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Chapter 1: Introduction

We consider proper affine isometric actions of a non-solvable group Γ′ gener-

ated by torsion elements on R3. Specifically, we are interested in the case where Γ′

is isomorphic to the group Z/2Z ∗Z/2Z ∗Z/2Z generated by three non-commuting

elements of order two. We classify when such actions admit crooked fundamental

domains.

The group Z/2Z ∗Z/2Z ∗Z/2Z contains a free non-abelian subgroup of index

two. Denote such a group by F2. The corresponding subgroup Γ ∼= F2 of Γ′ acts

without fixed points, and the quotient M := R3/Γ is a geodesically complete flat

affine manifold.

By [1], M has a Lorentzian structure. Moreover, M is homotopy equivalent to

a complete noncompact hyperbolic surface Σ as follows. The linear part of Γ, which

we denote Γ0, is a discrete group that acts on the hyperbolic plane H2 by isometries.

We define Σ := H2 /Γ0. For any affine group G, we let the notation G0 denote its

linear part. We say that G is an affine deformation of G0. Similarly, we say that

M is an affine deformation of Σ. We say that Γ is a proper affine deformation if it

acts properly on R3.

The linear part Γ′0 of Γ′ is a discrete involution group acting on H2 and
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containing Γ0 as an index two subgroup. In Chapter 2, we describe a construc-

tion following [2, 3] of moving from representations of F2 to representations of

Z/2Z ∗ Z/2Z ∗ Z/2Z. This construction is called a Coxeter extension. Γ′ is a

Coxeter extension of Γ, and Γ′0 is a Coxeter extension of Γ0.

We restrict ourselves to the case where Γ0 is convex cocompact. This allows

us to invoke the Crooked Plane Theorem, due to Danciger, Guéritaud, and Kas-

sel, which states that the action of Γ necessarily admits a polyhedral fundamental

domain bounded by piecewise-linear topological planes called crooked planes.

Proper affine actions by torsion groups like Γ′, however, need not admit such

domains. Charette [4] constructed an example of a group generated by three reflec-

tions whose action does not admit a crooked fundamental domain. In her case, the

linear holonomy Γ0 was the holonomy group of a three-holed sphere.

In this thesis, we describe all actions of Γ′ that admit crooked fundamental

domains. There are four cases to consider, corresponding to the four surfaces Σ

with fundamental group isomorphic to F2. Equivalently, these are the surfaces

whose Euler characteristic is −1.

Let Σg,n denote an orientable surface of genus g with n holes. Let Cg,n denote

a non-orientable surface of genus g with n holes. The surfaces under consideration

are:

• The three-holed sphere, Σ0,3.

• The one-holed torus, Σ1,1.

• The two-holed projective plane, C1,2.
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• The one-holed Klein bottle, C2,1.

As we have already mentioned, the case of the three-holed sphere originally appears

in the work of Charette [4,5]. The case of the two-holed projective plane appears in

joint work with Goldman [6] on which part of Chapters 3 and 5 are based.

For each surface, we give an explicit description of the space of affine Coxeter

extensions that admit crooked fundamental domains. We also prove a characteriza-

tion of when an affine deformation of a Coxeter extension fails to admit a crooked

fundamental domain in terms of its mapping class group MCG±(Σ).

Definition 1.0.1. The mapping class group MCG±(Σ) of a surface Σ is the group

of isotopy classes of diffeomorphisms of Σ:

MCG±(Σ) := Diff(Σ)/Diff0(Σ)

where Diff0(Σ) is the group of diffeomorphisms isotopic to the identity.

In many contexts, for example in [7], the mapping class group is taken to

be the group of isotopy classes of orientation-preserving diffeomorphisms. We allow

orientation-reversing diffeomorphisms since some of the surfaces we are interested in

are non-orientable. The group MCG±(Σ) is sometimes called the extended mapping

class group. The notation MCG± emphasizes that mapping classes can reverse

orientation. Note that a general element of MCG±(Σ) may permute the boundary

components of the convex core of Σ.

Theorem 1.0.2. Every affine deformation Γ′ of the Coxeter extension Γ′0 admits

a crooked fundamental domain if and only if the (extended) mapping class group
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MCG±(Σ) acts transitively on the top-dimensional simplices of the arc complex of

Σ.

The top-dimensional simplices of the arc complex correspond to hyperideal

triangulations of Σ. Since fundamental domains for the action of Γ′0 on H2 are

built from hyperideal triangles, every such fundamental domain corresponds to a

two-simplex, or tile, of the arc complex. Theorem 1.0.2 can be interpreted as an

assertion that Γ′ fails to admit a crooked fundamental domain exactly when the

corresponding hyperideal triangulation of Σ fails to be a fundamental domain for

Γ′0.

Theorem 1.0.2 implies that when Γ0 is the holonomy group of a one-holed

torus, Γ′ necessarily admits a crooked fundamental domain. For the three remaining

surfaces, it is possible to construct affine deformations Γ′ that act properly but admit

no such domain.

The action of the linear Coxeter extension Γ′0 on H2 always admits a funda-

mental polygon τ . We take τ to be an ultraideal triangle, meaning its sides are

pairwise ultraparallel. A generator of Γ′0 is a reflection if it reverses the orientation

of H2 or an elliptic element of order two if it preserves orientation. Each reflection

fixes a line in H2 point-wise. Each elliptic element of order two fixes a point p in

the interior of H2 and reverses every line through p. We say that such an element

is a point symmetry in the point p.

Denote the projection onto the linear factor of Aff(R3) by L. Then L(Γ) = Γ0.

If C is a crooked plane, then L (C ) can be interpreted as a geodesic in H2. A crooked
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fundamental domain for Γ′ linearizes under this operation to a fundamental domain

in H2 for the action of Γ′0.

Definition 1.0.3. Let C = {C1,C2,C3} be a triple of crooked planes in R3. We say

that C is a crooked realization of τ if

• C1,C2, and C3 are pairwise disjoint.

• L(C1),L(C2), and L(C3) are the sides of τ .

Theorem 1.0.4. Let τ be a fundamental domain for the action of Γ′0. Let Σ =

H2 /Γ0. Then the space of crooked realizations of τ is the interior of a cone inscribed

in the space of all proper affine deformations of Γ0. This cone is

• Six-sided if Σ is a three-holed sphere.

• Three-sided if Σ is a one-holed torus.

• Five-sided if Σ is a two-holed projective plane.

• Four-sided if Σ is a one-holed Klein bottle.

Each cone has a vertex at the origin, which does not correspond to a proper

affine deformation. The space of proper affine deformations of Σ is also the interior

of a cone. Quotienting by the action of scalars on the space of affine deformations,

the cones become convex sets in RP 2. The projectivized images of the cones in

Theorem 1.0.4 are polygons inscribed in the projectivized space of proper affine

deformations of Σ, which itself need not be finite-sided.
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The polygons can be viewed as blunted two-simplices, where one vertex of

the triangle is blunted for each generator of Γ′0 that is a reflection. When Γ0 is

the holonomy group of a one-holed torus, every generator is elliptic and no blunting

occurs. When Γ0 is the holonomy group of a three-holed sphere, then every generator

of Γ′0 is a reflection and so all sides are blunted, resulting in a hexagon.

The blunting corresponds to a projective interval’s worth of choice of direction

in which to move crooked planes apart. The space of directions one can translate a

crooked plane to make it disjoint from its two neighbors is called the stem quadrant,

to be defined in Chapter 2. The blunting can be removed by making a consistent

choice of direction in each stem quadrant rather than considering the space of all

possible directions simultaneously.

Finally, we describe the space of all affine deformations of Γ′0 that admit a

crooked fundamental domain. For an ultraideal triangular fundamental domain τ

for the action of Γ′0, let [τ ] be the set of all isotopy classes of τ such that each

representative of [τ ] is a fundamental domain for Γ′0. Let Crook([τ ]) be the set of all

crooked realizations of choices of geodesic representatives for any choice of τ ∈ [τ ].

Theorem 1.0.2 is really a corollary of the following more precise statement.

Theorem 1.0.5. The space of affine deformations of Γ′0 that admit crooked funda-

mental domains is the orbit of Crook([τ ]) under the action of MCG±(Σ).

The polygons in the orbit may intersect non-trivially due to blunting. However,

one may obtain non-intersecting polygons by consistently choosing directions in the

stem quadrants and being careful about the choice of geodesic representatives for
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the sides of τ .

1.1 Motivation

For our four surfaces, the action of Γ0 on the Nielsen convex region in H2 ad-

mits a quadrilateral fundamental domain with deleted vertices. For the genus g ≥ 1

surfaces, these are the familiar quadrilateral domains for T2, RP 2 and the Klein

bottle with the corners removed. This is, of course, a consequence of the classical

theorem that every compact surface admits a canonical polygonal fundamental do-

main that can be turned into a fundamental domain for a noncompact surface by

deleting the vertices (see e.g. [8] for an excellent historical account).

Since the fundamental group of every Margulis spacetime is isomorphic to the

fundamental group of a noncompact surface, one might hope to build crooked fun-

damental domains based on the classical polygonal domains. Determining whether

n crooked planes are disjoint is a non-trivial problem (e.g. [9]). Determining when

three crooked planes are disjoint is, however, rather tractable. Thus one might hope

to build a theory of crooked fundamental domains for Margulis spacetimes by work-

ing first with crooked triangular domains for the Coxeter extensions for surfaces of

rank two.

This strategy does not work in complete generality, as Charette showed in the

case of the three-holed sphere. It does work for the case of the one-holed torus. We

show that it fails for the remaining two surfaces and also describe necessary and

sufficient conditions for the strategy to succeed in terms of combinatorial properties
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of systems of arcs on the surfaces.

Note that the sides of the polygons with deleted vertices project to properly

embedded geodesic arcs in the quotient. This provides a description of the fun-

damental domains in the language of the arc complex. The arc complex A (Σ)

identifies with the space of proper affine deformations of Σ by [10].

A

B BΣ1,1

A

A

B

B

AC2,1

B

B

A

AΣ0,3

A

A

B BC1,2

Figure 1.1: Quadrilateral domains for the four surfaces.

When π1(Σ) is free of rank two, A (Σ) is dual to the flip graph of Σ. The

vertices of this graph are hyperideal triangulations, and two vertices share an edge

if and only if the triangulations differ by a diagonal flip.

The extended mapping class group MCG±(Σ) acts on A (Σ) by automor-

phisms. We show that the failure of the Coxeter extension strategy can be read

directly off of the arc complex by observing that for three of the four surfaces, this
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action is not transitive on the top-dimensional simplices.

1.2 Plan of Thesis

Chapter Two introduces the necessary tools of affine geometry. A theorem

of Fried-Goldman implies that we only need to consider Minkowski space, which is

a 3-dimensional real vector space with a signature (2, 1) inner product. We first

review some basic properties of this space, such as the inner and cross products. We

consider important groups of affine isometries and discuss the identification of the

hyperbolic plane H2 with translational equivalence classes of timelike geodesics. We

also introduce crooked planes, which play a central role in this thesis. We describe

a criterion that tells us when triples of crooked planes are disjoint.

Chapter Three begins the study of torsion. We consider the theory of Coxeter

extensions of free groups of rank 2. If Σ is a hyperbolic surface with χ(Σ) = −1,

then π1(Σ) ∼= F2. This group can be extended by the addition of an involution that

reverses two preferred generators. The geometric version of this construction allows

us to extend a representation ρ0 : F2 → Isom(H2) to a representation

ρ′ : Z/2Z ∗ Z/2Z ∗ Z/2Z→ Isom(H2).

The quotient space H2 /Γ′0 has singular points and so is not a manifold. The

algebraic theory allows us to perform the same Coxeter extension construction to

free groups of affine transformations. Thus we can study the space of proper affine

deformations of the Coxeter group with a fixed covering surface. Because the Coxeter

group fixes points in R2,1, the quotient affine space again fails to be a manifold. In
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particular, it is not a Margulis spacetime and so the Crooked Plane Theorem does

not apply. This opens the question of when such actions admit crooked fundamental

domains.

Chapter Four introduces some useful tools for the study of proper affine defor-

mations. Danciger, Guéritaud, and Kassel have shown that the projectivized space

of proper affine deformations for any convex-cocompact surface is isomorphic to the

arc complex of that surface. Surfaces of Euler characteristic −1 have especially nice

arc complexes in that they are two-dimensional. For the four surfaces under consid-

eration, the automorphism group of the arc complex identifies with the quotient of

the mapping class group by its center. This will be useful for characterizing crooked

realizations of fundamental domains.

Chapter Five parametrizes the spaces of crooked fundamental domains for the

four Euler-characteristic -1 surfaces. We describe the space of crooked fundamental

domains for each type of surface, and prove that there are proper actions of Coxeter

groups in the three-holed sphere, two-holed projective plane, and one-holed Klein

bottle case that do not admit crooked fundamental domains. Every properly-acting

Coxeter extension of the one-holed torus does admit a crooked fundamental domain.
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Chapter 2: Minkowski Space, Affine Maps, Crooked Planes

In this chapter, we discuss some basic facts about Margulis spacetimes and

related group actions. Many of the facts about affine Lorentzian geometry can be

found in [11]. A discussion of Lorentzian vector spaces and their connection with

hyperbolic space can be found in [12].

2.1 Affine Representations

Any complete affine manifold M is the quotient of an affine space by a discrete

group Γ of affine transformations whose action is proper and free of fixed points. In

three dimensions, Fried and Goldman [1] and Mess [13] together imply that either

Γ is solvable or it is virtually free.

The case where Γ is solvable was solved in [1]. They show that M admits a

finite covering homeomorphic to the total space of a fibration composed of points,

circles, annuli and tori. In the case where Γ is virtually free, Fried and Goldman [1]

showed that up to conjugation, Γ must preserve an inner product of signature (2, 1).

Let R2,1 denote the vector space R3 with the inner product given by

v · w = v1w1 + v2w2 − v3w3.

Let E2,1 denote the affine space modeled on R2,1. We can think of R2,1 as the group
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of translations acting on E2,1. A choice of a distinguished point o ∈ E2,1 identifies

E2,1 with R2,1 by sending o to the origin. Making a different choice corresponds to

conjugating by a translation. We will typically identify E2,1 with R2,1 by implicitly

choosing an origin.

Denote the space of affine isometries of R2,1 by Aff(2, 1). This decomposes as

the semidirect product Aff(2, 1) = O(2, 1)nR2,1. Let L : Aff(2, 1)→ O(2, 1) denote

projection onto the first factor. By Let G be any group and φ : G → Aff(R2,1) a

representation. The map L defines a representation of G into O(2, 1):

Φ = L ◦ φ : G→ O(2, 1).

We call Φ the linear part of φ. The translational part of φ is denoted u : G→ R2,1

is defined by

φ(g)(x) = Φ(g)(x) + u(g).

We write φ = (Φ, u) and say that φ is an affine deformation of Φ.

The translational part u satisfies a cocycle condition

u(g1g2) = u(g1) + Φ(g1)u(g2).

Conjugation by a translation changes φ by a coboundary. Translational conjugacy

classes identify with the cohomology H1(Γ,R2,1). See [14].

An affine deformation φ = (Φ, u) is called proper if φ(G) acts properly discon-

tinuously on R2,1.
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2.2 Geometry of R2,1

The following definitions are standard.

Definition 2.2.1. Let v ∈ R2,1 \ {0}. We say that v is

• spacelike if v · v > 0,

• timelike if v · v < 0,

• lightlike or null if v · v = 0.

There is a Lorentzian cross product �, defined as the unique map satisfying

(u� v) · w = det(u, v, w).

In particular, u� v is Lorentz-orthogonal to both u and v. A useful formula is the

following, for vectors u1, u2, v1, v2 ∈ R2,1.

(u1 � v1) · (u2 � v2) = −(u1 · u2)(v1 · v2) + (u2 · v2)(v1 · u2). (2.1)

Denote the set of timelike vectors by T and the set of null vectors by N .

The space T has two connected components. Select the component containing

the vector


0

0

1

 to be the future. Any other timelike vector in the same connected

component will be called future-pointing, and vectors in the other component are

called past-pointing. A choice of future direction is called a time orientation.

If v ∈ R2,1 is spacelike, then v⊥ is an indefinite plane. In this case,
(
v⊥ ∩N

)
∪

{0} consists of two null lines, which we will call n− and n+. Choose future-pointing
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null vectors v− and v+ that span n− and n+ respectively. For example, choose v−

and v+ to have unit length in the standard Euclidean dot product. Then v− and

v+ (and also n− and n+) are uniquely determined by requiring that {v−, v+, v} is a

right-handed basis for R2,1.

The projective or Klein-Beltrami model of the hyperbolic plane classically

identifies with P(T ). This can be adapted to the affine setting by identifying a point

in H2 with translational equivalence classes of timelike lines in E2,1. Translational

equivalence classes of null lines identify with the ideal boundary ∂∞H2.

Geodesics in H2 correspond to parallelism classes of linear planes intersecting

T . These in turn correspond to translational equivalence classes of spacelike lines

in E2,1. If vR is a spacelike line, its dual geodesic in H2 is [v⊥ ∩ T ]. A spacelike

vector s ∈ R2,1 defines an oriented geodesic g in H2 by orienting g from s− to s+.

Recall that if g1 and g2 are geodesics in H2, then they are parallel if they do not

intersect in H2. They are called asymptotically parallel if the geodesics “intersect”

at a point in ∂∞H2. Otherwise they are called ultraparallel. Two geodesics admit a

common perpendicular if and only if they are ultraparallel.

Let s1 and s2 be spacelike vectors dual to the hyperbolic geodesics g1 and g2.

Then g1 and g2

• are asymptotically parallel if and only if s1 � s2 is null,

• are ultraparallel if and only if s1 � s2 is spacelike, and

• intersect if and only if s1 � s2 is timelike.

If s1 � s2 is timelike, then the equivalence class [s1 � s2] ∈ H2 is g1 ∩ g2.
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2.3 The Isometry Group Aff(2, 1)

The group O(2, 1) has four connected components corresponding to whether

a matrix A ∈ O(2, 1) preserves or reverses orientation and preserves or reverses the

time orientation. The group SO(2, 1) of orientation-preserving matrices has two

connected components. The identity component SO(2, 1)0 consists of elements that

preserve both orientation and time orientation. Its complement SO(2, 1) \ SO(2, 1)0

preserves orientation but reverses time orientation. Every Margulis spacetime is

orientable [15], so if ρ : G→ Aff(2, 1) is the holonomy representation of a Margulis

spacetime, then the image of L ◦ ρ is contained in SO(2, 1).

An element of SO0(2, 1) preserves time orientation, and so preserves each

component of T . It acts on H2 by orientation-preserving isometries. The map

SO0(2, 1) → PSL(2,R) is an isomorphism of Lie groups. An element of SO(2, 1) \

SO(2, 1)0 reverses the past and future but preserves the set T . Its elements act by

orientation-reversing isometries of H2.

We call an element A ∈ SO0(2, 1) hyperbolic, parabolic, or elliptic depending

on whether its isomorphic image in PSL(2,R) is. Similarly, we say an affine trans-

formation (A, v) ∈ SO0(2, 1) nR2,1 is hyperbolic, parabolic, or elliptic depending on

whether A is hyperbolic, parabolic or elliptic.

If a discrete group Γ < O(2, 1) nR2,1 acts properly, then its linear part Γ0 :=

L ◦ Γ acts properly on H2. The quotient Σ := H2 /Γ0 is a hyperbolic surface.

Mess [13] showed that Σ must be non-compact. By the classification of surfaces,

Γ0
∼= π1(Σ, ∗) is a non-abelian free group on some number of generators.
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A hyperbolic X ∈ SO0(2, 1) has a unique 1-eigenspace that is spacelike. We

choose a unit vector X0 in this eigenspace by requiring

• det(t,X(t), X0) > 0 for any timelike vector t, and

• X0 ·X0 = 1.

The action of X on H2 leaves fixed a geodesic called its invariant axis. We denote

the axis of X by Axis(X). Axis(X) is dual to the spacelike vector X0. Similarly, if

X is a glide reflection then its axis is well-defined and dual to X0.

For nonzero u ∈ R2,1 \N consider the involution Inv(u) ∈ O(2, 1) defined by

Inv(u) : v 7→ −v + 2
v · u
u · u

u.

This maps a spacelike or timelike vector to an involution in the line Ru. If u is

spacelike, then Inv(u) is called a (linear) spine reflection in [16]. In this case Inv(u)

acts on H2 as a reflection in the geodesic dual to u. If u is timelike, then Inv(u) is

an elliptic element of order two fixing the point p := [u] ∈ H2. We call this a point

symmetry in the point p.

For w ∈ R2,1, let τw denote translation by w: τw(v) = v + w. Define

Inv(u,w) := τw ◦ Inv(u) ◦ τw−1 .

Then Inv(u,w) is an involution in the line w + Ru.

2.4 Proper actions and the Margulis Invariant

The existence of proper affine actions of free groups on R3 was originally

demonstrated by Margulis using a Lorentzian generalization of the Riemannian
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length spectrum. This invariant now bears his name. The Margulis invariant is

defined for hyperbolic isometries, although see [17] for a partial generalization to

parabolic elements. Given a hyperbolic isometry X and any nonzero point p ∈ R2,1,

the Margulis invariant can be computed as

α(X) = (X(p)− p) ·X0.

The Margulis invariant α(X) is the signed Lorentzian length of a closed geodesic in

R2,1/〈X〉.

Margulis [18, 19] proved the following useful lemma.

Lemma 2.4.1 (Opposite Sign Lemma). Let γ1 and γ2 be hyperbolic elements of

Aff(2, 1). If 〈γ1, γ2〉 acts properly then either α(γ1) and α(γ2) are both positive, or

they are both negative.

As is customary in the literature, we assume that α(γ) > 0 for all hyperbolic

γ ∈ G. The case where α(γ) < 0 follows with a relatively minor adjustments.

We can think of α as a function of Γ0 and H1(Γ0,R2,1) by defining for g ∈ Γ0

α[u](g) := α((g, u(g)).

For fixed g ∈ Γ0
∼= F2, the map αg : H1(Γ0,R2,1)→ R defined by

αg([u]) := α[u](g)

is linear. Choose a basis A,B for Γ and define C = B−1A−1. Then the Margulis

invariants of A,B, and C determine an isomorphism of vector spaces:

H1(Γ0,R2,1) ∼= R3,
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given by

[u] 7→


α[u](A)

α[u](B)

α[u](C)

 .

This theory is well developed in [3,15,20], see also [2] for the description of how the

above isomorphism relates to the parametrization of the Fricke space of Σ by traces.

2.5 Crooked Planes and Fundamental Domains

Drumm introduced crooked planes in the early 1990s as a tool for constructing

proper affine actions of non-solvable groups based on templates for fundamental

domains in H2. Recall that in the Riemannian setting, convex fundamental domains

can be constructing algorithmically using equidistant surfaces. This procedure fails

in the pseudo-Riemannian setting, but crooked planes offer a useful partial analog.

Specifically, a crooked plane divides R2,1 into topological halfspaces, called

crooked halfspaces. By keeping track of the image of these halfspaces, Drumm [21]

showed a crooked version of the classical Schottky theorem on fundamental domains.

Moreover, Drumm showed that every discrete free subgroup of SO0(2, 1) is the linear

part of the holonomy of a Margulis spacetime. The theory of crooked halfspaces is

closely studied in [22].

A crooked plane is determined by a spacelike vector, called its direction vector,

and a point, called its vertex. For a point p and a spacelike vector v, define the
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crooked plane C (v, p) as the union of two wings

p+ R+v
+ + R+v

p+ R+v
− − R+v

and a stem

p+
{
x ∈ R2,1 | v · x = 0, x · x ≤ 0

}
.

Crooked planes have a useful interpretation in the language of hyperbolic geometry,

although we will not need it here. The direction vector is dual to a hyperbolic

geodesic `. The vector space R2,1 identifies with the Lie algebra of PSL(2,R), and

under this identification a crooked plane is the set of all Killing fields with a non-

repelling fixed point on ` (see [10]).

For a crooked plane C = C (v, p), we define its linearization L(C ) to be its

direction vector v:

L(C (v, p)) := v.

We identify the linearization of a crooked plane with an oriented geodesic in H2.

If u is spacelike, then Inv(u) fixes the crooked plane C (s, p) if and only if

s = u. If u is timelike, then Inv(u) fixes C (s, p) if and only if u ∈ s⊥. This happens

if and only if the point [u] ∈ H2 lies in the H2 geodesic dual to s. A fundamental

domain for 〈Inv(u)〉 in either case is given by either crooked half-space bounded by

any crooked plane fixed by Inv(u).

For building fundamental domains, it is important to know when two crooked

planes are disjoint. This question has been studied in some detail, for example in [9].
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An especially useful criterion is the following characterization in terms of triangles

in H2, due to [20].

Let s1, s2, s3 be the sides of an ideal triangle, with the possibility that si may

be ultraparallel to sj. The crooked planes {C (si, 0)} directed by the si and vertexed

at the origin are obviously not disjoint. Not only do they intersect at the origin,

but if si and sj are asymptotically parallel, then C (si) and C (sj) share a wing.

Translating each crooked plane in a consistent choice of direction of its stem

s− − s+ makes the translated planes disjoint. More generally, we can move them in

the direction as−− bs+, a, b ∈ R+. The set of all linear combinations of this form is

called the stem quadrant. The disjointness criterion formalizes this idea.

Before a formal statement of the criterion, we need a technical definition.

Definition 2.5.1. Spacelike vectors v1, . . . , vn ∈ R2,1 are consistently oriented if

and only if whenever i 6= j,

• vi · vj < 0

• vi · v±j ≤ 0.

Theorem 2.5.2 (Disjointness Criterion). Let v1, v2 ∈ R2,1 be consistently-oriented

spacelike ultraparallel or asymptotically parallel vectors. Let

pi = aiv
−
i − biv+i .

Then the crooked planes C (vi, pi) are disjoint if ai, bi > 0 for i = 1, 2.
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Chapter 3: Coxeter Extensions

In this chapter, we introduce the necessary formalism for moving between

representations of F2 and representations of G = Z/2Z ∗ Z/2Z ∗ Z/2Z. For this,

we need to work with representations into SL(2,C). The correspondence between

the hyperbolic plane and equivalence classes of timelike vectors in R2,1 induces an

identification Isom(H2) ∼= SO(2, 1).

Since F2 is a free group, every representation F2 → PSL(2,R) ∼= Isom+(H2)

lifts to a representation into SL(2,C). We can represent orientation-reversing isome-

tries of H2 as purely imaginary matrices of the form iP , P ∈ SL(2,R). The matrix

iP corresponds under the identification with SO(2, 1) to a matrix that preserves

orientation but reverses time orientation; that is, an element of SO(2, 1) \SO0(2, 1).

3.0.1 Extensions of F2 Representations

Let ε ∈ Aut(F2) be the automorphism satisfying ε(A) = A−1, ε(B) = B−1.

The semi-direct product F′2 = F2 nε Z2 is isomorphic to G:

F ′2 = 〈A,B, ι0 | ι20 = 1, ι0Aι0 = A−1, ι0Bι0 = B−1〉

∼= 〈ι1, ι2, ι0 | ι21 = ι22 = ι20 = 1〉
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where the images of A and B under the inclusion F2 ↪→ F′2 are given by

A 7→ ι1ι0 (3.1)

B 7→ ι0ι2. (3.2)

We say that F′2 is a Coxeter extension of F2. An irreducible representation ρ0 : F2 →

SL(2,C) admits a unique Coxeter extension. See [2, 3].

If Γ0 is a Fuchsian group free of rank two, then we can always take its Coxeter

extension Γ′0. We can take an affine deformation Γ′ of Γ′0, and this is the same as

taking the Coxeter extension of an affine deformation Γ of Γ0. That is, the following

diagram commutes:

Γ0

��

// Γ

��
Γ′0 // Γ′

We call Γ′ an affine Coxeter extension of Γ0. If Γ′ acts properly we call it a proper

affine Coxeter extension.

3.0.2 Computations in Coxeter Extensions

For hyperbolic elements A,B ∈ SL(2,C), the Lie product Lie(A,B) = AB −

BA is the unique involution whose conjugation action reverses A and B. It follows

that the element ι0 in the Coxeter extension can be computed as

ι0 = Lie(A,B)

See [2] for additional details.
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It is sometimes convenient to also define

C := B−1A−1 = ι2ι1

and to use the presentation F2 = 〈A,B,C | ABC = 1〉. For example, when ρ : F2 →

SO(2, 1) is the holonomy of a three-holed sphere, then ρ(A), ρ(B), and ρ(C) are the

holonomies of the boundary curves.

The following facts can be verified by simple computation, but will be useful for

understanding the geometry of Coxeter extensions of Fuchsian F2 representations.

For the computations in this section, it is convenient to use the notation ιA := ι1,

ιB := ι2.

Proposition 3.0.1. Let G = 〈ιA, ιB, ι0 | ι2A = ι2B = ι20 = 1〉. Let F = 〈A,B〉 be the

index two free group defined by A = ιAι0, B = ι0ιB. Define C = B−1A−1 = ιBιA.

Then

• ι0Aι0 = A−1, ι0Bι0 = B−1

• ιAAιA = A−1

• ιBBιB = B−1

• ιACιA = ιBCιB = C−1.

Proposition 3.0.2. Let A and B be hyperbolic elements of SO0(2, 1). Then

• Lie(A,B) is a reflection if the invariant axes of A and B are ultraparallel.

• Lie(A,B) is elliptic if the invariant axes of A and B intersect.
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Proof. Define ι0 = Lie(A,B). Since ι0 reverses A and B, it conjugates them to

hyperbolic transformations A−1, B−1 with the same axes as A and B but in the

opposite direction. It follows that ι0 is an involution that reverses the geodesics

Axis(A) and Axis(B).

If the geodesics do not intersect, ι0 must be a reflection through a line inter-

secting Axis(A) and Axis(B) transversely. If the axes intersect in a point, ι0 must

fix that point. Thus ι0 is an elliptic element of order two, and must be a point

symmetry in Axis(A) ∩ Axis(B).

We can extend automorphisms of F2 to automorphisms of its Coxeter exten-

sion:

Proposition 3.0.3. Let φ ∈ Aut(F2). Then

• We can extend φ to Aut(F′2) by defining

φ′ := φ ◦ ε ◦ φ−1.

• If ρ : F2 → SL(2,C) is an irreducible representation and ρ′ : F′2 → SL(2,C) is

its Coxeter extension, then

φ′(ι0) = Lie(φ(A), φ(B)).

• Assume φ is an outer automorphism induced by a mapping class of H2 /ρ(F2).

Then φ′(ι0) is a reflection (respectively, point symmetry) if and only if ι0 is a

reflection (respectively, point symmetry).
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Proof. We need to check that φ′ reverses φ(A) and φ(B):

φ′(φ(A)) = (φ ◦ ε ◦ φ−1)(φ(A))

= (φ ◦ ε)(A)

= φ(A−1)

= φ(A)−1

and similarly for φ(B).

The element φ′(ι0) must be the unique element in SL(2,C) reversing φ(A) and

φ(B). Since Lie(φ(A), φ(B)) reverses A and B, we have φ′(ι0) = Lie(φ(A), φ(B)).

Since φ is induced by an element of the mapping class group, it preserves

geometric intersection number. Now apply Proposition 3.0.2.

The images of ιA and ιB under φ′ can be computed as

φ′(ιA) = φ(A)φ′(ι0)

φ′(ιB) = φ′(ι0)φ(B).

3.1 Coxeter Extensions of the Four Surfaces

We now describe Coxeter extensions of the four surfaces with fundamental

group free of rank 2. These descriptions will be used in Chapter 5 to describe the

space of proper affine Coxeter extensions whose actions admit crooked fundamental

domains. We start with a fixed representation Γ0 for each surface as well as a set of

generators A, B.
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In addition, we parametrize the possibilities for ultraideal triangles τ that

bound a fundamental domain for the action of the Coxeter extension Γ′0 subject to

the constraint that the generators ιA, ιB and ι0 each pair a side of τ to itself. Since

a fundamental domain by definition contains only one representative of each orbit,

any point fixed by an element of Γ′0 must lie on the sides of τ .

We will see that the sides of the ultraideal triangles τ intersect the lifts of the

boundary curves for Σ. They project to proper arcs in the quotient. We also refer

to the sides of τ as arcs except where this would cause confusion.

3.1.1 Three-Holed Sphere

Let Σ be a three-holed sphere with holonomy group Γ0. We take a presentation

Γ0 = 〈A,B〉 where A and B are hyperbolic isometries with ultraparallel axes. Define

C = (AB)−1, so that ABC = 1. Then A, B, and C correspond to the boundary

curves of Σ. We show that Γ′0 is generated by three reflections ιA, ιB, ι0.

By Proposition 3.0.2, ι0 is a reflection. By Proposition 3.0.1, ιA reverses the

hyperbolic elements A and C whose axes do not intersect, so it is a reflection through

a geodesic transverse to Axis(A) and Axis(C). Similarly, ιB is a reflection through

a geodesic transverse to Axis(B) and Axis(C). In fact, the geodesics fixed by ιA,

ιB, and ι0 are the common perpendiculars to the axes of A,B and C.
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3.1.1.1 Fundamental Triangle for the Three-Holed Sphere

There is exactly one candidate for τ given by the geodesics fixed by the reflec-

tions ιA, ιB, and ι0. Conversely, starting with an ultraideal triangle, the reflections

in the sides of the triangle determine a Coxeter group that is the Coxeter extension

of the holonomy group of a three-holed sphere. It is well known that the Fricke

space for a three-holed sphere is parametrized by the lengths of the three mutual

perpendiculars to the lines fixed by the reflections.

3.1.2 One-Holed Torus

Let Σ be a one-holed torus with holonomy group Γ0. We can take Γ0 = 〈A,B〉

with A and B hyperbolic isometries with crossing axes. Then Γ′0 is generated by

three point symmetries ιA, ιB, ι0.

By Proposition 3.0.2, ι0 is a point symmetry in Axis(A) ∩ Axis(B). By an

application of Proposition 3.0.1, ιA must be a point symmetry in Axis(A)∩Axis(C),

and ιB must be a point symmetry in Axis(B) ∩ Axis(C).

3.1.2.1 Fundamental Triangle for the One-Holed Torus

The generators ιA, ιB, ι0 are point symmetries. Call their fixed points pA, pB, p0

respectively. Choose p0 to be the origin. The commutator K = [A,B] = ABA−1B−1

corresponds to the boundary curve of Σ. The other elements in the conjugacy class

of the boundary curve are ι0(K), ιA(K), and (ι0ιA)(K). Let d = Axis(K). A set

of representatives for the isotopy class of arcs τ fixed by the generators ιA, ιB, ι0 is
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given by the mutual perpendiculars ⊥ (d, ιA(d)), ⊥ (ιA(d), ι0(d)), and ⊥ (d, ι0(d)).

We can get any other choice of geodesic representatives by rotating the above

arcs about their respective fixed points pi while maintaining the condition that they

remain disjoint and intersect the boundary. Thinking of τ as a system of arcs on Σ,

we can think of this rotation as changing the angle of intersection of the arcs with

the boundary of the convex core of Σ.

This gives an open interval’s worth of wiggle room for each geodesic repre-

sentative. The endpoints of each interval depend on the choice of the other two

geodesic representatives. To avoid difficulties we may choose them in some fixed

order, say in the order ιA, ιB, ι0.

3.1.3 Two-Holed Projective Plane

Let Σ be a two-holed projective plane with holonomy group Γ0. We can take

Γ0 = 〈A,B〉 with A and B glide reflections whose axes intersect at a point p0. It is

useful to use the redundant presentation Γ0 = 〈A,B,X, Y | X = AB, Y = B−1A〉.

Then X and Y are the closed geodesics bounding the two ends of Σ. We show that

Γ′0 is generated by two reflections ιA, ιB, and a point symmetry ι0 in p0.

By Proposition 3.0.2, ι0 is point symmetry in p0. Since ιA = Aι0 is the product

of an orientation-reversing isometry and an orientation-preserving isometry, it must

reverse orientation. It follows that ιA is a reflection about some line `A. Similarly

ιB is a reflection about a line `B.

In Chapter 5, we will need the fact that `A and `B intersect both boundary
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curves X and Y . In fact, `A is the mutual perpendicular to the axes of X and

AY A−1, and `B is the mutual perpendicular to the axes of X and Y . It is sufficient

to show the following:

Proposition 3.1.1. We have

• ιA reverses X and AY A−1.

• ιB reverses X and Y .

Proof. The proof is by a straightforward computation. As an example, we show

that ιA reverses AY A−1. First note that

AY A−1 = (ιAι0)(ιBι0ιAι0)(ι0ιA)

= ιAι0ιBι0

so its inverse is ι0ιBι0ιA.

We compute

ιAAY A
−1ιA = ιA(ιAι0)(ιBι0ιAι0)(ι0ιA)ιA

= ι0ιBι0ιA.

3.1.3.1 Fundamental Triangle for the Two-Holed Projective Plane

Since ιA and ιB are reflections, two sides of τ are given by their fixed geodesics

`A and `B. The point symmetry ι0 can be chosen to fix the origin, and so it fixes

any geodesic representative of the isotopy classes of arcs through the origin that
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intersect both components of the boundary of Σ’s convex core. There are two

choices of isotopy classes. One of these separates `A and `B, so the triple does

not form an ultraideal triangle. Choose `0 to be the geodesic representative of the

remaining choice intersecting the boundary at right angles.

Any other choice of geodesic representative for `0 is given by an interval’s worth

of rotation about the origin, requiring that the geodesic intersects the boundary

curves and remains disjoint from `A and `B.

3.1.4 One-Holed Klein Bottle

Let Σ be a one-holed Klein bottle with holonomy group Γ0. We consider a

presentation Γ0 = 〈A,B,X | X = A2B2〉 where A and B are glide reflections whose

axes are ultraparallel and where X is the boundary curve. We show that Γ′0 is

generated by two point symmetries ιA and ιB and a reflection ι0.

By Proposition 3.0.2, ι0 is a reflection in a geodesic intersecting Axis(A) and

Axis(B) transversely. Since A, B, and ι0 are all orientation-reversing, the involu-

tions ιA and ιB are orientation-preserving. Since ιA reverses both A and C, it is a

symmetry in the point Axis(A) ∩Axis(C). Similarly, ιB is a symmetry in the point

Axis(B) ∩ Axis(C).

3.1.4.1 Fundamental Triangle for the One-Holed Klein Bottle

One side of τ must be `0, the common perpendicular of Axis(A) and Axis(B).

Take `0 to go through the origin. As above, there is an interval’s worth of choice
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for the geodesic representatives for the arcs fixed by ιA and ιB. One choice of

representatives is given by the arcs whose projections to Σ intersect the boundary

at right angles.
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Chapter 4: The Arc Complex and the Mapping Class Group

In this section, we recall the definition of the arc complex and discuss its

relationship with the mapping class group. Let Σ be a noncompact surface.

Definition 4.0.1. The arc complex A (Σ) is the simplicial complex whose vertices

are isotopy classes of essential simple properly embedded arcs in Σ. A set of vertices

spans a simplex if and only if the vertices can be represented by pairwise disjoint

arcs.

We can also talk about the arc complex of a compact surface with boundary

or marked points. A top-dimensional simplex τ of the arc complex is a maximal

collection of isotopy classes of disjoint properly embedded arcs. Choosing a repre-

sentative in each class gives a hyperideal triangulation of Σ. The interior of A (Σ)

is a topological ball, and the boundary corresponds to collections of arcs that may

fail to decompose Σ into topological discs [23].

When Σ is a surface of Euler characteristic −1, A (Σ) is a planar simplicial

complex. In this case, it is dual to the graph whose vertices are hyperideal trian-

gulations. Two triangulations share an edge if they differ by a diagonal flip. This

graph is sometimes called the flip graph.

Danciger, Guéritaud, and Kassel [10] showed that the moduli space of Margulis
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spacetimes with fixed convex cocompact linear holonomy is parametrized by the arc

complex.

Theorem 4.0.2 (Danciger-Guéritaud-Kassel). Let Σ be a convex cocompact hyper-

bolic surface. The projectivized space of proper affine deformations of Σ is homeo-

morphic to the interior of the arc complex A (Σ).

The core idea of the theorem is to construct a homeomorphism by starting

with a maximal disjoint collection of arcs, cutting along these arcs and gluing in

hyperbolic strips. By an argument of Thurston [24] later proved by Parlier [25] and

Papadopoulos and Théret [26], this deformation lengthens all closed geodesics on Σ.

The limit of the process of gluing in increasingly thinner strips is an infinites-

imal deformation that lengthens all closed geodesics on the surface. Goldman,

Labourie, and Margulis [27] had previously shown that the space of proper affine

deformations of a convex cocompact surface is an open cone corresponding to in-

finitesimal deformations of Σ that uniformly lengthen or shorten every closed curve.

The key technical result of [10] is to show that—up to making some choices about

how to glue in the strips—every Margulis spacetime is uniquely determined by a

single point in the arc complex.

A cocycle in the arc complex gives a recipe for moving crooked planes to be

disjoint. Danciger-Guéritaud-Kassel used this to prove the Crooked Plane Theorem

by constructing a crooked fundamental domain for each point in the arc complex.

The proof of the Crooked Plane Theorem uses crucially that the fundamental group

of Σ is torsion-free. In particular, it does not apply to Coxeter extensions of rank-two
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free groups, as was already known from the work of Charette [4, 16].

Nevertheless, the arc complex does parametrize the space of proper affine

deformations of Γ′0. This is because Γ′ acts properly if and only if Γ does, and the

space of proper affine deformations of Γ0 is given by the arc complex. In general,

the space of affine deformations of Γ′0 that admit crooked fundamental domains is

a proper subset of the arc complex.

We will see in Chapter 5 that the space of crooked realizations of a fixed

fundamental domain for the action of Γ′0 on H2 corresponds to a two-simplex of

A (Σ). The correspondence is not in general a simplicial map, however. We call a

two-simplex of A (Σ) a tile.

To find the space of all proper affine deformations of Γ′0, we will need to

understand the orbit of one of these tiles under the automorphism group of A (Σ).

The mapping class group MCG±(Σ) acts on A (Σ) by simplicial automor-

phisms. It turns out that the representation MCG±(Σ)→ Aut (A (Σ)) is surjective.

Theorem 4.0.3 ( [28,29]). Let Σ be a surface of Euler characteristic −1. Let Z be

the center of the mapping class group MCG±(Σ). Then

Aut(A (Σ)) ∼= MCG±(Σ)/Z.

When Σ is orientable, Irmak and McCarthy [28] actually prove that Aut(A (Σ)) ∼=

MCG±(Σ) whenever Σ is not a disc, annulus, pair of pants, or one-holed torus. Thus

the orientable surfaces with Euler characteristic −1 are exceptional. For a general

non-orientable surface, Aut(A (Σ)) ∼= MCG±(Σ)/Z.

Theorem 4.0.3 is proved in the context of compact surfaces with boundary,
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but where the mapping class group is not required to fix the boundary components.

Under these assumptions, for a noncompact Σ, the inclusion of the mapping class

group of the convex core into the mapping class group of Σ is an isomorphism, which

provides Theorem 4.0.3 for our purposes.

To apply these theorems, we need to know the mapping class groups of the

four surfaces under consideration. It is easy to see that the one-holed torus and

the one-holed Klein bottle both have infinite mapping class groups. Indeed, both

contain a non-separating curve. A Dehn twist about this curve generates an infinite

subgroup of the mapping class group. The three-holed sphere and the two-holed

projective plane both have finite mapping class groups.

It is well known that the mapping class group of the one-holed torus is GL(2,Z).

See, for example, [3, 7, 28]. Its center is {±I}. Thus

Aut (A (Σ1,1)) ∼= PGL(2,Z).

The mapping class group of the three-holed sphere is the group S3 n Z/2Z

where S3 is symmetric group on three boundary curves of Σ. Its center is the cyclic

group Z/2Z generated by an orientation-reversing mapping class that preserves each

boundary curve.

Aut (A (Σ0,3)) = S3.

See [2] for a geometric exposition of this fact which relates closely to the theory of

Coxeter extensions.

An important mapping class for non-orientable surfaces of genus ≥ 1 is given

by sliding a Möbius band around a closed 1-sided curve. This is called a y-homeomorphism
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[τ ]

Figure 4.1: The arc complex of Σ0,3.

in [30] and a crosscap slide in [31].

Proposition 4.0.4 ( [31]). The mapping class group of the two-holed projective

plane is isomorphic to the Dihedral group of order 8. Its center is generated by

the product of two crosscap slides. The mapping class group modulo its center is

isomorphic to Z/2Z× Z/2Z.

Proposition 4.0.5 ( [32]). The mapping class group of the one-holed Klein bottle

is isomorphic to (ZoZ/2Z)×Z/2Z. The mapping class group modulo its center is

isomorphic to Z o Z/2Z.

Scharlemann [33] described the arc complexes of both the two-holed projective

plane and the one-holed Klein bottle. The arc complex of the two-holed projective

plane is depicted below.

The arc complex of a one-holed Klein bottle is as follows. Let ψ be the Dehn

twist about the two-sided curve a. Then ψ(b) = ab. Let a′, b′, and c′ be the arcs indi-

cated in Figure 4. Then the vertices of the arc complex are {a′, ψn(b′), ψn(c′)} for an

integer n. The triples {b′, c′, ψ−1(b′)} and {b′, ψ−1(b′), a′} can be realized disjointly,
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[τ ]

Figure 4.2: The arc complex of C1,2.

so they correspond to the top-dimensional simplices of A (Σ). See Figure 4.

4.0.1 Transitivity of the action of MCG±(Σ) on the tiles of A (Σ)

The following proposition is now straightforward:

Proposition 4.0.6. The action of the mapping class group is transitive on the top-

dimensional simplices of A (Σ) when Σ is a one-holed torus, but not when Σ is a

three-holed sphere, two-holed projective plane, or one-holed Klein bottle.

Proof. The transitivity of the action in the case of a one-holed torus is a consequence

of the classical fact that Aut (A (Σ)) ∼= PGL(2,Z) acts transitively on the vertices

of the Farey graph.

The three-holed sphere and two-holed projective plane have finite arc com-

plexes, and it is clear that the automorphism groups of these complexes do not act

transitively on the two-simplices. For example, a tile with three neighbors (e.g. one

of the gray tiles in Figures 4.1 and 4.2) will never be taken to a tile with only one

neighbor (the white tiles).

The action in the case of a one-holed Klein bottle cannot be transitive because
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b′

a′

c′

Figure 4.3: Arcs on C2,1 after Scharlemann.

c′ is a separating arc while a′ and b′ are non-separating. Since mapping classes

preserve the property of being separating, c′ is never the image of a′ or b′ under a

mapping class. In particular, the orbits of {b′, c′, ψ−1(b′)} and {b′, ψ−1(b′), a′} are

distinct. These are, in fact, the only two orbits.
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a′ b′

c′

ψ(c′)ψ(b′)

ψ−1(b′)

ψ−1(c′)

[τ ]

Figure 4.4: The arc complex of C2,1 after Scharlemann.
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Chapter 5: The Deformation Spaces

In this section, we describe the space of crooked realizations of ultraideal

fundamental domains for the actions of Γ′0 on H2 and prove Theorems 1.0.2, 1.0.4,

and 1.0.5.

As in Chapter 3, let τ denote an ultraideal triangle bounding a fundamental

domain for the action of Γ′0. As noted before, τ corresponds to a tile [τ ] of A (Σ). We

view [τ ] as consisting of affine deformations [u] ∈ H1(Γ0,R2,1) arising by inserting

infinitesimal hyperbolic strips along the sides of τ .

Let Crook(τ) be the projectivized space of crooked realizations of τ that bound

a fundamental domain for the action of Γ′. Crook(τ) is in general not a two-simplex.

We show that Crook(τ) arises from a two-simplex by blunting ; that is, some vertices

are replaced by intervals. These projective intervals correspond to the freedom in

choosing a direction in the stem quadrant for each reflection generator of Γ′0. A

choice of direction in each stem quadrant does determine a two-simplex inscribed in

Crook(τ). This is an easy consequence of the description of the map M below.

A general two-simplex [κ] may not correspond to Crook(κ) for any ultraideal

triangle κ. That is, [κ] may correspond to proper affine deformations of Γ′0 that

admit no crooked fundamental domain.
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We now describe Crook(τ) for a fixed τ for each of the four surfaces. Theo-

rem 1.0.4 is a consequence of the following lemma.

Lemma 5.0.1. Crook(τ) is

1. A hexagon if Σ is a three-holed sphere.

2. A triangle if Σ is a one-holed torus.

3. A pentagon if Σ is a two-holed projective plane.

4. A quadrilateral if Σ is a one-holed Klein bottle.

The three-holed sphere case was proved by Charette [16] using different meth-

ods. The two-holed projective plane case initially appears in Goldman and Laun [6].

5.1 Preparation for Proof of Lemma 5.0.1

We prove Lemma 5.0.1 by cases in Section 5.1.1, 5.1.2, 5.1.3 and 5.1.4. In this

section we developed the necessary tools and notation.

By assumption, the sides of τ are geodesics fixed by the generators ιA, ιB, ι0

of Γ′0. To facilitate indexing, relabel:

ι1 := ιA

ι2 := ιB.

Let `i denote the fixed geodesic of ιi. For each `i, let wi be its spacelike dual.

The crooked planes {C (wi, 0)} linearize to τ , but they are not disjoint. To

make them disjoint, we need to choose a triple of points q1, q2, q0 in the stem

quadrants. This corresponds to choosing pairs of positive real numbers (u−i , u
+
i ).
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Define

q1 = u−1 w
−
1 − u+1 w+

1

q2 = u−2 w
−
2 − u+2 w+

2

q0 = u−0 w
−
0 − u+0 w+

0 .

If ιi is a reflection, define an affine spine reflection ι̃i by

ι̃i := Inv(wi, qi).

If ιi is an involution with fixed point [ti] ∈ H2, let ti be the future-pointing timelike

vector in the translational equivalence class of [ti] going through 0. Then define

ι̃i := Inv(ti, qi).

The group Γ′ generated by the ι̃i is an affine deformation of Γ′0 acting properly with

fundamental domain C (wi, qi). Conversely, any affine deformation of Γ′0 admitting

a crooked fundamental domain is of this form, by linearizing.

Taking the index two subgroup, define

Ã := ι̃1ι̃0

B̃ := ι̃0ι̃2

C̃ := ι̃2ι̃1.

Let

V = V (w1)⊕ V (w2)⊕ V (w0)

be the direct sum of the stem quadrants, thought of as the positive orthant in R6.
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Each v ∈ V determines a cocycle [u] ∈ H1(Γ0,R2,1). The map M : R6 → R3

by

Mv :=


α[u](A)

α[u](B)

α[u](C)


is a linear surjection and the projectivized image of V is the space Crook(τ) of

crooked realizations of τ .

We identify the linear map M with its matrix. Decompose M as the sum of

three 3× 2 matrices Mi:

M = M1

u−1
u+1

+M2

u−2
u+2

+M3

u−3
u+3

 .

Lemma 5.0.1 can now be proved by considering the ranks of the matrices Mi. The

image of M is a polygon inscribed in the projectivized space of proper affine defor-

mations of Γ0, thought of as the arc complex of Σ. The number of vertices in the

polygon depends on the rank of the Mi.

The following lemma was proved in the one-holed torus case in [3].

Lemma 5.1.1. We can compute the Margulis invariants as

α(Ã) = 2(q1 − q0) · A0

α(B̃) = 2(q0 − q2) ·B0

α(C̃) = 2(q1 − q2) · C0.
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Proof. We compute α(Ã). The others are similar. Recall that α(Ã) can be computed

as (Ãx−x)·A0 for any x ∈ R2,1. Let x = q0. By definition, Ã = ι̃1ι̃0. By construction,

ι̃0q0 = q0. We compute Ãq0 = ι̃1q0. Let s1 be w1 or t1 depending as ι1 is a reflection

or point symmetry.

ι̃1q0 = Inv(s1, q1)(q0)

= (τq1 ◦ Inv(s1) ◦ τ−1q1
)(q0)

= (τq1 ◦ Inv(s1))(q0 − q1)

= q1 + Inv(s1)(q0 − q1)

= q1 + (−q0 + q1) mod s1

= 2q1 − q0 mod s1.

Since A0 · s1 = 0, we have

(Ãq0 − q0) · A0 = (2q1 − 2q0 mod s1) · A0

= 2(q1 − q0) · A0

as required.

We now compute the matrices M1, M2, and M3.

If u±2 = 0 and u±3 = 0, then Mv = M1

u−1
u+1

. Let e1, e2 be the standard basis
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vectors of R2. Then

M1e1 =


α(A)

α(B)

α(C)

 =


2q1 · A0

0

2q1 · C0



=


2w−1 · A0

0

2w−1 · C0

 .

Similarly, M1e2 =


−2w+

1 · A0

0

−2w+
1 · C0

.

We find M1

M1 = 2


w−1 · A0 −w+

1 · A0

0 0

w−1 · C0 −w+
1 · C0

 .

The remaining matrices M2 and M3 are analogous. Explicitly:

M2 = 2


0 0

−W−
2 ·B0 w+

2 ·B0

−w−2 · C0 w+
2 · C0



M3 = 2


−w−3 · A0 w+

3 · A0

w−3 ·B0 −w+
3 ·B0

0 0

 .
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Proposition 5.1.2. For i = 0, 1, 2, define M ′
i to be the 2 × 2 submatrix of Mi

consisting of nonzero entries. Define di := detM ′
i . Then,

d1 = c1(A
0 � C0) · w1

d2 = c2(B
0 � C0) · w2

d3 = c0(A
0 �B0) · w0

where the ci are nonzero real numbers.

Proof. We prove the proposition for M1. The remaining cases are similar.

Recall the definition of M1 as

M1 = 2


w−1 · A0 −w+

1 · A0

0 0

w−1 · C0 −w+
1 · C0

 .

Let M ′
1 be the 2× 2 submatrix consisting of the nonzero entries in M1. Then

we can write it as the product

M ′
1 = 2

A0

C0

 · (w−1 −w+
1

)
.

The determinant is

4(w−1 · A0)(w+
1 · C0)− (w−1 · C0)(w+

1 · A0) = −4(A0 � C0) · (w−1 � w+
1 )

= −4(A0 � C0) · w1

by 2.1.

Proposition 5.1.3. Let d = c(X0 � Y 0) · w for X, Y ∈ SO(2, 1) and w a spacelike

vector. Define k := X0 � Y 0. Then

46



• If k is timelike and [k] lies on the H2 geodesic dual to w, then d = 0.

• If k is spacelike and if the geodesic dual to w is the common perpendicular to

the axes of X and Y , then d 6= 0.

Proof. Recall that X0 and Y 0 are dual to the axes of X and Y respectively. If k

is timelike, then these axes intersect in H2, and [k] is their intersection. If [k] lies

on the geodesic dual to w, then Rk ∈ w⊥ so by the definition of perpendicularity,

k · w = 0.

If the axes of X and Y are ultraparallel, then the spacelike vector X0 � Y 0 is

dual to their mutual perpendicular. If w is also dual to the mutual perpendicular,

then w = λX0 � Y 0 for some nonzero constant λ. Then k · w = λ‖w‖2 6= 0 since w

is not null.

Proposition 5.1.3 gives a geometric interpretation to the determinants in Propo-

sition 5.1.2. The ranks of the Mi can be read directly off of a picture of the axes of

the generators of Γ0.

In the pictures below, the axis of A is colored red, that of B is colored blue,

and that of C is colored green.

5.1.1 The Three-Holed Sphere

The projectivized space of proper affine deformations of Σ is a triangle bounded

by the vanishing lines of α(Ã), α(B̃), and α(C̃) [20]. This triangle identifies with

the arc complex A (Σ). We saw in Chapter 3 that the arcs `i are the mutual

perpendiculars of the axes. Since these axes don’t intersect, the determinants di are
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Figure 5.1: Axes and arcs for Σ0,3.

all nonzero. The images of the Mi are all two-dimensional, giving a six-sided cone

in H1(Γ0,R2,1), which projectivizes to a hexagon.

It is clear from the formulas for the Mi that the image of M1 lies in kerα(B̃),

that the image of M2 lies in kerα(Ã) and that M3 lies in kerα(C̃). Thus the hexagon

P(M(V )) is inscribed in the space of proper affine deformations.

In Figure 5.2, the black lines are vanishing lines for the Margulis invariants of

hyperbolic words in Γ0. By [27], the space of proper affine deformations of Γ0 is the

intersection of the half planes bounded by these vanishing lines.

5.1.2 The Two-Holed Projective Plane

When Σ is a two-holed projective plane, Charette, Drumm, and Goldman [15]

showed that the projectivized space of proper affine deformations of Σ is a quadri-

lateral Q bounded by the vanishing of the Margulis invariants for the generators Ã,

B̃ and the boundary curves X̃ = ÃB̃, Ỹ = B̃−1Ã. The quadrilateral Q identifies
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Figure 5.2: Crook(τ) for Σ0,3.

with the arc complex of Σ.

Figure 5.3: Axes and arcs for C1,1.

The axes of A and B intersect at a point p0 on the line `0. The determinant

of M3 is 0, and M3 is a rank-one matrix. Both M1 and M2 are rank-two matrices

since the axis of C is disjoint from the axes of A and B. The image of V under M

projectivizes to a pentagon P1. As in the three-holed sphere case, P1 is inscribed in

the arc complex Q.

At this point, we can say a word of motivation for Theorem 1.0.5, which is
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Figure 5.4: Crook(τ) for C1,2.

proved below. The image of M3 is a point on the projective image of kerα(X̃)

at the top of the pentagon P1 in the diagram. There is an asymmetry between

α(Ỹ ) and α(X̃). Specifically, α(X̃) can vanish while α(Ã), and α(B̃) are nonzero.

However α(Ỹ ) vanishes if and only if the Margulis invariants of all the generators

vanish. This is an artifact of working with the fundamental domain τ adapted to

the generators ι0, ι1, ι2. This fundamental domain is asymmetric with respect to X

and Y : it contains a self-loop at Y but not one at X.

P2

P1

Qsmall

Figure 5.5: The hexagon H as the union of pentagons P1, P2.

One can recover the symmetry of the problem as follows. There is a mapping
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class of Σ that interchanges the boundary components. The induced automorphism

φ of π1(Σ) is defined by φ(A) = A, φ(B) = B−1. By Proposition 3.0.3, φ extends to

an automorphism φ′ of the Coxeter extension. Then φ(τ) is an ultraideal triangle

fundamental domain for Γ′0 with side pairings given by the generating set ι1, ι0ι2ι0,

ι0. The space Crook(φ(τ)) is a pentagon P2 with a vertex on the line α(Ỹ ) = 0

such that P1 ∩ P2 is a quadrilateral Qsmall inscribed in the larger quadrilateral Q

defining the space of all proper affine deformations of Γ0.

Applying φ corresponds to considering the image of V under the matrix

Mφv :=


α[u]φ(A)

α[u]φ(B)

α[u]φ(X)

 =


α[u](A)

α[u](B)

α[u](Y )

 .

The equality on B is due to the fact that the Margulis invariant satisfies α[u](B
−1) =

α[u](B) for any B and [u].

Using Mφ in place of M swaps the roles of X and Y in Lemma 5.1.1. Following

the same argument for P1, we get maps Mφ
1 , Mφ

2 and Mφ
3 . For any vectors v, w

Mφ
1 v + Mφ

2 w = M1v + M2w. This image is the quadrilateral Qsmall. Like M3,

Mφ
3 has a one-dimensional image. However, its image corresponds to a point on

the line α[u](Ỹ ) = 0, giving another pentagon P2 with a vertex on the line in RP 2

corresponding to the image of kerα[u](Ỹ ) and such that P1 ∩ P2 = Qsmall.

5.1.3 One-holed Torus

Let Σ be a one-holed torus. Its arc complex identifies with the interior of a

convex region in RP 2 cut out by the vanishing lines of the Margulis invariants of
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infinitely-many elements of Γ0 [3].

Figure 5.6: Axes and arcs for Σ1,1.

Each arc intersects two axes. Each matrix Mi has rank 1 and the corresponding

polygon is a triangle.

A careful choice of geodesic representatives for τ allows for the tiles to be dis-

joint. This, plus the transitivity of the action of MCG±(Σ) on the arc complex allows

for the tiling of the space of proper affine deformations of Σ by tiles corresponding

to Coxeter deformations.

Figure 5.7: Crook(τ) for Σ1,1.
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This is achieved in [3] in different language. In that paper, for each basis A,B

of F2, the triple (A,B,B−1A−1) is called a super basis. On the one-holed torus,

a superbasis corresponds to a triple of curves with pairwise geometric intersection

number 1. This gives a graph structure that is sometimes called the pants graph. 1

A superbasis also describes an ideal triangulation of the one-holed torus, and so a

vertex of the flip graph. Thus, one can also interpret the main result of [3] as a

parametrization of the space of proper affine deformations of Σ by the arc complex.

5.1.4 One-holed Klein Bottle

Let Σ be a one-holed Klein bottle. Its arc complex identifies with the interior

of a convex region in RP 2 cut out by the vanishing lines of the Margulis invariants

of infinitely-many elements of Γ0.

The axes of A and C intersect on the line `1 and the axes of B and C intersect

on the line `2. The matrices M1 and M2 have rank 1 while matrix M3 has rank 2.

The corresponding polygon is a quadrilateral.

5.2 Dependency of τ on Parameters

As noted in Chapter 3, the choice of an ultraideal triangle τ bounding a funda-

mental domain for Γ′0 depends on a choice of parameter for every elliptic generator.

1 Typically, the pants graph is taken to be collections of curves with pairwise intersection number

0. However, this complex is a single point for the one-holed torus since all closed curves inter-

sect. For this reason, one often uses minimal geometric intersection number to get an interesting

combinatorial structure.
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Figure 5.8: Axes and arcs for C2,1.

Figure 5.9: Crook(τ) for C2,1.

The parameters can be taken to be the angle that the geodesic representatives of

the arcs in [τ ] make with the boundary. If ιi is an elliptic generator of Γ′0, call the

corresponding parameter θi. Let θ be the set of θis for all the elliptic generators.

Let τ(θ) denote the unique τ depending on these parameters. Then Crook(τ(θ))

depends on θ.

The union
⋃
θ Crook(τ(θ)) is a hexagon. By the proof of Lemma 5.0.1, for

each θ, Crook(τ(θ)) is a blunted triangle with one side blunted for each reflection
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generator. The union
⋃
θ Crook(τ(θ)) adds blunting for each elliptic generator as

follows.

If ιi is an elliptic generator, then the spacelike vector wi depends on θi: wi =

wi(θi). For any pair (u−i , u
+
i ) ∈ R2

+, we get a point qi(θi) in the stem quadrant. The

matrix M = M(θ) now depends on θi for each elliptic generator ιi. Consider the

matrices Mi as above. If Mi is rank 2 for some choice of θ, then it is rank two for

all choices of θ. The corresponding vertices of the polygon do not depend on θ.

However, if Mi was rank 1, then varying θ gives a continuous family of rank-one

matrices whose images are all contained on a line bounding the space of proper

affine deformations of Γ0. The union of their images is thus an interval on this line,

resulting in blunting of the corresponding vertex of the tile [τ ].

Note that [τ ] does not depend on θ. In what follows, define

Crook([τ ]) =
⋃
θ

Crook(τ(θ))

In the case where Σ is a two-holed projective plane, the orbit of Crook([τ ]), which

is an octagon, is shown in Figure 5.10.

Figure 5.10: The orbit of Crook([τ ]) for a two-holed projective plane.
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5.3 Proof of the Main Theorems

In this section, we show that the full space of proper affine deformations of Γ′0

that admit crooked fundamental domains is the orbit of Crook([τ ]) under MCG±(Σ).

Fix a tiling of A (Σ) as the space of proper affine deformations of Σ. Given a

tile [κ] ∈ A (Σ) and a cocycle [u] ∈ [κ], one can construct a quadrilateral fundamen-

tal domain for the action of Γ[u]. If the action of the Coxeter extension Γ′[u] admits

a crooked fundamental domain, then in general [κ] ⊂ Crook([κ]). Indeed [κ] can

be recovered from Crook([κ]) by choosing a direction in each stem quadrant for a

fixed set of geodesic representatives for [κ]. The larger set Crook([κ]) also includes

cocycles arising from other choices of direction vector and other choices of geodesic

representative.

Theorem 5.3.1. Let [κ] = φ([τ ]) for some mapping class φ ∈ MCG±(Σ). Then

any choice of geodesic representatives κ of [κ] is a fundamental domain for the

action of Γ′0. Moreover, the tile [κ] consists of affine deformations of Γ′0 that admit

crooked fundamental domains that linearize to κ(θ) for some choice of θ. That is,

[κ] ⊂ Crook([κ]).

Proof. By abuse of notation, let φ also denote the automorphism of F2 induced by

φ. Extend φ an automorphism φ′ of the Coxeter extension, as in Chapter 3.

Once the parameters θ are fixed, the construction of τ in Chapter 3 depended

only on properties of simple closed curves on Σ that are preserved by mapping

classes. In fact, the construction depended only on the intersection properties of
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Axis(A), Axis(B), and Axis(C). Thus we can repeat this construction for the gen-

erators φ(A), φ(B), and φ(C) to build a fundamental domain for the action of

Γ′0 with generators φ′(ιi). By possibly changing the angle of intersection with the

boundary curves, this fundamental domain is bounded by the geodesics in κ.

To find crooked realizations of the fundamental domain based on κ, apply the

disjointness criterion 5.3 just as we did with τ .

Naturally, Theorem 1.0.5 implies that if the action is transitive then every

proper affine deformation of Γ′0 admits a crooked fundamental domain. For in this

case every κ is the image of τ under some mapping class.

Theorem 5.3.2. Let κ be any choice of geodesic representatives for a tile [κ] ∈

A (Σ) in the complement of the orbit of [τ ]. Then κ is not a fundamental domain

for the action of Γ′0. In addition, there is no crooked fundamental domain for Γ′

that linearizes to κ.

Proof. The proof is by analysis of cases.

If Σ is homeomorphic to a three-holed sphere, then the fundamental domain

adapted to the generators of Γ′0 is canonical because the reflections must fix specific

geodesics in H2. These geodesics project to arcs in Σ, and τ is necessarily the union

of these arcs. It was shown in Chapter 3 that each of the three arcs connects two

distinct boundary curves of Σ. This is true of the image of τ under any mapping

class. 2 Any other tile [κ] in A (Σ) contains an arc connecting some boundary

2In fact, this orbit has exactly one point; namely, τ .
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component with itself. The lift of such an arc to H2 is not preserved by any of the

reflections, so κ cannot bound a fundamental domain for the action of the Coxeter

extension.

The case of the two-holed projective plane is similar. The two reflections

preserve arcs connecting two distinct boundary components. The tiles [κ] in the

complement of the orbit of [τ ] contain two self-arcs. There is no choice κ of geodesic

representatives such that the lifts of the arcs in κ are preserved by both reflections.

Thus κ is not a fundamental domain for the action of Γ′0.

If Σ is a one-holed Klein bottle, then the orbit of any ultraideal triangle κ

containing an image of the separating arc c′ fails to be a fundamental domain for the

action of Γ′0. For suppose κ is such an ultraideal triangle containing the separating

arc φ(c′) for some mapping class φ. Then the line fixed by the reflection φ(ι0)

intersects the interior of κ and so the triangle bounded by κ contains fixed points

for the action of Γ′0 and cannot be a fundamental domain.

In each case, Crook([κ]) = ∅, for otherwise linearizing would produce a funda-

mental domain for some set of geodesic representatives κ, which is impossible.

The argument about the fixed lines of the reflections in the proof also works

for the three-holed sphere and two-holed projective plane cases as well.

Theorem 5.3.2 allows us to deduce the existence of proper affine Coxeter ex-

tensions of the three-holed sphere, two-holed projective plane, and one-holed Klein

bottle whose action does not admit a crooked fundamental domain:

Theorem 5.3.3. Let Σ = H2 /Γ0 be a rank-two surface such that MCG±(Σ) does
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not act transitively on the top-dimensional simplices of A (Σ). Then some affine

deformation Γ′ = Γ′[u] does not admit a crooked fundamental domain.

Proof. Choose a tile [κ] that is outside the orbit of [τ ] but which shares an edge

with [τ ]. By examining the arc complexes of the three-holed sphere, the two-holed

projective plane, and the one-holed Klein bottle, we see that [κ] is not adjacent to

any other tile in the orbit of [τ ]. Since A (Σ) is a simplicial complex, [τ ] does not

intersect the interior of [κ]. However, due to blunting Crook([τ ]) may intersect the

interior of [κ].

For any of the four surfaces, A (Σ) is compact in some affine patch. Choose

a metric for this patch. Let v be the unique vertex of [κ] that is disjoint from the

boundary of [τ ]. Let B(v, ε) be a small metric ball around v.

Claim 5.3.4. For sufficiently small ε, B(v, ε) is disjoint from Crook([τ ]).

[τ ] [κ] v

p1

p2

Figure 5.11: Crook([τ ]) intersecting [κ]. Only two simplices of A (Σ) are shown.

Proof. The tile [κ] shares one side with [τ ]. The intersection Crook([τ ]) ∩ [κ] is

depicted in Figure 5.11. The points p1 and p2 are the projectivized images under
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M of two standard basis vectors in R6. If e1 =

1

0

 and e2 =

0

1

 are the standard

basis vectors in R2, then the decomposition of M above implies that pi = P(Mjek)

where j ∈ {1, 2, 3} and i, k ∈ {1, 2}.

We want to show that the pi are bounded some positive distance away from

v. If Mj is rank two, then its image does not depend on θ, and the corresponding

pi is bounded away from v by the matrix formulas as follows.

The sides of [κ] containing the points pi are the vanishing lines for the Margulis

invariants of two hyperbolic elements of Γ. Call them γ1 and γ2. It is easy to verify

that γ1, γ2 ∈ {A,B,C} for each of the surfaces under consideration. The explicit

formulas for the Mi imply that as long as one of the u±i is greater than 0, then two

of the Margulis invariants are positive. This implies that the image of the positive

orthant—which includes the point pi—is bounded away from the intersection of the

vanishing lines for the Margulis invariants for any two elements of {A,B,C}. In

particular, pi is bounded away from v.

If M1 or M2 is rank one, then its image depends on θ. For each fixed choice

of θ, the arcs `i remain ultraparallel and the matrix formulas again imply that the

image of Mi(θ) is bounded away from the vertex v. As the parameters θi approach

the endpoints of their intervals, the distance between some arcs in τ decreases to 0.

In the limit, the arcs become asymptotically parallel. The disjointness criterion also

applies in the case of asymptotically parallel vectors, and the matrices Mi have the

same formulas. Thus the limit p′i of pi is itself bounded away from v and we are

done.
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Fix ε to be sufficiently small, and let [u] ∈ B(v, ε) \ v. By construction, [u]

gives an affine deformation of Γ′0 that admits no crooked fundamental domain.

We may need to choose ε to be quite small, as this example in the case of

the three-holed sphere shows. This completes the proof of Theorems 1.0.2, 1.0.4,

Figure 5.12: Σ0,3 with considerable blunting.

and 1.0.5.

It is worth emphasizing that Crook([τ ]) is generally not disjoint from its image

under a mapping class. For example, in the diagram of the two-holed projective

plane, the pentagons P1 and P2 intersect in a quadrilateral. The blunting in the

case of reflections is due to the fact that the image of the stem quadrant under the

rank-two matrices is two-dimensional. This blunting can be removed by choosing

a direction in each stem quadrant rather than computing the image of the entire

stem quadrant. The blunting corresponding to elliptic generators can be removed

by choosing a set of parameters θ; that is, choosing geodesic representatives of the

arcs.
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The parametrization of the proper affine deformation space by the arc complex

in [10] makes such choices. In that paper, what they call a choice of waist forces a

choice of direction in the stem quadrant. They also choose a length of the vector in

the stem quadrant, giving a parameter they call the width.

The tiling of the space of proper affine deformations given in the case of the one-

holed torus in [3] makes a choice of geodesic representative. Since every generator of

the Coxeter group is elliptic in this case, this removes all blunting. A similar tiling of

the proper affine deformation space of the one-holed Klein bottle is achieved in [34]

by choosing geodesic representatives and directions in the stem quadrant.

However, there are two important points to contrast in the case of Coxeter

extensions for our four surfaces. First, it is impossible in general to tile the space of

proper affine deformations of Γ′0 with cocycles corresponding to affine deformations

that admit crooked fundamental domains. By making choices, one can get triangular

regions rather than hexagonal regions, but the regions are only a proper convex

subset of the space of proper affine deformations.

Second, the tilings given for the one-holed torus in [3] and the one-holed Klein

bottle in [34] use ideal triangles rather than ultraideal triangles. This allows the

theory to apply to the case where Γ0 contains parabolic elements at the cost that

the edges of the tiles no longer form crooked fundamental domains for the action of

the Coxeter group. See the section “Living on the Edge” in [3]. The edges correspond

to moving only two of the crooked planes in the direction of their stem quadrants.

When the crooked planes linearize to an ideal triangle, the crooked planes intersect

pairwise if only two are moved. However, if they linearize to an ultraideal triangle,
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moving two crooked planes is sufficient to ensure disjointness. For this reason, the

edges of the polygons Crook(τ(θ)) and Crook([τ ]) in this paper consist of cocycles

whose actions do admit crooked fundamental domains.
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