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Introduction

Deep learning has rapidly become the state-of-the-art approach for both image pro-

cessing tasks [137] as well as natural language processing tasks [162]. This has led to sig-

nificant advances in applications such as object detection [133], medical imaging [134],

and several other important tasks [50, 93, 115]. This state-of-the-art performance has been

fueled by both the increased capacity of modern networks, and also the increased availab-

ility of a large amount of data on which to train modern networks. High performing vision

models are often trained on millions of images, and large language models can be trained

on hundreds of millions of tokens [32, 33]. These data-hungry models are fed data that is

often not curated. The security of this data is often not guaranteed and security risks to

practitioners arise because of this. The data-collection pipeline can be roughly described

by the interaction between three parties: companies, users, third parties. Each party has

different goals with regards to data collection and security, and each interacts with the

other two in unique ways. In this work, we study different aspects of this pipeline.

In Chapter 1, we study the security of data collected from third parties by compan-

ies. Here we study the threat of targeted data poisoning attacks wherein a third party

disseminates mmaliciously manipulated data that is then scraped and used in training by

a practitioner. We are the first work to show that modern deep networks trained at an

industrial scale are vulnerable to this type of attack. Previous attacks worked only in
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toy settings on simple datasets. Furthermore, we achieve state-of-the-art results on previ-

ous benchmarks all while showing significant computational advantages to our method -

gradient alignment.

In Chapter 2, we study the interaction between companies/practitioners and third

parties from the opposite perspective. We begin by motivating the concept of secure

dataset release as a way for companies, like social media companies, to release user data

while also preventing third parties from scraping said data and training a high-utility

model on such data. We formally phrase this problem as an availability poisoning attack

and we show that adversarial examples, originally intended as test-time attacks on neural

networks, make highly effective availability poisons. We show that such poisons can

often degrade accuracy of a network trained on this data to below random accuracy levels.

We analyze the mechanism by which this attack works, and compare to several existing

poisoning methods, finding that our method achieves state-of-the-art results on several

datasets.

In Chapter 3, we take the perspective of users and evaluate the security of feder-

ated learning systems implemented by companies and third parties. We find that secure

aggregation, which was previously thought to be a sufficient mechanism to ensure user

privacy in practice, can be circumvented with malicious servers who wish to breach user

privacy. We accomplish this task by introducing malicious model and parameter modi-

fications to the federated learning pipeline that create structured gradient entries in the

shared model updates. This can reveal verbatim copies of user data to the server. We

show that our method outperforms previous “honest-but-curious” attacks by orders of

magnitude. Our work suggests that further privacy techniques are needed to ensure user
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data is secure.

In Chapter 4, we investigate the safety of federated learning for text data. Text data

is perhaps the most important application area for federated learning, and one where we

know federated learning is actually practiced. We introduce a new threat model of mali-

cious parameters where a server is allowed to send “snapshots” of malicious parameters,

but is not allowed to modify the underlying architecture. We show that Transformer-based

language models are especially vulnerable to privacy attacks due to the large linear layers

included in Transformer blocks. We show that recovered embeddings can be matched to

know positions and tokens, and we introduce an attention mechanism modification that

introduces sequence coding into embeddings. This allows a malicious server to recover

a large amount of data from mulitple users - a setting that had previously not been in-

vestigated. We vastly outperform the state-of-the-art for “honest-but-curious” attacks on

federated language models and demonstrate the threat posed by such an attack on multiple

commonly used architectures.

We believe that revealing such threats to the data-security pipeline is important for

both practitioners and users, and subsequent investigation, including investigation into

defenses, should be performed.
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Chapter 0: Preliminaries

0.1 Neural Networks

Historically, neural networks (sometimes referred to as artificial neural networks),

arose in an attempt to understand the behavior of the brain [101]. The first implentation of

a neural network, called a perceptron, was developed by Frank Rosenblatt in 1958 [135].

While on neural networks continued after the introduction of the perceptron, growth in the

field of machine learning accelerated with increased computational capacity that emerged

in the 21st century. This increased capacity led to the advent of deep learning which

loosely comprises the area of research surrounding training, optimizing and deploying

modern networks of increased depth and capacity [54]. Nowadays, there exist several

flavors of neural networks. One of the most common types is the feed-forward neural

network.

Broadly speaking, feed-forward neural networks are compositions of affine func-

tions with non-linearities. For example, a three layer neural network could look like:

f (3)(f (2)(f (1)(x))) where f (i)(x) = g(W (i)x+ b(i)) and g is a non-linearity such as ReLU

(ReLU(x) = max(0, x)) that operates pointwise on the output of the affine function

parameterized by weights W (i) and biases b(i) [54]. The aim of such a composition is to

approximate some function f ∗. For example, f ∗ could be a classifier of images. Feed-
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Figure 0.1: A feed-forward MLP with one hidden layer with two neurons trained to rep-
resent the “XOR” function [54]
.

forward networks where the weights W (i) are general linear functions are often called

multi-layer perceptrons, or MLPs [54].

0.1.1 Convolutional Networks

There exist several variants of feed-forward networks. One of the most common

variants is a convolutional feed-forward network [90]. A convolutional feed-forward net-

work is a network wherein the linear maps determined by W (i) represent convolutions

with some kernel rather than general linear maps. Convolution of a 2-d input I with a 2-d

kernel K is defined as [54]:

(K ∗ I)(i, j) =
∑
k

∑
l

K(k, l)I(i+ k, j + l) (0.1)

The linear maps resulting from convolutions take the form of doubly block circulant

matrices [54]. Convolutional filters enforce translationally invariant feature extraction,

and are the backbone of many of the most successful classification and detection networks

[59].

2



Figure 0.2: A Transformer model (diagram taken from [49, 162]).

0.1.2 Transformer Models

Recently, a new type of feed-forward network has emerged as a powerful tool for

both image classification and language processing tasks. The Transformer model com-

bines standard feed-forward layers with attention mechanisms to achieve competitive res-

ults in fields traditionally dominated by recurrent neural networks [162] or convolutional

networks [33]. The attention mechanism of transformer models allows for efficient and

parallel training of transformer models compared with recurrent neural networks. A dia-

gram of the Transformer architecture can be found in Figure 0.2.

0.2 Training Neural Networks

Practitioners aim to find network parameters that minimize some loss Lwhich eval-

uates the output of the network on some distribution D of interest. For example, the loss

3



for a model f with parameters θ can be expressed as:

L∗(θ) = E(x,y)∼DL(f(x; θ), y).

However, when it comes to actually optimizing the parameters θ, this problem is usually

converted to an empirical risk minimization problem wherein the practitioner minimizes

∑
(x,y)∈Dtrain

L(f(x; θ), y).

Common loss functions include cross-entropy loss [54] for classification tasks, defined

as:

L(y∗, y) = −
∑
i

yi log(y∗)i,

for ground-truth label y∗ and network output y (fed through a softmax function to produce

prbabilities. Both y∗, y are discreet distributions over the label space. Another common

loss function is regularized l2 loss for regression tasks. This is defined as:

L(y∗, y) =
∑
i

(yi − y∗i )
2 + α||θ||22,

or regularized l2 loss for regression tasks.

Another piece of the training puzzle is the choice of optimization algorithm. One

of the most common choices is the stochastic gradient descent (SGD) algorithm [54]. In

this algorithm, the parameters θ are updated using the gradient direction from a stochastic

4



minibatch as follows:

θi+1 = θi − η∇θ

∑
i

L(f(x(i); θ), y(i)),

for some minibatch {x(1), . . . , x(m)} and some learning rate η [54]. Other algorithms,

like SGD with momentum, and ADAM [80] have been shown to be successful in certain

settings.

0.3 Datasets

Datasets are another fundamental component of neural network training. In vis-

ion, there exist several datasets of varying complexity and size. One common dataset is

CIFAR-10 [86]. which consists of color images of size 32x32 coming from 10 classes.

Usually, the dataset is split into 50,000 training examples, 5,000 from each class, and

10,000 testing images.

A more complex and much larger dataset commonly used for vision tasks is the

ILSVRC2012 (ImageNet) dataset [137]. This dataset consists of over 1,000,000 color

images from 1,000 classes. The images are of varying size, but a common preprocessing

step is to crop the images to size 224x224. Still other datasets exist for different tasks like

detection, segmentation, etc.

For natural language processing tasks, one common dataset is the WikiText dataset,

which consists of over 100,000,000 tokens from curated Wikipedia articles [108]. We also

utilize the Shakespeare dataset [77] consisting of 40,000 lines from different Shakespeare

plays.
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0.4 Attacks on Deep Learning Systems

Attacks on deep learning systems are an important area of research in the direction

of deploying deep learning systems in security-critical applications. One avenue of attack

is data manipulation. In this vein, attacks can generally be classified as train-time attacks

or inference-time (or test-time) attacks.

0.4.1 Adversarial Examples

Adversarial examples are inference-time attacks against neural networks [55]. These

adversarial examples are minimally perturbed inputs that cause an already trained net-

work to mis-classify the modified examples. For example, an image of a dog could be

minimally perturbed, maintaining the semantic label dog to human observers, while be-

ing classified as a cat by a network. The most common method for producing adversarial

examples is projected gradient descent (PGD) which iteratively takes steps maximizing

the loss with respect to the input pixels, and projecting onto an `p ball [99].

0.4.2 Data Poisoning

In contrast to adversarial examples, data poisoning attacks are train-time attacks.

These attacks involve maliciously modifying data on which an unwitting practitioner

trains a neural network. This is generally considered to be a more difficult problem than

crafting adversarial examples for a network since the training procedure, and thus final

parameters of a network are not known to the poisoner. Several attacks, and several goals

exist within the data poisoning literature, including targeted data poisoning attacks which

6



aim to cause mis-classification of a pre-selected target datapoint, or availability attacks

which aim to degrade overall performance of a victim network on some distribution [6].

0.5 Federated Learning

Federated learning (FL) is a system for training networks in a distributed fashion.

Generally speaking, in standard training, a company could collect user data {(xi, yi)}Ni=1

from users, and simply optimize

arg min
θ

∑
i

L(f(xi; θ), yi).

However in FL, the company, or central server, only receives user updates [14]. Formally,

the server receives updates {θ∗i }Ni=1 from users, and then computes the new parameters

θk+1 = θk − η
N∑
i=1

αiθ
∗
i .

The main advantage of this setup is user privacy as the user data never gets sent to

the central server.
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Chapter 1: Integrity Poisoning Attacks

Data poisoning attacks modify training data to maliciously control a model trained

on such data. Previous attacks against deep neural networks have been limited in scope

and success, working only in simplified settings or being prohibitively expensive for large

datasets. In this work, we focus on a particularly malicious poisoning attack that is both

“from scratch” and “clean label”, meaning we analyze an attack that successfully works

against new, randomly initialized models, and is nearly imperceptible to humans, all while

perturbing only a small fraction of the training data. The central mechanism of this attack

is matching the gradient direction of malicious examples. We analyze why this works,

supplement with practical considerations. and show its threat to real-world practitioners,

finding that it is the first poisoning method to cause targeted misclassification in modern

deep networks trained from scratch on a full-sized, poisoned ImageNet dataset. Finally

we demonstrate the limitations of existing defensive strategies against such an attack,

concluding that data poisoning is a credible threat, even for large-scale deep learning

systems. This work was performed together with Jonas Geiping, Ronny Huang, Wojtek

Czaja, Gavin Taylor, and Tom Goldstein. My contributions include: jointly conceiving of

the mechanism of gradient alignment, a substantial amount of the large-scale experiments,

jointly formulating the theoretical result, and writing a substantial portion of the paper.
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1.1 Introduction

Machine learning models have quickly become the backbone of many applications

from photo processing on mobile devices and ad placement to security and surveillance

[91]. These applications often rely on large training datasets that aggregate samples of

unknown origins, and the security implications of this are not yet fully understood [119].

Data is often sourced in a way that lets malicious outsiders contribute to the dataset, such

as scraping images from the web, farming data from website users, or using large aca-

demic datasets scraped from social media [157]. Data poisoning is a security threat in

which an attacker makes imperceptible changes to data that can then be disseminated

through social media, user devices, or public datasets without being caught by human

supervision. The goal of a poisoning attack is to modify the final model to achieve a

malicious goal. Poisoning research has focuses on attacks that achieve mis-classification

of some predetermined target data in Shafahi et al. [141], Suciu et al. [151], i.e. imple-

menting a backdoor - but other potential goals of the attacker include denial-of-service

[143, 149], concealment of users [142], and introduction of fingerprint information [97].

These attacks are applied in scenarios such as social recommendation [63], content man-

agement [37, 92], algorithmic fairness [146] and biometric recognition [96]. Accordingly,

industry practitioners ranked data poisoning as the most serious attack on ML systems in

a recent survey of corporations [88].

In this work we show that efficient poisoned data can be created even in the setting

of deep neural networks trained on large image classification tasks, such as ImageNet

[137]. Previous work on data poisoning has often focused on either linear classification
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Figure 1.1: The poisoning pipeline. Poisoned images (labrador retriever class) are inser-
ted into a dataset and cause a newly trained victim model to mis-classify a target (otter)
image. We show successful poisons for a threat model where 0.1% of training data is
changed within an `∞ bound of ε = 8. Further visualizations of poisoned data can be
found in Section 1.6.

tasks [10, 84, 167] or poisoning of transfer learning and fine tuning [82, 141] rather than a

full end-to-end training pipeline. Poison attacks on deep neural networks (and especially

on ones trained from scratch) have proven difficult in Muñoz-González et al. [110] and

Shafahi et al. [141]. Only recently were attacks against neural networks retrained from

scratch shown to be possible in [68] for CIFAR-10 - however with costs that render scaling

to larger datasets, like the ImageNet, prohibitively expensive.

We formulate data poisoning as the problem of solving a gradient matching problem

and analyze the resulting novel attack algorithm that scales to unprecedented dataset size

and effectiveness. Crucially, the new poisoning objective is orders-of-magnitude more

efficient than a previous formulation based on on meta learning [68] and succeeds more

often. We conduct an experimental evaluation, showing that poisoned datasets created

by this method are robust and significantly outperform other attacks on CIFAR-10. We

then demonstrate reliably successful attacks on common ImageNet models in realistic

training scenarios. For example, the attack successfully compromises a ResNet-34 by
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manipulating only 0.1% of the data points with perturbations less than 8 pixel values in

`∞-norm. We close by discussing previous defense strategies and how strong differential

privacy [1] is the only existing defense that can partially mitigate the effects of the attack.

1.2 Related Work

The task of data poisoning is closely related to the problem of adversarial attacks

at test time, also referred to as evasion attacks [100, 155], where the attacker alters a

target test image to fool an already-trained model. This attack is applicable in scenarios

where the attacker has control over the target image, but not over the training data. An

intermediary between data poisoning and adversarial attacks are backdoor trigger attacks

[138, 160]. These attacks involve inserting a trigger – often an image patch – into training

data, which is later activated by also applying the trigger to test images. Backdoor attacks

require perturbations to both training and test-time data – a more permissive threat model

than either poisoning or evasion.

In contrast to evasion and backdoor attacks, data poisoning attacks consider a set-

ting where the attacker can modify training data, but does not have access to test data.

Within this setting we focus on targeted attacks – attacks that aim to cause a specific tar-

get test image (or set of target test images) to be mis-classified. For example, an attack

may cause a certain target image of a otter to be classified as a dog by victim models at

test time. This attack is difficult to detect, because it does not noticeably degrade either

training or validation accuracy [68, 141].

Two basic schemes for targeted poisoning are label flipping [6, 124], and water-
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marking [141, 151]. In label flipping attacks, an attacker is allowed to change the label of

examples, whereas in a watermarking attack, the attacker perturbs the training image, not

label, by superimposing a target image onto training images. These attacks can be suc-

cessful, yet they are easily detected by supervision such as Papernot and McDaniel [120].

This is in contrast to clean-label attacks which maintain the semantic labels of data.

Mathematically, data poisoning is a bilevel optimization problem [5, 10]; the at-

tacker optimizes image pixels to enforce (malicious) criteria on the resulting network

parameters, which are themselves the solution to an “inner” optimization problem that

minimizes the training objective. Direct solutions to the bilevel problem have been pro-

posed where feasible, for example, SVMs in Biggio et al. [10] or logistic regression in

Demontis et al. [29]. However, direct optimization of the poisoning objective is intract-

able for deep neural networks because it requires backpropagating through the entire SGD

training procedure, see [110]. As such, the bilevel objective has to be approximated. Re-

cently, MetaPoison [68] proposed to approximately solve the bi-level problem based on

methods from the meta-learning community [41]. The bilevel gradient is approximated

by backpropagation through several unrolled gradient descent steps. This is the first at-

tack to succeed against deep networks on CIFAR-10 as well as providing transferability to

other models. Yet, [68] uses a complex loss function averaged over a wide range of mod-

els trained to different epochs and a single unrolling step necessarily involves both clean

and poisoned data, making it roughly as costly as one epoch of standard training. With an

ensemble of 24 models, [68] requires 3 (2 unrolling steps + 1 clean update step) x 2 (back-

propagation through unrolled steps) x 60 (first-order optimization steps) x 24 (ensemble

of models) equivalent epochs of normal training to attack, as well as (
∑22

k=0 k = 253)
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epochs of pretraining. All in all, this equates to 8893 training epochs.

In contrast to bilevel approaches stand heuristics for data poisoning of neural net-

works. The most prominent heuristic is feature collision, as in Poison Frogs [141], which

seeks to cause a target test image to be misclassified by perturbing training data to col-

lide with the target image in feature space. Modifications surround the target image in

feature space with a convex polytope [178] or collection of poisons [2]. These methods

are efficient, but designed to attack fine-tuning scenarios where the feature extractor is

nearly fixed. When applied to deep networks trained from scratch, their performance

drops significantly.

1.3 Efficient Poison Brewing

In this section, we will discuss an intriguing weakness of neural network training

based on first-order optimization and derive an attack against it. This attack modifies

training images that so they produce a malicious gradient signal during training, even

while appearing inconspicuous. This is done by matching the gradient of the target images

within `∞ bounds. Because neural networks are trained by gradient descent, even minor

modifications of the gradients can be incorporated into the final model.

This attack compounds the strengths of previous schemes, allowing for data pois-

oning as efficiently as in Poison Frogs [141], requiring only a single pretrained model and

a time budget on the order of one epoch of training for optimization - but still capable of

poisoning the from-scratch setting considered in [68]. This combination allow an attacker

to ”brew” poisons that successfully attack realistic models on ImageNet.
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1.3.1 Threat Model

We define two parties, the attacker, which has limited control over the training

data, and the victim, which trains a model based on this data. We first consider a gray-box

setting, where the attacker has knowledge of the model architecture used by its victim.

The attacker is permitted to poison a fraction of the training dataset (usually less than

1%) by changing images within an `∞-norm ε-bound (e.g. with ε ≤ 16). This constraint

enforces clean-label attacks, meaning that the semantic label of a poisoned image is still

unchanged. The attacker has no knowledge of the training procedure - neither about the

initialization of the victim’s model, nor about the (randomized) mini-batching and data

augmentation that is standard in the training of deep learning models.

We formalize this threat model as bilevel problem for a machine learning model

F (x, θ) with inputs x ∈ Rn and parameters θ ∈ Rp (implicitly a vector-valued function of

the perturbations), and loss function L. We denote the N training samples by (xi, yi)
N
i=1,

from which a subset of P samples are poisoned. For notational simplicity we assume

the first P training images are poisoned by adding a perturbation ∆i to the ith training

image. The perturbation is constrained to be smaller than ε in the `∞-norm. The task

is to optimize ∆ so that a set of T target samples (xti, y
t
i)
T
i=1 is reclassified with the new

adversarial labels yadv
i :

min
∆∈C

T∑
i=1

L
(
F (xti, θ(∆)), yadv

i

)
s.t. θ(∆) ∈ arg min

θ

1

N

N∑
i=1

L(F (xi + ∆i, θ), yi).

(1.1)
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We subsume the constraints in the set C = {∆ ∈ RN×n : ||∆||∞ ≤ ε,∆i = 0 ∀i >

P}. We call the main objective on the left the adversarial loss, and the objective that

appears in the constraint on the right is the training loss. For the remainder, we consider

a single target image (T = 1) as in Shafahi et al. [141], but stress that this is not a general

limitation as shown in the appendix.

1.3.2 Motivation

What is the optimal alteration of the training set that causes a victim neural network

F (x, θ) to mis-classify a specific target image xt? We know that the expressivity of

deep networks allows them to fit arbitrary training data [172]. Thus, if an attacker was

unconstrained, a straightforward way to cause targeted mis-classification of an image is

to insert the target image, with the incorrect label yadv, into the victim networks training

set. Then, when the victim minimizes the training loss they simultaneously minimize

the adversarial loss, based on the gradient information about the target image. In our

threat model however, the attacker is not able to insert the mis-labeled target. They can,

however, still mimic the gradient of the target by creating poisoned data whose training

gradient correlates with the adversarial target gradient. If the attacker can enforce

∇θL(F (xt, θ), yadv) ≈ 1

P

P∑
i=1

∇θL(F (xi + ∆i, θ), yi) (1.2)

to hold for any θ encountered during training, then the victim’s gradient steps that minim-

ize the training loss on the poisoned data (right hand side) will also minimize the attackers

adversarial loss on the targeted data (left side).

15



1.3.3 The Central Mechanism: Gradient Alignment

Gradient magnitudes vary dramatically across different stages of training, and so

finding poisoned images that satisfy Equation 1.2 for all θ encountered during training is

infeasible. Instead we align the target and poison gradients in the same direction, that is

we minimize their negative cosine similarity. We do this by taking a clean model F with

parameters θ, keeping θ fixed, and then optimizing

B(∆, θ) = 1−
〈
∇θL(F (xt, θ), yadv),

∑P
i=1∇θL(F (xi + ∆i, θ), yi)

〉
‖∇θL(F (xt, θ), yadv)‖ · ‖

∑P
i=1∇θL(F (xi + ∆i, θ), yi)‖

. (1.3)

Algorithm 1 Poison Brewing via the discussed approach.

1: Require Pretrained clean network {F (·, θ)}, a training set of images and labels
(xi, yi)

N
i=1, a target (xt, yadv), P < N poison budget, perturbation bound ε, restarts R,

optimization steps M
2: Begin
3: Select P training images with label yadv

4: For r = 1, . . . , R restarts:
5: Randomly initialize perturbations ∆r ∈ C
6: For j = 1, . . . ,M optimization steps:
7: Apply data augmentation to all poisoned samples (xi + ∆r

i )
P
i=1

8: Compute the average costs, B(∆r, θ) as in Equation 1.3, over all poisoned
samples

9: Update ∆r with a step of signed Adam and project onto ||∆r||∞ ≤ ε
10: Choose the optimal ∆∗ as ∆r with minimal value in B(∆r, θ)
11: Return Poisoned dataset (xi + ∆∗i , yi)

N
i=1

We optimize B(∆) using signed Adam updates with decaying step size, project-

ing onto C after every step. This produces an alignment between the averaged poison

gradients and the target gradient.

In contrast to Poison Frogs, all layers of the network are included (via their para-

meters) in this objective, not just the last feature layer.
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Each optimization step of this attack requires only a single differentiation of the

parameter gradient w.r.t to its input, instead of differentiating through several unrolled

steps as in MetaPoison. Furthermore, as in Poison Frogs we differentiate through a loss

that only involves the (small) subset of poisoned data instead of involving the entire data-

set, such that the attack is especially fast if the budget is small. Finally, the method is able

to create poisons using only a single parameter vector, θ (like Poison Frogs in fine-tuning

setting, but not the case for MetaPoison) and does not require updates of this parameter

vector after each poison optimization step.

1.3.4 Making attacks that transfer and succeed “in the wild”

A practical and robust attack must be able to poison different random initializations

of network parameters and a variety of architectures. To this end, we employ several

techniques:

Differentiable Data Augmentation and Resampling: Data augmentation is a standard

tool in deep learning, and transferable image perturbations must survive this process. At

each step minimizing Equation 1.3, we randomly draw a translation, crop, and possibly a

horizontal flip for each poisoned image, then use bilinear interpolation to resample to the

original resolution. When updating ∆, we differentiate through this grid sampling opera-

tion as in Jaderberg et al. [70]. This creates an attack which is robust to data augmentation

and leads to increased transferability.

Restarts: The efficiency we gained in Equation 1.3.3 allows us to incorporate restarts, a

common technique in the creation of evasion attacks [109, 130]. We minimize Equation
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1.3 several times from random starting perturbations, and select the set of poisons that

give us the lowest alignment loss B(∆). This allows us to trade off reliability with com-

putational effort.

Model Ensembles: A known approach to improving transferability is to attack an en-

semble of model instances trained from different initializations [68, 95, 178]. However,

ensembles are highly expensive, increasing the pre-training cost for only a modest, but

stable, increase in performance.

We show the effects of these techniques via CIFAR-10 experiments (see Table 1.1

and Section 1.5.1). To keep the attack within practical reach, we do not consider en-

sembles for our experiments on ImageNet data, opting for the cheaper techniques of re-

starts and data augmentation. A summarizing description of the attack can be found in

Algorithm 1. Lines 8 and 9 of Algorithm 1 are done in a stochastic (mini-batch) setting

(which we omitted in Algorithm 1 for notational simplicity).

1.4 Theoretical Analysis

Can gradient alignment cause network parameters to converge to a model with low

adversarial loss? To simplify presentation, we denote the adversarial loss and normal

training loss of Equation 1.1 as

Ladv(θ) =: L(F ((xt, θ), yadv),

18



and

L(θ) =:
1

N

N∑
i=1

L(xi, yi, θ),

respectively. Also, recall that 1−B
(
∆, θk

)
, defined in Equation 1.3, measures the cosine

similarity between the gradient of the adversarial loss and the gradient of normal training

loss. We adapt a classical result of Zoutendijk [116, Thm. 3.2] to shed light on why data

poisoning can work even though the victim only performs standard training on a poisoned

dataset:

Proposition 1.4.1 (Adversarial Descent). LetLadv(θ) be bounded below and have a Lipschitz

continuous gradient with constant L > 0 and assume that the victim model is trained by

gradient descent with step sizes αk, i.e. θk+1 = θk − αk∇L(θk). If the gradient descent

steps αk > 0 satisfy

0 < αkL < β
(
1− B(∆, θk)

) ||∇L(θk)||
||∇Ladv(θk)||

, (1.4)

for some fixed β < 1, then Ladv(θk+1) < Ladv(θk). If in addition ∃ε > 0, k0 so that

∀k ≥ k0, B(∆, θk) < 1− ε, then

lim
k→∞
||∇Ladv(θ

k)|| → 0. (1.5)

Proof. Consider the gradient descent update

θk+1 = θk − αk∇L(θk)
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Firstly, due to Lipschitz smoothness of the gradient of the adversarial loss Ladv we can

estimate the value at θk+1 by the descent lemma

Ladv(θ
k+1) ≤ Ladv(θ

k)− 〈αk∇Ladv(θ
k),∇L(θk)〉+ α2

kL||∇L(θk)||2

If we further use the cosine identity:

〈∇Ladv(θ
k),∇L(θk)〉 = ||∇L(θk)||||∇Ladv(θ

k)|| cos(γk),

denoting the angle between both vectors by γk, we find that

Ladv(θ
k+1) ≤ Ladv(θ

k)− αk||∇L(θk)||||∇Ladv(θ
k)|| cos(γk) + α2

kL||∇L(θk)||2

= Ladv(θ
k)−

(
αk
||∇Ladv(θ

k)||
||∇L(θk)||

cos(γk)− α2
kL

)
||∇L(θk)||2

As such, the adversarial loss decreases for nonzero step sizes if

||∇Ladv(θ
k)||

||∇L(θk)||
cos(γk) > αkL

i.e.

αkL ≤
||∇Ladv(θ

k)||
||∇L(θk)||

cos(γk)

c

for some 1 < c < ∞. This follows from our assumption on the parameter β in the

statement of the proposition. Reinserting this estimate into the descent inequality reveals
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that

Ladv(θ
k+1) < Ladv(θ

k)− ||∇Ladv||2
cos(γk)

c′L
,

for 1
c′

= 1
c
− 1

c2
. Due to monotonicity we may sum over all descent inequalities, yielding

Ladv(θ
0)− Ladv(θ

k+1) ≥ 1

c′L

k∑
j=0

||∇Ladv(θ
j)||2 cos(γj)

As Ladv is bounded below, we may consider the limit of k →∞ to find

∞∑
j=0

||∇Ladv(θ
j)||2 cos(γj) <∞.

If for all, except finitely many iterates the angle between adversarial and training gradient

is less than 180◦, i.e. cos(γk) is bounded below by some fixed ε > 0, as assumed, then

the convergence to a stationary point follows:

lim
k→∞
||∇Ladv(θ

k)|| → 0

In Figure 1.2 we visualize measurements of the computed bound from an actual

poisoned training. The classical gradient descent converges only if αkL < 1, so we can

find an upper bound to this value by 1, even if the actual Lipschitz constant of the neural

network training objective is not known to us.

Put simply, our poisoning method aligns the gradients of training loss and ad-
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Figure 1.2: The bound considered in Prop. 1, evaluated during training of a poisoned
and a clean model, using a practical estimation of the lower bound via αkL ≈ 1. This is
an upper bound of αkL as αk < 1

L
is necessary for the convergence of (clean) gradient

descent.

versarial loss. This enforces that the gradient of the main objective is a descent direction

for the adversarial objective, which, when combined with conditions on the step sizes,

causes a victim to unwittingly converge to a stationary point of the adversarial loss, i.e.

optimize the original bilevel objective locally.

The strongest assumption in Proposition 1.4.1 is that gradients are almost always

aligned, B(∆, θk) < 1 − ε, k ≥ k0. We directly maximize alignment during creation of

the poisoned data, but only for a selected θ∗, and not for all θk encountered during gradi-

ent descent from any possible initialization. However, poison perturbations made from

one parameter vector, θ, can transfer to other parameter vectors encountered during train-

ing. For example, if one allows larger perturbations, and in the limiting case, unbounded

perturbations, our objective is minimal if the poison data is identical to the target image,

which aligns training and adversarial gradients at every θ encountered. Empirically, we
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between the adversarial gradient ∇Ladv(θ) and
the gradient of each mini-batch ∇L(θ) for a
poisoned and a clean ResNet-18. Crucially,
the gradient alignment is strictly positive after
a small number of epochs.

see that the proposed ”poison brewing” attack does indeed increase gradient alignment.

In Figure 1.3b, we see that in the first phase of training all alignments are positive, but

only the poisoned model maintains a positive similarity for the adversarial target-label

gradient throughout training. The clean model consistently shows that these angles are

negatively aligned - i.e. normal training on a clean dataset will increase adversarial loss.

However, after the inclusion of poisoned data, the gradient alignment is modified enough

to change the prediction for the target.

1.5 Experimental Evaluation

We evaluate poisoning approaches in each experiment by sampling 10 random

poison-target cases. We compute poisons for each and evaluate them on 8 newly ini-

tialized victim models (see Section 1.7 for details of our methodology). We use the fol-

lowing hyperparameters for all our experiments: τ = 0.1, R = 8, M = 250. We train

victim models in a realistic setting, considering data augmentation, SGD with momentum,
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weight decay and learning rate drops.

1.5.1 Evaluations on CIFAR-10

As a baseline on CIFAR-10, we compare the number of restarts R and the num-

ber of ensembled models K, showing that the proposed method is successful in creating

poisons even with just a single model (instead of an ensemble). The inset figure shows

poison success versus time necessary to compute the poisoned dataset for a budget of 1%,

ε = 16 on CIFAR-10 for a ResNet-18. We find that as the number of ensemble models,

K, increases, it is beneficial to increase the number of restarts as well, but increasing

the number of restarts independently also improves performance. We validate the dif-

ferentiable data augmentation discussed in Section 1.3.4 in Table 1.1, finding it crucial

for scalable data poisoning, being as efficient as a large model ensemble in facilitating

robustness.

Next, to test different poisoning methods, we fix our ”brewing” framework of effi-

cient data poisoning, with only a single network and diff. data augmentation. We evaluate

the discussed gradient matching cost function, replacing it with either the feature-collision

objective of Poison Frogs or the bullseye objective of Aghakhani et al. [2], thereby effect-

ively replicating their methods, but in our context of from-scratch training.

Table 1.1: CIFAR-10 ablation. ε = 16, budget is 1%. Differentiable data augmentation is
able to replace a large 8-model ensemble, without increasing computational effort.

Ensemble Diff. Data Aug. Victim does data aug. Poison Accuracy (%(±SE))
1 X X 100.00% (±0.00)
1 X X 32.50% (±12.27)
8 X X 78.75% (±11.77)
1 X X 91.25% (±6.14)
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Table 1.2: CIFAR-10 Comparison to other poisoning objectives with a budget of 1%
within our framework (columns 1 to 3), for a 6-layer ConvNet and an 18-layer ResNet.
MetaPoison* denotes the full framework of Huang et al. [68]. Each cell shows the avg.
poison success and its standard error.

Proposed Bullseye Poison Frogs MetaPoison*
ConvNet (ε = 32) 86.25% (±9.43) 78.75% (±7.66) 52.50% (±12.85) 35.00% (±11.01)

ResNet-18 (ε = 16) 90.00% (±3.87) 3.75% (±3.56) 1.25% (±1.19) 42.50 % (±8.33)

The results of this comparison are collated in Table 1.2. While Poison Frogs and

Bullseye succeeded in finetuning settings, we find that their feature collision objectives

are only successful in the shallower network in the from-scratch setting. Gradient match-

ing further outperforms MetaPoison on CIFAR-10, while faster (see Section 1.5.6), in

particular as K = 24 for MetaPoison.

Benchmark results on CIFAR-10: To evaluate our results against a wider range of

poison attacks, we consider the recent benchmark proposed in Schwarzschild et al. [140]

in Table 1.3. In the category ”Training From Scratch”, this benchmark evaluates poisoned

CIFAR-10 datasets with a budget of 1% and ε = 8 against various model architectures,

averaged over 100 fixed scenarios. We find that the discussed gradient matching attack,

even for K = 1 is significantly more potent in the more difficult benchmark setting. An

additional feature of the benchmark is transferability. Poisons are created using a ResNet-

18 model, but evaluated also on two other architectures. We find that the proposed attack

transfers to the similar MobileNet-V2 architecture, but not as well to VGG11. However,

we also show that this advantage can be easily circumvented by using an ensemble of

different models as in Zhu et al. [178]. If we use an ensemble of K = 6, consisting of

2 ResNet-18, 2 MobileNet-V2 and 2 VGG11 models (last row), then the same poisoned

dataset can compromise all models and generalize across architectures.
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Table 1.3: Results on the benchmark of [140]. Avg. accuracy of poisoned CIFAR-10
(budget 1%, ε = 8) over 100 trials is shown. (*) denotes rows replicated from [140].
Poisons are created with a ResNet-18 except for the last row, where the ensemble consists
of two models of each architecture.

Attack ResNet-18 MobileNet-V2 VGG11 Average
Poison Frogs* [141] 0% 1% 3% 1.33%

Convex Polytopes* [178] 0% 1% 1% 0.67%
Clean-Label Backd.* [160] 0% 1% 2% 1.00%

Hidden-Trigger Backd.* [138] 0% 4% 1% 2.67%
Proposed Attack (K = 1) 45% 36% 8% 29.67%
Proposed Attack (K = 4) 55% 37% 7% 33.00%

Proposed Attack (K = 6, Heterogeneous) 49% 38% 35% 40.67%

1.5.2 Poisoning ImageNet models

The ILSVRC2012 challenge, ”ImageNet”, consists of over 1 million training ex-

amples, making it infeasible for most actors to train large model ensembles or run extens-

ive hyperparameter optimizations. However, as the new gradient matching attack requires

only a single sample of pretrained parameters θ, and operates only on the poisoned sub-

set, it can poison ImageNet images using publicly available pretrained models without

ever training an ImageNet classifier. Poisoning ImageNet with previous methods would

be infeasible. For example, following the calculations in Section 1.2, it would take over

500 GPU days (relative to our hardware) to create a poisoned ImageNet for a ResNet-18

via MetaPoison. In contrast, the new attack can poison ImageNet in less than four GPU

hours.

Figure 1.4 shows that a standard ImageNet models trained from scratch on a poisoned

dataset ”brewed” with the discussed attack, are reliably compromised - with examples of

successful poisons shown (left). We first study the effect of varying poison budgets, and

ε-bounds (top right). Even at a budget of 0.05% and ε-bound of 8, the attack poisons a
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Figure 1.4: Poisoning ImageNet. Left: Clean images (above), with their poisoned coun-
terparts (below) from a successful poisoning of a randomly initialized ResNet-18 trained
on ImageNet for a poison budget of 0.1% and an `∞ bound of ε = 8. Right Top: ResNet-
18 results for different budgets and varying ε-bounds. Right Bot.: More architectures
[59, 139, 145] with a budget of 0.1% and ε = 16.

randomly initialized ResNet-18 80% of the time. These results extend to other popular

models, such as MobileNet-v2 and ResNet50 (bottom right).

Poisoning Cloud AutoML: To verify that the discussed attack can compromise models

in practically relevant black-box setting, we test against Google’s Cloud AutoML. This is

a cloud framework that provides access to black-box ML models based on an uploaded

dataset. In Huang et al. [68] Cloud AutoML was shown to be vulnerable for CIFAR-10.

We upload a poisoned ImageNet dataset (base: ResNet18, budget 0.1%, ε = 32) for our

first poison-target test case and upload the dataset. Even in this scenario, the attack is

measurably effective, moving the adversarial label into the top-5 predictions of the model

in 5 out of 5 runs, and the top-1 prediction in 1 out of 5 runs.

1.5.3 Deficiencies of Defense Strategies

Previous defenses against data poisoning [123, 125, 149] have relied mainly on data

sanitization, i.e. trying to find and remove poisons by outlier detection (often in feature

27



(a) Feature space distance to base class centroid, and target image feature,
for victim model on CIFAR-10. 4.0% budget, ε = 16, showing sanitization
defenses failing and no feature collision as in Poison Frogs.
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(b) Defending through differential privacy. CIFAR-10, 1% budget, ε = 16,
ResNet-18. Differential privacy is only able to limit the success of poisoning
via trade-off with significant drops in accuracy.

Figure 1.5: Defense strategies against poisoning.

space). We demonstrate why sanitization methods fail in the face of the attack discussed

in this work in Figure 1.5a. Poisoned data points are distributed like clean data points,

reducing filtering based methods to almost-random guessing (see Table 1.4).

Differentially private training is a different defense. It diminishes the impact of in-

dividual training samples, in turn making poisoned data less effective [62, 98]. However,

this come at a significant cost. Figure 1.5b shows that to push the Poison Success below

15%, one has to sacrifice over 20% validation accuracy, even on CIFAR-10. Training a

diff. private ImageNet model is even more challenging. From this aspect, differentially

private training can be compared to adversarial training [100] against evasion attacks.
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Both methods can mitigate the effectiveness of an adversarial attack, but only by signific-

antly impeding natural accuracy.

1.5.4 Deficiencies of Filtering Defenses

Defenses aim to sanitize training data of poisons by detecting outliers (often in fea-

ture space), and removing or relabeling these points [123, 125, 149]. In some cases, these

defenses are in the setting of general performance degrading attacks, while others deal

with targeted attacks. By in large, poison defenses up to this point are limited in scope.

For example, many defenses that have been proposed are specific to simple models like

linear classifiers and SVM, or the defenses are tailored to weaker attacks such as colli-

sion based attacks where feature space is well understood [123, 125, 149]. However, data

sanitization defenses break when faced with stronger attacks. Table 1.4 shows a defense

by anomaly filtering. averaged over 6 randomly seeded poisoning runs on CIFAR-10 (4%

budget w/ ε = 16), we find that outlier detection is only marginally more successful than

random guessing.

Table 1.4: Outlier detection is close to random-guessing for poison detection on CIFAR-
10.

10% filtering 20% filtering
Expected poisons removed (outlier method) 248 467

Expected clean removed (outlier method) 252 533
Expected poisons removed (random guessing) 200 400

Expected clean removed (random guessing) 300 600
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1.5.5 Details: Defense by Differential Privacy

In Figure 1.5b we consider a defense by differential privacy. According to Hong

et al. [62], gradient noise is the key factor that makes differentially private SGD [1] useful

as a defense. As such we keep the gradient clipping fixed to a value of 1 and only increase

the gradient noise in Figure 1.5b. To scale differentially private SGD, we only consider

this gradient clipping on the mini-batch level, not the example level. This is reflected in

the red, dashed line. A trivial counter-measure against this defense is shown as the solid

red line. If the level of gradient noise is known to the attacker, then the attacker can brew

poisoned data by the approach shown in Algorithm 1, but also add gradient noise and

gradient clipping to the poison gradient. We use a naive strategy of redrawing the added

noise every time the matching objective B(∆, θ) is evaluated. It turns out that this yields

a good baseline counter-attack against the defense through differential privacy.

1.5.6 Full-scale MetaPoison Comparisons on CIFAR-10

Removing all constraints for time and memory, we visualize time/accuracy of our

approach against other poisoning approaches in Table 1.6. Note that attacks, like Meta-

Poison, which succeed on CIFAR-10 only after removing these constraints, cannot be

used on ImageNet-sized datasets due to the significant computational effort required. For

MetaPoison, we use the original implementation of Huang et al. [68], but add our larger

models. We find that with the larger architectures and different threat model (original

MetaPoison considers a color perturbation in addition to the `∞ bound), our gradient

matching technique still significantly outperforms MetaPoison. Note that for the Con-
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Figure 1.6: CIFAR-10 comparison without time and memory constraints for a ResNet18
with realistic training. Budget 1%, ε = 16. Note that the x-axis is logarithmic.

vNet experiment on MetaPoison in Table 1.2, we found that MetaPoison seems to overfit

with ε = 32, and as such we show numbers running the MetaPoison code with ε = 16 in

that column, which are about 8% better than ε = 16. This is possibly a hyperparameter

question for MetaPoison, which was optimized for ε = 8 and a color perturbation.

1.5.7 Details: Gradient Alignment Visualization

Figure 1.7 visualizes additional details regarding Figure 1.3b. Figure 1.7a replicates

Figure 1.3b with linear scaling, whereas Figure 1.7b shows the behavior after epoch 14,

which is the first learning rate drop. Note that in all figures each measurement is averaged

over an epoch and the learning rate drops are marked with gray vertical bars. Figure 1.7c

shows the opposite metric, that is the alignment of the original (non-adversarial) gradient.

It is important to note for these figures, that the positive alignment is the crucial, whereas

the magnitude of alignment is not as important. As this is the gradient averaged over the

entire epoch, the contributions are from mini-batches can contain none or only a single

poisoned example.
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(b) Zoom: Alignment of∇Ladv(θ) and∇L(θ) from epoch
14.
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(c) Alignment of∇Lt(θ) (orig. label) and∇L(θ)

Figure 1.7: Average batch cosine similarity, per epoch, between the adversarial gradi-
ent and the gradient of each mini-batch (left), and with its clean counterpart ∇Lt(θ) :=
∇θL(xt, yt) (right) for a poisoned and a clean ResNet-18. Each measurement is averaged
over an epoch. Learning rate drops are marked with gray vertical bars.
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1.5.8 Ablation Studies - Reduced Brewing/Victim Training Data

In order to further test the strength and possible limitations of the discussed poison-

ing method, we perform several ablation studies, where we reduce either the training set

known to the attacker or the set of poisons used by the victim, or both.

In many real world poisoning situations, it is not reasonable to assume that the

victim will unwittingly add all poison examples to their training set, or that the attacker

knows the full victim training set to begin with. For example, if the attacker puts 1000

poisoned images on social media, the victim might only scrape 300 of these. We test how

dependent the method is on the victim training set by randomly removing a proportion

of data (clean + poisoned) from the victim’s training set. We then train the victim on the

ablated poisoned dataset, and evaluate the target image to see if it is misclassified by the

victim as the attacker’s intended class. Then, we add another assumption - the brewing

network does not have access to all victim training data when creating the poisons (see

tab 1.5). We see that the attacker can still successfully poison the victim, even after a

large portion of the victim’s training data is removed, or the attacker does not have access

to the full victim training set.

Table 1.5: Average poisoning success under victim training data ablation. In the first
regime, victim ablation, a proportion of the victim’s training data (clean + poisoned)
is selected randomly and then the victim trains on this subset. In the second regime,
pretrained + victim ablation, the pretrained network is trained on a randomly selected
proportion of the data, and then the victim chose a new random subset of clean + poisoned
data on which to train. All results averaged over 5 runs on ImageNet.

70% data removed 50% data removed
victim ablation 60% 100%

pretrained + victim ablation 60% 80%
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1.5.9 Ablation Studies - Method

Table 1.6 shows different variations of the proposed method. While using the

Carlini-Wagner loss as a surrogate for cross entropy helped in Huang et al. [68], it does

not help in our setting. We further find that running the proposed method for only 50 steps

(instead of 250 as everywhere else in the paper) leads to a significant loss in avg. poison

success. Lastly we investigate whether using euclidean loss instead of cosine similarity

would be beneficial. This would basically imply trying to match eq. (2) directly. Euc-

lidean loss amounts to removing the invariance to gradient magnitude, in comparison to

cosine similarity, which is invariant. We find that this is not beneficial in our experiments,

and that the invariance with respect to gradient magnitude does allow for the construction

of stronger poisoned datasets. Interestingly the discrepancy between both loss functions

is related to the width of the network. In Figure 1.8 on the left, we visualize avg. poison

success for modified ResNet-18s. The usual base width of 64 is replaced by the width

value shown on the x-axis. For widths smaller than 16, the Euclidean loss dominates, but

its effectiveness does not increase with width. In contrast the cosine similarity is superior

for larger widths and seems to be able to make use of the greater representative power of

the wider networks to find vulnerabilities. Figure 1.8 on the right examines the impact of

the pretrained model that is supplied to Algorithm 1. We compare avg. poison success

against the number of pretraining epochs for a budget of 1%, first with ε = 16 and then

with ε = 8. It turns out that for the easier threat model of ε = 8, even pretraining to only

20 epochs can be enough for the algorithm to work well, whereas in the more difficult

scenario of ε = 8, performance increases with pretraining effort.
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Figure 1.8: Ablation Studies. Left: avg. poison success for Euclidean Loss, cosine
similarity and the Poison Frogs objective [141] for thin ResNet-18 variants. Right: Avg.
poison success vs number of pretraining epochs.
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Table 1.6: CIFAR-10 ablation runs. ε = 16, budget is 1%. All values are computed for
ResNet-18 models.

Setup Avg. Poison Success %(±SE) Validation Acc.%
Baseline (full data aug., R = 8, M = 250 91.25% (±6.14) 92.20%

Carlini-Wagner loss instead of L 77.50% (±9.32) 92.08%
Fewer Opt. Steps (M = 50) 40.00% (±10.87) 92.05%

Euclidean Loss instead of cosine sim. 61.25% (±9.75) 92.09%

Table 1.7: CIFAR-10 ablation runs. ε = 16, budget is 1%. All values are computed for
ResNet-18 models. Averaged over 5 runs.

Avg. Poison Success
Setup (% of total targets poisoned successfully) Effective Budget / Target

1 target (Baseline) 90.00% 1%
5 targets 32.00% 0.2%

10 targets 14.00% 0.1%

1.5.10 Transfer Experiments

In addition to the fully black-box pipeline of the AutoML experiments in Section

1.7, we test the transferability of our poisoning method against other commonly used

architectures. Transfer results on CIFAR-10 can be found in Table 1.3. On Imagenet, we

brew poisons with a variety of networks, and test against other networks. We find that

poisons crafted with one architecture can transfer and cause targeted mis-classification in

other networks (see Figure 1.9).

1.5.11 Multi-Target Experiments

We also perform limited tests on poisoning multiple targets simultaneously. We find

that while keeping the small poison budget of 1% fixed, we are able to successfully poison

more than one target while optimizing poisons simultaneously, see Table 1.7. Effectively,

however, every target image gradient has to be matched with an increasingly smaller
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Figure 1.9: Direct transfer results on common architectures. Averaged over 10 runs with
budget of 0.1% and ε-bound of 16. Note that for these transfer experiments, the model
was only trained on the ”brewing” network, without knowledge of the victim. This shows
a transferability to unknown architectures.

budget. As the target images are drawn at random and not semantically similar (aside

from their shared class), their synergy is limited - for example the 5 targets experiment

reaches an accuracy of 32%, which is only 14% better than the naive baseline of 90%
5

one

might expect. One encouraging result from the standpoint of poisoning though is that the

multiple targets do not compete against each other, canceling out their respective different

alignments.

1.6 Visualizations

We visualize poisoned sample from our ImageNet runs in Figures 1.13, 1.10, noting

especially the ”clean label” effect. Poisoned data is only barely distinguishable from clean

data, even in the given setting where the clean data is shown to the observer. In a realistic

37



Figure 1.10: Clean images (above), with their poisoned counterparts (below) from a suc-
cessful poisoning of a randomly initialized ResNet-18 trained on ImageNet. The poisoned
images (taken from the Labrador Retriever class) successfully caused mis-classification
of a target (otter) image under a threat model given by a budget of 0.1% and an `∞ bound
of ε = 16.

setting, this is significantly harder. A subset of poisoned images used to poison Cloud

autoML with ε = 32 can be found in Figure 1.11.

We concentrate only on small `∞ perturbations to the training data as this is the most

common setting for adversarial attacks. However, there exist other choices for attacks in

practical settings. Previous works have already considered additional color transforma-

tions [68] or watermarks [141]. Most techniques that create adversarial attacks at test time

within various constraints [35, 61, 76, 173] are likely to transfer into the data poisoning

setting. Likewise, we do not consider hiding poisoned images further by minimizing per-

ceptual scores and relate to the large literature of adversarial attacks that evade detection

[19].

In Figure 1.12 we visualize how the adversarial loss and accuracy behave during

an exemplary training run, comparing the adversarial label with the original label of the

target image.
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Figure 1.11: Clean images (above), with their poisoned counterparts (below) from a suc-
cessful poisoning of a Google Cloud AutoML model trained on ImageNet. The poisoned
images (taken from the Labrador Retriever class) successfully caused mis-classification
of a target (otter) image. This is accomplished with a poison budget of 0.1% and an `∞
bound of ε = 32.

1.7 Experimental Setup

This section details our experimental setup for replication purposes. A central ques-

tion in the context of evaluating data poisoning methods is how to judge and evaluate ”av-

erage” performance. Poisoning is in general volatile with respect to poison-target class

pair, and to the specific target example, with some combinations and target images being

in general easier to poison than others. However, evaluating all possible combinations is

infeasible for all but the simplest datasets, given that poisoned data has to created for each

example and then a neural network has to be trained from scratch every time. Previous

works [141, 178] have considered select target pairs, e.g. ”birds-dogs” and ”airplanes-

frogs”, but this runs the risk of mis-estimating the overall success rates. Another source

of variability arises, especially in the from-scratch setting: Due to both the randomness

of the initialization of the neural network, the randomness of the order in which images
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Figure 1.12: Cross entropy loss (Top) and accuracy (Bottom) for a given target with its
adversarial label (left), and with its original label (right) shown for a poisoned and a
clean ResNet-18. The clean model is used as victim for the poisoned model. The loss
is averaged 8 times for the poisoned model. Learning rate drops are marked with gray
horizontal bars.

are drawn during mini-batch SGD, and the randomness of data augmentations, a fixed

poisoned dataset might only be effective some of the time, when evaluating it multiple

times.

In light of this discussion, we adopt the following methodology: For every experi-

ment we randomly select n (usually 10 in our case) settings consisting of a random target

class, random poison class, a random target and random images to be poisoned. For each

of these experiments we create a single poisoned dataset by the discussed or a comparing

method within limits of the given threat model and then evaluate the poisoned datasets

m times (8 for CIFAR-10 and 1 for ImageNet) on random re-initializations of the con-
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sidered architecture. To reduce randomness for a fair comparison between different runs

of this setup, we fix the random seeds governing the experiment and rerun different threat

models or methods with the same random seeds. We have used CIFAR-10 with ran-

dom seeds 1000000000-1111111111 hyperparameter tuning and now evaluate on random

seeds 2000000000-2111111111 for CIFAR-10 experiments and 1000000000-1111111111

for ImageNet, with class pairs and target image IDs for reproduction given in Tables 1.8

1.9. For CIFAR-10, the target ID refers to the canonical order of all images in the dataset

( as downloaded from https://www.cs.toronto.edu/˜kriz/cifar.html); for

ImageNet, the ID refers to an order of ImageNet images where the syn-sets are ordered by

their increasing numerical value (as is the default in torchvision). However for fu-

ture research we encourage the sampling of new target-poison pairs to prevent overfitting,

ideally even in larger numbers given enough compute power.

For every measurement of avg. poison success in the paper, we measure in the fol-

lowing way: After retraining the given deep neural network to completion, we measure if

the target image is successfully classified by the network as its adversarial class. We do

not count mere misclassification of the original label (but note that this usually happens

even before the target is incorrectly classified by the adversarial class). Over the m valid-

ation runs we repeat this measurement of target classification success and then compute

the average success rate for a single example. We then aggregate this average over our

10 chosen random experiments and report the mean and standard error of these average

success rates as avg. poison success. All error bars in the paper refer to standard error of

these measurements.
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Table 1.8: Target/poison class pairs generated from the initial random seeds for ImageNet
experiments. Target ID relative to CIFAR-10 validation dataset.

Target Class Poison Class Target ID Random Seed
dog frog 8745 2000000000
frog truck 1565 2100000000
frog bird 2138 2110000000

airplane dog 5036 2111000000
airplane ship 1183 2111100000

cat airplane 7352 2111110000
automobile frog 3544 2111111000

truck cat 3676 2111111100
automobile ship 9882 2111111110
automobile cat 3028 2111111111

Table 1.9: Target/poison class pairs generated from the initial random seeds for ImageNet
experiments. Target Id relative to ILSVRC2012 validation dataset [137]

Target Class Poison Class Target ID Random Seed
otter Labrador retriever 18047 1000000000

warthog bib 17181 1100000000
orange radiator 37530 1110000000

theater curtain maillot 42720 1111000000
hartebeest capuchin 17580 1111100000

burrito plunger 48273 1111110000
jackfruit spider web 47776 1111111000

king snake hyena 2810 1111111100
flat-coated retriever alp 10281 1111111110

window screen hard disc 45236 1111111111

1.7.1 Cloud AutoML Setup

For the experiment using Google’s cloud autoML, we upload a poisoned ILS-

VRC2012 dataset into google storage, and then use https://cloud.google.com/

vision/automl/ to train a classification model. Due to autoML limitations to 1 mil-

lion images, we only upload up to 950 examples from each class (reaching a training set

size slightly smaller than 950 000, which allows for an upload of the 50 000 validation im-

ages). We use a ResNet-18 model as surrogate for the black-box learning within autoML,
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Figure 1.13: Clean images (above), with their poisoned counterparts (below) from a suc-
cessful poisoning of a Google Cloud AutoML model trained on ImageNet. The poisoned
images (taken from the Labrador Retriever class) successfully caused mis-classification
of a target (otter) image under a threat model given by a budget 0.1% and an `∞ bound of
ε = 32.

pretrained on the full ILSVRC2012 as before. We create a MULTICLASS autoML data-

set and specify the vision model to be mobile-high-accuracy-1 which we train to

10 000 milli-node hours, five times. After training the model, we evaluate its performance

on the validation set and target image. The trained models all reach a 69% clean top-1

accuracy on the ILSVRC2012 validation set.

1.7.2 Hardware

We use a heterogeneous mixture of hardware for our experiments. CIFAR-10, and

a majority of the ImageNet experiments, were run on NVIDIA GEFORCE RTX 2080 Ti

gpus. CIFAR-10 experiments were run on 1 gpu, while ImageNet experiments were run

on 4 gpus. We also use NVIDIA Tesla P100 gpus for some ImageNet experiments. All

timed experiments were run using 2080 Ti gpus.
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1.7.3 Models

For our experiments on CIFAR-10 in section 5 we consider two models. In table

2, the ”6-layer ConvNet”, - in close association with similar models used in Finn et al.

[41] or Krizhevsky et al. [87], we consider an architecture of 5 convolutional layers (with

kernel size 3), followed by a linear layer. All convolutional layers are followed by a

ReLU activation. The last two convolutional layers are followed by max pooling with

size 3. The output widths of these layers are given by 64, 128, 128, 256, 256, 2304. In

tables 1, 2, in the inset figure and Fig. 4 we consider a ResNet-18 model. We make

the customary changes to the model architecture for CIFAR-10, replacing the stem of the

original model (which requires ImageNet-sized images) by a convolutional layer of size 3,

following by batch normalization and a ReLU. This is effectively equal to upsampling the

CIFAR-10 images before feeding them into the model. For experiments on ImageNet, we

consider ResNet-18, ResNet-34 [59], MobileNet-v2 [139] and VGG-16 [145] in standard

configuration.

We train the ConvNet, MobileNet-v2 and VGG-16 with initial learning rate of 0.01

and the residual architectures with initial learning rate 0.1. We train for 40 epochs, drop-

ping the learning rate by a factor of 10 at epochs 14, 24, 35. We train with stochastic mini-

batch gradient descent with Nesterov momentum, with batch size 128 and momentum 0.9.

Note that the dataset is shuffled in each epoch, so that where poisoned images appear in

mini-batches is random and not known to the attacker. We add weight decay with para-

meter 5× 10−4. For CIFAR-10 we add data augmentations using horizontal flipping with

probability 0.5 and random crops of size 32 × 32 with zero-padding of 4. For ImageNet
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we resize all images to 256× 256 and crop to the central 224× 224 pixels. We also con-

sider horizontal flipping with probability 0.5, and data augmentation with random crops

of size 224× 224 with zero-padding of 28.

When evaluating ImageNet poisoning from-scratch we use the described procedure.

To create our poisoned datasets as detailed in Alg. 1, we download the respective pre-

trained model from torchvision, see https://pytorch.org/docs/stable/

torchvision/models.html.

1.8 Remarks

Remark (Validating the approach in a special case). Inner-product loss functions like

Equation 1.3 work well in other contexts. In [45], cosine similarity between image gradi-

ents was minimized to uncover training images used in federated learning. If we disable

our constraints, setting ε = 255, and consider a single poison image and a single target,

then we minimize the problem of recovering image data from a normalized gradient as a

special case. In [45], it was shown that minimizing this problem can recover the target

image. This means that we can indeed return to the motivating case in the unconstrained

setting - the optimal choice of poison data is insertion of the target image in an uncon-

strained setting for one image.

Remark (Transfer of gradient alignment). An analysis of how gradient alignment often

transfers between different parameters and even between architectures has been conduc-

ted, e.g. in [22, 82] and [29]. It was shown in [29] that the performance loss when

transferring an evasion attack to another model is governed by the gradient alignment of
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both models. In the same vein, optimizing alignment appears to be a useful metric in the

case of data poisoning. Furthermore [62] note that previous poisoning algorithms might

already cause gradient alignment as a side effect, even without explicitly optimizing for

it.

Remark (Poisoning is a Credible Threat to Deep Neural Networks). It is important to

understand the security impacts of using unverified data sources for deep network training.

Data poisoning attacks up to this point have been limited in scope. Such attacks focus on

limited settings such as poisoning SVMs, attacking transfer learning models, or attacking

toy architectures [10, 111, 141]. We demonstrate that data poisoning poses a threat to

large-scale systems as well. The approach discussed in this work pertains only to the

classification scenario, as a guinea pig for data poisoning, but applications to a variety

of scenarios of practical interest have been considered in the literature, for example spam

detectors mis-classifying a spam email as benign, or poisoning a face unlock based mobile

security systems.

The central message of thedata poisoning literature can be described as follows:

From a security perspective, the data that is used to train a machine learning model should

be under the same scrutiny as the model itself. These models can only be secure if the

entire data processing pipeline is secure. This issue further cannot easily be solved by

human supervision (due to the existence of clean-label attacks) or outlier detection (see

Figure 1.5a). Furthermore, targeted poisoning is difficult to detect as validation accuracy

is unaffected. As such, data poisoning is best mitigated by fully securing the data pipeline.

So far we have considered data poisoning from the industrial side. From the per-
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spective of a user, or individual under surveillance, however, data poisoning can be a

means of securing personal data shared on the internet, making it unusable for automated

ML systems. For this setting, we especially refer to an interesting application study in

[142] in the context of facial recognition.

1.9 Conclusion

We investigate data poisoning via gradient matching and discover that this mech-

anism allows for data poisoning attacks against fully retrained models that are unpre-

cedented in scale and effectiveness. We motivate the attack theoretically and empiric-

ally, discuss additional mechanisms like differentiable data augmentation and experiment-

ally investigate modern deep neural networks in realistic training scenarios, showing that

gradient matching attacks compromise even models trained on ImageNet. We close with

discussing the limitations of current defense strategies.
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Chapter 2: Availability Poisoning Attacks

The adversarial machine learning literature is largely partitioned into evasion at-

tacks on testing data and poisoning attacks on training data. In this work, we show that

adversarial examples, originally intended for attacking pre-trained models, are even more

effective for data poisoning than recent methods designed specifically for poisoning. Our

findings indicate that adversarial examples, when assigned the original label of their nat-

ural base image, cannot be used to train a classifier for natural images. Furthermore,

when adversarial examples are assigned their adversarial class label, they are useful for

training. This suggests that adversarial examples contain useful semantic content, just

with the “wrong” labels (according to a network, but not a human). Our method, ad-

versarial poisoning, is substantially more effective than existing poisoning methods for

secure dataset release, and we release a poisoned version of ImageNet, ImageNet-P, to

encourage research into the strength of this form of data obfuscation. This work was per-

formed together with Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojtek Czaja,

and Tom Goldstein. My contributions include: jointly conceiving of the targeted poison-

ing objective (the more powerful objective), performing a majority of experiments in the

work, as well as writing a majority of the paper.
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2.1 Introduction

Automated dataset scraping has become necessary to satisfy the exploding demands

of cutting-edge deep models [14, 17], but the same automation that enables massive per-

formance boosts exposes these models to security vulnerabilities [4, 23]. Recall, data

poisoning attacks manipulate training data in order to cause the resulting models to mis-

classify samples during inference [81], while backdoor attacks embed exploits which can

be triggered by pre-specified input features [25]. In this work, we focus on a flavor of

data poisoning known as availability attacks, which aim to degrade overall testing per-

formance [6, 9].

Adversarial attacks, on the other hand, focus on manipulating samples at test-time,

rather than during training [154]. In this work, we connect adversarial and poisoning

attacks by showing that adversarial examples form stronger availability attacks than any

existing poisoning method, even though the latter were designed specifically for manip-

ulating training data while adversarial examples were not. We compare our method, ad-

versarial poisoning, to existing availability attacks for neural networks, and we exhibit

consistent performance boosts (i.e. lower test accuracy). In fact, models trained on ad-

versarial examples may exhibit test-time performance below that of random guessing.

Intuitively, adversarial examples look dramatically different from their natural base

images in the eye of neural networks, despite the two looking similar to humans. Models

trained only on such perturbed examples are completely unprepared for inference on the

clean data. In support of this intuition, we observe that models trained on adversarially

perturbed training data often fail to correctly classify the original clean training samples.
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But does this phenomenon occur simply because adversarial examples are off the

“natural image manifold” or because they actually contain informative features from other

classes? Popular belief assumes that adversarial examples live off the natural image mani-

fold, causing a catastrophic mismatch when digested by models trained on only clean data

[79, 150, 177]. However, models trained on data with random additive noise (rather than

adversarial noise) perform well on noiseless data, suggesting that there may be more to

the effects of adversarial examples than simply moving off the manifold (see Table 2.2).

We instead find that since adversarial attacks inject features that a model associates with

incorrect labels, training on these examples is similar to training on mislabeled training

data. After re-labeling adversarial examples with the “wrong” prediction of the network

on which they were crafted, models trained on such label-flipped data perform substan-

tially better than models trained on uncorrected adversarial examples and almost as well

as models trained on clean images. While this label-correction is infeasible for a practi-

tioner defending against adversarial poisoning, since it assumes possession of the crafting

network which requires access to the clean dataset, this experiment strengthens the intu-

ition that adversarial examples contain a strong training signal just from the “wrong”

class.

2.2 Related Work

Data poisoning can generally be phrased as a bilevel optimization problem which

minimizes loss with respect to parameters in the inner problem while maximizing some

attack loss with respect to inputs in the outer problem [9, 67]. Poisoning comes in several
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flavors, including integrity attacks and availability attacks. The former aims to cause

targeted misclassification on a small number of pre-selected datapoints, while the latter

aims to degrade the overall performance (generalization ability) of a victim network [6].

Classical approaches to poisoining attacks often focused on simple models, where the

inner problem can sometimes be solved exactly [9, 21, 105, 167]. However, on neural

networks, obtaining exact solutions is intractable. In this setting, Muñoz-González et al.

[112] approximates a solution to the inner problem using a small number of descent steps,

but the authors note that this method is ineffective against deep neural networks.

Modern poisoning attacks adopt new methods and approximations, like gradient

alignment [47, 148], computation graph unrolling [68], etc., but for integrity attacks on

deep networks. On the availability attack side, still other heuristics have been adopted.

For example, gradient alignment [47] with a modified indiscriminate objective was used

in Fowl et al. [42], while gradient explosion was suggested in Shen et al. [143]. Other

availability attacks have used auto-encoder generated perturbations [39], as well as loss

minimization objectives [65]. Notably, it was previously believed that adversarial (loss

maximization) objectives were not suitable to availability attacks [65].

Still other related poisoning works harness influence functions which estimate the

impact of each training sample on a resulting model [38, 81, 83]. However, influence

functions are brittle on deep networks whose loss surfaces are highly irregular [7]. A

general overview of data poisoning methods can be found in [52].

Adversarial examples. Adversarial attacks probe the blindspots of trained models

where they catastrophically misclassify inputs that have undergone small perturbations

[154]. Prototypical algorithms for adversarial attacks simply maximize loss with respect

51



to the input while constraining perturbations. The resulting adversarial examples exploit

the fact that as inputs are even slightly perturbed in just the right direction, their corres-

ponding deep features and logits change dramatically, and gradient-based optimizers can

efficiently find these directions. The literature contains a wide array of proposed loss

functions and optimizers for improving the effectiveness of attacks [18, 57]. A number of

works suggest that adversarial examples are off the image manifold, and others propose

methods for producing on-manifold attacks [79, 150, 177].

Adversarial training. The most popular method for producing neural networks

that are robust to attacks involves crafting adversarial versions of each mini-batch and

training on these versions [99]. On the surface, it might sound as if adversarial training

is very similar to training on poisons crafted via adversarial attacks. After all, they both

involve training on adversarial examples. However, adversarial training ensures that the

robust model classifies inputs correctly within a ball surrounding each training sample.

This is accomplished by updating perturbations to inputs throughout training. This pro-

cess desensitizes the adversarially trained model to small perturbations to its inputs. In

contrast, a model trained on adversarially poisoned data is only encouraged to fit the ex-

act, fixed perturbed data.

2.3 Adversarial Examples as Poisons

In this section, we describe the central mechanism for crafting availability attack.

We formally introduce the objective of the attacker, and describe our approach, and com-

pare to several existing methods.
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2.3.1 Threat Model and Motivation

We introduce two parties: the poisoner (sometimes called the attacker), and the

victim. The poisoner has the ability to perturb the victim’s training data but does not know

the victim’s model initialization, training routine, or architecture. The victim then trains

a new model from scratch on the poisoned data. The poisoner’s success is determined by

the accuracy of the victim model on clean data.

Early availability attacks that worked best in simple settings, like SVMs, often

modified only a small portion of the training data. However, recent availability attacks

that work in more complex settings have instead focused on applications such as secure

data release where the poisoner has access to, and modifies, all data used by the victim

[39, 42, 65, 143].

These methods manipulate the entire training set to cause poor generalization in

deep learning models trained on the poisoned data. This setting is relevant to practitioners

such as social media companies who wish to maintain the competitive advantage afforded

to them by access to large amounts of user data, while also protecting user privacy by

making scraped data useless for training models. Practically speaking, companies could

employ methods in this domain to imperceptibly modify user data before dissemination

through social media sites in order to degrade performance of any model which is trained

on this disseminated data.

To compare our method to recent works, we focus our experiments in this setting

where the poisoner can perturb the entire training set. However, we also poison lower

proportions of the data in Tables 2.5, 2.4. We find that on both simple and complex
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datasets, our method produces poisons which are useless for training, and models trained

on data including poisons would have performed just as well had they identified and

thrown out the poisoned data altogether.

2.3.2 Problem Setup

Formally stated, availability poisoning attacks aim to solve the following bi-level

objective in terms of perturbations ∆ = {∆i} to elements xi of a dataset T :

max
∆∈C

E(x,y)∼D

[
L (F (x; θ(∆)), y)

]
(2.1)

s.t. θ(∆) ∈ arg min
θ

∑
(xi,yi)∈T

L(F (xi + ∆i; θ), yi), (2.2)

where C denotes the constraint set of the perturbations, and D denotes the distribution

from which T was drawn. As is common in both the adversarial attack and poisoning

literature, we employ an `∞ bound on each δi. Unless otherwise stated, our attacks are

bounded by `∞-norm ε = 8/255 as is standard practice on CIFAR-10, and ImageNet data

in both adversarial and poisoning literature [47, 99]. Simply put, the attacker wishes to

cause a network, F , trained on the poisons to generalize poorly to distribution D from

which T was sampled.

Directly solving this optimization problem is intractible for neural networks as it

requires unrolling the entire training procedure found in the inner objective (Equation (2))

and backpropagating through it to perform a single step of gradient descent on the outer

objective. Thus, the attacker must approximate the bilevel objective. Approximations to

this objective often involve heuristics, as previously described. For example, TensorClog
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[143] aims to cause gradient vanishing in order to disrupt training, while more recent

work aims to align poison gradients with an adversarial objective [47].

We opt for an entirely different strategy and instead replace the bi-level problem

with two empirical loss maximization problems - an approach that was believed to be

suboptimal for availability poisoning [65]. This turns the poison generation problem into

an adversarial example problem. Specifically, we optimize the following untargeted (UT)

objective:

max
δ∈S

[ ∑
(xi,yi)∈T

L (F (xi + δi; θ
∗), yi)

]
, (2.3)

where θ∗ denotes the parameters of a model trained on clean data, which is fixed during

poison generation. We call this model the crafting model.

We also optimize an objective which defines a class targeted (CT) adversarial at-

tack. This modified objective is defined by:

min
δ∈S

[ ∑
(xi,yi)∈T

L (F (xi + δi; θ
∗), g(yi))

]
, (2.4)

where g is a permutation (with no fixed points) on the label space of S. Fittingly, we

call our methods adversarial poisoning. Note that the class targeted objective was pre-

viously (independently) hypothesized to produce potent poisons in Nakkiran [113], and

also tested in a work concurrent to ours [158].
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Projected Gradient Descent (PGD) has become the standard method for generating

adversarial examples for deep networks [99]. Accordingly, we craft our poisons with 250

steps of PGD on this loss-maximization objective. In addition to the adversarial attack

introduced in Madry et al. [99], we also experiment with other attacks such as FGSM [55]

and Carlini-Wagner [18] in Table 2.2. We find that while other adversaries do produce

effective poisons, a PGD based attack is the most effective in generating poisons. Finally,

borrowing from recent targeted data poisoning works, we also employ differentiable data

augmentation in the crafting stage [47] (see section 2.3.3).

An aspect of note for our method is the ease of crafting perturbations - we use a

straightforward adversarial attack on a fixed pretrained network to generate the poisons.

This is in contrast to previous works which require pretraining an adversarial auto-encoder

[40] (5 - 7 GPU days for simple datasets), or require iteratively updating the model and

perturbations [65], which requires access to the entire training set all at once - an assump-

tion that does not hold for practitioners like social media companies who acquire data

sequentially. In addition to the performance boosts our method offers, it is also the most

flexible compared to each of the availability attacks with which we compare.

2.3.3 Technical Details for Successful Attacks

As we will see in the following sections, adversarial objectives can indeed produce

powerful poisons. As previously stated, such loss maximization approaches to availability

attacks were thought to be suboptimal [65]. However, we find that differentiable data

augmentation during crafting, along with more PGD steps, greatly improves the potency
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of the generated poisons. In Figure 2.5, we see that augmentation is very helpful for the

untargeted objective at higher number of PGD steps, but is less important for the class-

targeted objective.

Furthermore, we find that the variability of the untargeted attack is generally higher

than the class-targeted attack. That is, the untargeted attack is more sensitive to random

initialization of the poisons. For purposes of comparison, we do modest hyperparameter

searching to find a reasonable poisoned dataset on which to evaluate a victim model. We

discuss this further in Section 2.4.9.

2.3.4 Baseline CIFAR-10 Results

We first experiment in a relatively simple setting, CIFAR-10 [86], consisting of

50, 000 low-resolution images from 10 classes. All poisons in this setting are tested on a

variety of architectures in a setting adapted from a commonly used repository 1. We find

that our poisoning method reliably degrades the test accuracy of a wide variety of popular

models including VGG19 [145], ResNet-18 [59], GoogLeNet [153], DenseNet-121 [64],

and MobileNetV2 [139]. Even under very tight `∞ constraints, our poisons more than

halve the test accuracy of these models. These results are presented in Table 2.1.

Additionally, we study the effect of the optimizer, data augmentation, number of

steps, and crafting network on poison generation in Tables 2.9, 2.10, and 2.11. These

tables demonstrate that a wide variety of adversarial attacks with various crafting net-

works and hyperparameters yield effective poisons. Also note that while the results we

present here are for poisons generated with a ResNet18, we find that the poisons remain

1https://github.com/kuangliu/pytorch-cifar.
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Table 2.1: Comparison of different ε-bounds for our adversarial poisoning method.
All poisons generated by ResNet-18 crafted with 250 steps of PGD, with differentiable
data augmentation. CT denotes poisons crafted with the class targeted adversarial attack.
Note that we would expect random guessing to achieve 10% validation accuracy.

BOUND \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET-121 MOBILENETV2
CLEAN 93.9± 0.16 95.53± 0.03 95.38± 0.11 95.51± 0.07 92.42± 0.06

ε = 4/255 (UT) 64.71± 0.76 56.79± 0.75 61.9± 0.42 59.10± 0.34 47.72± 0.23
ε = 8/255 (UT) 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17
ε = 4/255 (CT) 30.26± 0.55 26.49± 0.15 29.53± 0.51 26.63± 0.59 21.64± 0.54
ε = 8/255 (CT) 10.32± 0.35 8.69± 0.44 9.36± 0.26 7.85± 0.40 8.36± 0.31

effective when generated from other network architectures (see Table 2.11).

In this popular setting, we can compare our method to existing availability attacks

including TensorClog [143], Loss Minimization [65], and a gradient alignment based

method [42]. Our method widely outperforms these previous methods. Compared with

the previous best method (loss minimization), we degrade the validation accuracy of a

victim network by a factor of more than three.

Table 2.2: Validation accuracies of models trained on data from different availability
attacks. Tested on randomly initialized ResNet-18 models on CIFAR-10. All crafted
with ε = 8/255.

METHOD VALIDATION ACCURACY (%, ↓)
NONE (CLEAN) 94.56
RANDOM NOISE 90.52

TENSORCLOG [143] 84.24
ALIGNMENT [42] 53.67

UNLEARNABLE EXAMPLES [65] 19.85
DEEPCONFUSE [40] 31.10

ADVERSARIAL POISONING UNTARGETED (OURS) 11.94
ADVERSARIAL POISONING CLASS-TARGETED (OURS) 8.69

Note that we test our method in a completely black-box setting wherein the pois-

oner has no knowledge of the victim network’s initialization, architecture, learning rate

scheduler, optimizer, etc. We find our adversarial poisons transfer across these settings
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and reliably degrade the validation accuracy of all the models tested. See Section 2.4.1

for more details about training procedures.

2.3.5 Large Scale Poisoning

In addition to validating our method on CIFAR-10, we also conduct experiments

on ImageNet (ILSVRC2012), consisting of over 1 million images coming from 1000 dif-

ferent classes [137]. This setting tests whether adversarial poisons can degrade accuracy

on industrial-scale, high resolution datasets. We discover that while untargeted attacks

successfully reduce the generalization, our class-targeted attack (CT) degrades clean val-

idation accuracy significantly further (see Table 2.3). Furthermore, even at an almost

imperceptible perturbation level of 4/255, the class targeted poisons cripple the valida-

tion accuracy of the victim model to 3.57%. Visualizations of the poisons can be found in

Figure 2.1.

Table 2.3: Validation accuracies of models trained on poisoned ImageNet data.
Tested on randomly initialized ResNet-18 models.

METHOD VALIDATION ACCURACY (%, ↓)
NONE (CLEAN) 66.56
ε = 4/255 (UT) 45.07
ε = 8/255 (UT) 36.63
ε = 4/255 (CT) 3.57
ε = 8/255 (CT) 1.45

We hypothesize that the noteable superiority of the class targeted attack in this set-

ting arises from the larger label-space of ImageNet. Specifically, we find that untargeted

adversarial attacks can result in a concentrated attack matrix - i.e. attacks perturb data into

a relatively small number of classes. This could lead to the perturbations being less effect-
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Figure 2.1: Randomly selected clean image (left), with perturbed counterparts at level
ε = 4/255 (center), and ε = 8/255 (right). The clean image is taken from class “hen”
and poisons are generated via perturbations into class “ostrich”.

ive at degrading generalization because they are not discriminatively useful for a network

and are thus ignored. In contrast, a class-targeted attack ensures that the adversarially per-

turbed features can be associated with an incorrect class label when learned by a victim

network.

2.3.6 Facial Recognition

In our third experimental setting, we test whether our poisons are effective against

facial recognition models, along the lines of the motivations introduced in Section 2.3.1,

where companies like social media sites could employ our method to protect user data

from being scraped and used by facial recognition networks as demonstrated in [26].

For the purposes of comparison, we constrain our attack to the same setting as Huang

et al. [65]. In this setting, we only assume the ability to modify a subset of the face

images, specifically, the face images of the users that we want to protect. We test on

the Webface dataset, and use pretrained Webface model from Yi et al. [168] to generate

the class targeted adversarial examples with ε = 8/255. Our class targeted adversarial

examples are exceedingly effective in this domain. Our method reduces the protected
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classes’ accuracy down to 8%, half the classification success of the unlearnable examples

method of Huang et al. [65] (see Table 2.4). We visualize perturbations in Figure 2.4.

Note that these images are produced using the same ε bound as unlearnable examples for

comparison, and for more discrete perturbations, one can easily turn down the ε radius to

ensure more high fidelity user images.

Table 2.4: Comparison of poisoning methods for facial recognition. All poisons gen-
erated with ε = 8/255.

POISON METHOD AVERAGE ACCURACY (%, ↓)
CLEAN ACCURACY 86.00

UNLEARNABLE EXAMPLES [65] 16.00
OURS (CT) 8.00

2.3.7 Less Data

So far, our comparisons to previous methods have been in the setting of full dataset

poisoning, as was tested in Feng et al. [40], Fowl et al. [42], Huang et al. [65], Shen et al.

[143]. This setting is relevant to practitioners like social media companies who wish to

modify all user data to prevent others from using data scraped from their platforms.

However, even in this setting, it may be the case that an actor scraping data has

access to an amount of unperturbed data - either through previous scraping before a pois-

oning method was employed, or data scraped from another source. A concern that follows

is how this mixture affects model training. Thus, we test the effectiveness of our poisons

when different proportions of clean and perturbed data are used to train the victim model.

Poisons are then considered effective if their use does not significantly increase perform-

ance over training on the clean data alone. In Tables 2.5, 2.6 we find that, poisoned
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data does not significantly improve results over training on only the clean data and often

degrades results below what one would achieve using only the clean data. This is in com-

parison to similar experiments in Huang et al. [65] where poisoned data was observed to

be slightly helpful when combined with clean data in training a model.

Table 2.5: Effects of adjusting the amount of clean data included in the poisoned CIFAR-
10.

POISON METHOD\CLEAN PROPORTION 0.1 0.2 0.5 0.8
NONE (ONLY CLEAN DATA) 82.30± 0.08 87.90± 0.04 92.48± 0.07 93.90± 0.06

ε = 8/255 85.34± 0.09 88.23± 0.09 92.20± 0.08 93.65± 0.07

Table 2.6: Effects of adjusting the amount of clean data included in the poisoned Im-
ageNet.

POISON METHOD\CLEAN PROPORTION 0.1 0.2 0.5 0.8
NONE (ONLY CLEAN DATA) 45.18 53.48 62.79 64.65

ε = 8/255 47.81 54.24 61.20 63.95

2.3.8 Defenses

We have demonstrated the effects of our poisons in settings where the victim trains

“normally”. However, there have been several defenses proposed against poisoning at-

tacks that a victim could potentially utilize. Thus, in this section, we test the effectiveness

of several popular defenses against our method.

Adversarial training: Because our poisons are constrained in an `∞ ball around the

clean inputs, and because we find that clean inputs are themselves adversarial examples

for networks trained on poisoned data (more on this in the next section), it is possible

that adversarial training could “correct” the poisoned network’s behavior on the clean
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distribution. This is hypothesized in Tao et al. [158], where it is argued that adversarial

training can be an effective defense against delusive poisoning. We find in Table 2.7 that

this is indeed the case. In fact, it is known that adversarial training effectively mitigates

the success of several previous availability attacks including Huang et al. [65], Feng et al.

[40], Fowl et al. [42]. However, it is worth noting that this might not be an ideal solution

for the victim as adversarial training is expensive computationally, and it degrades natural

accuracy to a level well below that of standard training. For example, on a large scale

dataset like ImageNet, adversarial training can result in a significant drop in validation

accuracy. With a ResNet-50, adversarial training results in validation accuracy dropping

from 76.13% to 47.91% - a drop that would be further exacerbated when adversarial

training on poisoned data (cf. https://github.com/MadryLab/robustness).

Data Augmentation: Because our poisoning method relies upon slight perturba-

tions to training data in order to degrade victim performance, it is conceivable that further

modification of data during training could counteract the effects of the perturbations. This

has recently been explored in Borgnia et al. [15] and Geiping et al. [48]. We test several

data augmentations not known to the poisoner during crafting, although adaptive attacks

have been shown to be effective against some augmentations [48]. Our augmentations

range from straightforward random additive noise (of the same ε-bound as poisons) to

Gaussian smoothing. We also include popular training augmentations such as Mixup,

which mixes inputs and input labels during training [174], Cutmix [170], which mixes

patches of one image with another, and Cutout [28] which excises certain parts of train-

ing images.

DPSGD: Differentially Private SGD (DPSGD) [1] was originally developed as a
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differential privacy tool for deep networks which aims to inure a dataset to small changes

in training data, which could make it an effective antitode to data poisoning. This defense

adds noise to training gradients, and clips them. It was demonstrated to be successful

in defending against targeted poisoning in some settings [47, 62]. However, this defense

often results in heavily degraded accuracy. We test this defense with a clipping parameter

1.0 and noise parameter 0.005.

Table 2.7: Effects of defenses against adversarial poisons. All results averaged over 5
runs of a ResNet-18 victim model trained on class targeted, ε = 8/255 poisons. Although
adversarial training improves results, none of these effectively recover the accuracy of a
model trained on clean data.

DEFENSE VALIDATION ACCURACY (%)
BASELINE (CLEAN) 94.56

ADV. TRAINING 83.01
GAUSSIAN SMOOTHING 11.94

RANDOM NOISE 6.55
MIXUP 15.86

CUTMIX 10.09
CUTOUT 8.11
DPSGD 24.61

Other than adversarial training, which has drawbacks discussed above, we find that

previous proposed defenses are ineffective against our adversarial poisons, and can even

degrade victim performance below the level of a model trained without any defense.

2.4 Additional Experiments and Details

2.4.1 Training/Crafting details

Code for this project can be found at: https://github.com/lhfowl/adversarial poisons.

Below are descriptions of experimental settings and hyperparameters. Unless otherwise
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stated, for CIFAR-10, we train the crafting network for 40 epochs before generating the

attacks. For testing, we use two primary setups. First, for the CIFAR-10 comparison and

baseline Tables (2.1, 2.2), to be as fair and objective as possible, we use a totally third

party testing setup found in the popular repo https://github.com/kuangliu/

pytorch-cifar. Note for these runs, we updated our crafting procedure to use a

slightly smaller step size (0.05 · 8
255

).

For other CIFAR-10 ablations, for efficiency, we train victim models for 100 epochs

with 3 learning rate drops with SGD optimizer. We craft with a step size of 0.1 · 8
255

.

Unless otherwise stated, for CIFAR-10 experiments, we use 8 restarts on poison crafting,

and perturbation pixels are initialized from N (0, ε2).

For ImageNet, for efficiency, we use a pretrained crafting network (ResNet18 unless

otherwise stated) taken from https://pytorch.org/vision/stable/models.html

to craft the poisons. For memory constraints, we craft in batches of 25, 000, but note that

this has no effect on the perturbations since the crafting is independent. Unless otherwise

specified, we then train a randomly initialized model for 100 epochs with SGD using

standard ImageNet preprocessing (resizing, center crops, normalization) with three learn-

ing rate drops. For the ablation studies on smaller proportions of data, for efficiency, we

only train the ImageNet models for 40 epochs.

For crafting class targeted attacks, we select a random permutation of the labels.

For CIFAR-10, this amounted to label i → i + 3, and for ImageNet, we simply chose

i→ i+ 3.

For the facial recognition, we conduct our experiments following the partially un-

learnable setting in Huang et al. [65]. In this setting, we only assume ability to modify
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a subset of the face images, specifically, the faces images of the users that we want to

protect. We first randomly split the Webface dataset into 80% training data and 20% test-

ing data, and then randomly select 50 identities to be the users who want to hide their

identities. We use the pretrained Webface model from Yi et al. [168] to generate the

class targeted adversarial examples with ε = 8/255. We then combine the protected data

together with the the remaining 10525 identities to form the new training dataset. We

then train an Inception-ResNet following the standard procedures in [156]. We visualize

perturbations in Figure 2.4.

2.4.1.1 Hardware and time considerations

We run our experiments on a heterogeneous mixture of resources including Nvidia

GeForce RTX 2080 Ti GPUs, as well as Nvidia Quadro GV100 GPUs. Crafting and

training time vary widely depending on the dataset and hyperparameter choices (restarts).

However, a typical crafting experiment for CIFAR-10 will take roughly 6 hours to train

and craft with 4 2080 Ti GPUs. This can be reduced by a factor of roughly 8 if one utilizes

pretrained models, and only performs 1 restart during poison creation.

2.4.2 Visualization

In Figures 2.2, 2.3, we visualize randomly selected perturbed images at different

ε levels. As with adversarial attacks, and other poisoning attacks, there is a trade-off

between visual similarity and potency of the perturbations.

In Figure 2.4, we visualize perturbed identities from the Webface dataset.
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Figure 2.2: Randomly selected example perturbations to CIFAR-10 datapoint (class
“frog”). Left: unaltered base image. Middle: ε = 4/255 perturbation. Right: ε = 8/255
perturbation. Networks trained on perturbations including the one on the right achieve
below random accuracy.

Figure 2.3: Randomly selected example perturbations to ImageNet datapoints. Perturba-
tions bounded by ε = 8/255.

Figure 2.4: Samples of poisoned Webface images ε = 8/255

2.4.3 Adversary comparison

We find that a PGD based attack supersedes other common adversarial attacks in

poison efficiency - a behavior that has been observed in classical adversarial attacks as

well. These results can be found in Table 2.8.
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Table 2.8: Validation accuracies of victim models trained on data generated by differ-
ent adversarial attacks. Tested in the black-box setting on randomly initialized models
on CIFAR-10.

METHOD \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET-121 MOBILENETV2
PGD W/ AUG 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

CW 59.82± 1.36 48.40± 3.24 19.25± 1.15 43.40± 2.76 45.62± 4.87
FGSM 65.32± 0.58 76.35± 0.08 47.50± 1.06 59.44± 1.28 74.77± 0.43

FEATURE EXPLOSION 82.41± 0.38 83.26± 0.94 78.53± 0.49 81.83± 0.46 82.30± 0.88

(a) Ablating the number of PGD steps used for
crafting. Step size is fixed at 0.05 · 8

255

(b) Ablating the number of PGD steps used for
crafting, without augmentation. Step size is
fixed at 0.05 · 8

255

Figure 2.5: Victim network accuracy as a function of PGD steps with and without aug-
mentation. Augmentation appears necessary to produce powerful untargeted poisons.

2.4.4 Crafting Ablations

In Table 2.9, we find that the more steps we perform in the PGD optimization of

adversarial poisons, the more effective they become. However, the poisons still degrade

validation accuracy at lower numbers of steps.

2.4.5 Network Variation

Here we test how perturbations crafted using one network transfer to other net-

works. While it has been demonstrated that adversarial examples used as evasion attacks
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Table 2.9: Comparison of different number of crafting steps for our adversarial pois-
oning method. All poisons generated by ResNet-18 with steps of PGD, with differenti-
able data augmentation, and class-targeted objective.

STEPS \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET-121 MOBILENETV2
50 STEPS 25.10± 0.60 16.53± 0.26 18.51± 0.34 18.91± 0.34 15.29± 0.40
100 STEPS 16.06± 0.41 9.87± 0.26 11.66± 0.33 13.42± 0.28 10.38± 0.22
250 STEPS 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

Table 2.10: A comparison of different optimizers, crafting objectives, and use of dif-
ferentiable data augmentation in crafting. All poisons crafted with bound ε = 8/255.
If not otherwise stated, poisons are crafted with PGD, differentiable data augmentation,
and our class-targeted objective.

METHOD \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET-121 MOBILENETV2
PGD W/ AUG 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

SIGNADAM W/ AUG 8.92± 0.27 6.17± 0.27 6.75± 0.18 6.42± 0.23 7.15± 0.22
SIGNADAM W/O AUG 9.96± 0.22 6.96± 0.15 7.41± 0.15 7.84± 0.29 8.22± 0.23

CW LOSS 59.82± 1.36 48.40± 3.24 19.25± 1.15 43.40± 2.76 45.62± 4.87
FEATURE EXPLOSION LOSS 82.41± 0.38 83.26± 0.94 78.53± 0.49 81.83± 0.46 82.30± 0.88

can often transfer across architectures, we find that adversarial examples as poisons also

transfer across different architectures in Table 2.11.

Table 2.11: Results varying the crafting network for the poisons. All poisons crafted
with bound ε = 8/255, PGD, differentiable data augmentation, class-targeted objective.

CRAFTING \TESTING VGG19 RESNET-18 GOOGLENET DENSENET-121 MOBILENETV2
RESNET-18 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17
RESNET-50 17.86± 0.57 9.71± 0.12 11.44± 0.21 10.64± 0.46 6.82± 0.18

VGG19 20.88± 0.84 18.53± 1.15 21.48± 0.67 23.77± 0.74 17.59± 0.56
MOBILENETV2 21.66± 0.26 12.42± 0.17 14.84± 0.29 15.95± 0.18 9.60± 0.24

CONVNET 15.43± 0.34 10.05± 0.20 11.88± 0.17 10.30± 0.11 7.95± 0.26

In addition to experimenting with different crafting network architectures, we also

vary other factors of the crafting network. For example, we experiment how using an

adversarially robust crafting network affects performance of the poisons. We find that

adversarially trained models produce ineffective poisons. This is in line with the findings

of [69] that robust models leverage a different set of discriminatory features - ones less
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brittle to perturbation - during classification. These results can be found in Table 2.12.

Table 2.12: Poison generation using a robust crafting model.

CRAFT MODEL \VICT. MODEL VGG19 RESNET-18 GOOGLENET DENSENET-121 MOBILENETV2
ROBUST RESNET-18 85.58± 0.05 81.79± 0.57 80.99± 0.17 80.39± 0.27 77.70± 1.27

2.4.6 Relabeling Trick

In Table 2.13, we find that the poisons generated via our method cause class “con-

fusion” when the victim network trains. That is to say, the victim network incorrectly

associates the target label with the non-robust features found in the perturbed data.

Table 2.13: Training the victim with labels corrected to the “adversarial labels”.
Poisons are crafted on a CIFAR-10 trained ResNet-18 with 250 steps of PGD and differ-
entiable data augmentation.

DATA \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET-121 MOBILENETV2
UNCORRECTED CIFAR-10 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

CORRECTED ONE-HOT CIFAR-10 74.95± 0.31 78.98± 0.25 77.72± 0.37 78.55± 0.36 74.33± 0.24
CORRECTED SOFTMAX CIFAR-10 75.88± 0.25 75.69± 0.25 73.57± 0.47 70.26± 0.32 69.46± 0.32

CORRECTED ONE-HOT SVHN 31.13± 0.49 30.19± 0.16 40.71± 0.12 40.31± 0.43 34.18± 0.29

2.4.7 Learning Without Seeing

We have seen that it is not necessary to have “correctly” labeled data (labeled with

ground truth labels) in order for a network to achieve good performance at test-time. We

can extend this to the question: does one need ground truth data at all to learn how to

classify? For example, can a network learn how to classify cats without ever seeing an

image of a cat, but instead only seeing images of dogs perturbed to look like cats? We find

70



(a) Test-time predictions of network trained on
label-corrected, class-targeted poisons.

(b) Test-time predictions of network trained on
label-corrected, class-targeted poisons without
any images of “cats”.

Figure 2.6: Classification heatmaps. Left - heatmap of clean test predictions from net-
work trained on label-corrected, class based targeted poisons. Right - heatmap of clean
test predictions from network trained on same poisons, without any “cat” images.

the answer is yes. Specifically, we conduct an experiment where we craft targeted, class-

based poisons (i.e. all images of one class are perturbed via targeted attacks into another

class). We then train on the label-corrected full data, and also train on a label-corrected

pruned training set without any images from the cat class. Interestingly, we find that

the network trained on the ablated set is able to classify clean, test-time images of cats

having never seen an example during training! Moreover, the network fails to classify

clean images from the class into which cats were perturbed (class 6, “frog”) under the

targeted attack. Instead, clean test-time frogs are more likely to be classified as class

9 (“truck”) - the class where frog images were perturbed into under the crafting attack.

Interestingly, this demonstrates that the network not only learns to associate the perturbed

features of frogs with the label “truck”, but also features of clean frog images even though

the network never encountered “clean” frog features during training because the cat class

was ablated. These results can be found in Figure 2.6.
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2.4.8 ImageNet Comparison

While our main ImageNet results are in a realistic setting of training for 100 epochs,

previous art has poisoned ImageNet victims trained for 40 epochs. We compare our

method to their’s here (Table 2.14) and find that our clas targeted attack far outperforms

their attack based on gradient alignment.

Table 2.14: Effects of adjusting the amount of clean data included in the poisoned Im-
ageNet. The same number of gradient updates were used for each model (equivalent to
40 epochs for full sized ImageNet).

POISON METHOD\POISON BOUND ε = 8/255
CLEAN 65.70

ALIGNMENT 37.58
OURS 1.57

2.4.9 Instability of Untargeted Attacks

While untargeted adversarial poisons are able to significantly degrade the validation

accuracy of a victim models, it is a weaker attack than our class targeted attack, and it can

be more brittle to poison initialization. Some poisons generated with untargeted attacks

achieve much worse performance than others. We hypothesize this is because the poison

initialization has a large effect on which class the untargeted attack is perturbed into,

thus affecting the feature confusion aspect to poisoning. As mentioned in the main body,

we perform modest hyperparameter searching (poison initialization) for the untargeted

CIFAR-10 attack. Specifically, for comparison to other methods, for the untargeted attack,

we seed the poisons and model initialization for poison crafting, and take the best run from
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a modest number of trials (< 15). This is not unreasonable for a practitioner like a social

media company as they potentially have access to the entire dataset which they intend to

poison, and can choose the best set of perturbations. In these trials, we observe that the

average success (%) of these poisons (now varying over initialization of the poisons) is

19.17 with standard deviation 2.87. The most potent poisons in these runs degrade victim

accuracy to 11.94%, and it is on these poisons that we run comparisons. Note that these do

not represent the most potent untargeted poisons we have found, but rather a “reasonable”

best set a poisoner can hope to find. Even more potent poisons can be found linked

through our Github https://github.com/lhfowl/adversarial poisons.

On the other hand, our class-targeted objective is much more stable to poison/model

initialization, and thus we do not perform hyperparameter searches for these runs. The re-

lative weakness of the untargeted objective is evident in our ImageNet results in Table 2.3.

We hypothesize the success of the untargeted variant depends on how “well distributed”

the attack matrix is (which in turn depends on poison initialization). We have included a

heatmap of an untargeted attack in Figure 2.7.

2.5 Analysis

Why do adversarial examples make such potent poisons? In Section 2.1, we mo-

tivate the effectiveness of adversarial poisons with the explanation that the perturbed data

contains semantically useful information, but for the wrong class. For instance, an ad-

versarially perturbed “dog” might be labeled as a “cat” by the crafting network because

the perturbations contain discriminatory features useful for the “cat” class. In Ilyas et al.
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Figure 2.7: An example heatmap of an untargeted poisoning measuring the attack distri-
bution on the crafting network. Note how this attack “well distributes” the target labels
(i.e. not every class is perturbed into the same class). We hypothesize this is important
for a successful attack.

[69], the authors discover that there exist image features which are both brittle under

adversarial perturbations and useful for classification. Ilyas et al. [69] explores these im-

plications for creating robust models, as well as “mislabeled” datasets which produce

surprisingly good natural accuracy. We investigate the implications that the existence

of non-robust features have on data-poisoning attacks. We hypothesize that adversarial

examples might poison networks so effectively because, for example, they teach the net-

work to associate “cat” features found in perturbed data with the label “dog” of the ori-

ginal, unperturbed sample. Then, when the network tries to classify clean test-time data, it

leverages the “mislabeled” features found in the perturbed data and displays low test-time

accuracy. We confirm this behavior by evaluating how data is misclassified at test-time.

We find that the distribution of predictions on clean data closely mimics the distributions

of labels assigned by the network used for crafting after adversarial attacks, even though

these patterns are generated from different networks.

74



To tease apart these effects, we conduct several experiments. First, we verify that

the victim network does indeed train - i.e. reach a region of low loss - on the adversarial

examples. This is in contrast to the motivation of [65, 143] which try to prevent the

network from training on poisoned data. We find that the victim network is able to almost

perfectly fit the adversarial data. However, the accuracy of the victim network on the

original, unperturbed training data is just as low as accuracy on the clean validation data,

revealing an interesting duality - clean training data are adversarial examples for networks

trained on their perturbed counterparts (see Table 2.15). But are adversarial examples

simply so different from clean examples that learning on one is useless for performing

inference on the other? Or do adversarial examples contain useful features but for the

wrong class?

To investigate these hypotheses, we train models on the adversarial poisons crafted

with the class targeted objective found in Equation 2.4 so that every image from a given

class is perturbed into the same target class. We then observe the classification patterns

of the victim network and compare these to the attack patterns of the crafting network.

We find that poisoned networks confuse exactly the same classes as the crafting network.

Specifically, a network trained on dog images perturbed into the cat class will then mis-

classify clean cat images as dogs at test time as the network learns to associate “clean”

cat features found in the perturbations to the training dog images with the label dog. This

behavior is illustrated in Figure 2.8.

To further confirm our hypothesis, we employ the re-labeling trick introduced in

Ilyas et al. [69], and we train the victim network on the “incorrect” labels assigned to the

poisons by the crafting network. For example, if a dog image is perturbed into the “cat”
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class by an adversarial attack on the crafting network, we train on the perturbed dog image

but assign it the “cat” label. We find that this simple re-labeling trick boosts validation

accuracy significantly, for example from 6.25% to 75.69% on a victim ResNet-18 model

(see Table 2.13). This confirms the finding of Ilyas et al. [69] concerning non-robust

features. One might think that this observation is useful for defending against adversarial

poisons. However, in order to perform this label correction, the victim must have access to

the crafting model which requires the victim to already possess the original non-poisoned

dataset.

(a) Adversarial attack predictions of network
used to craft adversarial poisons.

(b) Test-time predictions of network trained on
adversarial poisons.

Figure 2.8: Classification heatmaps. Left - heatmap of predictions after the adversarial
attack on the network used for crafting. Right - heatmap of clean test predictions after
training a new network on adversarial poisons.

One further intricacy remains; even if adversarial examples contained no useful

features, they may still encode decision boundary information that accounts for the in-

creased validation accuracy - behaviour that has previously been demonstrated with out-

of-distribution data in Nayak et al. [114]. However, we find that training on data from a

drastically different distribution (SVHN), labeled with the CIFAR-10 crafting network’s

predictions, fails to achieve comparable CIFAR-10 validation accuracy. This confirms
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that the adversarial CIFAR-10 images contain useful features for the CIFAR-10 distribu-

tion but are simply mislabeled.

Table 2.15: Testing the victim on clean vs. adversarial training images. Poisons are
crafted on a CIFAR-10 trained ResNet-18 with 250 steps of PGD and differentiable data
augmentation.

MEASUREMENT \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET-121 MOBILENETV2
TRAINING ACC. ON POISONS 99.95± 0.00 99.99± 0.00 99.99± 0.00 99.99± 0.00 99.94± 0.00
ACC. ON CLEAN TRAIN DATA 10.98± 0.32 6.16± 0.16 6.80± 0.08 7.06± 0.13 6.15± 0.17

2.6 Conclusion

There is a rising interest in availability attacks against deep networks due to their

potential use in protecting publicly released user data. Several techniques have been in-

troduced leveraging heuristics such as loss minimization, and auto-encoder based noise.

However, we find that adversarial attacks against a fixed network are more potent availab-

ility poisons than existing methods, often degrading accuracy below random guess levels.

We study the effects of these poisons in multiple settings and analyze why these perturb-

ations make such effective poisons. Our observations confirm a fundamental property of

adversarial examples; they contain discriminatory features but simply for the wrong class.

Our class-targeted attack leverages this property to effectively poison models on a variety

of datasets.

77



Chapter 3: Malicious Model Modifications for Federated Learning

Federated learning has quickly gained popularity with its promises of increased user

privacy and efficiency. Previous works have shown that federated gradient updates contain

information that can be used to approximately recover user data in some situations. These

previous attacks on user privacy have been limited in scope and do not scale to gradient

updates aggregated over even a handful of data points, leaving some to conclude that

data privacy is still intact for realistic training regimes. In this work, we introduce a

new threat model based on minimal but malicious modifications of the shared model

architecture which enable the server to directly obtain a verbatim copy of user data from

gradient updates without solving difficult inverse problems. Even user data aggregated

over large batches – where previous methods fail to extract meaningful content – can be

reconstructed by these minimally modified models. This work was conducted with Jonas

Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. My contributions include

jointly conceiving of the mechanism of the imprint module, implementing the first variant

of the module, and writing a substantial portion of the paper.
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3.1 Introduction

Federated learning [85], also known as collaborative learning [144], is a mechanism

for training machine learning models in a distributed fashion on multiple user devices.

In the simplest setting, a central server sends out model states to a group of users, who

compute an update to the model based on their local data. These updates are then returned

to the server, aggregated, and used to train the model. Over multiple rounds, this protocol

can train a machine learning model, distributed over all users, without exchanging local

data – only model updates are exchanged. Two central goals of federated learning are

to improve training efficiency by decreasing communication overhead and to side-step

issues of user-level privacy and data access rights that have become a focus of public

attention in recent years [163].

Accordingly, many organizations, ranging from large tech companies [102] to med-

ical institutions with especially strict privacy laws, such as hospitals [73], have utilized

federated learning to train machine learning models. However, in practice, data privacy is

not guaranteed in general, but is dependent on a large number of interdependent settings

and design choices specific to each federated learning system. In this work, we focus

on the user perspective of privacy, and we study federated learning systems in which the

central server is not able to directly view user data.

The key privacy concern for users is whether model updates reveal too much about

the data on which they were calculated. Although Kairouz et al. [75] discuss that “model

updates are more focused on the learning task at hand than is the raw data (i.e. they

contain strictly no additional information about the user, and typically significantly less,
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compared to the raw data)”, scenarios can be constructed in which the model updates

themselves can be inverted to recover their input user information [106, 165]. Simple

knowledge of the shared model state and model update can be sufficient for such an attack

[46, 180]. These inversion attacks are particularly fruitful if a user’s model update is based

on a single data point or only a small batch. Accordingly, a strong defense against these

attacks is aggregation. The user only reports model updates aggregated over a significant

number of local data points, and data from multiple users can be combined with secure

aggregation protocols [12] before being passed to the server. This ability to aggregate

user updates while maintaining their utility is thought to be the main source of security in

federated learning. Averaging raw local data in similar amounts would make it unusable

for training, but model updates can be effectively aggregated.

Previous inversion attacks typically focus on a threat model in which the server

(server here is a stand-in for any party with root access to the server or its incoming

and outgoing communication) is interested in uncovering user information by examining

updates, but without modifying the federated learning protocol, a behavior also referred

to as honest-but-curious or semi-honest [53]. In our case, where the party intending to

recover user data is the server, this “honest” scenario appears contrived, as the server can

modify its behavior to obtain private information. In this work, we are thus interested in

explicitly malicious servers that may modify the model architecture and model parameters

sent to the user.

We focus on scenarios in which an agent obtains data without making suspicious

changes to the client code or learning behavior. One scenario which enables this threat

model involves recently introduced APIs that allow organizations to train their own mod-
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els using established federated learning protocols [20]. In this environment, a malicious

API participant can change their model’s architecture and parameters but cannot force

unsuspecting edge devices to send user data directly.

We introduce minimal changes to model architectures that enable servers to breach

user privacy, even in the face of large aggregations that have been previously deemed

secure. These changes induce a structured pattern in the model update, where parts of the

update contain information only about a fixed subset of data points. The constituent data

points can then be recovered exactly, while evading existing aggregation defenses.

3.2 Limitations of Existing Attack Strategies

A range of possible attacks against privacy in federated learning have been proposed

in recent literature. In the simplest case of analytic attacks, Phong et al. [127] were among

the first to discuss that the input to a learnable affine function can be directly computed

from the gradient of its weights and bias, and additional analysis of this case can be

found in Fan et al. [36], Qian and Hansen [128], and in section 3.3.2. However, analytic

recovery of this kind only succeeds for a single data point. For multiple data points, only

the average of their inputs can be recovered, leading the attack to fail in most realistic

scenarios.

Recursive attacks as proposed in Zhu and Blaschko [179] can extend analytic at-

tacks to models with more than only linear layers - a construction also mentioned in [36].

However, these attacks still recover only the average of inputs in the best case. Improve-

ments in Pan et al. [118] transform linear layers with ReLU activations into systems of

81



linear equations that allow for a degree of recovery for batched inputs to these linear lay-

ers, although preceding convolutional layers still have to be deconvolved by recursion or

numerical inversion techniques.

Surprisingly, optimization-based attacks turn out to be highly effective in inverting

model updates. Wang et al. [165] propose the direct recovery of input information in a

setting where the users’ model update is the model parameter gradient averaged over local

data. In a supervised learning setting, we define this update by g and the loss function

over this model by L with model parameters θ and data points (x, y) ∈ [0, 1]n×Rm. The

server can then attempt recovery by solving the gradient matching problem of

min
x∈[0,1]n

||∇θL(x, y, θ)− g||2 (3.1)

and solve this optimization objective using first-order methods or any nonlinear equation

solver. Subsequent work in Zhao et al. [176], Zhu et al. [180] and Wainakh et al. [164]

proposes solutions that also handle recovery of targets y and variants of this objective are

solved for example in Geiping et al. [46] with cosine similarity and improved optimization

and in Jeon et al. [72] with additional generative image priors. Reconstruction of input

images can be further boosted by additional regularizers as in Yin et al. [169] and Qian

et al. [129].

Most attacks in the literature focus on the described fedSGD setting [85] in which

the users return gradient information to the server, but numerical attacks can also be per-

formed against local updates with multiple local steps [46], for example against fedAVG

[103]. In this work, we will discuss both update schemes, noting that gradient aggregation
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in “time”, with multiple local update steps, is not fundamentally more secure than ag-

gregation over multiple data points. Previous attacks also focus significantly on learning

scenarios where the user data is comprised of images. This is an advantage to the attacker,

given that image data is highly structured, and a multitude of image priors are known and

can be employed to improve reconstruction. In contrast, data types with weaker structure,

such as tabular data, do not lend themselves to regularization based on strong priors, and

we will show that our approach, on the other hand, does not rely on such tricks, and is

therefore more data-agnostic.

The central limitation of these attack mechanisms is the degradation of attack suc-

cess when user data is aggregated over even moderately large batches of data (either by

the user themselves or by secure aggregation). State-of-the-art attacks such as Yin et al.

[169] recover only 28% of the user data (given a charitable measure of recovery) on a

batch size of 48 for a ResNet-50 [59] model on ImageNet (ILSVRC2012 [137]) with

unlikely label collisions. The rate of images that can be successfully recovered drops

drastically with increased batch sizes. Even without label collisions, large networks such

as a ResNet-32-10 [171] leak only a few samples for a batch size of 128 in Geiping et al.

[46]. These attacks further reconstruct only approximations to the actual user data which

can fail to recover parts of the user data or replace it with likely but unrelated information

in the case of strong image priors.

Further, although all of the previous works nominally operate under an honest-but-

curious server model, they do often contain model adaptations on which reconstruction

works especially well, such as large vision models with large gradient vectors, models

with many features [165, 179], special activation functions [179, 180], wide models [46],
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or models trained with representation learning [24, 169]. These may be seen as malicious

models with architectural choices that breach user privacy. In the same vein, we ask, what

is the worst-case (but small) modification that can be applied to a neural network to break

privacy?

3.3 Model Modifications

In this section, we detail an example of a small model modification that has a major

effect on user privacy, even allowing for the direct recovery of verbatim user data from

model updates.

3.3.1 Threat Model

We define two parties: the server S and the users U . The server could be a tech

company, a third party app using a federated learning framework on a mobile platform, or

an organization like a hospital. The server S defines a model architecture and distributes

parameters θ for this architecture to the users, who compute local updates and return

them to the server. The server cannot deviate from standard federated learning protocol

in ways beyond changes to model architecture (within limits imposed by common ML

frameworks) and model parameters. We measure the strength of a malicious modification

of the architecture using the number of additional parameters inserted into the model.

While it is clear that models with more parameters can leak more information, we will

see that clever attacks can have a disproportionate effect on attack success, compared to

more benign increases in parameter count, such as when model width is increased.
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3.3.2 A Simple Example

To motivate the introduction of malicious modifications, we start with the simple

case of a fully connected layer. A forward pass on this layer is written as y = Wx + b

where W is a weight matrix, b is a bias, and x is the layer’s input. As seen in [36, 126,

128], when the parameters of the network are updated according to some objective L, the

ith row of the update to W :

∇W iL =
∂L
∂yi
· ∇W iyi =

∂L
∂yi
· x,

where we use the shorthand L = L(x;W, b). Similarly,

∂L
∂bi

=
∂L
∂yi

∂yi

∂bi
=
∂L
∂yi

.

So as long as there exists some index i with ∂L
∂bi
6= 0, the single input x is recovered

perfectly as:

x = ∇W iL � ∂L
∂bi

, (3.2)

where � denotes entry-wise division.

However, for batched input x, all derivatives are summed over the batch dimension

n and the same computation can only recover
∑n

t=1∇W i
l
Lt �

∑n
t=1

∂Lt
∂bil

from each row

where
∑n

t=1
∂Lt
∂bil
6= 0, which is merely proportional to

∑n
t=1 xt. If L is a linear regression,

then this shows that only the average can be recovered. However, data points xt only

appear in the average if ∂Lt
∂yit

is non-zero, a phenomenon also discussed in Sun et al. [152].
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If L has a sparse gradient, e.g. in a multinomial logistic regression, then this structured

gradient weakens the notion of averaging: Let x be a batch of data with unique labels

1, . . . , n. In this setting ∂Lt
∂yit

= 0 for all i 6= t, so that each row i actually recovers

xt =
n∑
t=1

∂Lt
∂yit

xt �
n∑
t=1

∂Lt
∂yit

=
∂Lt
∂yit

xt �
∂Lt
∂yit

. (3.3)

For a batch of n data points with unique labels, we could thus recover all data points

exactly for this multinomial logistic regression. We visualize this in Appendix fig. 3.11

for ImageNet data Russakovsky et al. [137] (image classification, 1000 classes), where

we could technically recover up to 1000 unique data points in the optimal case. However,

this setup is impractical and suffers from several significant problems:

• Averaging: Multiple image reconstruction as described above is only possible in

the linear setting, and with a logistic regression loss, a loss that depends on sparse

logits is used. Even in this restrictive setting, reconstruction fails as soon as labels

are repeated in a user update (which is the default case and outside the control of

the server), especially if the accumulation size of a user update is larger than the

underlying label space of the data. In this case, the server reconstructs the average

of repeated classes. In Appendix fig. 3.11, we see that in the worst-case scenario

where all data points fall into the same class, each piece of user data contributes

to the gradient equally, resulting in a mashup reconstruction that leaks little private

information.

• Integration: As stated above, the naive reconstruction is only guaranteed to work
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only if the linear (single-layer) model is a standalone model, and not within a lar-

ger network. If the naive linear model was placed before another network, like a

ResNet-18, then gradient entries for the linear layer contain elements averaged over

all labels, as the combined network ostensibly depends on each output of the linear

layer.

• Scalability: on an industrial scale dataset like ImageNet, the naive logistic regres-

sion model would require> 150M parameters to retrieve an image from each label,

which is of course far from any practical application.

3.3.3 Imprinting User Information into Model Updates

Nonetheless, the perfect reconstruction afforded by the linear model remains an

attractive feature. To this end, we introduce the imprint module class of modifications

which overcome the previously described issues, while maintaining the superior recon-

struction abilities of an analytic reconstruction as described above. Further, the imprint

module can be constructed from a combination of commonly used architectural features

with maliciously modified parameters that can create structured gradient entries for large

volumes of data.

The imprint module can be constructed with a single linear layer (with bias), to-

gether with a ReLU activation. Formally, let {xi}ni=1 = X ∈ Rn×m be a batch of size n of

user data, then a malicious server can define an imprint module whose forward pass (on a
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single datapoint, x) looks like

M(x) = f(W∗x+ b∗),

where f is a standard ReLU nonlinearity. The crux of the imprint module lies in the

construction of W∗ ∈ Rk×m and b∗ ∈ Rk. We denote the ith row (or channel) of W∗ and

the ith entry of b∗ as W i
∗ and bi∗, respectively. We then construct W (i)

∗ so that

〈W i
∗, x〉 = h(x),

where h is any linear function of the data where the server can estimate the distribution

of values {h(x)}x∼D of this function on the user data distribution. For example, if the

user data are images, h could be average brightness, in which case W i
∗ is simply the row

vector with entries identically equal to 1
m

.

In order to define the entries of the bias vector, we assume that the server knows the

cumulative density function (CDF), assumed to be continuous for the quantity measured

by h. For brightness this is straightforward as image data is often normalized. For other

quantities, e.g. red-channel intensity, it would not be difficult for a malicious server to

estimate this distribution. We stress that the choice of h here is not important to our

method. For the purpose of explanation, we will assume that the quantity measured by h

is distributed normally, with µ = 0, σ = 1. Then, the biases of the imprint module are

determined by

bi∗ = −Φ−1(
i

k
) = −ci,
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where Φ−1 is the inverse of the standard Gaussian CDF. In plain language, we first meas-

ure some quantity, like brightness, with the matrix W∗. We duplicate this measurement

along the k channels (rows) of W∗. In the meantime, we create k “bins” for the data cor-

responding to intervals of equal mass according to the CDF of h. Then, the measurement

for a given datapoint will land somewhere in the distribution of h.

For example, consider the case when the brightness of some image xt lands between

two values: cl ≤ h(xt) ≤ cl+1, and no other image in the same batch has brightness in

this range. In this situation, we say that xt alone activates bin l. Then, if the image xt is

passed through the imprint module, we have

(
∇W l

∗
L −∇W l+1

∗
L
)
�
(
∂L
∂bl∗
− ∂L
∂bl+1
∗

)
= xt +

p∑
s=1

xis −
p∑
s=1

xis = xt, (3.4)

where images {xis} are images from the batch with brightness> cl. That is, the difference

in successive rows l, l + 1 of the gradient entry for W∗ correspond to all elements with

brightness cl ≤ h(x) ≤ cl+1 (in this case, assumed to be just xt). This is because all

of xt ∪ {xis} activate the non-linearity for layer l, since all these images have brightness

≥ cl, however, only images {xs} have brightness ≥ cl+1, so only these images activate

the non-linearity for layer l + 1. An interesting biproduct of this setup is that it would be

difficult even for hand inspection of the parameters to reveal the inclusion of this module

as the server could easily permute the bins, and add random rows to W∗ which do not

correspond to actual bins and only contribute to model performance. The gradient does

not directly contain user data, so that the leak is also difficult to find by analyzing the

gradient data and checking for matches with user data therein.
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How successful will this attack be? Recall the parameter k defined in the construc-

tion of the imprint module. This corresponds to the number of bins the malicious server

can create to reconstruct user data. If a batch of data is passed through the imprint module,

depending on the batch size n used to calculate the update sent to the server, and number

of bins, k, the server can expect several bins to activate for only one datapoint. And the

corresponding entries of the gradient vector can be appropriately combined, and inverted

easily. The following result quantifies the user vulnerability in terms of the number of

imprint bins, k, and the amount of data, n, averaged in a given update.

Proposition 3.3.1. If the server knows the CDF (assumed to be continuous) of some

quantity associated with user data that can be measured with a linear function h : Rm →

R, then for a batch of size n and a number of imprint bins k > n > 2, by using an

appropriate combination of linear layer and ReLU activation, the server can expect to

exactly recover

1(
k+n−1
k−1

)[ n−2∑
i=1

i ·
(
k

i

)
·
( bn−i

2
c∑

j=1

(
k − i
j

)(
n− i− j − 1

j − 1

))]
+ r(n, k),

samples of user data (where the data is in Rm) perfectly. Note: r(n, k) = n

(k+n−1
k−1 )

(
k
n

)
− n

k

is a correction term (see proof for full expansion).

Proof. By construction of the imprint module, given a random sample (batch)X1, . . . , Xn

(iid) the server perfectly recovers data whenever an imprint bin has exactly 1 element of

the batch. Because we know the CDFs, we can create partitions of equal mass corres-

ponding to imprint bins {bj} = {[aj, bj]} where P (Xi ∈ [aj, bj]) = 1/k ∀i, j.
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We can then phrase the problem of expected number of perfectly recovered samples

as a modified “stars and bars” problem. For a given batch of data, to calculate the amount

of data recovered, we first calculate:

n∑
i=1

i ·
(
k

i

)
·Ni,

where
(
k
i

)
is the number of ways to select the i bins that have exactly 1 element, and Ni

is the number of orientations of the remaining data into the remaining bins so that no bin

has exactly 1 element. Note that we can do this because the bins all have equal mass, and

thus we can factor out the (uniform) probability of any configuration from the sum.

Simply put, we first take the configuration where there is only 1 bin with exactly 1

element, and weight it by 1, then we take the number of configurations with 2 bins with

exactly 1 element, and weight it by 2, and so on.

In order to calculate Ni, we notice that in our construction, once the i bins with

exactly 1 element are chosen, every other bin has either 0 or ≥ 2 elements. We focus on

the bins that have ≥ 2 elements. By a simple “reverse” pigeon hole argument, we can

now have at most bn−i
2
c of the remaining bins containing any elements, as otherwise, one

bin would be guaranteed to contain exactly 1 element.

So we further select any 1 ≤ j ≤ bn−i
2
c number of the remaining k − i bins all

to contain at least 2 elements. Formally, this is equivalent to calculating the number of

orientations of integers {xl}jl=1 so that x1 + · · ·+ xj = n− i constrained with xl ≥ 2 ∀l

Now, we make a change of variables to instead calculate the number of orientations

of integers {pl}jl=1 so that p1 + · · · + pj = n − i − 2j constrained with pl ≥ 0 ∀l. Now
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we just have a “stars and bars” problem with k′ = j bars and n′ = n− i− 2j stars. This

reduces to: (
n− i− j − 1

j − 1

)
,

orientations for the remaining bins with exactly j elements. Once these i bins with 1

element, and j bins with ≥ 2 elements are chosen, all the other bins are required to have

0 elements.

So adding these parts together, we have the expected amount data the server can

expect to reconstruct perfectly becomes:

1(
k+n−1
k−1

)[ n−2∑
i=1

i ·
(
k

i

)
·
( bn−i

2
c∑

j=1

(
k − i
j

)(
n− i− j − 1

j − 1

))]
+

r(n,k)︷ ︸︸ ︷
n(

k+n−1
k−1

)(k
n

)
− n

k
,

We call the last two “residual” terms r(n, k). The first of these terms corresponds

to the term in the expectation where all elements of the batch end up in separate bins, and

the second term is the expected number of elements that land in the tail of the CDF not

covered in any bin.

This can be thought of as a lower bound on privacy breaches since, often, identi-

fiable information can be extracted from a mixture of two images. Note that increasing

the expected number of perfectly reconstructed images requires increasing the number

of imprint bins, which in turn requires increasing the number of channels of the matrix

W∗ and thus the number of parameters. Thus, to visualize the result above in terms of

the server-side hyperparameter, k, we plot the expected proportion of data recovered as a
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function of number of bins in fig. 3.1(a). Note that this inversion is analytic, and signi-

ficantly more efficient and realistic than optimization based methods which often require

tens of thousands of update steps.
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Figure 3.1: Top (a): Expected proportion of a batch of 64 images perfectly recovered
as a function of number of bins added via an imprint block in front of a ResNet-18 on
ImageNet. With only 156 bins, an attacker can expect to recover over 50% of a batch
of user images perfectly. Bottom (b): Probability of a successful “one-shot” attack on a
batch of 4096 images as a function of mass captured in the one-shot bin. An attacker can
optimize their bin size given an expected batch size.

The imprint module as described can be inserted in any position in any neural net-

work which receives a non-zero gradient signal. To recover the input feature dimension

of the module, a second linear layer can be appended, or – if no additional parameters

are of interest – the sum of the outputs of the imprint module can be added to the next
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Figure 3.2: Left: Ground truth batch of 64 user images. Right: Analytic reconstruction
for an imprint model with 128 bins in front of a ResNet-18. Gray reconstructions denote
bins in which no data point falls.)

layer in the network. The binning behavior of the imprint module is independent of the

structure of succeeding layers as long as any gradient signal is propagated. This flexibil-

ity allows for wide trade-offs between inconspicuousness and effectiveness of the imprint

module. The module can be placed in later stages of model whereas an early linear layer

might be suspicious to observers (now that they have seen this trick), but depending on

the data modality, early linear layers can be a feature of an architecture anyway, in which

case there is even no model modification necessary, only parameter changes. The para-

meter alterations necessary to trigger this vulnerability can furthermore be hidden from

inspection until use. The layer can lay “dormant”, functioning and training as a normal

linear layer initialized with random activations, as long as the server desires. At any point,

a party with access to the server can send out parameter updates containing W ∗, b∗ and

trigger the attack.
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3.4 Experiments

In the following section, we provide empirical examples of imprint modules. In

all experiments we evaluate ImageNet examples to relate to previous work [169], but

stress that the approach is entirely data agnostic. Given an aggregated gradient update,

we always reconstruct as discussed in section 3.3. When, in the case of imprecision due

to noise, more candidate data points are extracted than the expected batch size, only the

candidates with highest gradient mean per row in W ∗ are selected and the rest discarded.

For analysis, we then use ground-truth information to order all data points in their original

order (as much as possible) and measure PSNR scores as well as Image Identifiability

Precision (IIP) scores as described in Yin et al. [169]. For IIP we search for nearest-

neighbors in pixel space to evaluate a model-independent distance - a more strict metric

compared to IIP as used in Yin et al. [169]. All computations run in single floating point

precision.

3.4.1 Full batch recovery

We begin with a straightforward and realistic case as a selling point for our method

- user gradient updates aggregated over a batch of 64 ImageNet images. We modify a

ResNet-18 to include an imprint module with 128 bins in front. This relatively vanilla

setup presents is a major stumbling block for optimization based techniques. For ex-

ample, for a much smaller batch size of 8, the prior art in optimization based batched

reconstruction achieves only 12.93 average PSNR [169]. We do of course operate in

different threat models (although Yin et al. [169] also uses non-obvious parameter modi-
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fications). However, our imprint method is successfully able to recover almost perfect

reconstructions of a majority of user data (see fig. 3.2), and achieves an average PSNR of

75.75. We further stress that a batch size of 64 is by no means a limitation of the method.

If bins, and hence additional rows in W ∗ are added proportionally to the expected batch

size, then recovery of significant proportions (see fig. 3.1) of batches of arbitrary size –

albeit with the incurred cost in additional parameters for each row – is possible.

3.4.2 Privacy breaches in industrial-sized batches – One-shot Attacks

A breach in privacy can occur if even a single piece of user data is compromised

and massively increasing the number of parameters might not be desirable for the server

and could raise suspicion under inspection. However, there is a threatening modification

of the imprint module in this case. If a server has access to enough users, then it becomes

feasible for the server to start fishing for private data among all updates, and attempt to

recover a single data point from each incoming batch of data. Attacks of this nature

require only as many additional parameters as twice the size of a single piece of targeted

user data, as only two bins are needed. For this, k bins are constructed initially, and

then all bins are “fused” to create 2 final bins: a one-shot bin containing mass n/k, and

the other containing the remaining mass (n + 1)/k. For perspective, for a ResNet-18

on ImageNet, this would require only an additional 1% of parameters. And, based on

proposition 3.3.1, it is always possible to select an optimal bin size, so that a data point

is leaked on average once every four batches of incoming data, no matter how large.

We demonstrate this statistical property by recovering a single image from an aggregated
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Figure 3.3: Left (a): A true user image from class “minibus”. Right (b): The recon-
structed image from class “minibus” captured via our one-shot attack from averages ag-
gregated over 16,384 datapoints. The PSNR is 161.36, i.e. a verbatim copy at machine
precision. This user could potentially be identified via their recovered license plate, which
was blanked out (by us!) to preserve privacy.

batch of 214 = 16, 384 ImageNet images (see fig. 3.3). Even though the gradient updates

are averaged over a vast number of data points, there can be no perfect privacy, and one

data point is leaked in its entirety by only a minor model modification.

3.4.3 Variants

Flexible placement The imprint module introduced in the previous section does

not depend on its placement within a given model. No matter the position in a network,

the incoming input features will be leaked to the server. Furthermore, the server can also

change the parameters of preceding layers to represent (near)-identity mappings, allowing

for the recovery of raw input data from inconspicuous positions deep in a network. For

a convolutional network, we show examples of this strategy in fig. 3.14 for a ResNet-18.

Here, the model parameters are manipulated to contain identity maps up to the location of

the imprint module, while the downsampling operations remain. Even these later layers

leak enough information that their inputs can be upsampled to the breach the privacy of

the inputs. We remark that we show a simplified version of this attack here where the

first three channels in each layer act as an identity, and all other channels are zero, but
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the model can also be modified to provide off-set pixels in all other channels, effectively

increasing the spatial resolution in any layer proportionally with the number of channels.

Multiple local updates: In several federated learning protocols, such as fedAVG,

users take several local update steps on data before sending model updates to the server

[85]. The imprint module is threatening when a large amount of user data is used for a

single update step. In this case, the only variable that matters is amount of total data used

in the update. That is to say, 10 users sending updates on 100 datapoints each is equivalent

(recovery-wise) to a single user sending an update calculated on 1000 datapoints. How-

ever, when multiple steps are taken, inverting gradients from pairwise differences (as in

eq. (3.4)) becomes more difficult, as entries in W ∗ shift with local updates. However, an

imprint variant that produces sparse gradients per data point is a threat to such federated

averaging. Defining a forward pass in this new variant as M ′(x) as M ′(x) = g(W∗x+ b∗)

where the non-linearity g is a thresholding function:

g(t) =



0 t ≤ 0

t 0 ≤ t ≤ 1

1 1 ≤ t

Note this non-linearity can be simply constructed with a combination of two ReLUs, or

with an implementation of a Hardtanh. We now define W i
∗ as: 〈W i

∗, x〉 = h(x)
δi

where h is

the a linear function of the data as described before, and the biases are defined as:

bi∗ = −ci
δi

where δi = Φ−1(
i+ 1

k
)− Φ−1(

i

k
).
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This setup creates sparse bins where inversion is directly possible (without taking

pairwise differences) in gradient entries, at the cost of an additional activation layer. Ana-

lyzing a local update step with W i,j
∗ as the ith row of W∗ at update step j, reveals that

W i,j
∗ = W i,j−1

∗ − α ∂L
∂ai,j

xj

where xj denotes the data from the previous batch that activated bin i, and ai,j denotes the

ith activation at step j, and α is the local learning rate. Note that if either a linear layer, or

a convolutional layer follows this imprint module, then ∂L
∂ai,j

does not depend on the scale

of W i,j
∗ . Therefore, a simple way to increase the effectiveness of the new imprint module,

M ′ in the fedAVG case is to scale the linear function associated to the rows of W∗ - i.e.

h′(x) = c0 · h(x). This “flattens” the distribution of values, and increases the relative size

of bi,j∗ compared to the gradient update ∂L
∂ai,j

, which prevents the bins from shifting too

significantly during local updates. As bin shift goes to 0, we recover the situation where

the only variable that matters is the total data used in an update.

With this modification, reconstruction quality remains similar to the fedSGD set-

ting. For example, splitting the batch of 64 ImageNet images up into 8 local updates with

learning rate τ = 1e− 4 yields an IIP score of 70.31%, due to minor image duplications

where images hit multiple shifted bins, which we visualize in Appendix fig. 3.19.

Other data modalities: Yet another advantage to our imprint module over existing

optimization based gradient inversion techniques is the flexibility in data domain. Other

techniques have demonstrated some success in the image domain by leveraging strong

regularizers including total variation (TV), image registration, matching batch norm stat-
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Figure 3.4: Top: Identification Success vs bin size. Bottom: Identification Success (via
IIP score) vs. bin size and position in a ResNet-18 model. We find that the attack is stable
over a range of batch sizes and positions in a model.
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istics, and DeepInversion priors [46, 169]. Such strong regularizers do not always exist

in other domains of interest, such as text or tabular data. The discussed imprint mod-

ule, however, is data-agnostic, and while we focus our experiments on the image domain,

nowhere do we use any assumptions unique to vision. In fact, linear layers often appear

in language models, and tabular data models - cases in which the attacker only needs to

modify parameters of an existing model to breach user privacy [147, 162] without archi-

tecture modifications.

3.4.4 Other Choices of Linear Functions and Distributions

In previous experiments we have restricted our investigations to the linear function

h : Rm → R that measures average brightness, i.e. h(x) = 1
m

∑m
i=1 xi which we ap-

proximate to be normally distributed. Given that ImageNet (and this also applies to most

image datasets) is pre-processed by normalization by color in each channel, and that the

number of pixels is large and they are not perfectly correlated, this is a reasonable ap-

proximation based on the central limit theorem that could similarly apply to other data

modalities as well. For analysis, we visualize the closeness of this approximation based

on an evaluation over the full ImageNet validation set in fig. 3.6.

We verify that the actual ground truth distribution can be approximated by a normal

distribution, but we also see that the approximation is imperfect. The attack works well

in fig. 3.2 even with this discrepancy, however it could be further improved if the attacker

has more accurate about the CDF. Image brightness is better described by a Laplacian

distribution [66, 136]. Replacing the normal distribution by a Laplacian distribution with
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Linear Function Assumed Distribution MSE PSNR IIP-Pixel
Mean Normal 0.0183 75.75 65.62%
Mean Laplacian 0.0174 79.63 71.88%

Cosine Laplacian 0.0167 99.82 79.69%
Random Normal 0.0203 91.29 75.00%

Table 3.1: Ablation study linear functions and distributions.

scale 1/
√

2 does improve the accuracy slightly. This distribution can be further stabilized

by considering higher frequencies compared to the mean, e.g. via DCT coefficients [66,

89]. We accordingly also visualize this distribution for e.g. the 32nd DCT coefficient in

fig. 3.6 and use this cosine wave for the imprint module (with scaling factor 4
m
f . This

leads to the strongest attack against image data, but of course utilizes attacker knowledge

that the users train on natural images.

On the flip side, the estimation can also be improved by replacing the linear func-

tion h with a Gaussian random vector of independent draws from N (0, 1√
m

). The res-

ulting distribution (4th figure in fig. 3.6) approximates a normal distribution much better.

While not as optimal as the Laplacian distribution for higher frequencies, this variant is

applicable for other data modalities if the data has bounded variance. Visualizations of

the reconstruction with other linear functions can be found in fig. 3.7.

Finally, even with a small amount of data, the server could estimate the density of

the quantity of interest. Visually, we plot the the estimated density as for several amounts

of ImageNet data used to estimate the brightness distribution. We find that even with

0.1% of the data used, the server could obtain a close approximation to the distribution of

interest (see fig. 3.5).
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Figure 3.5: Density of image brightness estimated from access to different amounts of
data from the ImageNet dataset.

3.4.5 Comparison to Honest Servers and Optimization-based Attacks

We argue that the proposed attack operating in our threat model is significantly

more threatening than existing optimization-based attacks in the honest-but-curious server

model. To illustrate this point and show by example that the change is threat model which

amounts to only a minor architectural change in the neural network leads to a massive

difference in reconstruction, we run the attack of [46] in the scenario of fig. 3.2. The

results can be found in fig. 3.8. The attack leads to an IIP score of 6.25% when measuring

in pixel space, 6.25% when measuring in LPIPS [175] and, and 20.31% when measuring

the cosine distances in feature space of this model (the metric of [169]).

As an additional ablation, we also investigate whether the optimization-based at-

tacks can find the optimal solution in the malicious server threat model that we consider.

However, the right side of fig. 3.8 shows that at least conventional optimization-based

methods have trouble finding the vulnerability introduced by the imprint module. The

vulnerability that the attack solves analytically might be hard to exploit by first-order op-

timization or require specifically tuned optimization schemes to succeed. This also shows
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Figure 3.6: Distributions on the ImageNet validation set for several linear query functions.
From top to bottom: Mean compared to normal distribution, mean compared to Laplacian
distribution, 32nd DCT coeffcient compared to Laplacian distribution, random normal
vector compared to normal distribution. In each plot the approximate distribution used by
the attacker is visualized in blue/black and the ground-truth (GT) distribution in green/red.
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Figure 3.7: Analytic reconstruction for an imprint model with 128 bins in front of a
ResNet-18. Left: The linear function is the 32nd DCT coefficient and bins are based on a
Laplacian distribution. Right: Linear function is a Gaussian random vector and bins are
based on a normal distribution. Gray reconstructions denote bins in which no data point
falls.)

that defenses that attempt to detect privacy breaches by evaluating a range of optimization-

based attacks would not have triggered an alarm for this attack.

3.4.6 Technical Details

All experiments were implemented in PyTorch [122] and were run on several laptop

and machine CPUs, as the reconstruction itself requires only a few tensor operations.

Especially, compared to optimization-based reconstruction techniques, this makes the ap-

proach significantly faster and significantly more portable. For visualization purposes and

to measure accurate PSNR and IIP scores all images (which are recovered in the order

given by the chosen function h) are matched with possible correspondences in the ground

truth batch. The matching is found based on LPIPS feature similarities scores [175] which

are matched using a linear sum assignment solver. No labels are recovered using the pro-
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Figure 3.8: Optimization-based attack of Geiping et al. [46] for a ResNet-18 and a batch
size of 64, the setting of fig. 3.2. Left: An honest server model. Right: Gradient inversion
attack applied to a module that contains the imprint module.

posed approach which is entirely label-agnostic, but labels could be assigned a-posteriori

using model predictions of the reconstructed data if required. For experiments where the

imprint module is placed deeper into a network, the network (which is here a ResNet)

is linearized by resetting batch normalization parameters and buffers to the identity map,

setting all residual paths to zero and initializing the first convolution and the shortcut

convolutions to identity maps. The nonlinearities can be bypassed by bias shifting as in

[51].

PSNR scores are computed as average PSNR where we first compute PSNR scores

per image and then average. This procedure is standard in computer vision, but does bias

the score toward successful reconstructions, as the minimal PSNR score is bounded at 0,

but its potential upside unbounded. For the image identifiability precision (IIP) score of

Yin et al. [169] we implement the score as proposed therein, but measure nearest neigh-

bors not in the model feature space (which we consider biased, given that the model para-
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meters are already used for reconstruction), but directly in image pixel space, where we

check whether the given reconstruction is indeed closer to its true counterpart in euclidean

distance than any other image from this class in the validation set.

3.4.7 Additional Images
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Figure 3.9: Expected number of data points recovered for several batch sizes and in-
creased bins and corresponding parameter increase. Model: ResNet50 with ImageNet,
targeting the input to the 3rd residual block.

Figure 3.10: Left: Raw data for the 64 ImageNet images with separate classes. Right:
Raw data for the 64 images from the white shark class.

This section contains additional image examples, such as using CIFAR-10 in fig. 3.12
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Figure 3.11: Left: Analytic reconstruction for a linear model of 64 ImageNet images with
separate classes (PSNR: 36.45 versus true user data). Right: Same recovery algorithm
but for 64 images from the same class (white shark), (PSNR: 13.84 versus true user data.)

Figure 3.12: Left (a): A batch of 64 CIFAR10 images. Right (b): The same batch of
images reconstructed naively using eq. (3.2).

and fig. 3.13, as well as ImageNet examples from the same class (Figures 3.10, 3.11)

where an attack with the imprint module on this dataset shows that almost all of the user

data is perfectly recovered. Furthermore, example panels of imprint modules inserted in

later ResNet layers are visualized as well as the results of the sparse variant that is used

to attack a federated averaging scheme.
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Figure 3.13: Left (a): A batch of 64 CIFAR10 images. Right (b): The same batch of
images reconstructed using the imprint module with 300 bins. Gray images can result
from collisions within a given bin.

Figure 3.14: Different placements of the imprint module in a ResNet-18. From left to
right: Before the first block (56x56), before the third block (28x28), before the fourth
block (14x14) and before the last average pooling (7x7). Compare to a placement before
the first convolution (224x224) and raw input data in fig. 3.2. Enlarged versions of each
panel can be seen in Figs. 3.15 - 3.18

3.4.8 Defense Discussion

An algorithmic defense against the proposed attack would be to validate the in-

coming model parameters on the user side. There, the attack with multiple bins requires

repeated computations of the same quantity. At first, this pattern could be detected by

rank analysis of all linear layers (which would return a rank of 1 for the linear layer of

the imprint module described above). Yet, the attacker can easily randomize a few entries

of the linear layer to increase its rank without significantly weakening the attack, or in-
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Figure 3.15: Different placements of the imprint module in a ResNet-18. Before the
first block (56 × 56). Only the first three channels at this position are utilized in this
demonstration.

troduce additional rows that compute normal deep features, so that we do not believe a

defender can win by model analysis under the given threat model.

3.5 Potential Defense and Mitigation Strategies

If aggregation is the only source of security in a FL system, then the proposed attack

breaks it, uncovering samples of private data from arbitrarily large batches, especially via

the One-shot mechanism. In light of this attack, the effectiveness of secure aggregation

is reduced to only secure shuffling [75]: When private data is uncovered via the imprint
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Figure 3.16: Different placements of the imprint module in a ResNet-18. Before the
third block (28 × 28). Only the first three channels at this position are utilized in this
demonstration.

module, based on data that has been securely aggregated, then the data is breached, but

is not directly connected to any specific user (aside from possible revealing information

in the data itself). A mitigation strategy for users that does not require coordination (or

consent) of a central server is to employ local differential privacy [34]. Adding sufficient

gradient noise can be a defense against this attack as the division in eq. (3.2) leads to

potentially unbounded errors in the scale of the data. Yet, in practice, privacy is often still

broken even if the correct scale cannot be determined, so that the amount of noise that

has to be added is large. In fig. 3.20, even with σ = 0.01, private data is visibly leaked.
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Figure 3.17: Different placements of the imprint module in a ResNet-18. Before the
fourth block (14× 14)

Additional discussion on defenses can be found in section 3.4.8

3.6 Conclusions

Federated learning offers a promising avenue for training models in a distributed

fashion. However, the use of federated learning, even with large scale averaging, does not

guarantee user privacy. Using common and inconspicuous machine learning modules,

a malicious server can breach user privacy by sending minimally modified models and

parameters in a federated setup. We hope that constructing these examples clarifies cur-

rent limitations and informs discussions on upcoming applications, especially concerning
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Figure 3.18: Different placements of the imprint module in a ResNet-18. Before the last
average-pooling layer (7× 7). Only the first three channels at this position are utilized in
this demonstration.

API design.
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Figure 3.19: Results for federated averaging for 8 steps with 8 images each, i.e. 64 unique
data points for a single user, and 128 bins. PSNR: 32.65. IIP: 70.31%. Drift of bins during
local updates leads to a few duplicated entries.
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Figure 3.20: Top: IIP score vs Laplacian gradient noise. Bottom: Exemplary recovery
for σ = 0.01. Recovery is stable for a large range of Laplacian gradient noise injections.
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Chapter 4: Attacking Federated Learning for Text

A central tenet of Federated learning (FL), which trains models without centralizing

user data, is privacy. However, previous work has shown that the gradient updates used in

FL can leak user information. While the most industrial uses of FL are for text applica-

tions (e.g. keystroke prediction), nearly all attacks on FL privacy have focused on simple

image classifiers. We propose a novel attack that reveals private user text by deploying

malicious parameter vectors, and which succeeds even with mini-batches, multiple users,

and long sequences. Unlike previous attacks on FL, the attack exploits characteristics of

both the Transformer architecture and the token embedding, separately extracting tokens

and positional embeddings to retrieve high-fidelity text. This work suggests that FL on

text, which has historically been resistant to privacy attacks, is far more vulnerable than

previously thought. This work was conducted with Jonas Geiping, Steven Reich, Yuxin

Wen, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. My contributions include

jointly conceiving of the mechanism of position and token matching, as well as the atten-

tion mechanism manipulation. Additionally, I implemented the first version of the attack,

and wrote a substantial portion of the manuscript.
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4.1 Introduction

Federated learning (FL) has recently emerged as a central paradigm for decent-

ralized training. Where previously, training data had to be collected and accumulated

on a central server, the data can now be kept locally and only model updates, such as

parameter gradients, are shared and aggregated by a central party. The central tenet of

federated learning is that these protocols enable privacy for users [56, 102]. This is ap-

pealing to industrial interests, as user data could be leveraged to train machine learn-

ing models without user concerns for privacy, app permissions or privacy regulations,

such as GDPR [159, 163]. However, in reality, these federated learning protocols walk a

tightrope between actual privacy and the appearance of privacy. Attacks that invert model

updates sent by users can recover private information in several scenarios [126, 165].

Optimization-based inversion attacks have demonstrated the vulnerability of image data

when only a few datapoints are used to calculate updates [46, 169, 180]. To stymie these

attacks, user data can be aggregated securely before being sent to the server as in Bonaw-

itz et al. [12], but this incurs additional communication overhead, and as such requires an

estimation of the threat posed by inversion attacks against specific levels of aggregation,

model architecture, and setting.

Most of the work on gradient inversion attacks so far has focused on image classific-

ation problems. Conversely, the most successful industrial applications of federated learn-

ing have been in language tasks. There, federated learning is not just a promising idea,

it has been deployed to consumers in production, for example to improve keystroke pre-

diction [58, 132] and settings search on the Google Pixel [13]. However, attacks against
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this area have so far succeeded only on limited examples of single sequences with few

(< 25) tokens [30, 180], even for massive models such as BERT (with worse recovery

for smaller models) [32], leaving the impression that these models are hard to invert, and

limited aggregation is already sufficient to protect user privacy.

In this work, we systematically re-investigate the privacy of these applications. We

focus on the realistic threat model of an untrusted server update sent to users, and show

that such a malicious update sent by the server can completely corrupt the behavior of

user-side models, coercing them to spill significant amounts of user data. The server

can then collect the original words and sentences used by the user with straightforward

statistical evaluations and assignment problems.

Overall, we find that Transformer models can be reprogrammed to reveal astonish-

ing amounts of private user information, and we show for the first time that recovery of

all tokens and most of their absolute positions is feasible even on the order of several

thousand tokens and even when applied to small models only 10% the size of BERT.

Furthermore, we reveal the first attack which succeeds in the setting of updates averaged

over multiple users, a setting where previous attacks fall woefully short.

4.2 Motivation and Threat Model

At first glance, updates from Transformer architectures might not appear to leak

significant amounts of user data. Both the attention mechanisms and the linear compon-

ents learn operations that act individually on tokens, so that their gradients are naturally

averaged over the entire length of the sequence which is usually significant (e.g. 512
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Figure 4.1: An example reconstruction from GPT-2 model using our proposed Decep-
ticon. Using the Decepticon attack, an attacker can recover tens-of-thousands of tokens
and positions from private user data.

tokens). Despite most architectures featuring large linear layers, the mixing of inform-

ation reduces the utility of their content to an attacker. In fact, the only operation that

“sees” the entire sequence, the scaled dot product attention, is non-learned and does not

leak separate gradients for each entry in the sequence. If one were to draw intuition from

vision-based attacks, gradients whose components are averaged over 512 images are im-

possible to invert even for state-of-the-art attacks [169].

On the other hand, the task of language modelling appears much more constrained

than recovery in vision settings. The attacker knows from the beginning that only tokens

that exist in the vocabulary are possible solutions and it is only necessary to find their

location from a limited list of known positions and identify such tokens to reconstruct the

input sequence perfectly.

Threat Model With this intuition, we consider the threat model of an untrusted server

that is interested in recovering private user data. Both user and server are bound by secure

implementations to follow the federated learning protocol, and the model architecture

is compiled into a fixed state and verified by the same implementation to be a standard
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Transformer architecture. The user downloads the server update and returns their model

updates according to protocol.

We believe that this threat model is the most natural setting from a user perspective.

Stronger threat models would, for example, allow the server to execute arbitrary code on

user devices, but such threats are solvable by software solutions such as secure sandbox-

ing [44]. Still other work investigates malicious model architectures [11, 43], but such

malicious modifications have to be present at the conception of the machine learning ap-

plication, before the architecture is fixed and compiled for production [13], making this

attack most feasible for actors in the “analyst” role [75]. Ideally, user and server com-

municate through an open-source protocol implementation that only allows pre-defined

and vetted model architectures. However, none of this stops malicious server updates.

Such attacks are naturally ephemeral - the server can send benign server updates nearly

all of the time to all users, then switch to a malicious update for single round and group of

users (or single secure aggregator), collect user information, and return to benign updates

immediately after. The malicious update is quickly overwritten and not detectable after

the fact. Such an attack can be launched by any actor with temporary access to the server

update, including, aside from the server owner, temporary breaches of server infrastruc-

ture, MITM attacks, single disgruntled employees or a sell-off or breach of the server’s

app which users initially trusted with FL rights.
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Figure 4.2: A high-level schematic of token leaking. The token embedding layer can leak
tokens and frequency solely through its gradient entries.

4.3 Method - How to Program a Corrupted Transformer

The attack strategy we investigate in this work is comprised of three primary parts.

We describe how the parameters of common Transformer architectures can be repro-

grammed to deceive the user and encode their private information into gradient updates.

Each component of the attack builds off the previous mechanism and allows the recon-

struction of an increasingly compromising volume of user data. We first show how to

recover tokens, then positions, then sequences from a corrupted transformer model.

4.3.1 Getting Tokens

Even without any malicious parameter modifications, an attacker can immediately

retrieve the bag-of-words (the unordered list of all tokens and their assorted frequencies)

of the user data from the gradient of the token embedding. Melis et al. [107] previously

identified that unique tokens can be recovered due to the sparsity of rows in the token

embedding gradient (c.f. Figure 4.2). But, perhaps surprisingly, even the frequency of all

words can be extracted. Depending on the model architecture, this frequency estimation

can either be triggered by analyzing the bias gradient of the decoder (last linear) layer, or
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the norm of the embedding matrix. In both cases, the update magnitude is approximately

proportional to the frequency of word usage, allowing for a greedy estimation by adapt-

ing the strategy of Wainakh et al. [164] which was originally proposed to extract label

information in classification tasks.
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For models which contain decoder bias, this estimation leads to a > 99% accurate

estimate of word frequencies as shown in Figure 4.3. For models without decoder bias,

such as GPT-2 [131], the same strategy can be employed based on the embedding norms.

Additionally, we can accurately predict token frequency even for models which tie their

embedding and decoding weights, and as such do not feature naturally sparse embedding

gradients. We accomplish this by estimating the distribution of row norms in log-space,

and thresholding unused token rows. As visualized in Figure 4.4, the estimation is inexact

due to the cut-off, but still reaches 93.1% accuracy for GPT-2 (c.f. Figure 4.16).
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This first insight already appears to have been overlooked in previous attacks [30]

and does not require any malicious modifications of the shared model. However, for a

model update averaged over multiple users and thousands of tokens, this recovery alone

is less of a threat to privacy. Naively, the ways to order recovered tokens scale as n!, and

any given ordering of a large amount of tokens may not reveal sensitive information about

any constituent user involved in the model update.

4.3.2 Getting Positions

As stated previously, even for a single sequence, the number of possible orderings

of leaked tokens means that for an attacker, breaching user privacy with information only

about leaked tokens becomes intractable. However, once token embeddings are fed into a

Transformer-based model, information is added about the relative position of each token -

either through a learned positional encoding, or a fixed one as in the original Transformer

architecture.

This motivates a possible attack wherein such information is used to rearrange the

leaked tokens into a high-fidelity reconstruction. However, this positional information

does not appear in the rows of the gradient entry for the token embedding. Thus, any

positional information about the user sequence must be extracted from another part of the

model.

To this end, we leverage the numerous large linear layers found in the feed-forward

blocks of a Transformer-based model, combined with recent strategies for separating

gradient signals. We denote a forward pass on the first layer (of the feed-forward com-
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ponent) of the ith Transformer block by φi1 = W1,ix + b1,i. It is straightforward to derive

that for a single embedding vector x passed through φi1, for the jth row of the linear layer,

W j
1,i, as long as ∂L

∂bj1,i
6= 0, then ∇W j

1,i
L/ ∂L

∂bj1,i
= x. Simply put, linear layers can easily

encode embedding vectors in their gradient information.

Then, modifying the strategy found in Fowl et al. [43], and Chapter 3, we sample

a Gaussian vector m ∼ N (~0, Id) where d = dmodel, and identically set each row j of the

weights of φi1,j = m, and the biases of this layer we set to bi1 = [ci·k, . . . , c(i+1)·k]. Here,

k is the dimension of the codomain of φi1, and cj = −Φ−1( j
M

) for Φ−1, the inverse of the

standard Gaussian CDF, and M is the sum over all Transformer blocks of the dimension

of the codomain for φi1. Note that we can very well estimate the mean and variance of this

quantity (needed to normalize it) from known text datasets (see Figure 4.11). Then, when

〈x,m〉 uniquely falls between two values [cj−1, cj], the gradient of the corresponding

linear layer with those biases contains unique information that can be inverted to recover

the embedding x.

However, this is only part of the battle (for the attacker), as the recovered embed-

dings themselves do not naturally reveal any private information. To achieve this goal, the

attacker must associate both a token and position to each recovered embedding. We show

that an attacker can accomplish this by first solving a linear sum assignment problem on

the recovered embeddings and known positional embeddings. As seen in Figure 4.5, the

attacker can calculate the correlation between the recovered embeddings, and “dummy”

positional vectors, given that the sequence length of the model is known. This alone can

give the attacker information about the most likely position for a recovered embedding.

Then, the attacker can simply subtract the positional encoding from recovered embedding
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to (almost) recover the token embedding that comprises the recovered embedding. This

process is muddied by layer normalization, but the “faux” token embeddings that are re-

covered in this manner are enough to perform another linear sum assignment problem

to associate each recovered embedding to a token recovered from the token embedding

layer’s gradient as in Figure 4.3.1. In a similar fashion, the attacker calculates correlations

between the token embeddings and the “faux” token embeddings (the recovered embed-

dings minus the dummy positional encodings). After these two assignment problems, the

attacker has retrieved a set of tokens, and their corresponding positions. Note that the at-

tacker can set the second linear layer in the feed-forward portion of a Transformer block

to collapse the outputs of the first linear layer into a small quantity to be added with the

residual connection to a single entry for the original embeddings, thus allowing gradients

to flow to each linear layer, while also not perturbing the embeddings too much.

Figure 4.5: A high-level schematic for our
position assignment. We find correlations
ρ between known positions and recovered
embeddings, and solve a linear sum as-
signment problem to determine which po-
sition is most likely for the recovered em-
bedding.

Figure 4.6: A high-level schematic of our
MHA manipulation. The MHA block at-
tends to the first word identically for every
input sequence, encoding a part of the first
token for each embedding in the entire se-
quence.
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4.3.3 Getting Sequences

Recovering multiple sequences - either from user data comprising multiple separate

sentences, or aggregates of multiple users - presents the most difficult task for the attacker.

Naively using the strategy from Section 4.3.2 can only recover a partially ordered set of

tokens. For example, if a model update consists of five user sequences, then the attacker

recovers five first words, five second words, and so on. However, grouping these words

into salient sentences quickly becomes intractable as the number of possible groupings

grows as nl for n users sending updates on sequences of length l. Further complicating

matters for the attacker is that no learned parameters (and thus no parameters returning

gradients) operate on the entire length of a sequence in the Transformer model. In fact,

the only interaction between embeddings from the same sequence comes in the scaled

dot product attention mechanism. Thus, if any malicious modification can be made to

encode sequence information into embeddings, it must utilize the attention mechanism of

Transformers.

With this as motivation, we uncover a straightforward mechanism by which an at-

tacker could recover user sequences, even when model updates are aggregated over a

large number of separate sequences. LetWQ,WK ,WV represent the query, key, and value

weight matrices respectively, and let bQ, bK , bV represent their biases. For simplicity of

presentation, we explain this attack on a single head, but it is easily adapted to multi-head

attention. We first set the WK matrix to the identity (Idmodel
), and bK = ~0. This leaves

incoming embeddings unaltered. Then, we set WQ = ~0, and bQ = γ · ~p0 where ~p0 is the

first positional encoding. Here we choose the first position vector for simplicity, but there
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are many potential choices for this bias vector. This query matrix then transforms each

embedding identically to be a scaled version of the first positional encoding. We then set

WV = Id′ to be a “partial” identity matrix (identity in the first d′ entries where d′ ≤ d is a

hyperparameter that the server controls). Finally, we set bv = ~0.

Now, we investigate how these changes transform an incoming sequence of em-

beddings. Let {xi}l−1
i=0 be embeddings for a sequence of length l that enters the attention

mechanism. x0 is the embedding corresponding to the first token in the sequence, so x0 is

made up of the token embedding for the first token in the sequence, and the first positional

encoding. WK produces keys K that exactly correspond to the incoming embeddings,

however, WQ, bQ collapses the embeddings to produce Q, consisting of l identical cop-

ies of a single vector, the first positonal encoding. Then, when the attention weights are

calculated as:

softmax

(
QKT

√
dk

)

the attacker finds that the first embedding dominates the attention weights for all the

embeddings, as the query vectors all correlate with the first embedding the most. In fact,

the γ parameter can effectively turn the attention weights to a delta function on the first

position. Finally, when the attention weights are used to combine the values V with the

embeddings, by construction, a part of the embedding for the first word in the sequence is

identically added to each other word in that sequence. So the embeddings are transformed

as {xi}l−1
i=0 → {xi + x0,d′}l−1

i=0 where x0,d′ is a vector where the first d′ entries are the first

d′ entries of x0, and the other dmodel − d′ entries are identically 0.

If the attacker chooses to perform this modification on the first Transformer block,
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this means that embeddings that the attacker recovers from each of the linear layers (as

detailed in Section 4.3.2) now contain unique information about the sequence from which

they came. The attacker can then calculate correlations between the first part of each

recovered embedding and dynamically threshold these correlations in order to group each

embedding into a sequence with other embeddings.

4.3.4 Putting It All Together

Now that we have introduced the three main mechanisms for our proposed attack,

we will describe the procedure from start to finish for the attacker and introduce additional

mechanisms that are useful for the attack. The attack begins after a user or aggregate

group of users has computed their model update based on the corrupted parameters, at

which point the server retrieves their update and begins the inversion procedure.

The server first computes normalized un-ordered embeddingsEunordered based on the

bag-of-words from Section 4.3.1, and normalized positional embeddings Epositions based

on the known sequence length (normalizing by the first layer norm, as the linear layers

appear after the layer norm operation). The server then computes the actual breached em-

beddings from the bins inserted into the linear layers. All gradient rows in these linear lay-

ers record the sum over all embeddings whose inner product with the measurement vector

is smaller than the bias of the row ci. Conversely, by subtracting subsequent rows, the

server recovers in each row the embedding with inner product within the range [ci, ci+1].

All rows with non-zero bias now correspond to such bins which contain 1 or more em-

beddings. Dividing these embeddings by their bias recovers a number of breached em-
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Algorithm 2 Decepticon Data Readout
1: Input: Transformer model T , malicious server update θ0, user update θ1, number of

expected sequences n.
2: Eunordered = Embeddings of estimated bag-of-words of leaked tokens

3: Ebreached = Breached Embeddings
∇

W
j
i

−∇
W

j
i+1

∇
b
j
i

−∇
b
j
i+1

for linear layers j = 1, ..L and rows

i = 1, ..., r.
4: Lbatch = Batch label for each Ebreached[: v] from clustering into n clusters via dynamic

thresholding.
5: Epositions ← Known positional embeddings
6: for b in 0...B do
7: Eb

ordered = Match(Epositions[v :], Ebreached[Lbatch = b, v :])
8: end for
9: Eordered = concatenate {Eb

ordered}Bb=1

10: while empty rows in Eordered do
11: Lfree positions = indices of empty rows in Eordered

12: Eordered =Match(Epositions[Lfree positions], Ebreached[: v]
13: end while
14: Eordered, no pos. = Eordered - Epositions

15: Tfinal tokens = Indices of Match(Eordered, no pos., Eunordered)

beddings Ebreached, which correspond directly to the input of the linear layers (although

some recoveries may be mixtures of multiple embeddings).

The first d′ entries of each embedding encode the sentence as described in Section

4.3.3. The server can hence label each of the embeddings Ebreached uniquely and assign

them to their sentence by clustering. We describe a simple algorithm to cluster these

embeddings into n groups and find their label in the Section 2.3.3 (based on dynamic

thresholding and linear assignments), but other strategies such as constrained K-means

are also possible [16].

We can now proceed for each sequence separately and match all found embed-

dings for the sentence to the known positional embeddings Epositions, thereby ordering

the embeddings Ebreached for each sentence. Due to mixtures, some positions will not be

filled after this initial matching step. We thus iteratively fill up free positions with the
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best-matching embeddings from Ebreached, even if they have been used before in other po-

sitions. After this procedure all entries in Eordered will be filled with entries from Ebreached.

We can then compute Eordered, no pos. by subtracting the positional encodings from these

ordered embeddings, which should be an estimate of the token embedding at the given

position. Finally we match Eordered, no pos. with the embeddings of tokens recovered in the

beginning Eunordered to recover the most likely identity of each token in the sequence. The

attack is summarized in Section 2.

In general, this process works very well to recover even several batches of long

sequences. In the limit of more and more tokens the quality eventually degrades as more

and more breached embeddings are mixtures of multiple inputs, making the identification

of their position and token id less certain. This is partially compensated for by the iterative

filling of missing positions. When in the regime of a massive number of tokens, only a

subset of positions are accurately recovered, and the remaining tokens are inaccurate,

appearing in wrong positions in the input. This process is semi-random, so that at even

for a massive number of tokens there will still exist some batches which can be recovered

very well.

4.4 Empirical Evaluation of the Attack

In this section, we evaluate the threat of the attack discussed in Section 4.3 and eval-

uate its efficacy on a range of Transformer architectures. Our main focus is the application

to next-word prediction as emphasized in practical use-cases [58, 132]. We consider three

model architectures of differing sizes: first, the small 3-layer Transformer architecture
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Figure 4.7: The first 20 tokens reconstructed from a GPT-2 model update for differ-
ent combinations of sequence length and batch size. Highlighted text represents exact
matches for both position and token to the original text (a randomly selected user).

discussed as a template for Transformers in federated learning scenarios in Kairouz et al.

[75] (11 million parameters), second, the BERT-Base model [32] also attacked in previous

work [30, 180] (110 million parameters), and finally, the smallest GPT-2 variation [131]

(124 million parameters). We train the small Transformer and GPT-2 as causal language

models and BERT as masked language model.

We assemble data from wikitext [108], which we partition into separate users by

article and tokenize using the GPT-2 (BPE) tokenizer for the small Transformer and GPT-

2, and the original BERT (WordPiece) tokenizer for BERT. We then evaluate the attack

over a range of sequence lengths and batch sizes. For quantitative evaluations, we always

report average scores over the first 100 users (i.e articles), which are long enough to fit

batch size × sequence length tokens. We focus on fedSGD, i.e. single gradient updates
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Figure 4.8: Baseline results for our method for different popular architectures and metrics
for variable length sequence input (batch size 1). Note BERT’s positional encoding caps
out at sequence length 512, so we end our experiments for BERT there.

Figure 4.9: Results for our method for different popular architectures and metrics for
variable length batch size (sequence length 32).

from all users in this work, but note that related attacks in Fowl et al. [43] are also applic-

able in fedAVG scenarios - although, arguably, the server controls client learning rate and

could thus turn all updates into gradient updates by choosing it maliciously.

We evaluate all attacks using well-known metrics including BLEU score [121],

total accuracy, and ROUGE-L [94]. Note that our total accuracy score is much stronger

than the token accuracy as described in previous works, such as Deng et al. [30], as we

are concerned with accuracy of the token and the position recovered, and if we were

just concerned with token accuracy, we would trivially achieve very high scores via our

embedding-layer strategy in Section 4.3.1.

We first present qualitative results for our method. Figure 4.7 shows partial re-

constructions for a randomly selected, challenging sequence as batch size and sequence
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Figure 4.10: Comparison between our method and TAG (honest-but-curious SOTA) for
Transformer-3 architecture, variable sequence length (batch size 1).

length increase. We find that even for more difficult scenarios with more tokens, a vast

majority of tokens are recoverd, and a majority are recovered in their exact correct posi-

tion.

Single Sequence. As a baseline, we begin experimenting with single sequence

recovery - a problem that has proven difficult for previous attacks on text using even

moderately sized sequences. This corresponds to the scenario wherein a single user’s

update on a single sequence is received. In Figure 4.8, we find that even for sequences

with > 1000 tokens, for large models like GPT-2, we recover > 90% of the ground-truth

tokens in their exact position.

Multi Sequence. In addition to reconstructing single sequences, as discussed in

Section 4.3.4, our multi-head attention strategy allows an attacker to reconstruct multiple

sequences. This applies to an update from a single user with more than one sequence, and

also multiple users aggregating model updates. To the best of our knowledge, we are the

first attack to evaluate and explicitly address the problem of multi-user updates. We find

that for a sequence length of 32, the proposed attack can recover almost all tokens used

in the user updates, and > 50% of tokens at their exact position for > 100 users. Further

experimentation for longer sequences can be found in Section 4.11.
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Comparison to other threat models. While attacks on FL for text have been few

and far between, some previous works have approached the topic of reconstructing user

data from FL language model updates. Many of these works focus on the “honest-but-

curious” threat model where benign parameters are sent to the user, and the FL protocol

is performed normally. We believe that our proposed threat model is just as realistic

as the “honest-but-curious” threat model, as anytime a server becomes “curious” about

reconstructing user data, they could send a single malicious parameter vector to users to

retrieve private data via the proposed attack. Moreover, we find that the severity of the

threat posed by our attack is orders of magnitude greater than the current state-of-the-art

in the “honest-but-curious” threat model.

We compare by fixing an architecture - in this case the Transformer-3 model de-

scribed earlier. We then consider the setting with batch size 1 and evaluate our proposed

method against the previous art for text attacks - the TAG attack proposed by Deng et al.

[30]. We experiment for varying sequence lengths in Figure 4.10. The performance of

TAG very quickly degrades for sequences of even moderate length. For a single sequence,

our proposed attack maintains high levels of total accuracy for sequences of length ex-

ceeding 1000 tokens, whereas the total accuracy for TAG drops below 20% almost im-

mediately, and soon after approaches 0%. Further comparison can be found in Section

4.11.
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4.5 Mitigations

Previously, aggregation was thought to preserve privacy in FL on text. However,

the proposed attack involving maliciously modified Transformers shows that aggregation

alone might not be enough in several use cases. For example, the setting deployed to

production in Hard et al. [58] runs FL on users with 400 sentences with 4 words per update

on average, well within the range of the investigated attack. We thus briefly discuss other

mitigation strategies for attacks like this. We roughly group them into two categories:

parameter inspection and differential privacy based defenses.

The former strategy - parameter inspection - might seem obvious on face. For ex-

ample, in the proposed attack, we duplicate the same measurement in the fully connected

part of each Transformer block. Inspecting for such duplication or the rank of certain

layers would detect this modification. Furthermore, the discussed attack scales layers to

suppress or magnify outputs, so one could look for weights of abnormally large mag-

nitude. However, we believe that these defenses are not a reliable or safe way to proceed.

This type of strategy inherently puts the user/defender at a disadvantage as they are al-

ways reactive to an attack, and not proactive. This means such defenses will always have

to “catch up” to ever-adapting attacks. For example, an attacker could easily circumvent

some of the above parameter inspections by adding small amounts of noise to the meas-

urement vector, or instead of magnifying/suppressing weights in the multi-head attention

block, the attacker could aim for mixed weights (instead of one-hot weights). Overall, the

design space for such attacks within the parameters of a Transformer model seems too

large to be defended by inspecting parameters for known attacks.
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The latter strategy - differential privacy (DP) based defenses - continues to be the

more promising route. Local differential privacy, controlled directly by the user and added

directly on-device (instead of at the server level [104]) allows protection for users without

the need to trust the update sent by the server [8]. However, local DP comes at a noticeable

cost in utility, observed in theoretical [75, 78, 161] as well as practical investigations

[71]. DP currently also comes at a cost in another dimension: fairness, as model utility is

reduced most for underrepresented groups [3]. Overall, any attack on privacy will break

down when faced with sufficient differential privacy, but the benefits of federated learning

are diminished by it.

4.6 Technical Details

We implement all attacks in an extensible PyTorch framework [122] for this type

of attack which allows for a full reproduction of the attack and which we attach to this

submission. We utilize huggingface models and data extensions for the text data

[166].The attack is separated into two parts. The first part is the malicious modification

of the server parameters, which is triggered immediately before the server sends out their

model update payload to users.

We implement the malicious parameter modifications as described in Section 4.3.

We initialize from a random model initialization and reserve the first 6 entries of the

embedding layer for the sentence encoding for the Transformer-3 model and the first

32 entries for the larger BERT and GPT-2 models. The corresponding entries in the

positional and token embeddings are reset to 0. In the MHA modification, we choose a
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softmax skewing of 1e8, although this value can be significantly lower in practice as well.

We reserve the last entry of the embedding layer for gradient flow to each linear layer, so

that the attack is able to utilize all layers as described. This entry is scaled by ε = 1e− 6

for the smaller Transformer-3 model and ε = 1e − 8 for the larger models, so that the

layer normalization is not skewed by large values arising from the last embedding entry.

For the attack part, we retrieve the gradient update on the server and run all recovery

computations in single float precision. We first run a token recovery as discussed in Sec-

tion 4.3.1, which we additionally summarize in Algorithm 3 and then proceed with the at-

tack following Algorithm 2. For the sentence labeling we choose a dynamic thresholding

and assignment algorithm which we describe in Algorithm 5 For all assignment problems

we utilize the linear sum assignment solver proposed in Crouse [27] which is a modifica-

tion of the shortest augmenting path strategy originally proposed in Jonker and Volgenant

[74].

During the quantitative evaluation, we trial 100 users each with a request for updates

of size sequence length × batches. We skip all users which do not own enough data and

do not pad user data with [PAD] tokens, which we think would skew results as it would

include a large number of easy tokens to recover. All measurements are hence done on

non-trivial sentences, which are concatenated to reach the desired sequence length. Each

user’s data is completely separated, representing different wikipedia articles as described

in the main body. Overall, the attack is highly successful over a range of users even with

very different article content.

To compute metrics, we first resort the recovered batches toward the ground truth

order by assigning to ground truth batches based on total token accuracy per sentence.
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This leads to a potential underestimation of the true accuracy and ROUGE metrics of

the recovery as sentence are potentially mismatched. We compute Rouge [94] scores

based on the sorted batches and BLEU scores [121] (with the default huggingface

implementation) by giving all batches as references. We measure total accuracy as the

number of tokens that are perfectly identified and in the correct position, assigning no

partial credit for either token identity or position. This is notably in contrast to the naming

of metrics in Deng et al. [30] where accuracy refers to only overall token accuracy. We

refer to that metric as ”token accuracy”, measuring only the overlap between reference

and reconstruction sentence bag-of-words, but report only the total accuracy, given that

token accuracy is already near-perfect after the attack on the bag-of-words described in

Section 4.3.1.

4.7 Algorithm Details

We detail sub-algorithms as additional material in this section. Algorithm 3 and Al-

gorithm 4 detail the token recovery for transformers with decoder bias and for transformer

with a tied embedding. These roughly follow the principles of greedy label recovery

strategy proposed in Wainakh et al. [164] and we reproduce them here for completeness,

incorporating additional considerations necessary for token retrieval.

We then detail the dynamic thresholding and assignment algorithm for sentence

labeling in Algorithm 5. This strategy clusters embeddings into sentences by first greedily

matching all embeddings into n groups from a dynamically chosen threshold, and then

computing the mean of each group and finally solving an assignment problem to match
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each embedding to the group it correlates most to, while obeying the constraints given by

sequence length s and number of sentences n. We find this strategy to be more successful

than e.g. K-Means clustering as in Bradley et al. [16].

Algorithm 3 Token Recovery
(Decoder Bias)

1: Input: Decoder bias gradient
gb,
embedding gradient ge,
sequence length s, number of
sequences n.

2: vtokens← all indices where gb <
0

3: ve← all indices where ge < 0
4: vtokens append vtokens \ ve
5: mimpact = 1

sn

∑
i∈vtokens

gbi
6: gb[vtokens]← gb[vtokens]−mimpact

7: while Length of vtokens < sn
do

8: j = arg mini gbi
9: gbj ← gbj −mimpact

10: vtokens append j
11: end while

Algorithm 4 Token Recovery
(Tied encoder Embedding)

1: Input: Embedding weight
gradient ge, sequence length s,
number of expected sequences
n, cutoff factor f

2: nej = ||gej||2 for all j = 1, ...N
embedding rows

3: µ, σ =
Mean(log ne),Std(log ne)

4: c = µ+ fσ
5: vtokens← all indices where ne >
c

6: mimpact = 1
sn

∑
i∈vtokens

nei
7: ne[vtokens]← ne[vtokens]−mimpact

8: while Length of vtokens < sn
do

9: j = arg mini∈vtokens
nei

10: nej ← nej −mimpact

11: vtokens append j
12: end while

4.8 Measurement Transferability

In order to retrieve positionally encoded features from the first linear layer in the

feed-forward part of each Transformer block, we create “bins” which partition the pos-

sible outcomes of taking the scalar product of an embedding with a random Gaussian

vector. To do this, we estimate the mean and variance of such a measurement, and create

bins according to partitions of equal mass for a Gaussian with this mean and variance.
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Algorithm 5 Sentence Labeling
1: Input: First v entries of each breached embedding b, sequence length s, number of

expected sequences n.
2: Compute correlation matrix C = Corr(b)
3: Find minimal threshold t = arg mint max(

∑
j Cij > t) > s

4: tgroups = 0
5: Set of already assigned indices A = ∅
6: Define list of initial labels L
7: for i where

∑
j Cij > t do

8: if i /∈ A then
9: Find matches m = {jwhereCi,j > t}

10: Find unassigned matches m←m \ A
11: Set all entries m in L to i
12: A append m
13: tgroups ← tgroups + 1
14: if tgroups equal n then
15: BREAK
16: end if
17: end if
18: end for
19: Compute n candidates as averages over labelled embeddings sj =

1
|{i=j,i∈L|}

∑
i=j,i∈L)bi

20: Compute new correlations Cs = Corr(s, b)
21: Find final labels Lfinal by solving the assignment problem with costs Cs.

A natural question arises: how well can we estimate this quantity? If the server does

not have much data from the user distribution, will this present a problem for recovering

user data? To this end, we demonstrate that the server can estimate these measurement

quantities well using a surrogate corpus of data. In Figure 4.11, we see that the Gaussian

fit using the Wikitext dataset is strikingly similar to the one the server would have found,

even on a very different dataset (Shakespeare).

We further note that an ambitious server could also directly use model updates re-

trieved from users in a first round of federated learning, to directly glean the distribution

of these linear layers, given that the lowest bin records the average of all activations of

this layer. However, given the ubiquity of public text data, this step appears almost un-
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necessary - but possibly relevant in specialized text domains or when using Transformers

for other data modalities such as tabular data [147].

Figure 4.11: Comparison of Gaussian fit to the measurements of Shakespeare dataset, and
a Gaussian fit to the measurements (against the same vector) for the Wikitext dataset.

4.9 Variants and Details

Here we describe variants and issues that may arise from different architectures,

architectural features, and tasks. All these details could potentially affect the potency of

the attack.

4.9.1 Masked Language Modelling

For problems with masked language modelling, the loss is sparse over the sequence

length, as only masked tokens compute loss. This impacts the strategy proposed in Sec-

tion 4.3.2, as with disabled attention mechanisms in all but the first layer, no gradient

information flows to unmasked entries in the sequence. However, this can be quickly

solved by reactivating the last attention layer, so that it equally attends to all elements in

the sequence with a minor weight increment which we set to 10. This way, gradient flow
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is re-enabled and all computations can proceed as designed. For BERT, we further disable

the default huggingface initialiazation of the token embedding, which we reset to a

random normal initialization.

Masked language modelling further inhibits the decoder bias strategy discussed in

Section 4.3.1, as only masked tokens lead to a non-positive decoder bias gradient. How-

ever, we can proceed for masked language models by recovering tokens from the embed-

ding layer as discussed for models without decoder bias. The mask tokens extracted from

the bias can later be used to fill masked positions in the input.

4.9.2 GeLU

A minor stumbling for the attacker occurs if the pre-defined model uses GeLU [60]

activation instead of ReLU. This is because GeLU does not threshold activations in the

same was as ReLU, and transmits gradient signal when the activation < 0. However, a

simple workaround for the attacker is to increase the size of the measurement vector and,

by doing so, push activations away from 0, and thus more toward standard ReLU behavior.

For the main-body experiments, we use ReLU activation for simplicity of presentation,

but using the workaround described above, we find in Figure 4.12, Figure 4.13 that the

performance of the attack against a GeLU network is comparable to its level against a

ReLU network.
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Figure 4.12: Comparison of GeLU and ReLU activation with magnified measurement
vector (sequence length 256).

Figure 4.13: Comparison of GeLU and ReLU activation with magnified measurement
vector (batch size 1).

4.9.3 Dropout

All experiments in the main body, including comparisons, have assumed that dro-

pout has been turned off for all models under consideration. In standard applications,

dropout can be modified from the server-side, even for compiled and otherwise fixed

models [117]. In our threat model, dropout hence falls into the category of a server-side

parameter that a malicious update could turn off. We also investigated the performance

of the attack if the attacker cannot alter standard dropout parameters, finding that dropout

decreased total accuracy of the attack by about 10%, e.g. from 93.36% for a sequence of

length 512 on GPT-2 to 81.25% with dropout.
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4.10 Additional Background Material

The attack TAG in Deng et al. [30] approaches gradient inversion attacks against

transformer models from the direct optimization-based angle. This was first suggested

in Zhu et al. [180], who provide some preliminary experiments on recovery of short se-

quences from BERT. Basically, the attack works to recover user data (x∗, y∗) from the

measurement of the gradient on this data g by solving the optimization problem of

min
x,y
||L(n(x, θ), y)− g||2, (4.1)

where x and y are the inputs and labels to be recovered, L is the loss and n(·, θ) is

the language model with parameters θ. This optimization approach does succeed for

short sequences, but the optimization becomes quickly stuck in local minima and cannot

recover the original input data. Zhu et al. [180] originally propose the usage of an L-BFGS

solver to optimize this problem, but this optimizer can often get stuck in local minima.

Deng et al. [30] instead utilize the ”BERT” Adam optimizer with hyperparameters as in

BERT training [32]. They further improve the objective by adding an additional term

that especially penalizes gradients of the first layers, which we also implement when

running their attack. A major problem for the attacks of Zhu et al. [180] and Deng et al.

[30], however, is the large label space for next-word prediction. In comparison to binary

classification tasks as mainly investigated in Deng et al. [31], the large label space leads to

significant uncertainty in the optimization of labels y, which leads their attack to reduce

in performance as vocabulary size increases.
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We further note that Boenisch et al. [11] also propose malicious model modific-

ations (as opposed to our more realistic malicious parameter modifications) to breach

privacy in FL for text, however the proposed model in their work is a toy two-layer fully

connected model that is not a Transformer-based model. In fact, the strategy employed

in their attack cannot be deployed against modern language models that do not construct

a linear layer of the length of the sequence, aside from handling of facets of modern

language models like positional encodings, or attention mechanisms.

4.11 Further Results

Here we include further results for our attack including large batch size comparisons

in Figure 4.14, comparisons to existing attacks for multiple sequences in Figure 4.15, and

token recovery with different cutoffs in Figure 4.16.

Figure 4.14: Baseline results for our method for different popular architectures and met-
rics for variable batch size (sequence length 512).

4.12 Conclusions

In this work, we unearth a threatening attack on federated learning for Transformer-

based language models. This attack operates in a natural and realistic threat-model centered
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Figure 4.15: Comparison to TAG attack for variable batch size (sequence length 32).
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Figure 4.16: Bag-of-words Accuracy for GPT-2 from embedding gradients. Out of 13824
tokens from wikitext, the estimated tokens leaked from the embedding layer are 93.1%
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on untrusted server updates and recovers a large amount of private user information. This

attack operates by reprogramming parameters in a Transformer, and then recovering user

data based on a series of simple statistical procedures and assignment problems that can

be computed quickly and cheaply, unlike more complicated or learned attacks. We be-

lieve that attacks under this threat model are under-explored and caution that such attacks

could be made even stronger. The implications for federated learning on text continue

to be that federated learning by itself, even with aggregation of users, is not sufficient to

guarantee meaningful privacy.
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[112] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. Towards poisoning of deep learn-
ing algorithms with back-gradient optimization. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, pages 27–38, 2017.

156

http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1710.06963
http://arxiv.org/abs/1805.04049
http://arxiv.org/abs/1805.04049
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://arxiv.org/abs/1810.12042
http://arxiv.org/abs/1810.12042
http://arxiv.org/abs/1906.07773
http://arxiv.org/abs/1906.07773


[113] Preetum Nakkiran. A discussion of ’adversarial examples are not bugs, they are
features’: Adversarial examples are just bugs, too. Distill, 2019. doi: 10.23915/
distill.00019.5. https://distill.pub/2019/advex-bugs-discussion/response-5.

[114] Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu
Radhakrishnan, and Anirban Chakraborty. Zero-shot knowledge distillation in
deep networks. In International Conference on Machine Learning, pages 4743–
4751. PMLR, 2019.

[115] Franck Olivier Ndjakou Njeunje. Computational methods in machine learning:
transport model, Haar wavelet, DNA classification, and MRI. PhD thesis, Univer-
sity of Maryland, College Park, 2018.

[116] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in
Operations Research. Springer, New York, 2nd ed edition, 2006. ISBN 978-0-387-
30303-1.

[117] Documentation ONNX. ONNX Operator Schemas. Open Neural Network
Exchange, January 2022. URL https://github.com/onnx/onnx/
blob/50a1981dc3d50af13075cec33b08b4c87fb0e41f/docs/
Operators.md.

[118] Xudong Pan, Mi Zhang, Yifan Yan, Jiaming Zhu, and Min Yang. Theory-Oriented
Deep Leakage from Gradients via Linear Equation Solver. arXiv:2010.13356 [cs,
stat], October 2020. URL http://arxiv.org/abs/2010.13356.

[119] Nicolas Papernot. A Marauder’s Map of Security and Privacy in Machine Learn-
ing. arXiv:1811.01134 [cs], November 2018. URL http://arxiv.org/abs/
1811.01134.

[120] Nicolas Papernot and Patrick McDaniel. Deep k-Nearest Neighbors: Towards
Confident, Interpretable and Robust Deep Learning. arXiv:1803.04765 [cs, stat],
March 2018. URL http://arxiv.org/abs/1803.04765.

[121] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A Method
for Automatic Evaluation of Machine Translation. In Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Lin-
guistics. doi: 10.3115/1073083.1073135.

[122] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic differentiation in PyTorch. In NIPS 2017 Autodiff Workshop,
Long Beach, CA, 2017. URL https://openreview.net/forum?id=
BJJsrmfCZ.

157

https://github.com/onnx/onnx/blob/50a1981dc3d50af13075cec33b08b4c87fb0e41f/docs/Operators.md
https://github.com/onnx/onnx/blob/50a1981dc3d50af13075cec33b08b4c87fb0e41f/docs/Operators.md
https://github.com/onnx/onnx/blob/50a1981dc3d50af13075cec33b08b4c87fb0e41f/docs/Operators.md
http://arxiv.org/abs/2010.13356
http://arxiv.org/abs/1811.01134
http://arxiv.org/abs/1811.01134
http://arxiv.org/abs/1803.04765
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
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Ephraim Zimmer, Tim Grube, Kristian Kersting, and Max Mühlhäuser. User Label
Leakage from Gradients in Federated Learning. arXiv:2105.09369 [cs], June 2021.
URL http://arxiv.org/abs/2105.09369.

[165] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong
Qi. Beyond Inferring Class Representatives: User-Level Privacy Leakage From
Federated Learning. arXiv:1812.00535 [cs], December 2018. URL http://
arxiv.org/abs/1812.00535.

[166] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
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