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Insulated Gate Bipolar Transistor (IGBT) is a power semiconductor device commonly 

used in medium to high power applications from household appliances, automotive, 

and renewable energy. Health assessment of IGBT under field use is of interest due to 

costly system downtime that may be associated with IGBT failures. Conventional 

reliability approaches were shown by experimental data to suffer from large 

uncertainties when predicting IGBT lifetimes, partly due to their inability to adapt to 

varying loading conditions and part-to-part differences. This study developed a data-

driven prognostic method to individually assess IGBT health based on operating data 

obtained from run-to-failure experiments. IGBT health was classified into healthy and 

faulty using a K-Nearest Neighbor Centroid Distance classification algorithm. A 

feature weight optimization method was developed to determine the influence of each 

feature toward classifying IGBT’s health states. 
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Chapter 1: Introduction 

The insulated gate bipolar transistor (IGBT) is a power electronic device introduced 

in the 1980s [1] that is commonly used in medium to high power applications. IGBT 

is essentially a switch that turns current 'on' and 'off'' and used along with other circuit 

components to form power supplies, power inverters, and converters. For example, 

systems that use IGBT devices include motor drives in electric cars, drives of electric 

locomotives, inverters in welding machines, and inverters of wind turbines. 

The semiconductor design of an IGBT consists of an n-channel metal-oxide-

semiconductor field effect transistor (MOSFET) serving as the gate which drives the 

base of a PNP bipolar junction transistor (BJT). An equivalent circuit diagram of the 

IGBT is shown on Figure 1. A parasitic NPN transistor is integral to the design of the 

IGBT. Under normal operating conditions, this parasitic transistor is in off position, 

but under high stress conditions of high temperature and current, the parasitic 

transistor may turn on and create a latchup failure. 

 

Figure 1 – Equivalent circuit of IGBT showing a N-channel MOSFET at the gate, PNP bipolar 

transistor, and a parasitic NPN bipolar transistor. 

Latchup in IGBTs is due to the activation of the PNPN thyristor structure [2] in the 

semiconductor. Once activated, large amount of current flows from the collector to 
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the emitter and the gate no longer has control in stopping the current flow. During a 

latchup event, current surge overheats the materials in the IGBT packaging causing a 

destruction of the device by burn-out. The relationship between current and 

temperature in triggering latchup is explained by Equation 1 [3]. 

Esppnp

bi
LatchCE

L

V
I


)(

 Equation 1 

where ICE(latch) is the current required to activate the parasitic thyristor, Vbi is the built 

in potential of the N
+
-P emitter base junction, αpnp is the gain of the PNP bipolar 

transistor, ρsp is the sheet resistance of the p-base and LE is the length of the emitter.  

Increase of temperature increases the gain of the bipolar transistor and the sheet 

resistance of the p-base leading to a reduction in the latching current. Current path 

during latchup through the IGBT structure is illustrated on Figure 2 

 

Figure 2 – Illustration of current path during IGBT latchup 

 

Since its introduction the IGBT design improvements have made it more rugged and 

less susceptible to latchup[2]. However failures continue to occur in the field causing 
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system downtime. Variations in field loading conditions and part-to-part differences 

introduce uncertainties in  estimating IGBT lifetime. An industry-based survey by 

Yang et al.[4] in 2001 indicated power transistor as a dominant cause of power 

converter failures, with IGBT voted as the most popular device. A study by Lu and 

Sharma[5] in 2009 stated that IGBTs accounted for 38% of inverter failures used in 

AC motor drives and another study[6,7] employing data from 350 wind turbines 

found that IGBT converter failures were responsible for 18.9% of the average annual 

downtime. The ability to assess the degradation of IGBT under its life cycle condition 

will enable operators to plan for optimal sustainment actions to avoid unexpected 

IGBT failures.  

Motivation and Scope of Study 

The conventional approaches in avoiding field failure have pivoted around gathering 

lifetime data, sometimes from accelerated tests, and making a conservative threshold 

in deciding a product service life. When data is not available on hand, other common 

methods in predicting reliability include applying reliability handbooks and physics-

based prediction models. By using IGBT failure data obtained from power cycling 

experiments we show in this study that such approaches suffer from poor accuracy 

and high uncertainties.  

An alternative approach to assessing the reliability of IGBTs is developed using a 

data-driven method where health state is determined by classifying patterns in data 

from monitored operating parameters. This approach is different from the 

conventional reliability approaches in a way that data from individual part is used in 

conjunction with data from training samples to make a health assessment for that 
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individual part. The goal of monitoring the individual part is to adjust the prediction 

model according to the experienced variations in field loading conditions and the 

part's inherent characteristics. In this study we have developed an alternative 

approach in avoiding IGBT failures by developing a data-driven prognostic algorithm 

that monitor IGBT health during operation, warn user of a faulty condition, and 

provide an estimate of remaining life. 
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Chapter 2: Power Cycling Experiment 

IGBT applications, such as in variable speed motor drives and power inverters, 

subject the device to fluctuations in power demand and high power density. IGBT 

loading conditions have caused thermo-mechanical fatigue and high temperature 

stress as dominant degradation mechanisms
 
[5-9]. This study began with collecting 

IGBT failure data through a power cycling experiment of 22 new IGBT samples. On 

and off power cycling creates a non-uniform temperature distribution in the 

packaging materials and induces thermal stress in material interfaces.  

Experimental Setup 

The IGBT device used in the experiment was International Rectifier discrete IGBT 

part #IRGB4045D as shown on Figure 3. It was a discrete field stop IGBT packaged 

with a parallel freewheeling diode in a TO220 plastic package. 

 

Figure 3 – International Rectifier discrete field stop IGBT used in the experiment. Part# 

IRGB4045D 

Power cycling experiment was conducted between specified minimum and maximum 

temperatures, TMin and TMax, measured at the device's heat sink. A picture of the 

thermocouple attachment is shown on Figure 4 where a screw was used to crimp the 

thermocouple between the device's heat sink and an aluminum heat spreader shown 
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on Figure 5. Heating process was carried out by switching the IGBT at a specified 

frequency of 1 kHz or 5 kHz. Once TMax was reached, heating process was stopped 

and the device was cooled passively using ambient temperature.  When the device 

temperature had cooled down to TMin, the heating process was restarted and the cycle 

continued up to device failure by latchup or failure to turn on. Figure 6 shows an 

illustration of the heating and cooling process. Table 1 summarizes the loading 

conditions performed in the experiment.  

 

 

Figure 4 – Placement of thermocouple on the copper heat sink  

 

Figure 5 – Thermocouple fastened to the device’s heat sink using a screw and an aluminum heat 

spreader. 
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Figure 6 – Illustration of heating and cooling processes in the power cycling experiment 

Table 1 – Loading conditions of the power cycling experiment 

Temperature Range: 150-200C or 125-225C 

Switching Frequency: 1 kHz or 5 kHz 

Switching Duty: 50% or 60% 

Load: Resistive and inductive 

 

Parameters monitored during the experiments were the on-state collector to emitter 

voltage (VCE(On)) in volts, on-state collector to emitter current (ICE(On)) in amps, off-

state collector to emitter voltage (VCE(Off)) in volts, off-state collector to emitter 

current (ICE(Off)) in amps, and heat sink temperature (T) in degree Celsius. Figure 7 

provides the illustration of the on and off state parameters where VGE plot represents 

the voltage supplied to the gate to turn on and off the IGBT. 
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Figure 7 – Diagram of ‘on’ and ‘off’ state voltages and currents. A positive bias between the gate 

and the emitter (VGE) turned the IGBT on. 

Experimental Lifetime Results 

Lifetime data in number of temperature cycles collected from the experiment are 

presented on Figure 8 categorized by their temperature profiles to improve visibility 

for the scale difference in lifetime results. Figure 9 shows the same results presented 

in number of hours to failure. 

a)      b)  

Figure 8 – Experimental lifetime results in number of temperature cycles 
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a)    b)  

Figure 9 – Experimental lifetime results in number of hours to failure 
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Chapter 3: Conventional Reliability Prediction Approaches 

Conventional Approach 1: Sample Lifetime Statistics 

Experimental lifetime data were analyzed statistically by fitting a 2-parameter 

Weibull distribution using the Reliasoft Weibull++ software as shown on Figure 10. 

The lifetime data was separated by their temperature loading conditions and the 

separations in the distribution lines support the hypothesis that they belong in 

different distributions. The 95% confidence bounds for each distribution were plotted. 

An overlap in the 95% bounds was present at around the 6% probability line, but for 

the remaining 94% the separation of the distributions was clear. 2-parameter Weibull 

distribution was chosen because it fit best to both data sets and agreed with our 

assumption of wear out failure. 3-parameter Weibull and lognormal distributions also 

gave a good fit to the data sets however the 3-parameter Weibull fit resulted in a 

negative gamma shift which suggested failures before the start of experiment and the 

lognormal distribution did not give an increasing failure rate with time going toward 

infinity which did not agree with our wear-out assumption. 

In the 125-225C data, the mean time to failure (MTTF) estimated by the 

distribution was 1058 temperature cycles with a 5
th

 to 95
th

 percentile range of 381 to 

1815 temperature cycles. In the 150-200C data, the MTTF was estimated to be 6320 

temperature cycles with a 5
th

 to 95
th

 percentiles range of 1922 to 11,582 temperature 

cycles. The MTTF values of the two temperature profiles suggest a reduction in 

expected lifetime as thermal stress is increased. 
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Figure 10 – Statistics of experimental lifetime results using 2-parameter Weibull distributions 

A conventional approach in predicting IGBT lifetime based on sample 

statistics is shown by the experimental results to suffer from wide distributions even 

under controlled temperature conditions. The width of the 5
th

 to 95
th

 percentile life for 

the 150-200°C data was 9660 cycles and for the 125-225°C was 1434 cycles. 

Assigning a product service life using a MTTF value cannot capture the uncertainty 

introduced by the distribution where IGBTs may fail much earlier or long after the 

MTTF value. A conservative approach in assigning product lifetime, for example, by 

using a 5
th

 percentile value of the experimental results would reduce the service life 

by 2.8 to 3.3 times shorter than the MTTF. Not only would such approach result in 

wasting useful parts, 5 percent of failure would still occur earlier than the intended 

service life. 

The use of sample lifetime statistics to estimate acceleration factors from 

exponential or power law lifetime models would be faced with the same challenge of 
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obtaining results with high uncertainties. An alternative way to predict IGBT failure 

is to analyze IGBTs individually part-by-part and make a personalized assessment of 

health based on monitored operating parameters and a data-driven method. 

Conventional Approach 2: Physics-of-Failure Based Lifetime Prediction 

Thermo-mechanical fatigue due to variations of power dissipation has been 

identified as a failure mechanism of IGBT [8,9,10,11,12]. One of the components 

inside the IGBT packaging that degrades due to thermo-mechanical fatigue is the die 

attach. Degradation in the die attach increases the thermal resistance and electrical 

resistance between the chip and the IGBT copper base plate which also serves as the 

collector terminal and the heat sink. Figure 11 shows a schematic cross-section of the 

IGBT sample in this study and the material compositions as provided by the 

manufacturer’s bill of materials.  

 

Figure 11 – Schematic cross section of IGBT sample. The copper base plate also served as the 

collector terminal and heat sink. 

Physics based die attach fatigue failure was modeled using the CALCE FAST 

software. The model was based on the Suhir’s [13,14] interface stress equation 

coupled with the Coffin Manson equation. Model inputs were ∆T, temperature 

cycling period, material properties and dimensions of the die, die attach, and the 
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copper base plate. Details of the model input to the software are provided in the 

Appendix A.  

Table 2 shows the lifetime prediction output from the software compared with 

the MTTFs obtained from the experimental data. As shown from the results, the 

difference between the physics-of-failure (PoF) predictions and the experimental 

results were in the order of magnitude. Error of prediction in this method was partly 

due to latchup failures that were not captured by the die attach PoF model which was 

developed using failure criteria based on crack size and electrical resistance.  

 

Table 2 – Lifetime prediction results using a die attach fatigue physics-of-failure model 

compared with MTTFs obtained from experimental data 

Temperature PoF Lifetime Prediction Experiment MTTF 

150-200°C 15,300 cycles 6320 cycles 

125-225°C 10,800 cycles 1058 cycles 

 

Degradation in packaging increased the thermal resistance between the chip 

and the heat sink and consequently increased the junction temperature and device’s 

susceptibility to latchup. This means that even for the same level of die attach 

degradation, a device that is operated at a higher temperature would have a shorter 

lifetime compared to a device that is operated at a lower temperature due to its 

susceptibility to latchup.  

In order to relate die attach degradation to latchup failure, junction 

temperature would need to be modeled as a function of die attach degradation. 

Although it is not the objective of this thesis to develop this approach, elements that 
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need to be considered to develop the model are briefly discussed here. Figure 12 

shows an equivalent thermal resistance circuit from the junction to the heat sink. 

Thermo-mechanical fatigue was assumed to produce cracks and delamination in the 

die attach and over time reduce the effective conducting area of the die attach. When 

die attach surface reduces, the equivalent thermal resistance of the stack increases and 

therefore inducing a larger temperature increase from the heat sink to the junction 

(ΔTJS).  

      

Figure 12 – Layers of materials inside the IGBT packaging and the equivalent thermal resistance 

circuit.  

Figure 13 shows a simulated ΔTJS increase as a function of die attach area 

reduction due to thermo-mechanical fatigue. Parameters used to generate the 

simulated plot were based on the materials and power dissipation experienced by the 

IGBT sample used in the experiment. At a new condition, the thermal resistance from 

the junction to heat sink was given by the manufacturer’s data sheet as 1.94°C/W 

which produced a ΔTJS of 23.3°C based on a calculated power dissipation of 12.03W. 

Calculation for the IGBT power dissipation is provided on Appendix B. Upon 

reduction of die attach area, ΔTJS increased to 59.1°C at 70% area reduction.  
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Figure 13 – Simulated increase of temperature difference between the heat sink and junction as 

die attach area is reduced by degradation 

Figure 14 shows an illustration of a latchup occurrence when the highest 

junction temperature (TJ) in a temperature cycling loading reaches an assumed 

latchup temperature of 255°C. In this simulation, the heat sink temperature was 

200°C. After approximately 8250 temperature cycles, the remaining die attach area 

had linearly reduced to less than 35% of the original area and the increase of ΔTJS 

raised the junction temperature to the latchup temperature of 255°C.  

 

Figure 14 – Illustration of junction temperature reaching a latchup temperature as a result of die 

attach area reduction. 

The outcome of the simulation would vary with changes in power dissipation 

due to switching frequencies and duty cycle. Results of this simulation are only a 
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gross approximation of the actual phenomenon and can only be used for illustration 

purposes. Among the many limitations of this method are the assumptions of linear 

reduction of die attach area, latchup temperature, constant power loss, constant 

thermal conductivities, and the equivalent thermal resistance network. To develop an 

accurate model using this approach would require further investigations into the 

change of material properties with degradation, the proper thermal resistance network 

modeling, and other operating aspects. It is not the objective of this thesis to develop 

such an approach, but the challenges outlined in this section provide the motivation 

for an alternative approach in predicting IGBT failure by using a data-driven method. 

Conventional Approach 3: Military Reliability Handbook 

The Military Handbook of Reliability Prediction of Electronic Equipment 

(MIL-HDBK-217) [15] was published by the Department of Defense to provide a 

uniform method in predicting the reliability of electronic equipment. Literatures have 

shown that the MIL217 handbook produces inaccurate results [16,17] and a change 

notice was released stating that the handbook may only be used for guidance and shall 

not be cited as a requirement. Nevertheless, the MIL217 still continues to be used by 

engineers partly due to their ease of use in getting quick prediction results. 

 The MIL217 provides a set of formulas to estimate the failure rate of 

electronic equipment including some transistors. In the latest Revision F Notice 2 of 

the handbook released in 1995, no formula for IGBT is provided therefore, the IGBT 

was modeled as a series of a MOSFET with a Bipolar Junction Transistor (BJT) to 

reflect the similar semiconductor configuration of the IGBT. Calculation of failure 
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rate for discrete semiconductor products is typically expressed using a formula as 

shown in Equation 2. 

λp = λb πT πA πR πS πC πQ πE   Equation 2 

where λp is the failure rate of the part, λb is the base failure rate for the part and the 

remaining terms are correction factors for temperature (πT), application (πA), power 

rating (πR), stress, complexity (πC), quality (πQ), and environment (πE). The failure 

rate of a MOSFET and a BJT connected in series was calculated by adding the 

individual failure rates. Since different switching frequencies and duty cycles were 

employed in the power cycling experiment, the resulting junction temperature was 

also different for each case due to different power dissipations. Table 3 outlines the 

output failure rates in units of failures/10
6
 hours using the MIL217 formulas for 

MOSFET, BJT, and the summation of MOSFET and BJT in series under different 

switching frequencies and duty cycles. 

Table 3 – MIL217 failure rate (λ) prediction results (in failures/10
6
 hours) 

 1kHz, 

50%DC 
1kHz, 

60%DC 
5kHz, 

50%DC 
5kHz, 

60%DC 

MOSFET 5.68 5.85 5.81 5.98 

BJT 1.01 1.04 1.03 1.07 

MOSFET-BJT 6.69 6.89 6.84 7.05 

 

Since a constant failure rate is assumed by MIL217, MTTF can be calculated 

by taking the reciprocal of the failure rate. MTTFs of the MOSFET-BJT model were 

calculated in Table 4. In comparison with the experimental data, the MTTF from the 

150-200°C and 125-225°C data were 18.7 hours and 12.2 hours, respectively, 

estimated by fitting 2-parameter Weibull distributions on the lifetimes. Very large 
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differences (4 orders of magnitude) were observed between the MIL217 results and 

the experimental data. Among the factors that contributed to the inaccuracy of the 

MIL217 is the lack of temperature cycling as an input loading condition to the 

provided formulas and where changing the magnitude of ΔT has no effect in changing 

failure rate. 

Table 4 – MIL217 MTTF (1/ λ) results using the MOSFET-BJT model 

1kHz, 50%DC 1kHz, 60%DC 5kHz, 50%DC 5kHz, 60%DC 

149,543 hours 145,116 hours 146,412 hours 141,924 hours 

Summary of the Conventional Reliability Approaches 

Three different approaches were discussed in this section based on sample 

lifetime statistics, physics-of-failure, and a handbook. Sample lifetime statistics 

obtained from experimental data showed wide distributions of lifetimes even under 

controlled temperature conditions. Using those statistics to make prediction of 

lifetime or develop acceleration factor models would result in high uncertainties, 

unexpected failures, and waste of useful parts. A physics-of-failure approach was 

demonstrated using a die attach fatigue model and resulted in overoptimistic results 

partly due to the inability of the model to capture latchup phenomenon. In order to 

develop a better physics-of-failure approach, further investigations would need to be 

done to understand the interactions between failure mechanisms, changes in device 

characteristics with degradation, and equivalent thermal resistance network in the 

packaging. Investigations on all those issues are beyond the scope of this thesis. A 

handbook approach was demonstrated using the Military Handbook 217 and results 

showed a gross overestimation of lifetime partly due to the lack of temperature 
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cycling as an input loading condition, unavailable model for IGBT, and inaccurate 

categorizations of the device to fit into the set of criteria written in the handbook. 

An alternative approach is needed to predict the lifetime of IGBT considering 

the part-to-part variations as well as the variations in the loading conditions. In the 

next section a data-driven approach is proposed to analyze IGBT health individually 

by considering the operating parameters. 
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Chapter 4: Review of Data Driven Prognostics Approaches 

Prognostics is an approach to assess the reliability of a product in its actual life cycle 

conditions [18]. A data-driven prognostics utilizes data collected from online 

monitoring of device operation to determine the health state of the system. Several 

data-driven approaches reported in literature are summarized here and their 

limitations are discussed. In the next chapter, a new data-driven method is presented 

to overcome the challenges faced by the existing methods. 

Literature Review for data-driven IGBT Prognostics 

Several studies utilized the increase of VCE(On) as a precursor parameter to 

IGBT failure. Xiong et al. [19] proposed a fault detection method where an increase 

of VCE(On) by 15% of the initial value is a sign that the IGBT has approached the end 

of its life. Patil et al. [20]used an increase of VCE(On) by 20% of the initial value as a 

failure threshold in predicting IGBT lifetime by trending the VCE(On) curve over time 

with a particle filter regression method. An observation into the power cycling 

experimental data of this study showed that using a specific percentage threshold of 

VCE(On) resulted in inconsistent times of fault detection and in some cases missed 

alarms where the VCE(On) curve never reached the threshold before failure. Figure 15 

show several plots VCE(On) values collected at 175°C (mid value of temperature 

cycling) obtained from the experiments with the +15% and +20% thresholds overlaid. 

Fault alarms were generated when the VCE(On) curve exceeded the +20% threshold. 

Two of the plots showed alarms generated at 94% of lifetime and 80% of lifetime. 

The other two plots showed that no alarms were generated prior to failure. Additional 
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VCE(on) plots from all experiment samples are provided  in a latter section as 

comparisons with the proposed approach.  

 

Figure 15 – VCE(On) plots from experimental data of four samples showing different times of 

detections using the 15% and 20% increase thresholds. 

 Patil et al in [21] and [22] developed anomaly detection methods for IGBT by 

calculating the Mahalanobis Distance of VCE(On) and ICE(On) signals collected at a 

constant temperature. Mahalanobis Distance is a statistical technique to measure the 

distance of a data point from a set of reference data points normalized by the 

covariance of the variables. In the works by Patil et al. reference data points were 

obtained from a healthy condition of the IGBT of the first 50 data points collected in 

a temperature cycling test. Threshold for anomaly detection in [21] was defined as a 

deviation in the transformed Mahalanobis Distance above three standard deviations 

compared to the healthy data. Threshold for anomaly detection in [22] was defined as 

a deviation in the Mahalanobis Distance value above the 97.5p value of the Chi-

Square distribution. A limitation of these methods is the reliance on data collected at 

a constant temperature while in actual field conditions, IGBT experiences non-

constant temperature. Requiring data at a constant temperature would mean 
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suspending the analysis due to non-ideal temperature, analyzing only data from the 

reference temperature and ignoring the rest, or having to transform data into the 

reference temperature by means of interpolation or extrapolation which could 

introduce error in the process. An adoption of the Mahalanobis Distance methods to 

the experimental data by including temperature signal resulted in missed and false 

alarms as shown by Figure 16 and Figure 17. 

 

Figure 16 – Applying the transformed Mahalanobis Distance anomaly detection method [21] to 

experimental data including temperature signal with a 3-standard deviation detection threshold 

resulted in false, missed, or late alarms. 
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Figure 17 - Applying the Mahalanobis Distance anomaly detection method [22] to experimental 

data including temperature signal with a 97.5p of Chi-Square distribution detection threshold 

resulted in false alarms. 

 Saha et al. [23] developed a method to predict the end of life of IGBT by 

tracking the decay behavior of the tail current in the off-state. Tracking feature was a 

curve fit coefficient of the tail current curve. A threshold of failure was developed 

based on data collected from one IGBT sample as -2.5E5. Figure 18 shows the trend 

of the feature from the start of the aging experiment until failure. The authors advised 

that the threshold developed was specific to the given example and not to be applied 

to other samples due to variations of part-to-part as well as loading conditions.  



 

24 

 

Figure 18 – Predicting IGBT failure by tracking a curve fit coefficient of the off-state tail current 

to a defined failure threshold [23]. 

 Celaya et al. [24] developed a method to predict the failure of power 

MOSFETs by defining a failure threshold of when the on-state resistance (∆RDSOn) 

increases by more than 5% compared to the initial value. Figure 19 shows plots of 

∆RDSOn obtained from six samples used in [24] where 3 out of the 6 samples failed 

below the threshold. 

 

Figure 19 – Failure threshold definition of power MOSFET based on the on-state resistance 

increase [24]. 
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A similar method was applied to the IGBT experimental data and results were plotted 

on Figure 20 using detection thresholds of +5% and +50%. Three plots show the on-

resistance values collected at 175°C and one plot shows the same data from IGBT 22 

plotted using all temperatures. Not only detection times were not consistent, this 

method was shown to be not robust to varying temperature where deviations due to 

temperature exceeded the detection threshold. 

 

Figure 20 – Applying the increase of on-state resistance failure thresholds of 5% and 50%. Three 

plots show data collected at constant 175°C temperature and the right bottom plot shows data 

plotted with varying temperature. 

 In summary, the common challenge shared by the existing data-driven 

methods is the determination of threshold for failure detection. Thresholds defined 

based on a parameter deviation represented only a parametric failure but not the 

functional failure of the device. When applied to the experimental data, false and 

missed alarms were generated which in practical applications would lead to wasting 

good parts as well as unexpected failures. 
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Chapter 5: Failure Prediction using a K-Nearest Neighbor 

Centroid Distance Classification Algorithm 

In the previous literature review, methods were developed to classify IGBT 

health based on a parameter deviation. Such approach was shown to produce 

inaccurate results partly due to variations in the loading conditions of the 

experimental data which could not be captured only by tracking one operating 

parameter. To remedy that limitation, a method was developed to map the IGBT 

health states (healthy and faulty) with multiple operating parameters so that variations 

of the loading conditions can be accounted for. This mapping process can be regarded 

as a problem of classification of health states based on input features. A classification 

algorithm was developed using a K-Nearest Neighbor Centroid Distance approach. 

The method developed in this thesis sets itself apart from the previous studies 

by using functional failure, instead of parametric failure, as the definition for failure. 

Functional failure here means the IGBT sample could no longer operate due to failure 

to turn on or failure by latchup. Detection for a faulty condition is not based on a 

deviation from a healthy reference value as proposed by the existing methods in 

literature, but rather on remaining life of the device. The training process of the 

prognostic algorithm proposed in this thesis is divided into steps as shown on Figure 

21. Each step is discussed in details in this section. 
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Figure 21 – Algorithm training steps 

 Out of the 22 samples used in the power cycling experiment, data from 7 

samples were used to train the classification algorithm. The training IGBT sample 

numbers were 1, 5, 7, 13, 15, 19, and 21. The remaining samples were used as 

independent data to test the accuracy of the algorithm. 

 Healthy and faulty classes were defined based on regions of the device life, 

not on physical damage characteristics of the device. An example of health class 

definitions is shown on Figure 22 where data from the initial 0-20% lifetime defined 

the healthy class and 80% lifetime-failure defined the faulty class. Using this health 

definition scheme means that when operating data from an IGBT is classified into the 

faulty class, the IGBT is expected to have entered the 80% region of its lifetime and 

only 20% of life is remaining. This scheme does not discriminate between different 

failure modes that may be present in the “faulty” region of the training data. In 

addition to the 0-20% and 80%-failure combination, cases were analyzed using other 

combinations of healthy and faulty definitions as outlined in Table 5. 
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Figure 22 – An example of healthy and faulty class data definitions based on regions of device 

lifetime. Device failure occurred at the end of the plot at 891temperature cycles. 

 

Table 5 – Different cases of healthy and faulty class definitions 

Case 10/90 20/80 30/70 20/90 

Healthy Range 0-10% 0-20% 0-30% 0-20% 

Faulty Range 90%-failure 80%-failure 70%-failure 90%-failure 

 

 Data pre-processing encompassed auto-centering and normalization. Variation 

in electrical characteristics due to manufacturing can shift initial healthy state 

(classification) and thus obscure the variations from degradation [24]. To reduce the 

effects of manufacturing variations, each IGBT electrical parameter was centered by 
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its initial value recorded at 175°C which is the middle value of the temperature cycle. 

The middle temperature value was selected as a reference because this was the 

temperature at which most of the data were expected to operate around. In other 

temperature loading scenarios, a different value may be selected based on the 

expected temperature of the operation. After centering, the data of electrical 

parameters and temperature were normalized to bring them to the same scale by 

subtracting by the mean and dividing by the standard deviation of the data in the 

healthy class, as shown by Equation 3. 

* i i
i

i

f
f






   Equation 3 

where fi* is the normalized feature, i = 1, 2,..., n parameters, fi is the original feature 

vector, μi is the healthy mean of fi , and σi is the healthy standard deviation of fi . 

 Classification of IGBT health was carried out by a K-Nearest Neighbor 

centroid distance based classification [25] abbreviated as KNN in this study. KNN is 

a non-parametric classification technique in machine learning where a new data point 

is classified based on its proximity to the neighboring data points of known classes. 

Euclidean distance is calculated from a new data point to the centroid of the nearest 

neighbors from each class and the new data is classified to the shortest centroid 

distance as illustrated on Figure 23. In the illustrated classification was performed 

only on a 2-dimensional feature space but the same concept would extend to a higher 

dimensional feature as in the case of the IGBT multiple parameter data. A number of 

nearest neighbors (K) of 3 was used for the illustration, but the actual K would be 

determined using a sensitivity analysis on the training data. 
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Figure 23 – Illustration of classification using KNN centroid distance in a 2-dimensional feature 

space with K = 3. 

The determination of K depends on the characteristics of the data. A 

sensitivity study was conducted with a goal to find a value of K at which the 

classification output is stabilized [26], so that feature weight optimization can be 

performed afterward. A stable classification output means that the presence of noise 

would not have a significant impact in changing the location of the nearest neighbors’ 

centroid. Sensitivity analysis was performed by calculating the change in the distance 

of a test point to the centroid of the nearest neighbors as the value of K was increased 

by 1 at each step as shown on Figure 24. Stability criterion for K was defined as when 

at least 90% of the points in the training data, had change in centroid distances of less 

than 1% of the distance between the healthy and faulty class centroids when all points 

are included. The Euclidean distance between the healthy and faulty class centroids 

was found to be 3.95. This is a dimensionless value since the features were 

normalized. The corresponding 1% stability limits were calculated to be 0.0395. 
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Figure 24 – Selecting K based on sensitivity study for the training data case 20/80  

 Selection of K is a balancing act between including enough number of 

neighbors to produce a stable neighbors centroid location and including only 

neighbors that are "near" to the test point to ensure they are representative of the test 

point. Figure 25 shows two extreme scenarios of K = 1 and K = all data points in the 

reference cluster and a balanced scenario of K = 4 where the centroid location is not 

too sensitive with the presence of noise and at the same time is close enough to the 

test point. The selection criteria can be summarized as taking the least number of 

neighbors needed to meet the stability criterion. 

 

Figure 25 - Considerations in selecting K  

 Sensitivity study for K was conducted in other training cases (10/90, 30/70, 

and 20/90). In all cases the selected value of K was 9, except for Case 10/90 where 
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the selected K was 10. Figure 26 shows the plot of the centroid distance change 

sensitivity to K for Case 10/90. 

 

Figure 26 - Selecting K based on sensitivity study for the training data case 10/90 

 In the proposed data-driven method, IGBT health classes were mapped based 

on multiple features derived from parameters VCE(On), ICE(On), VCE(Off), ICE(Off), 

Temperature, and Frequency. Since data-driven methods assume no domain 

knowledge of the system to understand the level of influence of each feature in 

determining IGBT health, a statistical approach was developed to assign weights to 

the features based on their influence in separating the healthy and faulty classes. To 

that end, an optimization cost function was developed to minimize the classification 

error given by Equation 4. 

   Equation 4 

e is mean error, n is total number of training points, i is point index, Di_True is distance 

of point i to the correct class neighbors' centroid, Di_False is distance of point i to the 

incorrect class neighbors' centroid, and w is the weight vector. The error is small 

when the numerator term is small. In other words, when the neighbors' centroid of the 

correct class is located near the test point, the value of Di_True is small and therefore 

the overall error term is small. The denominator term normalizes the error in the 
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numerator by the total distance of the correct and incorrect class neighbors. Different 

values of feature weights were varied between 0 and 1 to obtain the minimum value 

of mean error.  

 An illustration to explain the basic working principle of the feature weight 

optimization is presented on Figure 27. In the illustration two classes of data are 

given as class A and class B. These classes consist of data composed of two variables 

(or features) x and y plotted on the 2-dimensional feature space. In this simplified 

case, a visual observation shows that separation between classes A and B is 

predominantly determined by variations in the y axis. Moving right or left on the x 

axis does not differentiate class A from B. This means variable y has an influence in 

classifying data while variable x only introduces noise. In some cases, including ∆x in 

distance calculation can result in misclassifying a Class B test point as Class A due to 

the extra distance introduced by ∆x. The optimization algorithm would identify the 

influence of each feature and automatically assign a small weight to variable x, in this 

case zero. As a result, any variation in the x direction is removed from further 

analysis and classification decision is only based on variations in the y direction. 

 

Figure 27 - Two-dimensional illustration of the feature weight optimization process 

 The basic working principle of the feature weight optimization was applied to 

the IGBT features in a six-dimensional feature space since there were six features 

developed from the operating parameters. The resulting optimized weights for each 
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training data case are presented on Table 6. From the optimization output, VCE(Off) and 

ICE(Off) were found not to be relevant in determining IGBT health and therefore were 

removed from analysis by giving them zero weights.  

 

Table 6 - Optimized feature weights for the corresponding IGBT operating parameters 

(columns) for different training cases (rows) 

Training Data  V
CE(On) 

 I
CE(On) 

 V
CE(Off) 

 I
CE(Off) 

 Temp.  Freq.  

10/90  0.760  0.980  0  0  0.970  1.000  

20/70  0.600  0.975  0  0  0.930  0.915  

20/80  0.755  0.940  0  0  0.970  1.000  

20/90  0.480  0.970  0  0  0.965  1.000  

30/70  0.835  0.995  0  0  0.945  0.990  

 

 Output of the KNN classification were in a binary format of 0 for healthy and 

1 for faulty. The binary output was converted into a continuous Fault Level by taking 

a moving average of the binary output over time with a window of 100 data points 

(approximately 5 temperature cycles). The purpose of converting the binary output 

into a continuous Fault Level is to enable the use of detection thresholds that would 

otherwise be rife with false alarms if the classification output was fluctuating zeroes 

and ones. Figure 28 shows an example plot of Fault Level versus temperature cycle. 

An anomaly was declared when Fault Level > 0.5, i.e. when more than 50% of data 

points in the moving window belonged to the faulty class. A fault was declared when 

Fault Level > 0.9, i.e. more than 90% of data points in the moving window belonged 

to the faulty class. 
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Figure 28 - Example of classification output plot where anomaly and fault detections are defined 

using the 0.5 and 0.9 thresholds.  

 The classification scheme was applied to the training data and times at fault 

detection were recorded in units of percentage of life. The remaining useful life 

(RUL) was calculated as the time span between the fault detection and device failure. 

RUL values were normalized by individual lifetimes in units of percentage life. The 

RUL calculation can be summarized by the expression: RUL = 100% - % Life at 

Fault Detection. Table 7 gives the RUL values upon fault detections for the seven 

training IGBT samples using training case 20/80. A normal probability distribution 

was fitted to the RUL values where mean and standard deviation were calculated. 

Histogram and the fitted normal probability density function (pdf) are shown on 

Figure 29. 

Table 7 - RULs of training samples for training data case 20/80 

Training IGBT #  RUL (%Life)  

IGBT 7  12.1%  

IGBT 19  17.2%  

IGBT 21  17.9%  

IGBT 15  24.2%  
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IGBT 1  24.9%  

IGBT 5  26.0%  

IGBT 13  31.2%  

μ =  22%  

σ =  7%  

 

 

Figure 29 - RUL histogram and fitted normal pdf for the training data case 20/80 

 The distribution of normalized RULs obtained from the training samples was 

assumed to represent the distribution of RULs of the population of IGBT parts used in 

the experiment upon fault detections. It was expected that the standard deviation of 

RULs obtained from new data would be higher than the training because the 

algorithm was trained to best fit the training data. In the next section results from 

applying the developed algorithm to new data are presented. 
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 Chapter 6: Prediction Results of New Data 

 Of the 22 IGBT samples tested in the power cycling experiment, 7 were used 

to develop and train the algorithm and the remaining 15 were treated as a new data set 

to test the accuracy of the developed algorithm. Applying the same classification 

scheme developed in Chapter 5 and using training case 20/80, the algorithm was able 

to detect faults prior to failure in 13 of the 15 test samples as outlined on Table 8. 

Two missed alarms occurred from IGBT# 10 and 20. The actual RUL value for each 

sample is shown in the table calculated by the time span between fault detection and 

failure. Any difference between the actual RUL and the mean RUL of 22% from the 

calculated training data was the error in the prediction, since any new sample that was 

detected for fault was assumed to have 22% remaining life. 

Table 8 - Fault detection of new data and the actual RULs based on training case 20/80 

 IGBT #  Actual RUL (%Life) 

14 2.4% 

6 8.6% 

17 11.4% 

3 17.3% 

22 23.3% 

11 25.4% 

12 25.7% 

9 26.8% 

8 33.9% 

16 36.1% 

4 37.6% 

2 40.1% 

18 43.9% 

10 Missed 

20 Missed 
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 In order to obtain a statistical evaluation of the prediction error, the 

distribution of the actual RULs upon fault detection was compared to the training 

RUL distribution. Figure 30 shows the normal cumulative density functions (CDFs) 

for the training and new data RULs. Any misalignment in the two curves represents 

the error of the prediction. At the 50% probability line lie the mean values of the two 

distributions. Shift between the mean values defines mean error of the prediction.  

 

Figure 30 - RUL prediction error evaluation by comparing the CDFs of the training RUL and 

new data RUL (20/80 training case) 

 An alternative way to present the prediction results is by plotting the 

probability density functions (pdf) of the two distributions. Figure 31 shows the 

histogram of the new data RULs overlaid with the fitted pdf's. As expected the new 

data distribution featured a wider distribution quantified by the larger standard 

deviation. The mean RUL prediction error was 4% life. This error is separate from the 

missed alarm errors from IGBT# 10 and 20 where the algorithm failed to generate 
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any RUL prediction. Statistical error evaluations for other training cases are presented 

on Figure 32 to Figure 34. 

 

Figure 31 - Prediction error evaluation showing histogram of new data RULs fitted with normal 

pdf compared to the training data pdf (20/80 training case). 

 

Figure 32 Prediction error evaluation showing histogram of new data RULs fitted with normal 

pdf compared to the training data pdf (30/70 training case). 
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Figure 33 - Prediction error evaluation showing histogram of new data RULs fitted with normal 

pdf compared to the training data pdf (20/90 training case). 

 

Figure 34 - Prediction error evaluation showing histogram of new data RULs fitted with normal 

pdf compared to the training data pdf (10/90 training case). 
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 The resulting means and standard deviations from Figure 31 to Figure 34 are 

summarized on Table 9. The number of missed alarms was increased from 2 to 3 in 

cases where faulty class was defined using 90% life – failure in comparison with 

other faulty class definitions. The higher number of missed alarms was due to the less 

sensitive fault detection where degradation had to reach an advanced state (90% 

lifetime) before the IGBT could be classified as faulty. From comparison of mean 

errors, cases 20/80 and 30/70 had the lowest error of 4% underestimation of RUL. In 

both cases the number of missed alarms was two. The resulting RUL of new data for 

case 30/70 showed an advantage over the 20/80 case in terms of longer lead warning 

time prior to failure at 30% mean RUL and a lower variation in predicted RUL with a 

13% life standard deviation.  

Table 9 – Comparison of training and new data RUL distributions for different training cases 

 Training Data New Data 

Case μ RUL σ μ RUL σ # Missed Alarms 

10/90 15% 6% 25% 11% 3 

20/80 22% 7% 26% 14% 2 

20/90 14% 6% 24% 12% 3 

30/70 26% 7% 30% 13% 2 

 

 An example of a successful failure prediction is shown on Figure 35 for 

IGBT# 22 where fault was detected 778 cycles, mean failure time was predicted at 

997 cycles, and the actual failure occurred at 1014 cycles. The error of the failure 

time prediction was 17 cycles. Not only the algorithm was able to give an early 

warning for failure, it also provided an estimate of remaining useful life which could 

be valuable information for operators in planning for sustainment actions. The same 



 

42 

figure also shows the corresponding VCE(On) and ICE(On) parameters of the IGBT. 

Several methods identified in the literature review employed a percentage increase in 

VCE(On) as a criterion for faulty IGBT. A +20% VCE(On) threshold was calculated to be 

4.5 V. The plot shows that VCE(On) never reached 4.5 V even until failure. Using a 

+20% threshold method would have led to a missed alarm for this sample. 

 

Figure 35 – Successful fault detection and failure prediction for IGBT# 22 using the KNN 

classification algorithm. An existing method based on +20% increase in VCE(On) threshold is 

shown to fail to generate detection before failure (training case 20/80). 

 

 An example of a poor failure prediction is shown on Figure 36 for IGBT# 14. 

In this sample, the algorithm successfully detected fault prior to failure but the 

estimated RUL of 171 cycles was too long compared to the actual RUL of 15 cycles. 

A look into the VCE(On) and ICE(On) showed small drifts over time until failure. The 

KNN algorithm had an advantage over the +20% VCE(On) detection method by being 

able to detect a fault prior to failure. 
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Figure 36 – Successful fault detection before failure for IGBT#14 but a poor prediction of failure 

time. Mean predicted failure time was 779 cycles and actual failure occurred at 623 cycles 

(training case 20/80).  

 

 Additional fault detection and failure prediction output plots for the 20/80 

training case are provided in Appendix C. The KNN algorithm was able to detect 

faults prior to failure in all samples (except IGBT# 10 and 20) including those where 

the +20% VCE(On) method failed to detect. In IGBT# 10 and 20 both the KNN and the 

+20% VCE(On) method produced missed alarms.  

Summary 

In this study a data-driven health classification approach was developed to 

detect imminent failures in IGBTs and provide an estimate of remaining useful life. 

Healthy and faulty classes were based on the percentage of lifetime of the device. 

When an IGBT was classified as faulty, its remaining life was assumed to follow the 

distribution calculated from the training data. Classification was performed using a K 
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Nearest Neighbor centroid distance based algorithm. Features relevant to classifying 

IGBT health were identified statistically using a feature weight optimization 

algorithm. Switching frequency was found to be a relevant feature for health 

classification and this finding was never reported before in literature. The role of 

switching frequency in determining IGBT health state was hypothesized due to its 

effect on changing device power dissipation and the time length the chip was exposed 

to the on-state short circuit.  

The developed optimization and classification algorithms successfully 

detected faults prior to failure in 13 out of 15 new test samples using the 20/80 or 

30/70 training data cases. In the sample were faults were successfully detected, mean 

error in the failure time prediction was 4% life for both 20/80 and 30/70 training 

cases. The 30/70 training case provided a mean lead warning time 30% remaining life 

at the time of fault detection.  
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Chapter 6: Contributions and Future Work 

 The main contribution of this work is the development and implementation of 

a prognostic method to IGBT data with varying temperature and loading conditions 

such as switching frequency, duty cycle, and applied voltage where existing methods 

were shown to suffer from missed and false alarms. The ability to analyze IGBT 

health at varying conditions enables a field-ready solution to prognostics and health 

management. Predicting the time of IGBT functional failure, as opposed to 

parametric failure criteria employed in existing methods, provided an objective 

assessment of the end of life of the IGBT independent of user’s design criteria. 

 A second contribution of this work is the development of an optimization 

based method to determine feature weights for distance-based classification. Not only 

feature weights can identify the influence of each feature to health classification, it 

can also be used as a feature selection process where features with weights below a 

certain low threshold are discarded, thereby reducing costs involved in acquisitioning 

and processing data and improving classifier’s efficiency. The feature weighting 

algorithm also allows an assessment of new features toward improving health 

classification as they become available in the future. 

Future Work 

 Further investigation is needed to find the root cause of the missed alarm 

cases and develop new features or algorithm that can take into account of these 

special cases. In order to better replicate realistic field loading conditions, additional 

test scenarios would need to be performed including changing the IGBT switching 
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duty cycle based on a specified power output demand; and heating and cooling the 

IGBT sample by increasing and lowering the power demand rather than turning it on 

and off. Such variations in loading conditions can introduce new degradation patterns 

on the IGBT may require the algorithm to adapt to new scenarios. 

 In this work, each IGBT sample was analyzed individually by monitoring the 

individual parameters. In many field applications, several of IGBTs are connected in 

different circuit configurations to achieve different functions. Monitoring individual 

parameters introduces a new challenge to circuit designers that needs to be further 

investigated. 
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Appendices 

Appendix A: Input attributes to CALCE FAST die attach fatigue model 

 

Die Attributes (Silicon, Si) 

Die thickness = 62 μm = 62E-06 m (from lab measurement) 

Elastic modulus = 112.4 GPa = 112.4E+09 Pa (from Matweb) 

Poisson’s ratio = 0.280 (from Matweb) 

CTE = 3.61 μm/m-°C = 3.61E-06 (at 227°C from Matweb) 

Die length = 2358 μm = 2.358E-03 (from lab measurement) 

Die width = 1980 μm = 1.98E-03 (from lab measurement) 

 

Die Attach Attributes (Sn65Ag25Sb10) 

Tensile fatigue strength = 117.2 MPa = 117.2E+6 Pa (from Indium Corp. Indalloy 

209 solder) 

Die attach thickness = 50 μm = 50E-06 m (from lab measurement) 

Elastic modulus = 18200 MPa = 18.2E+09 Pa (from CALCE FAST library for SnAg 

solder) 

Poisson’s ratio = 0.34 (from CALCE FAST library for SnAg solder) 

Tensile fatigue strength exponent = -0.5 (from CALCE FAST) 

 

Substrate Attributes (Copper) 

Substrate thickness = 1250 μm = 1.25E-03 m (from lab measurement) 

Elastic modulus = 110 GPa = 110E+09 (from Matweb) 
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Poisson’s ratio = 0.343 (from Matweb for annealed copper) 

CTE = 16.4 μm/m-°C = 16.4E-06 (from Matweb at 100°C) 

 

Environment Attributes 

Frequency of temperature cycles per day =  

2000 cycles/day for Δ100°C (approximated from experimental data) 

7500 cycles/day for Δ50°C (approximated from experimental data) 

Temperature cycle =  

Δ50°C and Δ100°C 

Period definition = “hours” 

Period length = 0 
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Appendix B: Power Dissipation Calculation 

 

Power dissipation or loss consists of: 

On-state power loss = VCE(On) * ICE(On) * Duty Cycle 

Off-state power loss = VCE(Off) * ICE(Off)* (1-Duty Cycle) 

Switching power loss = Energy lost per switch * switching frequency 

Energy lost per switch is provided in the data sheet as 329μJ, including the 

turn-on and turn-off losses. 

 

The following parameters were determined from the experimental data at 175°C heat 

sink temperature or manufacturer’s data sheet: 

VCE(On) , on-state voltage = 3.2 V (from experimental data at 175°C) 

VCE(Off), off-state voltage = 10 V (from experimental data) 

ICE(On), on-state current = 6 A (from experimental data at 175°C) 

ICE(Off), off-state current = 0.3 A (from experimental data at 175°C) 

DC, Switching duty cycle = 50% or 60% (set in the experiment) 

Switching frequency = 1 kHz or 5 kHz (set in the experiment) 

Switching loss = 329 μJ per switch (from data sheet at 175°C junction temperature) 

 

An example calculation of power loss for 1 kHz switching frequency with 50% duty 

cycle is given in the following: 

On-state Loss = VCE(On)*ICE(On)*DC = (3.4V)(6A)(50%) = 10.2 W 

Off-state Loss = VCE(Off)*ICE(Off)*(1-DC) = (10V)(0.3A)(50%) = 1.5 W 
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Switching Loss = (329μJ)(1000Hz) = 0.329 W 

Total Power Loss = 12.03 W 

 

The resulting power losses for different combinations of switching frequencies and 

duty cycles are provided below: 

 50% Duty Cycle 60% Duty Cycle 

1 kHz Frequency 12.0 W 13.8 W 

5 kHz Frequency 13.4 W 15.1 W 
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Appendix C: Classification Output Plots for Training Case 20/80 

 

Figure 37 - IGBT#2 

 

Figure 38 - IGBT#3 
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Figure 39 - IGBT#4 

 

Figure 40 - IGBT# 6 
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Figure 41 - IGBT# 8 

 

Figure 42 - IGBT# 9 
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Figure 43 - IGBT# 10 

 

Figure 44 - IGBT# 11 
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Figure 45 - IGBT# 12 

 

Figure 46 - IGBT# 14 
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Figure 47 - IGBT# 16 

 

Figure 48 - IGBT# 17 
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Figure 49 - IGBT# 18 

 

Figure 50 - IGBT# 20 
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Figure 51 - IGBT# 22 
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