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ABSTRACT

The problem of voice/data integration in a random-access radio network employing the
ALOHA protocol in conjunction with recursive retransmission control is investigated. Code-
division multiplexing (CDMA) is used as a suitable modulation in a radio environment to
decrease the effect of multiple-acces interference. Multi-access control strategies are intro-
duced which take advantage of the multiple-access capability of the CDMA channel to
accomodate several voice calls simultaneously, while the data users contend for the remaining
(if any) multiple-access capability of the CDMA channel. The retransmission probabilities of
the backlogged data users are updated based on estimates of data backlog and number of esta-
blished voice calls which are obtained from the side information about the state of channel
activities. A two-dimensional Markovian model is developed for the voice and data traffic, with
the data backlog and number of established voice calls representing the state of the system.
Based on this model, the voice-call blocking probability, the throughput of both traffic types,
and the delay of the data packets are evaluated and the tradeoffs between the parameters of
different traffic types are quantified.

This research was supported in part by the Systems Research Center at the University of Maryland, College Park, through
the National Science Foundation’s Engineering Research Centers Program: NSF CDR 8803012, and in part by the Naval Research
Laboratory



I. INTRODUCTION

The evolution of present communication networks toward an integrated services digital
networks (ISDN), to accomodate random demands for service from a population of hetero-
geneous users, has presented new problems to communication engineers. One of the basic
problems is the integration of variety of data types (e.g., interactive data, digital voice,
video, etc.) over a common channel. Integration of different traffic types over a common
channel requires a method to determine how the users should schedule their transmissions
to avoid destructive interference which occurs when the traffic load over the channel in-
creases. In other words, a channel-access scheme has to be followed by the terminals of

possibley different traffic types in order to efficiently make use of the channel.

Different approaches to channel access have been pursued in single traffic-type net-
works. Circuit switching techniques have been used extensively in telephony, while packet-
switched networks have become the main carriers of data traffic [1]. Different methods of
packet communications in data networks have been described in [2]. The main idea behind
the integration of voice and data traffic in a single network has been the use of hybrid

circuit/packet switching techniques [3]-[4].

In this paper, we consider the problem of voice and data integration in a packet
radio environment. ALOHA protocol [2], in conjunction with retransmission control via
channel load sensing is used by data nodes. At the end of each slot the (re)transmission
probability of data nodes are updated based on the estimates of data backlog and number
of established voice calls over in the channel. We present three different methods for the
control of data traffic and compare the performance of them. Voice-call blocking is used as
a way to control the load of voice traffic. A problem in the transport of packetized speech is
the stringent delay requirement in order to maintain a reasonable quality of conversation.
Since each voice call generates a random number of data equivalent packets, whenever a
voice call is established, the voice node sends its packets in successive slots until the call
terminates. In this way, packets of established voice calls never experience delays. Voice

calls are blocked based upon the level of interference sensed present over the channel.

We develop a markovian model for voice and data tarffic. Based on this model, the
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throughput and delay of data nodes, for a system with finite number of voice and data nodes
are evaluated. Voice-call blocking probability and voice-call throughput are presented and

the tradeoff among the different traffic types are discussed.



II. SYSTEM MODEL

Consider a slotted ALOHA random-access packet broadcast system with My data
users and M, voice users. Packet transmissions start at common clock instances and
packets have constant length of L bytes. Each user (data or voice node) employs a random
frequency hopping pattern for transmission of its packets. The frequency spectrum is
divided into ¢ frequency slots and each byte is transmitted at a frequency chosen from
the ¢ frequencies with equal probability, independently of the frequencies chosen for other
bytes. We assume that a packet consists of exactly one codeword from a Reed-Solomon code
for which up to v byte errors can be corrected. A packet is therefore declared successfully

transmitted if at most v byte errors occur.

The channel access protocol for data nodes is the delayed-first-transmission (DFT)
protocol under which new data packets join the backlog before their first transmissions
are attempted, and each packet is independently transmitted in slot ¢ ((¢,¢ + 1]) with
probability f; [5]. It is assumed that side information about the state of channel activities

can be obtained to update the retransmission probability f¢, at the end of slot t.

Voice calls enter the system until the interference level in the channel passes a thresh-
old, where the voice calls will be blocked and cleared. Each voice call generates a random
number of packets, geometrically distributed with parameter p. Voice calls which are not

blocked send their packets in successive slots until the call terminates.
The following definitions will be used:

Y? = Number of new data packet arrivals in slot ¢t — 1,

Y = Number of new voice calls attempting transmission in slot ¢,
N¢ = Number of backlogged data packets at time ¢,

X¢ = Number of data packets (re)transmissions in slot ¢,

S¢ = Number of successfully transmitted data packets in slot #,

N? = Number of established (active) voice calls, having packets to transmit in slot ¢.



III. MARKOVIAN MODEL OF VOICE/DATA TRAFFIC

There are several possibilities for estimating the channel traffic at the end of each

slot, and how these approaches affect the system’s performance. In this paper, we present

the case where the nodes are able to obtain the estimate of N{v 2 Ng& + NP from the
observation of channel activities during the slot (¢ — 1,¢]. In what follows, we assume that

all the nodes in the network can estimate the value of Nf¥ = N + N} exactly.
In order to obtain the statistics of Nf¥, we introduce the two-dimensional process

N, 2 (N£&,N?). One question to ask is whether the two-dimensional process N, is Markov.

That is whether
P[ 41 = = (n,m) | Ny = (ko,%o), 1—(k1,£1),---,_]y_t=(iaj)]

:P[ 41 = = (n,m) | N, _(z,j)]

the above relationship holds. It can be shown that conditioned on N, both N& , and
N7, , are independent of values of N for s < ¢. This observation leads to the conclusion

that the joint statistics of the vector-valued process obeys the Markovian property.

Once the Markovian nature of NN, is established, one would desire to exploit this
property to get the statistics of the process. As a first step, we would like to be able to
compute the transition probability matrix of the Markov process IN,. This can be done as
follows:

M,—j

P[Mt+1 = (n,m) |]_V_t = (i’] Z P =t4+1 — (nam)a Y? = ﬂ l.]_v...t = (Zaj)]
=0

=Z [Ny = (n,m) |V = 6N, = (4,5)] - P[Y = L| N, = (5, )]

The individual components on the right hand side will be given in the following sections on
voice and data traffic analysis. The stationary distribution of the process is then evaluated

from

P Mo = ()] = 35 SSP (Nopy = () | N, = )] - P, = (i)

=0 7=0



The limiting distribution of the process is given by
N AL,
=(n,m) = thm PN, = (nam)]

when the Markov process is ergodic, the limiting distribution is same as the stationary

distribution of the process. It can be seen that
k
PN =k] =) PN, =(i,k—1)
=0

From the above, we also obtain the steady-state distribution of N



IV. VOICE TRAFFIC ANALYSIS

The new voice calls are blocked whenever the value of NZ¥ exceeds the voice threshold

K,. Therefore, the conditional distribution of number of calls that go through is given by
J
PIYy =N} =jl=) P[Y7 =N} =i, NJ*=j]-P[Ny =i|N}" = j]
The first term in summation can be written as
PY) =Ny =i,N? =j] =P[Y? =N} =j — i, N} = i]
=PY? ={N, =(j —,7)]
which is given by
PY?=¢|N,=({ —%1)]= d(M, —1,,P,), j<K,;

The second term in the summation is given by

— P[_]Y.t - (.7 "z72)]

PNY = N = j

P[NP =]
where
J
P[NP =j]=) PN, =(k,j—Fk)
k=0
Note that
1 £=0
P[Y;’:NN{“’:]’]:{ 17> K.
0 £>0

The voice-call blocking probability is given by

J
Pp = lim P[N# > K,) = S S 1k, j — k)
tmee i>Ky k=0



IV-A. Calculation of Voice Traffic Throughput

The voice throughput in steady-state 7,, is the expected number of voice calls that

establish communication in each slot. This is given by
— 1t v|prdv
~ lm (BN},

The above formulas provide us with the conditional distribution of number of voice calls
that go through in each slot. The conditional expectation of this random variable is then

given by
My—j
E (YN = j Z LPYY =NP =j5]; j<K,

and E (Y?|N{* = j) = 0 for j > K,. Substituting in the above, we get
J
E(YIIN{" =j) =3 Po(M,—4)- P [N} =ilN}" = j]; j<K,

Averaging with respect to NA? gives us
K, J
ne= % Po(My,—i)TIE(j —i,i)

j=0 =0

Simplifying the above formula, we obtain

= M,P,(1—-Pp)—- P, ZZ]:ZH—(]—Z ?)

=0 1=0

The percentage of calls that go through is then given by

-100%

M,P,



V. DATA TRAFFIC ANALYSIS

Since the data nodes follow the DFT protocol for their first transmissions, the evolu-

tion of the data backlog process {N{} is given by
Ntd+1 = Ntd - Std ‘*‘Y;:(-iu

Each unbacklogged data node generates a new packet in a slot with probability P;. There-
fore, when the backlog is at state n, the conditional distribution of number of new data

packet arrivals is given by
P[YS,=0|N! =n] =b(Ms—n,0Py)

If the transmission of new packet is unsuccessful, no new packet will be generated by the
user until the backlogged packet is transmitted successfully. The backlogged packets are
transmitted independently in slot ¢ with probability f;. Therefore,

P X =i|N;=(n,m)] =b(n,i, o)
The (re)transmission probabilities are updated according to

ft — min (1, m) s N{iv S I&’v
(N, K, Kq); N¥ > K,

where ®(.,-,-) is a suitable control function of channel information N2V, and control pa-
rameters I{, and K. The choice of ® determines the course of action taken by backlog
data nodes when the state of channel activities implies the blocking of new voice calls.
Hence, the choice of @ has direct effect on both the throughput/delay performance of data

nodes and blocking performance of voice traffic.

In order to evaluate the data throughput, we need the marginal distribution of number

of successful data packet transmissions. This can be obtained via
My My+i M, —j+1

Sd—k ZZ Z PSd:kthd:?x,Y'tv:&Ngv:]]

=0 j=1 £=0
P [N} =4,Y? =, N = j]
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The second term in the summations is given by
P[N{ =i, =CN{" =] = PV =Ny = (i,j — )] - P [N, = (i, — 9)]

where the individual components have been derived before. The first term in the sum-
mations is the conditional distribution of number of successful data packet transmissions
which is derived as follows:
PS¢ =hN} =4,Y = (,N{* = ]
;
= Z P[S{=k X! =m|N! =i,Y? = ¢, N} =]

m=max(0,k)
PS¢ =k, X! =m|N{ =4, Y =, N = j |
=P [S} =k|IN} =4,Y? =, N = j, X} = m]
- P[X} =m|N} =i, N} =]
We have used the fact that X{ is independent of Y,?.
P[X}=mIN} =i, NP = j] = b(i,m, f;)

Let P(- | k) represent the distribution of number of successes, given that k packets are

transmitted in the slot. Then
P[S{=k|X!=m N =j—i,Y =€) =P(k|m+L+]—1)
If we make the assumption of independent packet error events, then
P(m | k) =b(k,m,1 - Pg(k))

where Pg(k) is the packet error probability in presence of £ simultaneous packet transmis-
sions. Pg(k) can be evaluated from the methods presented in [6] for frequency-hoopped
spread-spectrum systems. The assumption of independent packet error events is not accu-
rate due to the correlation among the terms in the multiple access interference. Accurate

approximations to P(- | k) have been derived in [7]. Hence,
PISI=FkIN! =i, N" =4,V =0,X}=m] =P [S{ =k|X} =m, N} = j — 4, Y =]

=b(m,k,1 — Pe(m+{+j 1))



Note that
P[S§=FkN!=i,Y' =(,NF =j] =P [S§=k|N, = (i,j —1),Y® =]

Putting all these together and by a change of variable on the second summation, we get

the following for P [S{ = k]:

Md MU v

P(St=k=> Y ZJP S¢=kIN, = (i,7), Y =]

=0 j=0 £=0

PV =N, = (5,5)]- PN, = (5,5)]

The data throughput is then given by

Mg
— 1 d _
Nd = tll{goz kP {St =
k=0
and the steady-state delay D, is given by Little’s formula:

b = Sy g nI¥(n, m)
Nd

V-A. The control function &N, K,, K,)

The control function ® determines the (re)transmission probabilities of data nodes
when the feedback from channel implies the blocking of new voice calls. One way to
proceed is to have very small retransmission probabilities when N#? > K,. We may some

form of the exponential backoff method. A suitable control function in this case is

1 N, —-Ky
(NP, K, Kq) = (5) ;. N¥>K,

In this way, the data nodes follow the exponential backoff while the control gives some

room to data nodes via Kjy.
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On the other hand, we may let the data nodes follow the same rule as when N < K,.

That is, we let

(NP K,,Ky) = v
t

Using this rule results in dramatic decrease in the data backlog queue compared to the
first rule. This also helps to improve the throughput of voice traffic. This happens since
the blocking mechanism of new voice calls depends directly on the size of the data backlog
queue as well as the number of established voice calls already in the system. Reducing the
size of the data backlog queue results in smaller voice-call blocking probability which in

turn improves the voice throughput.

For the purpose of comparison, we have also used a modification of the above rule by

ignoring the multiple access capability parameter K4. This one is given by

1

. dv
W 3 Nt > K,

O(NP?, K, Kq) =

V-B. Transition probability matrix of IV,

The transition probability matrix of the two-dimensional process N, is obtained from

M, —j
P[Nyy=(nm) | Ny=(5,4)]= Y P[Nyy=(nm),Y=L|N,=((5j)
=0

Mu_j
=Y P[Nyy=(m) | Y =4LN, =(i,j)] - P[YY =€| N, = (i,5)]
(=0

where
P [_N_t+1 =(n,m)|N, = (3,7), Y = E] =P [Ntd+1 =n|N, = (1,7), Y = E]
PNy =m|N, = (i,7), Y = {]
The first term on the right-hand side can be obtained from

P[Nlyy=nlN,= (7)Y ==Y  P[S{=kN=(),¥ =

k=i—min(n,:)
P[YE =n—i+kN}=1]
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where we have used fact that the new data packet arrivals are independent of current

successful transmissions and the voice traffic processes. That is
PIYi, =n—i+ kNl =i] =b(Mg—i,n—i+k, Py
The second term on the right hand side is simply

P [N:)—f-l = mUXt = (i’j)aytv ZE] = b(] +£,m,1 _p)
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VI. DISTRIBUTION OF TOTAL TRAFFIC (VOICE&DATA) AND
RELATED PERFORMANCE MEASURES

In this section, we will first derive the probability distribution of the total traffic in
a slot, in terms of number of packet transmissions in a slot, and then introduce some

performance measures related to this process.
Let XTI éXtd + X/ denote the total number of packets (voice& data) transmitted in
slot t. Then
k
PXT=k]=> P[X}=n, X} =k—n]
n=0
k
=Y P[X!=n|X=k—n] -P[X}=k—n].
n=0

The voice traffic over the channel is given by X} =Y;” + N/. Therefore;

P[X!=m]=> P[Y?=(N}=m—4{ -P[N}=m—{]
£=0

The first term in the above summation is given by

Mai+m—¢
PIY =Ny =m—ll= > P[P =N =m— LN =]

j=m—4£

P[NP =jIN} =m — (]

PN, =(—m+£,m—1)] )
PINY =m —{] ’

P[NP =jIN} =m —{] =
and
PV =N =m—{,N” =j] =PV =N, = (j — m+ €, m — {)]
which is given in the previous section.
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The resulting distribution of voice traffic is then given by
m My
PIX;=ml=3Y Py =N, = (i,m 0] PN, = (i,m - )
£=0 =0

The conditional distribution of data traffic, given the voice traffic is given by

Mg M,+1
PXt=nX)=k-n]=> ZP[Xtd:n[N;izi,N;lv:j,szk—n]

P [Nl =i, NP =j|X} =k —n]

The first term in the summation is independent of X? when N and N{I¥ are given.

Therefore.
P [Xtd = n|Ntd = iaNilv :j?Xtv =k —n] =P [Xtd = n|Ntd = iaNtdv :J] = b(i,n,ft)
The second term in the summation is derived as follows:

PIN!=i,NP = | X! =k—n]=
P[X} =k—n|Nf =i, N} =j] - P [N{ =i, N{* = j]

B PXy =k —n]
_ PV =k—n—j+iN,=(,5—9] - P[N,=(i,j — )]
P[X? =k —n]

Substituting for the terms in the summation, we get

Mg min{k—n,M,)
PX[ =k =) ST bnf) PV =k —n—j|N, = (i,5)]

n=0 i=0 j=0

PN, = (3,7)]

The expected number of packet transmissions in a slot is then given by

~ Mg+ M,
XT:tlé»%E{X?}:tli»rgo 2;0 mP[XtT:m]
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The expected number of voice packet transmissions is also given by

Mg M,

Xv =1+ ZZ] H—I\L(Za])

1=0 j=0
We can then compare the change in X7 and X, as a function of voice and data arrival
rates.

Another performance measure of interest is the average probability of error in a slot

given by
Ma+M,
PE = Z PE(m) P [XtT = m]
m=0

where Pg(m) is the conditional probability of packet error in the presence of m simultanous

packet transmissions.

These are evaluated for the three schemes described in V-A.

15



VII. NUMERICAL RESULTS

For the integrated random access system described above, we considered a system of
M, = 10 voice and My = 10 data nodes. An extended Reed-Solomon code of rate 1/2
(n = 64,k = 32) was used for error correction purpose. This code can correct up to v = 16
byte errors. The frequency spectrum was divided to ¢ = 50 frequency slots for frequency-
hopping multiplexing. The maximum tolerable voice packet error probability was set at
10~2. This gave us the voice threshold of K, = 5. This means that for the given values of
physical link parameters (i.e., code rate, packet length, frequency slots, etc.), the network
can support up to 5 active voice calls with moderately good packet error probabilities.
The maximum tolerable data packet error probability was set at 1073, This resulted in

K, =4.

Figure 1. presents the voice-call blocking probability (Loss probability) for the three
different schemes given above. Figure 2. illustrates the voice traffic throughput for the
same schemes. Figures 3.-4. present the data traffic throughput and delay performance of
the given schemes, respectively. It is observed that the exponential backoff scheme has the
worst performance for both traffic types. This is due to the fact that the retransmission
probabilities depend on the estimate of data backlog through N@?, and the exponential
backoff of data nodes causes the data backlog to increase and a positive feedback effect
occurs. On the other hand, the first scheme seems to fully utilized the resources of the

CDMA channel to accomodate both traffic types.

Figure 5. presents the expected number of packet transmissions in a slot for the total
and voice traffic, respectively. It is clear that as the offered data traffic increases the voice
traffic gives more priority to the data nodes. Figure 6. illustrates the average packet error
probability as a function of offered data traffic for the three schemes considered here. It is
observed that for the average data traffic of less than one packet per slot the best scheme in
terms of throughput and delay also does best in terms of average packet error probability.
For MyP; > 1, the exponential backoff scheme does better than the other two schemes,
but that is expected; since the traffic load over the channel decreases dramatically which

causes a sharp decrease in average packet error probability for this scheme.
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VIII. CONCLUSIONS

The problem of integration of voice and data traffic over a radio channel was considered
in this paper. Code division multiplexing techniques were employed, as an alternative to
traditional FDMA and TDMA schemes; to offer resouce sharing by both traffic types. The
three control strategies considered here do well in terms of average packet error probability
experienced by the network users (Fig. 6). The throughput/delay performance of data
nodes are more sensitive to the type of control being exercized by the nodes than the voice
performance measures (blocking probability, throughput) are. It is observed that multiple
access capability of CDMA techniques can be exploited to enhance the efficient use of the
channel, and increase the throughput of both traffic types while the degradation of service
(in terms of packet error probability) is graceful (see Fig. 1-6).

One drawback of the above model is the fact the retransmission probabilities can
not be implemented in a distributed and decentralized fashion. Our work in progress is to
remedy this problem. Recursive methods of control introduced in [5] are being investigated

for implementation with this protocol.

Our analysis was carried out for a finite-population model (actually, binomial dis-
tributions for the populations of voice and data users). The extension to the case of an
infinite population of data users (the voice population remains finite) involves deriving the
stability region of this protocol for data traffic as a function of variations in the population

and duty factor of voice traffic.
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