
[14] C. Zaniolo. (1988) Design and Implementation of a Logic-based Language for Data-Intensive

Applications, Proc. of the International Conference on Logic Programming (eds. K. Bowen and

R. Kowalski), pps 1666-1687, MIT Press.

[15] C. Zaniolo. (1993) A Uni�ed Semantics for Active and Deductive Databases, in \Rules in

Database Systems," (N. Paton, ed.), Springer Verlag, 1994.

43

calculus called the Integrity-Constraint Based Multidatabase (ICBM) algebra and calculus. We prove

that the ICBM-algebra can be embedded within the calculus. The converse, however, does not hold

because the ICBM-calculus allows arbitrary existentially quanti�ed queries that the ICBM-algebra

may be unable to express.

Subsequently, we have studied various algebraic relationships that exist between di�erent permu-

tations of the algebraic operators. These algebraic properties are, in some cases, useful in optimizing

queries.

Acknowledgements. We would like to thank John Grant for his useful comments on the paper.

References

[1] R. Agrawal, R. Cochrane and B. Lindsay. (1991) On Maintaining Priorities in a Production

Rule System, Proc. VLDB-91, pps 479{487.

[2] S. Ceri and J. Widom. (1990)Deriving Production Rules for Constraint Maintenance, Proc. 16th

Intl. Conf. on Very Large Data Bases, Brisbane, pps 566-577.

[3] J. Grant, W. Litwin, N. Roussopoulos and T. Sellis. (1991) An Algebra and Calculus for Rela-

tional Multidatabase Systems, Proc. First International Workshop on Interoperability in Multi-

database Systems, IEEE Computer Society Press (1991) 118-124.

[4] M. Garey and D.S. Johnson. (1979) Computers and Intractability: A Guide to the Theory of

NP-Completeness.

[5] A. Gupta, Y. Sagiv, J. Ullman and J. Widom. (1994) Constraint Checking with Partial Infor-

mation, Proc. 1994 ACM Symp. on Principles of Database Systems, pps 45{55.

[6] Y. Ioannidis and T. Sellis. (1989) Conict Resolution of Rules Assigning Values to Virtual

Attributes, Proc. ACM SIGMOD Symp. on Management of Data.

[7] R. Krishnamurthy, W. Litwin and W. Kent. (1991) Language Features for Interoperability of

Databases with Schematic Discrepancies, Proc. 1991 ACM SIGMOD Conf. on Management of

Data, pps 40{49.

[8] W. Litwin and A. Abdellatif. (1986)Multidatabase Interoperability, IEEE Computer, Dec. 1986,

pps 10{18.

[9] W. Litwin, A. Abdellatif, A. Zeroual, B. Nicolas and Ph. Vigier. (1989)MSQL: A Multidatabase

Language, Information Sciences, 49, 1989.

[10] D. Sacca and C. Zaniolo. (1990) Stable Models and Non-Determinism in Logic Programs with

Negation, Proc. 9th ACM Symp. on Principles of Database Systems.

[11] A. Sheth and J. Larson. (1990) Federated Database Systems for Managing Distributed, Hetero-

geneous and Autonomous Databases, ACM Computing Surveys, 22, 3, pps 183{236.

[12] S. Spaccapietra and C. Parent. (1994) View Integration: A Step Forward in Solving Structural

Conicts, IEEE Trans. on Knowledge and Data Engineering, 6, 2, pps 258{274.

[13] J. D. Ullman. (1988) Database and Knowledge-Base Systems, Vol. 1, Computer Science Press.

42

Litwin and Abdellatif [8] develop methods to query multidatabases { in their approach, they de�ne

a tuple-calculus based query language in which they can query multiple databases. As in the case

of [3], they do not deal with violations of integrity constraints which is the main focus of our paper.

Conversely, they can \group" sets of databases (e.g. a Michelin database, a Gault Milan database,

and a Baedekar database may all be grouped together as \Travel" databases) which we cannot do in

our current framework.

Krishnamurthy, Litwin and Kent [7] de�ne criteria that a language that a language that integrates

multiple databases must satisfy. They show how to handle schematic discrepancies. Intuitively, two

databases may contain the semantic information, but this information may be represented in di�erent

ways (e.g. in one database, all the information may be contained in one relation, while in the other,

the same information may be spread over two relations). They de�ne a query language that takes

such schematic mismatches into account when handling queries. In a similar vein, Spaccapietra and

Parent [12] structural conicts that arise when multiple databases contain similar, but structurally

di�erent data. They show how data across multiple databases can be \linked" or \tied together"

based on common attribute values (even though the attribute names may be di�erent across di�erent

databases). In contrast, our focus is on how to proceed when integrity constraints are violated.

A good survey of database integration schemes using the federated approach is content in Sheth

and Larson [11]. It is instructive to note that this survey does not specify what to do when integrity

constraints are violated.

We should mention that the idea behind CHOICE SELECT and CHOICE JOIN was motivated, in

part, by work by Zaniolo [14, 10] and his colleagues on nondeterministic choices in logic programming

languages. The idea in their work was that in logic database languages, one may often wish to express

the fact that one out of several possible ways of satisfying an atom is nondeterministically selected.

This is then used by them to de�ne a choice semantics for logic programs with negation. In contrast,

we are not dealing with logic programming languages in this paper (except to specify the semantics of

the special operators introduced by us). Instead, we are using choice mechanisms to resolve conicts

that arise in querying multidatabases.

Conict resolution has also been studied in the context of active databases and production rule

systems by many researchers [15, 2, 1]. Most of these study what to do when multiple active/production

rules with conicting heads requesting that an atom be both added and deleted, �re simultaneously. In

contrast, we attempt to evaluate queries and resolve conicts in answers to queries spanning multiple

relational databases.

10 Conclusions

In this paper, we have developed an extension of SQL (as well as MSQL) that allows users to query

multiple databases simultaneously in the presence of integrity constraints. The key feature of our

work is the operators that facilitate the handling of inconsistencies which arise as a consequence of

accessing multiple databases. We propose two new kinds of operations { SKEPTICAL operators and

CHOICE operators. Skeptical operators throw away all tuples associated with an inconsistency { they

follow the principle when in doubt, throw it out. Choice operators, on the other hand, attempt to

restore consistency by throwing out a few tuples. In other words, it may not be necessary to throw

out all tuples associated with an inconsistency. Eliminating a few may su�ce. There may be multiple

ways of determining which tuples to eliminate. The choice operators would non-deterministically pick

one.

Based on these new operators, we de�ne, in addition to the extension of SQL, an algebra and a

41

}

In the case of Skeptical Select, however, the result of performing a Skeptical Select on the

di�erence of a and b results in a superset of the result of independently performing the Skeptical Select

on a and b and then subsequently taking the di�erence.

Property 24 �

s1

a � �

s1

b � �

s1

(a� b)

Proof : Let t be a tuple which satis�es the selection criteria. Then :

1. (t =2 a) �! (t =2 �

s1

a� �

s1

b) and (t =2 �

s1

(a� b))

2. (t 2 a) and (t =2 b) and t is not involved in any constraint violation �! (t 2 �

s1

a � �

s1

b) and

(t 2 �

s1

(a� b))

3. (t 2 a) and (t =2 b) and t is involved in a \Type 1" constraint violation �! (t =2 �

s1

a��

s1

b) and

(t =2 �

s1

(a� b))

4. (t 2 a) and (t =2 b) and t is not involved in a \Type 1" constraint violation and

t is involved in \Type 2" constraint violations in a�! (t =2 �

s1

a��

s1

b) but (tmay be 2 �

s1

(a�b))

5. (t 2 a) and (t 2 b) and t is not involved in any constraint violation �! (t =2 �

s1

a � �

s1

b) and

(t =2 �

s1

(a� b))

6. (t 2 a) and (t 2 b) and t is involved in a \Type 1" constraint violation �! (t =2 �

s1

a��

s1

b) and

(t =2 �

s1

(a� b))

7. (t 2 a) and (t 2 b) and t is not involved in a \Type 1" constraint violation and

t is involved in \Type 2" constraint violations in a�! (t =2 �

s1

a��

s1

b) but (tmay be 2 �

s1

(a�b))

8. (t 2 a) and (t 2 b) and t is not involved in a \Type 1" constraint violation and

t is involved in \Type 2" constraint violations in b but not in a �! (t 2 �

s1

a � �

s1

b) and(t 2

�

s1

(a� b))

Hence, �

s1

a � �

s1

b � �

s1

(a� b) holds.

2

9 Related Work

There has been a great deal of work on multidatabases. In this section, we will quickly review and

relate our work with existing methods in this �eld.

First and foremost, our work extends work by Grant, Litwin, Roussopolous and Sellis [3] who

developed a calculus and algebra based on a query language called called MSQL (due to Litwin et. al.

[9]) that extends SQL and which can be used to query multiple relational databases. This approach has

the advantage that it extends, in a simple and easy to use way, the existing standard database query

language, viz. SQL. In the same spirit, our work too can be viewed as a query language with certain

new constructs that explain what to do when inconsistencies occur when integrating information from

multidatabases. These methods to deal with inconsistencies in the presence of integrity constraints

distinguish our work from that presented in [3]. Our work too builds upon SQL, and thus enjoys the

ease of expression present in SQL.

40

}

In the case of Skeptical Select, the equality does not hold; however, the intersection of applying

Skeptical Selects on a and b independently is a subset of the result of applying Skeptical Select to

the intersection of a and b.

Property 22 �

s1

a

T

�

s1

b � �

s1

(a

T

b)

Proof : Let t be a tuple which satis�es the selection criteria.Then :

1. (t =2 a) or (t =2 b) �! (t =2 �

s1

a

T

�

s1

b) and (t =2 �

s1

(a

T

b))

2. (t 2 a) and (t 2 b) and t is not involved in any constraint violation �! (t 2 �

s1

a

T

�

s1

b) and

(t 2 �

s1

(a

T

b))

3. (t 2 a) and (t 2 b) and t is involved in a \Type 1" constraint violation �! (t =2 �

s1

a

T

�

s1

b) and

(t =2 �

s1

(a

T

b))

4. (t 2 a) and (t 2 b) and t is not involved in a \Type 1" constraint violation and

t is involved in \Type 2" constraint violations in both a; b �! (t =2 �

s1

a

T

�

s1

b) but (t may be

2 �

s1

(a

T

b))

5. (t 2 a) and (t 2 b) and t is not involved in a \Type 1" constraint violation and

t is involved in \Type 2" constraint violations in either a or b �! (t =2 �

s1

a

T

�

s1

b) but (t may

be 2 �

s1

(a

T

b))

Hence, �

s1

a

T

�

s1

b� �

s1

(a

T

b) holds. 2

The following result is a standard result linking and joins and di�erences and is stated for the sake

of completeness.

Property 23 �

n1

(a� b) = �

n1

a � �

n1

b

2

When we attempt to replace Naive Selects by Choice Selects, then the equality does not hold as

is seen from the following example.

Example 8.10 To see that it may be the case that �

c1

a � �

c1

b 6= �

c1

(a� b) consider:

a

Name Position

John Asst. Manager

John Manager

b

Name Position

John Manager

James Manager

Let �

1

= True (i.e. there are no selection criteria), and let the constraint set be

�

1

: f(((Name(t) = Name(u)) & (t 6= u)) ! panic); (((Position(t) = Position(u)) & (t 6=

u)) ! panic)g.

The following is a possible answer set :

�

c1

a � �

c1

b = f<John,Manager>g

�

c1

(a� b) = f<John,Asst. Manager>g

39

The following result is from standard database theory and is stated here for the sake of complete-

ness.

Property 18 �

n1

(a

S

b) = �

n1

a

S

�

n1

b

2

However, when we consider Choice Select instead ofNaive Select in the above relationship, neither

inclusion holds, and the only statement that can be made is the following.

Property 19 j�

c1

(a

S

b)j � j�

c1

a

S

�

c1

bj

Proof : All \Type 2" violations in a and in b are also contained in a

S

b. In addition to these, a

S

b

may contain additional \Type 2" violations. Hence, the cardinality of the left-hand side of the above

expression is smaller than the cardinality of the right-hand side.

2

In the case of Skeptical Selects though, it turns out that the result of applying the Skeptical Select

operator to a

S

b is a subset of the result of �rst applying the Skeptical Select operator to a, then

applying it to b, and the taking the union of the two results.

Property 20 �

s1

(a

S

b) � �

s1

a

S

�

s1

b

Proof : All constraint violations in a and in b are also contained in a

S

b; in addition to these, a

S

b

may contain extra violations. Hence it is true that the cardinality of the left-hand side is smaller than

the cardinality of the right-hand side. Furthermore since there exists only one LMCAS semantics for

Skeptical Select, it is also true that the subset property holds in this case. 2

The following result is a standard result from database theory, stated for the sake of completeness.

Property 21 �

n1

(a

T

b) = �

n1

a

T

�

n1

b

2

However, the above equality does not hold in the case of Choice Selects as shown in the following

example.

Example 8.9 To see that it may be the case that �

c1

a

T

�

c1

b 6= �

c1

(a

T

b) consider the following

relations:

a

Name Position

John Asst. Manager

John Manager

b

Name Position

John Asst. Manager

John Manager

Let �

1

= True (i.e. there exists no selection criterion), and let the constraint set be

�

1

: f((Name(t) = Name(u)) & (t 6= u)) ! panicg.

Some possible answer sets are:

�

c1

a

T

�

c1

b = fg

�

c1

(a

T

b) = f<John,Manager>g

or

�

c1

a

T

�

c1

b = f<John,Asst. Manager>g

�

c1

(a

T

b) = f<John,Manager>g

38

}

As Naive Join is identical to standard join, we state, for the sake of completeness thatNaive Join

is distributive. The impact of this result is that if the relation c is small, and j(a 1

n2

c)j << jaj and/or

j(b 1

n2

c)j << jbj then it is better to compute (a 1

n1

b) 1

n2

c by distributing c over the inner join,

and computing the equivalent expression (a 1

n2

c) 1

n1

(b 1

n2

c) instead.

Property 15 (a 1

n1

b) 1

n2

c = (a 1

n2

c) 1

n1

(b 1

n2

c)

2

A similar property holds for the distribution of the Skeptical Join over Naive Join.

Property 16 Suppose the join criteria between c and (a 1 b) can also be applied to the join operations

(a 1 c) and (b 1 c) and suppose there are no inter-tuple constraints which uses attributes from both a

and b. Then: (a 1

n1

b) 1

s2

c = (a 1

s2

c) 1

n1

(b 1

s2

c)

Proof : (a 1

n1

b) 1

s2

c = �

s2

((a 1

n1

b) 1 c)

= �

s2

(a 1

n1

b 1 c)

= �

s2

�

n1

(a 1 b 1 c)

We have already proven that �

s2

�

n1

� �

n1

�

s2

, but here we are facing a special case of it. Now, the

select operations do not have any selection criterion, i.e. they are used only in enforcing the integrity

constraints on the results of the joins. A Naive Select with no selection criterion is nothing but a

NULL operation. Hence we have:

= �

s2

((a 1 c) 1 (b 1 c))

= (a 1

s2

c) 1 (b 1

s2

c)

= �

n1

((a 1

s2

c) 1 (b 1

s2

c))

= (a 1

s2

c) 1

n1

(b 1

s2

c)

We here assume that all the \Type 2" violations can be detected just by performing the Skeptical Join

operations with the initial relations (i.e. a and b). This means that, there are no inter-tuple constraints

which uses attributes from both a and b, hence performing the join operation (a 1 b) adds no extra

\Type 2" violations.

2

The following result shows that the above proposition holds if we replace Skeptical Joins by

Choice Joins.

Property 17 With the same assumptions as in the preceding proposition: (a 1

n1

b) 1

c2

c = (a 1

c2

c) 1

n1

(b 1

c2

c)

(a 1

n1

b) 1

c2

c = �

c2

((a 1

n1

b) 1 c)

= �

c2

(a 1

n1

b 1 c)

= �

c2

�

n1

(a 1 b 1 c)

= �

c2

((a 1 c) 1 (b 1 c))

= (a 1

c2

c) 1 (b 1

c2

c)

= �

n1

((a 1

c2

c) 1 (b 1

c2

c))

= (a 1

c2

c) 1

n1

(b 1

c2

c)

2

37

Let the constraint set for 1

s2

(i.e. �

2

) be

�2 : f((Name(t) = Name(u)) & (t 6= u)) ! panicg.

Then,

a 1

n1

(b 1

s2

c) = fg

(a 1

n1

b) 1

s2

c = f<John,60K,32 >g

}

Example 8.5 This example shows that it may be the case that a 1

n1

(b 1

c2

c) 6= (a 1

n1

b) 1

c2

c. To

see this, reconsider the preceding example with the following change :

a

Salary

60K

70K

Then some possible answers to the queries are:

a 1

n1

(b 1

c2

c) = fg

(a 1

n1

b) 1

c2

c = f<John,60K,32 >g

or

a 1

n1

(b 1

c2

c) = f<John,70K,32 >g

(a 1

n1

b) 1

c2

c = f<John,60K,32 >g

It is easy to see that equality cannot be guaranteed.

}

Example 8.6 This example shows that it may be the case that a 1

c1

(b 1

s2

c) 6= (a 1

c1

b) 1

s2

c.

Example 8.4 works for this case too. The following is an answer to the queries:

a 1

c1

(b 1

s2

c)= fg

(a 1

c1

b) 1

s2

c = f<John,60K,32 >g

}

Example 8.7 This example shows that it may be the case that a 1

c1

(b 1

c2

c) 6= (a 1

c1

b) 1

c2

c.

The counterexample of example 8.5 is applicable to this case. The following is a possible answer to

the queries:

a 1

c1

(b 1

c2

c) = f<John,70K,32 >g

(a 1

c1

b) 1

c2

c = f<John,60K,32 >g

}

Example 8.8 To see that it may be the case that a 1

s1

(b 1

s2

c) 6= (a 1

s1

b) 1

s2

c, the case of

Example 8.4 may be reconsidered. The following is the answer to the queries:

a 1

s1

(b 1

s2

c)= fg

(a 1

s1

b) 1

s2

c = f<John,60K,32 >g

36

Property 13 If �

1

(t) = �

1

(k) ^ �

1

(l) where t = k � l and k 2 a and l 2 b then �

n1

(a 1

c2

b) �

(�

n1

a) 1

c2

(�

n1

b).

Proof : With the assumption that the selection criteria can also be applied to the initial relations, we

have the following:

t 2 �

n1

(a 1

c2

b) �! (9u)(9v)(8c��

2

)(a(u) ^ b(v) ^

�

1

(t) ^ (t = u 1 v) ^

(chosen (t; c) _

:(9j)(9k)(9l)(a(k) ^ b(l) ^

(j = k 1 l) ^

^ (t 6= j) ^ :satisfy

2

(t; j; c))))

�! (9u)(9v)(8c��

2

)(a(u) ^ b(v) ^

�

1

(u) ^ �

1

(v) ^ (t = u 1 v) ^

(chosen (t; c) _

:(9j)(9k)(9l)(a(k) ^ b(l) ^

(j = k 1 l) ^

^ (t 6= j) ^ :satisfy

2

(t; j; c))))

�! (9u)(9v)(8c��

2

)(a(u) ^ b(v) ^

�

1

(u) ^ �

1

(v) ^ (t = u 1 v) ^

(chosen (t; c) _

:(9j)(9k)(9l)(a(k) ^ b(l) ^

�

1

(k) ^ �

1

(l) ^ (j = k 1 l) ^

^ (t 6= j) ^ :satisfy

2

(t; j; c))))

�! (�

n1

a) 1

c2

(�

n1

b)

2

For the sake of completeness, we remark that Naive Joins (which are really the same as standard

joins) have the associativity property.

Property 14 a 1

n1

(b 1

n2

c) = (a 1

n1

b) 1

n2

c

2

However the following examples shows that when one of the cascaded join operators is Skeptical

or Choice, it is not possible to alter the oder of execution.

Example 8.4 To see that it may be the case that a 1

n1

(b 1

s2

c) 6= (a 1

n1

b) 1

s2

c consider the

following:

a

Salary

60K

b

Name Salary

John 60K

John 70K

c

Name Age

John 32

35

(t = k � l) ^ (k 2 a) ^ (l 2 b))

 ! t 2 (�

n1

a) 1

n2

(�

n1

b)

2

When we attempt to replace the naive join in the preceding result with a Skeptical Join instead,

we observe that the result does not hold.

Example 8.3 To see this consider the following:

a

Name Position

John Asst. Manager

John Manager

b

Position Salary

Asst. Manager 70K

Manager 100K

Let �

1

= (Position(t) = \Manager") and let the constraint set be

�

1

: f(((Name(t) = Name(u)) & (t 6= u)) ! panic)g.

The followings are the answer sets for the corresponding queries :

�

n1

(a 1

s2

b) = fg

(�

n1

a) 1

s2

(�

n1

b) = f< John;Manager; 100K >g

}

However, it is true that the result of performing the select operation after taking the Skeptical Join

of relations a and b is a subset of the result of �rst performing the selections on a and b, and then

taking the Skeptical Join of the resulting relations. This is established below.

Property 12 If �

1

(t) = �

1

(k) ^ �

1

(l) where t = k � l and k 2 a and l 2 b then �

n1

(a 1

s2

b) �

(�

n1

a) 1

s2

(�

n1

b).

Proof : When the skeptical operators are applied �rst it is possible to omit tuples due to the viola-

tions; on the other hand, applying the naive operators �rst may remove some of the tuples involved

in these violations from the database so that the result may be larger than it is in the former case.

More formally :

t 2 �

n1

(a 1

s2

b) �! (9u)(9v)(8c��

2

)(a(u) ^ b(v) ^ �

1

(t) ^

(t = u 1 v) ^ satisfy

1

(t; c) ^

:((9k)(9y)(9z)(a(y) ^ b(z) ^ (k = y 1 z) ^

(:satisfy

2

(t; k; c)) ^ (t 6= k)))

�! (9u)(9v)(8c��

2

)(a(u) ^ b(v) ^ �

1

(t) ^

(t = u 1 v) ^ satisfy

1

(t; c) ^

:((9k)(9y)(9z)(a(y) ^ b(z) ^ �

1

(k) ^ (k = y 1 z) ^

(:satisfy

2

(t; k; c)) ^ (t 6= k)))

�! (9u)(9v)(8c��

2

)(a(u) ^ b(v) ^ �

1

(u) ^ �

1

(v) ^

(t = u 1 v) ^ satisfy

1

(t; c) ^

:((9k)(9y)(9z)(a(y) ^ b(z) ^ �

1

(y) ^ �

1

(z) ^ (k = y 1 z) ^

(:satisfy

2

(t; k; c)) ^ (t 6= k)))

�! t 2 (�

n1

a) 1

s2

(�

n1

b)

2

A result analogous to the preceding holds when we consider Choice Join instead of Skeptical Join.

34

Property 8 If the selection criterion � applies to the relation produced by a projection operation,

then
�

A

1

�

n2

= �

n2

�

A

1

.

t 2
�

A

1

�

n2

 ! (t = k[A

1

] ^ �(k)) ! t 2 �

n2

�

A

1

2

The preceding property is not true when we consider Skeptical Select in place of the Naive Select

considered above. However, it is indeed the case that in cases where it still makes sense to apply a

selection criterion w.r.t. the relation resulting from a project, the result of applying a Skeptical Select

followed by a project is a subset of the result of applying a project operation �rst followed by the

Skeptical Select. As a consequence, it may be bene�cial, for query optimization purposes, to �rst

perform the project, followed by the selection.

Property 9 If the selection criterion � applies to the relation produced by a projection operation,

then
�

A

2

�

s1

� �

s1

�

A

2

.

Proof : If there are no violations then the operation is equivalent to cascaded projection andNaive

Select operations. We have already proven that Naive Select and projection operators commute.

In the case of a violation, on the other hand, if we perform projection �rst, it may be possible

that the violation is prevented. Hence the result will be a superset of
�

A

2

�

s1

which fails to prevent the

violation.

2

The following result says that the same situation applies when we consider Choice Selects instead

of Skeptical Selects.

Property 10 If the selection criterion � applies to the relation produced by a projection operation,

then
�

A

2

�

c1

� �

c1

�

A

2

.

Proof : If there are no \Type 2" violations then the operation is equivalent to cascaded projection

and Naive Select operations. We have already proven that Naive Select and projection operators

commute.

In the case of a \Type 2" violation, on the other hand, if we perform projection �rst, it may be possible

that the violation is prevented. Hence the result will be a superset of
�

A

2

�

s1

which fails to prevent the

violation.

2

The following result says that when we wish to execute select operations on the result ofNaive Join

operations, then this is the same as �rst performing the Naive Select operations on the relations being

joined, and then performing the Naive Join. The latter approach of doing the join on the (smaller)

derived relations obtained after executing the Naive Select operations will lead to greater e�ciency,

and hence, when performing query optimizations, it is better to rewrite equations of the form shown

on the left hand side into the form shown on the right hand side.

Property 11 If �

1

(t) = �

1

(k) ^ �

1

(l) where t = k � l and k 2 a and l 2 b, then �

n1

(a 1

n2

b) =

(�

n1

a) 1

n2

(�

n1

b).

Proof : t 2 �

n1

(a 1

n2

b) ! (�

1

(t) ^ (t = k � l) ^ (k 2 a) ^ (l 2 b))

 ! (�

1

(k) ^�

1

(l) ^

33

Proof : In this case, since, LMCAS

�

is non-monotonic for Choice Select, it is not possible to satisfy

the equality. Using properties 3a and 3b of LMCAS, we have the following: if we apply Choice Select

�rst and Naive Select next, then the semantics S will be equal to a subset of the LMCAS

�

of the

Choice Select. On the other hand, if we apply Naive Select �rst then some of the tuples may get

removed from the relation, hence due to 3a and 3b, the new semantics S

0

will be a superset (not

necessarily proper) of S.

2

In situations where either there are no type 2 constraints speci�ed, or where type 2 constraints are

speci�ed, but not violated, the following result says that the result of performing a Skeptical Select

�rst and then a Choice Select is a subset of the the result of performing a Choice Select �rst and

then a Skeptical Select.

Property 6 If either there are no type 2 constraints speci�ed, or where type 2 constraints are speci�ed,

but not violated, then �

c1

�

s2

� �

s2

�

c1

.

Proof : If there are no \Type 2" violations, the expression reduces to �

n1

�

s2

� �

s2

�

n1

which is already

proven. In the preceding proposition, if type 2 violations exist, then Choice Select and Skeptical Select

may not commute as shown in the following example, i.e. it is possible that �

c1

�

s2

6= �

s2

�

c1

.

Name Salary Age Position

John 60K 32 Asst. Manager

John 70K 35 Manager

Peter 100K 45 Manager

Let �

1

= True and �

2

= True, i.e. there are no selection criteria. Let the constraint set for �

c1

be

�

1

: f((Name(t) = Name(u)) & (t 6= u)) ! panicg. Note that this is a \Type 2" constraint.

And let the constraint set for �

s2

include another \Type 2" constraint

�

2

: f((Position(t) = \Manager" ^ Position(u) = \Manager") & (t 6= u)) ! panicg.

Then, the following answer sets are possible:

�

c1

�

s2

= f<John,60K,32 >g

�

s2

�

c1

= f<John,60K,35 >;<Peter,100K,45 >g

or,

�

c1

�

s2

= f<John,60K,32 >g

�

s2

�

c1

= fg.

2

The following (straightforward) properties says that a naive (resp. skeptical, resp. choice) join

operation can be thought of as a naive (resp. skeptical, resp. choice) select applied after an ordinary

join. In fact, a Naive Join is just an ordinary join.

Property 7 The followings hold:

(a 1

n1

b) = �

n1

(a 1 b).

(a 1

s1

b) = �

s1

(a 1 b).

(a 1

c1

b) = �

c1

(a 1 b).

2

The following result says that in cases where it still makes sense to apply a selection criterion w.r.t.

the relation resulting from a project, the project and Naive Select operators commute.

32

Let �

1

= True and �

2

= True (That is there exists no selection criteria) Let the constraint set for

�

c1

be

�

1

: f((Name(t) = Name(u)) & (t 6= u)) ! panicg. Note that this is a \Type 2" constraint.

And let the constraint set for �

c2

include another \Type 2" constraint

�

2

: f((Position(t) = \Manager" ^ Position(u) = \Manager") & (t 6= u)) ! panicg.

Then, the following is a valid set of answers for the above queries:

�

c1

�

c2

= f<John,60K,32 >;<Peter,100K,45 >g

�

c2

�

c1

= f<John,70K,35 >g

}

In situations where either there are no type 2 constraints speci�ed, or where type 2 constraints

are speci�ed, but not violated, the following result says that the order of Naive and Skeptical Select

operators may be interchanged.

Property 2 If either there are no type 2 constraints speci�ed, or where type 2 constraints are speci�ed,

but not violated, then �

n1

�

s2

= �

s2

�

n1

.

Proof : If there are no constraint violations in the Skeptical Select then both are equivalent to

cascaded Naive Select operations. We have already proven that Naive Select operators commute.

Furthermore, if there are only \Type 1" violations, then the violating tuples will be eliminated in the

�

n1

�

s2

computation as well as in the �

s2

�

n1

computation, and hence, the computations are equivalent.

2

The preceding proposition applies when type 2 violations are not encountered. The following

result says that even if such violations do occur, the result of performing a Skeptical Select �rst

and then a Naive Select is a subset of the the result of performing a Naive Select �rst and then a

Skeptical Select.

Property 3 �

n1

�

s2

� �

s2

�

n1

.

Proof : If we apply �

n1

�rst, and if (t

1

; t

2

) is pair of tuples involved in a constraint violation, then it

is possible that only one of this pair (say t

1

) survives, and that this tuple goes into the answer set.

However, if we apply �

s2

�rst, the violation will be observed by the Skeptical Select operator and

both t

1

; t

2

will be omitted from the answer set. Therefore the above property holds.

2

In situations where either there are no type 2 constraints speci�ed, or where type 2 constraints

are speci�ed, but not violated, the following result says that the order of Naive and Choice Select

operators may be interchanged.

Property 4 If either there are no type 2 constraints speci�ed, or where type 2 constraints are speci�ed,

but not violated, then �

n1

�

c2

= �

c2

�

n1

.

Proof : Similar to the proof of �

n1

�

s2

= �

s2

�

n1

.

2

The preceding proposition applies when type 2 violations are not encountered. The following result

says that even if such violations do occur, the result of performing a Naive Select �rst and then a

Choice Select is a subset of the the result of performing a Choice Select �rst and then a Naive Select.

Property 5 �

n1

�

c2

� �

c2

�

n1

.

31

equivalents of the algebraic operators to prove these properties. In many cases, these properties will

lead to strategies for optimizing queries. Before we proceed to study the various properties, we set

out certain basic assumptions and notation.

� LMCAS

�

be the semantics of the operators,

� a, b, c, d, e and f be relations,

� �

1

and �

2

be selection criteria of the corresponding operators,

� �

1

and �

2

be constraint sets of the corresponding operators,

� k, j, l, t, u, y and z be tuple variables,

� c be a constraint variable,

� and the operators use the same set of databases.

In the sequel, given two algebraic operators op

1

; op

2

, op

1

op

2

means: apply op

2

�rst, and then apply

op

1

.

As Naive Select is the same as ordinary select, it is easy to see that these operators commute;

and hence, when applying two Naive Select operators one after the other, it may be better to apply

the operator that returns \fewer" tuples �rst.

Property 1 �

n1

�

n2

= �

n2

�

n1

2

The following example shows that Skeptical Select operators do not commute.

Example 8.1 �

s1

�

s2

6= �

s2

�

s1

Name Salary Age Position

John 60K 32 Asst. Manager

John 70K 35 Manager

Let �

1

= (Age(t) > 33) and �

2

= (Salary(t) < 50K), and let the constraint set be

�

1

: f((Name(t) = Name(u)) & (t 6= u)) ! panicg. Note that this is a \Type 2" constraint.

Then

�

s1

�

s2

= fg

�

s2

�

s1

= f<John,70K,35 >g

}

The following example shows that the Choice Select operation does not commute either, and

hence, when computing algebraic expressions involving multiple Choice Selects, we must perform

them in the given order.

Example 8.2 �

c1

�

c2

6= �

c2

�

c1

Name Salary Age Position

John 60K 32 Asst. Manager

John 70K 35 Manager

Peter 100K 45 Manager

30

2. For Skeptical Select:

LMCAS is non-monotonic. This follows directly from the fact that LMCAS exhibits un-

predictable when new vertices are added to the graph associated with the query. Therefore,

LMCAS

�

is non-monotonic too.

3. For Choice Select:

In this case, LMCAS exhibits partial monotonicity properties. If the newly inserted tuple

satis�es the selection criteria expressed in the query, then this corresponds to adding a new

vertex to the graph (and possibly new edges between new vertex and the old vertices). Each of

the new LMCASs' is a superset of an old LMCAS.

However, the converse is not true, i.e. there may be old LMCAS's that cannot be \expanded"

to a corresponding new LMCAS).

For this reason, it follows that LMCAS

�

is non-monotonic. It is not possible to guarantee that

the new LMCAS

�

after the addition of a new vertex (and possibly new edges between new

vertex and the old vertices), will be a superset of the old one. Nor can this be guaranteed in

the case of tuple (i.e. vertex) deletions. However, in the case of tuple (vertex) deletions, we can

make the following statements:

(a) If the removed vertex was not in the old LMCAS

�

, then the new LMCAS

�

is equivalent

to the old LMCAS

�

.

(b) If the removed vertex was in the old LMCAS

�

, then we can pick the new semantics to be

a superset (not necessarily proper) of the remaing part of the old LMCAS

�

.

Figure 3, shows that the removal of the vertex c from the graph leads to an increase in

the number of LMCAS's. Initially there was only one LMCAS (= LMCAS

�

); however,

after the removal of the vertex c, this number increases to two. Either of these LMCAS's

can be chosen to be the new LMCAS

�

. We assume here that, LMCAS

1

will be chosen as

the new LMCAS

�

, because it is a equal to the remaing part of the old LMCAS

�

.

LMCAS

LMCAS2

a b

d e

1

a b c

d e

LMCAS

Figure 3: Vertex c is removed from the initial graph

8 Some Properties of the ICBM-Algebra

In this section we study various algebraic properties (such as commutativity, associativity etc.) of the

ICBM-Algebra that we have developed in this paper. When convenient, we will use ICBM-Calculus

29

We observe that for the Naive Select and the Skeptical Select operators LMCAS

�

is equal to

the only LMCAS. We now study various properties of the LMCAS's and LMCAS

�

semantics for

choice select.

7.4 Properties of LMCAS and LMCAS

�

7.4.1 Complexity

An important property of any semantics is its complexity. It is well known that �nding a \largest

independent set" of a graph is an NP-Complete problem. As LMCAS's are de�ned directly in terms

of the largest independent sets of graphs, it follows immediately that �nding an LMCAS of a given

Choice Select query is also NP-Complete (as is �nding LMCAS

�

).

7.4.2 Update properties-Size of the LMCAS

In this section, we briey discuss how the size of an LMCAS varies when insertions are made to one

of the databases in our multidatabase system.

Suppose Q is a choice query involving relation R Adding a new tuple to the relation R may have

two e�ects on the graph associated with this query:

� The graph stays the same because the tuple does not satisfy the selection criteria expressed in

the query, or

� A new vertex is added to the graph, i.e. the tuple satis�es the selection criteria, and the new

vertex represents this new tuple.

In the latter case, the new tuple may lead to new \Type 2" inconsistencies with already existing tuples.

These new inconsistencies will be manifest themselves in the graph associated with the query in the

form of new edges from the tuple to (old) tuples.

1. For Naive Select and Choice Select:

LMCAS is non-decreasing. That is, when you add a new vertex to the graph (and possibly

new edges between new vertex and the old vertices), the size of the LMCAS does not decrease.

Hence LMCAS

�

is also non-decreasing.

2. For Skeptical Select:

LMCAS is unpredictable. That is, when you add a new vertex to the graph (and possibly new

edges between new vertex and the old vertices), the size of the LMCAS may increase, decrease

or stay the same. Hence LMCAS

�

is also unpredictable.

7.5 Update properties-Monotonicity of the LMCAS

IN this section, we briey study monotonicity properties of the LMCAS-semantics. Suppose we have

inserted a new tuple, as before, into a relation R that occurs in a query Q, and suppose this new tuple

satis�es the selection criteria speci�ed in query Q.

1. For Naive Select:

LMCAS is monotonic in this case because the addition of the new tuple causes the addition of

a new vertex to the graph (and possibly new edges between the new vertex and old vertices). It

is easy to see that the new LMCAS is a superset of the old LMCAS. Hence LMCAS

�

is also

monotonic.

28

1 2 3 4

5 6 7 8

Figure 2: Graph G

The corresponding graph G is in Figure 2. Note that tuples 1 and 3 violate the second constraint,

and hence, they are connected by an edge in the graph. Similarly, tuples 7 and 8 have the same

violation and they are connected as well. The pairs 4-8 and 2-6, on the other hand, violate the �rst

constraint. Hence, these pairs are connected too.

From this graph, it is easy to see that the possible MCAS' are: f1; 2; 4; 5; 7g, f1; 2; 5; 8g, f1; 4; 5; 6; 7g,

f1; 5; 6; 8g, f3; 2; 4; 5; 7g, f3; 2; 5; 8g, f3; 4; 5; 6; 7g and f3; 5; 6; 8g.

The following is the formal de�nition for the MCAS for the choice operator.

De�nition 7.7 (MCAS � Choice) MCAS for the Choice Select operator is any \maximal indepen-

dent set" [4] of the resulting graph (follows directly from the de�nition of the \maximal independent

set"). That is, MCAS is a subset of V such that any edge in E is incident on at most one vertex in

MCAS and such that you can not add another vertex to the set without violating this property.

7.2 LMCAS

As can be seen in the above example, there may be many MCAS's associated with a choice query

and the cardinality of these may di�er.

De�nition 7.8 (LMCAS) We de�ne an LMCAS (Largest MCAS) to be an MCAS of the largest

possible cardinality.

Example: Hence, the LMCAS' for our example are: f1; 2; 4; 5; 7g, f1; 4; 5; 6; 7g, f3; 2; 4; 5; 7g and

f3; 4; 5; 6; 7g.

For the Naive Select and the Skeptical Select operators LMCAS is identical toMCAS, because

there is only one MCAS in each of these two cases.

7.3 LMCAS

�

De�nition 7.9 (LMCAS

�

) There may be more than one LMCAS of a query. Hence we will assume

that one of the LMCAS's is chosen in some arbitrary, but �xed manner, to reect the \semantics of

the select operation". We call this set \LMCAS

�

". What this means is that for our purposes, we

will assume that there is some agreed upon method to select an LMCAS from the set of LMCASs

associated with a given query.

27

Informally, MCAS for the Choice Select operator is a violation-free set, consisting of the tuples

that satisfy the selection criteria and that fall in one of the following categories:

De�nition 7.4 (0-safe tuples:) do not cause any integrity constraint violation.

De�nition 7.5 (1-safe tuples:) cause only intra-tuple (\Type 1") violations.

De�nition 7.6 (2-safe tuples:) cause inter-tuple (\Type 2") integrity constraint violations, but are

\chosen" by all the \Type 2" constraints they have violated.

As usual, an MCAS must satisfy the maximality condition (i.e. any tuple addition to this set will

either cause a violation of the selection criteria or will lead to a violation of an integrity constraint of

\Type 2").

We may now de�ne MCAS for the choice operator in a formal graph theoretical framework.

� Let R

�

be the subset of the original relation which satis�es the selection criteria. Note that

MCAS is a subset of R

�

.

� Let G be an undirected graph (V;E) where the vertices in V are named by the tuples of R

�

and (v

1

; v

2

) is in E i� v

1

and v

2

violate a constraint \Type 2" together. Hence, at most one of

these two tuples must appear in the MCAS; otherwise there will be an inter-tuple violation in

the result.

Notice that in the graph G two vertices are connected by a \single" edge i� the corresponding

tuples lead to at least one \Type 2" violation.

Example: Let us suppose that a relation called Accounts is distributed in two databases d

1

and

d

2

as shown below:

A (d

1

)

Account # Client Name Tupleid

010386 Leonard 1

283642 Sally 2

534861 Leonard 3

010098 Kate 4

A (d

2

)

Account # Client Name Tupleid

236465 Peter 5

283642 Mary 6

936324 Jack 7

010098 Jack 8

Let the constraint set be

� : f((Account#(t) = Account#(u)) & (ClientName(t) 6= ClientName(u))) ! panic;

((ClientName(t) = ClientName(u)) & (Account#(t) 6= Account#(u))) ! panicg

26

not hold, i.e. the ICBM-Calculus presented in this section is more powerful than the ICBM-Algebra

presented earlier.

To see see this, observe that the following safe ICBM-Calculus expression E

c

does not have any

corresponding ICBM-Algebra expression :

E

c

= ft j ((9c 2 C

K

)(rfd

1

; d

2

g(t) ^ satisfy

1

(t; c)) f;; ;g(t) g

The reason why this ICBM-calculus formula cannot be captured with the ICBM-algebra is that it

involves an existential quanti�cation over integrity constraints and the algebra always assumes a

universal quanti�cation over all integrity constraints speci�ed in a query (algebraic expression).

7 LMCAS - Largest Maximally Consistent Answer Set

In the previous sections we have looked at di�erent semantics for the select and join operations in

multidatabases, and we have proposed new algebraic operators to deal with these new semantics.

We would like to study di�erent properties of the ICBM-algebra in order to be able to optimize

queries by the reformulation of algebraic expressions into computationally less formidable forms. How-

ever, in order to do this, we need to know more about the answers we expect from the execution of

the operators. This is the subject of this section { the next section will contain results on properties

(commutativity, associativity, etc.) of the ICBM-algebra.

7.1 MCAS

The structure of the answer sets of Naive and Skeptical operators are straightforward. On the other

hand, because of the nondeterministic characteristic of the Choice operators, it is not very clear which

tuples will go into the answer set and which ones will be omited.

We have already stated in the previous sections, that Skeptical Join and Choice Join operators

can be expressed in terms of ordinary join operators and the corresponding select operators. Hence, it

will be enough for us to study the answers of the select operators in more detail. Then, it is possible

to use these results to determine the expected behavior of the join operators.

We de�ne MCAS (Maximally Consistent Answer Set) for a select operation as follows :

De�nition 7.1 (MCAS) A set of tuples A is a MCAS for a selection query � i� every tuple in

A satis�es the selection criteria and A is consistent with respect to the constraint semantics of the

selection operator; furthermore, any tuple added to this set will either cause a violation of the selection

criteria or will lead to a violation of an integrity constraint.

De�nition 7.2 (MCAS �Naive) Since there are no integrity constraints speci�ed by the Naive

Select operator, in this case, the MCAS is simply the set of tuples which satisfy the selection criteria.

De�nition 7.3 (MCAS � Skeptical) For the Skeptical Select operator, the MCAS is the set of

tuples which satisfy the selection criteria minus those that are involved in an integrity constraint

violation.

MCAS for the Choice Select operator is more tricky, because in this case, for each \pair" of

tuples leading to a \Type 2" integrity constraint violation, we keep at most one tuple in the result,

and di�erent choices of tuples may lead to di�erent answer sets. Before presenting the formal de�nition

of the MCAS for the Choice Select operator, we will present some informal discussion.

25

7. Choice Join

1

c

(D

R

; D

1

; E

1

; D

2

; E

2

; C

K

)

�! E

1

[D

1]

j= d ^

E

2

[D

2

] j= e ^

a = d 1 e ^

8

b

8

c�C

K

[(E

1

[D

1

] j= f ^

E

2

[D

2

] j= g ^

b = f 1 g ^

notsatisfy

2

(a; b; c)) ! chosen(a; c)]

�! F

0

c

= (9u)(9v)(8c�C

K

)(F

1

fD

D

1

; ;g(u) ^ F

2

fD

D

2

; ;g(v) ^

t[1] = u[1] ^ : : :^ t[n] = u[n] ^

t[n + 1] = v[1] ^ : : :^ t[n +m] = v[m])^

(chosen (t; c) _

:(9j)(9k)(9l)(F

1

fD

D

1

; ;g(k) ^ F

2

fD

D

2

; ;g(l) ^

j[1] = k[1] ^ : : :^ j[n] = k[n] ^

j[n+ 1] = k[l] ^ : : :^ j[n+m] = l[m])^

^ (t 6= j) ^ :satisfy

2

(t; j; c))))

�! F

c

= F

0

c

f;; D

R

g(t)

Here, n is the number of attributes in tuple u and m is the number of attributes in tuple v.

8. Union

S

(D

R

; D

1

; E

1

; D

2

; E

2

)

�!E1[D

1

] j= a _ E2[D

2

] j= a

�! F

0

c

= F

1

fD

1

; ;g(t) _ F

2

fD

2

; ;g(t)

�! F

c

= F

0

c

f;; D

R

g(t)

9. Intersection

T

(D

R

; D

1

; E

1

; D

2

; E

2

)

�!E1[D

1

] j= a ^ E2[D

2

] j= a

�! F

0

c

= F

1

fD

1

; ;g(t) ^ F

2

fD

2

; ;g(t)

�! F

c

= F

0

c

f;; D

R

g(t)

10. Di�erence

Diff (D

R

; D

1

; E

1

; D

2

; E

2

)

�!E1[D

1

] j= a ^ : (E2[D

2

] j= a)

�! F

0

c

= F

1

fD

1

; ;g(t) ^ :F

2

fD

2

; ;g(t)

�! F

c

= F

0

c

f;; D

R

g(t)

As shown above, for each algebraic operator E

a

, there exists an equivalent tuple calculus expression

of the form:

E

c

= ft j F

c

f;; ;g(t)g

6.2 Safe ICBM Calculus > ICBM-Algebra

In the previous subsection we have shown that for any ICBM-Algebra expression, there exists a

corresponding safe ICBM-Calculus expression. On the other hand, the converse of this property does

24

3. Choice Select

�

c

(D

R

; D

1

; E

1

;�; C

K

)

�! E

1

[D

1

] j= �(a) ^

8

b

8

c�C

K

[(E

1

[D

1

] j= �(b) ^

notsatisfy

2

(a; b; c)) ! chosen(a; c)]

�! F

0

c

= (9u)(8c�C

K

)(F

1

fD

1

; ;g(u) ^ �(u) ^ (t = u) ^

(chosen (u; c) _

:(9v)(F

1

fD

1

; ;g(v) ^ �(v) ^ (u 6= v) ^ :satisfy

2

(u; v; c)))

�! F

c

= F

0

c

f;; D

R

g(t)

4. Projection

� (D

R

; D

1

; E

1

; A

�

)

�! E

1

[D

1

] j= b ^ a = b[A

�

]

�! F

0

c

= (9u)(F

1

fD

1

; ;g(u) ^ (t = u[A

�

])

�! F

c

= F

0

c

f;; D

R

g(t)

5. Naive Join

1

n

(D

R

; D

1

; E

1

; D

2

; E

2

)

�! E

1

[D

1

] j= d ^

E

2

[D

2

] j= e ^

a = d 1 e

�! F

0

c

= (9u)(9v)(F

1

fD

1

; ;g(u) ^ F

2

fD

2

; ;g(v) ^

t[1] = u[1] ^ : : :^ t[n] = u[n] ^ t[n+ 1] = v[1] ^ : : :^ t[n+m] = v[m])

Here, n is the number of attributes in tuple u and m is the number of attributes in tuple v.

6. Skeptical Join

1

s

(D

R

; D

1

; E

1

; D

2

; E

2

; C

K

)

�! E

1

[D

1]

j= d ^

E

2

[D

2

] j= e ^

a = d 1 e ^

8

c�C

K

(:notsatisfy

1

(a; c)) ^

8

b

8

c�C

K

[(E

1

[D

1

] j= f ^

E

2

[D

2

] j= g ^

b = f 1 g ^

notsatisfy

2

(a; b; c)) ! a = b]

�! F

0

c

= (9u)(9v)(8c�C

K

)(F

1

fD

D

1

; ;g(u) ^ F

2

fD

D

2

; ;g(v) ^

t[1] = u[1] ^ : : :^ t[n] = u[n] ^

t[n + 1] = v[1] ^ : : : ^ t[n +m] = v[m])^

satisfy

1

(t; c) ^

:(9j)(9k)(9l)(F

1

fD

D

1

; ;g(k) ^ F

2

fD

D

2

; ;g(l) ^

j[1] = k[1] ^ : : :^ j[n] = k[n] ^

j[n+ 1] = k[l] ^ : : :^ j[n+m] = l[m])^

^ (t 6= j) ^ :satisfy

2

(t; j; c)))

�! F

c

= F

0

c

f;; D

R

g(t)

Here, n is the number of attributes in tuple u and m is the number of attributes in tuple v.

23

6 ICBM-Algebra vs. ICBM-Calculus

In the preceding sections, we have presented a query language, an algebra and a calculus which reects

the semantics of the integrity constraint based multidatabase relational operations. In this section we

are going to compare the calculus and the algebra.

6.1 ICBM-Algebra � Safe ICBM Calculus

In this section, we prove that the ICBM-algebra can be embedded within the ICBM-calculus. The

reader who is not interested in details of the proof may skip ahead to the next section.

Theorem: For any ICBM-Algebra expression E

a

there exists a corresponding safe ICBM-

Calculus expression E

c

.

Proof: Our proof will be based on the number of algebraic operators used in the query.

� Base Case : E

a

contains \0" operators.

1. if E

a

is a constant annotated relation name of the form r[d] where r is any relation in

the multidatabase and d is any subset of the multidatabase, then the formula rfd; ;g(x)

corresponds to r[d].

2. if E

a

is a set of tuples say ft

1

; : : : ; t

t

g, then we use one free variable x and create the

following formula:

(v = t

1

_ v = t

2

_ : : :_ v = t

t

)

� Inductive Hypothesis : For all the algebraic expressions containing � n operators, there is an

equivalent tuple calculus expression.

Let r[d

r

] be the result of a query whose algebraic expression contains n + 1 operators. This

means that the expression E

a

is either f

L

(E

1

; E

2

)g or f

L

(E

1

)g where both E

1

and E

2

are

subexpressions each consisting of � n operators, and

L

is one of the algebraic operators (binary

or unary) we have de�ned in the previous sections. Therefore by applying the following cases

inductively we can prove our claim :

Let F

c

, F

1

, F

2

be the formulas corresponding to E

c

, E

1

and E

2

respectively, then we have

1. Naive Select

�

n

(D

R

; D

1

; E

1

;�)

�! E

1

[D

1

] j= �(a)

�! F

0

c

= (9u)(F

1

fD

1

; ;g(u) ^ �(u) ^ (t = u))

�! F

c

= F

0

c

f;; D

R

g(t)

2. Skeptical Select

�

s

(D

R

; D

1

; E

1

;�; C

K

)

�! E

1

[D

1

] j= �(a) ^

8

c�C

K

(:notsatisfy

1

(a; c)) ^

8

b

8

c�C

K

[(E

1

[D

1

] j= �(b) ^

notsatisfy

2

(a; b; c)) ! a = b]

�! F

0

c

= (9u)(8c�C

K

)(F

1

fD

1

; ;g(u) ^ �(u) ^ (t = u) ^ satisfy

1

(u; c) ^

:(9v)(F

1

fD

1

; ;g(v) ^ �(v) ^ (u 6= v) ^ :satisfy

2

(u; v; c)))

�! F

c

= F

0

c

f;; D

R

g(t)

22

8. if F is a formula with only one free tuple variable x, and no free constraint variables, then

Ffd

1

; d

2

g(x) is also a formula, where d

1

; d

2

2 D

�

. The corresponding meaning is: \The formula

F will be evaluated in databases that are reachable from d

1

, and the result will be reected to

the databases in d

2

". The special symbol \;" is going to be used to denote \any" set of databases

reachable from the database processing the query.

Nothing else is a formula. The order of evaluation of a formula is as follows:

1. () has the highest precedence,

2. :, (9x), (8x), (9x 2 c

i

), (8x 2 c

i

) are of the next precedence

3. ^ is of the third precedence

4. _ is of the fourth precedence.

5. fg() is of the lowest precedence.

5.2 ICBM-Calculus Expressions

ICBM � Calculus expressions are of the form:

fxjFfd

1

; d

2

g(x)g

where d

1

; d

2

2 D

�

, x is the only free tuple variable in the formula F , and there are no free constraint

variables.

5.3 Safe ICBM-Calculus

As in the case of standard database calculis [13], we de�ne the notion of safe ICBM � Calculus

expressions to obey the following limitations:

1. (8x) is not used at all (notice that here x is a tuple variable)

2. if the _ operator connects two formulas F

1

and F

2

, then these formulas each have only one free

tuple variable, and that variable is common to both of them.

3. If a subformula is a conjunction of the form F

1

^ : : : ^ F

m

then all components of free tuple

variables are limited:

(a) if F

i

is not negated and if it is not an arithmetic comparison and has a free tuple x, then

all the components of x are limited.

(b) if F

i

is x[j] = a or a = x[j] , where a is a constant, then x[j] is limited.

(c) if F

i

is x[j] = y[k] or y[k] = x[j] , where y[k] is a limited component, then x[j] is limited.

4. A : operator can only be applied to a term in a conjunction of type described in the third item.

These constraints prevents the existence of in�nite relations in the calculus expressions, because

such relations are not allowed by the datalog rules.

21

� \Tuple Variables" which range over the tuples,

� \Constraint Variables" which range over the set C.

Note that we do not de�ne the concept of \Database Variables' as it is easy to extend the de�nition

of formulas to capture \Database Variables".

An atom is de�ned to be one of the followings:

1. For any relation name r in Q, for any database sets d

1

; d

2

2 D

�

and for any tuple variable

x, rfd

1

; d

2

g(x) is an atom (annotated predicate). The corresponding meaning is \tuple x is

in relation r which is located in a database that is `reachable' from d

1

, and the result will be

reected to the databases in d

2

". The special symbol \;" is going to be used to denote \any"

set of databases reachable from the database processing the query.

2. X�Y is an atom, where � is an arithmetic comparison operator, X and Y are either constants,

tuple variables or component references of the form x[i], here x is a tuple variable and i 2 U .

3. satisfy

1

(x; w), satisfy

2

(x; y; w) and chosen(x; w) are atoms where x and y are tuple variables

and w is a constraint variable. The corresponding meanings are:

(a) satisfy

1

(x; w)$:notsatisfy

1

(x; w)

(b) satisfy

2

(x; y; w)$:notsatisfy

2

(x; y; w)

(c) chosen(x; w) has the same meaning it had in the algebra.

Remember that: (chosen(x; w)^ chosen(y; w))! :notsatisfy

2

(x; y; w)

and that the chosen predicate is a special predicate.

A formula can be de�ned recursively as follows:

1. an atom is a formula,

2. if F

1

and F

2

are formulas then

(a) F

1

^ F

2

(b) F

1

_ F

2

(c) :F

1

are formulas,

3. if F is a formula with at least one free occurrence of x, where x is a tuple variable, then (9x)F

is a formula,

4. if F is a formula with at least one free occurrence of x, where x is a tuple variable, then (8x)F

is a formula,

5. if F is a formula with at least one free occurrence of x, where x is a constraint variable, then

(9x 2 c

i

)F , where c

i

is in C

�

, is a formula,

6. if F is a formula with at least one free occurrence of x, where x is a constraint variable, then

(8x 2 c

i

)F , where c

i

is in C

�

, is a formula,

7. if F is a formula then (F) is a formula,

20

4.5 Intersection

We de�ne the Intersection Operator in the usual way too. A tuple will appear in the result i� it

appears in both of the input relations.

Let R1 and R2 be two union compatible relations. The following is the multidatabase semantics

for the Intersection Operator :

a �

T

(D

R

; D

D1

; R1; D

D2

; R2) ! R1[D

D1

] j= a ^

R2[D

D2

] j= a

a �

T

(D

R

; D

D1

; R1; D

D2

; R2) �! 8

i�D

R

(D

i

j= a)

4.6 Di�erence

The last algebraic operator we will de�ne is the (standard) Difference Operator. Let R1 and R2 be

two union compatible relations We de�ne the Difference Operator as:

a � Diff (D

R

; D

D1

; R1; D

D2

; R2) ! R1[D

D1

] j= a ^

: (R2[D

D2

] j= a)

a � Diff (D

R

; D

D1

; R1; D

D2

; R2) �! 8

i�D

R

(D

i

j= a)

Note that, tuple a goes to the result if and only if it is in the �rst relation but not in the second.

5 ICBM-Calculus

In the previous section we have de�ned a new relational algebra capable of capturing the semantics of

the extended multidatabase SQL operators with background integrity constraints. In this section we

will de�ne a calculus capable of capturing both multidatabase and integrity constraint semantics.

5.1 ICBM-Calculus Formulas

Before de�ning the syntax of formulas in the calculus, we present the alphabet that we will use:

� A set, U , of attributes

� A set � of binary comparative operators on domains

� A set Q of relation names fr

1

; r

2

; : : : ; r

r

g on schemes fR

1

; R

2

; : : : ; R

r

g, where each R

i

is a subset

of U

� A set, D, of databases

� The power set of D, D

�

= fd

1

; d

2

; : : : ; d

d

g

� A set, C, of constraints,

� The power set of C, C

�

= fc

1

; c

2

; : : : ; c

c

g

� A set of special predicates P = fchosen; satisfy

1

; satisfy

2

g.

There are two types of variables :

19

� there is no other tuple in the join which causes a \Type 2" violation with tuple a.

Note that

a � (R

1

1

s

R

2

) � a � �

s

(R

1

1 R

2

)

i.e. we can write the Skeptical Join operator in terms of a Skeptical Select operator and the

ordinary join operator. This fact will be very useful in proving some properties of this operator.

4.3.3 Choice Join

The Choice Join (denoted 1

c

)operator returns a tuple if and only if the tuple is in the result of the

join, and one of the following holds :

1. the tuple is not involved in any integrity constraint violation.

2. the tuple has only \Type 1" violations.

3. the tuple is involved in a \Type 2" violation but it is \chosen" by all the constraints it violated.

In all other cases the tuple will be omited from the resulting relation.

a � 1

c

(D

R

; D

D1

; R

1

; D

D2

; R

2

; C

K

) ! R

1

[D

D1

] j= d ^

R

2

[D

D2

] j= e ^

a = d 1 e ^

8

b

8

c�C

K

[(R

1

[D

D1

] j= f ^

R

2

[D

D2

] j= g ^

b = f 1 g ^

notsatisfy

2

(a; b; c))

! chosen (a; c)]

a � 1

c

(D

R

; D

D1

; R

1

; D

D2

; R

2

; C

K

) �! 8

i�D

R

(D

i

j= a)

Tuple a will go to the result if and only if all the following conditions are satis�ed:

� it is equal to the join (cartesian product) of two other tuples (d and e) from the corresponding

relations R

1

; R

2

which are reachable from the databases in D

D1

and D

D2

.

� if tuple a causes a \Type 2" violation with another tuple of the join then a is \chosen".

Like the Skeptical Join operator, it is possible to write the Choice Join using the corresponding

select operator and the ordinary join operator.

a � (R

1

1

c

R

2

) � a � �

c

(R

1

1 R

2

)

4.4 Union

We de�ne the Union Operator without diverging from the standard semantics of this operation. Let

R1 and R2 be two union compatible relations. Then,

a �

S

(D

R

; D

D1

; R1; D

D2

; R2) ! R1[D

D1

] j= a _

R2[D

D2

] j= a

a �

S

(D

R

; D

D1

; R1; D

D2

; R2) �! 8

i�D

R

(D

i

j= a)

i.e., tuple a is in the result if and only if it is in at least one of the input relations.

18

4.3 Join

As in the case of the select operations, we need to have di�erent semantics in the case of joins. We

are going to propose three new join operators, namely Naive Join, Skeptical Join and Choice Join.

These three operators are similar in meaning to their select counterparts. Actually, each of these

operators can be written in terms of corresponding select operators and ordinary join operators.

However, we are still going to present these new operators because we believe that it is helpful to

observe the existence of the di�erent semantics for join.

4.3.1 Naive Join

In this case (the operator is denoted as 1

n

), the input relations are simply joined and all the resulting

tuples are returned. That is, no constraint checks are performed.

a � 1

n

(D

R

; D

D1

; R

1

; D

D2

; R

2

) ! R

1

[D

D1

] j= d ^

R

2

[D

D2

] j= e ^

a = d 1 e

a � 1

n

(D

R

; D

D1

; R

1

; D

D2

; R

2

) �! 8

i�D

R

(D

i

j= a)

The above statement says that tuple a will go to the result if an only if it is equal to the join

(cartesian product) of two other tuples (d and e) from the corresponding relations R

1

; R

2

which are

reachable from the databases in D

D1

and D

D2

.

4.3.2 Skeptical Join

The Skeptical Join operator (denoted 1

s

) performs integrity constraint checks over the resulting

tuples of the join operation, and picks those that are not involved in any integrity constraint violation.

Again, those tuples leading to a violation are simply omited from the result.

a � 1

s

(D

R

; D

D1

; R

1

; D

D2

; R

2

; C

K

) ! R

1

[D

D1]

j= d ^

R

2

[D

D2

] j= e ^

a = d 1 e ^

8

c�C

K

(:notsatisfy

1

(a; c)) ^

8

b

8

c�C

K

[(R

1

[D

D1

] j= f ^

R

2

[D

D2

] j= g ^

b = f 1 g ^

notsatisfy

2

(a; b; c))

! a = b]

a � 1

s

(D

R

; D

D1

; R

1

; D

D2

; R

2

; C

K

) �! 8

i�D

R

(D

i

j= a)

Similar to the Skeptical Select, tuple a goes to the result if and only if all the followings are

satis�ed:

� it is equal to the join (cartesian product) of two other tuples (d and e) from the corresponding

relations R

1

; R

2

which are reachable from the databases in D

D1

and D

D2

.

� it satis�es all the \Type 1" constraints.

17

4.1.3 Choice Select

Similar to the Skeptical Select, this operator (�

c

) picks the tuples satisfying the selection criteria

and eliminates the ones which lead to integrity constraint violations. But unlike the Skeptical Select

operator, instead of eliminating all the malevolent tuples, it makes a choice amongst the tuples causing

inter-tuple inconsistencies and omits the other tuples. This means that it picks one tuple from each

chunk of tuples involved in an inter-tuple violation and allows that tuple to stay in the result. If this

tuple does not get omited by another inter-tuple violation then it appears in the resulting relation

4

.

Note that intra-tuple violations do not need to be handled by this operator, because in this type

of violation there is only one tuple involved and there is no other tuple which will compete with it

to go into the resulting relation. Hence, the operator simply discards any intra-tuple constraints and

allow those tuples to appear in the result.

a � �

c

(D

R

; D

D

; R;�; C

K

) ! R[D

D

] j= �(a) ^

8

b

8

c�C

K

[(R[D

D

] j= �(b) ^ a 6= b ^

notsatisfy

2

(a; b; c)) ! chosen (a; c)]

a � �

c

(D

R

; D

D

; R;�; C

K

) �! 8

i�D

R

(D

i

j= a)

where (chosen(a; c)^ chosen(b; c))! :notsatisfy

2

(a; b; c).

Notice that, the chosen predicate is not a standard predicate in �rst order logic, because given a

tuple a and a constraint c, it is not possible to say whether chosen(a; c) will return true or false. The

truth value of this predicate not only depends on its attributes but also depends on the other tuples

in the relation. The notion of a choice predicate is due to Zaniolo and his co-workers [10, 14] and

was originally used for characterizing the semantics of nonmonotonic negation in deductive databases.

In contrast, our use of this construct is to enable the resolution of inconsistencies in a multidatabase

setting.

Hence, tuple a will go to the result if and only if all the following conditions are met:

� it satis�es the selection criteria � and is in the relation R that is reachable from D

D

.

� if tuple a violates a \Type 2" constraint c in C

K

with an other tuple b satisfying the selection

criteria � then a must be \chosen" by the constraint c.

4.2 Projection

Unlike the select operators there is no need to have di�erent semantics for the project operator. Hence

we de�ne only one project operator, which is semantically equivalent to the classical project operator

except it that is working over a multidatabase domain.

a � � (D

R

; D

D

; R; A

�

) ! R[D

D

] j= b ^

a = b[A

�

]

a � � (D

R

; D

D

; R; A

�

) �! 8

i�D

R

(D

i

j= a)

Tuple a appears in the result if and only if it is the projection of a tuple b in the relation R that is

reachable from D

D

.

4

As in the case of the CHOICE OPERATOR, such tuples involved in \Type 1" inconsistencies can be eliminated by

application of the Skeptical Select operator.

16

4.1 Selection

We are going to propose three new select operators each reecting one of the three di�erent constraint

semantics of the multidatabase language we have presented in the previous section. These operators

are Naive Select, Skeptical Select and Choice Select operators.

4.1.1 Naive Select

This operator (denoted as �

n

) selects the tuples satisfying the selection criteria � and returns them

without performing any constraint checks.

a � �

n

(D

R

; D

D

; R;�) ! R[D

D

] j= �(a)

a � �

n

(D

R

; D

D

; R;�) �! 8

i�D

R

(D

i

j= a)

The �rst statement means that tuple a will be in the result if and only if it satis�es the selection

criteria � and is in the relation R that is reachable from D

D

.

The second statement means that all the databases in D

R

will be made aware of the tuple a after

the application of the operator (i.e. the result will be copied to all the databases in D

R

).

4.1.2 Skeptical Select

This operator (denoted �

s

) picks the tuples which satisfy the selection criteria � and returns those

that do not violate any integrity constraints in C

K

. The other tuples are simply omited from the

result.

a � �

s

(D

R

; D

D

; R;�; C

K

) ! R[D

D

] j= �(a) ^

8

c�C

K

(:notsatisfy

1

(a; c)) ^

8

b

8

c�C

K

[(R[D

D

] j= �(b) ^

notsatisfy

2

(a; b; c)) ! a = b]

a � �

s

(D

R

; D

D

; R;�; C

K

) �! 8

i�D

R

(D

i

j= a)

Notice that, here notsatisfy

1

corresponds to notsatisfy

1

and similarly notsatisfy

2

corresponds

to notsatisfy

2

de�ned in the previous section. The only di�erence between them is that notsatisfy

1

and notsatisfy

2

take a tuple, whereas notsatisfy

1

and notsatisfy

2

take individual attributes as their

inputs.

The �rst statement means that tuple a will go to the result if and only if all the following conditions

are met:

� it satis�es the selection criteria � and is in the relation R that is reachable from D

D

.

� it satis�es all the \Type 1" constraints.

� there is no other tuple satisfying the selection criteria, which will cause a \Type 2" violation

with tuple a.

The meaning of the second statement was already explained.

15

WHERE Accounts:Currency = Exchange:Currency1;

Exchange:Currency2 = \Dollar

00

;

DBal = Accounts:Balance� Exchange:Rate

CHOICE ON (IC � 1); (IC � 2); (IC � 3)

Result

Account # DBal

010386 500

283642 250

534861 1430

010098 325

689965 4000

010067 1000

323345 240

623342 7500

764832 500

079832 2500

572625 7

285361 250

976382 17000

765532 2600

The tuple with Account# = \572625" has a \Type 1" violation, so it is left intact; on the other

hand, tuples with Account# = \534861" were yielding to a \Type 2" violation, hence a choice

has been made amongst them and only one of them survived in the result.

4 ICBM-Algebra

In the previous sections, we have de�ned three new operators for the new extended multidatabase

language we are proposing. We called these operators NAIVE OPERATOR, SKEPTICAL OPERATOR and

CHOICE OPERATOR, and we have presented the corresponding semantics in the form of �rst order logic

statements.

In this section we are going to devise the corresponding extended multidatabase algebra which will

be built upon the standard relational algebra. The algebraic operators proposed in this section will

be capable of capturing the semantics of the new SQL operators de�ned in the previous sections.

An algebraic operator which operates over a multidatabase environment must include a database

domain set (D

D

) and a database range set (D

R

) in addition to the standard attributes it has. The

domain set includes the set of databases which will be used in answering the query, whereas the range

set includes the set of databases which will use the results. In a distributed environment where the

answers of the queries are going to be materialized, it may be very helpful to specify which sites will

have the copies of the materialized results, since the answer may later be used to process other queries

without traversing the network.

In the following subsections we are going to de�ne the multidatabase algebraic operators.

14

Answers to the Sample Queries

Query 1 :

ASK

C

MainCenter

SELECT �

FROM Accounts

WHERE ClientName = \Mary

00

CHOICE ON (IC � 1); (IC � 2); (IC � 3)

Result

Account # Client Name Balance Currency

764832 Mary 500 Dollar

Here, the operator made a choice among two tuples which caused an integrity violation and

omited the other from the result.

Query 2 :

ASK

C

Kansas

SELECT �

FROM Accounts

WHERE ClientName = \Mary

00

CHOICE ON (IC � 1); (IC � 2); (IC � 3)

Result

Account # Client Name Balance Currency

764832 Mary 500 Dollar

Since the naive result satis�es all the constraints, the choice result is equal to the naive result.

Query 3 :

ASK

C

MainCenter

SELECT �

FROM Accounts

WHERE ClientName = \Alfred

00

CHOICE ON (IC � 1); (IC � 2); (IC � 3)

Result

Account # Client Name Balance Currency

534861 Alfred 3500 Pound

As in the �rst query, the operator made a choice amongst the tuples that cause inter-tuple

violations and put it in the result.

Query 4 :

ASK

C

MainCenter

SELECT Account#; DBal

FROM Accounts; Exchange

13

ASK

C

D

i

SELECT A

n

FROM R

1

; :::; R

r

WHERE �

1

_ :::_ �

c

CHOICE ON C

K

The syntax of this operator is very similar to the syntax of the SKEPTICAL OPERATOR; the only

di�erence is the replacement of the PANIC ON clause by the CHOICE ON clause. On the other

hand, these two operators di�er dramatically in their semantics.

In the CHOICE OPERATOR, if there is an inconsistency amongst two tuples of the resulting relation,

then the operator chooses one of the conicting tuples and omits the other one. Hence the \chosen"

tuple has a chance to appear in the result (if the operator does not omit it due to another violation),

whereas the other one is de�nitely pushed out of the resulting relation.

The selection of the tuple can be totally non-deterministic or it can be determined through some

�xed procedure (for instance priority assignments or time stamps can be used to determine such

procedures). In a later section, we are going to de�ne a concept called LMCAS

�

which will give a

more detailed semantics to this operator.

The CHOICE OPERATOR does not deal with \Type 1" violations, because in the case of intra-tuple

violations making a choice does not have any meaning. The violation is caused exactly by \one" tuple,

and this tuple can go into the result unless it is discarded by another constraint violation (i.e. a tuple

which has a \Type 1" violation is \chosen" by default by the corresponding \Type 1" constraint).

Since only \Type 2" constraints are allowed to omit tuples from the result list in the case of the CHOICE

OPERATOR, we only need to worry about the this type of violations

3

.

The semantics of the CHOICE OPERATOR is the following :

Q

C

:

chosen (A

1;1

; ::; A

r;�

r

; C) : [T

q

] preanswer (A

1;1

; ::; A

r;�

r

) : [T

q

],

: (diffchoice (A

1;1

; ::; A

r;�

r

; C) : [T

q

]).

diffchoice (A

1;1

; ::; A

r;�

r

; C) : [T

q

] 9

i;j

(X

i;j

6= A

i;j

) ^ (C 2 C) jj

notsatisfy

2

(C;A

1;1

; ::; A

r;�

r

;

X

1;1

; ::; X

r;�

r

) : [T

q

],

chosen (X

1;1

; ::; X

r;�

r

; C) [T

q

].

answer

C

(A

1;1

; ::; A

r;�

r

; C) : [T

q

] chosen (A

1

; ::; A

r;�

r

; C) : [T

q

].

and the corresponding query is :

 answer

C

(A

1;1

; ::; A

r;�

r

; C

K

) : [D

i

].

3

An alternative semantics for the CHOICE OPERATOR would, in addition to making a choice between tuples involved

in \Type 2" violations, delete all tuples involved in a \Type 1" modi�cation. That is, it would compute the CHOICE

OPERATOR as de�ned in this paper, and subsequently delete all tuples involved in a \Type 1" inconsistency. It is easy to

see that this may be viewed as �rst performing a CHOICE SELECT and then performing a SKEPTICAL SELECT. Hence, this

alternative semantics may be captured within the current de�nitions, and hence we do not discuss this further.

12

Query 3 :

ASK

S

MainCenter

SELECT �

FROM Accounts

WHERE ClientName = \Alfred

00

PANIC ON (IC � 1); (IC � 2); (IC � 3)

Result

Account # Client Name Balance Currency

Again, the result is empty because the tuples in the corresponding naive result were violating

the constraints (IC-1) and (IC-2).

Query 4 :

ASK

S

MainCenter

SELECT Account#; DBal

FROM Accounts; Exchange

WHERE Accounts:Currency = Exchange:Currency1;

Exchange:Currency2 = \Dollar

00

;

DBal = Accounts:Balance� Exchange:Rate

PANIC ON (IC � 1); (IC � 2); (IC � 3)

Result

Account # DBal

010386 500

283642 250

010098 325

689965 4000

010067 1000

323345 240

623342 7500

764832 500

079832 2500

285361 250

976382 17000

765532 2600

The tuples with Account# = \572625" and Account# = \534861" are omited from the list

because they were violating the constraints enforced by the query.

3.2.4 Choice Operator

Whenever two tuples are involved in a \Type 2" violation, the choice operator will discard one of the

two and \choose" the other

2

. The syntax of the choice operator is given below.

2

If three tuples t

1

; t

2

; t

3

are involved in an inconsistency, the choice operator will pick one tuple from each of the three

pairs (t

1

; t

2

), (t

1

; t

3

) and (t

2

; t

3

), and that tuple will be omited from the result. In principle, this could lead to all three

of t

1

; t

2

; t

3

being discarded { later, we will show how this situation can be avoided.

11

preanswer (X

1;1

; ::; X

r;�

r

) : [T

q

].

violation (A

1;1

; ::; A

r;�

r

; C) : [T

q

] C 2 C jj

violation

1

(C;A

1;1

; ::; A

r;�

r

) : [T

q

].

violation (A

1;1

; ::; A

r;�

r

; C) : [T

q

] C 2 C jj

violation

2

(C;A

1;1

; ::; A

r;�

r

) : [T

q

].

answer

S

(A

1;1

; ::; A

r;�

r

; C) : [T

q

] preanswer (A

1;1

; ::; A

r;�

r

) : [T

q

],

: (violation (A

1;1

; ::; A

r;�

r

; C) : [T

q

]).

panic : [T

q

] preanswer (X

1;1

; ::; X

r;�

r

) : [T

q

],

: (answer

S

(X

1;1

; ::; X

r;�

r

;) : [T

q

]).

and the corresponding query will be expressed as follows :

 answer

S

(A

1;1

; ::; A

1;�

1

; ::; A

r;1

; ::; A

r;�

r

; C

K

) : [D

i

].

Answers to the Sample Queries

Query 1 :

ASK

S

MainCenter

SELECT �

FROM Accounts

WHERE ClientName = \Mary

00

PANIC ON (IC � 1); (IC � 2); (IC � 3)

Result

Account # Client Name Balance Currency

Since the corresponding naive result consists of two tuples involved in a constraint violation, the

skeptical result is empty.

Query 2 :

ASK

S

Kansas

SELECT �

FROM Accounts

WHERE ClientName = \Mary

00

PANIC ON (IC � 1); (IC � 2); (IC � 3)

Result

Account # Client Name Balance Currency

764832 Mary 500 Dollar

Since the corresponding naive result satis�es all the constraints, the skeptical result is the equal

to the naive result.

10

Therefore, it may be wise to omit these tuples from the resulting relation and return an error ag to

the user in the case of a constraint violation.

There are two possible ways of warning the user about the existence of a constraint violation. The

�rst way is to return a special \error" tuple in the resulting tuple set. The second way is to activate a

global panic variable. An advantage of the second approach is that if there is an error in the system,

all users can be made aware of this error by setting the global panic ag. Furthermore, there will be

no need to worry about the handling of a special tuple.

We design the SKEPTICAL OPERATOR so that it behaves in the second way. That is, if there is a

constraint violation, it omits those tuples involved in the violation and sets the truth value of a special

predicate called panic to \true".

There are many types of constraint violations possible in a multidatabase:

1. De�nition 3.1 (\Type 1 violations" or \intra-tuple violations") These violations occur

if and only if there is an inconsistency in the values of the attributes of a single given tuple. The

corresponding constraints are called \Type 1 constraints" or \intra-tuple constraints".

An example of a \Type 1 constraint" is the constraint

((Currency(t) = Dollar) & (Balance(t) < 100))! panic

which says that no dollar account can have a balance under 100 dollars.

2. De�nition 3.2 (\Type 2 violations" or \inter-tuple violations") This type of a violation

is caused by a mismatch amongst two tuples in the relation. The corresponding constraints are

called \Type 2 constraints" or \inter-tuple constraints".

The following is an example of a \Type 2 constraint"

((Account#(t) = Account#(u)) & (t 6= u))! panic

which says that two di�erent accounts may not have the same account number.

3. De�nition 3.3 (\Type n violations") In general if the violation is caused exactly by \n"

tuples in the relation, we call it a \Type n violation", and the corresponding constraint is called

\Type n constraint".

In a \Type n constraint", exactly \n" di�erent tuples are addressed.

In this paper, we will deal only with \Type 1" and \Type 2" constraints; it is easy to see that the

generalization of \Type 2" constraints to \Type n" constraints is straightforward.

The following sequence of �rst order logic statements give the semantics of the SKEPTICAL OPERATOR.

In this logic program, notsatisfy

1

takes a constraint and a set of attributes as the input, and it re-

turns true if the corresponding tuple causes an \intra-tuple violation". Similarly, notsatisfy

2

takes a

constraint and two sets of attributes, and returns true if the corresponding tuples cause a \Type 2"

violation with respect to the input constraint. In the sequel, C denotes a set of integrity constraints.

Q

S

:

violation

1

(A

1;1

; ::; A

r;�

r

; C) : [T

q

] notsatisfy

1

(C;A

1;1

; ::; A

r;�

r

) : [T

q

].

violation

2

(A

1;1

; ::; A

r;�

r

; C) : [T

q

] notsatisfy

2

(C;A

1;1

; ::; A

r;�

r

;

X

1;1

; ::; X

r;�

r

) : [T

q

],

9

Exchange:Currency2 = \Dollar

00

;

DBal = Accounts:Balance� Exchange:Rate

Result

Account # DBal

010386 500

283642 250

534861 1430

010098 325

689965 4000

010067 1000

323345 240

623342 7500

764832 500

079832 2500

534861 1750

572625 7

285361 250

976382 17000

765532 2600

Tuple with Account# = \572625" does not satisfy constraint (IC-3). In addition to this, there

are two di�erent tuples with Account# = \534861" which is a violation of the constraint (IC-1).

3.2.3 Skeptical Operator

The NAIVE OPERATOR may return an inconsistent set of tuples. The SKEPTICAL OPERATOR removes all

the tuples that are involved in such a constraint violation and returns the remaining tuples.

ASK

S

D

i

SELECT A

n

FROM R

1

; :::; R

r

WHERE �

1

_ :::_ �

c

PANIC ON C

K

The main di�erence between the NAIVE OPERATOR and the SKEPTICAL OPERATOR is that the latter

contains a set of integrity constraints encapsulated in the PANIC ON clause. This set represents the

constraints that should be enforced by the operator. Hence, if the set of tuples satisfying the selection

criteria includes any tuples that violate these constraints, these tuples will be automatically omitted

from the resulting set. If the user wishes to specify that all constraints are to be enforced, then he

may say PANIC ON ALL.

In many applications, integrity violations point to an error in the system, and usually the user

wants to be warned about the existence of such errors. Furthermore, the tuples causing this error

may be poisonous for the other parts of the system, and hence it may be desirable to avoid them.

8

Answers to the Sample Queries

Query 1 :

ASK

N

MainCenter

SELECT �

FROM Accounts

WHERE ClientName = \Mary

00

Result

Account # Client Name Balance Currency

764832 Mary 500 Dollar

765532 Mary 2600 Dollar

Note that the result does not satisfy constraint (IC-2).

Query 2 :

ASK

N

Kansas

SELECT �

FROM Accounts

WHERE ClientName = \Mary

00

Result

Account # Client Name Balance Currency

764832 Mary 500 Dollar

In this case all the constraints are satis�ed.

Query 3 :

ASK

N

MainCenter

SELECT �

FROM Accounts

WHERE ClientName = \Alfred

00

Result

Account # Client Name Balance Currency

534861 Alfred 2860 Pound

534861 Alfred 3500 Pound

The result does not satisfy constraints (IC-1) and (IC-2).

Query 4 :

ASK

N

MainCenter

SELECT Account#; DBal

FROM Accounts; Exchange

WHERE Accounts:Currency = Exchange:Currency1;

7

3.2.1 Preanswer

A tuple is quali�ed as a preanswer to the selection criteria �

1

.. �

c

i� it satis�es the given selection

criteria. However, this does not guarantee that the tuple will be returned in the result list. A preanswer

will be omited from the resulting set of tuples if it fails to satisfy the constraints associated with the

query. Hence, the existence of a tuple in the result depends on the constraint semantics of the operator

applied (we will de�ne certain new selection operators and their semantics later on in the paper).

We de�ne the concept of a preanswer as follows: A set of attributes (A

1;1

; ::; A

1;�

1

; ::; A

r;1

; ::; A

r;�

r

-where A

i;j

is the j

the

attribute of i

the

relation) is a preanswer to a query (�

1

.. �

c

) asked of a set

D of databases if the following holds:

preanswer (A

1;1

; ::; A

1;�

1

; ::; A

r;1

; ::; A

r;�

r

) : [T

q

] �

1

.. �

c

jj

reachable (T

1

) : [D],

..

reachable (T

r

) : [D],

R

1

(A

1;1

; ::; A

1;�

1

) : [fT

1

g],

..

R

r

(A

r;1

; ::; A

r;�

r

) : [fT

r

g].

Here, T

i

corresponds to a database which includes data from the relation R

i

. A tuple will appear

in the preanswer list if it satis�es the selection criterion and if each part of the tuple < A

i;1

; ::; A

i;�

1

>

is satis�ed by a relation R

i

located in database T

i

which is reachable from D.

3.2.2 Naive Operator

The NAIVE OPERATOR is one which returns all the preanswers to a query. The syntax of the this op-

erator is as follows:

ASK

N

D

i

SELECT A

n

FROM R

1

; :::; R

r

WHERE �

1

_ :::_ �

c

Here, D

i

denotes the set of databases on which the operator is allowed to work, and A

n

denotes

the set of attributes that will appear in the result (i.e. fA

1;1

; ::; A

r;�

r

g) The intended meaning of the

NAIVE OPERATOR operator is \use relations R

1

; :::; R

r

that are reachable from D

i

to �nd the tuples

< A

1;1

; ::; A

r;�

r

>, which satisfy the condition �

1

_ :::_ �

c

".

Since there are no integrity constraints speci�ed in the query, all the tuples satisfying the selection

criteria will be returned to the user. The answer set may contain inconsistent information, but, the sys-

tem does not care about these inconsistencies, and no attempt is made to resolve them. The handling

of such violations is left to the user. We can state the semantics of the naive operator in logic as follows:

Q

N

:

answer

N

(A

1;1

; ::; A

r;�

r

) : [T

q

] preanswer (A

1;1

; ::; A

r;�

r

) : [T

q

].

The above statement means that any tuple quali�ed as a preanswer is returned in the result of

the following query:

 answer

N

(A

1;1

; ::; A

r;�

r

) : [D

i

].

6

3.1 Notation

A multidatabase D is a �nite set of relational databases together with a reexive and transitive ac-

cessibility relation ACCESS and a directed graph NET representing the physical connections linking

databases. Intuitively, suppose D

1

; D

2

are relational databases in D and ACCESS(D

1

; D

2

) is true. In

this case, it means that database D

1

is authorized to access the relations in database D

2

. The graph

NET represents a network such as the Internet. Intuitively, if there is a path between databases D

1

and D

2

in NET, then it means that database D

1

is physically in contact (via, say, a telecommunica-

tion link) with database D

2

. Thus, ACCESS determines who is authorized to access information, while

NET determines when these accesses can be physically realized across the communication network.

In the context of the banking example, the multidatabase consists of three databases { MainCenter,

Boston and Kansas. The ACCESS relation consists of the reexive transitive closure of the pairs:

ACCESS(MainCenter;Boston);

ACCESS(MainCenter;Kansas);

ACCESS(Boston;Kansas):

The graph NET for the banking example is shown in Figure 1. In this example, we will assume

that the NET structure and the ACCESS structure are identical, i.e. whenever a physical connection

exists between databases D

1

and D

2

, then D

1

is authorized to access D

2

.

Main

Center

Boston

Kansas

Figure 1: Structure of NET

Notice that the ACCESS relation in a multidatabase D may also be viewed as a directed graph

(called the authorization graph) whose vertices consist of the databases in D and such that there is

an edge from database D to D

0

i� ACCESS(D;D

0

) is true.

We say that database D

?

is reachable from database D, denoted reachable from(D

?

; D) i� there

is: (1) a path in the authorization graph from D to D

?

and (2) there is path in NET from D to D

?

.

Last, suppose D

1

� D is a set of databases in our multidatabase system and D 2 D is a single

database. We say that D is reachable from D

1

, denoted reachable(D) : [D

1

] i� D is reachable from

some individual database in D

1

. In general, if A is an atom other than a reachable from(-,-) atom,

and D is a set of databases, then A : [D] means that atom A is true in some database in D.

3.2 Integrity-Constraint Based Query Language

In this section, we will de�ne certain new operators that allow integration of information from multiple

databases, especially in those cases where conicts arise. We will use the expression selection criterion

to denote any disjunctive normal form formula, i.e. any statement of the form �

1

.. �

c

where each

�

i

, 1 � i � c, is a conjunction of literals.

5

In addition, there are certain constraints that must be satis�ed. Following the notation of Gupta,

et. al. [5], we express integrity constraints in the form

A

1

& : : :&A

n

! panic:

Intuitively, this constraint says that we should panic if all the conditions A

1

; : : : ; A

n

are satis�ed

simultaneously. Thus, satisfaction of this constraint requires that panic never be derivable in any

given database state, i.e. the conditions A

1

; : : : ; A

n

are never simultaneously satis�ed.

The constraints we will use in the banking example are the following:

(IC-1) \If two tuples have the same account number, then these two tuples should be identical."

This can be stated as the constraint:

Account#(x) = Account#(y)& x 6= y ! panic

(IC-2) \No client may have two or more accounts with the same currency."

ClientName(x) = ClientName(y)&Currency(x) = Currency(y)& x 6= y ! panic

(IC-3) \No account may have a balance worth less than 100 U.S. Dollars."

Balance(x) = Amt&Currency(x) = Cur&Conversion(Dollar;Cur) = Rate&

Amt

Rate

< 100 ! panic:

or assuming the existence of a virtual attribute \DBal" (i.e. Dollar Balance):

DBal(x) < 100 ! panic:

The followings are sample queries to the database :

Query 1 : Get all the account information of the customer whose name is \Mary". The query is

directed to the MainCenter.

Query 2 : Get all the account information of the customer whose name is \Mary". The query is

directed to the Kansas database.

Query 3 : Get all the account information of the customer whose name is \Alfred". The query is

directed to the MainCenter database.

Query 4 : Find the dollar value of every account. The query is directed to the MainCenter database.

We will use the above queries throughout the paper to illustrate the various formal de�nitions we

introduce.

3 Integrity-Constraint Based Multidatabases

In this section, we will develop three versions of SQL's SELECT operator. In each case, we will explain

the intuition underlying that operator, give the formal syntax, and explain the semantics using simple

logic based rules. Prior to doing so, we �rst explain some notation.

4

(a) Local information :

Accounts

Account # Client Name Balance Currency

010386 Leonard 25000 Yen

283642 Sally 250 Dollar

534861 Alfred 2860 Pound

010098 Jack 750 Pound

(b) Exchange Rates:

Exchange

Currency1 Currency2 Rate

Dollar Pound 2.00

Dollar Yen 50.00

Yen Dollar 0.02

Yen Pound 0.04

Pound Dollar 0.5

Pound Yen 25.00

In the above table, the tuple (Dollar,Pound,2.00)means that 2.00 Pounds equal one Dollar

1

.

2. Kansas center :

(a) Local information :

Accounts

Account # Client Name Balance Currency

689965 Susan 4000 Dollar

010067 Jack 1000 Dollar

323345 Chris 12000 Yen

623342 Peter 15000 Pound

764832 Mary 500 Dollar

079832 John 2500 Dollar

3. Boston center :

(a) Local information :

Accounts

Account # Client Name Balance Currency

534861 Alfred 3500 Pound

572625 Ken 350 Yen

285361 Sally 500 Pound

976382 Peter 17000 Dollar

765532 Mary 2600 Dollar

1

Please note that no e�ort has been made to verify the accuracy of these currency rates.

3

1. We assume that integrity constraints are present, and that these integrity constraints must be

satis�ed by the multidatabase.

2. As a consequence of 1, it follows that even though an individual database satis�es the integrity

constraints, the multidatabase, as a whole, may violate them. We present three versions of SQL's

data retrieval operators which we call the NAIVE, SKEPTICAL and CHOICE operators, respectively.

3. Based on these new extensions to SQL, we propose a new relational algebra called ICBM-algebra

(for \Integrity-Constraint Based Multidatabase" algebra). We study various properties of the

ICBM-algebra and establish various kinds of equalities. We discuss how these relationships may

be used in optimizing queries.

4. We propose a natural extension of the relational calculus called the ICBM-calculus. We prove

that the ICBM-algebra can be embedded within the ICBM-calculus, i.e. all ICBM-algebra

expressions can be expressed within the ICBM-calculus. However, the converse does not hold {

the ICBM-calculus is strictly more expressive than the ICBM-algebra. The reasons for this are

discussed.

2 Motivating Example

In this section, we present an intuitive example of a banking scenario where a bank has its head o�ce

in Washington DC (Main Center) and two branches { one in Boston and the other in Kansas. These

o�ces maintain the following information about their clients:

� Account #: Every account in the bank has a unique account number.

� Client Name: The name of the client holding this account. No client can have more than one

account for a given currency (i.e. he may have three accounts { one in US dollars, one in Yen,

and one in Swiss Francs; however, he may not have two US Dollar accounts and one Austrian

Schilling account).

� Balance: The value of the money in the account.

� Currency: The currency associated with the account.

The Main Center of the bank may access accounts in both Kansas and Boston. The Boston o�ce

is able to access accounts in Kansas, but not in Washington. The Kansas o�ce is not able to access

either Washington or Boston accounts.

Furthermore, the Washington DC o�ce (Main Center) keeps track of currency uctuations by

maintaining an exchange relation. This relation has three attributes:

� Currency1 : First currency

� Currency2 : Second currency

� Rate: The exchange rate between �rst and second currencies.

The following tables show the current data in these databases :

1. Main Center :

2

An Algebra and Calculus for Multidatabases with Integrity

Constraints

�

Kas�m S. Candan and V.S. Subrahmanian

Department of Computer Science

Institute for Advanced Computer Studies &

Institute for Systems Research

University of Maryland

College Park, Maryland 20742.

fcandan; vsg@cs.umd.edu

Abstract

Litwin et. al. have developed a language called MSQL for query multidatabases. Subsequently,

Grant, Litwin, Roussopolous and Sellis have developed a calculus and algebra associated with MSQL

that facilitates querying and interoperation in a multidatabase environment. In this paper, we

build upon their framework by assuming that a set of integrity constraints must be satis�ed. Even

though each individual database in a multidatabase may satisfy the integrity constraints, the entire

multidatabase itself may not satisfy the constraints. We propose three new data retrieval notions

based on whether the constraint semantics is \naive", \skeptical" or makes \choices." We propose

a semantics for these operations, and develop an algebra and calculus based on these operators.

We prove that the algebra can be embedded within the calculus { however, the calculus is strictly

more powerful than the algebra. We study various algebraic properties linking the newly de�ned

operators together and show how these algebraic properties can be used for query optimization.

1 Introduction

With the rapid growth of the information superhighway, it is fast becoming possible for individuals and

businesses located across the world to access a wide variety of databases located at di�erent points on

the Internet. This brings to the user, a vast wealth of information stored in a multiplicity of databases

and data structures. Extracting information from multiple databases often allows the user to draw

conclusions that would not be deducible from one single database.

In this paper, we study the problem of integrating a set of relational databases when integrity

constraints are present. Various aspects of integrating multiple relational databases have been studied

by a number of authors. Litwin et. al. [9] were one of the �rst to develop a formal language, called

MSQL, for querying multidatabases. Grant, et. al. [3] have extended these ideas and developed an

algebra and calculus based on MSQL that can be used to query a multidatabase. We extend their

work in the following ways:

�

This work was supported by the Army Research O�ce under grant number DAAL-03-92-G-0225, by ARPA/Rome

Labs contract F30602-93-C-0241 (ARPA Order Nr. A716) and by a National Science Foundation Young Investigator

Award IRI-9357756.

1

