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The effects of nutrient loading on estuaries are well-studied, given the 

multitude of negative water quality, ecosystem, and economic impacts that have been 

attributed to the presence of excess nitrogen and phosphorous. A current gap in this 

knowledge is the consequence of changing climate variability on the seasonal patterns 

of estuarine processes related to eutrophication, potentially from direct (temperature) 

and indirect influences (nutrient load timing) of climate warming.  

A coupled hydrologic-biogeochemical model (ROMS-RCA) was used to 

investigate the spatial and temporal changes in the phenology of hypoxia and related 

biogeochemical processes in the Chesapeake Bay under three different hydrologic 

regimes. Shifts in nutrient load timing during idealized simulations dampened the 

overall annual hypoxic volume, resulting from discernable, but relatively small 

reductions in phytoplankton biomass and both sediment and water-column respiration 

in three regions of the Bay. Simulated increases in water temperature caused an 

increase in the spring/early summer hypoxic volume associated with elevated 



  

respirations rates, but this exhaustion of organic matter in the early summer caused a 

decrease in late summer/fall hypoxic volume due to lowered sediment respiration. 

Similar simulations in nutrient load timing were conducted using a model of the 

Chester River estuary, a smaller, shallower sub-estuary system to the Chesapeake 

Bay. Nutrient load timing and magnitude effects on hypoxia were much smaller in the 

Chester River as compared to Chesapeake Bay, which is likely due to high 

concentrations of nitrogen and phosphorus within the system. Therefore, cross-system 

comparisons are important for understanding the sensitivity of hypoxia to alterations 

in nutrient load across diverse estuaries. These idealized simulations begin the 

process of understanding the potential impacts of future climatic changes in the 

seasonal timing of key biogeochemical processes associated with eutrophication.   
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Chapter 1 - Phenology of Estuarine Response to Anthropogenic and 

Climate Drivers, the Chesapeake Bay as a Case Study 
 

 

Introduction 

The impacts of nutrient loading on estuaries have been well-studied over the past several 

decades, due to the multitude of negative water quality, ecosystem, and economic impacts that 

have been attributed to excess nitrogen and phosphorus concentrations. High rates of microbial 

respiration resulting from elevated phytoplankton production, fueled by these excess nutrients, 

are a strong factor contributing to the seasonal depletion of dissolved oxygen in estuaries (Hagy, 

Boynton, Keefe, & Wood, 2004). The extent and duration of low dissolved oxygen waters are 

increasing in frequency and scale worldwide (Diaz & Rosenberg, 2008, Breitburg, 2002). 

Phytoplankton blooms have been identified as a poor water quality symptom of the inflow of 

excess nutrients (eutrophication), mainly nitrogen and phosphorus, from the Chesapeake Bay 

watershed into the estuary. The decomposition of large, spring phytoplankton blooms consumes 

dissolved oxygen within the water column that then become hypoxic or anoxic (little or no 

dissolved oxygen present respectively). Low dissolved oxygen conditions are problematic for 

sessile aquatic organisms and a major stressor for mobile ones. Although reductions in point 

source nutrient loads and riverine nitrogen and phosphorus have occurred in Chesapeake Bay 

and other estuaries (Bouraoui & Grizzetti, 2011; Kronvang et al., 2005), there is the continued 

challenge of increases in non-point source nutrient loads due to population growth and land use 

changes within the 6100 km2 watershed (Goetz et al., 2004).  

In the most recent decade, several tools have been used to examine the impacts of climate 

change and altered nutrient inputs on hypoxia in Chesapeake Bay. Testa et al. (2014) used a suite 

of sensitivity simulations to highlight the seasonality of dissolved oxygen and identified both 
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nitrogen and phosphorus loading as important drivers of summer hypoxic volume. Li et al. 

(2016) used the same model as Testa et al. (2014) and suggested that nutrient loading and related 

water-column respiration is the main mechanism that determines interannual variability in 

hypoxia. The timing of hypoxia initiation correlates strongly with winter-spring freshwater flow 

and the associated accumulation of chlorophyll-a in bottom water (Testa & Kemp, 2014, Testa et 

al., 2017). Thus, variations in both the volume of water discharging into Chesapeake Bay and the 

nutrient availability in that water contribute to hypoxia, thus changes in the timing or magnitude 

of freshwater inputs due to altered climate patterns could highly effect the initiation of hypoxia 

in the Bay. River flow effects interact with other external forces to control hypoxia, where for 

example, Scully (2010) used a numerical model to highlight the influence of interannual 

variability of wind forcing on Chesapeake Bay hypoxic volume. More recently, Irby et al. (2018) 

displayed the sensitivity of Chesapeake Bay hypoxic volume days to changes in sea level, water 

temperature, precipitation, and nutrient loading. Restoration efforts to reduce nutrient loads are 

expected to compete with these climate changes, including increases in temperature that decrease 

oxygen solubility and elevate respiration, and increased precipitation that leads to elevated 

nutrient loads (Irby et al., 2018). These past studies, while identifying key external forcing 

mechanisms that influence annual-scale metrics of hypoxia, did not identify the detailed 

biogeochemical process that moderate estuarine changes examined on the seasonal, or intra-

annual scale. 

Planning objectives and tracking restoration success of the Chesapeake Bay has been a 

long-term goal of the Chesapeake Bay Program since its inception in 1983 (Boesch, 1996).These 

efforts have continued with the implementation of total maximum daily load (TMDL) nutrient 

allocations for various pollution sources in 2010 (L C Linker, Batiuk, Shenk, & Cerco, 2013). 
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Support for adaptive policies to improve climate resiliency and sustainability of the Chesapeake 

Bay system is one goal of the agreement. The agriculture sector has been identified as a 

considerable source of nutrient pollution to the Chesapeake Bay estuary (L C Linker et al., 2013) 

and is also vulnerable to climatic changes. Within the watershed, more than one quarter of the 

land is devoted to agricultural practices, including growing crops and animal operations 

(Chesapeake Bay Program, 2011) and in 2012, there were over 2 million acres of farmland in 

Maryland alone (USDA-NASS, 2012). Climate change is predicted to alter agricultural activities 

that influence nutrient inputs (irrigation and fertilization), as well as water and soil temperatures 

that impact crop uptake and nutrient transformations in soils (e.g., denitrification). For example 

earlier spring temperatures have allowed for agricultural activities across much of the Midwest 

and Mid-Atlantic regions to begin earlier in recent years. Pennsylvania has seen planting occur 6 

days earlier from 1996-2012 compared to 1979-1995 (U.S. Department of Agriculture, 2010). 

Chang (2019) suggests that farmers may also adjust their practices to future climate change by 

planting earlier (corn) or later (winter wheat and soy beans) to maximize crop yield. These 

changes in behavior and climate could lead to an increased and earlier nitrate (NO3) load (Chang, 

2019). Fluctuations in climate can also mediate the seasonality in nutrient inputs because periods 

of high precipitation events/years, when following several years of dry conditions, has the 

potential to flush high loads of dissolved nitrogen into the estuary (Lee, Shevliakova, Malyshev, 

Milly, & Jaffé, 2016). 

A current gap in knowledge is the consequence of changing climate factors that influence 

estuarine phenology, such as changes in the timing of nutrient load inputs. Phenology is a branch 

of science dealing with the relations between climate and periodic biological phenomena, such as 

bird migration or plant flowering. Ecosystem phenology is important because changes in the 
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timing of climate drivers can lead to a mismatch in key biological phenomena. Shifts in nutrient 

loading to the Bay could also lead to altered biogeochemical cycling within the estuary, such as 

the timing of the annual spring phytoplankton bloom. Elmore, Nelson, & Craine (2016) showed 

that increasing air temperatures reduced nitrogen availability in trees during earlier leafout/spring 

period, which is important when considering the Chesapeake Bay watershed and its connection 

to estuarine nutrient cycling. Testa et al. (2018) observed a shift in hypoxic volume phenology 

between the time periods 1985-1999 and 2000-2015, with the latter years experiencing a lower 

peak volume and slightly earlier cycle. Given the complexity of relevant processes driving 

phenology and the subtle changes in timing (e.g., days) associated with phenological shifts, there 

is a clear need to use tools with high spatial and temporal frequency to understand long-term 

changes to seasonal timing. 

The purpose of this chapter is to use a numerical modeling framework to understand the 

potential changes in Chesapeake Bay associated with altered seasonal timing of nutrient inputs 

and increased water temperature. The Chesapeake Bay estuary was chosen as the study system 

for this project, because there is a large, robust collection of datasets available for 

biogeochemical processes and water quality parameters (Brakebill, Preston, & Martucci, 2004). 

This estuary is also an economically, and ecologically important system, in which great efforts 

have been taken in both its study and restoration. I seek to answer the following questions: How 

do changes in the seasonal timing of nutrient inputs effect the seasonality and spatial response of 

hypoxia in the Chesapeake Bay? And, how sensitive is the seasonal cycle of hypoxia in 

Chesapeake Bay to warmer water temperatures?  
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Methods 

To quantify the biogeochemical response of Chesapeake Bay hypoxia to altered timing of 

nutrient inputs and temperature, I conducted several idealized sensitivity simulations using a 

coupled, three dimension hydrodynamic-biogeochemical model (ROMS-RCA). Model scenarios  

included changes in the timing of riverine nutrient concentrations that reflect expected changes 

in farmer behavior resulting from climate change, as well as seasonally-specific increases in 

water temperature that are consistent with observed temperature increases over the past 30 years. 

Phenological response will be quantified by the volume of hypoxic waters, duration of hypoxia 

from formation to breakup, timing of chlorophyll-a accumulation, and the associated respiratory 

processes in the water-column and sediments. 

 

Modeling Tool 

A coupled hydrologic-biogeochemical model (Regional Ocean Modeling System and 

Row-Column Aesop, ROMS-RCA) was used to simulate and analyze estuarine biogeochemical 

responses to simulated changes in temperature and nutrient input timing. ROMS simulations are 

based on recently published simulations (e.g., Shen et al., 2019) and are run offline to provide 

salinity, water temperature, advective and diffusive transport for the biogeochemical model, 

RCA. RCA is a biogeochemical model that simulates water column and sediment (aerobic and 

anaerobic layers) biogeochemical processes by simulating the cycling of phytoplankton growth 

(two different groups) using light, temperature, and nutrient availability. Nutrient cycling in 

RCA involves oxygen, carbon, nitrogen, phosphorus, silica, and sulfur. Nutrient and freshwater 

inputs for ROMS-RCA are based on gauged inputs measured at the eight major Bay tributaries: 

including the Susquehanna, Patuxent, Patapsco, Potomac, Choptank, Rappahannock, York, and 
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James Rivers. ROMS-RCA has a grid resolution of 120x80 (Figure 1.1a) and 20 vertical layers. 

Detailed descriptions of ROMS-RCA and the sediment biogeochemical model (SFM) can be 

found in recent publications (Testa et al., 2014, Li et al., 2016, Testa et al., 2013, Shen et al., 

2019).  

Sensitivity simulations were performed over three years with different hydrologic 

regimes to allow for the quantification of the impacts of different physical regimes on the 

estuary’s sensitivity to altered temperature and nutrient load timing. I simulated three temporally 

adjacent years with different overall magnitudes of freshwater inputs, including an above-

average river flow year (2004), a below-average river flow year (2002), and a moderate, or 

average flow year (2000; Figure 1.4). For each of these hydrologic regimes, hypoxic volume 

observations compare well to model predictions (Figure 1.5).  

 

Nutrient Timing Scenarios 

For each of the three hydrologic conditions (2000, 2002, and 2004), the average of all 

major tributary NO23 was used to generate an idealized annual cycle of nitrate concentrations, 

which was scaled up or down to match the nutrient concentration and load magnitude in each 

individual tributary (Figure 1.6). This generation of tributary inputs was used as the ‘idealized 

Base’ (no change) scenario for comparison of this suite of simulations. For each hydrologic year, 

two model scenarios were performed that consisted of shifting the nitrogen (NO23, nitrate + 

nitrite) concentration earlier in the year, for each of the major tributaries modeled. The incoming 

freshwater flow conditions (i.e., the hydrology of each year) remained constant between model 

scenarios within the same year, and only the seasonal timing of NO23 concentration was altered 

(Figure 1.7a). NO23 timing scenarios consisted of three different model runs: an idealized ‘Base’ 
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scenario where no changes in NO23 were applied, and two ‘shift’ scenarios where the peak NO23 

concentration is shifted one and two months early respectively, reflecting hypothesized shifts to 

earlier NO23 concentrations associated with earlier fertilization.  

I hypothesize that earlier spring nutrient loading during cooler spring temperatures could 

lead to a reduced phytoplankton bloom during the warmer months if less nutrients are available 

during the summer (i.e. a temporal decoupling of load and bloom, Figure 1.2). This would cause 

a reduction in the amount of available organic matter for respiration and reduce the demand on 

dissolved oxygen consumption.  

 

Summer Water Temperature Increase Scenario 

Given the widespread predictions of elevated temperature in the Chesapeake region over 

the next 50-80 years, I performed sensitivity simulations to understand the seasonally-specific 

response of Bay biogeochemistry to elevated temperatures. While climate projections typically 

predict that water temperature increases will occur across all months of the year (e.g., Chang, 

2019), observations made over the past year suggest that last spring and summer temperatures 

warmed faster than fall or winter (Testa, Kemp, & Boynton, 2018, Testa, Murphy, et al., 2018). 

Therefore, I applied this scenario to the model by increasing the water temperature passed from 

ROMS to RCA (uniformly across all model cells) by 1.5 °C during the period spanning May 1 to 

July 31 for each hydrologic year (2000, 2002, and 2004). The temperature increase scenarios 

were compared to a Base (no change) scenario that included observed nutrient concentrations in 

riverine inflows. 

I hypothesize that increased summer water temperatures could lead to an increase in 

hypoxic volume due to warmer temperatures increasing respiration of organic material (Figure 
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1.3). The factors expected to increase hypoxia in a hot summer, are the decrease in solubility of 

oxygen in warmer waters, increased respiration rates, and elevated stratification. Although these 

effects could be offset by a reduction in net primary production due to heat stress, which could 

limit the amount of organic material available for respiration and potentially generate an earlier 

breakup of hypoxia. A combination of these factors is likely to influence the scale, location, and 

timing of hypoxia.   

 

Nutrient Shift and Summer Water Temperature Increase Combination Scenarios 

The climate change effects of earlier nutrient load timing and elevated summer water 

temperatures are likely to occur simultaneously. Therefore, I conducted simulations of summer 

water temperature increases of 1.5 °C Bay-wide from May 1 to July 31 combined with shifting 

the NO23 timing 1 and 2 months early respectively for each hydrologic year. These simulations 

allow for an analysis of interactions between the two climate change-induced alterations of 

external forcing with reference to the impacts in isolation. 

 

Year-round Water Temperature Increase Scenario 

In contrast to the observation of the largest deviations in long-term averages of water 

temperature occurring in the summer (Testa, Kemp, & Boynton, 2018, Testa, Murphy, et al., 

2018), other studies have projected year-round water temperature increases in the Chesapeake 

Bay region (Ding & Elmore, 2015). To evaluate estuarine sensitivity to potential year-round 

water temperature increases, I performed a simulation by increasing the water temperature 

passed from ROMS to RCA (uniformly across all model cells) by 1.5 °C, Bay-wide, for the 
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entire year. This simulation was repeated for each hydrologic year (i.e., 2000, 2002, and 2004). 

These year-round temperature increases were directly compared to the early summer increases.  

 

Scenario Analysis 

Hourly model outputs from RCA were post-processed using MATLAB to generate 

timeseries and spatial datasets. The following variables were used to quantify estuarine response: 

dissolved oxygen criteria (Maryland Department of Environment), denitrification, hypoxic 

volume, phytoplankton growth/biomass, and hypoxia onset/breakup. Hypoxia variables were 

evaluated using three dissolved oxygen thresholds 5, 2, and 0.2 mg O2/L respectively, to 

represent different ecological thresholds. Each scenario was compared to a respective “no 

change” Base case. Biogeochemical processes were evaluated at specific stations that spanned 

the length of the mainstem (Figure 1.1b). 

 

Results 

I found Bay-wide and more localized regional changes in hypoxic volume due to earlier 

nutrient load timing and increased summer water temperatures. The Chesapeake Bay’s 

phenological response is present, but freshwater inflow remains a strong driver of hypoxic 

volume.  

 

Nutrient Timing Scenarios 

At the Bay-wide scale, idealized simulations of earlier nutrient loads resulted in lower 

annual hypoxic volumes for all hydrologic regimes (Figure 1.8). The simulated reductions in 

hypoxic volume were comparable across years, with a maximal reduction between 1.2 and 1.4 
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km3/day, equating to a 5-10% reduction relative to base conditions (Figure 1.8). For all years, the 

scenario that shifted NO23 two months earlier saw a larger reduction in annual hypoxic volume 

than the one month early shift when compared to the Base (no change) scenario. At the hypoxia 

threshold of 2 mg O2/L, the two month earlier shift during the moderately wet year (2000) had 

the largest decrease in annual hypoxic volume with a change of 117.4 km3/day, followed by 

106.4 km3/day in 2004 (wet), and 75.4 km3/day in the 2002 (dry) scenario. Although there was 

no change in the timing of the peak hypoxic volume for any of the scenarios, the reductions were 

larger in the May-June period in the moderate (2000) and wet (2004) periods, but larger during 

the July-August period in the dry year (2002; Figure 1.8). The year 2000 (moderate) base, no 

change, scenario had the latest hypoxia onset day for all regions except two. The timing of 

hypoxia initiation wasn’t heavily influenced by the shift in nutrient timing, and only changed by 

1 or 2 days for a region or two in each of the hydrologic years. 

The fact that earlier nutrient load timing initiated a decrease in Bay-wide hypoxic volume 

indicates that there was an increase in bottom-water dissolved oxygen. I computed the difference 

in modeled total dissolved oxygen, chlorophyll-a, and respiration during the spring (January-

May) and summer (June-August) in model cells corresponding to three Chesapeake Bay Program 

monitoring stations along the Bay mainstem including: CB3.3C (Bay Bridge) in the upper Bay, 

CB5.3 (Smith Point) mid-Bay, and CB6.4 in the lower Bay. Both the 1- and 2-month shifts in 

nitrate concentration caused an increase in water column dissolved oxygen that correlated to a 

decrease in chlorophyll-a (Figure 1.9a) and total respiration (DOC oxidation + sulfide oxidation 

+ phytoplankton respiration) during both the spring and summer seasons (Figure 1.9b). For the 

moderately wet (2000) and wet (2004) years the middle and lower-Bay stations saw a larger 

increase in dissolved oxygen in both seasons compared to the upper-Bay station. During the 
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driest year (2002), the upper-Bay station showed the largest change in dissolved oxygen during 

the spring season. In general, the two month earlier nutrient shift had a larger effect on the 

dissolved oxygen linkage with chlorophyll-a and respiration during both seasons than the one 

month early scenario, by increasing the dissolved oxygen as much as 3 mg O2/L at the mid-Bay 

station in the summer. Whereas the one month early nutrient shift scenario generated about a 0.5-

1 mg O2/L at the same station and season. 

Remineralization processes in sediments and associated sediment-water fluxes also 

varied seasonally in response the simulated shift in nitrate concentration and load. In general, 

comparisons of the NO23 shift one month early scenario in all regions showed that sediment 

oxygen demand (SOD), NH4 flux, and sediment nitrogen all deviated from the ‘Base’ case 

beginning in May, continuing through the summer, and then returned to ‘Base’ case values 

between October and November (Figure 1.10-1.11). The one month early nutrient shift scenario 

actually resulted in enhanced sediment oxygen demand (SOD) in the two upper CBP stations 

(CB3.3C and CB5.3), and slightly reduced SOD at the lower Bay station (CB6.4) (Figure 1.10). 

The lower Bay station also has the smallest response to the nutrient shift scenario. Sediment 

particulate organic nitrogen (PON) inputs to the sediment were reduced in the nutrient shift 

scenarios, as was the sediment-water flux of ammonium (NH4) (Figure 1.11a and 1.11b). For the 

upper-Bay stations (CB3.3C and CB5.3), this reduction in PON is initiated around March, but 

was delayed until May in the lower-Bay station (CB6.4; Figure 1.9a). Ammonium fluxes peaked 

during late summer through early fall (July to October), and during this time the shift NO23 one 

month early scenario shows a reduction in NH4 release from the sediments of 1-5% (Figure 

1.11b). 
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Water Temperature Increase Scenario 

The idealized early summer warming scenarios resulted in an altered annual cycle of 

dissolved oxygen, including lowered hypoxia in the late summer. Hypoxic volume increased 

during the period of increased water temperature (May-July), but once warming subsided after 

July 31, model simulations revealed a reduction in hypoxic in all hydrologic years (Figure 1.12). 

The largest overall (delta) change in annual hypoxic volume occurred during the 2004 scenario at 

108.6 km3/day. The wet year (2004) had the largest increase in hypoxia during the temperature 

increase period and the largest reduction after July 31 time period with a change in volume of 

146.3 km3/day and -37.6 km3/day respectively (Figure 1.12). The moderately wet year (2000) 

had the largest lag after July 31 for hypoxia to decrease below the Base scenario at 10 days, 

whereas the dry and wet years responded in 7 and 4 days respectively. In this scenario, elevated 

temperatures increased water column and sediment respiration rates in the lower Bay, driving an 

elevated and earlier hypoxic volume. When compared to the Base (no change) scenario, both 

2000 (moderately wet) and 2004 (wet) had two distinct increases (peaks) during the warmer 

summer and closer to Base values around the end of June (Figure 1.12). 

The seasonal response of hypoxia to temperature increases was driven by changes in 

water-column and sediment respiration. SOD and water-column respiration increased under 

warming in the middle and lower Bay, except for the wet year, 2004, when both rates declined 

with elevated temperature (Figure 1.14). In the upper Bay, SOD and water-column respiration 

both were reduced or changed minimally under warming. Once warming ended on July 31, 

sediment respiration (SOD) declined, which corresponded to the reduction in available sediment 

organic carbon (SOC), which never recovered to levels from the Base case within the remainder 

of the year (Figure 1.13). The upper-Bay station (CB3.3C) saw the largest reduction in SOC 
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relative the middle and lower Bay, but SOD reductions were larger in the middle and lower Bay. 

Comparing the sediment respiration to the water column, we can see that warmer water 

temperature enhances sediment respiration in the lower-Bay during the summer, but this effect 

disappears when the warming ends (Figure 1.14a and 1.14b). Increased respiration allows for 

elevated regeneration of ammonium during the warmer summer, which could stimulate 

additional phytoplankton production and add additional organic material later in summer to 

compensate for the material exhausted by warming. Indeed, an increase in water column 

ammonium (NH4) in both the surface and bottom waters occurred under warming by 

approximately 10-20%, providing for the potential to support additional phytoplankton growth. 

Although this regeneration of nitrogen is relatively strong during the summer temperature 

increase, the effect doesn’t persist very long into the fall, and therefore is unable to sustain 

further phytoplankton production given that hypoxic volumes and respiration did in fact decline 

in later summer under warming. In summary, the sediment organic material pool was utilized 

during the warmer period through July 31, leaving less organic material available to support 

sediment respiration in the fall, which was consistent with the Bay-wide decrease in fall hypoxic 

volume. 

 

Nutrient Shift and Water Temperature Increase Combination Scenarios 

The combined scenario of earlier nutrient input timing and summer temperature increases 

resulted in an increase in hypoxic volume (at threshold of 2 mg O2/L) during the first half of the 

year (before July 31) and decrease in hypoxic volume in the second half of the year (after July 

31) for both scenarios and for all hydrologic years (Figure 1.15). The summer temperature 

increase only scenario had the largest increase (11-25%) in the first half of the year and smallest 
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(generally reduced volume) change (- 4-1%) in the second half of the year. The combined 

nutrient shift + summer temperature increase scenarios had smaller increases (shift 1-month 

early=8-18%, shift 2-months early=5-13%) than the temperature-only increase, and larger 

decreases in hypoxic volume in the latter half of the year relative to temperature increases only 

(shift 1-month early= -3 to -7%, shift 2-months early= -8 to -12%). When looking at the total 

hypoxic volume for the year, the summer temperature increase overwhelms the timing reduction 

in hypoxia. The shift NO23 1-month early scenario had a reduction of 3-6% across all three 

hydrologic years, whereas the combined temperature and shift scenario had a 2-10% increase. 

The shift NO23 2-months early scenario had larger reductions in volume of 5-12% across all 

three hydrologic years, while the comparable combined scenario had a 3% reduction in 2000, 3% 

increase in 2002, and negligible change (0.05%) in 2004.  

 

Year-round Water Temperature Increase Scenario 

The year-round temperature increase scenario caused elevated hypoxic volumes (at 

threshold of 2 mg O2/L) in comparison to the Base (no change) scenario throughout the year. 

These increases were comparable in 2000 (by 18%) and 2002 (by 17%) and somewhat smaller 

for 2004 (by 8%) (Figure 1.16). This increase in hypoxic volume was larger than the summer 

temperature increase scenario, which had a 10, 15, and 5% increase for 2000, 2002, and 2004 

respectively. In the year-round increase scenarios, both 2002 and 2004 showed a slight decline in 

hypoxic volume around October, but it was relatively small in comparison to the overall 

increase. This late fall decrease is of similar magnitude to the summer temperature increase 

scenario, but is shifted about a month later. Across all years, the early summer (before July 31) 

increase in volume was comparable to the summer water temperature increase only scenario. 
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One difference observed was during 2004, when the increase in hypoxic volume occurred much 

earlier in the year than all other temperature scenarios (Figure 1.16).  

 

Discussion 

The phenological response of Chesapeake Bay to changes in anthropogenic and climate 

drivers is complex and can be subtle, but model simulations (e.g. ROMS-RCA) are useful for 

quantifying the effects of seasonal changes to external forcing. I documented responses of 

Chesapeake Bay hypoxia to two distinct changes in the seasonal timing of physical forcing. 

Shifts in nutrient load timing had the effect of dampening the overall annual hypoxic volume, 

generating subtle changes in phytoplankton biomass, sediment and water-column respiration, and 

hypoxia in three regions across the Bay. The water temperature increase scenario indicated an 

increase in the spring/early summer hypoxic volume, but a decrease in late summer/fall hypoxic 

volume after the temperature increase stopped. Each of these idealized simulations represents 

potential future changes to Chesapeake Bay associated with either a direct (temperature) or 

indirect (nutrient load timing) response to future climate warming. 

 

Nutrient Load Timing 

 Previous studies have shown how reductions in nutrient load are linked to improving 

surface water quality (Eshleman, Sabo, & Kline, 2013), and recovery of submerged aquatic 

vegetation (Lefcheck et al., 2018), but this study shows that similar reductions in hypoxia can be 

achieved by a shift in nutrient load timing to earlier in the season (Figure 1.7 and 1.8). This 

oxygen response may be an overlooked potential effect of changes in farmer behavior and 

precipitation patterns. A large portion of Chesapeake Bay watershed is occupied by agricultural 
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landscapes, contributing a large source of estimated nutrient load (42% nitrogen, 55% 

phosphorus; Chesapeake Bay Program, 2015). Farmer adaptations to changing climate 

conditions by adjusting agricultural practices to maintain crop yield is important, because it’s 

estimated to lead to earlier nitrate (NO3) loading (kg/ha) to waterbodies (Chang, 2019). Farmer 

behaviors in adopting certain agricultural conservation practices (i.e., buffer strips and tile 

drainage), may also help mitigate the effects of climate change by reducing dissolved 

phosphorus, and sediment exports (Wagena & Easton, 2018). The shift in nutrient load timing, 

allows more NO23 to be present during a less favorable time of year (e.g., cooler spring/winter) 

for phytoplankton growth (Figure 1.7a), which means that there is less organic material available 

for hypoxia generation later in the year.  

 Freshwater flow is a strong driver of nutrient load and a primary predictor of the 

magnitude of annual hypoxia (Li et al., 2016). Due to the geographic structure of the Chesapeake 

Bay, the Susquehanna River is the dominant source of freshwater and nutrients and correlates 

significantly with summer hypoxic volume (Hagy et al. 2004). Model results highlight this flow 

effect regardless of the nutrient timing or temperature scenario (Figure 1.8), with the high flow 

year (2004) having the largest annual hypoxic volume, followed by smaller volumes for the 

moderate (2000) and low flow years (2002). The nutrient timing scenario had the largest relative 

reduction on chlorophyll, respiration, and the hypoxic volume during the moderate flow year 

(2000) for both scenarios. The reduction of ammonium fluxes and sediment nutrients to the 

timing shifts was stronger during the moderate and low flow years in the upper-Bay, which may 

indicate that high flow conditions push the spring bloom and associated organic matter 

deposition seaward (Testa et al., 2014) and thus the upper-Bay had little biogeochemical 

production in 2004. The Susquehanna River provides 87% of the freshwater to this portion of the 
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Bay (Schubel & Pritchard, 2006), and is influencing the response of SOD at the upper-Bay 

station the most during the wet/high flow year.  

 An unexpected result of the simulations was the apparent stimulation of SOD and water-

column respiration with altered nutrient input timing and reduced hypoxia. This feature was 

especially evident in the upper and middle Bay in the moderate and high flow year and the lower 

Bay during the wet year. This result reflects the fact that respiration (and associated oxygen 

uptake) can be limited by oxygen availability (e.g., Sampou & Kemp, 1994). Thus, in the upper 

and middle-Bay, where oxygen concentrations in bottom waters under the base scenario are 

anoxic or severely hypoxic, SOD and water-column respiration are oxygen limited. When the 

nutrient shifts reduced oxygen consumption due to reduction of chlorophyll-a and total 

respiration (Figure 1.9a and 1.9b), more oxygen uptake within the sediments was allowed in later 

summer (Figure 1.10).  

   

Water Temperature Increase  

Many previous studies have examined long-term changes in hypoxic volume (Hagy et al. 

2004, Murphy, Kemp, & Ball 2011) and stimulated responses to future climate change (Irby et 

al., 2018), but fewer studies have examined detailed metabolic responses associated with 

changes in hypoxic volume (Li et al., 2016). Murphy, Kemp, & Ball (2011) found that over a 60-

year record, significant increases in early summer hypoxia and slight decrease in late summer 

hypoxia. Other studies have shown how increases in water temperature are likely to increase the 

annual hypoxic volume in the Bay (Irby et al., 2018), but this study shows that the slight increase 

in hypoxic volume is seen due an increase in the early summer temperature, but a subsequent 

decrease in later summer/early fall volume (Figure 1.12). Testa, Murphy, et al., (2018) 
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hypothesized that warmer early summer temperatures would stimulate the respiration of the 

spring bloom, exhaust organic matter earlier in the year, and allow for relief from hypoxia due to 

lower late summer respiration rates. These model simulations are consistent with that hypothesis, 

where the seasonal temperature change lead to a faster rate of sediment and water-column 

respiration in the early summer, and when temperature returned to observed levels, there was less 

sediment organic matter to support respiration and nutrient fluxes (Figure 1.13). Thus, the 

impacts of future climate changes may not simply lead to higher hypoxia, but rather increase 

hypoxia in early summer and decrease it in later summer. Such a pattern has emerged in 

Chesapeake Bay since 1985 consistent with a ~1 °C increase in temperature.   

These idealized simulations appear to support the hypothesis that temperature increases 

can have complex and seasonally-dependent effects on hypoxic. Future simulations that include 

more realistic temperature changes from downscaled model simulations and account for other 

effects of climate change (e.g., changes in freshwater discharge), will lead to a better 

understanding of these seasonal alterations. While long-term forecasting efforts of hypoxic 

volume are needed to understand expected mid-century changes, retrospective analyses of 

hypoxia changes to temperature are useful to inform those longer-term simulations. At any rate, 

reductions in late summer/early fall hypoxic volume – a potentially unexpected consequence of 

warming - could potentially open up access to suitable fish habitat. For example, in the Patuxent 

River, striped bass habitat has been found to be limited by reduced dissolved oxygen (O2) levels 

more than high temperature during summer months (Kraus, Secor, & Wingate, 2015), and 

improved bottom water oxygen could expand cool-water temperature refuges for fish in late 

summer. 
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 Improvements in late summer/fall habitat under warming may be lower, however, given 

that temperature increases in all times of year. The year-round temperature increase scenario 

generated a larger hypoxic volume, almost double the increase of the summer temperature 

increase scenario alone (except 2002 with a 15-17% increase). While the late fall hypoxic 

volume also persisted in the year-round temperature increase scenario, there was a longer lag 

time before volumes declined in 2002 and 2004, and there was no reduction in hypoxic volume 

during the second half of 2000. Thus, although temperature increases may indeed lead to a more 

rapid respiration of labile organic material in the early part of the annual cycle, model 

simulations suggest that temperature increases across all times of year will extend a larger 

hypoxic volume into the mid to late fall.   

The combined scenarios of earlier nutrient load timing and warmer summer temperature 

showed that the reduction in hypoxic volume generated by the shift in nutrient load timing is 

overcome by the increase in summer water temperature. This result indicates that although 

organic matter reductions through lowered primary production under earlier nutrient inputs will 

reduce pressure to generate hypoxia, elevated respiration rates of the existing organic material 

will increase hypoxia. However, the reduction in later summer hypoxia associated with warmer 

summer temperatures persists with the addition of earlier nutrient inputs, and the reduction in 

hypoxic volume was larger in the combined nutrient shift + warming scenarios for 2000 and 

2002, than the summer temperature increase scenario alone (and was comparable across years; 4-

8%). Thus, the combination of these two likely climate change effects on external forcing will 

likely lead to an altered seasonality of hypoxic volume. 
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Conclusion and Future Recommendations 

TMDL targets are generated on an annual basis, but the results of idealized model 

simulations presented here indicate that intra-seasonal changes in loading may also impact 

hypoxia, given the same annual load. Future changes in the timing of agricultural activity –

including changes that occur in response to climate changes – will have cascading effects on the 

estuary if the agricultural changes lead to concentration changes within the riverine loads. These 

seasonal, idealized simulations and the hypoxia responses displayed in them will be modulated 

by other future climatic changes, including altered wind patterns, sea level rise, and changes in 

air and water temperature. The reduction in hypoxic volume due to the decoupling of nutrient 

load and seasonal water temperature may not remain as strong if water temperatures continue to 

warm earlier in the spring.  

Given that this study evaluated each hydrologic regime independently, future work could 

include consideration of Lee et al. (2016) findings on the potential for large loads of nutrients to 

be introduced to the estuary when one or more dry years are followed by a moderate/wet year.  

Making future projections with a biogeochemical model can be challenging, because the 

model kinetic formations are inflexible and are limited by the science available to inform model 

formulation, parameterization, and the inclusion of all relevant biological and biogeochemical 

interactions. For example, future climate changes will likely alter phytoplankton species 

abundance and distribution, but the current biogeochemical model only represents two idealized 

functional types (a summer group and a winter diatom group). Given that these models do not 

represent a dynamic and flexible community of different phytoplankton types and metabolic 

modes, the model will have a limited capability to accurately predict the varied potential 

outcomes for phytoplankton metabolism. Phytoplankton kinetics, including nutrient uptake and 



21 

 

respiration could play a large role in ecosystem nutrient cycling under climate change. Yvon-

Durocher et al. (2010) observed a faster rate of increasing ecosystem respiration than primary 

production when exposed to increasing water temperatures, which could lead to a shifting 

metabolic balance. In marine phytoplankton, Toseland et al. (2013) found that high temperatures 

increases the rate of protein synthesis, and ultimately produce higher organismal nitrogen to 

phosphorus ratios. Phytoplankton sinking and grazing rates within the model could be improved 

upon as there isn’t much data available to constrain these parameters, especially within the 

context of climate change. 

Overall, this study illustrates the complexity biogeochemistry feedbacks loops in 

estuarine ecology, and how alterations in the phenology of human behavior, physical forcing and 

biogeochemistry can potentially be important when studying climate change effects on 

Chesapeake Bay. Modeling tools, like ROMS-RCA, are valuable for studying complex, large 

scale systems at a high spatial and temporal resolution, because they provide insight to the 

cascading effects of phenological changes between activities within the watershed and estuary.  
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Figure 1.1. (a) RCA model grid (water cells = blue). (b) Map of Chesapeake Bay’s major 

tributaries and Chesapeake Bay Program long-term water quality monitoring stations used in the 

analysis of model scenarios. 
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Figure 1.2. Conceptual diagram of potential nutrient load shift decoupling. (a) Currently, spring 

sunlight, temperature and nitrogen load are aligned to initiate a spring phytoplankton bloom. (b) 

If nutrient loads are shifted earlier in the year, there could be a decoupling of these factors that 

influence productivity.  
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Figure 1.3. Conceptual diagram for alternative hypothesis of water temperature increase effects 

on respiration. Conventional hypotheses (a) suggests that warmer water temperature will increase 

respiration rates throughout the year, while an alternative hypothesis (b) suggests that the 

increase in temperature will increase respiration and effectively speed up the consumption of 

labile organic matter earlier in the year, effectively reducing labile organic matter availability 

and thus respiration in the fall.  
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Figure 1.4. Comparison of the cumulative flow of all major Chesapeake Bay tributaries 

(Susquehanna, Patuxent, Patapsco, Potomac, Choptank, Rappahannock, York, and James Rivers) 

to highlight that the years 2000 (moderately wet), 2002 (dry), and 2004 (wet) are hydrologically 

different. 
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Figure 1.5. Comparison of base scenario (no changes), predicted hypoxic volume for each year 

and observed summer hypoxic volume (Testa, Murphy, et al., 2018). 

 



33 

 

 
 

Figure 1.6. Example of how the average NO23 concentration was used to generate an idealized 

annual nutrient cycle for each of the major tributaries in the RCA model. The original and 

idealized concentrations for the Susquehanna River (blue) and Patuxent River (green) for the 

year 2000 are shown above.  
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Figure 1.7. (a) An example of the nutrient load shift scenario setup of nitrate and nitrite (NO23) 

for one month early (dashed) and two months early (blue) for the Susquehanna River in 2000. 

This process was repeated for each year and tributary. (b) The resulting cumulative NO23 load of 

all tributaries combined, for each year and scenario.  
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Figure 1.8. Comparison of the hypoxic volume of the nutrient load (NO23) shift scenarios to the 

idealized Base scenario at a hypoxia threshold of 2 mg O2/L. 
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Figure 1.9. Comparison of the total change in dissolved oxygen (O2) and (a) chlorophyll-a (Chla) 

and (b) total respiration respectively, during the spring (January-May; A-C) and summer (June-

August; D-F) seasons. 
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Figure 1.10. Nutrient shift scenario had increased sediment oxygen demand (SOD) in the two 

upper Chesapeake Bay stations (CB3.3C and CB5.3) and reduced SOD at the lower Bay station 

(CB6.4). 
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Figure 1.11. The difference between the nutrient shift scenario and no change scenario in terms 

of (a) particulate organic nitrogen (PON) and (b) ammonium fluxes (NH4). 
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Figure 1.12. Water temperature increase scenario (TempInc, light blue) in comparison to no 

change scenario (dark blue), at hypoxia threshold of 2.0 mg O2/L. The water temperature was 

increased Bay-wide by 1.5 °C from May 1 (start, green line) to July 31 (stop, red line).  
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Figure 1.13. The difference in sediment organic carbon (SOC, mg C/m3) between the 

temperature increase scenario and no change scenario at three stations across the mainstem of the 

Chesapeake Bay. The water temperature was increased Bay-wide by 1.5°C from May 1 (start, 

green line) to July 31 (stop, red line).  
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Figure 1.14. The difference in (a) total respiration and (b) sediment oxygen demand (SOD) 

between the temperature increase scenario and no change scenario at three stations across the 

mainstem of the Chesapeake Bay. The water temperature was increased Bay-wide by 1.5°C from 

May 1 (start, green line) to July 31 (stop, red line).   
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Figure 1.15. Comparison of the hypoxic volumes resulting from combination scenarios of 

nutrient shift and water temperature increase in comparison to the no change scenario (no 

changes to nutrients or water temperature), at a hypoxia threshold of 2.0 mg O2/L. The water 

temperature was increased Bay-wide by 1.5 °C from May 1 (start, green line) to July 31 (stop, 

red line), and the NO23 was shifted 1 and 2 months early respectively.  
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Figure 1.16. Comparison of the hypoxic volumes resulting from the water temperature increase 

scenarios (summer and year-round) in comparison to the no change scenario (no changes to 

nutrients or water temperature), at a hypoxia threshold of 2.0 mg O/L. For both scenarios the 

water temperature was increased Bay-wide by 1.5 °C. For the summer scenario this increase 

occurred from May 1 (start, green line) to July 31 (stop, red line), and for the year-round 

scenario, from January 1 to December 31.  
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Chapter 2 - Phenology of Estuarine Response to Anthropogenic and 

Climate Drivers, the Chester River Estuary as a Case Study 
 

 

Introduction 

Biogeochemical processes in coastal ecosystems are closely linked to both adjacent land 

use activities and the internal physical, biological, and chemical features of local water bodies. 

Due to the nature of their bathymetry, shallow estuarine systems, like many tributaries to the 

Chesapeake Bay, have several unique characteristics compared to larger, deeper systems that 

mediate their response to external nutrient inputs. For example, while the mainstem of 

Chesapeake Bay has a robust seasonal hypoxia cycle over the spatial scale of several kilometers, 

the Chester River estuary has diel cycling hypoxia, where oxygen is depleted for brief 6-24 hour 

periods at a limited spatial scale (Boynton et al. 2009; Tyler, Brady, & Targett, 2009). Shallow 

estuaries are also more consistently vertically mixed (have less stratification) due to both wind 

and tidal influences that exert stress over the entire water-column. These shallow tributary 

estuaries are also sensitive to the water quality in the adjacent Chesapeake Bay, where 

circulation and bathymetry can allow for water exchange into the tributary estuaries, potentially 

negatively affecting oxygen and nutrient conditions. For example, the Choptank, Chester, and 

Patuxent estuaries have been shown to import either high-nutrient or low-oxygen water into their 

lower reaches on seasonal or event-scales, leading to water quality degradation that is 

independent of local land use (L. P. Sanford & Boicourt, 1990; Testa, Kemp, Boynton, & Hagy, 

2008).  

Watersheds of the shallow, coastal plain estuaries of the eastern shore of Chesapeake Bay 

also contrast with those of larger estuaries whose watersheds expand into the Piedmont and other 

geologic features. For example, the Chester River watershed, unlike the Chesapeake Bay 
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watershed, has relatively low relief, includes minimal urban land-use, and is dominated by 

intensive agricultural activities. Agricultural nutrient management is an continuing effort within 

the Chesapeake Bay watershed (Beegle, 2013) and. one of the challenges with managing 

agriculture operations on the eastern shore of Maryland is large quantity of poultry litter and the 

high phosphorus content that it contains (Preusch, Adler, Sikora, & Tworkoski, 2002). 

Phosphorus is a difficult nutrient to manage and study, because it ultimately binds to sediment 

but can become mobilized in hydrologically active soils when binding sites are saturated 

(Kleinman, 2017). Previous management of poultry litter applications were based on crop 

nitrogen requirements, which caused an oversaturation of phosphorus to croplands (Preusch et 

al., 2002). Groundwater movements on the eastern shore of Chesapeake Bay are important, 

because there is a lag of several decades between nitrogen application on land and its eventual 

transfer into estuarine waters (W. E. Sanford & Pope, 2013). While these groundwater inputs are 

poorly quantified, prior studies have highlighted the role of submarine groundwater discharge as 

a key mode of nitrogen loading to shallow estuaries with more sandy soils (e.g. Moore, 1999; 

Valiela et al., 1992). 

Previous watershed modeling efforts within the Chester River watershed have shown that 

future changes to climate and farmer behavior could lead to increased and earlier shift in nitrate 

(NO3) load (Chang, 2019). Analyses of agricultural activity within large geographical regions 

(e.g., the mid-Atlantic) have shown a long-term trend of earlier planting dates for corn (e.g., one 

week earlier), and recent modeling has shown that planting dates for corn are expected to shift 1-

3 weeks earlier in the Chesterville Branch Watershed (a sub-estuary of the Chester) by 2050 

(mid-century) and by 2100 (Chang, 2019). These shifts in planting dates are associated with 

earlier fertilizer application and alterations to soil nitrification and remineralization, and when 
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combined with higher precipitation rates projected for the watershed, would lead to earlier 

nitrogen inputs to the watershed by 2050 (Chang, 2019). While there is considerable uncertainty 

in the timing of these additive effects of climate and agricultural practices depending on the 

climate projection used, the potential changes in nutrient load timing reveal a need to better 

understand the associated impacts on estuaries. 

The purpose of this chapter is to use the same numerical modeling framework as in 

Chapter 1 to evaluate responses to altered magnitude and timing of nutrient inputs in a shallow, 

turbid estuary. The Chester River Estuary was chosen as a case study for this project, because of 

the recent modeling efforts of this estuary (Shanks, 2001, Chang, 2019) and the extensive 

monitoring and restoration activities undertaken in the Corsica River (Walter R Boynton, Testa, 

& Kemp, 2009) a major tributary to the Chester River. The following research questions are 

relevant for Chapter 2: How sensitive is the seasonal cycle of hypoxia in the Chester River to 

changes in the magnitude of nutrient inputs? And, how do changes in the seasonal timing of 

nutrient inputs effect the seasonality and spatial response of hypoxia in the Chester River 

Estuary? 

 

Methods 

To evaluate changes in hypoxia seasonality and biogeochemical responses (chlorophyll-a, 

sediment nutrient and sediment oxygen fluxes, water-column respiration) in the Chester River to 

altered magnitude and timing of nutrient inputs, I conducted a series of idealized simulations 

using a coupled, three dimension hydrodynamic-biogeochemical model (ROMS-RCA). Model 

scenarios included changes in the magnitude of nitrogen and phosphorus loads from 12 major 

freshwater sources, as well as shifts in the timing of riverine nitrogen concentrations to test the 
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systems sensitivity to potential indirect seasonal impacts of climate and anthropogenic changes. 

Phenological responses will again be quantified by the volume of hypoxic waters, duration of 

hypoxia from formation to breakup, timing of chlorophyll-a accumulation, and the associated 

respiratory processes in the water-column and sediments. 

 

Study Site 

The Chester River Estuary is located on the eastern shore of Maryland of the Chesapeake 

Bay (Figure 2.1) near the Chesapeake Bay Bridge. The 1,140 km2 watershed consists of 

predominantly agricultural activities (65%; Maryland Department of Planning), specifically large 

poultry operations. The Chester River has a maximum depth of approximately 14 meters, but a 

majority of the estuary is less than 6 meters (Figure 2.2a). The watershed area of the basin is 

approximately 250,000 acres and spans Kent and Queen Anne’s counties in Maryland, and New 

Castle and Kent counties in Delaware.  

 

Modeling Tool 

A coupled hydrologic-biogeochemical model (Regional Ocean Modeling System and 

Row-Column Aesop, ROMS-RCA) was used to simulate and analyze estuarine biogeochemical 

responses to simulated changes in nutrient input magnitude and timing. This modeling tool was 

used in Chapter 1 to evaluate altered nutrient load timing and temperature increases in the 

Chesapeake Bay estuary, and ROMS-RCA has also been configured for the Chester River 

estuary. The Chester River estuary version of ROMS-RCA has a grid resolution of 174x174, a 

cell size of approximately 70 m2 (Figure 2.3a), and 10 vertical layers. Nutrient and freshwater 

inputs for Chester ROMS-RCA are based on Chesapeake Bay Program Phase 6 watershed model 
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inputs aggregated at 12 major tributaries (Figure 2.3a). Atmospheric boundary conditions (air 

temperature, photosynthetically active radiation, wind speed) were derived from the North 

American Regional Reanalysis (NARR). The seaward boundary (tides, salinity, nutrients, etc.) 

was derived from simulations of the Chesapeake Bay Program Water Quality and Sediment 

Transport Model (WQSTM). All model simulations were performed for the year 2003 as this 

year is included in the span of years used for the Chesapeake Bay idealized model scenarios in 

Chapter 1.  

 

Model Calibration and Validation 

Model scenario results were validated using bi-monthly to monthly, station-specific 

measurements of salinity, water temperature, chlorophyll-a, dissolved and particulate nutrient 

concentrations, and dissolved oxygen from the Chesapeake Bay Program (CBP) monitoring 

program (www.chesapeakebay.net) for both the tidal and non-tidal portions of the Chester River 

(Figure 2.4 and 2.5). High-frequency data (15-minute sampling) from the Maryland Department 

of Natural Resources (MDNR) Continuous Monitoring (ConMon) program (MDNR, 2019) was 

also used to validate the Chester ROMS-RCA, including salinity, and dissolved oxygen (O2). 

The ConMon program consists of placing a YSI (Yellow Springs Incorporated, Inc.) sonde 

containing multiple sensors one meter off the bottom and attaching it to a structure (i.e., pier).A 

single sonde and sensor package is deployed for two weeks, sampling water properties (salinity, 

temperature, and dissolved oxygen) every 15 minutes and is replaced with a calibrated 

instrument after two weeks to maintain a continuous data stream. I also validated simulated 

sediment-water fluxes (SONE) of nitrate (NO23), ammonium (NH4), phosphate (PO4), and 

dissolved oxygen (SOD; sediment oxygen demand) using observations made at several stations 
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during summer months (June-August) in intact sediment core incubations (W R Boynton et al., 

2003, Figure 2.6) in the Chester and Corsica River estuaries.  

 

Nutrient Magnitude Scenarios 

I first tested the sensitivity of Chester River hypoxia to changes in the overall magnitude 

of both nitrate and phosphate loading, where the seasonality of the load was held constant. These 

model scenarios consisted of increasing and decreasing the nitrogen (NO23, nitrate + nitrite) and 

phosphorus (PO4) concentrations in stream discharges for each of the major tributaries modeled 

(Figure 2.3a). The nitrogen and phosphorus scenarios included multiplying the nutrient 

concentration by 0.5 and 1.5 times respectively for each of the major tributaries (Figure 2.7), 

representing a 50% decrease and increase in loading, respectively, for each nutrient. These 

scenarios were compared to a ‘Base’ scenario where no changes were made to the nutrient 

concentrations to assess the impacts of nutrient load on hypoxic volume, chlorophyll-a, and 

sediment-water nutrient and oxygen fluxes. 

I hypothesized that the nutrient load increase will generate a larger hypoxic volume for 

both the nitrogen and phosphorus scenarios, provided more nutrients are available for 

phytoplankton growth and subsequent respiration of organic material.  

 

Nutrient Shift Scenarios 

I also developed idealized scenarios to represent seasonal shifts in the timing of nutrient 

concentration within streams to represent potential future changes in the timing of nutrient 

loading associated with predicted warming, precipitation changes, and agricultural activity 

(Chang, 2019). Nutrient shift scenarios were applied to the model by shifting the peak nitrogen 
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(NO23, nitrate + nitrite) concentration earlier in the year for each of the major tributaries 

modeled. A 10-day running average was applied to the nutrient time-series in each river inflow 

(Figure 2.8) to smooth the watershed model-derived nutrient concentration data, which were 

relatively noisy. To avoid generating the artifact of a large pulse in fall nutrients, May 30 (day 

150) was used as a reference point and then the NO23 concentration was shifted earlier from that 

reference point for two scenarios; one with a 14-day earlier shift and one with a 30-day earlier 

shift (Figure 2.9). The nutrient concentrations after day 150 was held constant within scenarios. 

I hypothesized that the nitrogen concentration shift will lead to an earlier peak load, 

causing a mismatch between highest nutrient concentrations and higher temperature and light 

periods, thus reducing phytoplankton growth, respiration of organic material, and oxygen 

depletion.  

 

Dissolved Oxygen at the Chesapeake Bay Boundary Scenario 

To test the potential for Chesapeake Bay to force low dissolved oxygen waters into the 

mouth of the Chester River, I adjusted the dissolved oxygen boundary condition by relieving 

hypoxic conditions in the lower layers of the water column at the Chesapeake-Chester boundary. 

This was captured in the model boundary condition file by increasing the dissolved oxygen 

concentrations in layers 4 through 10 (the deepest layers where hypoxia persisted during the 

summer) to match those of surface layers. This effectively increased the dissolved oxygen at the 

Chesapeake Bay boundary of the Chester River model (Figure 2.10).   
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Results  

The hypoxia cycle in the Chester River is characterized by a seasonal volume in deep 

waters of the central channel that reaches peaks in July, as well as low oxygen conditions in the 

upper reaches of the larger tributaries (e.g., Corsica River). The most extreme depletions in 

dissolved oxygen occurred at the mouth of the estuary (i.e. boundary adjacent to Chesapeake 

Bay), and along the deepest part of the river channel (Figure 2.2a and 2.2b). The phosphorus load 

scenarios had a larger effect on Chester River hypoxia and organic matter respiration than the 

nitrogen scenarios. The scenarios that shifted the nitrogen load earlier in the season had the 

smallest effect on hypoxia, which was nearly undetectable. 

 

Water-column and Sediment Model Validation 

 Validation of the water column properties generated by the Chester River ROMS-RCA 

model shows that it represents the salinity and dissolved oxygen patterns well in both the surface 

and bottom water at CBP stations ET4.1 and ET4.2 (Figure 2.4 and 2.5). The model 

underestimates some of the seasonal peaks in chlorophyll (by up to 50% in some places) during 

early spring in surface and bottom waters of the lower estuary (ET4.2) and during mid-summer 

throughout the water column at the upstream station (ET4.1). Phosphorus concentrations are 

well-captured by the model at both stations and at all depths, but peak winter inputs of NO23 

were underestimated at both stations throughout the water column. Comparison of modeled 

sediment-water fluxes at SONE stations CR01 (upstream) and CR19 (downstream) showed that 

the model was overall more consistent at reproducing SOD (sediment oxygen demand) and PO4, 

NH4, and NO3 fluxes at the downstream station (Figure 2.6). At the upstream station, the model 
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underrepresented the magnitude of the summer peak in SOD and NH4 flux, which may be related 

to the model’s underestimation of water column summer chlorophyll-a at this site. Note that 

sediment-water flux observations were made in the year 2001, while model simulations represent 

2003. 

 

Nitrogen Magnitude Scenarios 

 At the estuary-wide scale, the idealized simulation of increased nitrogen (NO23) 

concentration and load resulted in a marginally lower annual hypoxic volume (< 2 mg O2/L), 

while the decrease in nitrogen concentration generated a marginally larger annual hypoxic 

volume (Figure 2.11). In comparison to the Base (no change) scenario, these changes constituted 

a decrease of 0.37 km3 (with NO23 increase) and increase of 0.23 km3 (with NO23 decrease) 

respectively, representing less than a 2% change.  

 I compared the difference in modeled sediment denitrification (N2), sediment-water 

nitrate (NO3) flux and phosphate (PO4) flux, and sediment oxygen demand (SOD) at cells 

representing two CBP stations located in the mainstem of the Chester River: ET4.1 (upstream) 

and ET4.2 (downstream) (Figure 2.3b). Both stations had similar N2 and NO23 flux responses to 

changes in NO23 concentration, but differed in magnitude. The upstream station (corresponding 

to ET4.1) had a maximum increase and decrease of approximately 50 mg N/m2/day during the 

late summer for the NO23 increase and decrease scenarios respectively (Figure 2.12). In contrast, 

the downstream station (corresponding to ET4.2) had a maximum increase and decrease of 

approximately 10 mg N/m2/day during April for the NO23 increase and decrease scenarios 

respectively. The NO3 flux response is similar in magnitude to the nitrate flux rates at both 

stations, but the NO23 scenarios had the opposite effect, where the decrease in NO23 generated an 
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increase in NO3 flux (more positive sediment-water NO23 fluxes = NO23 efflux from sediments), 

while the NO23 load increase generated an increasingly negative NO23 flux (i.e., more NO23 

uptake by sediments). Thus, elevated nitrogen inputs led to higher water column NO23 

concentrations, higher sediment NO23 uptake rates, and higher denitrification. This effect was 

larger in the upstream, lower salinity regions and the opposite effect occurred in the reduced 

NO23 load simulations.  

 

Phosphorus Magnitude Scenarios 

Changes in phosphorus concentration (PO4) had a larger and opposite effect on hypoxia 

in comparison to the nitrogen scenarios, where increasing PO4 lead to an increase in annual 

hypoxic volume and decreasing PO4 reduced the annual hypoxic volume at a threshold of 2 mg 

O2/L (Figure 2.13). In comparison to the Base (no change) scenario, this was an increase of 0.67 

km3 and decrease of 0.84 km3 respectively, representing a 5% increase and decrease in hypoxic 

volume, respectively. 

 The downstream station (ET4.2) had a smaller response to changes in PO4 magnitude 

than the upstream station (ET4.1). Decreasing PO4 caused an increase in denitrification in the 

first half of the year (i.e. approximately February to July) before returning to the Base case at 

both stations (Figure 2.14). The downstream station saw a 1-2% change in PO4 flux due to the 

PO4 increase scenario that was likely due to the increase in phytoplankton growth from more 

PO4 available in the water column, and therefore increased deposition of organic phosphorus. 

Sediment oxygen demand also increased under the elevated PO4 load scenario.  
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Nutrient Shift Scenarios 

Both nitrogen (NO23) shift scenarios had a small effect on the annual hypoxic volume at 

all thresholds (5, 2, 0.2 mg O2/L) in comparison to the idealized Base (no change) scenario. At a 

threshold of 2 mg O2/L, the 14-day early scenario generated a slight increase in volume (0.06 

km3) and the 30-day early scenario generated a slightly larger decrease (0.11 km3) (Figure 2.15). 

The 14-day and 30-day early shifts in NO23 load had a very similar effects on the 

biogeochemistry at the downstream station. The denitrification response at the upstream station 

showed a shift that matched the 14 and 30-day earlier shift in nutrients, where the 30-day early 

shift occurred before the 14-day shift with an increase in March and subsequent decrease in June 

(Figure 2.16). The nutrient shift scenarios only affected the upstream station (ET4.1) during the 

first half of the year, because by July, the denitrification, NO3 and PO4 fluxes, and SOD 

responses returned to the Base case. The downstream station had a relatively smaller response to 

each of these variables, and a slightly opposite effect in terms of timing for changes in PO4 flux 

and SOD response (i.e., remained at Base case until July and then responded to changes in 

nutrient load timing). At station ET4.1, the PO4 flux and was relatively unchanged, except for a 

sharp increase of 0.1 and 0.2 mg P/m2/day in May for the shift 14-day and 30-day early scenarios 

respectively. This was contrasted by a decrease of 0.2 mg P/m2/day at the downstream station 

(ET4.2) in September.  

In summary, the responses of seasonal hypoxia in the Chester River estuary to altered 

nutrient loads (nitrogen and phosphorus) and the timing on nitrogen delivery was apparent, but 

relatively small compared to the Chesapeake Bay mainstem. Across all dissolved oxygen 

thresholds there was no change in hypoxia onset day for any scenario (5 mg O2/L = day 7, 2 mg 

O2/L = day 139, 0.2 mg O2/L = day 161). The estuary appears to be more sensitive to changes in 
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phosphorus loading than to nitrogen, and it appears that both the upper, low salinity estuary and 

the lower, more saline estuary appear to respond similarly to changes in nutrient inputs.   

 

Dissolved Oxygen at the Chesapeake Bay Boundary Scenario 

Altering the dissolved oxygen at the Chesapeake Bay boundary had a very large effect on 

the hypoxic volume within the Chester River. By increasing the dissolved oxygen in the sub-

surface layers of the boundary domain such that no hypoxic water was externally delivered to the 

Chester estuary, the total hypoxic volume was decreased by 84% at threshold of 2 mg O2/L 

(Figure 2.21). Thus, hypoxia in this estuary appears to be much more sensitive to the Chesapeake 

Bay boundary condition relative to external inputs of nutrients from the watershed that stimulate 

internally-generated hypoxia.  

 

Discussion 

 These idealized model simulations show that the Chester River is sensitive to changes in 

nutrient inputs, but to a lesser degree than in the Chesapeake Bay and other coastal water bodies. 

Low sensitivity to nutrient inputs could result from  increased turbidity within a shallower, well-

mixed system, that is likely light limited for phytoplankton growth and nutrient uptake (Fisher et 

al., 1992). Total suspended solids (TSS) and Secchi depth indicated more substantial light 

limited conditions in the upstream station relative to the downstream station, with higher TSS 

(20-25 mg TSS/L) levels and a smaller Secchi depth (0.2-0.4 m) in the upstream station and TSS 

of 5-10 mg TSS/L and Secchi depth of 0.5-1.2 m in the lower estuary  

(www.chesapeakebay.net/data). Modeled light limitation factors (RLGHT) in RCA shows that 

light is not a limiting factor for either upstream or downstream regions during winter-spring 
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(RLGHT > 0.9; Figure 2.22), but that light becomes limiting (RLGHT < 0.5) in the upstream, 

more turbid  station (ET4.1, Figure 2.22a) during summer. Light limitation is not a factor 

limiting phytoplankton growth at the downstream station (ET4.2, Figure 2.22b) during any time 

of year, consistent with lower TSS and higher Secchi depths. Thus, another factor is likely 

leading to the insensitivity of phytoplankton growth in response to elevated nutrients.   

A second, and more likely cause of low sensitivity to nutrient inputs is the fact that 

nutrient concentrations are high in the Chester River estuary. The Chester River has high 

nitrogen and phosphorus concentrations relative to limiting concentrations of 0.07 mg N/L and 

0.007 mg P/L used by the Chesapeake Bay Program and higher than the half saturation 

coefficients in ROMS-RCA (0.01 mg N/L and 0.001 mg P/L). Average NO23 and PO4 

concentrations were 0.3 mg N/L and 0.025 mg P/L at CBP stations ET4.1 and ET4.2 (Figure 2.4 

and 2.5). Changes in phosphorus were more important in areas where nutrient limitation existed 

(e.g., station ET4.1, upstream in the estuary). This is consistent with low-salinity waters being 

more phosphorus limited (Fisher, Peele, Ammerman, & Harding, 1992; Jordan, Cornwell, 

Boynton, & Anderson, 2008) than more seaward, higher-salinity waters (which do not exist in 

the Chester estuary).To evaluate the potential for nutrient limitation in the model simulations 

further,  the ratio of phosphorus (PO4), nitrogen (NO23+NH4), and silica concentrations and their 

half-saturation coefficients indicated that at both the upstream and downstream stations, none of 

the above nutrients were limiting within the surface waters, except for phosphorus during a 

limited period during winter-spring  (i.e., values greater than 1, Figure 2.23). This clearly 

indicates that modest alterations in nutrient loading rates may be expected to have a much more 

limited impact on phytoplankton growth and hypoxia than the mainstem Chesapeake Bay and 

other nutrient-limited estuaries.   
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The altered phosphate (PO4) loading scenarios had a larger effect on hypoxia in the 

Chester River estuary than nitrogen (NO23), which is consistent with a more phosphorus limited 

system. Phosphorus limitation upstream in the Chester River is likely because it is less saline due 

to the rivers geomorphology (i.e. narrow, shallow, and sinuous), the tidal influence is limited and 

there is less stratification (Tian, 2019). The relative effect of phosphorus load changes in the 

Chester River compared to nitrogen is the opposite effect seen in the Bay mainstem (Testa et al., 

2014), which could be due to differences in nutrient ratios between the two systems.  Higher 

SOD and PO4 fluxes under the elevated PO4 load scenario indicate that additional phosphorus 

inputs stimulate phytoplankton growth, subsequent decay, and nutrient remineralization in 

sediments. Denitrification was reduced under the high PO4 load scenario, which could be due to 

elevated organic matter (i.e., increased chlorophyll-a, Figure 2.18) causing deoxygenation of 

sediments (i.e., increased SOD, Figure 2.14) and thus reduced nitrification. Alternatively, this 

denitrification response could be driven by the increase in phytoplankton growth under elevated 

PO4 loading, causing elevated nutrient uptake (i.e., reduction in NO3 available) in the water 

column, so less is available for NO3 flux into sediments to drive denitrification.  

 Hypoxia was present across the estuary, seasonally in both the deep and shallow waters 

(i.e., Corsica River). Hypoxic volumes have not been previously computed for the Chester River 

estuary, and these simulations suggest that volumes of 0.1-1 km3 are an order of magnitude 

smaller than mainstem Bay hypoxic volumes (2-15 km3). Considerable hypoxia was found in the 

lower Chester River estuary, which indicates that low oxygen waters encroaching from the 

adjacent Chesapeake Bay can move into the lower portion of the Chester River. While the model 

also reproduced some hypoxia in shallow areas, it did not fully capture the high frequency, diel-

cycling hypoxia that has been observed in, for example, the Corsica River estuary at the 
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Sycamore Point ConMon station (Figure 2.20a). Clearly, there are high-frequency variations at 

Sycamore Point in the model that exceed those at ET4.2 (Figure 2.20b), but these variations are 

not as large as the 10-15 mg O2/L diurnal variations observed during summer (Walter R Boynton 

et al., 2009). Future work should more fully address how the model doesn’t currently represent 

diel hypoxia cycling, which may be because the spatial resolution is not large enough to 

adequately capture the small scale hydrodynamics or because the phytoplankton physiology 

formulation is insufficient.  

 While elevated NO23 inputs had a minimal, and perhaps opposite effect than 

hypothesized on hypoxia, this simulation generated an increase in denitrification which 

corresponded to the increase of NO3 flux into the sediment across the estuary. This effect of NO3 

limitation on denitrification has been shown in previous studies, and that by adding more NO3 

supplies fuel for direct denitrification (Cornwell, Kemp, & Kana, 1999). A proportional contrast 

was seen when NO23 inputs were reduced, as there was a reduction in the NO23 flux into the 

sediments, and a reduction in denitrification. 

 Nitrogen load timing had a minimal effect on the phenology of the Chester River. Due to 

the result of PO4 magnitude having a more substantial effect, future work could consider looking 

at the timing of changes in phosphorus. This could be important under a changing climate as 

larger precipitation events, leading to higher stormflows, would generate changes in phosphorus 

delivery to the estuary from river inputs. Larger flow volumes and velocities could increase 

erosion rates and the transportation of larger amounts of sediment, which is a concern for the 

mobilization of phosphorus that has sorbed to the sediment particles. Correll et al. (1999) showed 

an increase of up to 3 orders of magnitude in particulate organic nitrogen and phosphorus, and 

inorganic phosphorus during storm events.  
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Conclusion and Future Recommendations 

 While there has been increasing interest in using phenology as a metric for identifying 

and quantifying changes in complex coastal systems (Cloern & Jassby, 2008; Du & Shen, 2014; 

Nixon et al., 2009), and some studies have modeled or analyzed through data how interannual 

variability of climate impacts hypoxia (Li et al., 2016; Testa, Murphy, et al., 2018),  this thesis 

represents a rare application of numerical models to specifically address phenological changes in 

estuarine biogeochemistry in response to altered seasonality of external forcing. Modeling work 

in shallow, sub-estuary systems like the Chester River is important because the phenological 

response is different from that of larger scale systems like the Chesapeake Bay, and ultimately 

both systems interact to influence the biogeochemical cycling of the other. Applying fine 

temporal and spatial scale models on the margins of the Chesapeake Bay mainstem is useful for 

better understanding processes that affect loading of nutrients and organic matter into the larger 

system.  

 While the Chester River ROMS-RCA model captures larger seasonal patterns of hypoxia, 

it didn’t capture the diel-cycling of hypoxia seen at monitoring stations in the shallow areas (i.e. 

Sycamore Point). Future work could begin to address this by looking at phytoplankton 

physiology and response (chlorophyll-a) in nutrient rich waters, and improving how the model 

estimates the seasonal cycling of chlorophyll-a across the estuary. Light limitation or other 

physical drivers may be stronger controlling factors for phytoplankton dynamics in highly 

eutrophic systems. 

 This study only considered one year (2003, hydrologically moderately wet), thus to test 

the interannual effects of systems like the Chester River, future work should include more 
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hydrologic years (i.e. very wet and dry). This could be especially important in an agriculturally 

dominated watershed such as this, to understanding phenological shifts in linkages between the 

watershed-estuary continuum due to expected changes in farmer response (irrigation, 

fertilization, and crop types) to climate change (Chang, 2019). Simulations showed that changes 

in PO4 loading had more influence on Chester River hypoxia, than the NO23 scenarios 

(increase/decrease in load and early shift in load timing), thus future work could include 

simulations in shifts of the timing of PO4 load. Such simulations could inform an understanding 

of how the release of dissolved phosphorus (legacy phosphorus) from oversaturated, 

hydrologically connected, agricultural soils may be impacting estuary water quality (Kleinman, 

2017). 

Finally, the idealized simulations presented in this chapter could be built upon by running 

linked, concurrent simulations of altered watershed discharge, biogeochemistry, and agricultural 

practices as they impact the magnitude and timing of estuarine biogeochemistry. While the 

coupling of models has been applied on a larger scale to the Chesapeake Bay region for the 

purpose of establishing TMDL reduction goals (Lewis C. Linker, Shenk, Wang, Hopkins, & 

Pokharel, 2012), smaller scale coupled-simulations would be useful for evaluating the sub-

watershed effects of agriculture conservation practices (Wagena & Easton, 2018), farmer 

adaptations to climate change (Chang, 2019; Huttunen et al., 2015), and watershed restoration 

practices that influence sediment load (Palinkas, 2013).  
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Figure 2.1. Location of Chester River Estuary on the northeastern shore of the Chesapeake Bay. 
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Figure 2.2. (a) Bathymetry (mean water depth, meters) of the Chester River Estuary. (b) Estuary-

wide map of modeled bottom-water dissolved oxygen (O2) in late June. 
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Figure 2.3. (a) Chester River Estuary model grid (water cells only) with location of freshwater 

inputs. (b) Sediment-water flux (SONE) stations used in model validation (red, CR01 and CR19) 

and Chesapeake Bay Program (CBP) long-term water quality monitoring stations (black, ET4.1 

and ET4.2) used in the model validation and simulation analysis.  
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Figure 2.4. Comparison of water column (a) surface and (b) bottom-water observation data at 

CBP station ET4.1 (Figure 2.3b) and the no change model scenario model output. 
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Figure 2.5. Comparison of water column (a) surface and (b) bottom-water observation data at 

CBP station ET4.2 (Figure 2.3b) and the no change scenario model output. 
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Figure 2.6. Comparison of observed sediment-water fluxes at SONE stations CR01 and CR19 

(Figure 2.3b) and the no change scenario model output. 
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Figure 2.7. Example of nitrogen (NO23) concentration increase and decrease scenarios setup for 

one Chester River estuary tributary. This process was repeated for the phosphorus (PO4) 

concentration increase and decrease scenarios. 
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Figure 2.8. (a) Original nitrogen concentration in the 12 boundary rivers in the Chester River 

estuary. (b) 10-day running average of river NO23 inputs used for nutrient shift scenarios. The 

location of river inputs to model grid can be found in Figure 2.3a. 
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Figure 2.9. Example of shifts in tributary nitrogen concentration by 14 days (top) and 30 days 

(bottom). Day 150 was used as a reference point (dashed line). 
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Figure 2.10. Example of bottom water layer of Chester model comparison between the (a) Base 

(no change) scenario and (b) setup of scenario for increased dissolved oxygen in the lower layers 

of the boundary condition. 
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Figure 2.11. Comparison of the hypoxic volume (top) of NO23 nutrient increase and decrease 

scenarios to the Base (no change) scenario and the difference between them (bottom) at different 

dissolved oxygen thresholds.  
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Figure 2.12. Difference in sediment-water fluxes between NO23 load change (increase/decrease) 

scenarios and the Base scenario at two CBP stations (ET4.1 and ET4.2). 
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Figure 2.13. Comparison of the hypoxic volume cycle (top) of PO4 nutrient increase and 

decrease scenarios to the Base (no change) scenario and the difference between them (bottom) at 

different dissolved oxygen thresholds. 
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Figure 2.14. Difference in sediment-water fluxes between PO4 load change (increase/decrease) 

scenarios and the Base scenario at two CBP stations (ET4.1 and ET4.2).  
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Figure 2.15. Comparison of the hypoxic volume (top) of nutrient load (NO23) shift scenarios to 

the idealized Base (no change) scenario (bottom) at different dissolved oxygen thresholds.  
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Figure 2.16. Difference in sediment-water fluxes between nutrient shift scenarios and the Base 

scenario, for both the 14-day (dashed line) and 30-day (solid line) shifts respectively at two CBP 

stations (ET4.1 and ET4.2). 

  



83 

 

 

 
 

 

Figure 2.17. Seasonal cycle of differences between bottom water dissolved oxygen at two CBP 

stations (ET4.1 and ET4.2) between the base simulation and all scenarios. 
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Figure 2.18. Seasonal cycle of differences between bottom water chlorophyll-a at two CBP 

stations (ET4.1 and ET4.2) between the base simulation and all scenarios.  
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Figure 2.19. Seasonal cycle of differences between bottom water respiration at two CBP stations 

(ET4.1 and ET4.2) between the base simulation and all scenarios. 
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Figure 2.20. (a) Comparison of model (blue line) versus ConMon station data (green circles) at 

Sycamore Point (upper Corsica River) (Walter R Boynton et al., 2009). (b) Comparison of 

modeled, bottom water dissolved oxygen at CBP station ET4.2 (downstream; black line) versus 

Sycamore Point (SYC; Corsica River; green line).  

A 

B 



87 

 

 
 

Figure 2.21. Comparison of the hypoxic volume (top) of the increase to Chesapeake Bay 

boundary dissolved oxygen scenario to the Base (no change) scenario and difference between 

them (bottom) at different dissolved oxygen thresholds. 
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Figure 2.22. Comparison of modeled light limitation factors (RLGHT) in RCA at two CBP 

stations (a) ET4.1 and (b) ET4.2. Note: Light is not limiting when RLGHT > 0.9.  
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Figure 2.23. The ratio of phosphorus, nitrogen and silica concentrations to the half-saturation 

coefficient (ks) 0.001 mg P/L, 0.010 mg N/L and 0.020 mg Si/L respectively for the Base (no 

change) scenario. Note: The lower y-axis limit for nitrogen is the ratio of 1.  

 


