
To Appear in the Proceedings of the IEEE Conference on Visualization, October 1992 Page 1

Department of Computer Science & Human-Computer Interaction Laboratory
University of Maryland, College Park, MD 20742

Improving the Visualization of Hierarchies with Treemaps:
Design Issues and Experimentation

Abstract
Controlled experiments with novice treemap users and

real data highlight the strengths of treemaps and provide
direction for improvement. Issues discussed include experi-
mental results, layout algorithms, nesting offsets, labeling,
animation and small multiple displays. Treemaps prove to be
a potent tool for hierarchy display. The principles discussed
are applicable to many information visualization situations.

1 Introduction
Treemaps are a novel method for presenting large hierar-

chical information spaces on planar display areas of limited
size [9, 13]. A treemap is generated by recursively slicing the
screen into rectangular bounding boxes to convey global
structure (hierarchy). Individual node information is pre-
sented through display attributes such as bounding box size
and fill color. Two families of treemap algorithms have been
developed for tiling 2-D planes: slice-and-dice, which alter-
nates between vertical and horizontal screen slices (Figures
2,3,4), and top-down, which slices in only one dimension,
either horizontal or vertical (Figure 1). Treemaps combine
features of multivariate coding and display layout to present
hierarchies in a richly visual environment which fosters
relative comparison of structures in the hierarchy.

Two experiments, one with UNIX users, and one involv-
ing employees of GEnie, a consumer information service run
by GE Information Services, drive the discussion presented
herein. Section 2 of this paper discusses the two primary
treemap layout algorithms. Section 3 describes improve-
ments to the slice-and-dice algorithm to further convey infor-
mation about the hierarchy. Section 4 offers a sampling of
current research directions. Section 5 describes the experi-
ments conducted with treemaps. Section 6 is the conclusion.

2 Partitioning Algorithms
The partitioning of rectangular screen region into a treemap

can take one of two approaches: the slice-and-dice approach
as previously described in [9] and the top-down approach
[12], which is discussed below.

2.1 Top-Down
Development of the top-down algorithm was motivated by

Brian Johnson
brianj@cs.umd.edu

David Turo
turo@cs.umd.edu

the desire to preserve the structure (and user familiarity) of
traditional tree diagrams, which flow from one side of the
screen to the other (usually from top to bottom). The algo-
rithm slices the rectangular region along one dimension and
flows from the root (on one side of the screen) to the leaves
(on the opposite side). The algorithm relies upon each node in
the tree having a pre-determined weight, dependent upon a
domain-specific attribute. An overview of the basic algo-
rithm is given below using a top to bottom flow.

TOP-DOWN ALGORITHM
1. The bounding box of the root node is the entire treemap

display area. Make the root node the “current node”.
2. Divide the bounding box of the current node proportionally

along its vertical axis using its weight compared with the
sum of the weights of its children. This produces an upper
region for the current node and a lower region for its
children .

3. Partition the lower region along the horizontal axis among
the children based on their weights, creating a bounding
box for each child.

4. Iteratively make each child the “current node” and go to
step 2.
Essentially, the horizontal axis is recursively sliced and

divided among the children. All of the leaf nodes of the tree
eventually “touch” the bottom of the display. Figure 1 illus-
trates a traditional tree structure overlaid on its top-down
representation. Offsets are used to emphasize hierarchy struc-
ture.

The area of each bounding box is determined by the weight
attribute. For example, if the hierarchy in Figure 1 was an
organization chart with size representing salary and color
representing years of service (the lighter grays representing
the most years), large light gray boxes would indicate long-
term employees who are well paid.

This concept of emphasizing importance through size is
similar to the fisheye concept [7], though there are multiple
points of interest in treemaps.

As the top-down approach to tiling planar areas limits
recursive subdivision to one dimension, acceptable results
are produced only for hierarchies of limited size. Testing
indicates hierarchies of around 100 to 200 nodes overwhelm
the top-down algorithm on typical displays with 640 x 480

To Appear in the Proceedings of the IEEE Conference on Visualization, October 1992 Page 2

vertically and horizontally. Figure 3 displays the same hier-
archy as in Figure 1, only drawn using the slice-and-dice
algorithm.

Because of the quantity of information that can be pre-
sented, large treemap diagrams should be thought of as
powerful visualization tools requiring a degree of familiarity.
Since the slice-and-dice treemap proves to be the most viable
for display of large hierarchies, all further discussion of
treemaps will assume partitioning along both dimensions.

2.3 Treemap Display Limitations
All static hierarchy presentations have limits as to the

quantity of information they are capable of presenting on a
finite display space. When these limits are reached, naviga-
tional techniques such as scrolling or panning must be used,
creating the potential for loss of context [1]. Common char-
acter-based applications use a set number of lines to display
the hierarchy. Graphical tree diagrams have more leeway:
depending upon the drawing algorithm and the size of the
display space, a hundred or so nodes can be adequately
represented on screen without the need for panning or zoom-
ing.

More advanced graphical diagrams such as cone trees [11]
increase the display limit through the use of a virtual third
dimension at the expense of increased navigation (in this

resolution. As an example, the GEnie hierarchy used in the
treemap experiment contained 120 nodes (products) in two-
levels (product manager and product type). This hierarchy
could not be displayed using the general top-down algorithm
due to limited horizontal resolution; a modified top-down
approach solved this by partitioning the vertical axis at the
final level. This modified algorithm (displayed in Figure 5)
works well, but it is not generalizable to hierarchies that are
not of a uniform, fixed depth.

The main benefit of the top-down design, therefore, is its
ability to conform to traditional tree diagram conventions.
With small hierarchies, traditional tree diagrams may be used
in conjunction with top-down treemaps as in Figure 1, fostering
comparative analysis while preserving traditional diagram-
matic notation.

2.2 Slice-and-Dice
The slice-and-dice algorithm avoids the problems of the

top-down algorithm by recursively partitioning the planar
display area along both dimensions. Much larger hierarchies,
greater than 1,000 nodes, can be displayed (Figure 8). The
slice-and-dice algorithm is presented and discussed in detail
in [9].

A slice-and-dice treemap presents the hierarchy as a series
of recursively-drawn bounding boxes, sliced alternatively

Figure 2: Slice-and-Dice, Size by UnitFigure 1: Top-Down, Size by Weight

Figure 3: Slice-and-Dice, Size by Weight Figure 4: Slice-and-Dice, no offsets

To Appear in the Proceedings of the IEEE Conference on Visualization, October 1992 Page 3

in order of their weights. This “graceful degradation” pre-
serves relatively important nodes while indicating where
collections of relatively less important nodes are located.

3 Conveying Information
User disorientation is a problem when presenting large

bodies of information, especially when users are confronted
with unconventional display methods like treemaps. The
GEnie and Unix experiments along with general use of
TreeViz (a treemap based Macintosh directory visualization
tool) have highlighted a number of usability issues and
subsequent refinements. A few of the more important issues
and refinements are:

• nesting offsets
• user control of attribute mapping, node filtering, and

sibling node sort order
• animation
• small multiple displays
• zooming
• textual “signposts”

3.1 Nesting Offsets
Treemaps convey structure via containment (nesting and

grouping) in the same fashion as Venn diagrams [9, 14].
Nesting offsets give users control over the allocation of
display space between internal and leaf nodes. Larger offsets
put greater emphasis on internal nodes and hence the structure
of the hierarchy; smaller offsets emphasize leaf nodes. With-
out offsets only leaf nodes are directly visible; the internal
structure of the hierarchy must be inferred from the grouping
of leaf nodes.

Users viewing new hierarchies often need offsets in order
to become familiar with the global structure of the hierarchy.
After a short period of use users generally prefer smaller
offsets (0, 2, or 4 pixels), as noted in the two experiments and
through the use of TreeViz. Small offsets provide a degree of
global context while still maximizing the display space avail-
able for the display of leaf nodes.

Node Size256 128 64 32 16 8 4 2 1 (squares, pixels/side)

Horizontal Resolution in Nodes 2 4 8 16 32 64 128 256 512
Vertical Resolution in Nodes 2 4 8 16 32 64 128 256 512

Tree Diagram #Levels 2 3 4 5 6 7 8 9 10 log2(#leaves)
Tree Diagram #Leaves 2 4 8 16 32 64 128 256 512 DW/NW
Tree Diagram #Nodes 3 7 15 31 63 127 255 511 1,023 2*DW/NW-1

Treemap #Levels 3 5 7 9 11 13 15 17 19 log2(#leaves)
Treemap #Leaves 4 16 64 256 1,024 4,096 16,384 65,536 262,144 DW/NW*DH/NH
Treemap #Nodes 7 31 127 511 2,047 8,191 32,767 131,071 524,287 2*DW/NW*DH/NH-1

512 Pixel by 512 Pixel Display Size DW: Display Width NW: Node Width
262,144 Total Pixels DH: Display Height NH: Node Height

Table 1: Binary Tree Display Resolution
case, rotation).

The number of nodes that can be displayed by a treemap
can be an order of magnitude greater than traditional graphi-
cal tree diagrams. This is the result of the tiling approach
which packs the display space. Treemaps, though, have limits
as well; as with previous presentation methods, zooming,
panning, and animation can extend these limits.

Table 1 indicates display limits for binary trees using the
above approaches with non-overlapping nodes. The formulas
for tree diagrams assume no horizontal separation space for
nodes on the leaf level and also assume enough vertical space
to display all tree levels. The formulas for treemaps assume
no offsets and leaf nodes of equal weight, which will generate
square bounding boxes for this example. It should be noted
that without offsets only the leaf nodes appear in the displays,
although internal structure can be inferred. Figure 4 illustrates
the same tree as Figure 3 with offsets removed. The maximum
size of representable hierarchies decreases as offset size
increases.

2.4 Degenerate Cases
Treemaps can display the largest hierarchies when the

aspect ratios of the bounding boxes are approximately one.
When this condition does not hold, information may begin to
“drop” out of the display.

Rather than having nodes with small weights or extreme
aspect ratios disappear from the display, it is possible to set
minimum node dimensions. With this approach nodes whose
display size would normally fall below the resolution of the
display medium are assigned some small constant width or
height by borrowing display space from sibling nodes.

Although this approach prevents nodes from dropping out
in many cases, it has its own limitations. When the number of
such nodes to be partitioned along a given axis exceeds the
resolution of the display along that axis, information will still
disappear. Regions where this occurs can be indicated by a
special color and zooming facilities provided. Black areas in
Figure 8 indicate clusters of nodes that are not displayed.

Since the display size (bounding box) of a node is deter-
mined by its weight, nodes typically drop out of the display

To Appear in the Proceedings of the IEEE Conference on Visualization, October 1992 Page 4

is that of display size. A very thin node between much larger
nodes tends to become lost. It is often useful to group sibling
internal and leaf nodes separately, as leaf nodes are generally
far smaller than internal nodes. It is also advantageous to
group leaf nodes together as a nested block (when offsets have
been specified) instead of nesting each individual leaf node.
This nested block saves display space and also provides
further distinction between leaf and internal nodes.

3.5 Animation: Relative vs. Absolute
Treemap animation was used in the GEnie experiment

with positive results: growing and shrinking bounding boxes
reflected changes in the underlying data and conveyed these
changes in a powerful way. Six months worth of GEnie
product data were available, displayed one month at a time.
Users were able to step the diagram through the months with
a slider positioned beneath the treemap.

Animating a full treemap (one that fills up the entire dis-
play area) over a time sequence presents relative changes to
the user. For example, suppose a hierarchy consisted of only
two bounding boxes, each taking up 1/2 of the screen. If
during the next animation sequence, the first box grows to
occupy 3/4 of the screen, the diagram should be interpreted to
mean “Relatively, the first node’s weight is three times the
value of the second node’s weight.”

From an absolute perspective, though, the weight of the
two nodes may have changed in a number of ways: increase
of the first node’s weight with a smaller increase, no change,
or a decrease in the second’s; no change in the first node’s
weight with a decrease in the second’s; or a decrease in the
first node’s weight and a larger decrease in the second’s.

Treemaps can, however, be utilized for animation of
absolute data if local maximums are known for the attribute
which determines the weight. For example, in an application
which displays daily stock market information with stock
value as the size attribute, the day with the total highest stock
values would be reflected in a treemap which occupies the full
display area. The other days, with lower total values, would
use treemaps which occupy a percentage of the total display
area based upon their value divided by the maximum value.
Using this method, the entire treemap would grow and shrink,
and the area of each bounding box would reflect absolute data
over the time period being examined.

3.6 Small Multiples
Treemaps promote relative comparisons and are particu-

larly suited to the presentation of small multiple views or
animation when relative comparisons are desired [15].

The GEnie experiment used this technique to display six
months’ worth of data side by side. Users were asked to
interpret changes by following particular squares across the
diagram and noting changes in size, position, and color.
Figure 5 is a small multiples view of the six months in the
GEnie experiment using a subset of the product data. The

3.2 Attribute Mapping
User confidence in the treemap application may be im-

proved by providing the user more control over attributes
which determine node size (weight) and color [8, 15]. Figure
2, for example, displays the same treemap as in Figure 3,
except that all leaf nodes have the same weight (the areas of
the leaf nodes’ bounding boxes are all the same).

Modifying these attributes through functions allows users
to emphasize features in the data of varying importance.
Inversion of attributes is a simple function that flips the order
of importance: instead of salespeople with the largest profits
having the largest bounding boxes, salespeople with the
smallest profits would have the largest bounding boxes.
Logarithmic or power functions have proven useful for pro-
viding alternative views of the hierarchy.

Domain attributes may also be mapped to color. Quantifi-
able attributes (placed on a numeric scale) worked well with
different luminosity levels of the same hue (maintaining
constant saturation) in the GEnie experiment to represent
profitability levels.

If a non-quantifiable attribute is to be displayed, the
approach of assigning distinct hues to each attribute is effec-
tive. The Macintosh implementation of treemaps utilizes
evenly separated hues while maintaining constant saturation
and luminosity to convey different file types.

User control over the color is of primary concern as color
preference varies by task and individual. Aesthetically pleas-
ing color schemes can be preconfigured for the user and
accompanied by a color key or chart for user reference [3].
One area of color control addresses the problem of color
deficiencies and monochrome monitors: providing a trans-
formation to a gray scale or patterns alleviates the problem.
When distinct hues are eliminated, information can be con-
veyed via gray scale [6].

3.3 Node Filtering
Filtering nodes allows users to concentrate on features of

interest. In hierarchies users may wish to see only those nodes
satisfying certain properties. Examples include: internal nodes,
leaf nodes, specified branches of the hierarchy, nodes of
certain depths or nodes with a particular attribute (for ex-
ample, all text files).

Two functions are useful for initial orientation: expanding
a level at a time allows the user to gradually step down the
hierarchy and view each level before proceeding further;
expanding particular nodes allows users to view the detail of
node(s) in the context of the complete hierarchy.

3.4 Sibling Node Sort Order
The order in which sibling nodes are displayed within a

parent can be used to further orient the user or provide
additional information about these nodes (node type, rank,
alphabetic order, etc.).

A concern specific to grouping sibling nodes in treemaps

To Appear in the Proceedings of the IEEE Conference on Visualization, October 1992 Page 5

small multiple technique also applies to the concept of mul-
tivariate data display, discussed in Section 4.5.

As the products are always displayed vertically in the same
order, a single product may be followed across the months to
gauge performance. In this case the first product’s revenue
(size attribute) is expanding relative to the other products in
the product category; the darkening gray indicates the profit
of the product is changing. The widths of the sections indicate
overall growth in this 6 month period.

3.7 Zooming
Zooming allows the promotion of any node to full display

size (the zoomed node becoming the new root of the displayed
hierarchy), providing space for the presentation of small
cluttered regions. But navigational tools are a double-edged
sword, for while they allow users to hone in on regions of
interest, they also cut off users from previous contextual
features.

Zooming was successfully implemented in the GEnie
experiment. Users had the option of zooming in on any node
in the display, thus allowing quick navigation through the
hierarchy. Options to zoom back one level and zoom back to
the original root were also provided.

Care should be taken to avoid disorienting the user. The
zoom effect, therefore, should incorporate some traditional
visual cues (such as zoom lines or increasing or diminishing
rectangle outlines) to identify what exactly is being zoomed
in to or away from.

3.8 Textual Signposts
Text labels can be used to further orient the user to the

hierarchy if space is available. Nodes that are large enough to
provide textual signposts are useful as landmarks in a sea of
boxes. Figure 5 gives an indication of how text labels may be
utilized in a treemap application. Each node in the diagram
has a text label in the upper left corner.

4 Current Research
Current research directions have been greatly influenced

by the usability studies and experiments that have been
conducted thus far. We have found users to be generally
receptive to the idea of treemaps but wishing to use them to
display more familiar hierarchies. Tools for visualization are
no more interesting than the data they present. Can treemap
users mine the wealth in rich hierarchical data sets? We think
there is great potential.

4.1 Queries
A capability that would allow users to specify queries and

have the results shown by highlighting or blinking matching
bounding boxes is the most prevalent request. Issues here
relate to appropriate highlighting mechanisms and feedback
to users. An offshoot of this involves implementation of
dynamic queries [16, 2], which allow users to generate a large
number of queries in a short period of time via direct manipu-
lation with sliders or other widgets.

4.2 Aspect Ratio Perception Problem
Treemaps use a single numeric weight to determine the

display area of a node in the hierarchy. Perceptual difficulties
arise when area comparisons are made between nodes of
differing heights and widths, as users cannot accurately gauge
fine area differences between rectangles differing in both
dimensions. Figure 2 illustrates this problem — all of the leaf
nodes have the same weight (area), but their heights and
widths differ.

Two-D representations are poor for comparing linear
values that are similar, but they can show greater ranges, a
benefit in the case of file sizes which can range over six orders
of magnitude. Display area can be used to rapidly locate
nodes of interest, which can then be compared in detail via
mouse tracking and dialog boxes.

4.3 Dynamic Algorithms
In a dynamic environment it is useful to isolate global

recomputation from local perturbations such as node inser-
tion, deletion, or size changes. Treemaps allocate space in a
relative manner, and as such are inherently susceptible to
global recomputation. Current algorithmic research is con-
centrating on minimizing recomputation in dynamic environ-
ments.

4.4 2 1/2-D Treemaps
A “third” dimension can be added by using the 2-D

rectangular area as the base of a 3-D solid. Increasing the
visual vocabulary can provide for richer information resolu-
tion [4]. Simply extruding the rectangles produces a Manhat-
tan-like scene, where rectangular solids obscure one another.
Using a single point in the third dimension creates pyramids,
which do not obscure each other as much. The height dimen-
sion can code one more variable, and the location of the apex,

Figure 5: Top-Down with Small Multiples

To Appear in the Proceedings of the IEEE Conference on Visualization, October 1992 Page 6

apex skew, and the four sides can code additional properties
in a manner similar to datajacks [3, 5]. Leaf nodes become
pyramids and internal nodes become flat top plateaus. Figure
6 illustrates 2 1/2-D treemaps. True 3-D treemaps would be
volumes partitioned on all 3 dimensions.

Free movement of the perspective point can provide natu-
ral zooming and perspective. More interesting nodes, defined
by nearness to the perspective point, receive more display
space, a natural fisheye view. As is always the case with
treemaps, nodes with greater weights (more interesting data
points) also receive greater display space, as their base
dimensions are greater.

4.5 Multivariate Comparison
Treemaps have potential as a multivariate exploratory data

analysis tool. Hierarchies can be created based on the degree
of interest in a set of categorical variables [10]. The display
space is partitioned amongst the categorical levels of each
variable relative to their proportionate values. Treemaps can
be generated either singly or as a series of small multiples.
Figure 7 shows a small multiples presentation of subject
performance in the treemap vs. UNIX directory browsing
experiment.

The 12 largest vertical bounding boxes represent the total
time required by each subject to answer all questions. The
horizontal partition for each subject represents the treemap
questions on the top and the UNIX questions on the bottom;
within each interface condition are the 7 individual questions.
The 12 short horizontal bars show the relative performance of
treemaps vs. UNIX for each subject. It is readily apparent
that, in general, subjects performed faster using the treemap
interface. Interactive browsing also shows that the global
questions (largest boxes) took substantially more time to
answer using UNIX. The same information is also presented
in Table 2.

5 Experimentation
The utility of treemaps was tested during the past year in

two experiments. Both experiments were designed to reflect
real-world situations and needs.

5.1 Directory Browsing Experiment
A within-subject counterbalanced experiment with twelve

subjects was used to compare treemaps with UNIX (tcsh
shell) for directory browsing tasks. A directory hierarchy
with approximately 500 files and 50 directories was used.
Subjects answered 7 questions with each interface. Figure 7
presents a relative view of users performance and Table 2
presents a tabular view user performance measured in sec-
onds per question. Results were analyzed using a 1-way
repeated measures ANOVA.

The first 5 questions were local in scope, dealing with
particular files or directories. All local questions were cor-
rectly answered within the allotted time (5 minutes per
question). On the local questions, statistically significant
performance time differences (p = 0.05) were found for the
first two questions, which favored UNIX. Since subjects all
had at least one year of UNIX experience and no previous
experience with treemaps other than the 15 minute training
period, it is possible that this effect may have been due to
learning effects. Subjects performed comparably using either
interface on the remaining questions that were of local scope.

Since treemaps present the entire hierarchy at once it was
hypothesized that treemaps would be faster for questions that
are global in scope. Global questions dealt with portions of
the hierarchy larger that single directories. Statistically sig-
nificant performance time differences (p = 0.05) were found
for both global questions, favoring treemaps. Error rate
analysis was also used as many of the subjects were unable to
answer these questions correctly within the allotted time. Five
subjects were unable to complete either one or both of the
global questions correctly. A total of six errors were made as
one subject could answer neither of the questions. All of the
errors were made by subjects using UNIX. UNIX users made
statistically significantly more errors (p = 0.05). All users
successfully completed the global questions using the treemap
interface, demonstrating the effectiveness of treemaps for
global comparisons.

A few subjects remained after the experiment to use the
treemap technique to visualize their own personal UNIX

Figure 7: Treemap UNIX Experiment ResultsFigure 6: 2 1/2-D Treemaps

To Appear in the Proceedings of the IEEE Conference on Visualization, October 1992 Page 7

directories. Visualizing their own information from a new
perspective proved to be both interesting and exciting.

Treemaps can significantly aid such tasks as locating large
old files or clusters of files with similar attributes. Treemaps
proved to be an effective visualization tool for file hierar-
chies.

5.2 GEnie Experiment
An experiment was conducted using a top-down treemap

(Figure 5) to display financial data for the product hierarchy
of GE Information Services’ consumer information service,
the General Electric Network for Information Exchange
(GEnie). Six months of GEnie data was used — for each
product, revenue and profit figures were noted.

The experiment utilized a between-group design with 18
GEnie employees and tested two versions of the treemap
against hard-copy financial reports currently in use at GEnie.
The treemap versions included an “animated” version, in
which the data was stepped through one month at a time via
a slider, and a “small multiples” version, in which all six
months were placed side-by-side. Size, color and animation
were investigated via twelve questions on revenue, profits
and data trends. Users were timed for each question with a
maximum limit of five minutes per question. The results were
analyzed using a 1-way ANOVA.

The performance of both treemap groups was statistically
significantly faster (p = 0.05) than that of the hard-copy group
for tasks requiring users to identify global trends in revenue
and profitability across the six months. Size allowed the users
to concentrate on products of interest (products that generated
the most revenue) [7] and quickly answer questions related to
high revenue; a hindrance to this was the aspect ratio problem
mentioned earlier where products of similar revenue had to be
compared manually.

Color was a potent tool for analyzing profit changes, and
the low-saturated blues and reds (representing positive and
negative profit levels, respectively) showed up on the screen
in sharp contrast. Users found these colors satisfactory, but

several seemed to be overwhelmed by the blend at times.
Animation and zooming were used to a great extent, and users
subjectively gave these features high marks; the problems
mentioned above with relative animation surfaced here, how-
ever, and contributed to some high response times for treemaps.

Subjectively, there was a strong preference for the ani-
mated treemaps in terms of screen layout, information con-
veyed and capabilities. We did discover a tendency to not
“trust” the diagram in the initial questions, given users’ lack
of experience with treemaps (even with training) and the
aspect ratio problem mentioned above. This caused the treemap
users’ times to be skewed upward in those questions. The
tendency disappeared in the latter half of the experiment.

6 Conclusion
Treemaps represent a unique approach to effectively com-

municating information about large hierarchies, which con-
tain information that users may previously have gleaned over
a long period of time or overlooked entirely. Providing users
with the capability to display the entire hierarchy allows
information to be drawn from it that may not have been
obvious via traditional means. Applications include file hier-
archies, organizational charts, medical clinical trials, sales
figures, stock portfolio analysis, budget allocations — there
are many possibilities. As information spaces grow in size
and complexity, the need for data visualization tools will only
increase.

Acknowledgments
Supported in part by the University of Maryland Systems

Research Center under NSF Grant CDR-88-03012.
We would like to acknowledge the support of the members

of the Human-Computer Interaction Lab, whose suggestions
and criticisms have been greatly appreciated.

The TreeViz application, developed at the HCIL for the
Macintosh, is distributed by the University of Maryland’s
Office of Technology Liaison, College Park, MD, 20742.

Table 2: Treemap vs. UNIX Experiment Results (in seconds per question)

Treemap Interface Unix Interface
Subject Group 1 2 3 4 5 6 7 Total 1 2 3 4 5 6 7 Total

1 TA 21 15 61 21 19 38 114 289 13 12 48 21 16 95 167 371
5 TA 13 57 55 25 32 93 62 337 23 33 79 48 24 300 169 676
9 TA 160 23 32 15 12 277 67 586 15 14 35 9 17 117 71 277
3 TB 23 47 37 16 40 12 24 199 15 27 120 94 27 265 197 745
7 TB 26 12 36 16 25 37 60 211 7 7 41 13 20 300 300 688

11 TB 26 34 32 20 16 22 42 191 14 9 50 10 17 152 300 552
2 UA 42 16 29 55 16 29 41 227 9 15 43 14 11 39 168 298
6 UA 48 73 37 18 21 50 40 288 9 22 34 27 14 300 275 680

10 UA 44 13 41 18 23 21 29 41 19 18 20 17 10 300 215 600
4 UB 42 54 92 13 11 61 148 420 6 14 15 14 9 102 42 202
8 UB 30 16 52 64 10 26 40 235 35 24 28 109 51 117 48 412

12 UB 46 16 50 23 25 25 22 206 26 20 57 14 25 171 31 345

Ave 43 31 46 25 21 58 57 269 16 18 48 32 20 188 165 487
StDev 38 21 18 16 9 73 38 136 9 8 29 34 11 98 99 190

To Appear in the Proceedings of the IEEE Conference on Visualization, October 1992 Page 8

References
[1] D. Beard and J. Walker II. Navigational techniques to improve

the display of large two-dimensional spaces. Behavior &
Information Technology, 9(6):451-466, 1990.

[2] A. Buja, J. McDonald, J. Michalak, and W. Stuetzle. Interactive
Data Visualization using Focusing and Linking. IEEE Visual-
ization ’91, 156-163, 1991.

[3] D. Cox. The art of scientific visualization. Academic Comput-
ing, p. 20, March 1990.

[4] C. Ding and P. Mateti. A framework for the automated drawing
of data structure diagrams. IEEE Transactions on Software
Engineering, 16(5):543-557, May 1990.

[5] R. Ellson. Visualization at work. Academic Computing, p. 26,
March 1990.

[6] W. Feeney. Gray Scale Diagrams as Business Charts. IEEE
Visualization ’91, 140-147, 1991.

[7] G. Furnas. Generalized fisheye views. ACM CHI’86, 16-23.
1986.

[8] T. Henry and S. Hudson. Viewing large graphs. Technical
Report 90-13, University of Arizona, May 1990.

[9] B. Johnson and B. Shneiderman. Tree-Maps: A Space-Filling
Approach to the Visualization of Hierarchical Information
Structures. IEEE Visualization ’91, 284-291, 1991.

[10] T. Mihalisin, J. Timlin, and J. Schwegler. Visualization and
Analysis of Multi-variate Data: A Technique for All Fields.
IEEE Visualization ’91, 171-178, 1991.

[11] G.. Robertson, J. Mackinlay, and S. Card. Cone trees: Ani-
mated 3d visualizations of hierarchical information. ACM
CHI’91, 189-194. 1991.

[12] B. Shneiderman. Personal Communication, 1991.

[13] B. Shneiderman. Tree visualization with tree-maps: A 2-D
space-filling approach. ACM Transactions on Graphics, Janu-
ary 1992.

[14] M. Travers. A visual representation for knowledge structures.
ACM Hypertext’89, 147-158. 1989.

[15] E. R. Tufte. The Visual Display of Quantitative Information.
Graphics Press, Cheshire, CT, 1983.

[16] C. Williamson and B. Shneiderman. The Dynamic Homefinder:
Evaluating Dynamic Queries in a Real-Estate Information
Exploration System. ACM SIGIR ’92, 1992.

Figure 8: Slice-and-Dice Treemap
 Macintosh file hierarchy with 1500 files and 190 directories.

Notice the duplicate directory at the top level which contains a copy of the system file.

NameSize Scaled WeightPath Information CreatorType Creation DateModification Date UnknownTextGraphicsArchives/Stacks ProgrammingApplicationsSystemBorder Color

