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Chapter 1

Introduction to Frames

1.1 Frames

Given a finite dimensional Hilbert space H, a basis is a set of elements that

give a unique representation for each element H. Frames, on the other hand, are

an overcomplete set of elements that allow for an infinite number of representations

of each element in H. While bases are useful in certain situations because the

representation is unique, at other times it is better to have the flexibility provided

by a frame.

The purpose of this dissertation is two-fold. In chapter two we examine a

subclass of finite frames known as harmonic frames. In particular, we will study

harmonic frames with a prime number of elements. The main result is to prove a

recursive formula for the number of harmonic frames of prime order. A secondary

result is to partially determine the symmetry group of all such harmonic frames.

The second main focus is to examine the usefullness of frames, in conjunction

with kernel based dimension reducing methods, for the classification of materials

in multispectral and hyperspectral imagery data. Results here are theoretically

motivated, yet are empirical in nature. We plan to give results that exhibit the

promise of this approach. The theoretical motivations can be found in chapter

three, while chapter four contains empirical results.
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First though, we begin with an introduction to frame theory.

1.2 Frame Theory

Let I be a possibly infinite, but countable, index set. A frame [24, 25, 14, 22]

for a separable Hilbert space H is a collection of vectors

Φ = {ϕi : i ∈ I} ⊂ H (1.1)

for which there exists constants 0 < A ≤ B <∞ such that for each f ∈ H,

A‖f‖2 ≤
∑
i∈I

|〈ϕi, f〉|2 ≤ B‖f‖2. (1.2)

Constants A and B which satisfy (1.2) are called frame bounds of Φ. Optimally

chosen values of A and B are referred to as the optimal frame bounds of the frame.

When A = B, the frame Φ is referred to as a tight frame.

As an example of a frame one may choose an orthonormal basis - it is in fact

a tight frame with constants A = B = 1. A union of any two orthonormal bases is

a tight frame with constants A = B = 2, etc. A union of an orthonormal basis with

N arbitrary unit norm vectors is a frame with bounds A = 1 and B = N + 1. If the

Hilbert space is infinite dimensional and N is finite this last example is certainly

not a tight frame. Some other examples are given by figures 1.1, 1.2, and 1.3.

Given a frame Φ = {ϕi : i ∈ I}, a dual frame is a collection of vectors

Φ̂ = {ϕ̂i : i ∈ I} ⊂ H such that for all f ∈ H, we have the reconstruction formula

f =
∑
i∈I

〈f, ϕi〉ϕ̂i. (1.3)

2



Figure 1.1: Frame with six elements in R3

Figure 1.2: Buckyball tight frame

Figure 1.3: The platonic solids form tight frames
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It is perhaps not immediately clear that every frame should have a dual frame. In

order to obtain a dual frame to a frame Φ, we will define the frame operator. Let

F = R or C, and define `2(I) as the space of all sequences indexed by I with finite

energy, i.e.

`2(I) := {c = (ci)i∈I : ci ∈ F ∀ i ∈ I and
∑
i∈I

|ci|2 <∞}. (1.4)

Given a frame Φ = {ϕi : i ∈ I}, the analysis operator L : H→ `2(I) is defined by

L(f) :=
(
〈f, ϕi〉

)
i∈I . (1.5)

The adjoint of the analysis operator L? is called the synthesis operator, and S = L?L

is the frame operator. For each c ∈ `2(I), the synthesis operator is defined by

L?(c) =
∑
i∈I

ciϕi. (1.6)

Given the previous two equations, it is easy to see that the frame operator is defined

by

S(f) =
∑
i∈I

〈f, ϕi〉ϕi, (1.7)

where f ∈ H. The following known theorems characterize the analysis, synthesis,

and frame operators.

Theorem 1.2.1 ([16]). Let Φ = {ϕi : i ∈ I} ⊂ H be a frame for H. Then the

following are satisfied:

a. L is a bounded operator from H into `2(I).

b. L? extends to a bounded operator from `2(I) into H.

4



c. L and L? are adjoint operators of each other.

Theorem 1.2.2 ([16]). Let Φ = {ϕi : i ∈ I} ⊂ H be a frame for H. The frame

operator S = L?L maps H onto H and is a positive invertible operator satisfying

A · Id ≤ S ≤ B · Id and B−1 · Id ≤ S−1 ≤ A−1 · Id. In particular, Φ is a tight frame

if and only if S = A · Id.

Note, in theorem 1.2.2 Id denotes the identity map on H, i.e., Id(f) = f for

all f ∈ H. The sequence of vectors {S−1(ϕi) : i ∈ I} is called the canonical dual

frame, and is a dual frame for Φ = {ϕi : i ∈ I}. That is we have

f =
∑
i∈I

〈f, S−1(ϕi)〉ϕi (1.8)

and

f =
∑
i∈I

〈f, ϕi〉S−1(ϕi), (1.9)

where both sums converge unconditionally in H.

We note here that dual frames are not in general unique and this underlines

the importance of the canonical dual frame.

For a particular given frame, it may not be easy to apply the procedure in the

preceding paragraph to obtain a dual frame. One special case in which it is easy is

that of Parseval frames. A Parseval frame is a tight frame consisting of unit norm

vectors. If Φ = {ϕi : i ∈ I} is a Parseval frame, then for every f ∈ H,

f =
∑
i∈I

〈f, ϕi〉ϕi. (1.10)

In particular, Parseval frames are dual frames of themselves. For this reason, among

others, Parseval frames are the ’best behaved’ of frames, and we will present here

5



some of their additional properties.

Most of the basic, general properties of Parseval frames can be derived from

the following.

Theorem 1.2.3 ([16]). A collection of vectors Φ = {ϕi : i ∈ I} ⊂ H is a Parseval

frame for H if and only if there exists a Hilbert space K containing H as a closed

subspace and an orthonormal basis {ei : i ∈ I} of K such that for all i ∈ I, Pei = ϕi,

where P is the orthogonal projection onto H.

Equation (1.10) follows immediately from Theorem 1.2.3. Indeed, we have for

f ∈ H,

P 2f = P (Pf) =
∑
i∈I

〈Pf, ei〉Pei

=
∑
i∈I

〈f, Pei〉ϕi

=
∑
i∈I

〈f, ϕi〉ϕi.

1.3 Finite Frame Theory

In finite dimensional Hilbert vector spaces, the notion of a frame becomes

intutively simple. Let s, d ∈ N, and suppose s ≥ d; Φ = {ϕi : i = 1, . . . , s} is a

frame for Fd (recall F = R or C) if and only if it is a spanning system for Fd. In

the finite setting it is often convenient to use matrix notation when working with

frames. As such, we will consider ϕj as a vector in Fd, and Φ as a d × s matrix,
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where the jth column is ϕj. More explicitly:

ϕj =
(
ϕj(i)

)d
i=1

(1.11)

Φ ∈Md×s(F) and Φi,j = ϕj(i). (1.12)

Recasting section 1.2 in terms of finite frames and matrices, we see that the analysis

operator, L, now maps Fd into Fs. In fact, for each f ∈ Fd, the analysis operator is

given by:

L(f) = Φ?f =
(
〈f, ϕi〉

)s
i=1
. (1.13)

Similarly, the synthesis operator maps Fs onto Fd, and for each c ∈ Fs is given by:

L?(c) = Φc =
s∑
i=1

ciϕi. (1.14)

Combining equations (1.13) and (1.14), we see that the frame operator maps Fd to

Fd and, for each f ∈ Fd, is given by:

S(f) = L?L(f) = ΦΦ?f =
s∑
i=1

〈f, ϕi〉ϕi. (1.15)

A frame that is finite, tight, and unit norm is known as a finite unit norm tight

frame, or a FUNTF. If Φ is a FUNTF with frame constant A, then it is known that

A = s/d and S = s
d
I, where I is the d× d identity matrix.

One way to characterize FUNTFs is the frame potential [8]. Let Sd−1 ⊂ Fd

denote the unit sphere in Fd. For any unit norm frame Φ = {ϕi : i = 1, . . . , s}, the

frame potential is defined as

FP : Sd−1 × . . .× Sd−1︸ ︷︷ ︸
s times

→ [0,∞) (1.16)

FP (Φ) :=
s∑

i,j=1

|〈ϕi, ϕj〉|2. (1.17)
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The following theorem characterizes FUNTFs in terms of the frame potential.

Theorem 1.3.1 ([8]). For a given s and d, the following hold:

a. Every local minimizer of the frame potential is also a global minimizer.

b. If s ≤ d, the minimum value of the frame potential is s, and the minimizers

are precisely the orthonormal sequences in Cd.

c. If s ≥ d, the minimum value of the frame potential is s2/d, and the minimizers

are precisely the FUNTFs for Cd.

1.4 Finite Subspace Frames1

In the finite frame setting, it is not difficult to define the notion of a finite

subspace frame. Let Φ = {ϕi : i = 1, . . . , s} ⊂ Fd and let W be a subspace of Fd of

dimension r < d. We say Φ is a finite subspace frame for W if span(Φ) = W . It is

clear from this definition that there exist constants 0 < A ≤ B < ∞ such that for

each f ∈ W ,

A‖f‖2 ≤
s∑
i=1

|〈f, ϕi〉|2 ≤ B‖f‖2. (1.18)

We note that if we had instead used (1.18) as our definition, then it would not

necessarily imply that span(Φ) = W but rather that span(Φ) ⊇ W . The unit norm

property as well as the notion of a tight frame remain similar in this setting. More

specifically, if we can take A = B in (1.18) then we call Φ a tight subspace frame.

1While this section is almost certainly not original, it was independently co-authored by David

Widemann, University of California at Davis, and the author.
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Finally, if Φ is a finite unit norm tight subspace frame, then we say Φ is a subspace

FUNTF.

We define L, L?, and S exactly the same as we did previously, however we

note that the properties of these maps change for subspace frames. In particular,

we see:

(a) L : Fd → Fs is no longer injective, but rather ker(L) = (Fd \W ) ∪ {0}.

(b) L? : Fs → Fd is no longer surjective, but rather image(L?) = W .

(c) Based on (a) and (b), we see that S : Fd → Fd is no longer invertible.

Because of (c), theorem 1.2.2 nor equations (1.8) and (1.9) hold for subspace frames.

The question then becomes: in what sense do subspace frames behave like standard

frames? Theorems below show that subspace frames satisfy natural modifications

of theorem 1.2.2, equation (1.8), and equation (1.9).

Let Won be a set of r orthonormal vectors such that span(Won) = W . We

will also consider Won as an d× r matrix where the columns of this matrix are the

vectors in the set Won. We define ΦW to be the r× s matrix whose columns are the

coordinates of Φ in Won; that is:

ΦW := W ?
onΦ. (1.19)

The ith column of ΦW is the projected W -subspace coordinates of ϕi.

Proposition 1.4.1. The columns of ΦW are a frame for Fr.

Proof. Since span(Won) = W , we have ker(W ?
on) ∩ W = {0}. Therefore, since

span(Φ) = W as well, we see that W ?
onΦ has rank r.
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We denote the analysis, synthesis, and frame operators of ΦW by LW , L?W ,

and SW , respectively. In terms of the analysis operator, L, for Φ, we have for each

g ∈ Fr,

LW (g) = L(Wong) = Φ?Wong. (1.20)

Similarly, for each c ∈ Fs, the synthesis operator of ΦW is defined as

L?W (c) = W ?
onL

?(c) = W ?
onΦc. (1.21)

Combining equations (1.20) and (1.21) we see that for each g ∈ Fr, SW is defined as

SW (g) = L?WLW (g) = W ?
onL

?(L(Wong)) = W ?
onΦΦ?Wong = W ?

onSWong. (1.22)

By proposition 1.4.1 we see that SW will satisfy theorem 1.2.2 as well as equations

(1.8) and (1.9).

Theorem 1.4.2. Φ is a subspace FUNTF for W with frame bound A if and only if

ΦW is a FUNTF for Fr with frame bound A.

Proof. We do the forward direction first: let g ∈ Fr, then:

〈SWg, g〉 = 〈LWg, LWg〉

= 〈Φ?Wong,Φ
?Wong〉

=
s∑
j=1

|〈Wong, ϕj〉|2

= A‖Wong‖2

= A〈Wong,Wong〉
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Therefore we have:

〈SWg, g〉 − A〈Wong,Wong〉 = 0 =⇒

〈SWg, g〉 − A〈W ?
onWong, g〉 = 0 =⇒

〈g, (SW − AI)g〉 = 0 =⇒

SW = AI.

For the reverse direction, let f ∈ W . There exists g ∈ Fr such that Wong = f .

Therefore,

A‖f‖2 = A〈f, f〉

= A〈Wong,Wong〉

= 〈Ag, g〉

= 〈SWg, g〉

= 〈W ?
onΦΦ?Wong, g〉

= 〈Φ?Wong,Φ
?Wong〉

= 〈Φ?f,Φ?f〉

=
s∑
j=1

|〈f, ϕj〉|2

Corollary 1.4.3. If Φ is a subspace FUNTF for W with frame bound A, then

A = s/r.

We define the canonical dual frame of ΦW in the usual way, that is Φ̂W =
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S−1
W ΦW . We now define the canonical dual subspace frame of Φ as follows:

Φ̂ = WonΦ̂W = WonS
−1
W W ?

onΦ. (1.23)

As the name implies, the set Φ̂ = {ϕ̂i : i = 1, . . . s} = {WonS
−1
W W ?

onϕi : i = 1, . . . , s}

will have the following properties:

Proposition 1.4.4. Φ̂ is a subspace frame for W .

Proof. This follows from proposition 1.4.1.

Theorem 1.4.5. Every f ∈W can be represented as

f =
s∑
i=1

〈f, ϕ̂i〉ϕi =
s∑
i=1

〈f, ϕi〉ϕ̂i. (1.24)

Proof. The first representation formula is ΦΦ̂?f = f for all f ∈ W . Letting f =

Wong for some g ∈ Fr, we have:

ΦΦ̂?f = Φ(WonS
−1
W W ?

onΦ)?f

= ΦΦ?Won(S−1
W )?W ?

on(Wong)

= SWonS
−1
W g

= SWon(W ?
onSWon)−1g (1.25)

Since WonW
?
on is the identity on W ,

(1.25) = WonW
?
onSWon(W ?

onSWon)−1g

= Wong

= f
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The second representation formula is Φ̂Φ?f = f for all f ∈ W .

Φ̂Φ?f = (WonS
−1
W W ?

onΦ)Φ?f

= Won(W ?
onSWon)−1W ?

onSWong

= Wong

= f

The following commutative diagram illustrates the above ideas:

Figure 1.4: Subspace frames diagram

Φ subspace frame for W ⊂ Fd

(subspace FUNTF for W ⊂ Fd)
WonS−1

W W ?
on //_________

W ?
on

��

Φ̂ subspace frame for W ⊂ Fd

(subspace FUNTF for W ⊂ Fd)

ΦW frame for Fr

(FUNTF for Fr)
S−1

W // Φ̂W frame for Fr

(FUNTF for Fr)

Won

OO

We can also extend the frame potential to subspace frames via the following

theorem.

Theorem 1.4.6. For a given s and d, let W be a subspace of Fd of dimension r < d

and consider the resctricted frame potential:

FP|W : W ∩ (SN−1 × · · · × SN−1)︸ ︷︷ ︸
s times

→ [0,∞). (1.26)

Then:
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1. Every local minimizer of the restricted frame potential is also a global mini-

mizer.

2. If s ≤ r, the minimum value of the restricted frame potential is s, and the

minimizers are precisely the orthonormal sequences in W .

3. If s ≥ r, the minimum value of the restricted frame potential is s2/r, and the

minimizer are precisely the subspace FUNTFs for W .

Proof. Let Won be a set of r orthonormal vectors such that span(Won) = W and

consider it as an d × r matrix. If Φ = {ϕi : i = 1, . . . , s} is a finite unit norm set

of vectors in W , then the coordinates of Φ in Won are given by the r × s matrix

ΦW = W ?
onΦ. In [8] it is shown that FP(Φ) = Tr(S2), where S is the frame operator

of Φ. Using the previous two statements we then have:

FP|W (Φ) = Tr(S2)

= Tr([(WonΦW )(WonΦW )?]2)

= Tr([ΦWΦ?
W ]2)

= Tr(S2
W )

= FP(ΦW )

Since ΦW is a finite unit norm set of vectors in Cr, we can apply theorem 1.3.1 to

get (1) and (2). Combining theorem 1.3.1 along with theorem 1.4.2 gives (3).
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Chapter 2

Enumeration of Prime Order Harmonic Frames

2.1 Introduction

2.1.1 Harmonic Frames

Harmonic frames are class of FUNTFs that have their origin in the Discrete

Fourier Transform (DFT) matrix. The un-normalized s× s DFT matrix is defined

as

Ds := (e2πimn/s)s−1
m,n=0. (2.1)

Noting that e2πimn/s = e2πi(m+js)(n+ks)/s for any j, k ∈ Z, we introduce the additive

group of integers mod s,

Zs = Z/sZ := {0, . . . , s− 1 mod s}. (2.2)

Choosing d ≤ s distinct columns of Ds, say n1, . . . , nd ∈ Zs, we can form the

following s vectors in Cd:

ϕm =
1√
d

(e2πimnj/s)dj=1, m ∈ Zs. (2.3)

The set Φ = {ϕm : m ∈ Zs} is in fact a FUNTF for Cd, and any frame of this type

is called a DFT-FUNTF. As we shall see, the DFT-FUNTFs are a subset of the

harmonic frames.
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Remark 2.1.1. Since we will be dealing exclusively with finite frames in this chap-

ter, we shall interchangeably consider the frame Φ as a set or a matrix (whose

columns are the vectors ϕi), with the appropriate usage being determined by the

context. See section 1.3 (Finite frame theory) for details on considering a frame as

a matrix.

Let G denote a group. Define C× as the group of units of C, that is the set

C\{0} endowed with multiplication. A character of a group G is a group homomor-

phism ξ : G→ C× that satisfies

ξ(gg′) = ξ(g)ξ(g′), ∀ g, g′ ∈ G. (2.4)

Suppose G is a finite group of order s, i.e.

G = {gi : i = 1, . . . , s}. (2.5)

Then for each gi ∈ G, ξ(gi) is a s-th root of unity. If G is also abelian, then it has

exactly s characters, {ξi : i = 1, . . . , s}. The set of vectors {(ξi(gj))sj=1 : i = 1, . . . , s}

form an orthogonal basis for Cs. The matrix with these vectors as rows,

(ξi(gj))
s
i,j=1, (2.6)

is the character table of G. In particular, when G ∼= Zs, the character table of G is

Ds.

Let U(Cd) denote the group of unitary transformations on Cd, i.e.

U(Cd) := {U ∈Md×d(C) : U?U = UU? = I}. (2.7)
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Furthermore, let I ⊆ {1, . . . , s} with |I| = d, and suppose G is a finite abelian

group of order s. Then, for any U ∈ U(Cd), the set,

Φ = {U(ξi(gj))i∈I : j = 1, . . . , s} (2.8)

is a frame for Cd and is called a harmonic frame. Note that when G ∼= Zs and

U = I, one obtains a DFT-FUNTF.

Important in the study of harmonic frames is the notion of the symmetry

group. The symmetry group of a FUNTF Φ for Cd is the group:

Sym(Φ) := {U ∈ U(Cd) : {Uϕi : i = 1, . . . , s} = {ϕi : i = 1, . . . , s}}. (2.9)

We can recast the definition of symmetry group in terms matrices. Let Sk denote

the group of permutations on k elements. We say P ∈ Md×d(C) is a permutation

matrix if there exists a permutation σ ∈ Sd such that

Pi,j =


1, if j = σ(i)

0, otherwise.

(2.10)

Let Ps denote the set of all s× s permuation matrices. Then, in terms of matrices,

the symmetry group of Φ is

Sym(Φ) = {U ∈ U(Cd) : ∃P ∈ Ps such that UΦ = ΦP}. (2.11)

While there has been much work on harmonic frames and subjects related to them

(see, for example, [20, 27, 33, 34, 36]), we will need only the following result from

[33].

Theorem 2.1.2. A FUNTF Φ of s vectors for Cd is harmonic if and only if it is

generated by a finite abelian group G ⊂ Sym(Φ) of order s, i.e., Φ = Gϕ, for all

ϕ ∈ Φ.
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2.1.2 The Enumeration Problem

The purpose of this chapter is to count all equivalence classes of prime order

harmonic frames. The definition of what it means for two harmonic frames to be

equivalent will be given in section 2.2. We start with simpler problem concerning

the enumeration of DFT-FUNTFs.

Recall the definition of a DFT-FUNTF given by equation (2.3). A basic way

of counting the number of DFT-FUNTFs is inspired by the following observation.

For any vector f ∈ Cd, the frame Φ gives the following representation of f :

f 7→ (〈f, ϕm〉)s−1
m=0 ∈ Cs. (2.12)

Therefore, even a re-indexing of the frame would change the representation it gives

for a fixed f . Thus, we could count the number of ordered DFT-FUNTFs. To

accomplish this task, we observe that there are s columns in Ds and we select d of

them. Since each ordered combination of column choices n1, . . . , nd gives a distinct

frame, there are s(s− 1) · · · (s− d+ 1) ordered DFT-FUNTFs.

There are of course other ways by which we may distinguish frames, and we

shall consider two others here. The first is a natural counterpart to the ordered

counting scheme, namely, counting the number of DFT-FUNTFs considered as un-

ordered sets of vectors. The techniques developed for this method will then be

expanded to our main goal, which is to count all inequivalent harmonic frames of

prime order, where two harmonic frames shall be considered equivalent if one is the

unitary transformation of the other. As we shall see, this amounts to counting the

number of inequivalent DFT-FUNTFs.
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There has been some interest in harmonic frames in the literature, see [20, 33].

In particular, [34] presents a computer program for generating all equivalence classes

of harmonic frames for a given s and d, where there is a limit on the size of either due

to computational considerations. From this program, the authors conjecture that

there are O(sd−1) inequivalent harmonic frames. The content of this chapter is to

not only validate this conjecture for the case when s is a prime number, but in fact

give an exact formula for the number of harmonic frames in this case. Furthermore,

we examine the structure of prime order harmonic frames via their symmetry group.

An outline of the remainder of chapter 2 is as follows: the rest of section

2.1 reviews some algebraic theory and examines the problem of counting unordered

DFT-FUNTFs. Section 2.2 presents the main result of this paper. In section 2.3

we define an equivalence relation that is equivalent to (2.23) and then use this to

develop a correspondence between inequivalent harmonic frames and the orbits of

a particular set. Section 2.4 counts the number of orbits of this particular set, thus

giving a formula for the number of inequivalent harmonic frames. The structure

of the symmetry group is handled in section 2.5, and section 2.6 contains a few

concluding remarks.

2.1.3 Algebra Review1

Recall that we denote the additive group of integers mod s by Zs, and set

Zd
s := Zs × · · · × Zs︸ ︷︷ ︸

d times

. (2.13)

1All material in this section can be found in [19]
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Furthermore, let Z×s denote the group of units of Zs, which, when s is prime, is

simply the set {1, . . . , s} endowed with multiplication mod s. Finally, for k ∈ N, let

Sk denote the group of permutations of k elements. We will also need the following

definitions and proposition:

Definition 2.1.3. A group action of a group G on a set X is a map π,

π : G×X → X

(g, x) 7→ g · x,

satisfying the following properties:

1) g1 · (g2 · x) = (g1g2) · x ∀ g1, g2 ∈ G, x ∈ X,

2) 1 · x = x ∀ x ∈ X.

Definition 2.1.4. Let X be some set and let G be a group. Furthermore, let

π : G ×X → X be a group action. For each x ∈ X the stabilizer of x in G is the

subgroup of G that fixes the element x:

Gx := {g ∈ G : g · x = x}. (2.14)

Proposition 2.1.5. Let G be a group acting on the nonempty set X. The relation

on X defined by:

x1 ∼ x2 ⇐⇒ x1 = g · x2 for some g ∈ G

is an equivalence relation. For each x ∈ X, the number of elements in the equivalence

class containing x is |G : Gx|, the index of the stabilizer of x.
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Note, when G is a finite group,

|G : Gx| =
|G|
|Gx|

. (2.15)

Definition 2.1.6. Let G be a group acting on the nonempty set X. The equivalence

class Ox := {g · x : g ∈ G} is called the orbit of G containing x.

As such, the orbits of a group action disjointly partition the set X. We are now

ready to count the number of prime order DFT-FUNTFs, considered as unordered

sets. The basic structure of the argument in subsection 2.1.4 will be used when we

count all harmonic frames of prime order, albeit with added complexity.

2.1.4 The Number of Unordered DFT-FUNTFs

It is often the case that we would like to consider a frame as a set, where

the order of elements does not matter. Given two ordered DFT-FUNTFs Φ =

(ϕ0, . . . , ϕs−1) and Ψ = (ψ0, . . . , ψs−1), we define the following equivalence relation:

Φ ∼1 Ψ ⇐⇒ ∃σ ∈ Ss s.t. ϕm = ψσ(m), ∀ m = 0, . . . , s− 1. (2.16)

(2.16) merely formalizes our consideration of frames as sets. An equivalence class

of (2.16) will be denoted in the usual way, that is Φ = {ϕ0, . . . , ϕs−1}. In this

subsection, we count the number of DFT-FUNTFs of prime order under (2.16).

First, however, we must change our perspective on the problem.

Remark 2.1.7. For the rest of chapter 2 we will only consider unordered DFT-

FUNTFs, and as such from now on Φ will denote {ϕ0, . . . , ϕs−1}.
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2.1.4.1 DFT-FUNTFs and Orbits

First notice that every DFT-FUNTF contains the vector ϕ0 = 1√
d
(1, . . . , 1) ∈

Cd, and so when comparing two such frames we need not consider this vector. Thus

we will only compare sets of the form

Φ′ = Φ− {ϕ0}. (2.17)

Define the set Z̃d
s as

Z̃d
s := {n = (n1, . . . , nd) ∈ Zd

s : ni 6= nj, ∀ i 6= j}. (2.18)

There is a one-to-one correspondence between the vectors ϕm, m 6= 0, and the

elements of Z̃d
s. Considering Z×s as a group and Z̃d

s as a set, we define the group

action π1 as:

π1 : Z×s × Z̃d
s → Z̃d

s

(m,n) 7→ m · n := (mn1, . . . ,mnd).

(2.19)

The orbits of π1 are then the sets

On = {m · n = (mn1, . . . ,mnd) : m ∈ Z×s }, n ∈ Z̃d
s. (2.20)

Remark 2.1.8. For clarity of exposition we shall sometimes use Φn to denote the

DFT-FUNTF Φ and ϕm,n its corresponding elements, where the subscript n empha-

sizes the generators n = (n1, . . . , nd).

The following proposition relates the equivalence classes of (2.16) and the

orbits of π1.
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Proposition 2.1.9. There is a one-to-one correspondence between the equivalence

classes of (2.16) and the orbits of π1, i.e. the sets Φn and On can be identified. We

denote this identification as:

Φn = {ϕ0, . . . , ϕs−1} ←→ On. (2.21)

Proof. As noted above, we have:

Φ←→ Φ′ = Φ− {ϕ0}.

Define a function F that maps orbits of Z̃d
s to sets of the form Φ′ as follows:

F (On) = {ϕm,n}sm=1. (2.22)

We must show that F is both one-to-one and onto, however it is clear that F is

surjective. Considering then the former, suppose F (On) = F (On′). This would

imply that {ϕm,n}sm=1 = {ϕm′,n′}sm′=1. But then for some m and some m′, we

would have (mn1, . . . ,mnd) = (m′n′1, . . . ,m
′n′d), i.e. On ∩ On′ 6= ∅, and so in fact

On = On′ .

Remark 2.1.10. Given the content of proposition 2.1.9, we now replace the problem

of counting the equivalence classes of (2.16) with the problem of counting the orbits

of π1.

2.1.4.2 The Number of Orbits of π1

By proposition 2.1.5 we see that the orbits of a group action partition the set

into disjoint equivalence classes. In particular, the orbits On partition the set Z̃d
s.
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Furthermore, the size of each On is given by |On| = |Z×s : (Z×s )n|. Using these facts,

we prove the following proposition.

Proposition 2.1.11. Let s be a prime number and d ≤ s. Then the number of

orbits of π1 is:

1) 2, if d = 1 or d = s = 2.

2) s(s− 2) · · · (s− d+ 1), if d ≥ 2, s > 2.

Proof. We first consider the case d = 1. For n = 0 we have (Z×s )0 = Z×s , and so

|O0| = (s − 1)/(s − 1) = 1. For n 6= 0 we see (Z×s )n = {1}, and thus |On| = s − 1.

Since |Z̃1
s| = s, there are only two orbits.

Now take 2 ≤ d ≤ s. For each n ∈ Z̃d
s we have (Z×s )n = {1}, and thus

|On| = s− 1. Therefore the number of orbits is given by γ, where

|Z̃d
s| = γ|On|,

s(s− 1) · · · (s− d+ 1) = γ(s− 1).

For s = 2 and d = 2, we see γ = 2. For s > 2 we have γ = s(s−2) · · · (s−d+1).

As an addendum to theorem 2.1.11, we note that one of the orbits in the d = 1

case corresponds to a degenerate DFT-FUNTF. Namely, the orbit O0 corresponds

to the DFT-FUNTF consisting of the single element {1}.

2.2 The Number of Harmonic Frames of Prime Order

Using a similar correspondence between harmonic frames and orbits, we count

all harmonic frames of prime order up to unitary transformations.
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Two harmonic frames Φ = {ϕ0, . . . , ϕs−1} ⊂ Cd and Ψ = {ψ0, . . . , ψs−1} ⊂ Cd

are said to be equivalent if the following equivalence relation holds:

Φ ∼2 Ψ ⇐⇒ ∃ U ∈ U(Cd) and P ∈ Ps s.t. Φ = UΨP. (2.23)

Note that we have used matrix notation for the left hand side of (2.23). In terms of

sets, the condition merely states that

{ϕi : i = 1, . . . s} = {Uψi : i = 1, . . . , s}. (2.24)

(2.23) is a standard form of equivalence in much of the literature when dealing with

frames. Recently, [34] conjectured that the number of inequivalent harmonic frames

is O(sd−1). We prove this conjecture for s a prime number as a corollary to theorem

2.2.1, which gives an exact formula for the number of harmonic frames. The proof of

theorem 2.2.1 is handled in section 2.4, with much preliminary work accomplished

in section 2.3.

For a fixed s and d, we backwards recursively define the set

{αc ∈ N ∪ {0} : c ∈ N, c | s− 1, and c | d or c | d− 1}. (2.25)

If c | s− 1, c | d, and c > 1, then

αc :=
(s− 1− c)(s− 1− 2c) · · · (s− 1− (d

c
− 1)c)

c
d
c
−1(d/c)!

− c

s− 1

∑
c<b<s
c|b, b|d

(
s− 1

b

)
αb,

(2.2.26 d)

where we have used the notation (2.2.26 d) to emphasize its dependence on the

condition c | d. If c | s− 1, c | d− 1, and c > 1, then

αc :=
(s− 1− c)(s− 1− 2c) · · · (s− 1− (d−1

c
− 1)c)

c
d−1
c
−1((d− 1)/c)!

− c

s− 1

∑
c<b<s
c|b, b|d−1

(
s− 1

b

)
αb.

(2.2.26 d− 1)
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Finally, α1 is defined as:

α1 :=
1

s− 1

(
s

d

)
−
∑
c|d
c>1

αc
c
−
∑
c|d−1
c>1

αc
c
. (2.2.27)

Theorem 2.2.1. Let s be a prime number and let 1 < d < s. Define the set

{αc ∈ N ∪ {0} : c ∈ N, c | s− 1, and c | d or c | d− 1},

as in equations (2.2.26 d), (2.2.26 d − 1), and (2.2.27). The total number of har-

monic frames for Cd with s elements is then given by:

α1 +
∑
c|d
c>1

αc +
∑
c|d−1
c>1

αc. (2.2.28)

More concisely, we have the following corollary:

Corollary 2.2.2. Let s be any prime number and fix d such that 1 < d < s. Then

the number of inequivalent harmonic frames for Cd with s elements is O(sd−1).

Proof. Using equations (2.2.26 d) and (2.2.26 d−1), we see that αc = O(sd
′
), where

c > 1 and d′ ≤ d
c
− 1 < d− 1. Therefore, by (2.2.27), we see that α1 = O(sd−1), and

the corollary follows.

In the above theorems, the case d = 1 is omitted, however, it is not hard to

see that there are two inequivalent harmonic frames in this case; in fact, there is

only one inequivalent harmonic frame for d = 1 with s distinct vectors.

2.3 Harmonic Frames and Orbits

In this section we develop a one-to-one correspondence between inequivalent

harmonic frames and the orbits of a particular set, not unlike the ideas presented in
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subsection 2.1.4. First, however, we come up with an equivalent condition to (2.23).

We will assume s is prime for the remainder of chapter 2.

2.3.1 A New Equivalence Relation

When s is prime, every harmonic frame is of the form UΦ, where U ∈ U(Cd)

and Φ is a DFT-FUNTF (see section 2.1.1). Therefore, finding the number of

inequivalent harmonic frames amounts to finding the number of inequivalent DFT-

FUNTFs. Toward that end, we simplify (2.23) to the following:

Theorem 2.3.1. If s is prime and Φ = {ϕ0, . . . , ϕs−1} and Ψ = {ψ0, . . . , ψs−1} are

DFT-FUNTFs, then

∃ σ1 ∈ Ss, σ2 ∈ Sd such that

Φ ∼2 Ψ ⇐⇒ ϕm(k) = ψσ1(m)(σ2(k)) (2.3.29)

∀ m = 0, . . . , s− 1, k = 1, . . . , d,

where ϕm(k) denotes the kth element of the vector ϕm.

Proof. It is clear that if the right hand side of (2.3.29) holds, then the left hand side

must hold as well. Assume then that Φ ∼2 Ψ, i.e., there exists a U ∈ U(Cd) and

Pσ ∈ Ps such that

Φ = UΨPσ. (2.3.30)

Let σ ∈ Ss be the permutation associated with Pσ, and note that (2.3.30) implies

that

ϕm = Uψσ(m), ∀ m = 0, . . . , s− 1. (2.3.31)
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Without loss of generality, we may assume that σ(0) = 0. Indeed, by theorem 2.1.2

there exists a U0 ∈ Sym(Ψ) such that U0ψ0 = ψσ(0). By definition, U0 is a d × d

matrix that permutes the columns of Ψ by acting on the left. Therefore, there exists

an s× s permutation matrix PU0 that permutes the columns of Ψ in the exact same

manner, yet acts on the right. In particular, U0Ψ = ΨPU0 , and thus

Φ = UU0ΨP−1
U0
Pσ. (2.3.32)

Set V := UU0 and P := P−1
U0
Pσ. It is clear that V is a unitary transformation and

that P is its associated permutation matrix. Furthermore, ϕ0 = V ψ0, and so we

can assume from the start that ϕ0 = Uψ0, i.e., that σ(0) = 0.

Now let n1, . . . , nd denote the column choices of Φ, and consider the following:

〈ϕm, ϕ0〉 =
d∑

k=1

e2πimnk/s. (2.3.33)

Letting l1, . . . , ld denote the column choices of Ψ, we also have:

〈ϕm, ϕ0〉 = 〈Uψσ(m), Uψ0〉 = 〈ψσ(m), ψ0〉 =
d∑

k=1

e2πiσ(m)lk/s. (2.3.34)

Define pϕ, pψ ∈ Z[z]/〈zs〉 as follows:

pϕ(z) :=
d∑

k=1

zmnk and pψ(z) :=
d∑

k=1

zσ(m)lk . (2.3.35)

By equations (2.3.33) and (2.3.34), we see that pϕ(z) = pψ(z) when z = e2πi/s. In

other words, z = e2πi/s is a root of the polynomial p(z) := pϕ(z)− pψ(z). However,

since p ∈ Z[z]/〈zs〉, and the minimum polynomial of z = e2πi/s is q(z) :=
∑s−1

k=0 z
k,

p must either be an integer multiple of q or the zero polynomial. It is clear, though,

that only the latter option is feasible, thus giving

pϕ(z) = pψ(z). (2.3.36)
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Combining equations (2.3.35) and (2.3.36), we see there exists a σ2 ∈ Sd such that

mnk = σ(m)lσ2(k), ∀ k = 1, . . . , d. (2.3.37)

Note that σ2 is dependent on the choice of m. Taking m = 1 in (2.3.37), one has

nk = σ(1)lσ2(k). Letting σ1(m) := σ(1)m, we have:

ϕm = (e2πimnk/s)dk=1 = (e2πiσ1(m)lσ2(k))dk=1 = ψσ1(m)(σ2(k)). (2.3.38)

2.3.2 Inequivalent DFT-FUNTFs and Orbits

Similar to section 2.1.4.1, we now develop a one-to-one correspondence between

inequivalent DFT-FUNTFs and the orbits of a particular set. As a matter of nota-

tion, we shall denote equivalence classes of (2.23) by [Φ], where Φ = {ϕ0, . . . , ϕs−1}

is a DFT-FUNTF representative. By theorem 2.3.1, the equivalence classes of (2.23)

are identical to the equivalence classes of the right hand side of (2.3.29). We now

turn our attention to the set with which we will identify the equivalence classes [Φ].

Consider the following equivalence relation on the set Z̃d
s,

(n1, . . . , nd) ∼ (n′1, . . . , n
′
d) ⇐⇒ ∃ σ ∈ Sd s.t. (n1, . . . , nd) = (n′σ(1), . . . , n

′
σ(d)).

(2.3.39)

Denote an equivalence class of (2.3.39) by the representative [n] = [n1, . . . , nd], and

define Ad
s as the set of all equivalence classes, i.e.

Ad
s := Z̃d

s/ ∼ . (2.3.40)
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It is easy to see |Ad
s| =

(
s
d

)
. Considering Z×s as a group and Ad

s as a set, we define

the group action π2,

π2 : Z×s × Ad
s → Ad

s

(m, [n]) 7→ m · [n] := [mn1, . . . ,mnd].

(2.3.41)

The orbits of π2 are the sets O[n] = {m · [n] = [mn1, . . . ,mnd] : m ∈ Z×s }. The

following proposition relates the equivalence classes of (2.23) and the orbits of π2.

Proposition 2.3.2. There is a one-to-one correspondence between the equivalences

classes of (2.23) and the orbits of π2, i.e.

[Φn]←→ O[n]. (2.3.42)

Proof. Define the function F as follows:

F ([Φn]) = O[n] = {[mn1, . . . ,mnd] : m ∈ Z×s }. (2.3.43)

We must show that F is well defined, one-to-one, and onto. Surjectivity is clear, so

we focus on the first two. To show F is well defined, suppose that [Φn] = [Ψn′ ]. We

want to show F ([Φn]) = F ([Ψn′ ]), i.e. O[n] = O[n′]. We have:

[Φn] = [Ψn′ ] ⇐⇒ ϕm(k) = ψσ1(m)(σ2(k)) ∀ k = 1, . . . , d, ∀ m = 0, . . . , s− 1

⇐⇒ {ϕ0(k)dk=1, . . . , ϕs−1(k)dk=1} = {ψ0(σ2(k))dk=1, . . . , ψs−1(σ2(k))dk=1}

⇐⇒ {ϕ1(k)dk=1, . . . , ϕs−1(k)dk=1} = {ψ1(σ2(k))dk=1, . . . , ψs−1(σ2(k))dk=1}

⇐⇒ {(mn1, . . . ,mnd) : m ∈ Z×s } = {(mn′σ2(1), . . . ,mn
′
σ2(d)) : m ∈ Z×s }

⇐⇒ {[mn1, . . . ,mnd] : m ∈ Z×s } = {[mn′1, . . . ,mn′d] : m ∈ Z×s }

⇐⇒ O[n] = O[n′],
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where the first equivalence is due to theorem 2.3.1, and the third equivalence is

because ϕ0 = ψ0 = 1√
d
(1, . . . , 1).

To prove injectivity, we assume O[n] = O[n′]. According to this assumption,

there must exist an m′0 ∈ Z×s such that [n1, . . . , nd] = [m′0n
′
1, . . . ,m

′
0n
′
d]. Therefore

we have:

O[n] = O[n′] ⇐⇒ [n1, . . . , nd] = [m′0n
′
1, . . . ,m

′
0n
′
d]

⇐⇒ (n1, . . . , nd) = (m′0n
′
σ2(1), . . . ,m

′
0n
′
σ2(d))

⇐⇒ (mn1, . . . ,mnd) = (mm′0n
′
σ2(1), . . . ,mm

′
0n
′
σ2(d)), ∀ m ∈ Z×s

⇐⇒ {(mn1, . . . ,mnd) : m ∈ Z×s } = {(mn′σ2(1), . . . ,mn
′
σ2(d)) : m ∈ Z×s }

⇐⇒ {ϕ1(k)dk=1, . . . , ϕs−1(k)dk=1} = {ψ1(σ2(k))dk=1, . . . , ψs−1(σ2(k))dk=1}

⇐⇒ {ϕ0(k)dk=1, . . . , ϕs−1(k)dk=1} = {ψ0(σ2(k))dk=1, . . . , ψs−1(σ2(k))dk=1}

⇐⇒ ϕm(k) = ψσ1(m)(σ2(k)), ∀ k = 1, . . . , d, m = 0, . . . , s− 1

⇐⇒ [Φn] = [Ψn′ ],

where the fourth equivalence uses the fact that {mm′0 : m ∈ Z×s } = {m : m ∈

Z×s }.

To conclude this section, we note that when d = s, we see |Ad
s| = 1, and so

there can be only one orbit. Thus there is only one harmonic frame in this case.

2.4 The Number of Orbits of Ad
s

We begin by counting the number of orbits of Ad
s under the group action π2

for the cases d = 2 and d = 3. We then generalize these results for all 1 < d < s.
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2.4.1 Some Examples: d = 2 and d = 3

Proposition 2.4.1. Let s be an odd prime number and let d = 2. Then there are

(s+ 1)/2 orbits of A2
s. Therefore, there are (s+ 1)/2 inequivalent harmonic frames

for C2.

Proof. Let [n] ∈ A2
s. If (Z×s )[n] = {1}, then |O[n]| = s−1. Therefore, if we can find all

[n] ∈ A2
s with non-trivial stabilizer and their corresponding orbits, we will be able to

solve for the total number of orbits. Assume that m · [n1, n2] = [mn1,mn2] = [n1, n2]

for some m 6= 1. This implies that

mn1 ≡ n2 mod s,

mn2 ≡ n1 mod s.

Combining the above equations yields

m2n1 ≡ n1 mod s

⇒ m ≡ ±1 mod s.

Thus we see that we can take m ≡ −1 mod s, which implies n2 ≡ −n1 mod s.

Therefore all [n] ∈ A2
s of the form [n] = [n1,−n1], n1 6= 0, have stabilizer {1,−1}.

Furthermore, since

O[1,−1] = {m · [1,−1] = [m,−m] : m ∈ Z×s }, (2.4.44)

we see that all such [n] lie in the orbit O[1,−1]. Finally, these are the only elements

of A2
s with nontrivial stabilizer, and thus the number of orbits of A2

s is γ1 + 1, where
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γ1 is the number of orbits of size s− 1. Therefore,

|A2
s| = γ1(s− 1) + |O(1,−1)|,(
s

2

)
= γ1(s− 1) + (s− 1)/2,

s(s− 1)/2 = γ1(s− 1) + (s− 1)/2.

Solving for γ1 we get γ1 = (s − 1)/2 and so A2
s has γ1 + 1 = (s − 1)/2 + 1 =

(s+ 1)/2 orbits.

Proposition 2.4.2. Let s be a prime number, s > 3, and let d = 3:

1. If s ≡ 1 mod 3, then there are (s2 − 2s+ 7)/6 orbits of A3
s.

2. If s ≡ 2 mod 3, then there are (s2 − 2s+ 3)/6 orbits of A3
s.

Therefore, if s ≡ 1 mod 3, there are (s2 − 2s+ 7)/6 inequivalent harmonic frames

for C3, and if s ≡ 2 mod 3, there are (s2− 2s+ 3)/6 inequivalent harmonic frames

for C3.

Proof. As in the proof of proposition 2.4.1, we are looking for all [n] ∈ A3
s with

non-trivial stabilizer and their corresponding orbits. So again we suppose

m · [n1, n2, n3] = [mn1,mn2,mn3] = [n1, n2, n3], (2.4.45)

for some m 6= 1. We now consider two cases:

I: Suppose n1 = 0. Then we want m · [0, n2, n3] = [0,mn2,mn3] = [0, n2, n3].

But this is just the same situation as the d = 2 case, and so the elements of A3
s of

this form with non-trivial stabilizer all lie in the following orbit:

O[0,1,−1] = {m · [0, 1,−1] = [0,m,−m] : m ∈ Z×s },

|O[0,1,−1]| = (s− 1)/2.

(2.4.46)
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II: Suppose nk 6= 0 for all k = 1, 2, 3. According to (2.4.45), we have three

options for the value of mn1:

mn1 ≡


n1 mod s,

n2 mod s,

n3 mod s.

(2.4.47)

If mn1 ≡ n1 mod s, then m = 1 is the only solution, which is trivial and so we

disregard this case. Since the order of elements does not matter in A3
s, there is no

difference between mn1 ≡ n2 mod s and mn1 ≡ n3 mod s, and so we choose the

former. Moving on to the value of mn2, we once again have the same three options.

However, mn2 ≡ n1 mod s, combined with mn1 ≡ n2 mod s would imply that

mn3 ≡ n3 mod s, thus resulting in m = 1. mn2 ≡ n2 mod s not only would imply

m = 1, but since mn1 ≡ n2 mod s, would also lead to a contradiction. Therefore

mn2 ≡ n3 mod s must hold, which in turn forces mn3 ≡ n1 mod s. Summarizing,

we have

mn1 ≡ n2 mod s,

mn2 ≡ n3 mod s, (2.4.48)

mn3 ≡ n1 mod s.

Proceeding in a similar fashion to the proof of proposition 2.4.1, we see that (2.4.48)

implies

m3n1 ≡ n1 mod s. (2.4.49)

We now find all m ∈ Z×s that satisfy (2.4.49). Naturally m = 1 works; for the

remaining solutions, let g be any primitive root mod s, i.e. 〈g〉 = Z×s . Then all
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nontrivial solutions to (2.4.49) are of the form

m ≡ g(s−1)/3 mod s or m ≡ g2(s−1)/3 mod s. (2.4.50)

We have two cases:

II.a: If 3 does not divide s − 1, i.e. s ≡ 2 mod 3, then the only solution to

(2.4.49) is m = 1.

II.b: If 3 does divide s− 1, i.e. s ≡ 1 mod 3, then the solution set to (2.4.49)

is:

{1, g(s−1)/3, g2(s−1)/3 : g is a primitive root mod s}. (2.4.51)

Therefore all elements in A3
s of the form [n1, g

(s−1)/3n1, g
2(s−1)/3n1], n1 6= 0, have

stabilizer {1, g(s−1)/3, g2(s−1)/3}. Furthermore, all elements of this form lie in the

following orbit:

O[1,g(s−1)/3,g2(s−1)/3] = {[m,mg(s−1)/3,mg2(s−1)/3] : m ∈ Z×s }, (2.4.52)

where

|O[1,g(s−1)/3,g2(s−1)/3]| = (s− 1)/3. (2.4.53)

Indeed, since we have assumed that n1 6= 0, there are s− 1 choices for n1. However,

since the order of elements in the 3-tuple does not matter, choosing n1 is the same

as choosing g(s−1)/3n1 or g2(s−1)/3n1. Therefore there are (s− 1)/3 elements of this

form, and they must all lie in the orbit O[1,g(s−1)/3,g2(s−1)/3]. Using the same techniques

as in proposition 2.4.1, we may now count the number of orbits (recall that γ1 is

the number of orbits of size s− 1):
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1. If s ≡ 1 mod 3, then there are γ1 + 2 orbits:

|A3
s| = γ1(s− 1) + (s− 1)/2 + (s− 1)/3.

Solving for γ1 we get γ1 + 2 = (s2 − 2s+ 7)/6.

2. If s ≡ 2 mod 3, then there are γ1 + 1 orbits:

|A3
s| = γ1(s− 1) + (s− 1)/2.

Solving for γ1 we get γ1 + 1 = (s2 − 2s+ 3)/6.

2.4.2 The Structure of the Orbits of Ad
s

We now turn our attention to the more general setting, beginning with the

following theorem which addresses the order of the orbits of Ad
s and the form of the

elements in the orbits.

Theorem 2.4.3. Let s be a prime number and let 1 < d < s. If O is an orbit of Ad
s

under the group action π2, then there exists c ∈ N such that c | d or c | d− 1, and

|O| = (s− 1)/c. (2.4.54)

Furthermore, let g be a primitive root mod s and set

nck := [nk, g
(s−1)/cnk, . . . , g

(c−1)(s−1)/cnk], nk 6= 0. (2.4.55)

If [n] ∈ O, then [n] can be written in the form

[n] =


[nc1, n

c
2, . . . , n

c
d/c] if c | d,

[0, nc1, n
c
2, . . . , n

c
(d−1)/c] if c | d− 1.

(2.4.56 c)
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Proof. Let m ∈ Z×s ; we determine which elements of Ad
s are stabilized by m based on

the order of m. In particular, we will break the argument into two cases: |m| = c > d

and |m| = c ≤ d. We begin with the former.

I. Assume |m| = c > d.

We show that no element in Ad
s can be stabilized by m. Let [n] = [n1, . . . , nd] ∈

Ad
s, nj 6= 0 for all j = 1, . . . , d, and suppose

m · [n] = [n],

=⇒ m · [n1, . . . , nd] = [n1, . . . , nd],

=⇒ [mn1, . . . ,mnd] = [n1, . . . , nd].

Therefore, mn1 ≡ nj mod s for some j ∈ {1, . . . , d}, and because the order of

n1, . . . , nd does not matter, without loss of generality we have two choices:

mn1 ≡


n1 mod s,

n2 mod s.

(2.4.57)

If mn1 ≡ n1 mod s, then m = 1 and we have a contradiction to the assumption

|m| = c > d. Therefore, mn1 ≡ n2 mod s must hold. Continuing, we see that

mn2 ≡ nj mod s for some j ∈ {1, . . . , d}. Without loss of generality, we now have

three choices:

mn2 ≡


n1 mod s,

n2 mod s,

n3 mod s.

(2.4.58)

If mn2 ≡ n1 mod s, then, combining this with the fact that mn1 ≡ n2 mod s, we see

that m2 = 1. However, this contradicts our initial assumption, and so is eliminated
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from consideration. Similarly, mn2 ≡ n2 mod s implies m = 1 and again leads to

a contradiction. Therefore, mn2 ≡ n3 mod s must hold. Continuing in the same

manner, we see:

mn1 ≡ mn1 ≡ n2 mod s,

mn2 ≡ m2n1 ≡ n3 mod s,

mn3 ≡ m3n1 ≡ n4 mod s,

...

mnd−1 ≡ md−1n1 ≡ nd mod s.

Therefore, we must have mnd ≡ mdn1 ≡ n1 mod s, which implies md = 1. Since this

contradicts our initial assumption, we see that no element m ∈ Z×s with |m| = c > d

can stabilize an element of Ad
s of the form [n1, . . . , nd], nj 6= 0 for all j = 1, . . . , d.

The argument for elements of the form [0, n1, . . . , nd−1], nj 6= 0 for all j = 1, . . . , d−1,

follows similarly.

II. Assume |m| = c ≤ d.

We show an element of Ad
s is stabilized by m if and only if c | d or c | d − 1.

First, suppose c - d and c - d− 1. Therefore, there exists q, r ∈ Z such that

d = qc+ r, q ≥ 0, 1 < r < c. (2.4.59)

Let [n] = [n1, . . . , nd] ∈ Ad
s, nj 6= 0 for all j = 1, . . . , d, and suppose m · [n] = [n].
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Following the same argument as in part I of this proof, we see:

mn1 ≡ mn1 ≡ n2 mod s,

mn2 ≡ m2n1 ≡ n3 mod s,

...

mnc−1 ≡ mc−1n1 ≡ nc mod s,

mnc ≡ mcn1 ≡ n1 mod s,

where the last line results from the fact that |m| = c ≤ d. Continuing, we see there

are two possibilities for mnc+1:

mnc+1 ≡


nj mod s for some j ∈ {1, . . . , c},

nc+2 mod s.

(2.4.60)

If mnc+1 ≡ nj mod s for some j ∈ {1, . . . , c}, then mnc+1 ≡ mnj−1 mod s, where

n0 := nc mod s. However, this would imply that nc+1 ≡ nj−1 mod s, a contradic-

tion. Therefore, mnc+1 ≡ mnc+2 mod s must hold, and we can continue with the

previous line of reasoning to obtain:

mnc+1 ≡ mnc+1 ≡ nc+2 mod s,

mnc+2 ≡ m2nc+1 ≡ nc+3 mod s,

...

mn2c−1 ≡ mc−1nc+1 ≡ n2c mod s,

mn2c ≡ mcnc+1 ≡ nc+1 mod s.
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Continuing with the pattern that has now been established, we arrive at:

mnqc+1 ≡ mnqc+1 ≡ nqc+2 mod s,

mnqc+2 ≡ m2nqc+1 ≡ nqc+3 mod s,

...

mnqc+r−1 ≡ mr−1nqc+1 ≡ nqc+r mod s.

We must then have:

mnqc+r ≡ mrnqc+1 ≡ nqc+1 mod s, (2.4.61)

which in turn implies mr = 1, a contradiction. Therefore, no element of Ad
s of the

form [n1, . . . , nd], nj 6= 0 for all j = 1, . . . , d, can be stabilized by an m ∈ Z×s with

|m| = c ≤ d such that c - d and c - d − 1. The argument for elements of Ad
s of the

form [0, n1, . . . , nd−1], nj 6= 0 for all j = 1, . . . , d− 1, follows similarly.

We now shift our attention to m ∈ Z×s such that c | d or c | d − 1. In either

case there exists a q ∈ Z such that,

d = qc, q ≥ 0, or d− 1 = qc, q ≥ 0. (2.4.62)

Using the same argument that we just completed, we see that if c | d then

m stabilizes certain elements of the form [n1, . . . , nd], nj 6= 0 for all j = 1, . . . , d,

whereas if c | d − 1 then m stabilizes certain elements of the form [0, n1, . . . , nd−1],

nj 6= 0 for all j = 1, . . . , d − 1. The only difference in reasoning comes at the end,

where in this case we do not run into a contradiction. Furthermore, looking back

at the above reasoning, we see all elements [n1, . . . , nd] ∈ Ad
s stabilized by m must

satisfy:

mnjc+k ≡ mknjc+1 ≡ njc+k+1, ∀ j = 0, . . . , q − 1, k = 1, . . . , c− 1, (2.4.63)
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where d = qc or d − 1 = qc, depending on the type of element of Ad
s. By equation

(2.4.63), any element in Ad
s stabilized by m can be written in one of two general

forms:

[n] =


[n1,mn1, . . . ,m

c−1n1, . . . , n d
c
,mn d

c
, . . . ,mc−1n d

c
]

[0, n1,mn1, . . . ,m
c−1n1, . . . , n d−1

c
,mn d−1

c
, . . . ,mc−1n d−1

c
],

(2.4.64)

where nj 6= 0 and nj 6= nk for all j, k = 1, . . . , d/c or j, k = 1, . . . , (d − 1)/c,

depending on the form of [n]. Also, since |m| = c, there must exist a primitive root

mod s, g, such that

m = g(s−1)/c, (2.4.65)

noting that c | s− 1 since the order of any group element must divide the order of

the group. Combining equations (2.4.64) and (2.4.65) gives (2.4.56 c).

In order to prove (2.4.54), we exploit the fact that

|O[n]| =
s− 1

|(Z×s )[n]|
. (2.4.66)

By (2.4.66), we need only compute the stabilizer of [n] in Z×s , that is (Z×s )[n]. But

(2.4.64) and (2.4.65) easily give

(Z×s )[n] = {gl(s−1)/c : l = 0, . . . , c− 1}. (2.4.67)

Clearly |(Z×s )[n]| = c, thus proving (2.4.54).

Before counting the number of orbits Ad
s, we prove two lemmas that simplify

this task. The first shows that the choice of g in (2.4.55) does not matter.
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Lemma 2.4.4. If g1 and g2 are two primitive roots mod s, and n1 ∈ Zs, n1 6= 0,

then

[n1, g
(s−1)/c
1 n1, . . . , g

(c−1)(s−1)/c
1 n1] = [n1, g

(s−1)/c
2 n1, . . . , g

(c−1)(s−1)/c
2 n1]. (2.4.68)

Proof. Since g1 and g2 are both primitive roots mod s, the sets

{1, g(s−1)/c
1 , . . . , g

(c−1)(s−1)/c
1 } and {1, g(s−1)/c

2 , . . . , g
(c−1)(s−1)/c
2 } are both complete so-

lution sets to xc ≡ 1 mod s. Therefore (n1, g
(s−1)/c
2 n1, . . . , g

(c−1)(s−1)/c
2 n1) is a rear-

rangement of (n1, g
(s−1)/c
1 n1, . . . , g

(c−1)(s−1)/c
1 n1), and the lemma follows.

The second lemma shows that the representation given by (2.4.56 c) is not

unique and gives the instances where confusion can occur.

Lemma 2.4.5. Let [n] ∈ Ad
s such that [n] can be written in the form (2.4.35 b). If

c | b, then [n] can be written in the form (2.4.56 c) as well.

Proof. We assume [n] = [ñb1, ñ
b
2, . . . , ñ

b
d/b] and show that we can rewrite this as

[n] = [nc1, n
c
2, . . . , n

c
d/c]. If [n] = [0, ñb1, ñ

b
2, . . . , ñ

b
(d−1)/b] then a similar proof shows

how to rewrite this as [n] = [0, nc1, n
c
2, . . . , n

c
(d−1)/c]. Recall

ñbk = [ñk, g
(s−1)/bñk, . . . , g

(b−1)(s−1)/bñk].

Let a = b/c and set n1 = ñ1; we want to construct nc1 out of elements of ñb1, where:

ñb1 = [ñ1, g
(s−1)/bñ1, . . . , g

(b−1)(s−1)/bñb1].

Since the order of elements does not matter, we may pick them however we like and

rearrange them as we wish. We have that nc1 is formed out of the following elements
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of ñb1:

nc1 = [ñ1, g
a(s−1)/bñ1, . . . , g

(c−1)a(s−1)/bñ1]

= [n1, g
a(s−1)/bn1, . . . , g

(c−1)a(s−1)/bn1]

= [n1, g
a(s−1)/can1, . . . , g

(c−1)a(s−1)/can1]

= [n1, g
(s−1)/cn1, . . . , g

(c−1)(s−1)/cn1].

Likewise, set nk = ñk for k = 2, . . . , d/b, and construct nck in a similar manner. For

the next c-tuple, set n d
b

+1 = g(s−1)/bñ1. We then have:

ncd
b

+1
= [g(s−1)/bñ1, g

(a+1)(s−1)/bñ1, . . . , g
((c−1)a+1)(s−1)/bñ1]

= [n d
b

+1, g
a(s−1)/bn d

b
+1, . . . , g

(c−1)a(s−1)/bn d
b

+1]

= [n d
b

+1, g
(s−1)/cn d

b
+1, . . . , g

(c−1)(s−1)/cn d
b

+1].

In general,

n jd
b

+k = gj(s−1)/bñk, ∀ j = 0, . . . , a− 1, k = 1, . . . , d/b, (2.4.69)

and the resulting ncjd
b

+k
follows similarly.

2.4.3 Proof of Theorem 2.2.1

Using theorem 2.4.3 as well as lemmas 2.4.4 and 2.4.5, we now count the

number of orbits of Ad
s. By proposition 2.3.2 this is the same as counting the

number of inequivalent harmonic frames, and so will complete the proof of theorem

2.2.1. Let γc denote the total number of orbits of Ad
s with (s−1)/c elements. Then,
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by theorem 2.4.3, the total number of orbits of Ad
s is given by

γ1 +
∑
c|d
c>1

γc +
∑
c|d−1
c>1

γc. (2.4.70)

Notice the similarity between equations (2.4.70) and (2.2.28). In fact, we shall prove

that

γc = αc, ∀ c ∈ N such that c | s− 1 and c | d or c | d− 1. (2.4.71)

Theorem 2.4.6. Let s be a prime number, 1 < d < s, c | s − 1, c > 1, and let

βc denote the cumulative order of all orbits of size (s − 1)/c. Furthermore, let γc

denote the number of orbits of Ad
s of size (s− 1)/c, so that

γc =
cβc
s− 1

.

If c | d, then βc is given by the following backwards recursive formula:

βc =
(s− 1)(s− 1− c) · · · (s− 1− (d

c
− 1)c)

c
d
c (d/c)!

−
∑
c<b<s
c|b, b|d

(
s− 1

b

)
γb.

If c | d− 1, then βc is given by the following backwards recursive formula:

βc =
(s− 1)(s− 1− c) · · · (s− 1− (d−1

c
− 1)c)

c
d−1
c ((d− 1)/c)!

−
∑
c<b<s
c|b, b|d−1

(
s− 1

b

)
γb.

The number of orbits of Ad
s of size s− 1, denoted γ1, is given by:

γ1 =
1

s− 1

(
s

d

)
−
∑
c|d
c>1

γc
c
−
∑
c|d−1
c>1

γc
c
.

Proof. We prove the formula for βc when c | d, noting that the proof is identical for

the case when c | d−1. In order to accomplish this task, we will build up the formula
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using combinatorial arguments. By theorem 2.4.3, the elements we are counting are

of the form [nc1, n
c
2, . . . , n

c
d/c], where

nck = [nk, g
(s−1)/cnk, . . . , g

(c−1)(s−1)/cnk], nk 6= 0.

It is clear then, that we have s− 1 choices for n1, s− 1− c choices for n2, s− 1− 2c

choices for n3, and so on. Continuing to the end, we see there are s− 1− (d/c− 1)c

choices for nd/c. Furthermore, by lemma 2.4.4, the choice of g does not matter, and

so does not add any new elements to count. Therefore, at the moment, we have

(s− 1)(s− 1− c) · · · (s− 1− (d/c− 1)c) (2.4.72)

elements. Fixing the choice of n1 temporarily, it is clear that if we chose any of

g(s−1)/cn1, . . . , g
(c−1)(s−1)/cn1 instead of n1, then we would have a rearranged version

of nc1. However, the order of elements does not matter in Ad
s, and so these choices

are in fact the same as choosing n1. Since there are c such elements (including n1),

the number of distinct choices for n1 is in fact (s− 1)/c. Similarly, we must divide

the number of choices for each nk by a factor of c, thus giving

(s− 1)(s− 1− c) · · · (s− 1− (d/c− 1)c)

cd/c
(2.4.73)

elements. Furthermore, again recalling that the order of elements does not mat-

ter, we see that the order in which we choose n1, . . . , nd/c does not matter either.

Consequently, we are now down to

(s− 1)(s− 1− c) · · · (s− 1− (d/c− 1)c)

cd/c(d/c)!
(2.4.74)

elements. We note that equation (2.4.74) gives the number of elements of the form

(2.4.56 c). However, we are not counting all elements of the form (2.4.56 c), but only
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those that are in an orbit of size (s− 1)/c. In fact, by lemma 2.4.5 any element in

an orbit of size (s− 1)/b, where c | b and b | d, can be rewritten as [nc1, n
c
2, . . . , n

c
d/c].

Therefore, we must subtract all elements in orbits of size (s− 1)/b, where c | b and

b | d, thus giving:

βc =
(s− 1)(s− 1− c) · · · (s− 1− (d

c
− 1)c)

c
d
c (d/c)!

−
∑
c<b<s
c|b, b|d

(
s− 1

b

)
γb. (2.4.75)

The equation for γ1 follows from

|Ad
s| = γ1(s− 1) +

∑
c|d
c>1

(
s− 1

c

)
γc +

∑
c|d−1
c>1

(
s− 1

c

)
γc, (2.4.76)

and the fact that |Ad
s| =

(
s
d

)
.

Example 2.4.7. We apply theorem 2.4.6 for the case when d = 3 and s ≡ 1 mod 3.

In this case, c = 3 divides d as well as s − 1, while c = 2 divides d − 1 as well as

s− 1. Therefore we compute:

β3 =
s− 1

3
and β2 =

s− 1

2
,

which in turn gives:

γ3 = 1 and γ2 = 1.

Thus,

γ1 =
1

s− 1

(
s

3

)
− 1

3
− 1

2

=
s2 − 2s

6
− 2

6
− 3

6

=
s2 − 2s− 5

6
,
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and so the total number of orbits is:

γ1 + γ2 + γ3 =
s2 − 2s− 5

6
+ 1 + 1

=
s2 − 2s+ 7

6
.

Notice this is the same result as proposition 2.4.2.

2.5 The Symmetry Group

We now turn our attention to the symmetry group of prime order harmonic

frames. The following theorem proves the existence of a particular subgroup of

Sym(Φn) that is dependent on the generators n1, . . . , nd as well as the order of O[n].

Theorem 2.5.1. Let O[n] be an orbit of Ad
s such that |O[n]| = (s− 1)/c, and let Φn

be the harmonic frame that corresponds to O[n] under the one-to-one correspondence

described by proposition 2.3.2. Then

〈diag(ωn1 , . . . , ωnd), Q〉 ⊆ Sym(Φn),

where diag(ωn1 , . . . , ωnd) denotes a d × d matrix with ωn1 , . . . , ωnd on the diagonal

and zeros elsewhere, ω = e2πi/s, Q is a d× d permutation matrix dependent on Φn,

and |〈Q〉| = c.

Proof. Similar to the proof of theorem 2.3.1, we shall almost exclusively consider Φ

as a d× s matrix. We recall that U ∈ Sym(Φn) if and only if there exists an s× s

permutation matrix P such that

UΦ = ΦP. (2.5.77)
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First using the left hand side of (2.5.77), we have

(UΦ)?(UΦ) = Φ?U?UΦ = Φ?Φ, (2.5.78)

and then equivalently for the right hand side of (2.5.77),

(ΦP )?(ΦP ) = P ?Φ?ΦP. (2.5.79)

Combining (2.5.78) and (2.5.79) we obtain the following necessary condition for

(2.5.77),

Φ?Φ = P ?Φ?ΦP,

or equivalently,

PΦ?ΦP ? = Φ?Φ. (2.5.80)

The matrix Φ?Φ is called the Gram matrix and has the following form:

(Φ?Φ)j,k = 〈ϕk, ϕj〉 =
d∑
l=1

e2πinl(k−j)/s, ∀ j, k = 0, . . . , s− 1. (2.5.81)

Two elements 〈ϕk, ϕj〉 and 〈ϕk′ , ϕj′〉 of Φ?Φ are equal if and only if

d∑
l=1

e2πinl(k−j)/s =
d∑
l=1

e2πinl(k
′−j′)/s. (2.5.82)

Using the same minimum polynomial argument as the one found in the proof of

theorem 2.3.1, we see that (2.5.82) holds for off diagonal elements of Φ?Φ if and

only if there exists a permutation µ ∈ Sd such that

nl(k − j) ≡ nµ(l)(k
′ − j′) mod s, ∀ l = 1, . . . , d, k 6= j, k′ 6= j′. (2.5.83)

(2.5.83) is in fact the same condition as (2.3.39), and so we may define the following

equivalence relation between the off diagonal entries of Φ?Φ and the elements of Ad
s:

〈ϕk, ϕj〉 ∼ (k − j mod s) · [n], k 6= j. (2.5.84)

48



For the diagonal entries of Φ?Φ, we define the representative [0] as

[0] := [0, . . . , 0︸ ︷︷ ︸
d

], (2.5.85)

and extend our equivalence relation to diagonal elements:

〈ϕj, ϕj〉 ∼ [0]. (2.5.86)

In order to ease notation, we set 0 · [n] := [0], and thus can write k · [n] for all k ∈ Zs.

Combining (2.5.84) and (2.5.86), we see ∼ induces an equivalence relation between

the set of inner products, {〈ϕj, ϕk〉 : j, k = 0, . . . , s − 1}, and the set Ad
s ∪ {[0]}.

Defining the matrix G as

Gj,k := (k − j) · [n], ∀ j, k ∈ Zs, (2.5.87)

we then have an equivalence relation between Φ?Φ and G:

Φ?Φ ∼ G. (2.5.88)

Combining (2.5.80) with (2.5.88) gives the following necessary condition for (2.5.77)

to hold:

PGP ? = G. (2.5.89)

Returning to (2.5.87), we see G has the form:

G =



a0 as−1 as−2 · · · a2 a1

a1 a0 as−1 as−2 · · · a2

a2 a1 a0
. . . . . .

...
...

. . . . . . . . . as−1 as−2

as−2 · · · a2 a1 a0 as−1

as−1 as−2 · · · a2 a1 a0


, (2.5.90)
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where ak = k ·[n] for all k ∈ Zs. Therefore G is a circulant matrix, and is completely

determined by its first column vector. The permutation matrix

T :=



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0


, (2.5.91)

is called the basic circulant permutation matrix. A matrix A can be written in the

form

A =
s−1∑
k=0

akT
k, (2.5.92)

if and only if A is circulant. Therefore, G can be written in the form (2.5.92), and

as such, it is clear that

T kG(T k)? = G, ∀ k = 0, . . . , s− 1. (2.5.93)

A simple computation shows that when U = diag(ωn1 , . . . , ωnd), one has

UkΦ = ΦT k, ∀ k = 0, . . . , s− 1. (2.5.94)

Thus, regardless of the size O[n],

diag(ωkn1 , . . . , ωknd) ∈ Sym(Φn), ∀ k = 0, . . . , s− 1. (2.5.95)

Note this proves the theorem for the case |O[n]| = s− 1.

To prove the existence of the matrix Q ∈ Sym(Φn) with |〈Q〉| = c, suppose

that Φn corresponds to O[n] such that |O[n]| = (s− 1)/c, where c > 1. Note that by

theorem 2.4.3 we have

gk(s−1)/cm · [n] = m · [n], ∀ m ∈ Z×s , k = 1, . . . , c, (2.5.96)
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and in particular

gk(s−1)/c · [n] = [n], ∀ k = 1, . . . , c. (2.5.97)

Therefore, the action of g(s−1)/c on n defines a permutation ρ ∈ Sd such that

(nρk(1), . . . , nρk(d)) = gk(s−1)/c · (n1, . . . , nd), ∀ k = 1, . . . , c. (2.5.98)

Since a permutation of the generators n1, . . . , nd is equivalent to a permutation of

the rows of Φ, (2.5.98) implies the existence of a d×d permutation matrix Q, where

Q is the matrix equivalent of ρ, as well as an s×s permutation matrix P0, such that

QkΦ = ΦP k
0 , ∀ k = 1, . . . , c. (2.5.99)

In other words, Q ∈ Sym(Φn), and since diag(ωn1 , . . . , ωnd) ∈ Sym(Φn) as well, we

must have

〈diag(ωn1 , . . . , ωnd), Q〉 ⊆ Sym(Φn). (2.5.100)

Corollary 2.5.2. Let O[n] be an orbit of Ad
s such that |O[n]| = s− 1, and let Φn be

the harmonic frame that corresponds to O[n] under the one-to-one correspondence

described by proposition 2.3.2. Then

Sym(Φn) = 〈diag(ωn1 , . . . , ωnd)〉,

where diag(ωn1 , . . . , ωnd) denotes a d × d matrix with ωn1 , . . . , ωnd on the diagonal

and zeros elsewhere, and ω = e2πi/s.

Proof. Recall the matrices G and T from the proof of theorem 2.5.1, as given by

equations (2.5.87) and (2.5.91), respectively. We will show that P = T k, k =
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0, . . . , s−1, are the only matrices satisfying the necessary condition given by equation

(2.5.89). Combining the fact that O[n] = {m · [n] : m ∈ Z×s } with the assumption

that |O[n]| = s− 1, we have

k · [n] = k′ · [n] ⇐⇒ k ≡ k′ mod s. (2.5.101)

Furthermore, let σ ∈ Ss be the permutation corresponding to the permutation

matrix P . Equation (2.5.89) can be rewritten as

(σ(j)− σ(k)) · [n] = (j − k) · [n], ∀ j, k ∈ Zs. (2.5.102)

Combining equations (2.5.101) and (2.5.102), one obtains

σ(j)− σ(k) = j − k, ∀ j, k ∈ Zs. (2.5.103)

One can think of (2.5.103) as a system of s2 linear equations in the s variables

σ(0), . . . , σ(s− 1), with the two added constraints:

1. σ(k) ∈ Zs for all k ∈ Zs,

2. σ(j) = σ(k) if and only if j = k.

Clearly (2.5.103) is an overdetermined system. However, (2.5.103) has s − 1 inde-

pendent equations, given by:

σ(1)− σ(0) ≡ 1 mod s

σ(2)− σ(0) ≡ 2 mod s

...

σ(s− 1)− σ(0) ≡ s− 1 mod s.
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Thus σ(0) is a free variable, and can be assigned any value from Zs. The remaining

values of σ are then given by:

σ(j) ≡ j + σ(0) mod s, ∀ j = 1, . . . , s− 1. (2.5.104)

In conclusion, there are s possible permutations, each corresponding to a different

value of σ(0). In particular, we have the following correspondence:

σ(0) = k ⇐⇒ P = T k. (2.5.105)

The following conjecture asserts that the subgroup described in theorem 2.5.1

in fact is the symmetry group for all prime order harmonic frames, not just those

corresponding to orbits of size s− 1.

Conjecture 2.5.3. Let O[n] be an orbit of Ad
s such that |O[n]| = (s−1)/c, and let Φn

be the harmonic frame that corresponds to O[n] under the one-to-one correspondence

described by proposition 2.3.2. Then

Sym(Φn) = 〈diag(ωn1 , . . . , ωnd), Q〉,

where diag(ωn1 , . . . , ωnd) denotes a d × d matrix with ωn1 , . . . , ωnd on the diagonal

and zeros elsewhere, ω = e2πi/s, Q is a d× d permutation matrix dependent on Φn,

and |〈Q〉| = c.

2.6 Closing remarks

We have enumerated all harmonic frames for Cd with s elements, where s is a

prime number. A natural question is how to extend these results to all s. Certain
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problems arise, however, with the techniques used in this chapter, since in several

instances the fact that s is prime is a key element. In particular, for a general s,

distinct harmonic frames will arise from groups other than Zs. Also, even for those

harmonic frames that do come from Zs, new representations must be developed

since in general Z×s ⊆ {1, . . . , s}.
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Chapter 3

Frame Based Kernel Methods

3.1 Introduction to Multispectral and Hyperspectral Imagery Data

When a camera takes a picture, reflected light from the subject is passed

through three filters: red, green, and blue. The resulting bands are then combined

to form a color image; see figure 3.1. Multispectral and hyperspectral cameras,

Figure 3.1: Color image decomposition

(a) Color image

(b) Red band (c) Green band (d) Blue band

on the other hand, are in a sense a generalization of a regular camera. Rather
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than filter the reflected light through red, green, and blue filters, these cameras

are able to measure reflectance at a multitude of different wavelengths; see figure

3.2. Observing the sample bands in figure 3.2, one notices that the reflectance is

measured at wavelengths far beyond the visible spectrum (recall the visible spectrum

is about 380 – 750 nm). Unlike standard cameras, the purpose of multispectral and

hyperspectral cameras is not to create a color image, but rather to collect as much

information about a particular scene as possible. This additional information can

then be used for many different tasks, including (see [30] for more details):

• target detection

• material mapping

• material identification

• mapping details of surface properties

What figure 3.2 does not illustrate, though, is the central difference between

multispectral imagery (MSI) data sets and hyperspectral imagery (HSI) data sets.

While the bands are spread across the spectrum, there are large gaps where no

measurements are shown. HSI data sets are in fact characterized by the narrowness

and contiguous nature of their measurements, leaving few if any large spectral gaps.

One can imagine stacking each of the bands and forming a cube, as illustrated by

figure 3.3. Given this abundance of spectral information, HSI data sets are gener-

ally spectrally overdetermined, and are thus able to distinguish between spectrally

similar materials. In order to achieve the contiguous nature of the measurements,
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Figure 3.2: Selected bands of a hyperspectral data set

(a) 412 nm (b) 468 nm (c) 543 nm

(d) 650 nm (e) 808 nm (f) 1014 nm

(g) 1237 nm (h) 1451 nm (i) 1648 nm

(j) 1992 nm (k) 2144 nm (l) 2284 nm
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Figure 3.3: Hyperspectral data cube

usually there are hundreds of spectral bands. MSI data sets on the other hand have

anywhere from 4 spectral bands up to one hundred. In practical applications, the

number of pixels is on the order of hundreds of thousands, sometimes even millions.

Mathematically speaking, we can model a MSI/HSI data set in the following

way. Let X denote a MSI/HSI data cube with dimensions N1×N2×D, where N1 and

N2 are the spatial dimensions (length and width), and D is the spectral dimension.

Thus we have N = N1N2 pixels, each measured at D different wavelengths. Most

of the time it will be easier to think of X as a list, and so we set X = {xi : i =

1, . . . , N} ⊂ RD, where each xi corresponds to a pixel.

We will use MSI/HSI data for the purpose of material classification: given a

list of potential classes within a data set, we aim to correctly classify each pixel as

a certain class. Since HSI data sets are spectrally overdetermined, there are usually
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less classes than the number of wavelengths measured. The MSI data sets that

we examine will also have this property, although in general this is not true. A

traditional method for classification in HSI data is through the use of endmember

extraction algorithms. Endmembers are defined as a collection of the scene’s con-

stituent spectra. If E = {ei : i = 1, . . . , s} are endmembers for the HSI data set X,

then the linear mixture model is

xi =
s∑
j=1

αi,jej +Nxi , ∀xi ∈ X, (3.1.1)

where Nxi is a noise vector. The set {αi,j : i = 1, . . . , N, j = 1, . . . , s} are the

coefficients, and it is usually assumed that they satisfy the following two conditions:

αi,j ≥ 0, ∀ i = 1, . . . , N, j = 1, . . . , s, (3.1.2)

s∑
j=1

αi,j = 1, ∀ i = 1, . . . , N. (3.1.3)

Let αi,· = (αi,1, . . . , αi,s) and let α̃ = (α̃1, . . . , α̃s) ∈ Rs. Two common endmember

coefficient sets are given by:

αi,· = arg min
α̃
‖xi −

s∑
j=1

α̃jej‖`2 subject to (3.1.2), (3.1.3), (3.1.4)

αi,· = arg min
α̃
‖xi −

s∑
j=1

α̃jej‖`2 + τi‖α̃‖`1 subject to (3.1.2), (3.1.3), (3.1.5)

where τi is a positive real number. Most endmember extraction algorithms determine

E as a subset of X, i.e. it is assumed that the endmembers lie within the given

data set. There are several endmember extraction algorithms, including N-FINDR

[35], ORASIS [11], Pixel Purity Index [10], and Support Vector Data Description

(SVDD) [6, 31]; see also [15, 21].

59



3.2 Overview of New Algorithm

The main objective of this part of the thesis is to introduce a new algorithm for

the purposes of material classification in MSI and HSI data sets. This algorithm is

based on the theory of frames and dimension reduction, in particular kernel eigenmap

methods.

As stated above, traditional endmember algorithms determine a subset E ⊂

X by which to represent the elements of X. Another way to view this is that

they are determining a low dimensional subspace of interest, in this case span(E).

The algorithm presented here uses techniques from dimension reduction to give an

alternate method for determining a low dimensional space of interest. We shall use

kernel eigenmap methods to map the high dimensional space X to a low dimensional

space Y . Unlike endmember algorithms, Y will not be determined as a subspace X,

but rather through a nonlinear mapping.

We will then construct frame by which to represent the space Y . Akin to

endmember extraction algorithms, this frame Φ can be a subset of Y . We will also

present methodologies by which to construct a data dependent frame from scratch

that is not a subset of Y . Regardless of how they are constructed, unlike endmember

sets, these frames will provide overcomplete representations, a fact we shall exploit.

There are many techniques for dimension reduction, e.g., Principal Component

Analysis (PCA) [23], Locally Linear Embedding (LLE) [28], Isomap [32], genetic al-

gorithms, and neural networks. We are interested in a subfamily of these techniques

known as kernel eigenmap methods. These include Kernel PCA [29], LLE, Hessian
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LLE (HLLE) [18], and Laplacian eigenmaps [7]. Kernel eigenmap methods require

two steps.

1. Construction of a symmetric, positive semi-definite kernel (a matrix), K, for

given data and a specific type of dimension reduction problem to solve.

2. Diagonalization of K to obtain the eigenmaps (eigenvectors).

We shall interpret the data and kernel dependent Hilbert space K, mentioned in

section 3.4 for general kernel eigenmap methods, in terms of the theory of frames.

Frames provide non-orthogonal overcomplete signal decompositions. In dealing with

dimension reduction, our experiments to compare spectral signatures illustrate that

different classes are almost never orthogonal, whereas eigenmap methods provide

processed orthogonal decompositions. On the contrary, frame elements are not nec-

essarily orthogonal. As such, for given data, they can be constructed to reflect

empirical non-orthogonal angular relations between classes. Driven by this mathe-

matical modeling in terms of frames, and inspired solely by given data, we describe

an innovative methodology to achieve class separability and object identification.

3.3 Kernel Eigenmap Methods

Given a high dimensional data set X = {xi : i = 1, . . . , N} ⊂ RD, we assume

that the data points xi in fact lie on a low dimensional manifold Md, where d is

the dimension of the manifold, and d < D. As an example, see figure 3.4, where we

have a collection of points in R2 that lie on a one dimensional manifold. Dimension

reduction methods construct a mapping from RD to Rd, and in particular map X
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Figure 3.4: Points in R2 on a one dimensional manifold

t t t
ttt

to low dimensional coordinates Y = {yi : i = 1, . . . , N} ⊂ Rd, where xi 7→ yi. The

main goal of these methods is to have the new coordinates Y preserve the underlying

geometric structure of the manifold Md.

Kernel eigenmap methods are a subset of dimension of reduction methods. The

key component of these methods is the construction of a data dependent, N × N ,

symmetric, positive semi-definite kernel K:

Ki,j = K(xi, xj), ∀ i, j = 1, . . . , N. (3.3.6)

The kernel K is then diagonalized, and the d significant eigenvectors of K are

retained. Let v1, . . . , vd ∈ RN denote these eigenvectors; the new low dimensional

coordinates Y are then given by:

yi = (v1(i), . . . , vd(i)), ∀ i = 1, . . . , N. (3.3.7)

3.3.1 Spectral Clustering

We now give a more in depth overview of the theory behind kernel eigenmap

methods. Recall

X = {xi : i = 1, . . . , N} ⊂ RD. (3.3.8)
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We then define a distance ρ : RD × RD −→ R+ such that

ρ(xi, xj) = ρ(xj, xi), ∀ i, j = 1, . . . , N,

ρ(xi, xi) = 0, ∀ i = 1, . . . , N.

(3.3.9)

Since RD is a vector space, we can define ρ in terms of a norm ‖·‖, where ρ(xi, xj) =

‖xi − xj‖, ‖ · ‖ : RD −→ R+, and ‖0‖ = 0. We then compute

Ã = (Ãi,j)
N
i,j=1,

Ãi,j = ρ(xi, xj).

(3.3.10)

Ã has many nonzero entries and is therefore computationally intensive to diagonal-

ize. We think of Ã as global information, since it gives the ’distance’ between any

two points in X.

For each xi ∈ X, let

Nk(xi) = {k nearest neighbors of xi with respect to ρ}. (3.3.11)

In order to find Nk(xi) for a fixed i, we order the elements of {Ãi,j}Nj=1:

0 = Ãi,i ≤ Ãi,σ(1) ≤ Ãi,σ(2) ≤ . . . ≤ Ãi,σ(k) ≤ . . . ≤ Ãi,σ(N−1), (3.3.12)

where σ ∈ SN . We then set

Nk(xi) = {xσ(j) : j = 1, . . . , k}. (3.3.13)

Our adjacency matrix A = (Ai,j) is then given by

Ai,j =


1, xj ∈ Nk(xi),

0, otherwise.

(3.3.14)
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A has zeros down its diagonal and is not necessarily symmetric. If we want A

to be symmetric we could use ε-balls instead of the k nearest neighbors, in which

case we would replace Nk(xi) with Bε(xi) = {xj : ρ(xi, xj) < ε}.

We now define our directed graph G = {X,E} where

E ⊂ X ×X and (xi, xj) ∈ U ⇐⇒ Ai,j = 1. (3.3.15)

The weight matrix W̃ = (W̃i,j) is then given by

W̃i,j = h
(
Ã2
i,j

)
· Ai,j (3.3.16)

where h has exponential decay at ∞, e.g. h(x) = e−x. Finally, we define a normal-

izing matrix D = (Di,j) where

Di,j =


∑

l W̃i,l, i = j,

0, i 6= j.

(3.3.17)

We then set

W = D−1W̃ . (3.3.18)

W contains local information on the relative distances between points; we can

think of Wi,j as the probability of walking from xi to xj. We now examine the

following diagram, which shows two points, xi and xj, that are two edges apart.

xi
Wi,p //

Wi,q &&NNNNNNNNNNNNN xp
Wp,j // xj

xq
Wq,j

88ppppppppppppp

We see that the probability of walking from xi to xj is given by Wi,pWp,j +Wi,qWq,j.

But this is just an example of the following identity

W 2
i,j =

∑
xp∈Nk(xi)
xj∈Nk(xp)

Wi,pWp,j. (3.3.19)
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Thus W 2
i,j is the probability of walking from xi to xj in exactly two steps. More

generally we have

W l
i,j = the probability of walking from xi to xj in exactly l steps. (3.3.20)

We now look at the following example. Consider the following graph, depicted

in figure 3.5, where we assume the probability of walking to any given neighbor is

equal to that of some other neighbor (the arrows illustrate this point). Furthermore,

Figure 3.5: Diffusion distance
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assume the graph is embedded in R2 and take ρ as the Euclidean distance. Clearly

Ã1,2 < Ã1,3. However, W 5
1,2 = W 5

1,3. This is called diffusion similarity, and thus we

call W the diffusion matrix.

Recall we have a directed graph G = {X,E}, where X = {xi : i = 1, . . . , N}.

Let f : X → R. Since X has N elements, we can think of f as a vector in RN .

However, each xi ∈ RD, so f takes RD into R, i.e. f : RD → R. We want to define
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∇f ∈ RD.

Think of the directed edges of G as vectors. Define

uj = λxj + (1− λ)xi, 0 ≤ λ ≤ 1. (3.3.21)

Assuming f is a linear function on RD → R we have f(uj) = λf(xj) + (1− λ)f(xi).

Thus we set

∇ujf = f(xj)− f(xi). (3.3.22)

We now want to reparameterize to take into account the weights

0 ≤ λ ≤ 1√
Wi,j

,

uj =
√
Wi,jλxj +

√
Wi,j(1− λ)xi,

∇ujf =
√
Wi,j(f(xj)− f(xi)).

(3.3.23)

We now define

divf =
N∑
j=1

∇ujf, (3.3.24)

∆ = −div · ∇. (3.3.25)

Therefore

∆f(xi) =
∑

xj∈Nk(xi)

Wi,j(f(xj)− f(xi))

= −f(xi) +
∑

xj∈Nk(xi)

Wi,jf(xj) (3.3.26)

= (−I +W )f. (3.3.27)

(3.3.26) shows that our definition of ∆ is in fact a good one, i.e., ∆f(xi) = 0

if and only if f satisfies the mean value property on Nk(xi). (3.3.27) shows that

W − I is the discrete Laplacian operator.

We now describe the two types of kernels used in this research.
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3.3.2 Locally Linear Embedding

For each xi ∈ X compute k-nearest neighbors of xi, Nk(xi), and construct the

directed graph described in section 3.3.1. Furthermore, we assume that the graph

G is connected. The weights are computed by solving the following minimization

problem:

W = arg minfW
N∑
i=1

∣∣∣∣∣∣xi −
∑

xj∈N (xi)

W̃i,jxj

∣∣∣∣∣∣
2

, (3.3.28)

subject to the constraint:

N∑
j=1

W̃i,j = 1, ∀ i = 1, . . . , N. (3.3.29)

Notice that equation (3.3.28) can be rewritten line by line:

Wi,· = arg minfWi,·

∣∣∣∣∣∣xi −
∑

xj∈N (xi)

W̃i,jxj

∣∣∣∣∣∣
2

. (3.3.30)

The LLE kernel is then defined as:

K = (I −W )?(I −W ), (3.3.31)

which, when compared to (3.3.27), one sees that

K = ∆2. (3.3.32)

The eigenvectors of K will have nonnegative eigenvalues; there will be one with an

eigenvalue of zero. The d significant eigenvectors are given by those eigenvectors

that correspond the d smallest nonzero eigenvalues.
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3.3.3 Laplacian Eigenmaps

Like LLE, we use k-nearest neighbors to determine the neighborhoods of each

xi ∈ X and we construct the graph G. The weights are defined as:

W̃i,j =


exp{−‖xi − xj‖2

`2/σ}, if xj ∈ N (xi) or xi ∈ N (xj)

0, otherwise,

(3.3.33)

where σ is a positive real number. Define the N ×N , diagonal matrix D that same

as in equation (3.3.17):

Di,j =


∑N

l=1 W̃i,l, i = j

0, i 6= j

(3.3.34)

We then set the Laplacian eigenmap kernel to be:

K = D − W̃ . (3.3.35)

Notice that

K = −D∆. (3.3.36)

For Laplacian eigenmaps, the eigenmaps are obtained by solving the following gen-

eralized eigenvector problem:

Kf = λDf. (3.3.37)

Like LLE, the we select the d eigenvectors corresponding to the d smallest non-zero

eigenvalues.

3.4 Theoretical Foundations of the Algorithm

This algorithm, which appears mathematical and is mathematically sound, is

the foundation for our computational work. It is not, however, a direct transcription
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of the actual computations, but rather the inspiration for them. The differences be-

tween the theoretical work here and the actual computations are detailed in section

3.5.

Given a data set X = {xi : i = 1, . . . , N} ⊂ RD, we create the kernel, K,

using existing kernel methods such as locally linear embedding (LLE), Laplacian

eigenmaps, and Hessian LLE. K ∈MN,N(R) is a square matrix of size N and rank

r. Furthermore, we construct K to be positive semi–definite, i.e., for all vectors

f ∈ RN , we have f ?Kf ≥ 0, where f ? is the transpose of the complex conjugate of

f .

As with any square matrix, we can diagonalize K. In particular, there exists

V ∈MN,N(R) and {λi : i = 1, . . . , N} ⊂ R+ such that

V V ? = V ?V = I, (3.4.38)

and

K = V diag(λi)V
?. (3.4.39)

Furthermore, by Mercer’s theorem [26], there exists a reproducing kernel Hilbert

space K and a set of vectors {ψi : i = 1, . . . , N} ⊂ K, such that for all i, j = 1, . . . , N ,

〈ψi, ψj〉K = Ki,j. (3.4.40)

We note that dimK = rank(K) = r. Furthermore, let B = {bi : i = 1, . . . , r} be

any orthonormal basis for K. Then there exists Ỹ ∈ MN,r(R) such that for each

i = 1, . . . , N we have

ψi =
r∑
j=1

Ỹi,jbj, (3.4.41)
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where

Ỹi,j = 〈ψi, bj〉K. (3.4.42)

It is clear then that

Ỹ Ỹ ? = K, (3.4.43)

and that rank(Ỹ ) = dimK = rank(K) = r. We note that this N×r matrix Ỹ , while

not the same as the set Y = {yi : i = 1, . . . , N} ⊂ Rd first introduced in section 3.3,

plays a similar role.

Lemma 3.4.1. We can choose B so that

Ỹ = V ′N,rdiag(
√
λi)r,r, (3.4.44)

where V ′N,r is the matrix of columns of V (i.e. the eigenvectors of K) that correspond

to non-zero λi.

Proof. Consider the singular value decomposition of Ỹ : there exists U1 ∈MN,N(R),

U2 ∈Mr,r(R), and {ωi : i = 1, . . . , N} ⊂ R such that

U1U
?
1 = U?

1U1 = I, (3.4.45)

U2U
?
2 = U?

2U2 = I, (3.4.46)

and

Ỹ = U1ΩU?
2 , (3.4.47)

where Ω =

[
diagr,r(ωi)

0

]
N,r

. Note that 0 denotes a block of zeros. Hence,

K = Ỹ Ỹ ? = U1ΩU?
2U2Ω?U?

1 = U1ΩΩ?U?
1 (3.4.48)
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where

ΩΩ? =

[
diag(|ωi|2)|0

0|0

]
. (3.4.49)

Therefore, the ωi are uniquely determined (up to a phase factor) by the eigende-

composition of K, and so are the columns of U1 that correspond to non-zero ωi.

We pick s ∈ Z, with r ≤ s ≤ N . Let Φ = {ϕi : i = 1, . . . , s} be a FUNTF for

K. There exists a coefficient matrix C ∈ MN,s(R) such that for each i = 1, . . . , N

we have

ψi =
s∑
j=1

Ci,jϕj. (3.4.50)

We can choose

Ci,j = 〈ψi, ϕj〉K (3.4.51)

but these are not the unique coefficients for which equation (3.4.51) is valid. We can

also represent Φ in terms of the basis B, i.e., there exists Z ∈Ms,r(R) such that for

each i = 1, . . . , s, we have

ϕi =
r∑
j=1

Zi,jbj. (3.4.52)

We note that Φ is a FUNTF if and only if Z?Z = s
r
I, or alternatively, if and only

if ‖Z?Z‖FRO = s2

r
. Combining equations (3.4.42) and (3.4.52), we have

〈ψi, ϕj〉K =
r∑
l=1

〈ψi, bl〉K〈bl, ϕj〉K =
r∑
l=1

Ỹi,lZj,l. (3.4.53)

Thus, one possible coefficient matrix is given by:

C = Ỹ Z?. (3.4.54)

Inspired by the above calculations, we define how to find the FUNTF Ψ and set

up a more general method for computing C. Let c1 and c2 denote cost functions on
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the space of matricesMN,s(R). We want to find a basis B = {bi : i = 1, . . . , r} for K

and a FUNTF Φ = {ϕi : i = 1, . . . , s} for K that satisfy the following minimization

problem:

mineB,eΦ c1(Ỹ Z?), subject to (3.4.44), (3.4.55)

where B̃ is any basis for K and Φ̃ is any FUNTF for K. Recall that by equa-

tion (3.4.41) Ỹ is completely determined by B̃ and that by equation (3.4.52) Z is

completely determined by B̃ and Φ̃.

Given a FUNTF Φ, we then want to find a coefficient matrix C that satisfies

(3.4.50). Using our second cost function c2, we find C by solving the following

minimization problem:

C = arg mineC c2(C̃), subject to (3.4.50), (3.4.56)

where C̃ is any possible coefficient set.

3.5 The Algorithm in Practice

In practice the algorithm consists of the following five steps:

1. Landmarking

2. Kernel eigenmap method

3. Out of sample extension

4. Frame construction

5. Frame coefficients
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The main differences between the actual algorithm and the theoretical ideas are

the following. Steps one and three, landmarking and out of sample extension, are

employed for certain kernels on large data sets so that the algorithm can run in a

reasonable amount of time. Also, the frame construction and handling of kernels are

viewed from a more practical point of view, and are implemented correspondingly.

We give detailed explanations below.

3.5.1 Landmarking

For certain kernels to be used on large scale data sets, landmarking must be

employed. For our purposes, we use landmarking only when applying the LLE

kernel. Laplacian eigenmaps, with its simple kernel construction, we have found

feasible on the data sets of interest. In the case of Laplacian eigenmaps, one my

think of the algorithm as skipping steps one and three.

The idea of landmarking is to determine a subset of X that will be used to

compute the kernel K, as opposed to using all of X. We denote this subset as

Xsam := {xij : j = 1, . . . , n} ⊂ X, (3.5.57)

where n is the number of samples and we assume that n� N . To obtain Xsam, we

sample X uniformly at random without replacement.

3.5.2 Kernel Eigenmap Methods

We apply the LLE and Laplacian eigenmap kernel eigenmap methods. LLE is

used for HSI terrain data, while Laplacian eigenmaps is applied to MSI biological
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data. Unlike in section 3.4 where the work is done in the kernel space K, we are

forced to diagonalize K in practice and use the traditional reduced coordinates

Y = {yi = (v1(i), . . . , vd(i)) : i = 1, . . . , N}, which were described in section 3.3. As

a matter of notation, we shall denote the reduced dimensional coordinates of Xsam

as yij ∈ Rd. The reason for returning to the traditional methodology is the following:

both LLE and Laplacian eigenmaps were designed to be run on a connected graph

G, and as such, the rank of these kernels is r = N − 1. Thus dimK = N − 1, where

in practice N is on the order of 106. To work in such a space is computationally

infeasible, and so a subspace must be determined. The natural first subspace to try

is the one given by the eigendecomposition. It should be noted that in the future the

development of a true frame based kernel, with low rank, would at least theoretically

be optimal.

3.5.3 Out of Sample Extension

Given the n low dimensional coordinates {yij : j = 1, . . . , n} corresponding

to the sampled set Xsam = {xij : j = 1, . . . , n} ⊂ X, we wish to extend these new

coordinates to all of X via an out of sample extension [9]. To do so we extend the

definition of k-nearest neighbors to include reference points xi ∈ X that are out of

sample, i.e., for all xi ∈ X\Xsam, we define:

N ′k(xi) := {xij ∈ Xsam : xij is one of the k nearest neighbors of xi with respect to ρ}.

(3.5.58)

74



Notice that while the reference point may now come from X, the neighbors are still

selected only from the sampled subset Xsam. In the case of LLE, we must similarly

define weights for xi ∈ X\Xsam. Let W ′(xi, ·) = (W ′(xi, xi1), . . . ,W
′(xi, xin)), and

define it as:

W ′(xi, ·) = arg minfW ′(xi,·)
∣∣∣∣∣∣xi −

∑
xij∈N ′(xi)

W̃ ′(xi, xij)xij

∣∣∣∣∣∣
2

, (3.5.59)

subject to the constraint:

n∑
j=1

W̃ ′(xi, xij) = 1, ∀xi ∈ X\Xsam. (3.5.60)

The low dimensional coordinates for xi ∈ X\Xsam are then given by:

yi =
n∑
j=1

yijW
′(xi, xij), (3.5.61)

thus giving a complete set of low dimensional coordinates Y = {yi : i = 1, . . . , N}

that correspond to xi 7→ yi.

3.5.4 Frame Construction

Given that we have already departed from the theoretical methodology out-

lined in section 3.4, it is only natural that our frame construction algorithms deviate

as well. Again we forgo working in the kernel space K for the simpler reduced co-

ordinates given by Y = {yi : i = 1, . . . , N} ⊂ Rd. Given the new coordinates Y , we

construct a frame Φ = {ϕi : i = 1, . . . , s} ⊂ Rd, where s ≥ d, for the space span(Y ).

We then represent the coordinates Y in terms of the frame Φ. In this research we

have used two methods to construct frames, detailed below.
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3.5.4.1 Endmember Frames

When dealing with HSI terrain data, which is initially processed using the

LLE kernel eigenmap method, we have applied existing endmember algorithms to

the low dimensional coordinates Y . In particular, we have extensively tested the

support vector data description (SVDD) endmember algorithm [6, 31] within this

framework. The benefit of using an existing endmember algorithm such as SVDD

is that it is fast, immediately available, and gives a means by which to compare our

new framework with an existing endmember algorithm.

3.5.4.2 Maximum Separation Frames

We have also developed frame construction algorithms based on modified ver-

sions of the frame potential. Through the use of penalty terms, we are able to guide

the frame to separate out various features within the data. More specifically, for a

FUNTF Φ = {ϕi : i = 1, . . . , s} and coordinates Y = {yi : i = 1, . . . , N}, define the

following penalty function, p, as follows:

p(ϕi) :=
N∑
j=1

|〈yj, ϕi〉|. (3.5.62)

We also set:

p(Φ) :=
s∑
i=1

p(ϕi). (3.5.63)

For a given t, 0 ≤ t ≤ s, and ε, 0 ≤ ε ≤ 1, we then compute a ’separated’ FUNTF

Φ by solving the following modified frame potential:

Φ = arg mineΦ∈Sd−1×...×Sd−1

FP (Φ̃)
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subject to (3.5.64)

s∑
i=t+1

p(ϕ̃i)

p(Φ)
=

s∑
i=t+1

N∑
j=1

|〈yj, ϕ̃i〉|
p(Φ)

< ε.

The above frame construction has been applied to biological data, which is first

processed using Laplacian eigenmaps.

3.5.5 Frame Coefficients

Given reduced coordinates Y = {yi : i = 1, . . . , N} ⊂ Rd and a frame Φ =

{ϕi : i = 1, . . . , s} ⊂ Rd for span(Y ), we are left to compute coefficients C = {Ci,j :

i = 1, . . . , N ; j = 1, . . . , s} to represent Y in terms of Φ. We use two types of

coefficients: canonical and sparse.

3.5.5.1 Canonical Coefficients

Given a frame Φ, recall the definition of the frame operator S:

S(f) =
s∑
i=1

〈f, ϕi〉ϕi. (3.5.65)

The canonical coefficients of Ψ are then given by:

Ci,j = 〈yi, S−1(ϕj)〉, ∀ i = 1, . . . , N, j = 1, . . . , s. (3.5.66)

It is well known that the canonical coefficients satisfy the following reconstruction

formula:

yi =
s∑
j=1

Ci,jϕj, ∀ i = 1, . . . , N. (3.5.67)

Furthermore, the canonical coefficients are easy and fast to compute, especially so

when Φ is a FUNTF and S = s
d
I.
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3.5.5.2 Sparse Coefficients

To compute sparse coefficients for a frame Φ we solve an `1 minimization

problem for each yi ∈ Y . Let Ci,· = (Ci,1, . . . , Ci,s); we then compute:

Ci,· = arg mineCi,· ‖C̃i,·‖`1 , subject to
s∑
j=1

C̃i,jϕj = yi. (3.5.68)

We use `1 minimization as a substitute for the following `0 minimization problem:

arg mineCi,· ‖C̃i,·‖`0 , subject to
s∑
j=1

C̃i,jϕj = yi, (3.5.69)

where ‖f‖ = #supp(f). Solving (3.5.69) is NP hard and requires and exhaustive

combinatorial search, thus making it intractable. Via the theory of compressed

sensing [12, 13, 17], it has been shown that (3.5.68) can, in certain situations, be

used as a direct substitute to (3.5.69), or at the very least, a good approximation.

Furthermore, (3.5.68) is a convex optimization problem, and can be solved (reason-

ably quickly) using linear programming techniques. While the sparse coefficients

are more computationally intensive than the canonical coefficients, they can provide

enhanced separation of classes, especially when considered from a visual perspective.
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Chapter 4

Empirical Results

In this chapter we present empirical results derived from running our algorithm

on real world hyperspectral and multispectral data sets. These results are broken

into two main categories:

1. Hyperspectral terrain data

(a) Urban

(b) Smith Island

2. Multispectral eye data

We give more details on each category, as well as the results, in the sections below.

4.1 Hyperspectral Terrain Data

We have two hyperspectral terrain data sets, Urban and Smith Island [3, 2,

4, 1, 5]. For these data sets we use the LLE kernel for the dimension reduction,

and the SVDD endmember algorithm to construct a frame; we use both canonical

and sparse coefficients. For both Urban and Smith Island we have a small subset

of ground truth training data, which gives sample pixels of each class contained

within the data. Since we have some ground truth, numerically based classification
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and comparison is possible; we also present frame coefficient images as well as class

maps.

4.1.1 Classification Methodology

Once again denote our HSI data set as X = {xi : i = 1, . . . , N} ⊂ RD. Let

T ⊂ X denote our ground truth, and suppose there are q classes within T . Let

Ti ⊂ T , i = 1, . . . , q, denote the set of pixels corresponding to class i, so that:

⋃q
i=1 Ti = T,

Ti ∩ Tj = ∅, ∀ i 6= j.

(4.1.1)

In order to perform classification on the set X, we first construct average represen-

tative vectors for each class Ti. Denote the elements of Ti (and therefore T as well)

as:

Ti = {ti,j : j = 1, . . . , qi}, (4.1.2)

where qi denotes the number of pixels in the class Ti; note that, by definition,

q∑
i=1

qi = #T. (4.1.3)

The average representative vector for the class Ti, denoted t̃i, is given by:

t̃i =
1

qi

qi∑
j=1

ti,j. (4.1.4)

Let T̃ denote the set of average representative vectors, i.e.,

T̃ = {t̃i : i = 1, . . . , q}. (4.1.5)

We then classify each vector xi ∈ X by comparing xi with the elements of T̃ . We

use the spectral angle between xi and each t̃j as the determining factor, where the
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angle between two vectors is given by:

θxi,t̃j = cos−1

(
〈xi, t̃j〉
‖xi‖‖t̃j‖

)
. (4.1.6)

If the angle between xi and t̃j0 is smaller than the angle between xi and all other t̃j,

then we place xi in class j0. Mathematically speaking, if

j0 = arg min
j=1,...,q

θxi,t̃j , (4.1.7)

then xi is placed in class j0. To obtain numerical statistics, we use the ground

truth data set T , and its subsets corresponding to classes, Ti, i = 1, . . . , q. For each

ti,j ∈ Ti, we see if the spectral angle classifier indeed places ti,j in class i. This allows

us to determine a percentage correct for each class, as well as for the ground truth

data set as a whole.

Note that we can extend this classification method to reduced coordinates

Y and coefficient coordinates C by simply computing everything in terms of these

coordinates. In these situations, the indexes of T would remain the same, but

we would now assume that T ⊂ Y or T ⊂ {Ci,· : i = 1, . . . , N}, respectively.

T̃ would thus be computed again in terms of these new coordinates as well. In

the sections to follow we present spectral angle classification statistics based on

ground truth for the original data set X = {xi : i = 1, . . . , N} ⊂ RD, the LLE

low dimensional coordinates Y = {yi : i = 1, . . . , N} ⊂ Rd, SVDD endmember

coefficients {αi,· : i = 1, . . . , N} computed according to (3.1.4) and (3.1.5), as well

as our frame coefficients {Ci,· : i = 1, . . . , N} computed according to (3.5.66) and

(3.5.68).
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4.1.2 Overview of the Trials

We have run our algorithm on the Urban and Smith Island data sets, which en-

tails the following steps. First process the data set through the LLE kernel eigenmap

method to obtain reduced coordinates Y . We then compute a frame for span(Y )

using the SVDD algorithm. A frame coefficient cube C is then produced, and we

run the spectral angle classification method on these new frame coefficient vectors

to obtain class maps and statistical data.

There are two trials for the Urban data set and one for the Smith data set.

For every trial there were three variable parameters: the reduced dimension of the

LLE coordinates, d, the number of frame elements, s, and type of frame coefficients

- canonical or sparse. We have run each trial through a variety of choices for d and

s and computed the canonical or minimum `2 error coefficients for each iteration,

depending on whether s ≥ d (canonical) or s < d (minimum `2 error). We then ran

spectral angle classification on each coefficient cube. For each trial, we highlight

a particular d and s that had one of the highest overall percentages correct. For

this particular d and s we then also compute the sparse coefficients, and present the

corresponding statistics and maps.

There are also three different competing results, each serving as means of com-

parison to our algorithm. First among these is that we classify the raw, unprocessed,

Urban and Smith Island data sets. Secondly, we use the LLE reduced coordinates

alone, varying the reduced dimension d and selecting the best one according to per-

centage. Note that the range for d is the same regardless of whether it is for our
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algorithm or the LLE coordinates alone. We also run solely SVDD on the Urban

data set, this time varying the number of endmembers, s. For each s we compute the

minimum `2 error coefficients, and highlight the particular s value with the highest

overall percentage. For this particular s we then also compute the mixed `2-`1 coef-

ficients, and present these results as well. Again note, we use the same parameters

when running SVDD alone as in the context of our algorithm, although in this case

that does not necessarily mean that the s values are the same since there is no way

to directly control the number of endmembers/frame elements that SVDD returns.

4.1.3 Urban

4.1.3.1 Description of the Urban Data Set

The Urban data set is a hyperspectral imagery data set that is freely available

at:

http : //www.agc.army.mil/Hypercube/index.html

The dimensions of Urban are 307× 307× 161: that is 307 ∗ 307 = 94249 pixels

and 161 spectral bands. A pseudocolor image of the Urban data set is given in figure

4.1. There are 932 ground truth pixels, broken into 22 distinct classes; these classes

are:

1. AsphaltDrk

2. AsphaltLgt

3. Concrete01
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4. VegPasture

5. VegGrass

6. VegTrees01

7. Soil01

8. Soil02

9. Soil03Drk

10. Roof01Wal

11. Roof02A

12. Roof02BGvl

13. Roof03LgtGray

14. Roof04DrkBrn

15. Roof05AChurch

16. Roof06School

17. Roof07Bright

18. Roof08BlueGrn

19. TennisCrt

20. PoolWater
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21. ShadedVeg

22. ShadedPav

Figure 4.1: Pseudocolor image of Urban

4.1.3.2 Urban Trial 1

The results of Urban trial 1 were obtained with the following settings:

• Data set: X = Urban

• Kernel: LLE

• Number of neighbors: k = 20

• Number of samples: #Xsam = 20000 pixels

• Frame construction: SVDD
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The classification results for varying s and d and the canonical coefficients are dis-

played in figure 4.2. Note that not every combination of d and s have a result -

due to the nature of the SVDD algorithm, it is only possible to ’guide’ the number

of endmembers by tweaking certain parameters, there is no direct way to select s.

Also, the black line represents the line where d = s. We highlight the following

Figure 4.2: Urban trial 1 canonical coefficients classification results for varying s

and d

particular cases.

Urban Trial 1 A

• Number of reduced dimensions: d = 25

• Number of frame elements: s = 57

• Type of coefficients: canonical
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Statistical results for Urban trial 1 A can be found in table 4.1. Figure 4.4 shows

the class map for this trial, while figures 4.8 and 4.9 show the individual class maps.

Figures 4.16, 4.17, 4.18, and 4.19 show the coefficient maps for each of the frame

elements.

Urban Trial 1 B

• Number of reduced dimensions: d = 25

• Number of frame elements: s = 57

• Type of coefficients: sparse

Statistical results for Urban trial 1 B can be found in table 4.2. Figure 4.5 shows

the class map for this trial, while figures 4.10 and 4.11 show the individual class

maps. Figures 4.20, 4.21, 4.22, and 4.23 show the coefficient maps for each of the

frame elements.

4.1.3.3 Urban Trial 2

For Urban trial 2 we increased the number of neighbors over trial 1, but oth-

erwise kept the settings the same:

• Data set: X = Urban

• Kernel: LLE

• Number of neighbors: k = 40

• Number of samples: #Xsam = 20000 pixels
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Table 4.1: Urban trial 1 A ground truth results

# # correct % correct # false positives # false negatives

AsphaltDrk 45 45 100% 8 0

AsphaltLgt 26 21 81% 9 5

Concrete01 64 54 84% 0 10

VegPasture 116 116 100% 3 0

VegGrass 65 63 97% 12 2

VegTrees01 123 85 69% 8 38

Soil01 52 51 98% 0 1

Soil02 24 20 83% 6 4

Soil03Drk 27 27 100% 0 0

Roof01Wal 57 57 100% 1 0

Roof02A 44 43 98% 3 1

Roof02BGvl 17 15 88% 5 2

Roof03LgtGray 12 10 83% 0 2

Roof04DrkBrn 39 39 100% 5 0

Roof05AChurch 38 34 89% 0 4

Roof06School 28 28 100% 0 0

Roof07Bright 35 35 100% 0 0

Roof08BlueGrn 21 15 71% 0 6

TennisCrt 47 42 89% 4 5

PoolWater 5 3 60% 0 2

ShadedVeg 17 9 53% 31 8

ShadedPav 30 24 80% 1 6

Total 932 836 90% 96 96
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Table 4.2: Urban trial 1 B ground truth results

# # correct % correct # false positives # false negatives

AsphaltDrk 45 45 100% 8 0

AsphaltLgt 26 21 81% 5 5

Concrete01 64 60 94% 3 4

VegPasture 116 116 100% 2 0

VegGrass 65 63 97% 10 2

VegTrees01 123 80 65% 7 43

Soil01 52 44 85% 1 8

Soil02 24 19 79% 3 5

Soil03Drk 27 26 96% 0 1

Roof01Wal 57 57 100% 1 0

Roof02A 44 43 98% 3 1

Roof02BGvl 17 15 88% 11 2

Roof03LgtGray 12 11 92% 3 1

Roof04DrkBrn 39 31 79% 4 8

Roof05AChurch 38 35 92% 0 3

Roof06School 28 28 100% 0 0

Roof07Bright 35 35 100% 0 0

Roof08BlueGrn 21 15 71% 0 6

TennisCrt 47 40 85% 3 7

PoolWater 5 3 60% 2 2

ShadedVeg 17 11 64% 38 6

ShadedPav 30 23 77% 7 7

Total 932 821 88% 111 111
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• Frame construction: SVDD

The classification results for varying s and d and the canonical coefficients are dis-

played in figure 4.3. We highlight the following particular cases.

Figure 4.3: Urban trial 2 canonical coefficients classification results for varying s
and d

Urban Trial 2 A

• Number of reduced dimensions: d = 44

• Number of frame elements: s = 86

• Type of coefficients: canonical

Statistical results for Urban trial 2 A can be found in table 4.3. Figure 4.6 shows

the class map for this trial, while figures 4.12 and 4.13 show the individual class

maps. Figures 4.24, 4.25, 4.26, 4.27, and 4.28 show the coefficient maps for each of
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Table 4.3: Urban trial 2 A ground truth results

# # correct % correct # false positives # false negatives

AsphaltDrk 45 45 100% 0 0

AsphaltLgt 26 20 77% 1 6

Concrete01 64 64 100% 1 0

VegPasture 116 116 100% 2 0

VegGrass 65 64 98% 9 1

VegTrees01 123 88 72% 4 35

Soil01 52 52 100% 0 0

Soil02 24 22 92% 1 2

Soil03Drk 27 27 100% 0 0

Roof01Wal 57 57 100% 3 0

Roof02A 44 44 100% 0 0

Roof02BGvl 17 17 100% 1 0

Roof03LgtGray 12 11 92% 1 1

Roof04DrkBrn 39 39 100% 3 0

Roof05AChurch 38 37 97% 0 1

Roof06School 28 28 100% 0 0

Roof07Bright 35 35 100% 0 0

Roof08BlueGrn 21 21 100% 0 6

TennisCrt 47 43 91% 1 4

PoolWater 5 3 60% 0 2

ShadedVeg 17 13 76% 34 4

ShadedPav 30 25 83% 0 5

Total 932 871 93% 61 61
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the frame elements.

Urban Trial 2 B

• Number of reduced dimensions: d = 44

• Number of frame elements: s = 86

• Type of coefficients: sparse

Statistical results for Urban trial 2 B can be found in table 4.4. Figure 4.7 shows

the class map for this trial, while figures 4.14 and 4.15 show the individual class

maps. Figures 4.29, 4.30, 4.31, 4.32, and 4.33 show the coefficient maps for each of

the frame elements.
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Table 4.4: Urban trial 2 B ground truth results

# # correct % correct # false positives # false negatives

AsphaltDrk 45 45 100% 1 0

AsphaltLgt 26 20 77% 0 6

Concrete01 64 61 95% 1 3

VegPasture 116 116 100% 2 0

VegGrass 65 64 98% 10 1

VegTrees01 123 92 75% 5 31

Soil01 52 52 100% 0 0

Soil02 24 24 100% 1 0

Soil03Drk 27 27 100% 0 0

Roof01Wal 57 56 98% 1 1

Roof02A 44 44 100% 3 0

Roof02BGvl 17 17 100% 0 0

Roof03LgtGray 12 12 100% 4 0

Roof04DrkBrn 39 39 100% 2 0

Roof05AChurch 38 38 100% 0 0

Roof06School 28 28 100% 0 0

Roof07Bright 35 35 100% 0 0

Roof08BlueGrn 21 20 95% 0 1

TennisCrt 47 41 87% 1 6

PoolWater 5 3 60% 0 2

ShadedVeg 17 12 71% 30 5

ShadedPav 30 25 83% 0 5

Total 932 871 93% 61 61
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4.1.3.4 Urban Competing Results

Table 4.5 contains the overall results of the competing Urban results. We note

that the LLE and SVDD results were obtained at the following points:

• LLE only (trial 1): d = 45

• LLE only (trial 2): d = 27

• SVDD (both coefficient cubes): s = 8

Table 4.5: Urban competing overall results

# # correct % correct # false pos/neg

Raw data 932 785 84% 147

LLE only (trial 1) 932 835 90% 97

LLE only (trial 2) 932 873 94% 59

SVDD only (min `2 error coeffs) 932 861 92% 71

SVDD only (mixed `2-`1 coeffs) 932 334 36% 598
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4.1.3.5 Urban Class Maps

Figure 4.4: Urban trial 1 A class map

Figure 4.5: Urban trial 1 B class map
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Figure 4.6: Urban trial 2 A class map

Figure 4.7: Urban trial 2 B class map
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4.1.3.6 Urban Individual Class Maps

(a) AsphaltDrk (b) AsphaltLgt (c) Concrete01

(d) VegPasture (e) VegGrass (f) VegTrees01

(g) Soil01 (h) Soil02 (i) Soil03Drk

Figure 4.8: Urban trial 1 A individual class maps 1–9
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(a) Roof01Wal (b) Roof02A (c) Roof02BGvl

(d) Roof03LgtGray (e) Roof04DrkBrn (f) Roof05AChurch

(g) Roof06School (h) Roof07Bright (i) Roof08BlueGrn

(j) TennisCrt (k) PoolWater (l) ShadedVeg

(m) ShadedPav

Figure 4.9: Urban trial 1 A individual class maps 10–22
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(a) AsphaltDrk (b) AsphaltLgt (c) Concrete01

(d) VegPasture (e) VegGrass (f) VegTrees01

(g) Soil01 (h) Soil02 (i) Soil03Drk

(j) Roof01Wal (k) Roof02A (l) Roof02BGvl

(m) Roof03LgtGray (n) Roof04DrkBrn (o) Roof05AChurch

Figure 4.10: Urban trial 1 B individual class maps 1–15
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(a) Roof06School (b) Roof07Bright (c) Roof08BlueGrn

(d) TennisCrt (e) PoolWater (f) ShadedVeg

(g) ShadedPav

Figure 4.11: Urban trial 1 B individual class maps 16–22
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(a) AsphaltDrk (b) AsphaltLgt (c) Concrete01

(d) VegPasture (e) VegGrass (f) VegTrees01

(g) Soil01 (h) Soil02 (i) Soil03Drk

(j) Roof01Wal (k) Roof02A (l) Roof02BGvl

(m) Roof03LgtGray (n) Roof04DrkBrn (o) Roof05AChurch

Figure 4.12: Urban trial 2 A individual class maps 1–15
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(a) Roof06School (b) Roof07Bright (c) Roof08BlueGrn

(d) TennisCrt (e) PoolWater (f) ShadedVeg

(g) ShadedPav

Figure 4.13: Urban trial 2 A individual class maps 16–22

102



(a) AsphaltDrk (b) AsphaltLgt (c) Concrete01

(d) VegPasture (e) VegGrass (f) VegTrees01

(g) Soil01 (h) Soil02 (i) Soil03Drk

(j) Roof01Wal (k) Roof02A (l) Roof02BGvl

(m) Roof03LgtGray (n) Roof04DrkBrn (o) Roof05AChurch

Figure 4.14: Urban trial 2 B individual class maps 1–15
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(a) Roof06School (b) Roof07Bright (c) Roof08BlueGrn

(d) TennisCrt (e) PoolWater (f) ShadedVeg

(g) ShadedPav

Figure 4.15: Urban trial 2 B individual class maps 16–22

104



4.1.3.7 Urban Coefficient Maps

Figure 4.16: Urban trial 1 A canonical coefficients 1–12
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Figure 4.17: Urban trial 1 A canonical coefficients 13–30
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Figure 4.18: Urban trial 1 A canonical coefficients 31–48
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Figure 4.19: Urban trial 1 A canonical coefficients 49–57
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Figure 4.20: Urban trial 1 B sparse coefficients 1–18
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Figure 4.21: Urban trial 1 B sparse coefficients 19–36
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Figure 4.22: Urban trial 1 B sparse coefficients 37–54
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Figure 4.23: Urban trial 1 B sparse coefficients 55–57
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Figure 4.24: Urban trial 2 A canonical coefficients 1–18
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Figure 4.25: Urban trial 2 A canonical coefficients 19–36
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Figure 4.26: Urban trial 2 A canonical coefficients 37–54
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Figure 4.27: Urban trial 2 A canonical coefficients 55–72
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Figure 4.28: Urban trial 2 A canonical coefficients 73–86
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Figure 4.29: Urban trial 2 B sparse coefficients 1–18
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Figure 4.30: Urban trial 2 B sparse coefficients 19–36
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Figure 4.31: Urban trial 2 B sparse coefficients 37–54
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Figure 4.32: Urban trial 2 B sparse coefficients 55–72
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Figure 4.33: Urban trial 2 B sparse coefficients 73–86
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4.1.4 Smith Island

4.1.4.1 Description of the Smith Island Data Set

The dimensions of the Smith Island data set are 679 × 944 × 110: that is

679 ∗ 944 = 640976 pixels and 110 spectral bands. A pseudocolor image of the

Smith Island data set is given in figure 4.34. There are 2743 ground truth pixels,

broken into 22 distinct classes; these classes are:

1. phrag

2. scirpus

3. juncus

4. patens

5. distichlis

6. andropogon

7. ammophila

8. mud

9. alterniflora

10. borrichia

11. salicornia

12. iva
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Figure 4.34: Pseudocolor image of Smith Island

13. pine

14. hardwood

15. pond water

16. sand

17. wrack

18. myrica

19. seaoats

20. typha

21. water nshore

22. submerged nets
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4.1.4.2 Smith Island Trial 1

The results of Smith Island trial 1 were obtained with the following settings:

• Data set: X = Smith Island

• Kernel: LLE

• Number of neighbors: k = 50

• Number of samples: #Xsam = 40000

• Frame construction: SVDD

The classification results for varying s and d and the canonical coefficients are dis-

played in figure 4.35. We highlight the following particular cases.

Smith Island Trial 1 A

• Number of reduced dimensions: d = 21

• Number of frame elements: s = 69

• Type of coefficients: canonical

Statistical results for Smith Island trial 1 A can be found in table 4.6. Figure 4.36

shows the class map for this trial, while figures 4.38 and 4.39 show the individual

class maps. Figures 4.42, 4.43, 4.44, 4.45, and 4.46 show the coefficient maps for

each of the frame elements.

Smith Island Trial 1 B

• Number of reduced dimensions: d = 21
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Figure 4.35: Smith Island trial 1 canonical coefficients classification results for vary-

ing s and d
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Table 4.6: Smith trial 1 A ground truth results

# # correct % correct # false positives # false negatives

phrag 196 138 70% 68 58

scirpus 246 155 63% 55 91

juncus 184 116 63% 33 68

patens 66 57 86% 33 9

distichlis 97 90 93% 18 7

andropogon 57 38 67% 9 19

ammophila 32 25 78% 29 7

mud 70 63 90% 25 7

alterniflora 200 182 91% 60 18

borrichia 90 84 93% 24 6

salicornia 76 58 76% 3 18

iva 58 49 84% 51 9

pine 166 134 81% 59 32

hardwood 328 193 59% 41 135

pond water 105 69 66% 3 36

sand 159 157 99% 0 2

wrack 144 97 67% 11 47

myrica 167 132 79% 54 35

seaoats 18 13 72% 0 5

typha 44 18 41% 59 26

water nshore 206 206 100% 0 0

submerged nets 34 34 100% 0 0

Total 2743 2108 77% 635 635
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• Number of frame elements: s = 69

• Type of coefficients: sparse

Statistical results for Smith Island trial 1 B can be found in table 4.7. Figure 4.37

shows the class map for this trial, while figures 4.40 and 4.41 show the individual

class maps. Figures 4.47, 4.48, 4.49, and 4.50 show the coefficient maps for each of

the frame elements.
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Table 4.7: Smith trial 1 B ground truth results

# # correct % correct # false positives # false negatives

phrag 196 129 67% 64 67

scirpus 246 160 65% 45 86

juncus 184 112 61% 54 72

patens 66 54 82% 31 12

distichlis 97 86 87% 35 11

andropogon 57 39 68% 6 18

ammophila 32 25 78% 36 7

mud 70 64 91% 23 6

alterniflora 200 190 95% 69 10

borrichia 90 85 94% 6 5

salicornia 76 57 75% 2 19

iva 58 32 55% 52 26

pine 166 112 67% 75 54

hardwood 328 189 58% 53 139

pond water 105 70 67% 1 35

sand 159 159 100% 0 0

wrack 144 95 66% 9 49

myrica 167 107 64% 70 60

seaoats 18 13 72% 0 5

typha 44 19 43% 75 25

water nshore 206 206 100% 0 0

submerged nets 34 34 100% 0 0

Total 2743 2037 74% 706 706
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4.1.4.3 Smith Island Competing Results

Table 4.8 contains the overall results of the competing Smith Island results.

We note that the LLE and SVDD results were obtained at the following points:

• LLE only (trial 1): d = 43

• SVDD (both coefficient cubes): s = 8

Table 4.8: Smith competing overall results

# # correct % correct # false pos/neg

Raw data 2743 1957 71% 786

LLE only (trial 1) 2743 2211 81% 531

SVDD only (min `2 error coeffs) 2743 2088 76% 655

SVDD only (mixed `2-`1 coeffs) 2743 1497 55% 1245

130



4.1.4.4 Smith Island Class Maps

Figure 4.36: Smith trial 1 A class map

Figure 4.37: Smith trial 1 B class map
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4.1.4.5 Smith Island Individual Class Maps

(a) phrag (b) scirpus (c) juncus

(d) patens (e) distichlis (f) andropogon

(g) ammophila (h) mud (i) alterniflora

Figure 4.38: Smith trial 1 A individual class maps 1–9
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(a) borrichia (b) salicornia (c) iva

(d) pine (e) hardwood (f) pond water

(g) sand (h) wrack (i) myrica

(j) seaoats (k) typha (l) water nshore

(m) submerged nets

Figure 4.39: Smith trial 1 A individual class maps 10–22
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(a) phrag (b) scirpus (c) juncus

(d) patens (e) distichlis (f) andropogon

(g) ammophila (h) mud (i) alterniflora

(j) borrichia (k) salicornia (l) iva

(m) pine (n) hardwood (o) pond water

Figure 4.40: Smith trial 1 B individual class maps 1–15
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(a) sand (b) wrack (c) myrica

(d) seaoats (e) typha (f) water nshore

(g) submerged nets

Figure 4.41: Smith trial 1 B individual class maps 16–22
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4.1.4.6 Smith Island Coefficient Maps

Figure 4.42: Smith trial 1 A canonical coefficients 1–12
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Figure 4.43: Smith trial 1 A canonical coefficients 13–30
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Figure 4.44: Smith trial 1 A canonical coefficients 31–48
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Figure 4.45: Smith trial 1 A canonical coefficients 49–66
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Figure 4.46: Smith trial 1 A canonical coefficients 67-69
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Figure 4.47: Smith trial 1 B sparse coefficients 1–18
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Figure 4.48: Smith trial 1 B sparse coefficients 19–36
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Figure 4.49: Smith trial 1 B sparse coefficients 37–54
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Figure 4.50: Smith trial 1 B sparse coefficients 55–69
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4.1.5 Conclusions

The numerical statistics show that, for the most part, our algorithm improves

upon the raw data and the SVDD method, while remaining even with LLE, at

least on the Urban data set. The one exception comes from the LLE coordinates of

Smith Island, which when d = 43, LLE alone attains the best classification results.

It should be noted, though, that when restricted to the range 10 ≤ d ≤ 25, the LLE

coordinates on Smith Island attain a maximum classification percentage of 75%,

below what our algorithm attains in the same range for d. Similarly, for the Urban

data set, larger values of d seem to generate the best classification results for LLE

alone, but values of d near the number of classes or below seem to work best when

incorporated into our algorithm. Given that both data sets have 22 distinct classes,

it would seem plausible that they would lie closer to a manifold with dimension

somewhere near 22 as opposed to one with a dimension in the 40’s. Yet with LLE

alone the spectral angle classifier desires more and more dimensions, as opposed to

our algorithm which seems to prefer a more ’appropriate’ low dimensional space. Of

course this could also be due to the fact that as d increases, the redundancy of the

frame lessens, thus reducing its effectiveness.

Another point to make, however, is the argument of storage versus speed.

What we have gained in reducing the size of our data set, we have lost in speed.

It is rather quick to run SVDD on the original data sets, even for a large number

of different parameters. However, even with the speed ups employed in the kernel

process, such as landmarking and the out of sample extension, computing a kernel
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on Urban, and especially Smith, is a time consuming process that can take upwards

of 24 hours even on a 8 core computer with 16 gigabytes of RAM. Concerning our

algorithm, one must weigh the benefits of reduced storage and increased precision at

the cost of time. Of course our algorithm does manage to do more with less, at least

compared to LLE, and so perhaps can serve as a compromise between endmember

algorithms and kernel methods.

Another point in favor of frames, though, comes from figures 4.2, 4.3, and

4.35. These graphs clearly show a drop off in classification results as one goes from

having an over-complete frame to an under-complete endmember set, at least when

dealing with the reduced coordinates Y . Perhaps the same is true in the original

space X, but given the high dimension that X lies in it is hard to construct a frame

with the same redundancy of those constructed for Y .

One final comparison comes from the type of coefficients. In one group we

have the minimum `2-error coefficients (for endmembers) and the canonical coeffi-

cients (for frames), and in the other group we have the mixed `2-`1 coefficients (for

endmembers) and the sparse coefficients (for frames). Despite the added complex-

ity and increased visual appeal of the sparse types of coefficients, it is the simpler

`2 and canonical coefficients that did better in terms of classification. Perhaps for

material classification the `2/canonical coefficients a preferable, but for material

identification, one should go with the sparse coefficients.
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4.2 Multispectral Retinal Data

The purpose of this experiment is to aid in research concerning age related

macular degeneration (AMD), which is one of the leading causes of blindness in

the elderly population. One of the indicators of AMD is the presence of irregular

lipofuscine deposits, also known as drusin. Using our techniques developed in chap-

ter 3, we present an automated method for the early detection of drusin in retinal

imagery.

In order to apply our techniques, we need a high dimensional data set. Through

the National Institute of Health, we have obtained a multispectral retinal imagery

data set, known to contain drusen. We apply the Laplacian eigenmap kernel to

obtain low dimensional coordinates Y . We then construct a maximally separated

frame Φ for span(Y ), and represent each yi ∈ Y in terms of sparse coefficients C.

The goal is to have certain frame elements correspond to the drusin. We have one

trial on the retinal data to illustrate this process.

4.2.1 Description of the Retinal Data Set

We work on 500 × 500 × 20 patch of the retinal data set; that is 500 ∗ 500 =

250000 pixels and 20 spectral bands. A color image of the entire data set is displayed

in figure 4.51, with the patch that we work on cut out; that patch is magnified in

figure 4.52. A sample band of the data set is given in figure 4.53. The only class

that we interested in finding is the drusen; there is no ground truth.
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Figure 4.51: Color image of entire retinal data set

Figure 4.52: Magnified color image patch
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Figure 4.53: Sample band of retinal data set

4.2.2 Retinal Data Trial 1

The results of retinal data trial 1 were obtained with the following settings:

• Data set: X = retinal data

• Kernel: Laplacian eigenmaps

• Number of neighbors: k = 12

• Laplacian eigenmaps sigma parameter: σ = 1

• Frame construction: maximally separated frame

• Number of reduced dimensions: d = 7

• Number of frame elements: s = 15

• t parameter in (3.5.64): t = 12
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• ε parameter in (3.5.64): ε = .02

• Type of coefficients: sparse

Figures 4.54, 4.55, and 4.56 show the coefficient maps for each of the frame elements.
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4.2.3 Retinal Data Coefficient Maps

Figure 4.54: Retinal data trial 1 sparse coefficients 1–4
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Figure 4.55: Retinal data trial 1 sparse coefficients 5–12

152



Figure 4.56: Retinal data trial 1 sparse coefficients 13–15

4.2.4 Conclusions

The first thing to note is that we set t = 12 in (3.5.64). The idea behind this

choice is that the drusin in terms of area in the image are small, and they also have

low spectral intensity. Given this knowledge, we allowed 12 of the 15 frame elements

to have as large as correlation with the data as they liked, but limited the remaining

three to only a 2% correlation (ε = .02). Given the physical nature of the drusin

and the fact that they are unique, yet make up an extremely small part of the data,

it seemed logical that those three restricted frame elements would gravitate towards
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the drusin, as opposed to some larger feature. Indeed, of the last three coefficient

maps, two of them rather clearly mark drusin (the top two maps in figure 4.56).

Furthermore, these two maps seem to mark two separate categories of drusin, the

left map marking drusin on the left side of the image, the right map marking drusin

on the right side of the image. Perhaps this speaks to a difference between early and

later stage drusin, and/or chemical differences. Further investigation is necessary to

know for sure.
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