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1. Homogenization of regular structures

It is now generally accepted that large, low mass lattice structures, e.g., trusses, are natural
for space applications.! Their large size and repetitive infrastructure require special techniques for
structural analysis to cope with the large number of degrees of freedom. Approximations of such
systems by continua provide a simple means for comparing structural characteristics of lattices
with different configurations, and they are effective in representing macroscopic vibrational modes
and structural response due to temperature and load inputs. Our approach to the construction of
such models is based on a telchnique‘for asymptotic analysis called homogenization. It has beén
widely used in mathematical'physics for the treatment of composite systems like porous media for

which one wishes to have an effective approximating system with parameters which are constant

across the structure.? Before developing the general features of the method and applying it to the
treatment of lattice structures, we shall make a few remarks on other work on continuum models

which has appeared in the recent structural mechanics literature.

Noor, et. al. (1978) use an energy method to derive a continuum approvimation for trusses
with triangular cross sections in which the modal displacements of the truss are related to a
linearly varying displacement field for an equivalent bar. PPlates with a lattice infrastructure are
also treated. In (Dean and Tauber 1959) and (Renton 1969) exact analytical expressions for the
solutions of trusses under load were derived using finite difference calculus. By expressing the
difference operators in terms of Taylor’s scries Renton (1970) was able to derive continuum
approximations to the finite difference equations resulting in expressions for equivalent plate
stifinesses, for example. In a recent paper Renton (1984) used this approach to give equivalent
beam properties for trusses, which complements the earlier work of Noor, Anderson and Greene

(1978) and Nayfeh and Hefzy (1978). (Sce also (Anderson 1981).)

In most cases a continuum model is associated with the original (lattice) structure by

averaging the parameters of the lattice over some natural volume (e.g., of a cell of the structure)

Isee, for example, (Aswani 1082), (Juang 1984), (Mikulus 1078), (Renton 1970), and (Taylor and Balakrishnan 1984),
and the references therein.

2See, for example, the papers of Larsen (1975 1976), Keller (1977), and the reports of Babuska (1975) for applica-
tions and discussions of design techniques.



and identifying the averaged parameter value (mass density, stress tensor, etc.) with the
corresponding distributed parameter in the continuum model. A specific form for the continuum
model is postulated at the outset of the analysis; e.g., a truss with lattice structure will be approx-
imated by a beam, with the beam dynamical representation assumed in advance. While this

approach has an appealing directness and simplicity, it has some problems.

First, it is very easy to construct an example in which the approximate model obtained by

averaging the parameters over a cell is not a correct approximation to the system behavior. This

is done in the next section.® Slecond, o'ne cannot use this procedure to obtain ‘“‘corrections’’ to the
approximation based on higher order terms in an expansion, which may sometimes bé done in an
asymptotic analysis. These terms can be used to describe the microscopic behavior (e.g., local
stresses) in the structure. Third, the averaging method (averaging the parameters over space)
does not apply in a struightfonvaﬂ way to systems with a random structure, since the appropri-
ate averaging proceduré may not be obvious.* Fourth, the method cannot be naturally imbedded
in an optimization procedure: and controls and state estimates based on the averaged model may
not be accurate reflections of controls and state estimates derived in the course of a unified optim-
ization - averaging procedure. In particular, the method does not provide a systematic way of
estimating the _degree of suboptimality of controls and state estimates computed from the ideal-

ized model.

In this work we use a totally different tcchnique called homogenization from the mathemati-
cal theory of asympvuotic analysis to approximate the dynamics of structures with a repeating cel-
lular structure. Ilomogenization produces the distributed model as a consequence of an asymp-
totic analysis carried out on a rescaled version of the physical system model.

Unlike the averaging method, homogenization can be used in combination with optimization

procedures; and it can yicld systematic estimates for the degrec of suboptimality of controls and

estimators derived from idealized models. While our results arc stated in terms of simple strue-

3See the numerical experiments In (Bourgat 1978).

ﬁ{omogenizatlon methods do apply to systems with a randomly heterogeneous structure, see (Papanicolaou and
Varadhan 1982) and (Kunnernann 1983). We shall not treat such systemns in this paper.



tures, they demonstrate the feasibility of the method; and they suggest its potential in the

analysis of structures of realistic complexity.

In section 2 we give an example derived from (Bensoussan, Lions, and Papanicolaou 1978)
illustrating some of the subtleties of homogenization, particularly in the context of control prob-
lems. In section 3 we derive a homogenized representation for the dynamics of a lattice structure
undergoing transverse deflections. We show that the behavior of the lattice is well approximated
by the Timenshenko beam equation; and we show that this equation arises naturally as the limit
of the lattice dynamics when the deﬂsity of the lattice structure goes to infinity in a well defined
way. The problem of vibrat‘ion control of a lattice is posed and discussed in section 4. In section
5 we derive a diffusion approximation for the thermal conductivity of a one-dimensional lattice
structure. This property is useful in analyzing new materials for large space structures. An

operational calculus for homogenization is sketched in the Appendix.

Acknowledgements: "We are grateful to Professor George Papanicolaou for bringing
Kunnemann’s paper to our attention and to Drs. A. Amos and R. Lindberg for their comments

on an earlier version of this work.

2. A one-dimensional example
From (Bensoussan, Lions, and Papanicolaou 1978) we have the following example:

- [i{a‘(r) %] = f(z), = € (241, (2.1)
ax x

u(zo) = 0 = u(z,)
where a(z) 2 a(z/¢), and afy) is periodic in y with period Y, a(y) > o > 0. It is simple 1o

show that

T

5 . du “(z .
el & [ lufo |+ |2 g2 4 <o (2.2)
%o



and so, 4 ¢ — u weakly in the Hilbert space HP Moreover,

YO
a¢— M(a) & £ a(y) dy {2.3)
Yo o

and it is natural to suppose that ¢ ¢ — « with the limit defined by
d d
- = [M(a) 7 uw(z)]=f(z) z € (zo2,) (2.4)
dz dz
u{zx,) = u(x,)
This is untrue in general (Bensoussan, Lions, and Papanicolaou 1978, pp. 8-10). The correct
limit is giveﬂ by
7L @) =f(z) ¢ € (rory) (2.5)
dr dz ’ ot ’

u(xo) = u(z,)

with

Sl
g

(M( =) (2.6)

In general, M (a) > @; and so, the error in identifying the limit, (2.4) versus (2.5), is fundamen-

tal.

The system (2.4) corresponds to averaging the parameter a ‘(z ) over a natural cell; a pro-
cedure similar to that used in the past to define continuum models for lattice structures. As (2.5)

shows, the actual averaging process can be more subtle than one might expect, even for simple

problems.

2.1. iicmogenizztion of the example

To see how (2.5) arises, we can use the method of multiple scales which applies to a variety

of problems. Suppose

Sere ! A { v € L¥z,2,): |[“1|H1<OO }



r T
ule) = ul(z, =) = ugz,—) + cuz, =) +
€

that is, we suppose that u¢ depends on the slow scale z and the fast scale y

adopt an ansafz which reflects this dependence. Using the identity

2 olu@Eyy =9 L0 2
dzx ! T oz e Oy’ y €
then (2.1) may be rewritten as
aJ 1 4 .. -0 1 0
“(’*a—; +_e_5—§){a(y)(£ +?8_y)[u°+€ul+

Simplifying and equating coeflicients of like powers of ¢, we find first that

The assumptions on afy} imply
wo(r,y) = uo(x)

i.e., no y-dependence. The coeflicients of ¢! satisfy

o

Iy
or
ﬁ[a()iu}“ da Ot
Jy Yoy oy Oz
If we look for %, in the form
Ou, -
uy(z.y) = - X(¥) —5— + u.z),
dz
then the corrector x(y ) must satisfy
d d da
T [a(y)—d-y-x(y)}f Ty

and be periodic. That is,

3 0 0 0
(o (o) L ol + o= [a0) 5 vol -~ o [a(y)a%

(2.7)

2 1 /e; and we

“1Y=7 (29

(2.10)

(2.11)

1}=o0 (2.12)

(2.13)

(2.14)



d
a(y)% =a(y) + ¢ (2.18)
y
which has a periodic solution (unique up to an additive constant in y ) if and only if

YO
+ [+ a—(cyy]dyzo (2.17)
0

which implies

Gl

¢ = ~ [M(%)]-‘ a (2.18)

We obtain an equation for uy(x ) from the solvability condition for u,(z,y). Equating the

coeflicients of €° in the expansion, we have

0 0 0 0
" 3y [a(y)-a—y- uUy] - En [a(y)a uy (2.19)
FZ) ] 7] 0
T [a(y)(?_y u, ] - Tz [a(y)a uo) = f (z)

This has a solution u 4(z,y ), periodic in y if and only if

Y
Ly d 2 d®u oz ) "o
Gy [ len) + 50 La@) X))~ e) o xW) T dy o —m— (2:20)

+ f(z)=0

where we have used (2.14). The integral of the second term is zero, since it is the integral of the
derivative of a periodic function over one period. Using (2.16) and (2.18), (2.20) reduces to

Quo

dz?

!
3|

+ f(z)=0 (2.21)

(plus the boundary conditions) which is (2.5) (2.6).

2.2. Control znd homogenization of the one dimensional system

One of the simplest stochastic control problems associated with the preceding system is

defined by the Hamilton - Jacobi - Bellman equation



r . d%u¢ 1 z . dut
_a(x I Y.
a(e) dz? € (e) dx
. 1 du‘ €
= tf [— v® + g(z,y)v - ¢ u®) (2.22)
veER 2 dz

z € O, u(z)=0 on I £ 30
where O is an open interval in R, and each function a(y), b (y), and ¢ (z,y) is periodic in y
with period Y,. We assume that a(y) 2 «a > 0 and that ¢ > 0, and that the controls v take
values in IR.
This Bellman equation corresponds to the stochastic control problem

u(z) = :'7(1.1)' J v ()]

t

Tz € —f C(‘-",:—( ) de
JWO =E { [ I(z‘,ﬁc— w)[e © ‘ Jdt ) (2.23)

€

drf(t) = o(z "= Ydw(t) + = bz = )dt + G’ v)dt
€ € € €
70y =2 € O, ¢t > 0.

2

- v®, and

[~

with  o%(z,y) a(y), bzy)=10b(@y) Gl@yv)=gy, l(z.yv)=
¢(x,y,v) = ¢, a constant in (2.22). Each function in (2.23) is assumed to be periodic in y with
period one. We are interested in the behavior of the optimal cost and control law for (2.22) in the

limit as € — 0. The stochastic control problem (2.23) was treated in (Bensoussan, Boccardo, and

Murat 1984); the analysis here uses different arguments which emphasize the computational
aspects of the system.
Evaluating the infimum in {2.22), we have the nonlinear system
z 1 T 1 T 5
a (=) e + —b(=)u,f — cu,t - = g%x,—) (0, =0 (2.24)
€ € € 2 €
z € O, uzx) |r=0.

The analysis of the control problem involves homogenization of this system.



Let
Ay=a(y)oy + b(y)o,
with its formal adjoint defined by
AL =0, ()8, ) - 3y () - g (y)).].
The problem

Al m =0, y — m(y) periodic

m > 0, fm(y)dy—-—-—l
Y

has a unique solution m (+) on ¥ = S°, the unit circle, with
o< m <m(y)y< m < co.
So m (») is a density on Y. We assume that b (o) is centered

[m@)b(y)dy =o.
Y

As a consequence the system

A x(y)=b(y)

y — x(y) periodic, [ x(y)dy =0
Y

has a well defined solution. x(.) is the corrector associated with the problem.

As before we look for 1€ in the form
v z)=u(z,y)=uolz,y) + euy(z.,y) + ", ¥y L g /e

and we use
0, p(x,y) = ¢ (x,y) + %éy(w,y), Yy =1 /¢
Pus Yo .) = $uz(2.1) + = buy(zy) + bylay).

Substituting in (2.24), we have

(2.25)

(2.27)

(2.29)

(2.30)

(2.31)



2 1 1
a(y)vos + —e"'uozy + ?uoyy] + a(y)leuw + 2%,y + _e‘ulyy]
+ a(y)[€2u2u T 2€ Ugyy + u2yy]
1 1 1
+ b lee + —ue ) —bWlews + vy (2.33)

* i_b(y)[fzuzz + o€tz ] — ¢ [uo + euy + € uy]
- S 0%E W) (Mo # cun # Eun) F = (g F cuyy + Euy)P= O(E)
The last term is
_ %5,2(1,,31)[(%21;021, + %um Uoy + 2Ugy Uy, + UG ) (2.34)

+ €(2uq Uy, + 22Uy, Uy A+ 22Uy Ugy F 2Ugy Ugy )] + O(F)

Equating coeflicients of like powers of €, we obtain

g 1
(€3 a(y)uoy + b(y)ug, - 5 @y ug, =0 (2.35a)

(6—1) a(y)ulyy + b(y)uly + za(y)uozz (2-35b)
+ b(y) U — 9%(2,y) Uor Uoy = O

(%) a(y)u2yy + b(y)ugy + 2“(3/)"121; + b{(y) ui. (2.35¢)

1
Faly) Uow ~ cuo — = 9%@y) uE ~ 9°(E.0) Uor Uyy = O,

Choosing uq(z,y) = uo(z ), which must be justified, satisfies (2.35a). We can then solve (2.35b)

by choosing
uz,y) = -x(¥) vo (2) + u,(z). (2.36)
Equation (2.35¢) has a solution for u,(z ,y) if

{/"l(y){*?'a (:‘/)Xy u>0:t:c - b(y)Xy Uge + A(¥Y) Ugy (2.37)

~ ey - —g3z,y)(1 - 2x, Yug } dy = 0.

o |~

This gives an equation for # (2 )



Nrul =0 (2.38)

W | =

q Ugzz — € Ug —

where
g & [m@{a@)l1 - 2x, ()] - x(¥)bd(y)} dy (2.39)
Y

P2 [m(y)e*z.9)(1 - 2x,(¥)] dy.
Y

Remark. From the definition of A, and the corrector y{y ) we have

fym(y)b(y)x(y)dy =fy[a<y)xw + b(¥)xy I x(y) m(y) dy (2.40)

= [ x(¥) 3y, [a (@) x(¥)m(y)]dy — [x(¥)d, [b(y)x(y) m(y)]dy
Y Y
Also, using (2.30),
[,m(y) b(y)x(y)dy = [ x(w) a(y) m(y) xy(y) dy (2.41)
i Y

- [x) b)) m)xy dy + 2 [ x(w)xy 9, La(@)my)] dy
Y Y
Adding these two expressions, we have
2 [ m(y)b(y)x(y) dy
Y

=2£x(y)a(y)m(y)xyy dy +2fyx(y)xy[am]y dy (2.42)

:—2£ay [xa m]x, dy + 2£X(y)xy [em], dy — zfyxy a(y)miy)xy dy

Thus, ¢ may be rewritten as
g = m@){a)(1 -2x, + x2]}dy (2.43)
v ;
=[m@y)aly)[1 - x, P dy
v

and clearly ¢ > 0.

The term ¢ in (2.39) summarizes the effects of the averaging process on the uncontrolled sys-

tem. The homogenization process interacts with the control system through the term I', whose

10



form would be difficult to ‘‘guess’”’ from simple averaging procedures.

3. Continuum Model for a Simple Structural Mechanical System

3.1. Problem definition

Consider the truss shown in Figure 1 (undergoing an exaggerated deformation). We shall
assume that the truss has a regular (e.g., triangular) cross-section and no ‘“‘interlacing’’ supports.
We assume that the displacements of the system are ‘‘small”’ in the sense that no components in
the system buckle. We are interested in describing the dynamical behavior of the system when

the number of cells (a unit between two (triangular) cross sections) is large; that is, in the limit as

e & 1/L —o. (3.1)

I~
-

Figure 1. Deformed truss with regular cross-section.

11



We shall make several assumptions to simplify the analysis. First, we shall assume that the
triangular sections are essentially rigid, and that all mobility of the system derives from the flexi-
bility of the members connecting the triangular components. Second, we shall ignore damping
and frictional effects in the system. Third, we shall confine attention to small transverse displace-
ments 7(t,z ) and small in plane rotations ¢(¢,z ) as indicated in Figure 1, ignoring longitudinal
and out of plane motions and torsional twisting. Fourth, we shall assume that the mass of the

triangular cross members dominates the mass of the interconnecting links.

Systems of this type have beeﬁ considered in several papers including (Noor et al. 1978)
(Nayfeh and Hefzy 1978) (Apderson 1981) and (Renton 1984). In those papers a continuum beam
model was hypothesized and effective values for the continuum system parameters were computed
by averaging the associated parameters of the discrete system. Our approach to the problem is

based on homogenization-asymptotic analysis and is quite different.

The assumptions 'simplify the problem substantially, by suppressing the geometric structure
of the truss. We can retain this structure by writing dynamical equations for the nodal displace-
ments of the truss members. For triangular cross sections nine parameters describe the displace-
ments of each sectional element. The analysis which follows may be carried over to this case, but
the algebraic complexity prevents a clear presentation of the main ideas. As suggested in (Noor
et al. 1978) one should use a symbolic manipulation program like MACSYMA to carry out the
complete details of the calculations. We shall take up this problem on another occasion; for now
we shall treat the highly simplified problem which, as we shall see, leads to the one dimensional
Tiioshenko beam.

We shall begin by reformulating the system in terms of a discrete element model as sug-
gested in (Crandal et al. 1980); see Figure 2. In this model we follow the displacement #, (¢ ) and
rotation ¢; (t) of the ¢ *» mass M. The bending springs (/;b’.) tend to keep the system straight by

keeping the masses parallel and the shearing springs (/:8") tend to keep the masses perpendicular to

the connecting links. We assume small displaceinents and rotations so the approximations

sin ¢ (1) = ¢; (1) (3.2)

12



v

aali
Lf;/ | —;‘.

{
—

Figure 2. A lumped parameter model of the simplified truss system

tan™ [n; (£)/1 ] = n: (t)/1

are valid.

In this case the {(approximate) equations of motion of the i** mass are®

d % ) ca(8) — mi(t

i :—I—k;{(“() 7]()]*45;(1)} (3.32)
dt r {

. 7 1(t) - z'l
s g 2l 2 )y

125, T el

g 2 el ) (5.3b)
dt {

where we have normalized M = 1 and defined

8The spring constants depend on 7 since they represent the restorative forces of flexed bars, bent by different

amounts.)

13



_ 1
ST & T (N5 — i) (3.4)

and similarly for S; = ¢; .

To proceed, we shall introduce the nondimensional variable ¢ = [ /L and rewrite the sys-

tem (3.3) as
d2¢f€ 1 K €+ € € €+ i e~ €
0z :7K5{V nf(t) - ¢} + v {K v 9s(t) } (3.5)
dQ,?',f € - b €+ € €
o AR C A AR MO RO
where
Ki=kL, Ki=Fk1IL (3.6)
1 _ 1
V€+’7f :?[77:'+1 - 77{]’ VC uh :"E_[n{ - 775—1]'
Normalizing I, = 1, we associate a position z € [ — %—, % } with cach mass; and we introduce
the notation
ez} = n:(8), @(t,o) = ¢ (t). (3.7)
Having normalized L == 1, we have e =1 and #z;,, = ; + [ =1, + ¢. Let Z = {z;} be
the set of all points in the system. In this notation
1
(v )t e) = < [tz +e) — alt,z)] (3.8)
- 1 -
(Vo ate)= —T[ult,z) -tz -], = € Z

and the system is

d2¢€(t o )

= K, ) {7 0t ) — ¢(ta) )

+or T { Ky (2) v () } (3.9

d3n(¢ ,1; -
A K G [V ) - ¢ ) € 7

14



The scaling of (3.9) may be interpreted in the following way: Formally, at least, the right
sides of both terms in (3.9) are O (e7%). This implies that the time variations are taking place in
the *‘fast time scale” 7= { /e¢. Also, the spatial variations are taking place in the ““microscopic
scale’” z which varies in e-increments (e.g., 2;4, = % + €). Introducing the macroscopic scale
2z == € ¢, and the slow time scale o == ¢ 7, we may rescale (3.9) and observe its dynamical evolu-
tion on the large space-time scale on which macroscopic events (e.g., ‘‘distributed phenomena’’)

take place.

Rewritten in this spatiaf scale, the system becomes

—~1K 2 5+ i &, X
T 7 ,(—6—){ 77(!:7)-¢(t,—6“)}

R
d2¢€(t "_—)
. €

+ Lo e K (e g, ) (3.10a)
€ € €

4%t ,—
=) (3.10b)

= T K () (67 () - e gt )] )
where

6 — eyt = 0(1) in e (8.11)

The essential mathematical problem is to analyze the solutions ¢¢, n° of (3.10) in the limit as

¢ — 0.

3.2. Mathcmatical analysis

To proceed, we shall gencralize the problem (3.10) slightly by allowing K, and K; to
depend on z as well as z /e. This permits the restoring forces in the model system to depend on
the large scale shape of the structure as well as on local deformations. We use the method of

multiple scales; that is, we look for solutions of (3.10) in the form

n(t) = n'(t,z,y), ¢(t) = ¢(t.2.y), ¥ :-j— (3.12)

15



and we have

K, =K (z9), K =K(y), v="= (3.13)

: < :
On smooth functions ¥(z ,—) the operators 6% satisfy
€

(67 Y)z,y) =1z +¢ y+1) — Yz,y)

= (z,y+1) - Plz,¥) + ¥(z +¢€ y+1) — ¥(z,y+1) (3.14a)
= (5* Y)(z,9) + e%'-/’-(z Y1)+ ieﬁaz‘f(z,yﬂ) + 0 (Y
z 2 0z

,(56_ 1/))(2',3/) == 1!’(2 ’y) - 1/'/)(2 — €, y_l)
=P(z,y) - Wz, y-1) + ¢P(z,y-1) - Pz —€y-1)
2 %Y

_ oY 1
= (57 P)z.,y) - ¢ 52—(2 RSV e 052 (z,y-1) + O(c? (3.14b)
We assume that ¢ and 5¢ may be represented by
¢t ,2,y) = ¢o(t,z) + edi(t,zy) + - (3.15)

77((t 2 ry) = ﬂo(t ,2’) + € 7]1(t 2 ’y) +

and substituting (3.15) in (8.10) and using (3.13) (3.14), we arrive at a sequence of equations for
(¢0> M0)> (¥, M1),... by equating the coeflicients of like powers of ¢.
1 .0

Starting with €2 el €% - - -, we have

LSt r K(z.w)S™ dolt,z)] =0 (3.16)

62

which is trivially true from (3.14b) (3.15). The same term involving ny(¢,z ) from (3.10b) is trivi-

ally satisfied by the assumption (3.15). Continuing

%[S* {1y (2 0) S~ ¢t .z,9) } (3.17)
K (2) { ST moltz) — dolt,z)}] =0

which may be solved by using the corrector xq(z ,y ) and taking

186



$:(t.z,y) = xg4(2.y) bt .2) (3.18)
with
St {rKy(2,9) S "xglz.y) } = K, (2.y) (8.19)

If we regard z as a parameter in (3.19), then there exists a solution x4, unique up to an additive

constant, if K} (2,.), K, (z,.) are periodic in g, if there exist constants A and B so that
0< A <Ky(2,y)<B <o (3.20)

and if the average of K, (z,. ) is zero

1 L/2
— [ K, (s,y)dy =0 (3.21)
L -L /2

which holds if the system is pinned at the ends as indicated in Figure 2. Let us assume that

(3.20) (3.21) hold, and
0<A <K, (z,y) B <o (8.22)

(which we shall need shortly).

Considering (3.10b), the O (¢™!) term in the asymptotic expansion is
1 _
—[s { K, (2.9) (ST n(t,z,y) — ¢ot,2)) }]=0. (3.28)

Again we introduce the corrector x,(z,y ), and take 5, in the form

nl(t:z:y) = X:;(z’y)¢0(t:z) (3.24)

which gives the equation for the corrector

)

S {K, (z,9)[S7 xyz,y) - 1]} =0 (8.25)
or
S {K(z,y)S* x(2.y)} = K. (2,y) - K,(2,y-1) (8.26)

By hypothesis the right side in (3.26) is periodic in y and has zero average (3.21). Hence, (3.26)

has a periodic solution, unique to an additive constant.
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Continuing, the O (¢°) term in (3.10a) is
S* {rKy(z,9) S~ ¢tz y)} + K, (2.9)[S7 mt.z,y) - ¢i(t.2,9)]
on . 9
+ K,(z,y) —a-zi(t,z) + St {rK, (2 ,y)—a—zzf)l(t,z,y)} (3.27)

Zobutia )} + e (K (1) ) 5ob(t)

2 8°¢o

o {1} dolt2) - 5 =0

+ ST ArKy(z.y)

+

This should be regarded as an equation for ¢, as a function of y with {l,z} as parameters. In this
sense the solvability condition is as before, the average of the sum of all terms on the left in

(3.27), except the first, should be zero. We must choose ¢, so that this in fact occurs; and that

defines the limiting system.

Using the correctors (3.18) (3.24), we must have

é?¢ a‘.zd)
Average { i~ o ST )+ ST (0G (2) xelz v)) ]
9¢ B Mo .
o 57 (K Gy +0)] - = K (2y) (3.28)
&? . a
“do |5 (K (zy 1) + 57 (K (20) Zoxelz0)

+ ]{a (Z ,y)(S +X1](Zry) - X¢(Z ,3/))] } =0
Defining the functions EI(z), G (2 ) by the associated averages in (3.28), the averaged equation is

P, 80 10
%o _ D mr) 2y 4 e -

£y - H(z) ¢ (3.29)

ot? Oz

which is the angular component of the Timoshenko beam system (Crandall et al. 1980 p. 34R).
Arguing in a similar fashion, we can derive the equation for the macroscopic approximation
displacement of the lattice system in terms of the ‘‘equivalent” displacement no(t,z) in the

Timoshenko beam system

ETR o

(N (2)( a’“ ~ o(t,2))] (3.50)
V4

QD
[
S
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3.3. Summary

We have shown that a simplified model of the dynamics of the truss with rigid cross sec-
tional area may be well approximated by the Timoshenko beam model in the limit as the number
of cells (proportional to L /l) becomes large. The continuum beam model emerges naturally in

the analysis, as a consequence of the periodicity and the scaling.

To compute the approximate continuum model, one must solve (3.19) and (3.26) (numeri-
cally) for the correctors and then compute the parameters in (3.29) (3.30) by numerically averag-
ing the quantities in (3.28) (and its analog for (3.10b)) which involve the correctors and the data

of the problem.

4. Homogenization and Stabilizing Control of Lattice Structures

In this section we-show that- the process of deriving effective ‘“‘continuum’ approximations
to complex systems may be developed in the context of optimal control designs for those systems.
This procedure is more effective than the procedure of first deriving homogeneous/continuum
approximations for the structure, designing a control algorithm for the idealized model, and then
adapting the algorithm to the physical model. In fact, separation of optimization and asymptotic
analysis can lead to incorrect algorithms or ineflfective approximations, particularly in control
problems where nonlinear analysis (e.g., of the Bellman dynamic programming equation) is
required.

We shall apply the combined homogenization - optimization procedure described in section
1 (based on (Bensoussan, Boccardo, and Murat 1984)) to the problem of controlling the dynamics
of lattice structures like the truss structure analyzed in the previous section. We shall only for-

mulate a prototype problem of this type and discuss its essential fcatures.

Consider the model for the lattice structure analyzed in section 3 with control actuators
added. The truss shown in Figure 1 is again constrained to move in the plane and torsional

motion is excluded to simplify the model and confine attention to the basic ideas. Now, however,
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we include a finite number of actuators acting to cause transverse motions. The truss with actua-
tor forces indicated by arrows is shown in Figure 3. The corresponding discrete element model is

shown in Figure 4.

Suppose that the physical actuators act along the local normal to the truss midline as shown
in the figures, and that the forces are small so that linear approximations to transcendental func-
tions (e.g., sin ¢; = ¢, , etc.) are valid. Then the controlled equations of motion of the discrete

element system are (recall equation (3.5))

429 f . .
T =%K:{v” n5t) - o5} + T { K v o)} (4.1)

IMigure 3. Truss with transverse actuator forces.
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>
1
Figure 4. Discrete element model of the controlled truss.
(1277,'6 . m
7 = —VE_ {I(; [V€+ 77;6(’:) - ¢|€(t)] } + 2 5(2 :ij) U](t)
i=1
where the notation in (3.6) has been used,
0 157
C ey ] ) 4.2
5(1,])_{1 [ (4.2)
and ¢;, j = 1,...,m are the locations of the actuators. Hence, if §(¢,7;) = O for all j = 1,...m

th

there is no actuator located at the ¢** point which corresponds to the physical point » € [0,L].

The number m of actuators is given at the outset and does not, of course, vary with the scaling.

The control problem is to select the actuator forces as functions of the displacements and

velocities of components of the structure to damp out motions of the structure. Measurements
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would typically be available from a finite number of sensors located along the structure. We shall
not elaborate on this component of the model, and shall instead assume that the entire state can
be measured. To achieve the stabilization, we shall associate a cost functional with the system

(4.1). Let
w(t) = [uy(t) oo, up(t)]7 (4.3)

be the vector of control forces, and

T w ()]

0'“.'8

N
E {alof(t)]® + bi[nf(t))®

1

+ o [ + B [nft) )P (4.4)

+ E 8(¢ zJ)u (t)} e~ dt

] =1
where (a;, b;) and («;, fB;) arc non-negative weights. Formally, the control problem is to select
6(7,¢;)u; (), 1 =1, N, j =1,..,m to achieve

37(1{ JT [ u ()] (4.5)

subject to {4.1) (4.2) and the appropriate boundary conditions. The case v — 0 corresponds to

stabilization by feedback.

The analysis of this control problem is based on the scaling used in section 3, equations (8.5)

- (3.11). Let 7=t /e be the fast time scale, then

®© N -
JTu ()] ffE {a [N + b [n&D) 7P
0 =1
+ oy 62 [A(}S,'S(T) }2 + ﬂ{ 62 [,;“6(1.) ]2 ('1'6)
+ % (1, ;) )u(n) ) d-Tdr
J==1
with Aqﬁ,-‘(r) == ¢ (e7), ete.
Let (9, fﬁ,n,;;) be the state vector of the system (4.1) with ¢ = [¢,, - -, ¢n |7 and simi-

larly for the other terms. Let V = V%(¢, &‘),77,;7) be the optimal value function for the problem

{4.1) (4.6). Then the Bellman problem associated with (4.1) (4.6) is
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N [ ] L]
€y [¢V¢, + n; V,,.]

=1

N . -
e N S KV 0 - i)+ - KV 411V,
N .
+ e { -V (T - 81}V, (4.7)
N m

Jmin {e 3 N (865w Vi + i) uf))

f a 1=1 j=1
N

T+ € E [at' ¢|'2 + b:’ ’7:'2 + fg(as‘ (352 + ﬂs’ ;71'2)] - G’YV"_:O-

=1

REMARKS:

(1)

(2)

(3)

Note that the nﬁnimizatiom in (4.7) is well defined if the admissible range of the control
forces is convex since the performance measure has been assumed to be quadratic in the con-
trol variables &(¢,%;) u;.

Since we have not included the effects of noise in the model, the state equations are deter-
ministic and the Bellman equation (4.7) is a first order system. To ‘Tregularize’ the
analysis, at least along the lines followed in conventional homogenization analysis, it is use-
ful to include the effects of noise in the model and exploit the resulting coercivity properties

in the asymptotic analysis.

If we introduce the macroscopic spatial scale z = ez, the mesh {z; }, and the variables

P(t,z) = (L), d(t,z) = $&(t), etc. (4.8)

then the sums may be regarded as Riemann approximations to integrals over the macros-
copic spatial scale z. The asymptotic analysis of (4.7) with this interpretation defines the
mathematical problem constituting simultaneous homogenization - optimization for this

case.
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5. Effective conductivity of a periodic lattice

In this section we consider a version of a heat conduction problem treated by Kunnemann.
Simple expressions for thermal properties of composite materials, have been derived in the past
using homogenization techniques. The derivation of effective conductivities for discrete structures

is useful for assessing the behavior of such structures in variable environmental conditions.

5.1. Problem definition

Let 7 = {0, +1, +2, - iy }and Z9 = Z X -+ X Z (d times) be a d-dimensional lat-
tice. Let € > 0 be a ﬁumber.small relative to 1. We want to describe the effective conduction of
thermal energy on the e-spaced lattice eZ¢. Let e; = (0,0,..0,1,0,...0)T with 1 in the 7* posi-
tion, ¢ = 1,2,...d. If z is a point in eZ¢, then = + e¢;, 1 < ¢ < d, are the nearest neighbors of

z. Letay(z), z € Z%,1 < i < d, be the two functions defined on the lattice, and assume

a(z) & a,(z)=aq(z + ¢), 2 € Z¢ 1<{<d (5.1a)
0<A <g(z)<B<oo, Wz € Z% 1<i<d (5.1b)
a; (z) is periodic with period | > 1 (5.1¢)

in each direction,” 1 < i < d.

Next let

45 () = a,~i(—j—), z € eZY, 1<i <d (5.2)

Equation (5.1b) means that the conduction process is reversible and that the conductivity
a;{z) is a “bond conductivity,” i.e., independent of the direction in which the bond (z,2 + ¢;)
is used by the process. Equation (5.2) means that the configuration of bond conductivities a;% (o)
on € Z% is simply a; 4(-) on € 7% ‘“viewed from a distance.”” Assumption (5.1c) imposes a regular-
ity condition on the physics of the conduction process. An assumption like this is essential for
existence of a limit as e — 0. In one dimension the situation is illustrated in Figure 5a,b. A sys-

tem similar to this with random bond conductivities was treated by Kunnemann (1983) by

TThe period may be different in different directions.
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imposing some ergodicity properties on the bond conductivities.
One can associate with this system a random (jump) process

{XYt,z),t >0, z € ¢Z°}

on the e-spaced lattice.® In effect, as € — O {X‘ } converges to a Brownian motion on the lat-

tice; and the main result of the analysis is an expression for the diffusion matrix

Q & [gi;; ¢,5 = 1,2,...,d ] of this process. This matrix describes the macroscopic diffusion of
a, (x)
+ B
L - - Al -
~ ~ © - ~ O\
°\ ~ - / ~ -
-y - A4 0~
~ 4 \
—~ A -

1 1 1 y . 2 [ [y [

-4 -3 -2 -1 | 2 3 4 5

Figure 5a. Conductivity on unscaled lattice with period | = 6.

a.g(:/‘)

N AN ' N
e R - RN // e
/ N 7 N - N
7 ~ nd N A '
A < AN /7 N Ve
\
\// ~ v’
1 1 { L 1 ~ s { ! [} - .! 2 1 I ! !
. v -3€ 2f -~ E € 2& 3¢ € -

IMigure 5b. Conductivity on e-scaled lattice,
y = ¢cx,x € Z,period el = 6e.

8Definition of this process is not necessary for the analysis, but it bolsters the intuition.
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thermal energy in the system. It is the eflective conductivity.

We shall carry out the asymptotic analysis of this system in the limit as € — 0 using homo-

genization. Let

1
€

>

(V& v )z) [u(z - €e;) — u(z)] (5.32)

(V& u )z) & [u(.;z + ee;) — u(z)] (5.3b)

m|p—-

r € ¢Z°, 1< <d,

th

for any u square summable on € Z4% or square integrable on R? with e; the ¢** natural basis vec-

tor in R¢. Then

Ju(t, ¢ = € €
————uétz)z— 21 Vi [W(%)V."Lu(t’?)] (5.4)

§ =1

& Leu<t,z)

is the diffusion equation on the e-spaced lattice with density u‘(¢,z) and conductivity g; (z /€).
Ve are interested in an effective parameter representation of the thermal conduction process as

¢« — 0.

emark: Although probabilistic methods are not required in the analysis, the associated proba-
bilistic framework has a great deal of intuitive appeal. The operator L ¢ may be identified as the
infinitesimal generator of a pure jump process X (s ) in the “‘slow” time scale s 2 €?t; (Brei

man 1968). Moreover, L€ is selfadjoint on € 7% with the inner product

(f.9) 2 3 [flz)g(z)

(5 5)
ezt R
1lence, the backward and forward equations for the process X ¢(s ) are, respectively,
dp(y,t |z ‘ o
—p(y_atﬂl_)_‘—‘[L‘p‘(y,t <) =) (5.6)

Mg,t{_&l:[ypf(.,t l2) )(v)

So the process is “‘symmetric’” in the sense of Markov processes (Breiman 1968).
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The asymptotic analysis of (5.4), when interpreted in this context, means that as the bond
lattice is contracted by ¢ and time is sped up by €2, the jump process {X‘(s )} approaches a
diffusion process with diffusion matrix ¢ . In other words, on the microscopic scale thermal
energy is transmitted through the lattice by a jump process; but when viewed on a macroscopic
scale the energy appears to diffuse throughout the lattice. The microscopic physics are described
in (Kirkpatrick 1973) and (Kittel 1976). The approximation developed below for a periodic lattice
is similar to the one developed by Kunnemann for a random lattice. This similarity demonstrates
the robustness of the method, and the limted dependence of the macroscopic properties of the

medium on the details of the microscopic variations of the structure.

>

Because the basic problem (5.4) is ‘“‘parabolic,” we can introduce the probabilistic mechan-

ism and make use of it in the analysis. In the “hyperbolic,”” structural mechanical problems we

treated before this device is not available.

5.2. Asymptotic analysis-homogenization

The cssential mathematical step is to show strong convergence of the semigroup of L€, say

Tt) 2 et —— T(t) & ™ (5.7)
€0
and to identify the limiting operator
d 62
L =% q 5w (5.8)
P 0z; Oz

This is accomplished by proving convergence of the resolvents

fora >0, [ L + a]?— [-L + a7 (5.9)

€—0

That is, if fis a given function and

=
~
.
>

[-L + al' (5.10)

u(e) & [-L +a]'f

then v — u in an appropiate sense.
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The method of multiple scales will be used to compute the limit. Because the conductivities
g; (z) in (5.4) do not depend on time, we may work directly with L rather than the parabolic
PDE (5.4) (cf. (Bensoussan, Lions, and Papanicolaou 1978) Remark 1.6, p. 242). The method of
multiple scales is convenient because it is a systematic way of arriving at the “right answers” -

something which is not always simple in this analysis.

Bearing in mind (5.10), we consider

(L<u)z) = f (a) (5.11)

with 4 (2 ) in the form
u(zr) = uo(a:,—;f-) + € ul(:c,ei) + €2 uylx ,-;) O (5.12)
with the funcbion’s u; (z,y) periodic in y € ¢ Z¢ for every j = 0,1,.... (As it turns out the

boundary conditions are somewhat irrelevant to the construction of *right answers.”’) To present
the computations in a simple form, it is convenient to introduce y = z /e. to treat z and y as

independent variables, and to replace y by z /¢ at the end.

Recall the operators ;% from (5.4). Applied to a smooth function % == u (z,z /€), we
have
(Vi u)a.y) =< lula - e,y — &) = ulzy)] (5.13)
=%[U(z,y - ¢) —ulz,y)] + %[U(I e,y — &) - u(z,y - €)]
=L (0ruE) - ey - w) # ey aslan - )+ 0@
where on functions ¢ = ¢(y)
(Vi" #)y) =y - &) — ¢(y) (5.14)
Defining
(VT o)y) =y + e) — oy) (5.15)

we also have
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1 g
(W u)ay) == (vF ulzy) + s(zy + ) (5.16)
4 6-1— O%u (z +oe) + 0(62)
2 81;2 & ' ‘

Now we substitute (5.12) into (5.11) and use the rules (5.14) (5.15). Equating coeflicients of
like powers of €, this leads to a sequence of equations for u,, u,, - ‘. Specifically, (using the

summation convention)

LuNzy)= - v [ay) v v
1 du,
= Vi [4@) i7" wolzy)] - i [a(y) 5=y + )]
€ X T
1 %u,
- ;évf‘ [a;(y) 3 (z.y + ¢)] + Of(e) (5.17)
i

- =V @)V ()]

“(z.y + &)] + O

ou
- € V.‘c_ [a:(y) 61’-

- Vi [ei(9) Vi ulzy)) + O() = [ (z)

That is, labeling each term by its order in e

(€ Vi [ay) v vol=0 (5.18)

Oug B .
pp (z.y + €)] + Vi [ay)vi” uy(z,y)]=0 (5.19)

(€1 evi laily)

and (recall € v, is O (1) in ¢€)

/2

a? 1
@Y+ e)) - v lal) gz + e)] (520

Jdu
(r)l‘,'

() Tevi [al)
- i la(y)viTelzy)l=f(z)
From (5.18) we have

ai(y — €)[uolz,y) - uolz.y — &)] (5.21)

— g (y)luglz.y + €) — uz,y)] =0

If we take u,(z,y ) = u,(z), this is trivially true; and (5.19) simplifies to
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Oug
(z)] + Vi la(y)w? uz,y)]=0. (5.22)

€ Vf_ [al(y) Jz:

At this point we introduce ‘‘correctors.”” That is, we assume

d auo -~
uy(z,y)= 3 Xk(y)ak— + u,4(2) (5.23)

k=1

with X, (» ) the correctors. Using this in (5.22), we have (again using the summation convention)

auo Ug
Vi [ (y)wvi* Xk(y)v]m + la(y — ) — a(y)] £ =0 (5.24)
If we take x4 (y) as the solution of
Vi le ()T xe(w)) + la(y - e) - a(y)]=0 (5.25)

(we have to verify the well-posedness of (5.25)), then (5.24) is satisfied. (The term u ,(z ) is deter-

mined (formally) from the O (¢) term in the system (5.12) (5.17).)

Regarding the well-posedness of (5.25), note that

Vit la(y) v d(y) ] = Y(y) (5.26)

has a pertodic solution on € Z which is unique up to an additive constant iff the average of the
function ¥(y ) over a period (e [) is zero; i.e.,

- 1 !
P A T S Wy + ke,)=0, n =12,..,d (5.27)
k=1

This condition clearly holds in (5.25), and so, x4 (¥ ) is well defined (up to an additive constant).

We shall determine the equation for w,(z) by using (5.23) (5.25) in (5.20). Using the

ICronecker delta function é;; , we have

1 . 5 & u : . 5 u g o
5 € Vi [a;(y) ;k]m—GGVi [ i {y) xk (¥ +6")]8z,-(’jx,: = [ (z)
R _ 5 _ + aQ'Uo (5.28
= {5 Vool (y)e ] - i [ (y) i Xk ]} Erre 5.28)
B d%u g ~ .
- i [ai(y)Xk(y)]Td—.—— Vi lai(y)vim u]=J (2)
I,’d,?‘k
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The term in braces is zero from (5.25). To obtain the solvability condition (5.27) for u, in (5.28),

we introduce the average

1 . =
5 9 2 symmetric part { - ;" [ (y) x& (¥) 1}

Then solvability of (5.28) for u, gives the equation

(5.29)

(5.30)

And this is the diffusion equation which defines the limiting behavior of the system (5.11) in the

macroscopic z -scale in the limit as ¢ — 0.

‘We can justify the asymptotic analysis by using energy estimates or probabilistic methods

as in (Bensoussan, Lions, and Papanicolaou 1978). (See also Kunnemann 1983).) We shall omit

this analysis here.

5.3. Summary

Returning to the original problem (5.4) for the evolution of thermal energy on a microscopic

scale, we have shown that the thermal density u*(f,r) — uy(t,z) as ¢ — 0 (in an appropriate

norm) where

8uo 1 Xd) auo
/= —— q,.. —
ot 2,52, Y 010z
with
1 . _
G = - T % (V" () xs ()] + V% L (w) xi(w) ]}
k=1
with the correctors x,, & == 1,2,...,d, given by
d
2 vi law)viT i)l = - [aly — &) - a(y)]
1=1
k =1,2, ,d
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To compute the limiting ‘“homogenized” model (5.31), one must solve the system (5.33) (numeri-

cally) and then evaluate the average (5.32).

The fact that the original problem (5.4) is ‘““parabolic” (i.e., it describes a jump random pro-

cess), enables us to exploit the associated probabilistic structure to anticipate and structure the

analysis. In this way we can anticipate that the limit problem will involve a diffusion process. In

fact, the arguments used are entirely analytical® and the limiting diffusion (5.31) is constructed in

a systematic way. It is not postulated.

Appendix: An operational calculus for homogenization

The techniques used to treat the one dimensional example are based on an operational cal-

culus for homogenization developed in (Bensoussan, Lions, and Papanicolaou 1978). It is

worthwhile to outline the essential features of this operational system.

Consider the problem (using the convention that repeated indices are summed)

a z, Ouf
AE CZ e Y
¢ ox; Laij ( € ) Jz

] + ag(Z)ut= [ (z)
7 ¢
z € O, u¥z) |po=2

where O is a smooth domain in IR™, 80 is its boundary; and we assume

[ a;;(y)] > 0 (positive definite matrix)
o> >0

a;;{(+), ao(+) periodic with period 1.
We are interested in approximating u ¢ in the limit as € — 0+4.

As in the example, we introduce y = z /¢ and the ansatz

u‘(:x):u‘(x,—e—)zuo(x,—e—) + Eul(x,?) +

(2)

(3)

Sprobabilistic arguments can be used (Bensoussan, Lions, and Papanicolaou 1978, Chapter 3);, and they have some

advantages.
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Making the change of coordinates

2] a 1 3 z;
9 om | € oy VT e ®
we have
A= A+ = A, + Ay (4)
€ €
with
d d
1 = ay' [(lfj(y) ayJ ]
) 0 0 a
Az_—— - 5; [a,,(y)—ar } - _a? [atj(y)gz- ] (5)
d o)
Ay= - E [ a;(y) P ] + ao(y)

3
Substituting (3) and (5) into (1) and equating cocflicients of like powers of ¢, we have
(€? Alug=0
(€?) A,yu, + Aguy,=20
() Ayuy, + Aguy + Agug= [ (6)

(") Ayu, + Ayuy, + Ayu, =0

Solvability of this system depends on the operator A,;. The assumptions in (2) mean that

the system

Ady)=g(y), v € Y (7)

where Y is the unit torus in IR® and g (. ) is periodic, has a solution unique up to an additive

constant if and only if

fg(y)dy::O (8)
Y

Assumption (2) means the null space of A, is spanned by the constant function; and (8) means

the data ¢ () is orthogonal to the null space of A,; i.e., a Fredholm Alternative holds for A ;.
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Hence, A, vy, = 0 implies

uo(z,y) = ug(7). (9)
Also,
O0=A,u, + Ayu, (10)
-ty ) - ey S0
may be solved by taking
() = = X () g wos) + ) (11)
: 5
where the corrector xj.(y) satisfles
T 1950 g X @)= - g las ) (12)

The right side of (12) satisfies the centering condition (8); and so, (12) has a periodic solution,

unique up to an additive constant.

Continuing in the same fashion, the third equation in (6) has a solution u, if

{,[Aﬁz"l‘/'Aan'f}dy:O- (13)

Substituting for u, from (11) (12) and A, from (5), the solvability condition (13) reduces to

u ()

T Gyas, T Ml udz)=1() (14)

uo(7) ] r =
where

ay?
Y

9i; = -AJ[ (lij ] - ]\[[ (Y } . (15)

The role of the corrector in the approximation is clear from this. A simple argument similar to
the one used for the one dimensional case in section 2 shows that the matrix {q,-',- } is non-

negative definite.
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(1)
(2)
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References

M. Anderson 1981, Buckling of periodic lattice structures, AIAA Journal, 19, pp. 782-788.

M. Aswani 1982, Development of an Analytical Model for Large Space Structures, DTIC
Report ADA 119349.

I. Babuska 1975, Homogenization and its applications. Mathematical and computational
problems, Technical Note BN-821, Institute for Fluid Dynamics and Applied Mathematics,
University of Maryland, College Park.

A. Bensoussan 1979, Homogenization theory, Conf. del Seminaria de Math. dell’'Univ. de
Bari, No. 158.

A. Bensoussan, L. Boccardo, and F. Murat 1984, Homogenization of nonlinear elliptic equa-
tions with operators not in divergence form, preprint.

A. Bensoussan, J.L.. Lions, and G.C. Papanicolaou 1978, Asymptotic Analysis for Periodic
Structures, North Holland, Amsterdam.

G.L. Blankenship 1979, Asymptotic analysis in mathematical physics and control theory:
Some problems with common features, Richerchi di Automatica, vol. 10, pp. 265-315.

J.F. Bourgat 1978, Numerical Experiments of the Homogenization Method for Operators
with Periodic Coeflicients, INRIA Report No. 277. :

L. Breiman 1968, Probability, Addison-Wesley, Reading, Mass.

S.H. Crandall, et al. 1979, Dynamics of Mechanical and Electromechanical Systems,
McGraw-Hill, New York.

D.L. Dean and S. Tauber 1959, Solutions for one dimensional lattice structures, J. Eng.
Mech. Div., ASCE, 85, pp. 31-41.

J.-N. Juang 1984, Optimal design of a passive vibration absorber for a truss beam, J. Gui-
dance, 7, pp. 733-739.

S. Kirkpatrick 1973, Perculation and conduction, Rev. Mod. Phys., 45, pp. 574-588.
C. Kittel 1976, Introduction to Solid State Physics, Wiley, New York.

J.B. Keller 1977, Effective behavior of heterogeneous media, in Statistical Mechanics and
Statistical Methods in Theory and Application, U. Landman, ed., Plenum, New York, pp.
613-644.

R. Kunnemann 1983, The diffusion limit for reversible jump processes on Z% with ergodic
random bond conductivities, Commun. Math. Phys., 90, pp. 27-68.

E. Larsen 1975 1976, Neutron transport and diffusion in inhomogeneous media, I, J. Math.
Phys., vol. 16, pp. 1421-1427; II, Nucl. Sci. Eng., vol. 60, pp. 357-368.

M.M. Mikulus 1978, Structural efficiency of long lightly loaded truss and isogrid columns for
space application, NASA TM 78687.

A. Nayfeh and M.S. Hefzy 1978, Continuum modeling of three- dimensional truss-like space
structures, ATIAA Journal, 16, pp. 779-787.

A.JX. Noor, M.S. Anderson, and W.H. Greene 1978, Continuum models for beam- and plate-
like lattice structures, AIAA Journal, 16, pp. 1219-1228.

G.C. Papanicolaou and S.R.S. Varadhan 1979, Boundary value problems with rapidly oscil-
lating random coeflicients, Proceedings of Conference on Random Fields, Hungary, North
Holland, Amsterdam.

J.D. Renton 1984, The beam-like behavior of space trusses, AIAA Journal, 22, pp. 273-280.
J.D. Renton 1973, Buckling of long, regular trusses, Int. J. Mech. Sci., 9, pp. 1489-1500.

35



(24)
(25)

(26)

J.D. Renton 1970, General properties of space grids, Int. J. Mech. Sci., 12, pp. 801-810.
J.D. Renton 1969, Behavior of Ilowe, Pratt and Warren trusses, J. Struc. Div., ASCE., 95,
pp. 185-202.

L.W. Taylor, Jr. and V. Balakrishnan 1984, A mathematical problem and a spacecraft con-
trol laboratory experiment (SCOLE) used to evaluate control laws for flexible spacecraft,
NASA/IEEE design challenge, Spacecraft Control Branch, NASA Langley Research Center,

Hampton, VA.

36



