PSD, namely, at kmax−1, kmax and kmax+1, we can

carry out quadratic interpolation on the parabola of the form: y(k) = a(k− p)2 + b.

Solving for the parabola peak p, we obtain the following expression.

p =
1

2

y(kmax − 1)− y(kmax + 1)

y(kmax − 1)− 2y(kmax) + y(kmax + 1)
, (2.1)

where y(k) is defined as

y(k) = 20 log10 |PSD(k)|. (2.2)
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The estimate of the peak location in bins that corresponds to the true fre-

quency is kt = kmax + p. The frequency estimate corresponding to kt is ktfs
N

, where

fs is the sampling frequency and N is the number of FFT points used in computing

the spectrogram.

A drawback of this approach is that it is susceptible to outliers. If the max-

imum energy happens to be far away from the nominal frequency due to additive

noise or interference from content, the subsequent estimation would be erroneous.

Weighted energy: The weighted energy approach makes use of the additional

information that we have on the approximate location of the desired frequency (close

to the nominal ENF value or its harmonics). As a result, the frequency estimates

are more robust to outliers [4].

The weighted energy approach finds the frequency estimate F (n), for the nth

frame, by weighing the frequency bins around the nominal ENF value (or the ENF

harmonic of interest). The expression for frequency estimates is then given by the

following equation [4]:

F (n) =

∑L2

l=L1
f(n, l)S(n, l)∑L2

l=L1
S(n, l)

(2.3)

where L1 and L2 are the FFT indices of the boundary of the averaging region and

f(n, l) and S(n, l) are the frequency and energy in the lth frequency bin of the nth

time frame.

TR-IAA: Though spectrogram-based approaches are most commonly used, the

authors in [24] advocate the use of a non-parametric, adaptive and high resolution

technique known as the time-recursive iterative adaptive approach (TR-IAA). This
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algorithm reaches the spectral estimates of a given frame by minimizing a quadratic

cost function using a weighted least squares formulation. TR-IAA is an iterative

technique that takes from 10 to 15 iterations to converge, where the spectral estimate

is initialized to be either equal to the spectrogram or to the final spectral estimate

of the preceding time frame [24,66]. This method is more computationally extensive

than spectrogram-based techniques. After the convergence of the spectral estimate,

a quadratic interpolation scheme similar to the first spectrogram-based approach

discussed is used to estimate the frequency. It has been shown that the TR-IAA

based approach provides slightly better frequency estimates than the spectrogram

based approach, when the frame size is 20-30 seconds [24]. In our work on ENF,

we typically use smaller frames of size around 5 seconds or less. As we consider

such frame sizes, and due to the high computational costs of the TR-IAA based

algorithm observed, we focus on spectrogram-based approaches for non-parametric

methods in the comparison study in Section 2.4.

2.3.3 Parametric Frequency-domain Approaches

Parametric methods assume an explicit model for the signal and underlying

noise. Due to such an explicit assumption about the model, the estimates obtained

using parametric approaches are expected to be more accurate than those obtained

by non-parametric approaches [67]. In the study shown here, we consider two of

the most widely used parametric frequency estimation methods, which are based

on the subspace analysis of a signal and noise model. In general, these methods
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can be used to estimate the frequency of a signal composed of P complex frequency

sinusoids embedded in white noise. ENF-containing signals can be passed through a

band-pass filter centered around the ENF nominal frequency, or one of its harmon-

ics. The resultant signal will consist of only one real sinusoid, making the value of

P to be used equal to 2. The methods we study are here the MUltiple SIgnal Clas-

sification (MUSIC) method and the Estimation of Signal Parameters via Rotational

Invariance Techniques (ESPRIT) method. In what follows, we briefly describe these

two methods [67].

MUSIC: The MUSIC algorithm is a subspace-based approach to frequency esti-

mation that relies on eigendecomposition and the properties between the signal and

noise subspaces for sinusoidal signals with additive white noise. The algorithm first

computes an M ×M correlation matrix, where M is chosen to be larger than P ,

the number of anticipated complex exponentials. More specifically, for an N -point

observed signal x[n] where N >> M , we generate an M × N data matrix of the

form:

X =

[
x(1) x(2) ... x(N − 2) x(N − 1)

]T
(2.4)

where x(n) =

[
x(n) x(n+ 1) ... x(n+M − 1)

]T
.

An estimate of the correlation matrix R̂x can be computed by R̂x = 1
N

XHX,

where the superscript H denotes the Hermitian of a matrix. Eigenanalysis is carried

out on R̂x to find the vectors spanning the signal and noise subspaces. These sub-

spaces are orthogonal to one another. The eigenvectors q1,q2, ..qP correspond to the

largest P eigenvalues that span the signal subspace and the remaining eigenvectors
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(qP+1,qP+2, ..qM) span the noise subspace.

MUSIC makes use of the orthogonality property of noise eigenvectors and

steering vectors v(fk), 1 ≤ k ≤ P (corresponding to the actual frequency compo-

nents of the signal). Here v(f) is defined as:

v(f) =

[
1 ej2πf ej4πf ... ej2(M−1)πf

]T
(2.5)

The pseudo-spectrum of MUSIC, R̄music, can then be computed as:

R̄music(e
j2πf ) =

1∑M
m=p+1 |vH(f)qm|2

=
1

|Qm(ej2πf )|2
(2.6)

Due to the orthogonality property, the denominator should be zero at the frequencies

of the signal.

Among various techniques studied in the statistical signal processing literature,

RootMUSIC provides high precision at a moderate computational cost. It solves

for the roots of the denominator directly [67]. The frequency estimates using this

method are the arguments of the P roots closest to the unit circle. We opted to use

RootMUSIC in our comparisons in Section 2.4.

ESPRIT: ESPRIT makes use of the rotational property between staggered sub-

spaces that is invoked to produce the frequency estimates. In our case, this property

relies on observations of the signal over two intervals of the same length staggered

in time. ESPRIT is similar to MUSIC in the sense that they are both subspace-

based approaches, but it is different in that it works with the signal subspace rather

than the noise subspace. The implementation that we employ estimates the signal

subspace from the data matrix X of Equation (2.4).
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A Singular Value Decomposition (SVD) is applied to X, giving:

X = LSUH (2.7)

where L is an N ×N matrix of the left singular vectors, S is an N ×M matrix with

its main diagonal entries containing the singular values, and U is an M ×M matrix

of the right singular vectors. The singular values correspond to the square roots of

the eigenvalues of the sample correlation matrix R̂x scaled by N, and the columns

of U are the eigenvectors of R̂x. These vectors form an orthonormal basis for the

underlying M -dimensional vector space. More specifically, U can be written as

U = [Us|Un], where Us is the M×P matrix of right singular vectors corresponding

to the singular values with the P largest magnitudes and Un is the M × (M − P )

matrix containing the remaining right singular vectors. The signal subspace can be

partitioned into two smaller (M − 1)-dimensional subspaces as:

Us =

U1

∗

 =

 ∗
U2,

 (2.8)

where U1 and U2 correspond to the unstaggered and staggered subspaces, respec-

tively. The relation between U1 and U2 can be written as:

U2 = U1Q, (2.9)

where Q is a P × P matrix. Q can be computed using a least squares method.

Eigenanalysis can then be carried out on Q. The frequency estimates can be ex-

tracted from the arguments of the eigenvalues of Q. Denoting these eigenvalues by

φk, 1 ≤ k ≤ P , we can find the frequency estimates, f̂k, by:

f̂k =
∠φk
2π

with 1 ≤ k ≤ P. (2.10)
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It is worth noting that the accuracy of the estimates obtained using subspace

methods can differ significantly depending on the parameter M chosen for the data

matrix in Equation (2.4). It was shown in [68] that for estimating the frequency in

a single sinusoid in white noise, the error variance is minimal when M is either N
3

or

2N
3

. For a general multiple signal case, a rule of thumb suggested in [69] is that M

should be in the range [2N
5
, 3N

5
]. So, before we carried out the experiments detailed

in the next section, we tested the accuracy of MUSIC and ESPRIT on the range

M ∈ [N
3
, 2N

3
] for the values of N that we intended to use. We found the value of M

that gave the most accurate result for each case of N value, and subsequently used

it in the experiments that follow. The metric used for determining accuracy is the

correlation coefficient, which will be discussed in the next section.

2.4 Comparison of Estimation Approaches

In this section, we compare the performance of some of the different fre-

quency estimation approaches discussed in Section 2.3. In particular, we consider

spectrogram-based approaches using maximum energy with quadratic interpolation,

and using the weighted approach. We also consider the parametric approaches of

MUSIC and ESPRIT. We present the experiments that we carry out and the criteria

by which we compare the methods.
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2.4.1 Experiments on Synthetic Signals

To facilitate a comparative study, we first generate synthetic signals with

ground truth frequencies. In our model of the synthetic signal, the frequency of the

signal changes on a frame-by-frame basis and the frequency estimation algorithms

are applied to each frame. Since the ENF signal has a slowly-varying frequency, we

attempt to capture the correlation of the frequencies in consecutive frames by first

generating a random sequence of frequencies having a normal distribution of mean

µ = 60 and standard deviation σ = 0.0133. Then, to mimic the pseudo-periodic

behavior of the ENF fluctuations [26], we pass this sequence through a filter of the

form:

H(z) =
1

1− 0.97z−1
. (2.11)

For one instance of this simulation, the synthetic signal is generated as a series

of consecutive sinusoidal signals of frequencies corresponding to the generated se-

quence, each with a phase following a uniform distribution U(0, 2π). We consider

a sampling frequency of 441Hz, and add additive white gaussian noise (AWGN) to

achieve different SNR levels. We also examine several frame sizes, ranging from 0.1

seconds (44 samples) to 1 second (441 samples). These frame sizes are smaller than

the sizes needed for most ENF-based applications, but being able to accurately esti-

mate ENF signals at such a high temporal resolution can improve the performance

of most ENF-based applications and is crucial for certain ENF-based applications.

An example of such an application is identifying the location-of-recording within a

power grid, where ENF-related location specific variations may not be captured well
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(a) 0.1-second frame
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(b) 0.5-second frame
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(c) 1-second frame

Figure 2.3: Synthetic Signals: Correlation Coefficient vs. SNR for very short frame sizes

if the frame size is larger than 1 second [29].

We carry out 100 simulation runs where each run has a different set of frequen-

cies, phase angles, and additive noise. In each simulation run, the frequencies are

estimated on a frame-by-frame basis using the frequency extraction methods dis-

cussed in Section 2.3. For the spectrogram-based approaches, the number of FFT

points is chosen such that the frequency resolution is approximately 0.03Hz. For

the weighted energy approach, the range considered for weighting is [59.8, 60.2]Hz.

For the subspace methods, we use the experimentally optimized M value for the

dimension of the data matrix based as mentioned in Section 2.3.3.

A direct way of comparing the frequency estimates is to subtract each sequence

of estimates from the true sequence of frequencies and estimate the mean difference.

This criterion does not fit our application because it may penalize some methods

that tend to have an inherent bias in estimating the frequency, such as the weighted

energy approach. As we are interested in measuring the similarity in the trends

of the signals for most applications based on ENF signal analysis, these trends are

better revealed using a correlation based metric.

More specifically, to measure the performance of different frequency estimation
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methods, we use the cross-correlation coefficient between the frequency estimates

and the true frequencies for different frame sizes and different SNR values. The

results obtained are shown in Figure 2.3. The correlation coefficient of two sequences

that do not match is close to zero, and the correlation coefficient for matching

sequences is expected to be higher, and ideally closer to 1. From Figure 2.3, we

can see that the frequency estimates worsen when more noise is added and the SNR

decreases, which is to be expected. Also, when the frame size becomes too small,

as with Figure 2.3(a), where it is equal to 0.1 second, all estimation techniques

behave rather poorly, as the correlation coefficient achieved was around 0.35 in high

SNR cases and only 0.05 in low SNR cases; the latter is barely differentiable from

matching two unrelated ENF signals. For this reason, it is advisable not to use such

small frame sizes whenever possible.

We also note that both spectrogram-based approaches give similar perfor-

mances; the subspace-based approaches give better performances than the spectrogram-

based approaches, with ESPRIT consistently outperforming MUSIC by a moderate

margin. This is due to an explicit assumption on the sinusoidal signal model in the

parametric approaches and this signal model matches the synthetic model well. As

with ESPRIT outperforming MUSIC, our observation in the context of the ENF

problem is consistent with the general result in the literature that ESPRIT gives

slightly more accurate estimates than MUSIC for a similar computational cost [70].
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2.4.2 Experiments on Power Grid Data Set

To validate the results obtained using synthetic data, we examine the perfor-

mance on a power signal measurement available at [71]. This dataset also provides a

sequence of reference frequencies computed using a Frequency Disturbance Recorder

(FDR). FDRs estimate frequencies using phasor analysis and signal resampling tech-

niques. The estimates are reported to provide a resolution of around ±0.0005Hz [59].

We assume the power measurement to be noise-less for simplicity, and we add

various levels of AWGN to it. We estimate the frequencies present for different

frame sizes using the estimation techniques discussed in Section 2.3. We use the

frequencies computed by the FDR as ground truth, and compute the correlation

coefficient between this ground truth and the estimated sequence of frequencies.

This correlation coefficient was computed after temporally aligning the ground truth

frequency sequence with the estimated ones.

The results for the 1-second frame size case can be seen in Figure 2.4. The

estimates obtained are worse than the estimates for synthetic data, which is under-

standable as the model we used was an idealization of the reality and the power

measurements are likely not noise-free or perfect sinusoids. However, the order

of accuracy remains consistent with the synthetic data comparison, with ESPRIT

outperforming the other three methods, followed by MUSIC. Figure 2.4 shows sim-

ilar trends and relative positions to those shown in Figure 2.3(c) except that the

correlation coefficient values are lower.
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Figure 2.4: Power Grid Data Set: Correlation Coefficient vs. SNR for 1-sec frames

2.4.3 Matching ENF Signals from Audio and Power

A main forensic application involving ENF analysis requires matching an ENF

signal extracted from an audio signal to that extracted from a power signal in order

to determine the time of recording. Here, we carry out experiments to compare

which of the four estimation methods gives the best matching between ENF signals

that are known to be recorded at the same time.

More specifically, we make two simultaneous recordings of audio and power

signals. The power signal is obtained from an electric outlet using the circuit set-

up of Figure 2.2. The audio signal is obtained by recording the background noises

in a room. The audio recording is expected to pick up ENF traces whose varia-

tions should match well the ENF traces present in the concurrently recorded power

recording.

Prior to ENF extraction, we pass the audio signal through a bandpass filter

centered around 60Hz, the nominal frequency, to remove as much noise as possible

without affecting the frequency band of interest. We partition both the power signal

and the filtered audio signal into overlapping frames, and compute the frequency

28



Table 2.1: Correlation coefficient values between the ENF signals extracted from the
power and audio recordings.

Method ESPRIT MUSIC
Spectrogram – Spectrogram –
Quad. Interp. Weighted Energy

Correlation coefficient 0.978 0.977 0.970 0.954

estimates for each frame using the four ENF extraction techniques under study. In

order to differentiate the various estimation methods, we compute the correlation

coefficient between the audio and power estimates of each method.

The results are shown in Table 2.1, where a higher value of the correlation

coefficient suggests better matching between the ENF signals extracted from the

audio and power signals. Although the values in Table 2.1 are close, they support the

findings reached earlier that ESPRIT gives the best results followed by MUSIC. The

results here also demonstrate that the spectrogram-based quadratic interpolation

approach performs better than the weighted energy approach. This can be due to

the restriction of the estimates of the weighted energy to a chosen range, which may

not be true in the case of all signals. The quadratic interpolation approach has no

such restraints.

All the estimation approaches discussed so far use the ENF traces found around

either the nominal ENF value, or around a single harmonic of the nominal ENF

value, to reach the final ENF signal estimate. In the next section, we explore a novel

ENF estimation approach that exploits the presence of the ENF traces around more

than one harmonic of the nominal ENF value to reach a more accurate and robust

ENF signal estimate.
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2.5 Proposed Spectrum Combining Estimation Approach

The validity of the results obtained in ENF-based studies depends strongly on

how well the weak ENF signal is estimated from the available measurements. In

power signals, the ENF appears around the nominal frequency of 50/60 Hz and at its

harmonics. As mentioned earlier, most existing frequency estimation approaches for

ENF signal extraction rely on the spectral band surrounding the nominal frequency,

or on the spectral band surrounding one of the higher harmonics [15, 24].

We have observed that scaled versions of almost the same variations appear in

many of the harmonic bands, although the ENF signal strength at different harmonic

frequencies differs with recording environments and devices used. An example of

this, which will be discussed further in Section 2.5.2.1, can be seen in Figure 2.5

for four different recording settings. Following this observation, we propose a low

computational complexity approach to extract the ENF signal that strategically

makes use of multiple spectral bands. We are inspired by a related problem in

handling multipath in wireless communications that has led to a maximum ratio

combining approach used in RAKE receivers [72], as well as by a harmonic extension

of the classical MUSIC estimator [73]. Our proposed spectrum combining approach

exploits traces of different ENF components appearing in a signal, and adaptively

combines them based on estimates of the local SNRs to achieve a more robust and

accurate estimate than that achieved by using only one component. We examine two

variants of this approach, based on spectrogram and subspace frequency estimation

techniques, respectively. The usefulness of this approach is especially prominent
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(a) power recording -
residential

(b) audio recording -
residential

(c) power recording -
workplace

(d) audio recording -
workplace

Figure 2.5: Spectrogram strips about the harmonics of 60 Hz for two sets of simultaneously
recorded power and audio measurements.

when extracting weak ENF signals from audio/video files, which is challenging due

to the presence of noise and media content.

In what follows, Section 2.5.1 explains the model considered and the proposed

approach for spectrum combining, and Section 2.5.2 discusses the experiments con-

ducted and analyzes the results obtained.

2.5.1 Model and Proposed Approach

2.5.1.1 Problem Formulation

As motivated earlier, we devise a technique to estimate the major frequency

component of the power signal, through exploiting the presence of the ENF at the

base frequency and its harmonics. We estimate, frame-by-frame over time, the

deviation ∆fo of the base ENF from the nominal frequency fo. The same vari-

ations of base and harmonic components from the nominal ENF values (up to a

scaling factor) provide us with multiple observations on the base-band deviation

∆fo. To estimate ∆fo for a given frame, the estimation can be related to a highly
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simplified model where we have L observations Y1, Y2, ...YL. The kth observation

is Yk = αkh(∆fo) + Nk, where h(∆fo) is a deterministic function of ∆fo rep-

resenting the spectrum information of the ENF-containing signal that attains its

maximum at the ENF component; αk relates to the strength of the “signal compo-

nent” around the kth harmonic; the Nk’s denote noise components that are assumed

to be independently distributed, each following a normal distribution with mean zero

and variance σ2
k. To estimate the function values h(∆fo), a Maximum Likelihood

Estimator (MLE) can be adopted as:

ĥMLE(∆fo) =

∑
k(Yk/αk).(α

2
k/σ

2
k)∑

k(α
2
k/σ

2
k)

. (2.12)

This suggests producing an ENF estimate by combining multiple base and harmonic

spectral bands, each weighted according to its relative strength with respect to noise;

the combined spectrum can then be processed to obtain ∆fo.

In the spectral domain, the ENF-containing signal can be considered to be a

summation of impulses at the base ENF and its harmonics. Due to the recording

mechanism and environment, additional frequency components may interfere around

these bands, and we consider such interferences as noise around each harmonic. For

a given frame, the observed power spectrum component, PB,k(f), contributed at the

kth harmonic band, analogous to Yk in Equation (2.12), can be expressed as:

PB,k(f) = Akhk(f) + Pn,k(f), (2.13)

for f ∈ [k (fo − fB) , k (fo + fB)], where fB reflects the empirical support of ENF

presence around the base frequency. Here, Ak denotes the magnitude of the energy
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contributed by the frequency component close to kfo; Pn,k(f) denotes the indepen-

dent noise component around the kth harmonic, assumed white within the band-

width of interest; hk(f) denotes an impulse-like function that attains its maximum

at f = k(fo+∆fo). In practice, we observe hk(f) as a peak energy concentration with

a small spread. Assuming that the power signal contains L harmonics, we can write

the power spectrum of the signal for a given frame as Psignal(f) =
∑L

k=1 PB,k (f).

To estimate the frequency deviation ∆fo for a given frame, the proposed spec-

trum combining approach first compresses and shifts the spectrum components to

the nominal base range [fo − fB, fo + fB], and then combines the components to-

gether. This is analogous to Equation (2.12), where the weighted summation can

then be written as:

S(f) =
L∑
k=1

wkP̄B,k (kf) , (2.14)

where P̄B,k denotes the normalized power spectrum component around the kth har-

monic. When applying Equation (2.14), the hk(f) components of Equation (2.13)

are compressed along the frequency axis to become hk(kf) components; they should

each have their maximum at f = fo + ∆fo. The combining weight, wk, in Equa-

tion (2.14) has been introduced to weigh the various harmonic spectral bands based

on the SNR around the corresponding harmonic. This weight is analogous to the

α2
k/σ

2
k in the numerator of Equation (2.12); the denominator in (2.12) can be seen

as a normalization parameter for these SNR-based combining weights and can be

incorporated into the definition of wk. The frequency fENF = fo + ∆fo can be

obtained by searching for the maximum in S(f).
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2.5.1.2 Determining Spectral Combining Weights

The combining weights are computed for a recording over a certain time dura-

tion (e.g., 30 minutes), and then recomputed for subsequent durations. This makes

the weights adaptive to reflect the changing strength of the ENF traces in the har-

monic bands over time. Taking the combining weight w1 for the base band around

fo for a certain time duration as an example, we set w1 as an estimate of the SNR

in the band; P̂signal,1/P̂noise,1. We choose fB = 1 Hz, because in the US, the ENF

fluctuates within 59.98 Hz and 60.02 Hz. The overall band for computing SNR would

be [59, 61] Hz. Then, P̂signal,1 is the average power spectral density (PSD) within

the band [59.98, 60.02] Hz over the chosen time duration and P̂noise,1 is the average

PSD in the bands [59, 59.98] Hz and [60.02, 61] Hz over the same time duration. The

combining weights for other harmonic spectral bands are computed in the same

manner, except for different sizes of the spectral bands considered.

2.5.1.3 Instantaneous ENF Estimation

After the wk’s are computed, the spectrum S(f) can be computed using Equa-

tion (2.14). S(f) can be seen as a weighted summation of shifted and compressed

spectral bands. We explore the estimation of spectral bands through two methods:

a spectrogram and a subspace-based “pseudo-spectrum”. In the first method, the

spectral harmonic bands are chosen from the spectrogram and shifted and com-

pressed to compute S(f). In the second method, the subspace-based frequency

estimation technique MUSIC is used. As discussed in Section 2.3.3, the MUSIC
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algorithm looks for P complex exponential frequencies in a signal, and computes a

pseudo-spectrum [74]. The peaks in the pseudo-spectrum correspond to the domi-

nant frequencies found in the signal. Here, we apply band-pass filters on the ENF-

containing signal around the ENF harmonics. For each band-passed signal, the

pseudo-spectrum can be computed for P = 2 (corresponding to the positive and

negative ENF components), and the spectral band around the harmonic of interest

is identified from the computed pseudo-spectrum and stored. After all harmonic

bands are estimated, they are used to compute S(f).

In practice, when computing S(f), we shift the spectral bands to one of the

higher bands rather than the base band, compressing or expanding as necessary, to

make use of the wider range of variations available around higher harmonics for the

same frequency resolution. In the results shown in Section 2.5.2, we shift the bands

to the 240 Hz band. After S(f) is computed, we search for its maximum through

quadratic interpolation [65]. The ENF is set as the argument of the maximum. If

S(f) is defined around a higher spectral band than the base band, the solution is

scaled accordingly.

2.5.2 Experiments and Results

2.5.2.1 Experimental Set-up

We carry out recordings in two different environment settings, one overnight in

a residential setting (an apartment) and one during the day in a workplace setting

(an office). Each set of recordings is composed of a power mains signal, used as
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a reference signal, and an audio signal recorded concurrently and expected to pick

up the ENF traces. The audio is recorded using a battery powered Olympus Voice

Recorder WS-700M at a sampling rate of 44.1 kHz in MP3 format at 256 kbps [75].

All recordings are made in Maryland, which is part of the US Eastern Grid. The

recordings are downsampled to 1000 Hz in WAV format to ease the computations.

Their spectra are estimated for consecutive frames of 5 seconds long each. Sample

spectrogram strips around the harmonics of the nominal ENF for each of the four

recordings are shown in Figure 2.5.

From Figures 2.5(a) and 2.5(c), we can see that the power signal is almost

noise free around the harmonics, and the ENF has a strong presence around the

odd harmonics. Figure 2.5(b) shows that in the residential audio recording, the

ENF is present strongly only around 120 Hz, with faint to no presence around the

other harmonics. On the other hand, Figure 2.5(d) shows stronger presence for the

ENF in the workplace audio signal around 240 Hz and 360 Hz; the noisy compo-

nent appearing around 120 Hz is not the ENF as will be shown in Section 2.5.2.3.

Interestingly, the ENF has almost no presence around the nominal 60 Hz in the

audio signals. The frequency response of the built-in microphone of the Olympus

recorder used to make these recordings ranges between 70Hz and 20kHz [75], which

can explain this observation.

We estimate the ENF signals from the four recordings using our proposed

spectrum combining approach. Table 2.2 shows sample values of combining weights

computed at various harmonics considered for the four recordings. The combining

weights shown are normalized, each expressed as a percentage of the sum of com-
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Table 2.2: Sample values of spectral combining weights wk’s (The weights corresponding
to the dominant harmonic bands are in italic)

Center Power Power Audio Audio
Freq. (Hz) Residential Office Residential office

60 6.32 6.81 0 0
120 2.03 1.02 75.75 15.69
180 18.79 19.75 0 1.80
240 4.73 1.99 13.77 32.00
300 28.88 29.15 5.20 1.91
360 2.70 4.07 5.28 44.69
420 35.61 36.16 0 2.19
480 0.93 1.05 0 1.72

bining weights of all the spectral bands for its time duration. The resulting values

conform with our earlier observations on the bands where the ENF has a strong

presence. We also noticed that in some cases, the weight before normalization is

less than 1, which implies that in such bands, the noise component is stronger than

the signal component. We set such weights to zero before normalization and thus

have them excluded from the summation of Equation (2.14).

2.5.2.2 Comparison Framework

To assess the performance of our proposed spectrum combining approach, we

compare it to the conventional approach of using frequency estimation techniques

on a single spectral band. Since our audio recordings show a strong presence of

the ENF at 120 Hz, 240 Hz and/or 360 Hz, we generate ENF estimates based on

the individual bands centered around these frequencies. We observe that isolated

outliers may appear in the ENF estimates outside the known range of ENF variations

([59.98, 60.02] Hz for the nominal band); we replace these outliers by the average of
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the frequency estimates preceding and succeeding them. For each audio ENF signal

estimate, we have a corresponding reference ENF signal estimate extracted from a

power signal recorded simultaneously with the audio signal. We generate the audio

ENF estimates twice, once using the spectrogram-based technique and once using

MUSIC. For the reference power ENF, we use the average of the estimates obtained

through the two techniques. As mentioned earlier, in applying both techniques on

the signals, we find the maximum in the spectrogram or pseudo-spectrum through

quadratic interpolation.

To compare between ENF estimates from an audio signal and a reference

power signal, we split both ENF signal estimates into segments of 96 points each,

corresponding to 8 minutes of data. We examine the performance in ENF estimation

for time-of-recording authentication, a main ENF-based application [4, 31]. We

consider a hypothesis testing framework:
H0 : segments were recorded at different times.

H1 : segments were recorded simultaneously.

We find the correlation coefficient between all combinations of segments from both

ENF signals, and apply thresholding to decide on H0 vs. H1. Figure 2.6 shows the

Receiver Operator Characteristic (ROC) curves for the cases studied.

2.5.2.3 Results and Discussions

Figure 2.6 shows that the spectrum combining approach outperforms the ap-

proaches for individual bands; it behaves comparably to estimation around the
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“dominant harmonic” if present, i.e., 120 Hz in the residential recordings and 360 Hz

in the workplace recordings. Figures 2.6(b) and 2.6(e) demonstrate the ability of the

proposed approach to suppress spurious peaks appearing at certain harmonics due

to noise and distortions: the poor ROC curve from estimation around 120 Hz reveals

that the frequency component in that band, seen in Figure 2.5(d), is not the ENF. It

could be the result of stray electromagnetic fields with complex spectra found in the

workplace (office) setting [15]. The proposed approach was unaffected and was able

to leverage the true ENF components at 240 Hz and 360 Hz to achieve a good ENF

estimate. Figures 2.6(c) and 2.6(f) demonstrate the proposed approach’s robustness

and its ability to adapt to unpredictable changes in ENF strengths at harmonics in

cases where the dominant harmonic varies across the length of a recording.
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Figure 2.6: ROC curves for matching ENF estimates from audio signals to those estimated
from reference power signals. (a)-(c) show spectrogram-based results, and (d)-(f) shows
MUSIC-based results.
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Comparing the two variants of the proposed approach, we can see that the

spectrogram-based method yields better results than the MUSIC-based method.

As the MUSIC pseudo-spectrum is computed through a rather sophisticated pro-

cedure and does not have a physical meaning as direct as the spectrogram does,

the observations from MUSIC may thus deviate more from the model discussed

in Section 2.5.1.1 than the spectrogram-based observations do. This would affect

the effectiveness of the spectrum combining, and explain the discrepancy in the

performance between the two variants.

2.6 Chapter Summary

In this chapter, we have studied different parametric and non-parametric fre-

quency estimation approaches as applied to extracting the ENF signal from media

recordings in high temporal and frequency resolution. We have conducted exper-

iments on synthetic data and experimental data under different noise conditions

to evaluate the performance of the studied methods using a correlation coefficient

based metric. Our results have demonstrated that the ESPRIT-based paramet-

ric frequency estimation method provides the best results for ENF matching using

correlation coefficient, especially for cases where the temporal resolution is high,

i.e., estimating instantaneous ENF values for frames of size 1 second. When using

frames of larger size, the computational costs of the parametric approaches may

not be worth the expected improvements in accuracy and one may opt to use non-

parametric spectrogram-based approaches instead.
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We have also proposed a novel spectrum combining approach for extracting

the ENF signal from multimedia recordings. The approach makes use of the ENF

around the different harmonics of 50/60 Hz rather than only one harmonic. This

is achieved through a weighted summation of multiple spectral bands from around

the harmonics, weighted according to the local SNR in each band. Our experiments

have shown that the proposed approach can achieve more accurate and robust es-

timates than the conventional approach for ENF estimation. Of the two variants

presented, the improvement in performance was more visible in the non-parametric

spectrogram-based variant over the parametric MUSIC-based variant.
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Chapter 3

Factors Affecting Capture of ENF Traces
in Recordings

3.1 Chapter Introduction

As we have established, ENF traces can be captured in audio and video record-

ings made in areas where there is electrical activity. The majority of ENF research

so far has broadly focused on two areas: developing approaches to accurately extract

the ENF signal from media recordings [24, 30, 32, 36, 38, 48], and examining novel

ENF-based applications or improving on their performance [8,29,37,41,43,59]. Amid

all this work towards extracting and using the ENF signal, an essential research ques-

tion remains without a solid answer: In what kind of recording situations can we

be confident that ENF traces will be captured in media signals? Answering this

question can be informative for the true applicability of the ENF signature, and can

be beneficial towards the development of ENF-based applications.
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The ENF traces are an imprint of power grid activity on media recordings, so a

basic requirement for the capture of ENF traces is that there should be some sort of

electrical activity in the place of recording. A distinction can be made between two

types of recordings: recordings made using recorders connected to the power mains

and recordings made using battery-powered recorders. In the case of the former, it

is generally accepted that ENF traces will appear in the resultant recording, due to

electromagnetic interference resulting from the recorder’s connection to the power

mains [3]. It is in the case of the latter that the situation becomes more complex.

In this chapter, we carry out a study exploring factors that can affect the

capture of ENF traces in media recordings. Our focus here is on audio recordings

made using battery-powered recorders. First, we summarize the results of studies

in the literature that have addressed this issue. Next, we examine further factors

that can promote or hinder the capture of ENF traces. Our explorations include

two types of factors: (1) those related to the recording environment and (2) those

related to the recording device used.

The rest of this chapter is organized as follows. In Section 3.2, we present

a summary on the results of the studies previously done towards understand the

factors affecting the capture of ENF traces in audio recordings. In Sections 3.3

and 3.4, we present our explorations into the effect of the recording environment

and the recording device, respectively, on the capture of ENF traces. In Section 3.5,

we conclude the chapter and outline avenues for future work.
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3.2 Overview of previous work

Understanding the factors that promote or hinder the capture of ENF traces

in media recordings can help us gain a better understanding on the situations in

which ENF analysis is applicable. It can also inform the way we develop ENF-

based applications. In this section, we summarize results shown in previous studies

pertaining to the factors affecting the capture of ENF traces in audio recordings

made by battery-powered recorders.

Broadly speaking, the capture of ENF traces can be affected by several factors

that can be divided into two categories: factors related to the environment in which

the recording was made and factors related to the recording device used to make the

recording. Interaction between different factors may as well lead to different results.

For instance, electromagnetic fields in the place of recording promote the capture of

ENF traces if the microphone is dynamic but not in the case where the microphone is

electret. Table 3.1 shows a sample of factors that have been studied in the literature

for their effect on the capture of ENF traces in audio recordings [3, 14,33].

Overall, the most common cause of the capture of ENF traces in audio record-

ings is the acoustic mains hum, which can be produced by mains-powered equipment

in the place of recording. Recently, the hypothesis that this background noise is a

carrier of ENF traces was confirmed in [3]. Experiments carried out in an indoor

setting suggested a high robustness of ENF traces. These traces were present in a

recording made 10 meters away from a noise source emitting ENF-containing noise

and located in a different room.
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Table 3.1: Sample of factors affecting the capture of ENF traces in audio recordings
made by battery-powered recorders

Factors Effect
E

n
v
ir

on
m

en
ta

l Electromagnetic Promote capture of ENF traces in recordings made
(EM) fields by dynamic microphones but not in those made

by electret microphones.
Acoustic mains Promotes capture of ENF traces; sources include
hum fans, power adaptors, lights, and fridges.
Electric cables Not sufficient for capture of ENF traces.
in vicinity

D
ev

ic
e-

re
la

te
d Type of microphone Different microphone types have different reactions

to the same sources, e.g., to EM fields.
Frequency band A recorder may not be capable of recording at low
of recorders frequencies, e.g., at around 50/60Hz.
Internal compression Strong compression, e.g., Adaptive Multi-Rate, which
by recorder can limit capturing of ENF traces.

In general, and as discussed in Chapter 2, ENF traces are not restricted to

appear in the frequency band surrounding the nominal 50/60Hz band, but can

also appear in bands surrounding the higher harmonics of the nominal ENF value,

i.e., around integer multiples of 50/60Hz. When examining signals containing ENF

traces, it is common to observe scaled versions of almost the same variations ap-

pearing at different harmonic frequencies. The specific harmonics at which the ENF

traces appear and the strength of the captured traces at each harmonic may differ

from one recording to another [32, 48]. Therefore, the locations and correspond-

ing strengths by which the ENF traces appear should be considered as well when

examining factors affecting the capture of ENF traces in media.

In the following sections, we present our explorations on factors that may

influence the embedding of ENF traces in audio recordings due to the environment

in which the recording was made and due to the recorder device being used.
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3.3 Explorations on environment-related factors

As established in Section 3.2, a main source of ENF traces in audio recordings

is the acoustic mains hum. Knowing this, it can be useful to examine the way in

which the acoustic mains hum can behave as a physical sound wave in a recording

environment [76]. This can help understand its effects on the manner in which ENF

traces are embedded in an audio recording.

The acoustic mains hum is a sound signal, and sound is a mechanical longitu-

dinal wave. It is a disturbance that travels through a medium, transporting energy

from one location to another through a series of interacting particles. It is a longi-

tudinal wave because the particles, e.g., air molecules, vibrate in a direction parallel

to the direction of propagation of the wave. The sound wave can then be charac-

terized by compressions and rarefactions, which are physical regions where particles

are compressed together and regions where particles are spread apart, respectively.

Sound waves move at a speed v that depends on the medium in which they travel.

In air, this speed is 343m/s at a temperature of 20◦C. A sound wave can generally

be characterized by its frequency f and wavelength λ, which can be related to its

speed through:

v = f · λ (3.1)

The acoustic mains hum can be seen as the summation of several sound waves of

varying strength (amplitude) at frequencies that are multiples of the nominal ENF

value. Using a speed of sound of 343m/s and Equation (3.1), Table 3.2 shows

the expected wavelengths of the sound waves at different ENF harmonics. These
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Table 3.2: Wavelengths of sound waves at different ENF harmonics in air at a
temperature of 20◦C

Frequency Wavelength Frequency Wavelength
50Hz 6.86m 60Hz 5.72m
100Hz 3.43m 120Hz 2.86m
150Hz 2.29m 180Hz 1.91m
200Hz 1.72m 240Hz 1.43m
250Hz 1.37m 300Hz 1.14m
300Hz 1.14m 360Hz 0.95m
350Hz 0.98m 420Hz 0.82m

wavelength values, ranging from 0.8m to 7m, help put in perspective the movement

of these sound waves in a location where we expect an audio recording to capture

ENF traces.

In the remainder of this section, we show results on experiments done in differ-

ent environment conditions that demonstrate how the factors related to the record-

ing environment can affect the way ENF traces are captured in a recording.

3.3.1 Effect of wave interference

When a sound wave, such as the acoustic mains hum, is propagating in a

medium, such as air, it will reach a point where it hits a boundary, i.e., an inter-

face between two media. There are four possible behaviors a wave can exhibit at

a boundary: reflection (bouncing off the boundary), diffraction (a change in direc-

tion of the wave as it passes through an opening or around a barrier in its path),

transmission (crossing of the boundary into the new medium), and refraction (oc-

curs with transmission and is characterized by a change in speed and direction).

Typically, depending on the differences between the two media and the properties
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Figure 3.1: Diagram showing the result of interference of two identical sound waves.
Original image (before modification) from [77] .

of each individual medium, the wave propagation behavior at the interface will be

different. For instance, in the case of a sound wave propagating in air, hitting a

hard smooth surface results in more reflection than hitting a soft surface [76].

The reflection of sound waves can lead to reverberations or echoes. The re-

flected sound waves can interfere with the original sound waves, which will result

in different areas in the room with different interference sound signals. The two

extremes of these interferences are the constructive interference and the destructive

interference.

Figure 3.1 shows a theoretical diagram of how waves emitted from two point

sources are expected to interfere with each other. In this diagram, two sources are

emitting identical signals of wavelength λ∗, which is the distance between any two

solid curves, or any two dotted curves. The distance between a solid curve and a

dotted curve is the half-wavelength λ∗/2. Here, a solid curve denotes a compression,

i.e., an area of high pressure where the medium’s particles are compressed together,
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and a dotted curve denotes a rarefaction, i.e., an area of low pressure where the

medium’s particles are spread apart. Locations of expected constructive and de-

structive interference can be seen in the figure denoted by C ’s and D ’s, respectively.

Constructive interference is created in locations where compressions from the

two signals meet, creating an area of even higher pressure, followed by a meeting

of rarefactions from the two signals, making the pressure in the area even lower.

The overall effect is that the combined signal becomes stronger. Destructive inter-

ference is the opposite of constructive interference. It occurs at locations where a

compression meets a rarefaction, thereby canceling each other out and resulting in

little movement of the medium’s particles.

In a given location where there are equipment connected to the power mains,

the acoustic mains hum may be emitted from different sources. These multiple

versions of this signal, along with their reflections, would lead to various levels of

interference in the environment of recording. This suggests that in certain environ-

ments where ENF traces are expected to occur, e.g., a room where there is electrical

activity, ENF traces may not appear in a recording made in this environment or

may appear at different strengths depending on the specific location of the recorder

within the environment.

Guided by the diagram of Figure 3.1, we carried out a verification experiment1

to examine how ENF traces expected to be captured in an audio signal may be

canceled out, or strengthened, depending on the recorder’s specific location within

the environment. We generated a synthetic tone signal at 240Hz and emitted it

1We would like to thank Yingxue Wang for her assistance in carrying out this experiment.
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(b) Sample of obtained recordings

Figure 3.2: (a) shows the experimental set-up for the sound wave interference experiment
we carried out. (b) shows samples of the recordings made at locations C and D.

from two speakers placed 1 meter apart. Figure 3.2(a) shows the layout we used.

We placed two Olympus recorders [75], one at a central location C expected to

exhibit constructive interference, and one at another location D expected to exhibit

destructive interference.

We show samples of the recorded audio signals in Figure 3.2(b). Although the

signal recorded at location D in theory should be a zero signal, the presence of a non-

negligible amplitude can be explained by somewhat constructive interference from

reflected versions of the original two signals. In a more controlled recording setting,

the amplitude of the signal recorded at D should be much lower. However, we can

see that the signal recorded at location C is stronger, i.e., has a larger amplitude of

around 0.25, than the signal recorded at location D, which has a lower amplitude of

around 0.03. This is consistent with what we would expect given our understanding

of sound wave interference.

In a practical scenario where a recorder is recording an acoustic signal carrying

ENF traces, there may be several sources in the room emitting signals carrying
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ENF traces, and some of these signals will be reflected as well. All these signals

will interfere with one another to form the signal recorded by the recorder. The

discussions in this section suggest that the particular location of the recorder within

the location of recording will have an effect on how the ENF traces are captured.

3.3.2 Effect of recorder movement

In this section, we consider the effect of moving a recording on the way ENF

traces are captured in the resulting recording.

We carried out an experiment where we made a 10-min audio recording using

an Olympus recording in an office setting in Maryland, where the nominal ENF

value is 60Hz. The Olympus recorder was stationary during the first half of the

recording and then was continuously moved during the second half of the record-

ing. Figure 3.3(a) shows the spectrogram strips about the ENF harmonics for the

recorded signal. We can see that, along with ENF traces around the 120Hz and

240Hz harmonics, there is a prominent ENF trace around the 360Hz harmonic in

the first half of the signal. After the 5-minute mark, however, the ENF traces

become distorted and indistinguishable.

Figure 3.3(b) shows the ENF signal extracted from the audio recording (from

around the 360Hz component) and the ENF signal extracted form a simultaneously

recorded reference power recording. We can see that the audio ENF signal matches

well with the power signal in the first 5 minutes, but not afterwards, which is when

the audio recorder was moving. The correlation coefficient between the audio and

51



(a) Spectrogram strips
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Figure 3.3: (a) Spectrogram strips about the harmonics of 60Hz from an audio recording
where the recorder starts moving at the 5-min mark, and (b) ENF signals extracted from
the audio recording and a simultaneously recorded reference power recording.

power ENF signals was as high as 95% in the first half of the recording.

This experiment demonstrates how moving an audio recorder can compromise

the captured ENF traces. A possible explanation for this observation can be that it

is an effect of changes in the pressure of sound waves at the recorder’s microphone

while it is being moved.

As seen in this section, it is not recommended to move a recorder while making

a recording expected to capture ENF traces. It is highly likely that the resulting

recording will contain compromised ENF traces. This is not a desired effect when

carrying out ENF analysis as estimating the minute variations in the instantaneous

value of the ENF is important for the validity of the subsequent ENF-based appli-

cations.
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3.3.3 ENF traces across different locations

In what follows, we aim to demonstrate and visualize how the strength of

captured ENF traces can change across the length of a recording as the recording

location is being changed. To this end, we use an Olympus recorder to make a

single 1-hour long recording, where the recorder is moved every 2 minutes to a new

location. While making this 1-hour long audio recording, we concurrently record a

1-hour long reference power recording. As seen in Section 3.3.2, such a reference

recording can serve as a guide towards understanding how well ENF traces appear

in the audio recording.

While making the audio recording, the Olympus recorder was moved to 25

different locations in the second floor of the Kim Engineering Building (KEB) at

the University of Maryland, College Park. The trajectory followed by the recorder

can be seen in Figure 3.4. Each number denotes a 2-minute stop made by the

recorder. In most of the cases, a stop is equivalent to the recorder being placed in

one location in a room/corridor. However, in the case of stops 10-15 and 16-21, we

have placed the recorder in 6 different locations in two different rooms, Room 2111

and Room 2107, respectively. This was done in an effort to further examine how

the specific location within an environment can have an effect on the presence of

ENF traces, following the discussions in Section 3.3.1.

Figure 3.5 shows the spectrogram strips about the ENF harmonics for the hour

long audio signal. The numbers in Figure 3.5 denote the stop where the recorder

was stationed while that portion of the recording was being made. From this figure,
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Figure 3.4: Floor plan of 2nd floor in KEB showing trajectory of recorder and stops made
while recording. Each number denotes a 2-minute stop for the recorder. Original map
obtained from [78]

we can see that there are three major harmonics around which the ENF traces are

appearing strongly: 120Hz, 240Hz, and 360Hz. We also note that, in between stops

as the recorder is being moved from one stop to another, there is a significant noise

and no dominant ENF traces can be observed. This is similar to the observations

seen in Section 3.3.2.

We can visibly see that the strength of the ENF component can vary from

one recording location to another. The 360Hz component, in particular, seems to

be strong in only a handful of locations, such as locations 4, 7, and 8, and almost

non-existent in others, such as in locations 16-21. To explain this, we can note that

all these different rooms/corridors contain different equipment that emit different

audio signals carrying ENF traces. Also, some differences can be attributed to

constructive/destructive interferences among the signals carrying ENF traces. An

indication of this is that location 10 has a visibly weaker 240Hz components than
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Figure 3.5: Spectrogram strips about ENF harmonics for the obtained 1-hour long record-
ing. The numbers denote the location of the recorder while the recording was being made.
Stops 10-15 were in the same room, and Stops 16-21 were in the same room. The blue
vertical lines denote the separation between the recorder being placed in a certain location,
and it being moved to a different location.

the rest of the locations 11-15 in the same room.

As mentioned earlier, while making this 1-hour long audio recording, we were

recording a concurrent 1-hour long reference power recording. To assess how well

the ENF traces are captured at each location, we examine the correlation coefficient

between the ENF signal extracted from an audio clip around a certain harmonic

with the reference ENF signal extracted from the corresponding reference power

clip. For this set of recordings, we extracted ENF signals for frames of 10-seconds

long with 50% overlap.

Figure 3.6 shows the correlation coefficient values obtained for all the locations

considered for the cases of ENF signals extracted solely from around the 120Hz, the

240Hz, or the 360Hz harmonic. The red horizontal line refers to a 0.8 correlation

coefficient value, which is the value we have chosen as the lower bound for an ac-
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Figure 3.6: Correlation coefficient values obtained for all the location cases considered for
ENF signals extracted from around solely either the 120Hz, 240Hz, or 360Hz harmonic.
Each correlation coefficient value is computed between an extracted ENF signal about
an ENF harmonic with its corresponding reference power ENF signal segment. Vertical
black borders are placed around locations of recording that belong to the same room, i.e.,
locations 10-15 and locations 16-21, respectively.

ceptably high correlation coefficient value. Recording clips achieving lower than

this value are considered to have either not captured ENF traces at the particular

harmonic or captured them weakly.

Examining Figure 3.5, we can see that there is a strong component at 120Hz

throughout locations 10-21, even though this does not reflect in high correlation

coefficients in most of these locations in Figure 3.6(a). It would seem that this com-

ponent is not the ENF component and could be the result of stray electromagnetic
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spectra in the location of recording. For the case of the 120Hz component in Fig-

ure 3.6(a), we can see that the only locations that give a high correlation coefficient

are 1, 4, 7, 8, 19, and 25. Location 19 is the sole location in Room 2107 to show

prominent ENF at 120Hz.

Examining Figure 3.6(b), we can see that most of the clips show high corre-

lation coefficient values at 240Hz, thus exhibiting strong ENF traces. Again, we

see another example of a sole recording in one room that does not exhibit similar

behavior as the rest, i.e., location 10 in Room 2111, which confirms our earlier obser-

vation on the 240Hz component begin captured weakly at location 10 and strongly

at locations 11-15.

Examining Figure 3.6(c) confirms our earlier observation that the 360Hz ENF

component is strong at locations 4, 7, and 8. We can also see that the visibly faint

360Hz components at locations 2, 3, 9, 24, and 25 in Figure 3.5 were enough in these

cases to yield good ENF signal estimates.

The results of this experiment provide further evidence that the environment

and the specific location within it in which a recording is made have an effect on

the captured ENF traces.

3.4 Explorations on device-related factors

In this section, we show results of experiments that suggest that the recorder

(receiver) used to make an audio recording can have an effect on the way ENF

traces are captured in the resulting recording. As discussed earlier, ENF traces are
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not restricted to appear in the frequency band surrounding the nominal 50/60Hz

band, but can also appear in bands surrounding the harmonics of the nominal ENF

value. As such, when examining whether ENF traces are present in a recording,

we examine frequency bands surrounding not only the nominal ENF values, but its

harmonics as well.

In the experiments that follow2, we concurrently record a reference power

recording while carrying out an audio recording. We examine the spectrogram

strips about the ENF harmonics of the audio signal to identify if ENF traces were

possibly captured. To confirm that the traces observed were indeed due to the ENF,

and not due to some other possible environmental signals, we compare the audio

ENF variations to the ENF variations observed in the concurrently made power

recordings. It is through this approach that we can confirm that the traces found

about the ENF harmonics for the recordings shown in this section were indeed due

to the ENF signal. Following this, the metric that we used to judge the strength of

ENF presence in this section is a weight that estimates the local SNR at each ENF

harmonic. We explain how we arrive at this estimate in Section 3.4.1. Then, we

show the results of our experiments on device-related factors in Section 3.4.2.

3.4.1 Computation of local SNR estimate

ENF traces will appear in an audio recording when a signal carrying these

traces, e.g., the acoustic mains hum is captured in it. We can express this signal

2We would like to thank Steven Gambino for his assistance in carrying out the experiments
shown in this section.
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p(t) as a summation of sinusoids whose frequencies are time-varying around the

harmonics of the nominal ENF value:

p(t) =
L∑
k=1

Ak sin (2πk(f0 + ∆f(t))t+ φ) , (3.2)

where f0 is the nominal ENF value equal to 50Hz or 60Hz depending on the grid,

∆f(t) is the instantaneous deviation of the ENF from the nominal value, and Ak is

the amplitude of the kth sinusoidal harmonic component denoting the strength of

the particular ENF component.

Here, we aim to obtain an estimate of the local SNR at particular ENF har-

monics, expressed in decibels (dB). We denote the local SNR at the kth harmonic

by:

SNRk = 10 log
Psignal,k
Pnoise,k

= 10 log
A2
k

Pnoise,k
, (3.3)

where Psignal,k and Pnoise,k are the powers of the signal and noise components, re-

spectively, at the kth harmonic.

To estimate the SNR of a certain ENF component contained in a signal, we

examine the spectrogram of the audio signal, which gives estimates of the power

spectral density (PSD) at different frequencies over time. We first divide the signal

into consecutive frames. For each frame, we find the value of the peak of the

spectrogram surrounding the multiple of the nominal ENF value we are interested in;

this is our estimate of PS+N,k = Psignal,k+Pnoise,k as it corresponds to the signal peak

superimposed over the noise present. Denoting the frequency at which this peak

appears as fpeak,k, we compute our estimate for Pnoise,k as the average of the PSD

values corresponding to the frequencies in the ranges of [fpeak,k −∆1, fpeak,k −∆2]
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and [fpeak,k + ∆2, fpeak,k + ∆1] . In our work, we have empirically chosen ∆1 = 2Hz

and ∆2 = 0.5Hz. After computing the Psignal,k estimate as PS+N,k −Pnoise,k, we can

compute the SNRk estimate using Equation (3.3). Through this approach, we can

estimate the SNRk value for each frame. We can also compute the average SNRk

value over a certain time period as the mean of the SNRk values of the frames

within this time period.

3.4.2 Experiments and Results

In what follows, we present the results of two sets of experiments that we

carried out, which suggest that the recording device used can have an effect on

(i) the strength by which ENF traces are captured in a recording, and (ii) the ENF

harmonics around which the traces can appear. As mentioned earlier, before we

carry out the analysis on the strengths of the ENF traces observed, we ascertain

that the observed traces are indeed due to the ENF by comparing them to traces

observed in concurrently recorded reference power recordings. The experiments

discussed here were carried out at the University of Maryland, College Park, where

the nominal ENF value is 60Hz.

3.4.2.1 Difference in ENF strength

In this experiment, we carry out three sets of simultaneous recordings by two

different receivers. Each recording is 30 minutes long. The first receiver is the built-

in microphone of an Olympus 700-M audio recorder [75], and the second receiver is
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(a) Olympus recording (b) B&K recording

Figure 3.7: Spectrogram strips about the harmonics of 60Hz from the first set of si-
multaneously recorded audio measurements in the same environment made by different
recorders, Olympus and B&K.

a Brüel & Kjær (B&K) microphone (Type 4191) [79]. Figure 3.7 shows spectrogram

strips of the recordings surrounding ENF harmonics for one set of the recordings.

Here, we can see that both recorders capture prominent ENF traces at around 120Hz

and 240Hz, and the B&K recording captures strong ENF traces at around 360Hz.

When comparing the 240Hz strips between the two spectrograms in Figure 3.7,

we can see that the ENF traces captured by the Olympus recording have a red color

while those of the B&K recording have a yellow color. Examining the color bars

of the spectrograms, this indicates that the Olympus recording’s strip has a higher

PSD value than that of the B&K recording. However, a more telling indicator on

the strength of the captured ENF traces is their respective local SNR.

We compute the SNR estimates around 120Hz, 240Hz, and 360Hz using the

approach described in Section 3.4.1. The results, shown in Table 3.3, show that

for each of these ENF components present in the audio signals, the component in

the B&K recording has a higher SNR estimate than its counterpart in the Olym-
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Table 3.3: SNR estimates (in dB) in set of simultaneous recordings made by different
recorders, Olympus and B&K, in the same setting

SNR Set 1 Set 2 Set 3
around Olympus B&K Olympus B&K Olympus B&K
120Hz 8.39 26.41 18.47 23.23 19.23 26.47
240Hz 11.86 17.34 8.85 14.17 8.92 12.80
360Hz 6.93 15.61 6.93 7.07 14.25 20.79

pus recording. Given that each set of recordings was made in the same location,

this suggests that using the B&K recorder would yield stronger ENF traces, which

demonstrates that the choice of receiver can have an affect the strength by which

the ENF traces are captured.

3.4.2.2 Difference in ENF harmonics captured

In this experiment, we carry out a set of two simultaneous recordings using

different receivers in the same environment. Here, one of the receivers is the B&K

microphone (Type 4191) used in the experiments of Section 3.4.2.1, and the sec-

ond receiver is a Max4466 microphone from Adafruit [80]. Figure 3.8 shows the

spectrogram strips about the ENF harmonics for the recordings that were made.

The results of this experiment yield an interesting observation: Even though

both recordings were made in the same location, the B&K microphone captures

the ENF traces at odd harmonics of 60Hz, which is consistent with the results of

Section 3.4.2.1, while the Max4466 captures the ENF traces at even harmonics of

60Hz.

To get a numerical perspective on the difference in the local strengths of the

captured ENF traces between the two recordings, Table 3.4 shows the SNR estimates
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(a) B&K recording (b) Max4466 recording

Figure 3.8: Spectrogram strips about the harmonics of 60Hz from the set of simultane-
ously recorded audio measurements in the same environment made by different recorders,
B&K and Max4466.

Table 3.4: SNR estimates (in dB) in set of simultaneous recordings made by different
recorders, B&K and Max4466, in the same setting

SNR around 60Hz 120Hz 180Hz 240Hz 300Hz 360Hz 420Hz
B&K 5.10 16.44 3.75 10.46 3.65 9.58 3.64

Max4466 19.05 9.67 16.22 5.61 18.38 8.73 12.61

computed for the ENF traces observed in each of the two recordings. The results

shown in this table and the observed strips in Figure 3.8 suggest that the choice of

recorder used to make a recording can have an effect on the ENF harmonic at which

the ENF traces appear.

3.4.2.3 Discussion

In each of the two experiments shown in this section, we have used two dif-

ferent recorders in the same environment to record the background noise carrying

ENF traces. Examining the results of these experiments by themselves, we can hy-

pothesize that the choice of recorder used to make an audio recording can influence
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the strength of the ENF traces captured and the harmonic locations at which these

ENF traces appear.

In Section 3.3, however, we have seen that the specific locations within an

environment where an audio recorder is placed can have an effect as well on the

strengths/locations by which ENF traces are captured in the resulting recording. It

is therefore plausible that such factors may have played a role as well in the results

shown in this section, in addition to factors related to the recorders being used. This

demonstrates how understanding better how ENF traces are captured in a recording

is a complex problem, which would require further study to reach a more confident

conclusion.

3.5 Chapter Summary

The ENF signal has been under study in the research community in recent

years for its ubiquitous nature as it can be captured intrinsically by media recordings.

Research work has been done to propose approaches to extract it and explore its

subsequently interesting applications in information forensics and security. There

is a need, however, for further research into the factors and conditions that can

promote or hinder the capture of ENF traces in media recordings. This would help

us gain a stronger understanding on the situations where the use of the ENF signal

can be applicable, and could possibly help us design certain protocols that can

increase the likelihood of the capture of ENF traces in recordings.

Through the study shown in this chapter, we have seen that the choice of
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recorder used to carry out a recording may have an effect on the strength by which

ENF traces are captured and the ENF harmonics at which they are present. Factors

related to the environment also play a role: the presence of different sources of waves

carrying ENF traces and the interference between these waves and their reflected

versions can affect the strength of the captured ENF traces at specific locations

within the environment, and moving the recorder while making recording will likely

compromise the captured ENF traces.

We have seen in this study that understanding the factors that affect the

capture of ENF traces in recordings is not a straightforward problem, as more than

one factor is likely contributing to the final state of the captured ENF traces. In the

future, it would beneficial to examine factors such as those explored in this chapter,

and others, in exhaustive and more controlled experiments that would help achieve

a stronger understanding on the situations that promote or hinder the capture of

ENF traces and ultimately understand better the real-world applicability of the

ENF signal. A similar study can be done with video recordings as well where the

role of factors such as internal video camera operations and the behavior of light

waves in an environment can be explored.
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Chapter 4

ENF-Based Region-of-Recording
Identification for Media Signals

4.1 Chapter Introduction

As discussed in Chapter 1, several forensics applications based on the use of

ENF signals have been proposed. The ENF has been shown to be useful for detecting

tampering or modifications in a multimedia signal [41,43], and for helping estimate

or validate the time-of-recording of the multimedia signal as well as its location-

of-recording across grids or within a certain grid [4, 10, 27]. Applications such as

these typically need either the knowledge of the grid-of-origin, or concurrent power

references from a set of possible grids to identify the grid-of-origin. Aside from high

computational costs of exhaustive searches, it may not always be possible to have

the needed concurrent references at hand. In this chapter, we present our proposed

novel application that seeks to estimate the grid in which an ENF-containing signal
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was recorded, without a need for concurrent power references.

We have collected power and audio recordings from eleven different grids

around the world1. Upon extracting the ENF signals from these recordings, we

have noticed that there are differences between them in the nature and manner

of their variations. We hypothesized that processing an ENF signal to extract its

statistical features may facilitate the identification of the grid, and consequently

the region, in which it was recorded. Following this, we devise a machine learning

implementation that learns the characteristics of ENF signals from different grids,

and uses it to classify ENF signals in terms of their regions-of-recording. Such a

system that identifies the grid (region) in which a multimedia signal was recorded,

without needing concurrent power references to compare with, can be very impor-

tant for multimedia forensics and security. It paves the way to identify the origins

of such videos as those of terrorist attacks, ransom demands, or child pornography

and exploitation [81]. It also substantially reduces computational complexity and

facilitates the determination of time/localization information when concurrent refer-

ences are available by first narrowing down the likely region before a detailed search

in time alignment with the proper references can be carried out. In other words, if

an investigator is given a video of unknown time and location information, he/she

can first use our approach to estimate the grid in which the video was recorded.

Following this, the reference data available for the estimated grid can then be used

to carry out further forensic operations, such as time-of-recording authentication

1We would like to thank Imad Atshan, Yunfang Feng, Berk Gurakan, Jad Hajj-Ahmad, Jana
Hajj-Ahmad, Shan He, Wenjun Lu, Michael Luo, Ashwin Swaminathan, and Avinash Varna for
their assistance in collecting power and audio recordings from various power grids.
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and finer localization estimation [10,27,29].

In what follows, we also explore the effect of the type of training data used

on the testing results obtained. In particular, we make the distinction between

“clean” ENF data extracted from power recordings and “noisy” ENF data extracted

from audio recordings. We examine different training scenarios for building multi-

conditional learning systems to determine the favorable system set-up to use given

the nature of training data available and the expected testing scenarios.

The rest of this chapter is organized as follows. Section 4.2 describes our

location-dependant ENF dataset, and examines the differences between the collected

ENF signals from different power grids. Section 4.3 presents the proposed features

for the machine learning implementation, and discusses the results obtained for

building a multiclass region-of-recording classifier. Section 4.4 examines different

cases of multi-conditional learning systems. Section 4.5 provides further discussions

on the performance of our proposed systems, and Section 4.6 concludes the chapter.

4.2 Location-Dependent ENF Database

We describe in this section the ENF database, which we have established

and will use in this chapter, containing ENF signals from different power grids.

We also discuss the observed statistical differences between the ENF signals from

different grids to provide intuitions for the features chosen for the machine learning

implementation of the region-of-recording classifier.
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4.2.1 Database Description

We have collected power and audio recordings from eleven different grids.

Among them, five grids have a nominal ENF of 60Hz, and six grids have a nominal

ENF of 50Hz. For the 60Hz grids, we have recordings from major North American

grids: Eastern North America (or US East for short), Western North America (or

US West for short), Texas and Quebec, as well as from aboard a cruise ship that

was sailing along the North Atlantic coast of the United States. Among the 50Hz

grids, we have recordings from grids in China (Beijing area), India (North Indian

grid), Ireland, Lebanon, Tenerife (the largest of the Spanish Canary islands) and

Turkey.

For each ENF-containing recording, we divide the signal into non-overlapping

frames of length 5 seconds each. We make use of the spectrogram-based spectrum

combining approach discussed in Chapter 2 to estimate the dominant frequency

that is the instantaneous ENF for each frame. This approach uses the frequency

components surrounding multiple harmonics of the ENF to achieve more robust

estimates [32]. After computing the instantaneous ENF for each frame, we arrive at

the ENF signals for our ENF-containing recordings. Sample ENF signals extracted

from power recordings from the different grids can be seen in Figures 4.1 and 4.2.

Upon examining the ENF signals obtained from the different grids, we observe

several differences that can be exploited to extract meaningful features for grid

classification. We plan to extract features from equally sized ENF signal segments

corresponding to recordings of length on the order of minutes. For the results shown
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(a) US East
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(b) US West
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(c) Texas
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(d) Quebec, Canada
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(e) Cruise Ship

Figure 4.1: Sample ENF signals extracted from power recordings from the 60Hz grids.

in this chapter, we empirically choose 8 minutes as our segment length. Since we

are estimating instantaneous ENF for frames of 5 seconds long, this means that our

ENF signal segments are of length S = 96 samples. Figure 4.3 shows the number

of available ENF signal segments, or examples, for each grid given this choice of S.

These examples will be used for training and testing our machine learning systems.

4.2.2 Comparison of ENF Signals from Different Grids

We examine here the statistical differences observed between ENF signals from

different grids. This study motivates a set of features to adopt for our machine

learning implementation, which will be discussed in Section 4.3.1.

Examining Figures 4.1 and 4.2, we observe several differences between the ENF

signals originating from different grids. The first discerning feature is the mean of an
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(a) China
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(b) India
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(c) Ireland
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(d) Lebanon
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(e) Tenerife
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(f) Turkey

Figure 4.2: Sample ENF signals extracted from power recordings from the 50Hz grids.

ENF signal. We can easily tell if a signal belongs to a 50Hz or 60Hz grid depending

on how close its temporal average is to either 50Hz or 60Hz. Among signals whose

means are similar, there are also some notable differences. For instance, among the

60Hz ENF signals, the Cruise Ship’s ENF signal mean falls below 60Hz; and among

the 50Hz ENF signals, Lebanon’s ENF signal mean can be seen to be above 50Hz

most of the time.

The ENF signals also differ in terms of the nature of their variations. Our data

shows that among the 60Hz grids, the ENF fluctuations in the US signals seem to be

the most controlled, with US East and Texas ENFs showing high similarity in the

manner of their variations; the US West ENF appears to drift more before returning

to the nominal value. Quebec’s ENF exhibits relatively more variations than the US

ENFs. The Cruise Ship ENF exhibits the most variations among the 60Hz signals
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Figure 4.3: The number of available examples (ENF signal segments of size S = 96
samples) per grid.

that we have collected so far. Among the 50Hz ENF signals, Ireland and Turkey’s

ENF signals appear similar and somewhat controlled, although Ireland’s ENF shows

a tendency to drift before returning to its nominal value. The ENF of China tends

to vary at a different rate than the ENFs of Ireland and Turkey. Lebanon’s ENF

has frequent outliers that drop around 1Hz, a characteristic that does not appear

in the other ENF signal samples. The ENF for the Spanish island of Tenerife seems

inconsistent as well, at times appearing to be similar to the ENF of Turkey, and

at other times exhibiting variations of larger magnitude. India’s ENF has a larger

range of drift as compared with most other grids in our dataset.

To understand these different ENF variations between grids, we recall that the

ENF changes due to load changes in the power grid. The control mechanism reacts

to such changes by adjusting the power generation to regulate the ENF and bring
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it back towards its nominal value. Different power grids may have different control

mechanisms as well as power supply capabilities, therefore affecting the effectiveness

and manner in which they are controlling the ENF variations. Typically, larger

power grids with more abundant power generation capabilities tend to have smaller

frequency variations [1]. Our observations on ENF signals reflect these general

characteristics of power grids: the US grids have better control mechanisms and

power resources than most other grids that we have observed, so their range of ENF

variations is very small (around ±0.02Hz). The large grids of US and China exhibit

smaller variations than the other smaller grids. Lebanon has a very small grid

and limited power resources, which is reflected in its grid’s large ENF variations.

Tenerife is an island and has a small grid, which can explain the inconsistency in its

ENF characteristics. Although the Northern Indian grid from which we collected

our Indian ENF is fairly large in size, the large ENF variations observed for India

may be attributed to limitations in the power resources and control mechanisms

governing the grid.

4.3 Multiclass Region-of-Recording Classification

In this section, we explain the proposed multiclass region-of-recording system.

The first component of the system is a feature extractor, which extracts the features

discussed in Section 4.3.1 for each training example. The second component is the

multiclass classifier. We examine different implementations in Section 4.3.2, and

present the results in Section 4.3.3.
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4.3.1 Feature Extraction and Analysis

After examining the empirical differences among grids in Section 4.2.2, we

now discuss quantitative features that can be extracted. We consider having a set

of ENF signal segments, s[n]’s, of fixed size S = 96 samples from candidate power

grids. These ENF signal segments are extracted from ENF-containing recordings

that are 8 minutes long each, as mentioned in Section 4.2.1.

Following the observations in Section 4.2.2, we adopt, as features, the mean of

an ENF segment, as well as the variance of the segment and its dynamic range (the

maximum ENF value minus the minimum ENF value). These features are good

candidates to facilitate location classification.

To develop other features, we apply a transformation to the ENF segment and

then examine the statistical properties of the transformation as potential features.

More specifically, we consider Wavelet signal analysis to study the ENF signal seg-

ments at multiple time-frequency resolutions. We apply an L-level dyadic wavelet

decomposition, where each level provides an approximation to the original signal

and the detailed variations at the respective level of resolution [82,83]. We compute

the variances of the high-pass band of each decomposition level (the details) and

also the variance of the lowest time-frequency band (the approximation) as candi-

date features. These wavelet-based features would help us capture the differences

in the subtle variations of the ENF among different grids. The wavelet function

that we have used to generate the features in this implementation was the discrete

approximation of the Meyer wavelet.
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Table 4.1: Proposed feature components

Index Features
1 Mean of ENF segment.
2 log(variance) of ENF segment.
3 log(range) of ENF segment.

4
log(variance) of approximation after L-level
wavelet analysis (L =9).

5-13
log(variance) of nine levels of detail signals
computed through L-level wavelet analysis
from coarser to finer (L =9).

14-15 AR(2) model parameters a1 and a2.

16
log(variance) of the innovation signal after
AR(2) modeling.

Complementing the wavelet features, we extract a set of features obtained from

a statistical modeling of the ENF signal. Following recent work that has proposed

an autoregressive (AR) model of order 2 for ENF signals [26, 31], an ENF segment

s[n] would be modeled as:

s[n] = a1s[n− 1] + a2s[n− 2] + v[n] (4.1)

The original study was made on ENF signals from the United States, but the idea

can be extended to examine ENF signals from other grids. We consider three feature

values from this AR modeling: the two AR parameters resulting from modeling, a1

and a2, and the variance of the model’s innovation signal v[n]. The AR parameters

entail the manner of how samples of s[n] relate with one another, and the variance

of the innovation signal is an indicator of how well the signal can be fitted into the

AR(2) model (if normalized by the overall signal variance). These features have the

potential to help distinguish ENF signals in terms of how well they can fit such an

auto-regressive model and in what manner.
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The feature components that we use for location classification are summarized

in Table 4.1. We apply a log operator on the range and variance feature values to

focus on their orders of magnitude and potentially enhance the separability between

the final feature values. As mentioned earlier, the feature values are extracted from

ENF signal segments of size S = 96 samples. The computed feature values are

normalized to the range of [−100, 100] by a linear scaling, whereby the kth feature

value in a training example is normalized according to the other feature values

in position k in all training examples. The normalization parameters are stored

and later applied to the testing examples to normalize them. Equations (4.3)-(4.4)

summarize the process of normalization for k = 1, 2, ..., 16.

µk =
1

M

M∑
j=1

(
1

Nj

∑
i,li=j

fi[k]

)
(4.2)

f ′i [k] = fi[k]− µk (4.3)

f ′′i [k] = 100× f ′i [k]

maxi |f ′i [k]|
(4.4)

Here, we assume to have M classes, each having Nj examples, with j = 1, 2, ..., M ,

and
∑M

j=1Nj = N . We denote the label and feature vector of an example i by li

and fi, respectively, for i = 1, 2, ... , N , and output the final normalized result f ′′i .

Figures 4.4 and 4.5 show scatter plots of sample normalized feature values for

instances of training data from different grids. We can see that feature points from

the same grid tend to form a cluster, whose center is generally separate from the

centers of the clusters of other grids. In Figure 4.4, we see that when represented by

the variance of three wavelet coefficients at different detail levels, the Cruise Ship

and Quebec grids form clusters that have almost no overlap with the US clusters,
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Figure 4.4: Sample feature values for training data instances from 60Hz grids.

and the US clusters appear to have little overlap among themselves.

(a) (b)

Figure 4.5: Sample normalized feature values for training data instances from 50Hz grids.

In Figure 4.5(a), we see that the feature points from Lebanon form a distinct

cluster from the clusters of the other 50Hz grids. Examining the other five 50Hz

classes, we see in Figures 4.5(b) that four of them (China, India, Ireland and Turkey)

can form clusters that have small overlap with one another. The cluster of the fifth

class, Tenerife, however, seems to have more overlap with these four classes than

they have among each other.

Figures 4.4 and 4.5 suggest that it is possible through a linear classifier to

identify such grids as Lebanon and several 60Hz grids. Given the overlapping nature
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of other clusters, however, it would be better to build a classifier for region-of-

recording classification that is non-linear, which would have a better chance at

providing good separation between data from different regions.

4.3.2 SVM Classifier

a) Choice of supervised learning mechanism: We use a Support Vector Machine

(SVM) to build the location classifier. In our implementation, we make use of

the LIBSVM library [84]. This library implements a multiclass SVM that uses

the following approach: For a total of M classes, the system trains
(
M
2

)
binary

classifiers; each binary classifier is trained on one of the
(
M
2

)
possible pairs of classes,

learning to differentiate between the respective two classes. When testing the trained

system, we pass the testing example through all binary classifiers, and assign votes

to each possible class based on which class emerges as the winner from each binary

classification task. The final winning class is the class with the largest number

of votes. For a testing example, the LIBSVM implementation also provides M

probability (confidence) values, where the jth probability value gives the probability

that the testing example belongs to the jth class.

The numbers of available examples for training and testing that we have for

each grid are shown in Figure 4.3, with the segment size S of 96 samples. Due

to logistical and resource constraints in collecting recordings from various grids

around the world, the data that we have is imbalanced: We have significantly more

recordings from some grids versus others, and we do not have audio recordings from
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all the grids considered. This imbalance in training data can create overfitting or

bias problems when testing the system. If a system is trained on a dataset where

the majority of the training examples belong to one class, it tends to be more biased

in the testing scenario to assign the testing examples to this majority class [85].

To tackle this issue, we use a variant of SVM called the weighted SVM, which is

supported by LIBSVM.

SVM implementations usually include a fixed cost value C, which controls

the penalty on making a mistake while classifying an example. The weighted SVM

addresses the issue of imbalanced data through assigning different cost values for

examples from different classes. The larger class has a smaller cost value than the

smaller class, which means that the penalty for making a mistake on an example

from the smaller class would be larger [85]. Here, with M classes, the cost for class j

that has Nj training examples would be wj · C where:

wj =
Nmin

Nj

, for j = 1, 2, ...,M and Nmin = min
j
Nj. (4.5)

In our implementations, we use the non-linear Radial Basis Function (RBF)

kernel for our SVMs. Using the LIBSVM library, two important parameters need

to be chosen for the RBF kernel: the cost parameter C and a parameter γ, that

relates to how far the influence of a single training example reaches. For each SVM

classifier we train, we select these two parameters through cross-validation.

b) Systems to be trained: As shown in Figure 4.3, the data that we have are of

two main types: ENF segments extracted from either power recordings or audio

recordings. Generally, ENF segments extracted from power recordings are cleaner
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signals with high signal-to-noise ratio (SNR), while the ENF segments extracted

from audio recordings can be noisy. This would affect the quality of the feature

values extracted. To gain a better understanding on the effect of ENF data types

on the performance of a region-of-recording machine learning system, we train three

SVM systems with different sets of training data and compare the testing results.

These three systems are shown in Table 4.2.

Table 4.2: Description of the trained SVM systems

System Num. of classes Training dataset
I M = 11 classes Only ENF signals extracted from power recordings.
II M = 8 classes Only ENF signals extracted from audio recordings.

III M = 11 classes
ENF signals extracted from both power and audio
recordings, assuming that signals of both types from
the same grid belong to the same class.

As mentioned earlier, for each testing example, the LIBSVM implementation

provides a probability value giving its confidence in its decision on the region-of-

recording. We make use of this feature when exploring three scenarios for our

trained systems. In the first scenario, we take the SVM system’s decision as the

final decision. In the second and third scenarios, if the confidence is lower than

a set threshold (e.g., 0.6), we advance this example to the next stage. For the

second scenario, this next stage assigns the testing example a decision of “None of

the Above”. For the third scenario, we subject the example with such initial low

confidence to a final binary SVM classifier trained on the two classes that received

the highest confidences in the first stage.
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Table 4.3: Accuracies for different systems averaged over 20 rounds.

Training Testing
No second with “None of with binary

stage the Above” classifiers

I: power
power 85.6% 77.3% 88.4%
audio 36.5% 28.0% 37.0%

II: audio
power 47.5% 36.7% 48.6%
audio 78.0% 51.9% 84.3%

III: power power 83.7% 71.7% 87.5%
+ audio audio 74.7% 56.2% 81.7%

4.3.3 Results and Discussions

a) Results overview: We present here the results obtained for testing the data on the

three systems of Table 4.2 for the three different scenarios discussed above: taking

the SVM system’s decision as final, or using one of the two second stages (including a

“None of the Above” option or using a final binary classifier). We empirically choose

0.6 as the threshold of the confidence value for a testing example to be advanced

to the second stage. For each system, we show the power and audio testing results

separately to understand how well the system is suited for each type of data.

We first divide all the available data into six groups so that each group has

approximately the same number of examples from every grid. Then, we train each

of our three SVM systems for 20 rounds, considering in each round a different

combination of three groups out of the six as training data and the remaining three

groups as testing data. The results shown here are averaged over the results of these

20 training/testing rounds.

Table 4.3 shows the accuracies achieved for testing the different systems using

the second stage options discussed in Section 4.3.2. To compute these accuracies, we
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first compute the identification accuracy for each class, i.e., for class j, the identifi-

cation accuracy is equal to the ratio of the correctly identified testing examples from

this class to the total number of testing examples from this class. The accuracies in

Table 4.3 report the averages of these identification accuracies across all the classes.

We opted for this accuracy measure to avoid biasing our results by the performance

of classes with a larger number of testing examples.

In Table 4.3, we first notice that for each training/testing combination, the

highest accuracy is consistently achieved in the scenario where we use binary classi-

fiers in the second stage, followed by the baseline scenario where there is no second

stage, and the lowest accuracy is when we use the “None of the Above” option. To

understand these results, we consider the scenario where we do not have a second

stage. If we opt to disqualify the decision of any testing example in case of low con-

fidence, the overall accuracy drops because we are losing the correct decisions that

have a low confidence. If, on the other hand, we opt to use the binary classifiers,

we give the examples that were on the borderline of making a correct decision an

opportunity to rectify the decision.

To compare the testing results of the different systems, we consider the accura-

cies resulting from using binary classifiers, as this is currently our best-case scenario.

We can see that testing the power data on a system trained on power data (i.e.,

Systems I and III) results in a high testing accuracy of about 88%, while testing

this power data on the system trained only on audio data (i.e., System II) results

in a low accuracy of only about 49%. Similarly, testing the audio data on a system

trained on audio data (i.e., Systems II and III) results in high accuracies within
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Table 4.4: Confusion matrix for power ENF testing data on System I – Accuracies(in %)
averaged over 20 rounds.

Testing Num. of US US
Texas Queb.

Cruise
Chi. Ind. Ire. Leb. Tene. Turk.

Classes examples East West Ship

P
o
w
e
r

US East 242 98.9 0.8 0.3 - - - - - - - -
US West 97 1.5 94.3 4.2 - - - - - - - -
Texas 53 5.8 23.0 71.2 - - - - - - - -

Quebec 47 - - - 100.0 - - - - - - -
Cruise Ship 120 - - - - 100.0 - - - - - -

China 197 - - - - - 96.2 0.2 0.2 - 1.6 1.8
India 90 - - - - - 4.6 90.3 - 0.3 4.4 0.4

Ireland 125 - - - - - 0.2 0.1 95.6 - 2.1 2.0
Lebanon 429 - - - - - - 0.2 - 99.8 - -
Tenerife 53 - - - - - 17.9 9.6 13.3 - 37.7 21.5
Turkey 81 - - - - - 3.0 0.5 4.7 - 3.2 88.6

Table 4.5: Confusion matrix for audio ENF testing data on System II – Accuracies (in
%) averaged over 20 rounds.

Testing Num. of US US
Texas India Ireland Lebanon Tenerife Turkey

Classes examples East West

A
u
d
io

US East 65 92.4 4.8 2.8 - - - - -
US West 34 7.5 91.2 1.3 - - - - -
Texas 33 4.7 3.5 91.8 - - - - -

India 34 - - - 77.1 0.3 6.5 13.5 2.6
Ireland 82 - - - - 89.6 0.4 3.6 6.4
Lebanon 103 - - - 3.0 0.4 92.3 3.8 0.5
Tenerife 45 - - - 9.0 14.2 4.3 61.3 11.2
Turkey 48 - - - 0.4 12.4 2.1 6.1 79.0

81-85%, while testing this audio data on a system not trained on audio data (i.e.,

System I) results in a low accuracy of only 37%. This shows that it is desirable to

incorporate, into the training process, data of the same set of signal conditions that

the system would be anticipated to have in testing.

b) Close examination of results: To understand these results better, we examine the

confusion matrices of the three systems considered. As Systems I and II proved to be

ineffective for classifying data on which they are not trained on, we forgo the testing

of audio data on System I or power data on System II. The confusion matrices for

the three systems are shown in Tables 4.4, 4.5 and 4.6, respectively. In each of these

tables, the labels of the rows denote the actual grid (region) and condition of the

signals tested (power or audio), while the labels of the columns denote the predicted
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Table 4.6: Confusion matrix for power and audio ENF testing data on System III –
Accuracies (in %) averaged over 20 rounds

Testing Num. of US US
Texas Queb.

Cruise
Chi. Ind. Ire. Leb. Tene. Turk.

Classes examples East West Ship

P
o
w
e
r

US East 242 99.2 0.6 0.2 - - - - - - - -
US West 97 4.3 91.9 3.8 - - - - - - - -
Texas 53 15.9 23.4 60.7 - - - - - - - -

Quebec 47 - - - 100.0 - - - - - - -
Cruise Ship 120 0.1 - 0.1 - 99.8 - - - - - -

China 197 - - - - - 95.6 0.2 0.2 - 3.2 0.8
India 47 - - - - - 4.3 91.7 - 0.2 3.6 0.2

Ireland 125 - - - - - - 0.1 93.7 0.4 3.4 2.4
Lebanon 429 - - - - - - - - 100.0 - -
Tenerife 53 - - - - - 14.1 13.6 8.5 0.3 44.4 19.1
Turkey 81 - - - - - 2.5 0.2 4.9 - 7.0 85.4

A
u
d
io

US East 65 85.6 5.5 8.7 0.2 - - - - - - -
US West 34 4.1 92.8 3.1 - - - - - - - -
Texas 33 4.8 2.9 91.8 - 0.5 - - - - - -

India 34 - - - - - - 79.8 0.7 2.0 16.3 1.2
Ireland 82 - - - - - - - 89.2 - 1.8 9.0
Lebanon 103 - - - - - 0.3 5.9 0.2 91.6 1.9 0.1
Tenerife 45 - - - - - 0.2 16.7 16.9 - 42.5 23.7
Turkey 48 - - - - - - 1.3 12.9 0.9 4.7 80.2

grid by the system. The entries in the diagonals of the tables, highlighted in bold

face, show the correct identification accuracy for each class. The tables show how

well the testing examples from each grid and signal condition were classified when

applied to our trained systems. We include the number of testing examples available

for each class to highlight the difference in the number of examples available for each

class to help present the proper context for the corresponding testing percentages.

As mentioned earlier, the accuracies that we are examining here are the ones

resulting from using binary classifiers in the second classification stage. We can see

that by incorporating the mean ENF value as a feature, the 50Hz signals are never

mistaken for 60Hz signals, and vice versa.

Considering the power signals, we can see that the correct identification accu-

racies in Tables 4.4 and 4.6 fall in the high range of 90-100% for all signals except

those of Texas, Tenerife and Turkey. Among the 60Hz signals, we can see that the

Quebec and Cruise Ship signals are notable for their consistently near-perfect identi-
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fication rates, due to the clear distinction in the range and nature of their variations

as compared with the more controlled US signals. US East and US West signals

can be mistaken for each other or for Texas, which is understandable given the close

similarity between them in control mechanisms and power resources. Texas signals

have notably lower identification rates (71.2% and 60.7%), being mistaken for the

other US signals often. Texas is a smaller grid than the other two US grids, and as

mentioned earlier, this can at times result in relatively larger and less predictable

frequency variations, while at other times share similar behavior as other US grids.

This would make it more difficult to define the properties of the Texas ENF signals,

and would confuse them with the properties of the larger US grids.

With regards to the 50Hz signals, the high accuracies achieved for China,

Lebanon, India and Ireland can be attributed to the general separability of their

feature values from the features values of other 50Hz signals, as discussed in Section

4.2. The identification accuracy for power signals for Turkey falls in the lower range

of 85-89%. The identification accuracy is the lowest in the case of Tenerife, being

38% for System I and 44% for System III. These low values for Tenerife seem to

reflect the observations made in Section 4.2. The Tenerife ENF is inconsistent in its

statistical properties, as exemplified in Figure 4.2(e); and from the limited amount

of data that we have collected, its feature values from various data acquisition

sessions exhibit the most overlap with the feature values from other 50Hz grids, as

exemplified in Figure 4.5. This would negatively affect the identification accuracies

of signals from other grids that become mistaken to be from Tenerife. It is likely

that if Tenerife had not been included as a training class, the identification accuracy
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for Turkey, for instance, would have been higher.

Considering the audio signals in Tables 4.5 and 4.6, we can see a similar trend

of correct identification accuracies among grids to the trend observed with the power

signals, although the values generally are lower. The range for correct classification

rate for the 60Hz US signals is 85-93%, and that of Ireland and Lebanon is 89-

93%. It is notable among the 60Hz signals that Texas has a good identification

accuracy, when compared with the results on power recordings. It seems that the

noisier nature of the audio ENF allowed better identification for Texas signals, while

affecting somewhat negatively the performance on US East signals in System III. As

noted in Section 4.2, there is a high similarity in ENFs between US East and Texas

ENFs, and this might cause the system to have difficulty differentiating one from

the other. The identification accuracies of India and Turkey are in the lower range

of 77-81%, and Tenerife achieves the lowest identification accuracies (61% and 43%).

Again, the presence of Tenerife as a training class with inconsistent properties can

explain its low identification accuracies, and can affect the correct identification for

other grids, i.e., India and Turkey.

The general drop in identification accuracies with the audio signals as com-

pared with the power signals can be explained by the nature of the audio ENF

signals. The ENF signals extracted from audio signals are more susceptible to noise

than those extracted from power signals, and the amount of noise and distortions

affecting the ENF signal estimates can be different even within signals of the same

class due to different recording conditions. This can create confusions for the ma-

chine learning system when defining the class boundaries and could lead to more
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mistakes in identification. Another reason is the fewer amount of audio data avail-

able to us in our established database.

Comparing Systems I and II with System III, we can see from Table 4.3 that

the correct identification accuracies for System III are, with few exceptions, similar

to or slightly lower than their counterparts in Systems I and II. System III defines

classes as a mixture of audio and power ENF signals, which means that signals

belonging to one class may have a larger range of differences from one another due

to their varying noise levels.

Overall, by incorporating training examples of multiple conditions, we have

developed a machine learning based system (System III) that achieves a high ac-

curacy on identifying the region/grid-of-origin of ENF signals extracted from both

power and audio recordings. Meanwhile, if the test signal’s noise condition is known

a priori or can be estimated well, classification performance may have some fur-

ther improvement by employing a system that is well trained on signals from its

corresponding conditions (Systems I and II).

4.4 Noise Adaptation using Multi-Conditional Learning

We have observed in Section 4.3 that a mismatch in the training and testing

conditions can lead to lower accuracy values for correct identification of the region-

of-recording of ENF signals. As shown in Table 4.3, the percentage of correctly

identified ENF signals extracted from audio recordings is around 81-85% when test-

ing on a system trained on audio ENF data (System II or III), and drops to 48% when
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the system used for testing is only trained on power ENF data (System I). In this

section, we explore a multi-conditional learning system that can adapt to changes in

the noise environment between the training and testing data. Such multi-conditional

learning systems have been used in speech technology literature, in which the prob-

lem of varying noise conditions is prevalent for such tasks as speaker recognition

and speech understanding [86,87].

4.4.1 System Model

The proposed system model assumes to have a set of K different noise con-

ditions for the training data. We start with a separate SVM multiclass classifier,

such as the ones discussed in Section 4.3, for each noise condition. The data needed

for training can be datasets coming from known separate noise conditions or can be

generated synthetically. For instance, if we have clean ENF signals extracted from

power recordings, we can add to them synthetic white Gaussian noise (WGN) to

obtain several sets of the same ENF signals at various SNR levels. We use each set

to generate feature values that will be used to build its corresponding SVM classifier.

When subjecting a testing example to the system, each SVM classifier gives

M confidence values, with the jth value denoting the probability that the testing

example belongs to the jth class. To reach a final decision for the testing example

from the results of the K classifiers, we use a Bayesian framework. Such a framework

requires the knowledge of the likelihood of observing the testing example for each

noise condition.
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We denote the K training datasets, referring to the K noise conditions, by

φi, with i = 1, 2, ..., K. We represent the outputs of the K classifiers to a testing

example x in a K×M matrix, where the component pi,j in the (i, j)th entry denotes

the (estimated) probability that x belongs to class j assuming it belongs to the noise

condition φi. Following this, we can express the probability of the final decision D

that x belongs to class j as:

p(D = j|x) =
K∑
i=1

p(D = j|φi,x)p(φi|x) (4.6)

=
K∑
i=1

pi,j(x)p(φi|x). (4.7)

Here, p(φi|x) can be obtained using the Bayes formula as:

p(φi|x) =
p(x|φi)p(φi)∑K

i′=0 p(x|φi′)p(φi′)
, (4.8)

where p(φi) is the prior probability of noise condition i.

Assuming that p(φi) is uniform for all i, we can combine Equations (4.7) and

(4.8) to write:

p(D = j|x) ∝
K∑
i=1

pi,j(x)p(x|φi) (4.9)

The decision rule δ(x) for x can now be expressed as:

δ(x) = arg max
j
p(D = j|x) (4.10)

= arg max
j

K∑
i=1

pi,j(x)p(x|φi). (4.11)

We obtain the pi,j(x) values from the K SVM classifiers. For the p(x|φi) val-

ues, we learn the conditional distributions of x for each of the K noise conditions
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using the Gaussian mixture models (GMM) approach. GMMs are universal approx-

imations of densities, i.e., given a sufficient number of mixture components, they

can approximate any distribution [88]. This will allow us to compute the p(x|φi)

values.

4.4.2 Experimental Setup

For this experiment, we start with the same dataset as in the experiment

of Section 4.3, for which the number of examples available per grid for a single

training/testing round is shown in Figure 4.3. We exclude using the data of grids

from which we do not have audio recordings, i.e., Quebec, Cruise Ship and China.

In addition, we exclude the data from Tenerife due to the high variability and

unpredictability of its ENF observed in this very limited amount of data.

Our experiment explores the benefits of the noise adaptation approach using

multi-conditional learning presented in Section 4.4.1 as compared with the previous

approach of Section 4.3 of training one SVM classifier without modifying the training

data or accounting for different noise conditions. Given a set of training data, we

first build a baseline system of a multiclass classifier using weighted SVM. We then

add synthetic noise to our training data to generate the noisy training datasets, and

build the system of K classifiers described in Section 4.4.1. We train four types of

multi-conditional systems as listed in Table 4.7, which differ by the design of the K

considered noise conditions.

For all SVM classifiers built in this experiment, we do not make use of a second
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Table 4.7: Description of trained multi-conditional systems

Type
Training Num. of Description of training data for “noise”
data type classifiers conditions φi’s, i = 1, ...,K

1 power K =6

Power ENF signals for i = 1 and power ENF
signals with added synthetic noise to achieve
SNRs {20, 15, 10, 5, 0}dB for
i = 2, ..., 6, respectively.

2 audio K = 6

Audio ENF signals for i = 1 and audio ENF
signals with added synthetic noise to achieve
SNRs {20, 15, 10, 5, 0}dB for
i = 2, ...,6, respectively.

3
power

K = 7
Type 1 conditions for i =1, ...,6 and audio

+ audio ENF signals for i =7.

4
power

K =12
Type 1 conditions for i =1, ..., 6 and Type 2

+ audio conditions for i = 7, ...,12.

stage (such as using additional binary classifiers for borderline cases) in order to keep

the focus on examining the merits of noise adaptation. We train data from seven

grids, namely, US East, US West, Texas, India, Ireland, Lebanon, and Turkey, using

the features listed in Table 4.1.

4.4.3 Results and Discussions

The results of our experiment are shown in Table 4.8. The accuracies shown

are averaged over 20 training/testing rounds, following the same procedure of data

preparation and accuracy computations as in Section 4.3.3.

The major advantage of noise adaptation appears when testing ENF signals

extracted from audio recordings on a system that has only ENF signals from power

recordings to work with. When we do not adapt for noise, the identification ac-

curacy is only 46%; when we use noise adaptation, the identification accuracy of

audio ENF data rises to 74%. In this case, the training system has learned the
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Table 4.8: Results of testing on multi-conditional systems for seven grids

Training Testing Noise adaptation? Accuracy

power
power

No 90.6%
Yes (Type 1) 86.8%

audio
No 46.4%

Yes (Type 1) 74.4%

audio
power

No 51.0%
Yes (Type 2) 49.4%

audio
No 81.9%

Yes (Type 2) 73.4%

power + audio

power
No 88.4%

Yes (Type 3) 87.0%
Yes (Type 4) 86.3%

audio
No 83.3%

Yes (Type 3) 75.6%
Yes (Type 4) 76.4%

feature characteristics of noisy ENF signals (through the K classifiers trained on

synthetically noisy power ENF signals), and thus works better at identifying the

region-of-recording of noisy audio ENF signals than the baseline system that has

only learned the characteristics of clean power ENF data.

In the meantime, we notice that the noise adaptation procedure has little

effect on testing ENF signals extracted from power recordings. In all such cases,

the identification accuracy decreases by about 2-4% in the noise adaptation case

from the results on our baseline systems. This is understandable as the power ENF

data is generally clean and has high SNR, so testing on a system trained on ENF

data of different noise conditions offers little benefit to it, nor does it do much harm

especially if one of the noise conditions is the “clean” condition. Similarly, testing

the ENF signals extracted from audio recordings on noise adaptation systems where

audio training data is originally available provides no improvement on testing this
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same data on baseline systems whose training data contained audio ENF data.

Overall, we can see that the noise adaptation approach can provide a better

alternative system in cases of mismatch between the noise conditions of training and

testing data. In particular, the identification accuracy for the region-of-recording of

noisy ENF signals extracted from audio recordings is substantially improved in the

case where our training data is limited to clean ENF signals extracted from power

recordings.

4.5 Further Discussions

In this section, we provide further discussions on the performance of our pro-

posed systems. We examine the effect of dimensionality reduction schemes in Sec-

tion 4.5.1 and discuss grids with varying power profiles in Section 4.5.2.

4.5.1 Dimensionality Reduction

Dimensionality reduction schemes are known to be helpful to facilitate efficient

implementations of machine learning in many applications involving a high dimen-

sion of features. To examine their effects on our problem, we have experimented

with different dimensionality reduction schemes, specifically, the Fisher’s Linear Dis-

criminant Analysis (LDA) and Principal Component Analysis (PCA) [89]. Using

LDA, we reduce the dimensionality of our data from the original dimensionality of

16 to M − 1, where M is the number of classes. Using PCA, we examine differ-

ent dimensions ranging from M − 1 to 15. We compare whether or not either of
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Table 4.9: Accuracies (averaged over 20 rounds) for single stage classification systems
with different dimensionality schemes

Training Testing
No dimensionality

LDA PCA
reduction

I: power
power 85.6% 84.9% 85.0% for 14 dims
audio 36.5% 36.7% 37.9% for 13 dims

II: audio
power 47.5% 12.5% 49.7%for 10 dims
audio 78.0% 13.1% 70.7% for 9 dims

III: power power 83.7% 81.5% 81.2% for 15 dims
+ audio audio 74.7% 74.4% 72.9% for 14 dims

the dimensionality reduction schemes improves on the testing results of the trained

systems.

Table 4.9 shows the accuracies achieved for testing the different systems dis-

cussed in Section 4.3.2, with no second stage (including a “None of the Above”

option or using binary classifiers). For PCA, we show the best accuracy achieved

among the dimensions considered. We can see that in most cases, the accuracies

of either LDA or PCA are similar to or slightly worse than the accuracies achieved

without dimensionality reduction. This is likely due to having a small dimension

of only 16 features to begin with, thus the effect from dimensionality reduction in

conjunction with SVM with radial basis kernel is not significant.

Such dimensionality reduction schemes may be useful in future work, where

the number of feature components considered could be much larger, and where a

stronger need to choose a small amount of useful features for discrimination could

arise.
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4.5.2 Grids with Varying Profiles

A potential factor impacting the effectiveness of ENF-based location classifi-

cation is the variability of a grid’s ENF attributes with time. The power profile of

a certain grid may exhibit different types of behaviors, depending on the time of

a day or the season of a year. For our dataset, we have made sure to collect data

from both daytime and nighttime, and when possible, we have tried to collect data

from different times in a year. The power profile may also change with time due

to changes that might occur to the power system, such as changing the regulating

control mechanisms or the generation/supply capabilities. In addition, this profile

may be sensitive to changes in the load, depending on its particular operation pro-

cedures. These changes can be handled by periodically incorporating new training

data to update the classifier.

In order to examine the effect of a grid’s changing ENF profile, we carry out

the following study. We have noted earlier that Lebanon’s ENF has frequent large

outliers that deviate from its more stable states; an example of this can be seen

in Figure 4.2(d). In a new experiment, we manually divide the ENF signals from

Lebanon into two categories, one denoted by Lebanon-stable and the second by

Lebanon-volatile. The first category contains Lebanon ENF signal segments that do

not have large outliers, and the second contains those that do.

We repeat the training/testing experiment for the scenario that has given the

best results in Section 4.3, which was System I trained on power data and tested

on power data. We now train on twelve classes, replacing the original Lebanon
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Table 4.10: Confusion matrix for testing Lebanon data in the new setting – Accuracies
(in %) averaged over 20 rounds

Testing Classes
Lebanon Lebanon

Other
Stable Volatile

Lebanon-stable 96.6 3.3 0.1

Lebanon-volatile 20.5 79.3 0.2

Other - 0.0056 99.99

class with the two classes, Lebanon-stable and Lebanon-volatile. The testing results

for the Lebanon classes can be seen in Table 4.10. In our results, the Lebanon-

stable ENF testing data were identified 96.6% of the time as Lebanon-stable, and

3.3% as being Lebanon-volatile. The Lebanon-volatile ENF testing data were iden-

tified 79.3% of the time as being Lebanon-volatile, and 20.5% of the time as being

Lebanon-stable. This shows that when using a 12-class multi-class classifier, the

majority of the Lebanon-volatile data being “wrongly” classified are actually classi-

fied to the correct grid (i.e., Lebanon). This reflects that even for periods or seasons

with volatile behavior, it still contains attributes seen at other times for the same

grid.

If we consider a classification of a Lebanon ENF example to be correct if it is

classified to either the Lebanon-stable or the Lebanon-volatile category, this brings

the correct classification rate of the Lebanon ENF testing data to 99.8% in this

experiment. The average correct classification rate for this experiment over the

data from all eleven grids is 87.6%, which is comparable to the accuracy of the

previous classifier in Table 4.3 (88.4%).

This study suggests one approach for tackling the possible variation of ENF

grid characteristics with time. A complementary approach, as mentioned earlier,
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would be to periodically collect new reference data from the classes a classifier is

being trained on, and use them to update the database used for training the system.

This would be especially useful in cases of changes in power management plans and

equipment.

Another extension to our work is to identify the country-of-recording of a

media signal. Large countries, such as the US, China and India, tend to have more

than one interconnected power grid within the country. We have seen this in our

study as we included three US grids in our experiments (US East, US West and

Texas). If the goal of a forensic study were to be identifying the country-of-origin

of a recording, our proposed approach can be used as a first step in estimating the

grid-of-origin of an ENF-containing signal. Following that, a testing result pointing

to a grid in a country would suggest the origin of the recording to be that country.

Examining the US results in Tables 4.4, 4.5, and 4.6, this gives us 100%

country-of-origin identification accuracy in nearly all cases. The accuracy is only

slightly lower when testing audio-ENF on System III, which was trained on both

power and audio ENF segments. For this system, US East testing examples are

identified as originating from the US 99.8% of the time, and the corresponding iden-

tification accuracies for US West and Texas are 100% and 99.5%, respectively. Even

though these same-country grids are not interconnected and do not have the same

ENF variations, they likely share similar equipment and control mechanisms, mak-

ing their ENF variations more similar to one another than to those from grids of

other countries. Further experiments with a larger number of grids can certainly

provide more validation to these results.

97



A case of interest is when one interconnected grid spans several countries,

such as the case of the synchronous grid of Continental Europe. If the goal of

a forensic study was to identify the country-of-recording of a media signal, ENF

signals from the European grid would fall under one class in a grid-of-origin machine

learning implementation. Once the classifier determines a media signal belongs to

the European grid, further ENF-based intra-grid location analysis may be done to

estimate the country-of-origin [29].

Furthermore, due to logistical and resource constraints in collecting the record-

ings, as mentioned earlier, we had imbalanced data in our studies. This resulted

in having much more recordings from certain grids, such as Lebanon and US East,

compared to a much smaller number of recordings in some other grids, such as

Tenerife. In an ideal situation, we would like a large number of recordings from all

grids studied in order to better capture the variability in the characteristics of ENF

signals.

4.6 Chapter Summary

In this chapter, we have presented a machine learning based system that can

identify the grid-of-origin of an ENF signal without needing concurrent power refer-

ences. ENF signals from different power grids display different statistical character-

istics, which can be exploited to identify the power grid from which they originated.

These differences are attributed to the size of power grids and the techniques and

available power/energy resources by which the grids are controlled and operated.
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We have presented and compared three machine learning systems that are trained

on identifying the origin of ENF signals embedded in clean power signals and/or

noisy audio signals from different grids. We were able to achieve an average accuracy

of 88.4% on identifying ENF signals extracted from power recordings from eleven

candidate power grids, and an average accuracy of 84.3% on identifying ENF signals

extracted from audio recordings from eight candidate power grids.

In addition, we have explored using multi-conditional systems that can adapt

to cases where the noise conditions of the training and testing data are different.

This approach was able to improve the identification accuracy of noisy ENF signals

extracted from audio recordings by around 28% when the training dataset is limited

to clean ENF signals extracted from power recordings.

This work presents a new capability of using ENF signals for multimedia foren-

sics, by identifying the grid (region) of origin of an audio/video recording via ex-

tracting and classifying its ENF signal. This work can also reduce substantial com-

putational complexities in traditional ENF-based time/location analysis problems

where there is a large number of potential grids-of-origin for a media recording being

studied.

As a first work of its type, there is room for further improvement. Because we

have been constrained by the available resources for data collection in this first work,

we anticipate that the future collection of more ENF data from different times can

help examine the resilience of the extracted features over time. Another direction is

to explore additional features and incorporate advanced feature selection approaches

to improve the learning system. We hope that further work can build upon this first
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work to achieve higher performance for a large number of power grids.

The work discussed in this chapter has been used as the basis of the 2016

edition of the Signal Processing Cup (SP Cup), a global undergraduate competition

organized by the IEEE Signal Processing Society. In this third edition of the SP Cup,

this competition engaged participants from nearly thirty countries. 334 students

from 23 countries formed 52 teams that registered for the competition. Among

them, more than 200 students in 33 teams turned in the required submissions by

the open competition deadline in January 2016. The top three finalist teams were

invited to attend the IEEE Conference on Acoustics, Speech, and Signal Processing

in Shanghai, China in March 2016, where they presented their final work in front of

a panel of judges. More information on the SP Cup 2016 can be found in [90].
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Chapter 5

Exploiting Power Signatures for Camera
Forensics

5.1 Chapter Introduction

In this chapter, we explore a novel application of the ENF signal that is tar-

geted at characterizing the video camera producing an ENF-containing video. This

can be particularly useful in scenarios where there is a need to verify that a sus-

pect owns a camera that produced a suspicious video. The approach proposed in

this chapter, which is inspired by our work on flicker forensics to be discussed in

Chapter 6, works within a completely nonintrusive scenario where solely analyzing

an ENF-containing video can shed some light on its origins.

Our focus here is on videos recorded using the widely used group of video

cameras equipped with Complementary Metal-Oxide-Semiconductor (CMOS) image

sensors that employ a rolling shutter. Unlike a camera employing a global shutter
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Figure 5.1: Timing of rolling shutter sampling: the L rows of a frame are sequentially
exposed, followed by an idle period before proceeding to the rows of the next frame.

that acquires all the pixels of a video frame at the same time, a camera employing

a rolling shutter acquires a video frame one row at a time. Although this sequential

read-out mechanism of rolling shutter has traditionally been considered detrimental

to image/video quality due to its accompanying artifacts, recent work has shown that

it can be exploited with computer vision and computational photography techniques

to produce interesting results [91,92]. Recent work on ENF, for instance, has made

use of the rolling shutter towards improved ENF extraction from videos [8, 31, 36].

Figure 5.1 illustrates the timing for image acquisition with rolling shutter.

Each row of the frame is sequentially exposed to light followed by an idle period

before proceeding to the next frame [36]. The amount of time during which a camera

acquires the rows of a video frame, which we denote by the read-out time Tro, is

specific to the camera and is a value that is not typically mentioned in its user

manual or specifications list. In this chapter, we characterize the camera producing

an ENF-containing video by estimating its Tro value.

The rest of this chapter is organized as follows. Section 5.2 explains our model

for signal capture and the proposed approach for estimating the read-out time of a

camera recording an ENF-containing video; Section 5.3 discusses the experimental

set-up and results; and Section 5.4 summarizes this work.
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5.2 Model and Proposed Approach

ENF traces are embedded in the visual track of video recordings due to the

near-invisible flickering of electric lighting, i.e., through the changing intensity of

electric lighting captured by the camera. The electric light intensity relates to the

supplied electric current via a power law thus making its nominal frequency twice

the nominal ENF value, i.e., 120Hz in North America and 100Hz in most other parts

of the world. Following this, the electric light signal can be modeled as a sinusoid:

x(t) = Ae sin(2πf̃et+ φ) (5.1)

where f̃e := fe(t) represents a variable frequency, corresponding to the ENF compo-

nent that fluctuates around 100/120Hz, and Ae and φ are the magnitude and phase,

respectively.

In what follows, we model the light intensity signal captured in a video by

a camera [93]. Then, we describe our proposed approach to estimate the camera’s

read-out time.

5.2.1 Modeling the Captured Signal

The process in which a camera acquires a video can be seen as a two-step

process. First, integration of photons happens over a duration ∆T , which is related

to the camera’s shutter speed. Second, the camera samples the resulting integration

signal.
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The integration phase can be modeled as a convolution of the light signal x(t)

with a rectangular integration window h(t) whose Fourier transform can be written

as H(f) = ∆T sinc (f∆T ). The Fourier transform of the signal obtained is then:

Y (f)=X(f) ·H(f) (5.2)

=
Ae

2

[
e−jφδ(f − f̃e) + ejφδ(f + f̃e)

]
·H(f) (5.3)

=
Ae∆T

2
sinc(f̃e∆T )

[
e−jφδ(f − f̃e) + ejφδ(f + f̃e)

]
(5.4)

This allows us to write y(t) as Ã sin(2πf̃et+ φ), where Ã = Ae∆T
2

sinc(f̃e∆T ).

To model the sampling phase of the camera’s acquisition of the light intensity

signal, we first need to define the camera’s sampling rate. To begin with, we write

the camera’s frame rate fc as fc = 1/Tc, where Tc is the frame period. Tc includes the

period of time Tro required to sample the L rows of a frame and possibly an additional

idle time period. Since the camera being considered in this chapter employs a rolling

shutter, each row is sampled at a different time, so the sampling rate that we are

interested in is not fc, but rather fs = 1/Ts, where Ts is the time between subsequent

row read-outs. For modeling purposes, we assume that if the camera read-out is

performed continuously at a rate of fs for the entire frame period Tc, i.e., in a case

where there is no idle time, then the camera would in principle be able to read-out

M rows for the duration of Tc where M ≥ L, with L being the actual number of

rows in a frame. Following this, we can express the camera’s sampling rate fs as:

fs =
1

Ts

=
M

Tc

=
L

Tro

. (5.5)

In this setting, M is unknown, but L can be found by examining the video height

in the video’s metadata.
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We denote the sampled signal by s[n] for n ∈ N, which can be written as:

s[n] = y(nTs) = Ã sin
(

2πf̃eTsn+ φ
)

for n ∈ N. (5.6)

The intensity value s[n] is the light intensity captured by all the pixels in the nth

row. To make the relation clearer, we write n as n = kM + l, where k and l

are the frame and row indices, respectively, such that k ∈ {0, 1, 2, ..., F − 1} and

l ∈ {0, 1, 2, ...,M − 1}, with F being the number of frames in the video.

Replacing n by kM+ l in Equation (5.6), and using Equation (5.5), we obtain:

s[k, l] = Ã sin

(
2πf̃e

Tc

M
kM + 2πf̃eTsl + φ

)
(5.7)

= Ã sin

(
2π
f̃e

fc

k + 2π
f̃e

fs

l + φ

)
. (5.8)

Since a video camera’s frame rate fc typically falls in the range of 24–60Hz,

we would have f̃e > fc. To account for aliasing, we write f̃e as:

f̃e = f̃a +mfc, where m ∈ N and f̃a ∈ [−fc/2, fc/2]. (5.9)

We can now write s[k, l] as:

s[k, l] = Ã sin

(
2π
f̃a

fc

k + 2πmk + 2π
f̃e

fs

l + φ

)
(5.10)

= Ã sin

(
2π
f̃a

fc

k + 2π
f̃e

fs

l + φ

)
(5.11)

= Ã sin (ω̃ak + ω̃bl + φ) , (5.12)

where ω̃a = 2πf̃a/fc is expressed in radians/frame and ω̃b = 2πf̃e/fs is expressed in

radians/row.
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5.2.2 Proposed Approach

In this section, we first describe the vertical phase method on which we based

our proposed approach. We then explain how we adapt the vertical phase method

to our ENF-based approach in a practical setting.

5.2.2.1 Vertical Phase Method

This method examines the evolution of the embedded intensity signal, s[k, l],

over frames, and computes the vertical radial frequency ω̃b to aid the estimation

of the read-out time Tro. By exploiting ω̃b’s relation to the delay between ENF

traces in adjacent rows, we can estimate it through analyzing the phase shift in the

discrete-time Fourier transforms (DTFTs) of the row intensity signals.

For simplicity, we first assume that the time-varying parameters involved,

namely, ω̃a, ω̃b, f̃a and f̃e, are all constant at their respective nominal values. We

will relax this assumption in Section 5.2.2.2.

The first step is obtaining an estimate for the aliased frequency ω̃a. To do

that, we examine the following modification of Equation (5.12):

sl∗ [k] = Ã sin (ω̃ak + ω̃bl
∗ + φ) . (5.13)

Here, we fix the row index l to a certain value l∗, and the resulting signal sl∗ [k]

as a function of the frame index k is a sinusoid of frequency ω̃a. An estimate of

ω̃a can then be obtained by finding the frequency that shows a peak in the Fourier

transform of sl∗ [k]. We can equivalently find an estimate of f̃a by using f̃a = ω̃afc/2π
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Figure 5.2: Results of applying vertical phase method on a video taken by the back
camera of an iPhone 5. (a) shows the Fourier transform of sl∗ exhibiting peak close to the
expected f̃a, (b) shows the linear vertical phase.

and the known frame rate fc. An example can be seen in Figure 5.2(a), where a

peak of the Fourier transform is visible close to the expected f̃a.

The next step is to obtain an estimate of ω̃b. To do that, we compute the value

of the DTFT of sl[k] at ω̃ = ω̃a for each case of l ∈ {0, 1, ..., L − 1}. We compile

the values into a vector of size L, resulting in Sω̃a [l] that we denote as the vertical

Fourier transform. The phase component Φω̃a [l] of Sω̃a [l] can be written as:

Φω̃a [l] = ω̃bl + φ. (5.14)

An example of this vertical phase can be seen in Figure 5.2(b), wrapped between

[−π, π]. After unwrapping this vertical phase, ω̃b can be estimated from the slope

using linear regression.

Now that we have an estimate of ω̃b, we can compute the Tro estimate. Ex-

amining the definition of ω̃b, and using Equation (5.5), we can write it as:

ω̃b = 2π · f̃e

fs

= 2π · f̃e

L/Tro

. (5.15)
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Algorithm 1 Proposed approach to compute Tro estimate.

1: Pre-process the video for analysis.
2: Find if the nominal frequency f̄e is 100Hz or 120Hz.
3: Assign the origin frequency fo := kf̄e, where k := 1.
4: Compute the aliased frequency of fo as: fa,o = fo −mfc, such that m ∈ N and
fa,o ∈ [−fc/2, fc/2].

5: Find the frequency in fa,o’s vicinity with the ones with the most linear vertical
phase, and estimate the corresponding slope ω̂b.

6: if the vertical phase is sufficiently linear,
7: Compute Tro as: Tro = (L · ω̂b) /

(
2πkf̄e

)
.

8: else
9: Assign fo := kf̄e, where k := k + 1.

10: Go to Line 4.

Thus, we can use the known values of the frame height and the nominal ENF value

to estimate the read-out time Tro via:

Tro =
L · ω̃b

2πf̃e

. (5.16)

5.2.2.2 Adapting to a Practical Setting

Based on the above method, we now discuss how to modify it to obtain the

Tro value from the embedded ENF traces in a practical setting. We first need to

account for the time-varying nature of the parameters that were assumed constant

in the previous discussion. We also need to account for the fact that the embedded

ENF traces may not always be strong enough around the nominal 100/120Hz value.

In practice, it is not uncommon for the ENF traces to be more strongly captured at

higher harmonics of the nominal frequency than at the nominal value [32,48].

The steps of our proposed approach are outlined in Algorithm 1. The first step

is to prepare the ENF-containing video for analysis. The pre-processing operations

involved here can vary depending on the video at hand, with the goal of making
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the embedded ENF detectable with high signal-to-noise ratio (SNR). A number

of these enhancement operations have been discussed in [8]. Examples of such

operations include identifying static regions in the videos that are more favorable for

ENF extraction, compensating for camera motion, and compensating for brightness

changes caused by a camera’s automatic brightness control mechanism. After pre-

processing, for each frame of the video, we obtain a 1-D vector of size L, a frame

signal, where the lth entry corresponds to the contents of the frame’s lth row.

Next, we must ascertain whether the nominal ENF value, f̄e, is 100Hz or

120Hz. This can be done by examining the time-frequency content in the recorded

video. To do so, we connect the frame signals from consecutive frames and compute

the Fourier transform of the resulting signal. We use the nominal row sampling rate,

defined as the product of the video’s frame rate, fc, and the frame height, L, as a

unit of reference corresponding to the Fourier transform’s frequency axis. Plotting

the Fourier transform would then reveal peaks at the frequency values of f̃e shifted

by multiples of fc [36]. If these peaks appear close to 120 + n · fc, then f̄e = 120Hz,

and if they appear close to 100 + n · fc, then f̄e = 100Hz (n ∈ N).

Assigning fo := f̄e and via Line 4 of Algorithm 1, we compute the aliased

frequency fa,o where we expect to find the ENF traces. If the ENF were constant at

the nominal value, we would proceed to compute the vertical phase at fa,o and the

corresponding slope. As the time-varying ENF is likely not to be at its nominal value

during the recording of the video, the corresponding aliased frequency might not lie

at the calculated fa,o. To account for this, we sample frequencies in the vicinity of

fa,o and compute their corresponding vertical phases. Among the candidates, we

109



select the most linear vertical phase, where linearity is assessed based on the root

mean square (RMS) error of the linear regression.

Ideally, the estimated slope of the vertical phase can reveal the read-out time

using Equation (5.16). However, if the vertical phase is not linear enough, and the

regression RMS error is not small enough, the final estimate will be incorrect. We

have empirically found that a threshold of 0.04 for the regression RMS error is a

good cut-off value to avoid obtaining erroneous estimates. This may happen when

the ENF is not strongly captured at the nominal value. In such a case, the ENF, if

present, may be more reliably captured at higher frequencies than at the nominal

value, so we assign fo to be the next harmonic of f̄e and repeat the procedure.

If a low RMS error cannot be achieved for several iterations, it may become

necessary to improve the pre-processing operations [8].

5.3 Experiment and Results

In this section, we describe the experiment carried out to test the proposed

approach, and discuss the results obtained.

5.3.1 Experimental Set-up

We have recorded short videos (30-75 seconds long each) using five different

video cameras in environments where there is electric lighting in Maryland, USA.

The aim of the experiment is to analyze each of the videos using the proposed

approach of Section 5.2.2 and estimate the read-out time Tro of the video’s camera.
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In order to evaluate the accuracy of our ENF-based Tro estimates, we need to

compute ground truth values for the Tro values of the cameras at hand. We have

employed a protocol described in [94] for this purpose. Along with the camera to

be characterized, this protocol requires a Liquid Crystal Display (LCD) screen, and

a photo-dioide equipped circuit that takes as an input a light signal and records it

as a digital signal.

As will be elaborated more about in Chapter 6, LCD screens do not emit

light on their own, but rather are equipped with a back-light that emits a light

signal passing through the screens array of liquid crystal cells to produce images.

This light signal is a periodic signal with frequency fbl. We use the photo-dioide

equipped circuit to record the back-light signal of an LCD screen, and then analyze

the Fourier transform of the recorded digital signal to estimate the screen’s back-

light frequency fbl. Afterwards, using a video camera that we wish to characterize,

we take a short video, of about one minute long, by camcording a uniformly grey

screen displayed on the LCD screen with the now known fbl value. In this scenario,

the fbl is analogous to the ENF value f̃e, and the video being taken by the camera

will capture the back-light signal in a similar way to how the camera would have

captured the electric light signal carrying ENF traces. The benefit here is that,

in this controlled setting, the captured signal, i.e., the flicker signal, has a high

SNR. This will allow us to use the vertical phase method of Section 5.2.2.1, where

we replace f̃e by the obtained fbl, to obtain a highly confident estimate for the

camera’s Tro value that we can use as ground truth for subsequent experimental

evaluations.
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Table 5.1: Cameras used in our experiments

Camera ID Model L Tro (ms)
1 Sony Cybershot DSC–RX 100 II 1080 13.4
2 Sony Handycam HDR–TG1 1080 14.6
3 Canon SX230–HS 240 18.2
4 iPhone 5 front camera 720 22.9
5 iPhone 5 back camera 1080 27.4

We have carried out this protocol using two LCD screens on the five cameras

at our disposal. Table 5.1 shows the full details for the cameras.

5.3.2 Results and Discussions

We have applied the proposed approach of Section 5.2.2.2 on the videos taken

by the five cameras in Table 5.1. For the videos of Cameras 1 and 2, we have

found good Tro estimates based on the ENF traces of the second harmonic, while

for Cameras 3, 4, and 5, we have found good Tro estimates based on the ENF traces

of the base nominal frequency.

Table 5.2 shows the results obtained for the five videos. We can see that we

have obtained excellent Tro estimates for all the cases, with the relative error being

within 1.5%.

Table 5.2: Estimated Tro values of considered videos using our proposed approach

Camera ID 1 2 3 4 5
Expected Tro (ms) 13.4 14.6 18.2 22.9 27.4
Estimated Tro (ms) 13.60 14.75 18.41 23.13 27.63
Relative Error (%) 1.5 1.0 1.2 1.0 0.8
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We have clearly benefited from having short videos in this experiment, as the

US ENF generally remains well controlled and does not vary much within such a

short time window. In the case where longer videos are to be analyzed, it would be

advisable to divide the videos into shorter segments and analyze each separately so

as not to be affected negatively by the changing ENF value over time.

5.4 Chapter Summary

In this chapter, we have presented an ENF-based forensic application, whereby

we are able to analyze an ENF-containing video to characterize the camera that

produced the video. This is done by estimating the camera’s read-out time, or

the time needed to read one frame, which is typically less than the frame period

for the commonly used cameras equipped with rolling shutter. We have tested

our proposed nonintrusive approach on short ENF-containing videos taken using

five different cameras, where we have seen high performance in estimating read-out

times.

This work shows the potential for the ENF traces captured in a video to

characterize the camera producing the video. It can provide corroborating evidence

in cases where a video is linked to a suspect owning a certain camera. In future

work, we plan to examine a wider range of cameras to investigate the variability

in read-out time values, and thus better understand the broad applicability and

performance of this approach. We also plan to investigate further video camera

characteristics that can be extracted based on analyzing the captured ENF traces.
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Chapter 6

Flicker Forensics for Camcorder Piracy

6.1 Chapter Introduction

Movie piracy remains a major concern today that jeopardizes the sustainability

of the entertainment industry. Unauthorized disclosure of copyrighted material prior

to theatrical or DVD/Blu-ray releases significantly harms box office revenues. To

address this risk, it is a common practice for content owners to rely on cryptography-

based content protection techniques such as Conditional Access Systems (CAS) or

Digital Rights Management (DRM) to secure multimedia content along the distri-

bution pipeline [52]. Nevertheless, such protection eventually has to be lifted to

present the content to the end-user, and a pirate can then place a camera in front

of the screen showing the content to record a pirated copy of the movie.

A mitigating strategy consists of embedding forensic watermarks within the

rendered content, which can survive the digital-analog-digital conversion [53]. As a
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result, when a pirated copy surfaces on an unauthorized distribution platform, it is

possible to recover the underlying watermark identifier and trace it back to the user

or device from which the piracy originated [54]. This piracy deterrence mechanism

is already in place in professional environments (e.g., for reviewing pre-theatrical

release movie screeners or in digital cinemas [95]). Due to a recent specification

by the motion picture industry that mandates the use of forensic watermarking for

ultra high definition content [96], these traitor tracing watermarks are also likely to

soon reach the homes of consumers.

In this context, movies are likely to be displayed on the widely used Liquid-

Crystal-Display (LCD) screens, and it is therefore relevant to evaluate what kind

of distortion may appear when recording such a display. Early works on camcorder

piracy recently focused on the ability to recognize this type of piracy through the

use of discriminating features. Camcorder piracy can indeed be revealed by the

presence of tell-tale visual artifacts. Examples of such artifacts include the presence

of a luminance flicker due to the interplay between the screen and the camcorder [58],

the presence of combing artifacts due to the interlaced display of the screen [55],

the presence of global motion indicating that the camera is hand-held [56], ghosting

artifacts due to the integration of several frames by the camcorder [57], a statistical

deviation of the color bias and saturation [97], a statistical deviation of the edges

orientation due to the capture geometry [98], blurry edges due to the recapture [99],

and the presence of Moiré due to spatial aliasing [100]. These techniques rely on

the design of features affected by these visual artifacts and they are then fed to a

state-of-the-art classification tool.
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Figure 6.1: Flicker artifact when recording an LCD screen displaying a uniformly gray
frame with a camcorder.

In this work, we focus on a single visual artificat due to camcorder piracy,

namely, the luminance flicker. This artifact appears when the camcording process

involves the use of an LCD screen. Although camcorded videos made with other

types of display screens are out of the scope of this chapter, related works indicate

that the flicker artifact also occurs in other piracy scenarios [58]. As depicted in

Figure 6.1, this flicker signal is routinely incarnated by dark and bright stripes that

scroll up or down the recaptured video. Our objective is to go a step further into

understanding this visual artifact, beyond the binary classification of “camcorded”

vs. “not camcorded”, a problem studied early on to improve digital cameras [101].

In Section 6.2, we first review the internal mechanisms of an LCD screen and a

camcorder at the origin of the flicker and derive a parametric model to describe this

periodic signal. We then derive a piracy identity that connects some settings of the

pirate devices and a parameter of the flicker signal. We discuss in Section 6.3 various

estimation techniques to recover this flicker parameter from camcorded videos in

practice. In Section 6.4, we report experimental results that demonstrate that it is
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possible to accurately link camcorded video content to their associated pirate devices

based on the piracy identity. Next, in Section 6.5, we discuss how to recover the

shape of the flicker signal present in a camcorded video and illustrate that it can help

in recognizing different back-light technologies of the LCD screen. In Section 4.6,

we summarize our findings and outline research directions for future work.

6.2 Modeling the Flicker Signal

The flicker signal originates from the interplay between the LCD screen and the

camcording that essentially yields some aliasing. For simplicity, our model breaks

down the acquisition pipeline into three stages: (i) the emission of a back-light signal

by the screen, (ii) the integration of the light emitted by the screen with a sensor

of the camcorder, and (iii) the sequential sampling of the different rows of a video

frame. For reference, Table 6.1 enumerates the parameters that we have used to

model the luminance flicker.

Table 6.1: Parameters used in the modeling of the flicker signal
Parameter Description

fbl frequency of back-light signal

Tbl period of back-light signal

θ duty cycle of back-light signal

Tss camcorder’s integration period related to its shutter speed

fc frame rate of camcorder

Tc frame period of camcorder

fs sampling rate of camcorder

Ts sampling period of camcorder

Tro read-out time of camcorder

Tidle idle time of camcorder, equal to Tc − Tro

R number of rows in video frame

R+ assumed number of rows in video frame if Tidle = 0
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Figure 6.2: Simplified model of the back-light signal as a periodic rectangular signal with
period Tbl, shown here with a duty cycle θ = T1/Tbl = 0.7.

6.2.1 LCD Screens and Back-light

Nowadays, most TV sets and computer screens incorporate an LCD screen.

The image is formed by the light that is let through by an array of liquid crystal

cells, each cell encoding a pixel of the image [102]. Each individual crystal cell can

be tuned by changing the electric potential applied at the bounds of the cell. As a

result, the liquid crystal lets more or less light pass, thereby producing the luminance

of the corresponding pixel. The colors of the image are obtained by interleaving a

color filter in between the liquid crystals and the surface of the screen. In other

words, by design, LCD screens need a source of light, defined as the back-light, to

illuminate the liquid crystal array from behind.

In practice, the back-light is a periodic signal whose frequency fbl is high

enough to be imperceptible to the human eye, typically within the range of 120Hz

to 1kHz. As depicted in Figure 6.2, the back-light signal b(t) is assumed to be

periodic with a frequency fbl = 1/Tbl and a duty cycle θ = T1/Tbl:

b(t) = ΠT1(t) ∗
+∞∑
i=−∞

δ(t− i Tbl), (6.1)

where δ(.) is the unit impulse function, ∗ is the convolution operator, and ΠT (.) is
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the following rectangular signal:

ΠT (t) =


1 if − T/2 < t < T/2,

0 otherwise.

(6.2)

Our empirical observations confirmed that such a model for the back-light signal is

not unrealistic, even if it may be more or less rectangular depending on the back-

light technology. The intensity of the back-light can be adjusted by tuning the

duty cycle θ offering various brightness settings for the screen. The spectrum of the

back-light signal in the Fourier domain is then given by:

B(f) = θ
+∞∑
i=−∞

sinc(i θ) δ(f − i fbl). (6.3)

6.2.2 Light Integration with a Camcorder

Camcorders have an array of sensors that are in charge of converting captured

photons into electrical charges, which are eventually translated as pixel values. A

sensor is exposed to light for a given period of time Tss, which is related to the shutter

speed for the camcorder. All photons reaching the sensor during this integration

phase are converted into electrical charges and are accumulated. At the end of the

integration period, the current is discharged to be translated as a pixel value.

If such a sensor is directly hit by the back-light signal defined in Equation (6.1),

the amount of light accumulated over the integration period Tss is given by:

a(t) = b(t) ∗ ΠTss(t). (6.4)
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In the Fourier domain, this convolution becomes a multiplication, and the spectrum

is given by:

A(f) = θ Tss

+∞∑
i=−∞

Ai δ(f − i fbl), (6.5)

where Ai = sinc(i θ) sinc(i fbl Tss). In other words, the spectrum reduces to a col-

lection of frequency rays regularly spaced according to the back-light frequency fbl.

As a result, the integration signal a(t) can be written as a sum of cosines at the

harmonics of the back-light:

a(t) = 2 θ Tss

+∞∑
i=0

Ai cos(2π i fbl t). (6.6)

6.2.3 Sampling with a Rolling Shutter

Most camcorders commercially sold today use Complementary Metal-Oxide-

Semiconductor (CMOS) sensors and rely on a rolling shutter [103,104]. In contrast

to global shutters that acquire a whole frame at once by discharging all sensors in

one go, a rolling shutter captures each row of the frame sequentially (e.g., from top

to bottom) as depicted in Figure 6.3. As a result, each row of the image is exposed

to a different portion of the back-light and the integrated luminance will therefore

differ for different rows, resulting in the flicker artifact, expressed as a more or

less visible variation of luminance along the vertical axis in the recorded video, as

illustrated earlier in Figure 6.1.

The frame acquisition period Tc = 1/fc is the sum of the readout time Tro,

required to acquire all R rows of the frame, and an idle period Tidle [36]. For modeling

purposes, we assume that the camcorder is able to read R+ ≥ R rows at its full
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Tro Tidle Tc

1 2 3 ... idle 1 2 3 ... idle 1 2 3 ...

Figure 6.3: Rolling shutter illustrated. The rows of a video frame are acquired sequentially
and followed by an idle transition period (Tidle) before moving to the next frame. The
back-light signal is depicted below to hint that a camcorder sensor integrates a different
portion of the back-light signal for each row, thereby possibly creating visible artifacts.

capacity and that only R of them are retained in forming the final video frames

while others are discarded. In other words, the sampling rate of the camcorder is

given by:

fs =
1

Ts

=
R+

Tc

=
R

Tro

. (6.7)

For simplicity, we only consider below the flicker component resulting from the

first cosine component in Equation (6.6) (i.e., i = 1). We also disregard the DC

component (i.e., i = 0) as it is unlikely to create the variation of luminance that

we are trying to explain. The sampling of the back-light signal b(t) at the rate fs

therefore yields the following discrete signal f [n]:

f [n] = A1 cos (2π fbl nTs) , for n ∈ N. (6.8)

This discrete signal can be seen as the recorded luminance for each row when the

camcorder records a uniformly gray image. The cosine in Equation (6.8) clearly

indicates that sensors associated to different rows will output different luminance

values.
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To appreciate the spatio-temporal nature of this model, let us rewrite the

sampling index n as a combination of the frame index k and the row index r ∈

{0, 1, . . . , R+− 1}, namely, n = kR+ + r. Equation (6.8) can then be rewritten as:

f [k, r] = A1 cos

(
2π k

fbl

fc

+ 2π r
fbl

fs

)
. (6.9)

In practice, the sampling rate fs is usually much larger than the Nyquist sampling

rate of a regular back-light signal with frequency fbl. On the other hand, a cam-

corder typically operates at a frame rate fc between 24 and 60 frames-per-second

(fps), which is lower than a regular back-light frequency fbl. We define the aliased

frequency fa as follows:

fbl = fa +mfc,m ∈ N, (6.10)

where m is chosen such that fa ∈ [−fc/2, fc/2]. Equation (6.9) then simplifies to:

f [k, r] = A1 cos(k ωk + r ωr), (6.11)

where ωk = 2πfa/fc is a temporal radial frequency expressed in radians-per-frame

and ωr = 2πfbl/fs is a vertical radial frequency expressed in radians-per-row. A

phase term θ can be added to the argument of the cosine in Equation (6.11) to

account for the absence of synchronization between the back-light of the screen and

the shutter of the camcorder.

6.2.4 Discussion

The derivations detailed in the previous sections provide some insight on the

visual artifacts, such as the ones depicted in Figure 6.1, produced when a camcorder
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records a screen that displays a uniformly gray image. For each row of the frame,

the associated light-capturing sensors of the camcorder see a different portion of the

back-light signal and thus produce different luminance levels due to the duty cycle

of the back-light. When such captured rows are displayed on top of one another,

one can notice luminance variations along the vertical axis whose frequency is given

by the term ωr in Equation (6.11).

In addition, as mentioned earlier, camcorders usually have a frame rate that is

notably lower than the frequency of the back-light of the LCD screen. As a result,

camcording for piracy is prone to temporal aliasing. Visually, it makes the vertical

luminance variation pattern scroll up/down the screen as indicated by the term

ωk in Equation (6.11). This low frequency temporal variation usually makes the

flicker much more noticeable. In such cases as when the back-light frequency fbl is

a multiple of the frame rate fc of the camcorder, the temporal radial frequency ωk

is a multiple of 2π and the flicker appears static in the recorded video.

While this model has been derived using simplifying assumptions, empirical

observations have shown that the model holds in practice with regular video con-

tent. Earlier modeling efforts based on empirical measurements with reference test

signals yielded the same model [105]. Interestingly, by using Equation (6.7) and the

definition of the vertical radial frequency ωr, it is possible to establish the following

mathematical identity:

Πflicker := Tro fbl =
Rωr
2π

, (6.12)

which links such characteristics of the pirate devices as the read-out time Tro of the
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camcorder and the back-light frequency fbl of the LCD screen, together with an

intrinsic property of the flicker signal present in the video signal, the vertical radial

frequency ωr This LCD-camcorder piracy identity opens avenues to identify pirate

devices from the analysis of the pirated videos that they produced [94].

6.3 Estimation of the Vertical Radial Frequency

On the right-hand side of the piracy identity given by Equation (6.12), the

number of rows R is readily available from a frame of the pirated video but the

vertical radial frequency ωr of the flicker needs to be estimated. In practice, it is a

challenging task since the flicker signal has a much lower energy than the pirated

video content. As a result, the video content is likely to interfere with the estima-

tion process. In what follows, we describe a methodology to estimate ωr based on

an analysis of the phase of some temporal discrete Fourier transform (DFT) coef-

ficient at the aliased frequency fa for different rows of a frame. We also present a

refinement of this estimation technique to leverage on the harmonics of the flicker,

and an alternate estimation strategy to cope with static flicker when the back-light

frequency fbl of the screen is a multiple of the frame rate fc.
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6.3.1 Flicker Phase Method

For each frame of a pirated video sample, the average luminance of each row

is given by:

s[r, k] =
1

W

W∑
c=1

p[c, r, k]

=
1

W

W∑
c=1

(
v[c, r, k] + f [c, r, k]

)
, (6.13)

where c, r and k are the column, row and frame indices, respectively, and W is

the number of pixels in a row of a frame of the pirated video sample p, which is

composed of a component v inherited from the original camcorded video and a flicker

component f . The virtue of this horizontal averaging operation is that it improves

the signal-to-noise ratio (SNR) of the flicker versus the video content itself. The

first term in Equation (6.13) aggregates a large number of pixels and thus reduces

the interference due to the content. Due to the rolling shutter mechanism, for a

given row, the sensors associated with each pixel are exposed to the same portion of

the back-light signal and the second term in Equation (6.13) thus consolidates the

flicker component.

Since the flicker signal has been modeled as a cosine function in Equation (6.11),

one would expect the magnitude R[r, ω] of the DFT of the row average s[r, k] along

the time axis to feature a peak close to the aliased radial frequency ωk. Figure 6.4

illustrates such temporal spectra S[r∗, ω] for an arbitrarily chosen row r∗ with al-

ternate combinations of LCD screens and camcorders. In these figures, the x-axis

has been mapped to Hz using the knowledge of the frame rate fc, and the estimated
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Figure 6.4: Magnitude of the DFT of row average s[r∗, k] at row r∗ as a function of frame
index k for several camcorded recordings of samples of the Wall-E video using various
combination of LCD screens and camcorders.

aliased temporal frequency fa is indicated for reference. All spectra have a more

or less salient peak at the ground truth aliased frequency fa. The presence of this

anomalous peak could, for example, be used to detect camcorder piracy [58].

According to Equation (6.11), the phase Φωk [r] of the DFT coefficients S[r, ωk]

is given by rωr + θ, where θ is some constant phase shared across rows. In other

words, the vertical phase of the flicker is expected to evolve linearly along the rows,

with a slope equal to the vertical radial frequency ωr. Empirical observations re-

ported in Figure 6.5 corroborate this overall linear trend, if we ignore the visualiza-

tion effect due to the modulo-2π operator. The undesired modulo-2π wrapping in
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Figure 6.5: Evolution of the flicker phase, computed using the DFT coefficients S[r, |ωk|],
with the row index in the video frame. The measurements have been extracted from
camcorded recordings of the Wall-E video samples using different camcorder–screen pairs.

the phase can be compensated for as follows:

Ψωk [r] =


Φωk [r], if r = 0,

Ψωk [r − 1] + dr, if r > 0,

(6.14)

where

dr =
((

Φωk [r]− Φωk [r − 1] + π
)

mod 2π
)
− π. (6.15)

Estimating the vertical radial frequency ωr can then be done by applying linear re-

gression to the unwrapped flicker phase Ψωk [r] and recording the slope 1. In summary,

1 One should keep in mind that ωk can be positive or negative as it is dependent on fa as
defined in Equation (6.10). Due to the symmetry of the DFT practice, it is common practice to
focus on the positive side of the frequency axis. As a result, the slope of the phase Φ|ωk|[r] can
be reversed as observed in Figure 6.5. In that case, one could recover the true radial frequency
simply by taking the absolute value of the estimated slope.
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one could estimate ωk by recording the radial frequency that maximizes S[r∗, ω], for

an arbitrarily chosen row r∗, and then recover the vertical radial frequency ωr by

estimating the slope of the vertical phase Φωk [r] [105].

6.3.2 Exploiting the Harmonics of the Flicker

In practice, the strongest peak of the spectrum S[r∗, ω] may not always cor-

respond to ωk. If some prior knowledge about the back-light frequency fbl is avail-

able, one can compute candidate aliased frequency values using Equation (6.10)

and restrict the search for a peak in S[r∗, ω] to the corresponding radial frequency

ranges [94]. However, such a priori information may not be available depending on

the application scenario and alternate solutions are therefore desirable.

Many of the peaks present in the spectrum S[r∗, ω] actually correspond to

aliased versions of the harmonics of the back-light frequency fbl. When a peak is

detected at some frequency ω†, a tell-tale cue that it is related to the back-light is

that its corresponding unwrapped phase Ψω† [r] defined in Equation (6.14) should

be linear, with a slope that is a multiple of ωr in line with its harmonic index.

Such linear phase characteristic could be exploited to pinpoint frequencies in the

spectrum that are related to the back-light and thus collect several observations of

ωr or its multiples, and thereby opening avenues for consolidating the estimate of

ωr.

To begin with, the temporal DFT S[r, ω] is computed for all the rows of the

considered video sequence. For each frequency ω, the phase Φω[r] is unwrapped
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using Equation (6.14) and its linearity is evaluated based on the root mean square

error ξ of its linear regression. A frequency ωi is conserved for further analysis

if (i) its unwrapped phase does not deviate from linearity more than a specified

threshold (i.e., ξi < τξ), and (ii) its linear slope exceeds another threshold (i.e.,

αi > τα). The latter test is intended to discard frequencies whose slopes are too

small to correspond to read-out times and back-light frequencies typically used in

the industry. Our empirical observations led us to use a fixed linearity threshold

τξ = 0.04 and to adjust the other threshold according to τα = 70π/Rfc. Keeping in

mind the piracy identity given by Equation (6.12), this setting gives a strong lower

bound on the product Πflicker that is far from what we have observed for the devices

that we have tested. When no frequency satisfies these two constraints, we switch

to a fall-back strategy to be described in Section 6.3.3.

At this stage, the different slopes A = {αi}1≤i≤A that we have retained are

expected to be multiples of the vertical radial frequency ωr that we are trying to

estimate. However, these observations may be noisy and contaminated by parasite

samples. To identify the best common denominator for all αi’s, one could look for

the frequency α∗ that maximizes the number of inlying harmonics, i.e.,

α∗ = arg max
α∈[0,+∞[

∑
i∈Iα

κi, (6.16)

where κi > 0 are some weights and Iα is the set of inlying harmonics for a given

slope α defined as follows:

Iα =
{
i,
∣∣∣αi
α
−
⌊αi
α

⌉∣∣∣ < δint

}
, (6.17)

where b.e is the nearest integer rounding operator and δint some threshold that we
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arbitrarily set to 0.1 in our experiments. In other words, those observed αi whose

ratios with a hypothesized fundamental frequency α deviate by more than δint from

an integer value are considered to be outliers and are discarded. When κi = 1,

Equation (6.16) reduces to the count of inlying harmonics. Alternately, one could

use the weights κi to force more reliable observations into the inlier set. For example,

the observations corresponding to frequencies that have a more linear phase may be

privileged, i.e.,

κi = 1− ξi
τξ
. (6.18)

The objective function optimized in Equation (6.16) is highly non-linear and may

not have a unique solution. This is the reason why, in practice, we simply enumerate

the slopes α ∈ A and compute the weighted average of the ones that maximize the

objective function.

This best denominator α∗ should be roughly equal to the desired vertical radial

frequency ωr. However, this approximate value may be rather rough, especially when

the optimization process of Equation (6.16) locks on a single observation αi ∈ A.

Now that we have found a fundamental frequency α∗, we can define a harmonic

index hi = bαi/α∗e for each observation and compute αi/hi as multiples estimates

of the vertical radial frequency. A refined estimate ω̂r can then be obtained using a

least squares formulation, taking into account the weights κi’s:

ω̂r = arg min
α∈[0,+∞[

∑
i∈Iα∗

κi

(
αi
hi
− α

)2

, (6.19)

whose solution is given by the usual weighted average:

ω̂r =

∑
i∈Iα∗ κi

αi
hi∑

i∈Iα∗ κi
. (6.20)
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Table 6.2: Benefit of using harmonics with a toy example (strongest peak in italic)
ω/2π (Hz) αi (rad/s) κi hi αi/hi (rad/s)

-9.957 0.0224 0.20 2 0.0112
-9.961 0.0225 0.78 2 0.0113
-9.984 0.0222 0.84 2 0.0111
-9.994 0.0223 0.78 2 0.0111
-10.010 0.0219 0.49 2 0.0110
10.027 0.0334 0.08 3 0.0111
-19.924 0.0450 0.44 4 0.0112
-19.958 0.0442 0.86 4 0.0111
-19.968 0.0445 0.85 4 0.0111
-19.978 0.0448 0.64 4 0.0112
19.984 0.0114 0.25 1 0.0114
20.005 0.0116 0.20 1 0.0116
20.015 0.0117 0.52 1 0.0117
20.038 0.0114 0.43 1 0.0114

Table 6.2 illustrates the benefit of considering harmonics to estimate ωr by

showing sample results from applying the proposed approach on the case of a pi-

rated video made using an LCD screen with a back-light frequency of 120Hz and

a camcorder that captures 1080p video at 50 fps. As a result, the fundamental

frequency and its fourth harmonic alias to ±20Hz, and the second and third har-

monics alias to ±10Hz. Moreover, the ground truth for the vertical radial frequency

is ωr = 0.0112. When using the method described in Section 6.3.1, the algorithm

locks on the largest peak of the spectrum at −9.984Hz which happens to be related

to the second harmonic yielding an erroneous estimate of ω̂r = 0.0222. Even if we

consider a priori information as in [94], another peak can be found in the spectrum

at −19.968Hz, which is actually associated with the fourth harmonic and so, the

fundamental frequency cannot be recovered. In contrast, the exhaustive search of

frequency bins with linear phase and the aggregation of these harmonic estimates

first yields a coarse estimate α∗ = 0.0113, which is later refined to ω̂r = 0.0112.
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6.3.3 Content Cancellation Method

The estimation techniques described in the previous sections inherently assume

that it is possible to lock on the frequency bin in the spectrum that corresponds to

the back-light. However, as discussed in Section 6.2.4, when the frame rate fc of the

camcorder is a multiple of the back-light frequency fbl, the observed temporal flicker

is close to zero, which precludes accurate estimation due to strong interference from

content in the low-frequency band. A fall-back strategy is therefore needed to cope

with such situations [94].

The row luminance signatures s[r, k]’s are mostly dominated by the video con-

tent, thereby making the subtle changes underpinning the luminance flicker difficult

to analyze. Nevertheless, the content interference is expected to vary slowly along

the rows. It can therefore be canceled to some extent by applying a high-pass filter

over time or by removing the trend of the signal using some fitting tool, i.e.,

ś[r, k] = h (s[r, k]) , (6.21)

where h(.) is a generic signal processing primitive used to remove the low frequency

components of a signal. Our empirical observations indicate that the effect of this

cleanup process is higher for video frames having more predictable row luminance

signatures (e.g., frames with more uniform content).

Individually cleaned row luminance signatures ś[r, k] still present significant

content energy, and estimating the vertical radial frequency ωr based on the spec-

trum analysis of a single signature is likely to be unsuccessful. To improve the
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SNR, a common technique in multimedia security consists of aggregating several

observations to reduce the interference introduced by uncorrelated noise compo-

nents [106, 107]. This aggregation can be performed directly in the DFT domain:

|S̄[ω]| = 1

|U|
∑
u∈U

|Ś[ω, ku]|, (6.22)

where |Ś[ω, k]| is the magnitude of the DFT of the k-th cleaned row luminance

signature ś[r, k], |S̄[ω]| the magnitude of the vertical flicker aggregate spectrum, and

the set U indicates which frames of the video have been considered for aggregation.

In practice, we used the |U| = 40 most uniform video frames (i.e., the frames of

the video with the lowest variance). Aggregating directly in the DFT domain helps

cope with the slight phase offsets of the individual row luminance signatures ś[r, ku].

Eventually, the vertical radial frequency ωr is given by the frequency whose

magnitude is maximal in the spectrum |S̄[ω]|. To avoid false estimations, we dis-

card the frequencies that exceed a threshold τωr when they correspond to back-light

frequencies that are never used in practice. Our empirical observations showed that

using τωr = 1 radians/row provides good performance in general. For reference, Fig-

ure 6.6 depicts the benefit of the cleaning and aggregation processes in a particularly

difficult case.

133



0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

ω

D
F

T
 m

ag
ni

tu
de

(a) |S[ω, k]|

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

ω

D
F

T
 m

ag
ni

tu
de
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Figure 6.6: Spectrum of the signal of interest at various stages of the content cancellation
process. The spectrum |S[ω, k]| of the row luminance signature (a) is dominated by the
visual content and the flicker signal is not visible. In contrast, the cleaning process (b)
reveals the peak corresponding to the flicker at 0.009 rad/row although it lies hidden
amongst other noise components. After aggregation (c), the flicker frequency peak clearly
appears thanks to SNR improvement.

6.4 Pirate Devices Identification

As mentioned earlier, the LCD-camcorder piracy identity given by Equa-

tion (6.12) opens avenues to linking a pirated video sample to the devices that

have been used to produce it. For example, police investigators, who receive traitor-

tracing evidence recovered from pirated movies, may raid the home of a suspect

pirate and seize a collection of devices. In that case, flicker forensics could cor-

roborate whether or not the flicker signal observed in the pirated movies could be

produced using these devices. Additionally, when forensic watermarking detection

fails, flicker forensics could provide a fall-back mechanism to link together pirated

samples that originate from the same group of pirates.

Identifying the pirate devices among a collection of suspect LCD screens and

camcorders can be done by isolating the pair of devices that yields the closest-

to-zero difference between the two sides of the LCD-camcorder piracy identity of
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Equation (6.12). While Section 6.3 provides means to evaluate the right-hand side

of the identity, Section 6.4.1 details how to recover the read-out time Tro and the

back-light frequency fbl from suspected devices. This is indeed required to evaluate

the product on the left-hand side of the identity, and thus perform flicker-based

pirate devices identification. Experimental results are reported in Section 6.4.2 and

clearly demonstrate the ability of our proposed approach to perform the forensic

task concerned here.

6.4.1 Extracting Internal Parameter Values from Devices

In this study, we have used seven LCD screens and four camcorders that are

listed in Tables 6.3 and 6.4 and that allowed us to produce camcorded video samples

of twenty eight possible screen–camcorder combinations. To compute the product

Πflicker for these devices, it is necessary to have access to their inner characteris-

tics, namely, the back-light frequency fbl of the LCD screens and the read-out time

Tro of the camcorders. Such low-level characteristics are usually not indicated in

the datasheets or manuals of consumer electronics products. Nevertheless, when

the suspect devices are available, it is possible to conduct some semi-non-intrusive

forensic analysis where devices can be fed with specific stimuli to facilitate measure-

ments [108,109]. The only constraint is to avoid tampering with the integrity of the

device (i.e., breaking it apart to examine its individual components), which is either

impossible or undesirable to safeguard the chain of custody.
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Figure 6.7: Custom-made light sensing probe. The photo-diode converts light into electric
current, which is amplified by a first amplifier on the left-hand side. Namely, 0.1 mW/cm2

yields a current of 0.8 µA and 2.64 mV. The adjustable gain amplifier on the right-hand
side is then useful for accommodating to various light intensities of different screens. The
gain can vary between 1 and 44.

6.4.1.1 LCD Screen Back-light Frequency

To recover the back-light frequency fbl of an LCD screen, we custom-made a

sensing circuit that converts captured light into an electrical signal and the reversed-

current of a photo-diode is amplified. The whole circuit is embedded within a pen-

like casing that has a pin hole to let incoming light in as illustrated in Figure 6.7.

The output of the sensing circuit can be connected to a PC or an oscilloscope for live

analysis, or to a recording device for off-line analysis. Placing this apparatus on the

surface of a screen displaying a static uniformly gray frame provides direct access

to the back-light signal without interference from other light sources or from the

temporal dynamic of a motion picture. The recorded signal is typically a periodic

signal whose fundamental frequency is equal to the back-light frequency fbl of the

LCD screen. The ground truth back-light frequency of the screen is then retrieved

through spectrum analysis. Table 6.3 reports the measurements obtained with the

seven LCD screens used in our experiments. The reverse-engineered back-light fre-
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quencies are within a 120-250Hz frequency band, which is in line with the known

practices of the industry.

Table 6.3: LCD screens used in our experiments

ID Brand Model fbl (Hz)

1 Dell 2209WA 240.06

2 Dell U2410 180.43

3 Samsung LE37B652T4WXXC 159.98

4 Samsung UE32C6000RWXZF 120.00

5 Sony KDL-32P3000 146.61

6 Sony KDL-37P3000 226.70

7 Sony KDL-32W5710 172.80

6.4.1.2 Camcorder Read-out Time

Accessing the read-out time Tro of a camcorder is less direct than measuring

the back-light frequency using a probe. The trick is to use the suspect camcorder to

record a reference LCD screen displaying uniform grayscale content, as depicted in

Figure 6.1, obtaining a short video sequence (e.g., 30 seconds long) where the flicker

is apparent. The benefit of this neutral stimulus is that it prevents visual content

interference in the estimation methods described in Section 6.3. Using the ground

truth back-light frequency of the reference screen, it is thus possible to first obtain

an accurate estimate of the flicker vertical radial frequency ωr and then compute the

read-out time using the piracy identity of Equation (6.12). For improved accuracy,

one can combine measurements obtained from several reference screens. Table 6.4

lists the ground truth read-out time values obtained for the four camcorders used

in our experiments2.

2All camcorders are progressive, except the Sony camera that is interlaced. For convenience, we
kept a single field for this camera, thereby resulting in a vertical resolution of 540 rows although
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Table 6.4: Camcorders used in our experiments

Brand Model R Tc = 1/fc (ms) Tro (ms)

JVC GC-PX100BE 1080 20 13.5

Panasonic HDC-SDT750 1080 20 16

Sony HDR-CX200E 540 40 15

Toshiba PA5081E-1C0K 1080 33.33 32.65

6.4.2 Experimental Results

To validate whether or not the proposed flicker-based forensic protocol can

accurately identify pirate devices from a video, we first recorded 1 minute long video

sequences encompassing all possible screen–camcorder combinations of the devices

listed in Tables 6.3 and 6.4. No specific care (e.g., distance to screen, zoom, focus,

ambient lighting, etc) has been taken to calibrate these captures in order to reflect

real-world piracy conditions. Samples of screenshots from the camcorded videos can

be seen in Figure 6.8. The flicker present in the resulting 28 pirated videos is more or

less apparent depending on the device combination. To evaluate the accuracy of the

different techniques proposed to estimate ωr described in Section 6.3, we consider

the relative estimation error defined as follows:

ε = 100×
∣∣∣∣1− R ω̂r

2π Tro fbl

∣∣∣∣ . (6.23)

In order to better appreciate the added value of considering harmonics during

the estimation process, the relative estimation error is reported in Table 6.5 both

with and without harmonics, with the latter case being reported in [94]. Entries in

italic highlight screen–camcorder combinations that eventually yield a classification

the camcorder has the ability to capture 1080 rows.
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(a) Screen 2 and JVC (b) Screen 3 and
Panasonic

(c) Screen 7 and
Sony

(d) Screen 1 and
Toshiba

Figure 6.8: Screenshots of camcorded video sequences using various screen–camcorder
pairs. Besides very different color changes, the flicker signal is more or less apparent
depending on the pair of pirate devices.

Table 6.5: Relative estimation error with (without) harmonics (Italic entries highlight
identification errors)

JVC Panasonic Sony Toshiba

Screen 1 0.51 (1.32) 0.94 (0.78) 0.27 (0.17) 0.19 (0.50)

Screen 2 1.10 (1.49 ) 0.55 (1.09) 0.00 (0.36) 0.18 (0.41)

Screen 3 0.13 (0.38) 0.37 (1.03) 0.01 (1.93 ) 0.17 (0.02)

Screen 4 0.02 (0.72) 0.13 (98.87 ) 0.05 (6.09 ) 0.02 (0.74)

Screen 5 0.14 (0.02) 1.05 (6.74 ) 0.00 (0.01) 0.03 (0.65)

Screen 6 0.10 (0.39) 1.31 (0.43) 0.64 (0.17) 0.02 (0.14)

Screen 7 0.24 (0.39 ) 0.24 (0.24) 0.28 (0.12) 0.58 (0.56)

error. A first observation from these results is that incorporating harmonics notably

decreases the overall relative estimation error, although it does not always improve

the estimation, especially in cases where the quality of the harmonics is low. The

average relative estimation error is 0.33% with harmonics, compared to 4.49% with-

out harmonics. The improvement is particularly evident for the Panasonic-Screen4

combination (which is the corner case discussed at the end of Section 6.3.2). In that

case, only considering the peaks of the spectrum locks on the second harmonic of the

flicker and thus eventually yields an identification error. This improved estimation

accuracy naturally translates in fewer identification errors as we observe an error

rate of 6/28 without harmonics vs. 2/28 with harmonics.

The likelihood of having an identification error is not strictly related to the
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Table 6.6: Rank of the correct screen–camcorder pair using flicker-based pirate
device identification with (without) harmonics

JVC Panasonic Sony Toshiba

Screen 1 1 (1) 1 (1) 1 (1) 1 (1)

Screen 2 1 (2) 1 (1) 1 (1) 1 (1)

Screen 3 1 (1) 1 (1) 1 (3) 1 (1)

Screen 4 1 (1) 1 (23) 1 (2) 1 (1)

Screen 5 1 (1) 2 (4) 1 (1) 1 (1)

Screen 6 1 (1) 2 (1) 1 (1) 1 (1)

Screen 7 1 (2) 1 (1) 1 (1) 1 (1)

relative estimation error ε. It is rather highly dependent on the distribution of the

values Πflicker = Tro fbl for the considered suspect devices. For instance, the pairs

Panasonic-Screen5 and JVC-Screen7 respectively have Πflicker values equal to 2346

and 2333, which can make them highly interchangeable during the identification pro-

cess. The different screen–camcorder combinations can be sorted according to how

much they deviate from the piracy identity given in Equation (6.12). Table 6.6

indicates what is the rank of the ground truth pirate screen–camcorder pair for the

different videos in our dataset. Most of the times when there is an identification

mistake, the correct pair of suspect devices is high in the sorted candidate list. In

summary, although flicker-based forensics may not achieve yet the high accuracy to

hold in court, it is capable of providing additional intelligence to direct the investi-

gations or infer relationships in a large database of pirated video samples.

6.5 Extension to Flicker Profile Recovery

In Section 6.4, we showed how to link suspect devices to pirated video samples

based on their inner parameters that yield a very specific flicker characteristic in the
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pirated video. It is a definite step forward compared to simply detecting camcorder

piracy, and it may be possible to pursue the forensic analysis even further. The

mathematical model derived in Section 6.2 relies on the simplifying assumption

that the back-light signal is a perfect periodical rectangular signal. In real life,

the back-light deviates from this ideal signal and the resulting profile of the flicker

signal (the coefficients Ai in Equation (6.5)) is affected accordingly. Nevertheless,

the frequency analysis detailed throughout Section 6.3 remains valid.

In some application scenarios, it may be useful to estimate this so-called profile

of the flicker. For example, it can be used to cancel the flicker component either to

improve the quality of a recorded video [110] or to clean a pirated sample prior to

applying a watermark detection algorithm [105]. Conversely, a finer estimation of

the flicker profile could be exploited to better mimic the distortion occurring along

the camcorder path and thus provide a convenient tool for benchmarking [111,112].

In this section, we explore an estimation technique to recover the flicker profile from

a pirated sample, and examine its applicability in a sample application scenario:

inferring the back-light technology that was implemented by the LCD screen used

for piracy.

6.5.1 Recovering the Flicker Profile

Our baseline approach to estimate the flicker profile is to collect several noisy

estimates of the flicker and to pool them together to improve the SNR. In contrast

with the content cancellation method of Section 6.3.3, this pooling process cannot
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be performed in the frequency domain. Indeed, as we intend to recover the profile

of the signal, it is necessary to account for the mismatching phases of the different

estimates. As a result, the overall estimation methodology reduces to a three-step

process:

1. collect O noisy estimates po[r] of the flicker profile, e.g., from different frames

of the camcorded video;

2. compute a collection of lags D = {δ̂o} to re-align all po’s, one with respect to

the other;

3. pool the realigned estimates po[r + δ̂o] to obtain a refined estimate p̂ of the

flicker profile.

A straightforward way to collect estimates po of the flicker profile is to cancel

the contribution from the original video content in the row luminance signature of

selected frames as in Equation (6.21). This process is most efficient when applied

to frames with uniform content. These individual estimates are then post-processed

to have zero mean and unit variance. While a tempting strategy to obtain such

estimates would be to only keep flicker harmonics components, our early attempts

suggest that this approach does not manage to accurately capture the profile of the

flicker. This may be worth further investigation in follow-up studies.

The individual estimates po are misaligned in general because the frame rate

of the camcorder is rarely a multiple of the screen back-light frequency. To re-align

two estimates po1 and po2 , one strategy is to identify the lag δ that maximizes some
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paired correlation score. That is,

corr(po1 , 0; po2 , δ) = po1 [r] · po2 [r + δ], (6.24)

where · is the linear correlation and po1 serves as the reference signal. When sev-

eral estimates {po} are available, the re-alignment process then amounts to jointly

optimizing the alignment between all pairs of estimates and can be written as:

D = arg max
{δo}

Obj
({

corr(po1 , δo1 ; po2 , δo2)
}
o1<o2

)
, (6.25)

where one of the lags, e.g., δ1, is arbitrarily set to zero to serve as a reference, and

Obj(.) is an objective function to optimize. For instance, one may want to maximize

the average of all paired correlation scores. Alternately, one may want to maximize

the lowest paired correlation scores.

Eventually, all re-aligned noisy estimates are pooled together to improve the

SNR of the flicker profile. The multiplicative nature of the flicker reported in [105]

calls for utilizing similar optimized pooling functions originally derived for the Photo

Response Non Uniformity (PRNU) pattern estimation [113]. However, our empirical

observations showed only marginal improvement of the convergence speed compared

to conventional averaging. So, we adopted the latter for the sake of simplicity:

p̂[r] =
1

Or

∑
1≤o≤O

po[r + δ̂o], 1 ≤ r ≤ R, (6.26)

where Or is a normalization constant that counts how many individual estimates,

for each row, contributed to the final row luminance signature p̂.

In practice, the optimization problem defined by Equation (6.25) is difficult

to solve. A suboptimal strategy consists of iteratively incorporating individual esti-
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mates po one at a time to the average, where the lag δ̂o is given by the offset that

maximizes the correlation with the current estimation of p̂. This straightforward

approach is inherently dependent on the scanning order, which can create a bias. A

better approach is to adopt a divide and conquer paradigm: the individual estimates

po are virtually placed on the leaves of a binary trees and are pooled according to a

bottom-up traversal of the tree. On the way up, two estimates of the flicker profile

are re-aligned using Equation (6.24) and averaged at each node of the tree.

6.5.2 Revealing LCD Back-light Technology

Back-light is generated from two main types of sources in practice: Light-

Emitting Diodes (LED) and Cold Cathode Fluorescent Lamps (CCFL). While LED

screens are becoming dominant, there is still a large number of legacy CCFL screens

that could be used for piracy. Figure 6.9 shows samples of raw back-light signals of

LCD screens of different back-light technologies made using the light sensing probe

described in Figure 6.7. Observing such signals, we empirically found CCFL and

LED signals to be notably different. CCFL features a transitory regime between

the on/off states of the back-light in contrast with LED that has sharp transitions.
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(a) LED (b) CCFL

Figure 6.9: Temporal back-light signal captured at an arbitrary point of an LCD screen
displaying a uniformly gray image using a probe equipped with a photodetector connected
to an oscilloscope.

0 200 400 600 800 1000
90

100

110

120

130

140

150

160

170

180

Row index

A
ve

ra
ge

 lu
m

in
an

ce

(a) LED

0 200 400 600 800 1000
130

135

140

145

150

155

160

165

170

Row index

A
ve

ra
ge

 lu
m

in
an

ce
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Figure 6.10: Illustration of the row luminance signature in a toy example where the LCD
screen is fed with a uniform grey video.

According to Equation (6.5), the flicker profile is related to the convolution

between the back-light signal of the LCD screen and the exposure mechanism of

the camcorder. The intrinsic difference between LED and CCFL back-lights should

therefore be reflected in the flicker signal present in camcorded videos. As a quick

verification, one can see differences in the extracted row luminance signatures, shown

in Figure 6.10 extracted from camcorded recordings of a uniformly grey image shown

on LED and CCFL screens.

The remaining question is whether or not the flicker profile estimated from

a camcorded video exhibits characteristic properties that could serve as a forensic

145



0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

(a) LED #1

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

(b) LED #2

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) CCFL #1

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) CCFL #2

Figure 6.11: Illustration of the flicker profiles extracted from Wall-E camcorded videos
using various LED and CCFL screens. For each of these figures, the x-axis shows the
index of the row in a video frame, and the y-axis shows the normalized magnitude of the
extracted flicker profile.

cue to identify the back-light technology of the pirate screen. To investigate this

problem, we recorded 1-minute long Wall-E video samples using three camcorders

and six LCD screens, half of which has an LED back-lights and the other half has

CCFL back-lights. We then extracted the flicker shape present using the approach

described in Section 6.5.2 with O = 30 frames.

Figure 6.11 depicts the flicker profile p̂ extracted from real camcorded videos

using two LED and two CCFL screens. The extracted flicker profile extracted with

CCFL screens is much smoother than with LED ones. Numerous features have

been proposed in the literature to characterize the smoothness of a signal and, after

several tests and trials, we opted for polynomial fitting goodness of fit. Since LED
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flicker profiles feature gradient discontinuities, they should be more difficult to fit

using a polynomial function than CCFL flicker profiles.

To capture this difference, we considered the following feature:

f = Cz+1 − Cz−1, (6.27)

where Cn denotes the correlation coefficient between the flicker profile p̂ and its

corresponding polynomial fit of degree n, and z is the number of zero crossings of

the flicker profile. In principle, as a correlation coefficient lies within [−1, 1], the

feature f can span the interval [−2, 2]. However, given that we are carrying out the

polynomial fitting at an order close to the number of zero crossings and that the

higher order fitting generally yields a higher correlation value than the lower order

one, the feature f is expected to be within [0, 1]. Both polynomials of degrees z− 1

and z+ 1 should be rather poor fits of LED flicker profiles, thereby producing a low

feature value. On the other hand, smooth CCFL profiles should be nearly perfectly

fitted with a polynomial of degree z + 1, whereas the other polynomial fit should

deviate from the flicker profile since the polynomial degree is lower than the number

of zero crossings3. This drastic fitting improvement is expected to yield much larger

feature values of f . Figure 6.12 shows examples of these polynomial fittings for row

luminance signatures extracted from camcorded LED and CCFL screens, showing

visibly more fitting improvement in the CCFL case.

3Due to the normalization process, the number of zero crossings relates to the number of gradient
sign changes of the (low-pass) flicker profile.
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Figure 6.12: Examples of polynomial fitting for row luminance signatures extracted from
camcorded copies of Wall-E. Legend: the solid blue line is the row luminance signature;
the dotted black line is the polynomial fit of degree z − 1; the dashed red line is the
polynomial fit of degree z + 1.
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Figure 6.13: Histogram of the feature values f computed according to Equation (6.27)
for several pirated copies using various combinations of LCD screens and camcorders.

Figure 6.13 shows a histogram of the feature values f computed using the

eighteen pirated video samples in our dataset. As predicted, pirated copies involving

CCFL screens produce higher feature values than the ones involving LED screens.

For the devices and data in our study, the two sets of values were perfectly separable

with a threshold of around 0.35. These proof-of-concept results should be confirmed

with a larger diversity of pirated samples. Nevertheless, they already suggest that

the estimation of the flicker profile is accurate enough to capture characteristics
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inherited from the back-light signal, which can be exploited to reveal the back-light

technology implemented by the pirate screen in case of camcorder piracy.

6.6 Chapter Summary

Camcorder piracy is an increasing threat nowadays as high-valued premium

video content is delivered to homes earlier after theatrical releases. Previous works

have focused on detecting that camcorder piracy occurred by several techniques that

can include feeding relevant features to a supervised machine learning engine [55–

58,97–100]. In this chapter, we have gone a step further and performed an in-depth

analysis of one of these discriminative features, namely, the luminance flicker that

originates from the interplay between the back-light of the LCD screen and the

shutter of the camcorder. As such, flicker forensics can serve as a complementary

analysis once the pirated sample has been detected to be an LCD camcord (using,

for example, one of the previously published learning based techniques.

After deriving a theoretical model for the flicker signal, we have established

a mathematical identity between the flicker frequency and some inner parameters

of the pirate devices, namely, the back-light frequency of the screen and the read-

out time of the camcorder. We then showed that components of the flicker signal

could be pinpointed due to their linear phase in some frequency representation.

This characteristic can be used to isolate the flicker component and then recover

its fundamental frequency. Our experimental results demonstrated that it enables

piracy attribution by identifying which screen–camcorder pair is the most likely
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to have been used to produce the analyzed pirated video with high accuracy. We

also conducted a preliminary study to demonstrate that the flicker profile could be

accurately estimated. We then exemplified that it could be used to tell-tale which

back-light technology is implemented by the pirate screen.

In future work, a first task will be to better understand the applicability of

flicker forensics. It will involve large scale validation experiments with a wide di-

versity of devices and also benchmarking evaluation against subsequent video pro-

cessing. Another line of research will be to look for other statistical footprints in

pirated movies that reveal camcorder piracy. Flicker forensics indeed involves only

a handful of parameters and is thus a rather moderate piece of intelligence on its

own. Complementary cues would serve as corroborating intelligence that strengthen

the forensics process. Further, this refined understanding of the luminance flicker

may be exploited to improve detection of watermarking systems, possibly thanks

to enhanced flicker removal techniques. It would be interesting to explore other

possibilities in forensics that can utilize the framework investigated in this chapter.
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Chapter 7

Conclusions and Future Perspectives

In this dissertation, we have explored two intrinsic near-invisible signatures

that can be unintentionally captured in a media recording due to influences from

the environment in which it was made and the recording device that was used

to make it. We considered two main signatures, the Electric Network Frequency

(ENF) signal and the flicker signal, and examined their use to address problems in

multimedia forensics.

We have discussed that the ENF signal is an imprint of the activity of the

power grid in which a recording is made. It is a signature that can be used to

address questions about a recording’s integrity and origins. The validity of the final

results of most ENF-based applications will highly depend on the accuracy in which

the ENF signal is extracted. For that purpose, we developed our proposed spec-

trum combining approach that exploits the presence of the ENF traces at different

harmonics to achieve more robust and accurate ENF signal estimations.
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After observing that ENF signals from different grids show different statistical

characteristics, we explored the use of the ENF signal as a signature that can be

used within a learning framework to identify the grid-of-origin of a media recording.

This can pave the way to identify the origins of such videos as those of terrorist

attacks, ransom demands, and child exploitation.

In our work on the flicker signal, we focused on problems in the entertainment

industry addressing issues in movie piracy related investigations. The flicker signal

is an artifact created when a camcorder is used to record media content shown on

a Liquid Crystal Display (LCD) screen. We built an analytic model of the flicker,

relating it to inner parameters of the camcorder and the screen used to produce

the flicker-containing video, and showed that it can be used to identify and/or

characterize the camcorder and the screen used to produce the flicker-containing

video.

Our work on the flicker signal also inspired an ENF-based application, dis-

cussed in this dissertation, where we use the ENF traces captured in a video to

characterize the video camera that had produced it. This was an example of how

the study of one forensic signature can inspire new work on another forensic signa-

ture.

Several interesting lines of research along the directions of the work discussed in

this dissertation can be explored. We have discussed that, despite the large amount

of work in the research community targeted at estimating the ENF signal and using

it for applications, we still do not have a solid understanding on the specific recording

situations that would confidently lead to the capture of ENF traces in recordings.
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In our study on the factors affecting the capture of ENF traces in audio recordings,

we have sensed the need for a larger scale comprehensive study that would examine

various factors that can affect the capture of ENF traces in both audio and video

recordings, related to the environment in which a recording is made and the devices

used to make it. Such a study would be important to gain a better understanding

on the true real-world applicability of the ENF signal.

In addition to examining the factors affecting the capture of ENF traces, mod-

eling the statistical properties of the ENF signal, especially across different seasons

of a year and times of a day, can help researchers understand better how this sig-

nature behaves. This could also help inform the design of ENF-based applications

and improve their performance.

In this context, we believe that there are still more real-world applications

that the ENF signal can be used for, both in multimedia forensics and elsewhere,

and it would be interesting to explore such applications as well as improve on the

performance of the ones proposed already. For instance, our work on using the

ENF for grid-of-origin identification is a first work of its type, so there is room for

further improvement. This can possibly be achieved through the collection and use

of more ENF data and the exploration of additional features and different learning

frameworks.

Similar lines of research can be explored for the flicker signal. Carrying out

large scale validation experiments with a wide diversity of devices and benchmark-

ing evaluations against subsequent video processing can help in gaining a better

understanding on the applicability of flicker forensics. Also, our improved under-
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standing of the flicker signal through the work for this dissertation may be exploited

to enhance techniques for removing flicker from a video, which can help improve

the performance of watermark-detecting systems. Another potential line of research

pertains to looking for other statistical footprints in pirated movies that may reveal

camcorder piracy.

Overall, it would be interesting to explore other signatures that can be in-

trinsically embedded in media, which can utilize and benefit from the analyses and

frameworks investigated in this dissertation.
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