
UMIACS-TR-93-68.1 February, 1994CS-TR-3109.1Simplifying Polynomial Constraints Over Integersto Make Dependence Analysis More PreciseVadim Maslov William Pughvadik@cs.umd.edu pugh@cs.umd.eduInstitute for Advanced Computer StudiesDept. of Computer Science Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742AbstractWhy do existing parallelizing compilers and environments fail to parallelize many re-alistic FORTRAN programs? One of the reasons is that these programs contain a numberof linearized array references, such as A(M*N*i+N*j+k) or A(i*(i+1)/2+j). Performingexact dependence analysis for these references requires testing polynomial constraints forinteger solutions. Most existing dependence analysis systems, however, restrict them-selves to solving a�ne constraints only, so they have to make worst-case assumptionswhenever they encounter a polynomial constraint.In this paper we introduce an algorithm which exactly and e�ciently solves a class ofpolynomial constraints which arise in dependence testing. Another important applicationof our algorithm is to generate code for loop transformation known as symbolic blocking(tiling).This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

Simplifying Polynomial Constraints Over Integersto Make Dependence Analysis More PreciseVadim Maslov William Pughvadik@cs.umd.edu, 301-405-2726 pugh@cs.umd.edu, 301-405-2705Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742February 26, 1994AbstractWhy do existing parallelizing compilers and environments fail to parallelize many realistic FORTRANprograms? One of the reasons is that these programs contain a number of linearized array references,such as A(M*N*i+N*j+k) or A(i*(i+1)/2+j). Performing exact dependence analysis for these referencesrequires testing polynomial constraints for integer solutions. Most existing dependence analysis sys-tems, however, restrict themselves to solving a�ne constraints only, so they have to make worst-caseassumptions whenever they encounter a polynomial constraint.In this paper we introduce an algorithm which exactly and e�ciently solves a class of polynomialconstraints which arise in dependence testing. Another important application of our algorithm is togenerate code for loop transformation known as symbolic blocking (tiling).Keywords: parallelizing compilers, polynomial constraints, linearized subscripts, symbolic blocking.1 IntroductionIn this paper we describe techniques for simplifying polynomial constraints. This work supersedes ourprevious work on dependence testing of non-linear subscripts [Mas92] and allows us to handle polynomialconstraints that arise in a number of situations. This work is also an extension of the Omega test [Pug92,PW92, PW93] | the system that simpli�es conjunctions of a�ne constraints over integers and performsexact elimination of existentially quanti�ed variables.Polynomial constraints arise in a number of situations:� Dependence between references with linearized subscripts,� Complicated terms in subscript functions arising from induction variable recognition,� Tiling with symbolic block sizes (i.e., block sizes speci�ed by a variable and not a constant).Let's consider some examples of problems with polynomial constraints. All the problems are taken fromthe real-life programs and simplifying them exactly is crucial for our ability to parallelize these programs.do i=p,p+L-1do j=q,q+M-1do k=r,r+N-1S1: A(M*N*i+N*j+k) = ...S2: ... = A(M*N*i+N*j+k)enddoenddoenddo MNiw + Njw + kw = MNir +Njr + krp � iw ; ir � p+ L� 1q � jw; jr � q +M � 1r � kw; kr � r +N � 1 (1)p � iw = ir � p+ L� 1q � jw = jr � q +M � 1r � kw = kr � r + N � 1M � 1 ^ N � 1 (2)Figure 1: Product of variable and symbolic constant(s)1

do i=0,N-1do j=0,iS1: A(i*(i+1)/2 + j) = ...enddodo j=0,iS2: ... = A(i*(i+1)/2 + j)enddoenddo iw(iw+1)2 + jw = ir(ir+1)2 + jr0 � iw; ir � N � 10 � jw � iw0 � jr � ir (3)0 � jw = jr � iw = ir � N � 1 (4)Figure 2: Product of two variables: triangular linearizationdo i=1,Mdo j=1,iS1: A(i,j) = A(j,i)enddoenddo9io; jo; in; jn;t; � s:t: 1 � jo � io � Mib = tN + 1tN + � = io � 10 � � � N � 1jn = jo ^ in = io (5) do iB=1,M,Ndo jn=1,MIN(iB+N-1,M)do in=MAX(iB,jn),MIN(iB+N-1,M)S1: A(in,jn) = A(jn,in)enddoenddoenddo 9t s:t: ib = tN + 12� N � ib � MM � 1 ^ N � 1t � 0 (6)Figure 3: Symbolic blocking example1.1 Rectangular symbolic linearizationThe program in Figure 1 is one of many loop nests from the oil reservoir simulation program BOAST in theRiCEPS benchmark suite. This is rather typical example of loop nest with linearized references, which aremet quite often in real programs, and [Mas92] discusses in length why linearization is used.To be able to parallelize the i, j and k loops, we need to prove that the
ow dependence from thestatement instance S1[iw; jw; kw] to the statement instance S2[ir ; jr; kr] is loop-independent. This dependenceis described by the set of constraints (1) that we want to be able to simplify to (2).All existing dependence analysis techniques (that we know of) except for one fail to prove that this de-pendence is loop-independent. Symbolic delinearization [Mas92] can prove this, but it has serious limitationsdiscussed in Section 8.1.2 Triangular linearizationConsider the program in Figure 2. Since the one-dimensional array A is a linearized version of a triangularmatrix A, a reference to A(i; j) is expressed as A(i*(i+1)/2 + j). Linearized triangular matrices are usedquite often in scienti�c codes.Loop i cannot be parallelized unless we know that
ow dependence from S1[iw; jw] to S2[ir ; jr] is loop-independent, that is, iw = ir . No existing dependence test (that we know of) can automatically prove this.The problem describing this dependence is (3) and our techniques simplify it to (4), which proves that thedependence is loop-independent. Since we also know that jw = jr , we can fuse the two j loops if we need to,and since existing techniques cannot establish that jw = jr, they cannot perform fusion for this example.1.3 Code generation for symbolic blocking (tiling)Consider the program fragment in the left column of Figure 3. To improve locality (that is, to better usethe memory cache) the loop transformation known as blocking or tiling [AK87] is applied to this loop nest.The idea of transformation is to block (tile) the iteration space into blocks such that each block requiresdata which �ts into cache. We perform loop blocking using a framework of Uniform Loop Transformations2

01234
56
0 1 2 3 4 5 6 7 8 9 10y x

xy = 5xy � 5 ?? ? ? ? ? ?? ? ? ? ? ? ? ??? ???? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? x � 1y � 1y � �2x+ 7x � �2y + 7y � �x+ 5Figure 4: A�nizing inequality xy � 5[KP93]. The mapping from the old iteration space to the new iteration space is described by a relationS1 : [io; jo]! [ib; jn; in] j ib = b(io � 1)=NcN + 1 ^ jn = jo ^ in = io (7)where io, jo are old loop variables and ib, jn, in are new loop variables.If the blocking factor N is a known integer constant, then we have a pseudo-a�ne schedule and blockedcode is generated without di�culty. However, if N is a symbolic constant, then our schedule becomes non-a�ne. So to generate the blocked code shown in the right column of Figure 3, we (among other things) haveto compute loop parameters for the new loop iB. The constraints on ib are described by the problem (5).Our algorithm simpli�es it to the problem (6) and then we extract the initial value of ib and upper boundof ib.2 Our approachOur basic approach is to try to transform a general polynomial constraint into a conjunction of a�neconstraints and one of the special forms that we later a�nize:xy � c A hyperbolic inequalityxy = c A hyperbolic equalityaxx2 + ayy2 � c An elliptical inequalityaxx2 + ayy2 = c An elliptical equality (8)Here x and y are variables and ax, ay and c are constants. These transformations are mostly factoring andthey are discussed in detail in Section 4.Then we a�nize the special form constraints. For example, xy � 5 is equivalent to (the �rst conjunctionof this is shown in Figure 4):(x � 1^2x+y � 7^x+y � 5^x+2y � 7^y � 1) _ (x ��1^2x+y ��7^x+y ��5^x+2y ��7^y ��1)This is, perhaps, one of the few places where the fact that we are working with integers makes things easierthan if we were working with reals (it is not possible to convert polynomial constraints over real variablesinto a�ne form). Details of a�nization are given in Section 6.Of course, not all polynomial constraints are of the form that we can factor and a�nize. The details ofthe algorithm that systematically applies factoring and a�nization are given in Section 3.3

Problem SimplifyPolynomial(Problem p) BeginBoolean change := TrueInteger n := 0pn = pDo while (problem pn has polynomial constraints ^ change)change := Falsev := a�ne variables of pnpn+1 := 9v s:t: pnqn+1 := gist pn+1 given pnn := n+ 1If we can determine that pn is unsatis�able then Return(False)For each constraint c in polynomial constraints of pnTry to factor and a�nize constraint cIf (factoring and/or a�nization succeeds) change := TrueEndForEndDop = pn ^ qn ^ qn�1 ^ � � � ^ q1If polynomial constraints remain in pUse a�ne equalities in p to derive substitutionsTry to simplify or eliminate polynomial constraints using substitutionsIf this produces additional a�ne equalities, repeatEndIfReturn(p)End Figure 5: Polynomial constraints simpli�cation algorithm3 Algorithm to simplify polynomial constraintsIn this section we present our top-level algorithm to simplify the conjunction of a set of polynomial anda�ne constraints.Representing polynomial constraints. We use the following extension of the Omega test framework torepresent polynomial constraints. For each product of regular variables that we encounter in a polynomialconstraint we create a product variable that represents it. Then we divide polynomial problem in two parts:� A�ne part that is original problem in which products were replaced with product variables,� Product part that essentially is a de�nition of product variables in terms of regular variables.For example, polynomial problemNjw + kw = Njr + kr ^ 1 � jwN � Njr + N ^ q � jw; jr � q +M � 1is represented as (product part uses := for de�ning product variables):v1 + kw = v2 + kr ^ 1 � v1 � v2 +N ^ q � jw; jr � q +M � 1v1 := Njw; v2 := NjrPlease note, that products Njw and jwN are the same and therefore are referred to as one variable v1.We further classify regular variables as:� A�ne variables. These are variables that do not appear in products. We single them out becausewhen we can eliminate a�ne variables using the Omega test without losing precision.� Semi-a�ne variables. These are regular variables that appear in products. We cannot project themout using the Omega test, because they are involved in polynomial constraints.In the above example a�ne variables are kw; kr; q;M , semi-a�ne variables are jw; jr; N and product variablesare v1; v2. 4

We can simplify the a�ne part of a polynomial problem using the Omega test. However, when it comes tofactoring and a�nization, we use de�nitions of the product variables from the product part of the problem.Product variables that become unused, are removed.Algorithm itself. We present the algorithm that simpli�es a polynomial problem in Figure 5. Thealgorithm applies factoring and a�nization as many times as it can. Each a�nization lowers the orderof polynomial constraint by 1. So �nally we either get a�ne problem or stop because no a�nization norfactoring can be done. Therefore algorithm always terminates.To satisfy conditions for factoring and a�nization we eliminate a�ne variables that stand in the way offactoring. Basically our goal is to get polynomial constraint that has less variables than original constraint,to factor out the common term (or apply more intricate factoring, as in triangular delinearization example)and to a�nize it.Variables that are removed as a result of projecting out a�ne variables and constraints involving thesevariables are memorized in qi problems. When simpli�cation is �nished, we use qi problems to restore theoriginal problem. As restoration goes on, we use new equalities and inequalities produced by a�nization tosimplify restored polynomial constraints.4 FactoringWe use several techniques to transform a polynomial constraint to one of the forms (8). These techniquesare described for inequality constraints, but they work equally well for equalities.Common term. If a factor x occurs in all terms of a constraint, except for a constant term, we can factorthis constraint. That is, we transform the constraintnXi=1 aixRi � cwhere ai and c are integer constants, x is a variable, each Ri is a product of variables or the constant 1 to9 y s:t: y = Pni=1 aiRixy � cSo we reduce the order of the original polynomial constraint by 1, hopefully making it a�ne, and we producea hyperbolic constraint that can be a�nized.Breaking quadratic constraint. As a more specialized case, a constraint of the form:a2xx2 + bxx� a2yy2 � byy + c � 0where ax > 0, ay > 0, bx, by and c are known integer constants, x and y are variables, is transformed to thefollowing equivalent constraint (that involves hyperbolic equality or inequality):9 �; � s:t: � = 2a2xayx� 2axa2yy + bxay � byax� = 2a2xayx+ 2axa2yy + bxay + byax�� � a2yb2x � a2xb2y � 4a2xa2ycIf the coe�cient of x2 (that is, a2x) is not the square of some integer, we should multiply the wholeconstraint by a positive integer constant which makes the coe�cient of x a square. If after this the coe�cientof y2 (that is, a2y) is not a square, factoring cannot be done in integers, and therefore we give up on thisconstraint. 5

Completing square. A constraint of the form:axx2 + bxx+ ayy2 + byy + c � 0where ax > 0, ay > 0, bx, by and c are known integer constants, x and y are variables, is transformed to thefollowing equivalent set of constraints (involving elliptical equality or inequality):9 �; � s:t: � = 2axx+ bx� = 2ayy + byay�2 + ax�2 � ayb2x + axb2y � 4axayc5 Representing integer division.We transform constraint L that involves integer division (here E and F are a�ne expressions):L(bE=F c; :::)to polynomial constraint: 9 t; � s:t: L(t; :::) ^ tF + � = E ^ 0 � � � F � 16 A�nizationLet's consider the area described by a constraint (we discuss only �-inequalities here; inequalities with <,>, or � operators can be converted into �-inequalities):xb � x � xe ^ y � f(x) (9)We require this area to be convex, that is, 8x : xb � x � xe) f 00(x) � 0. If it is not so, we can break thesegment [xb; xe] into several segments, such that this requirement is satis�ed in each segment, and considerthese segments separately. When we have the convex area, the derivative of f(x) steadily decreases as xincreases, so we can break interval [xb; xe] into 4 intervals (some of them can be empty):xb � x � x1) 1 � f 0(x)x1 � x � x0) 0 � f 0(x) � 1x0 � x � x�1) �1 � f 0(x) � 0x�1 � x � xe) f 0(x) � �1A�nization Theorem. If the above conditions are satis�ed, the non-a�ne constraint (9) is equivalentto a conjunction of a�ne constraints:dxbe � x � bxec ^ y � bf(x0)c ^bx1ĉi=dxbeline (hi; bf(i)ci; hi + 1; bf(i + 1)ci) � 0 ^bf(x0)�1c^i=df(x1)eline (hdf�1+ (i)e; ii; hdf�1+ (i + 1)e; i+ 1i) � 0 ^b(x0)�1c^i=df(x�1)eline (hbf�1� (i)c; ii; hbf�1� (i+ 1)c; i+ 1i) � 0 ^ bxe ĉi=dx�1eline (hi � 1; bf(i � 1)ci; hi; bf(i)ci) � 0 (10)Here the function f�1+ (y) is inverse function of f(x) for x1 � x � x0 and f�1� (y) is inverse function of f(x)for x0 � x � x�1. The function line (hx1; y1i; hx2; y2i) gives back an expression that is zero along thestraight line passing through the points hx1; y1i and hx2; y2i, positive to the left of that line (as we movefrom hx1; y1i to hx2; y2i) and negative to the right of that line:line (hx1; y1i; hx2; y2i) = (x2 � x1)(y � y1)� (y2 � y1)(x� x1)In the rest of this section we show how the a�nization theorem is applied to hyperbolic and ellipticalinequalities. 6

6.1 A�nizing inequalitiesHyperbolic inequalities with positive constant. To a�nize the inequalityxy � cwhere c � 1, we break the domain of f(x) = c=x into 2 convex areas: xy � c � 1 � (x � �1 ^ y �c=x) _ (x � 1 ^ y � c=x). Applying the a�nization theorem to the each area, we get that the inequalityxy � c � 1 is equivalent to:x � 1 ^ y � 1 ^ dpc�1eî=1 (line (hi; lci mi; hi + 1;� ci+ 1�i) � 0 ^ line (hl ci m ; ii; h� ci+ 1� ; i+ 1i) � 0) _x � �1 ^ y � �1 ^ �1̂i=b1�pcc(line (hi; jci ki; hi � 1;� ci� 1�i) � 0 ^ line (hjci k ; ii; h� ci� 1� ; i� 1i) � 0)Hyperbolic inequalities with non-positive constant. The inequality xy � 0 is equivalent to(x � 0 ^ y � 0) _ (x � 0 ^ y � 0).If c � �1, then the inequality xy � c describes non-convex area between two hyperbola branches. Wetransform this inequality to negation of positive-constant hyperbolic inequality:xy � c � :(x0y0 � c0) where x0 = �x; y0 = y; c0 = 1� c � 1Negation of conjunct produces disjunction of several constraints.Elliptical inequalities. A�nizing elliptical inequalities is similar to a�nizing hyperbolic inequalities.6.2 A�nization of equalitiesAn equality constraint of the form xy = c or axx2 + ayy2 = c has a �nite number of integer solutions. Weconvert this constraint to a�ne form by enumerating these solutions.Hyperbolic equalities. Let's consider the hyperbolic equality xy = c. We replace it with a disjunctionof several constraints. For each t = 1 up to bpjcjc, if t divides c then we add to the disjunction constraints:(x = t ^ y = c=t) _ (x = c=t ^ y = t) _(x = �t ^ y = �c=t) _ (x = �c=t ^ y = �t)For example, the equality xy = 5 is equivalent to: (x = 1 ^ y = 5) _ (x = 5 ^ y = 1) _ (x = �1 ^ y =�5) _ (x = �5 ^ y = �1).Elliptical equalities. Similar to hyperbolic equalities.6.3 Number of constraints generatedFor hyperbolic inequalities and equalities number of constraints generated is O(pc) where c is constant from(8). As our preliminary study shows, c values are usually small, and that means that few constraints needto be generated.A�nizing polynomial constraint only over the feasible domain. Often, we can further restrictnumber of constraints generated if we know the range of the participating variables is limited. Beforegenerating a�ne constraints, we �nd the rectangular bounding box for x and y (the Omega test has thiscapability): Lx = minx; Ly = miny; Ux = maxx; Uy = maxy7

Then constraints that do not intersect with the bounding box are not generated at all.For example, if we know that x is non-negative, then xy � 2 is equivalent to a�ne set of constraintsx � 1 ^ x+ y � 3 ^ y � 1.7 Examples7.1 Rectangular delinearizationWe start with computing p1, the projection of (1) onto variables involved in products (iw ; ir; jw; jr;M andN), and q1, everything else:p1 � 1�N �MNiw + Njw �MNir � Njr � N � 11�M � jw � jr � M � 1 ; q1 � MNiw + Njw + kw = MNir +Njr + krp � iw; ir � p+ L� 1q � jw; jr � q +M � 1r � kw; kr � r +N � 1We can factor and a�nize the polynomial constraints. The constraints in p1 imply N � 1, so we generateonly one branch of hyperbola:1 � N (Miw �Mir + jw � jr + 1)1 � N (Mir �Miw + jr � jw + 1)1�M � jw � jr � M � 1 � 1 � N1 �Miw �Mir + jw � jr + 11 �Mir �Miw + jr � jw + 11�M � jw � jr � M � 1 � 1 � NMiw + jw = Mir + jr1�M � jw � jr � M � 1We again eliminate all a�ne variables (N; jw; jr):p2 � 1�M � Mir �Miw � M � 1 � 1 � M (iw � ir + 1)1 � M (ir � iw + 1) ; q2 � 1 � NMiw + jw = Mir + jrA�nizing we get p2 � 1 � M ^ iw = ir.Having reduced p to a�ne form, we restore constraints involving eliminated variables and simplify:p � p2 ^ q2 ^ q1 � iw = irMiw + jw =Mir + jrMNiw +Njw + kw = MNir + Njr + krp � iw; ir � p+ L � 1q � jw; jr � q +M � 1r � kw; kr � r + N � 1Substituting ir for iw allows us to derive jw = jr , which in turn allows us to substitute jr for jw derivingkw = kr: p � iw = ir � p+ L � 1q � jw = jr � q +M � 1r � kw = kr � r + N � 17.2 Triangular delinearizationBefore applying our algorithm to the problem (3), we convert integer division by 2 to integer multiplication:p � 9 t1; t2; �; � s:t: 2t1 + � = i21 + i1 ^ 0 � � � 12t2 + � = i22 + i2 ^ 0 � � � 1t1 + j1 = t2 + j2 ^ 0 � i1; i2 � N � 10 � j1 � i1 ^ 0 � j2 � i2 � 0 � j2 � i2 < N0 � j1 � i1 < Ni2 + 2j2 + i22 � 1 + i1 + 2j1 + i21i1 + 2j1 + i21 � 1 + i2 + 2j2 + i22We now compute p1, the projection of p onto variables involved in products, and q1, everything elseneeded so that p = p1 ^ q1: 8

p1 � 0 � i10 � i2i2 + i22 � 1 + 3i1 + i21i1 + i21 � 1 + 3i2 + i22 q1 � 0 � j2 � i2 < N0 � j1 � i1 < Ni2 + 2j2 + i22 � 1 + i1 + 2j1 + i21i1 + 2j1 + i21 � 1 + i2 + 2j2 + i22We factor the polynomial constraints in p1:i21 + 3i1 � i22 � i2 � 0 � (i1 � i2 + 1)(i1 + i2 + 2) � 2i22 + 3i2 � i21 � i1 � 0 � (i2 � i1 + 1)(i2 + i1 + 2) � 2and a�nize the factored forms:(i1 � i2 + 1)(i1 + i2 + 2) � 2 � i1 � i2 + 1 � 1 ^ i1 + i2 + 2 � 1 ^ (i1 � i2 + 1) + (i1 + i2 + 2) � 3(i2 � i1 + 1)(i2 + i1 + 2) � 2 � i2 � i1 + 1 � 1 ^ i2 + i1 + 2 � 1 ^ (i2 � i1 + 1) + (i2 + i1 + 2) � 3Replacing these two polynomial constraints with their a�ne equivalent and simplifying yields:p1 � 0 � i1 = i2Since p1 is completely a�ne, we are done. We combine p1 and q1 and simplify, yielding:p � p1 ^ q1 � i1 = i20 � j2 � i2 < N0 � j1 � i1 < Ni2 + 2j2 + i22 � 1 + i1 + 2j1 + i21i1 + 2j1 + i21 � 1 + i2 + 2j2 + i22By substituting i1 for i2, we get:p � i2 := i10 � j2 � i1 < N0 � j1 � i1 < Ni1 + 2j2 + i21 � 1 + i1 + 2j1 + i21i1 + 2j1 + i21 � 1 + i1 + 2j2 + i21 � i2 := i10 � j2 � i1 < N0 � j1 � i1 < N2j2 � 1 + 2j12j1 � 1 + 2j2 � i2 := i10 � j2 � i1 < N0 � j1 � i1 < Nj2 � j1j1 � j2 � 0 � j1 � i1 < Ni2 = i1j2 = j1This is the �nal result (4).7.3 Symbolic blockingUsing our algorithmwe can simplify polynomial problems that arise in code generation for symbolic blocking.Let's consider code generation for program in Figure 3. The constraints on old loop variables areIS = 1 � jo � io � MWe use them and schedule (7) to compute constraints on new loop variables. First, we convert the equalityib = b(io � 1)=NcN + 1used in the schedule to polynomial constraint9 t s:t: ib = tN + 1 ^ tN + � = io � 1 ^ 0 � � � N � 1So constraints on new variables ib; jn; in are:IS0 = 9 io; jo; t; � s:t: 1 � jo � io � Mib = tN + 1tN + � = io � 10 � � � N � 1jn = jo ^ in = ioWe use the problem IS0 to generate new loop bounds, proceeding from the outer loop ib to the innerloop in: 9

� To compute bounds on ib we should eliminate from IS0 all a�ne variables except ib and symbolicconstants. First, we use our polynomial algorithm to simplify IS0. Eliminating all a�ne variables anda�nizing produces:p1 � N + tN � 1 ^ N � 1 � N (t+ 1) � 1 ^ N � 1 � t � 0 ^ N � 1Adding p1 to the original problem and simplifying produces:IS0 = 9 t s:t: 1 � jn � in � Mib = tN + 1tN < in � N + tNt � 0Projecting IS0 onto ib and symbolic constants produces:pib � 9t s:t: ib = tN + 12�N � ib � MM � 1 ^ N � 1t � 0 (11)Having these bounds, code generation routine determines that ib is step-N variable and that the stepis positive. Now we should extract an initial value of ib from these constraints.The initial value of ib is the lowest possible number that satis�es IS0. As long as we have polynomialequality, we can not be sure that the inequality expr � ib means that expr is the initial value, becauseit's possible that expr does not satisfy the polynomial equality (in this example 2� N is not dividedby N , so 2�N is not the initial value).To circumvent this di�culty, we instead compute the lower bound on the iteration counter t. Weproject out variable ib and a�nize pib to get constraints on t:9ib s:t: ib = tN + 12�N � ib � MM � 1 ^ N � 1t � 0 � 2� N � N + 1 � MM � 1 ^ N � 1t � 0 � 0 � ttN � M � 1M � 1 ^ N � 1 (12)Here we have no equality constraints, so we are sure that the initial value of t is 0, and therefore theinitial value of ib is t ? 0 + 1 = 1.The iB loop second parameter (\�nal" value of ib) does not have to be tight, so we can use the inequalityib � M to decide that M is the \�nal" value of ib.� Bounds on jn are: gist �M;N;ib;jn;t;tN(IS0) given (11). Simplifying we get:1 � jn � M ^ jn � N + ib � 1 (13)� Bounds on in are gist �M;N;ib;jn;in;t;tN (IS0) given (11) ^ (13). Simpli�cation produces:jn � in � M ^ ib � in � N + ib � 1 (14)Having constraints (12) and (13) and (14), uniform methods loop generation routine generates loops asshown in the right column of the Figure 3.8 Related WorkPolynomial constraints simpli�cation vs delinearization. In this paragraph we compare our poly-nomial constraints simpli�cation algorithm with symbolic delinearization [Mas92].10

First, we prove that our algorithm exactly simpli�es all problems that can be handled by symbolicdelinearization. The essence of delinearization is transforming the constraints:Ne1 + e2 = 01�N � e2 � N � 1 to e1 = 0e2 = 0where e1, e2 are expressions, and N is a variable. Using our algorithm, we substitute e2 = �Ne1 into theinequality 1 � N � e2 � N � 1. Factoring and simplifying produces: N (1 � e1) � 1 ^ N (1 + e1) � 1.A�nizing both inequalities we get e1 � 0 ^ e1 � 0 and therefore e1 = 0. Substituting this equality to theoriginal problem, we �nally prove that e1 = e2 = 0.Symbolic delinearization has several serious restrictions that are not present in our algorithm:� It can handle only subscript functions linearized according to FORTRAN rules: reference A(i1; i2; :::; in)to array A(0 : D1; 0 : D2; :::; 0 : Dn) is converted to A(i1 +D1i2 + � � �+D1 � � �Dn�1in). We call thisrectangular linearization. Triangular linearization (see Section 1.2) that is used quite often in scienti�ccodes is not handled.� Even for the case of rectangular linearization it cannot handle constraints imposed by triangular iter-ation space.Parafrase-2. In [HP91] the authors propose to use a symbolic version of Banerjee's inequalities for depen-dence testing, but it is known that Banerjee's inequalities do not detect independence in case of linearizedsubscript functions [Mas92].To alleviate the inexactness of Banerjee's inequalities, Haghighat and Polychronopoulos propose to detectmonotonically increasing and decreasing subscript function using the �nite di�erences method [HP93]. Whenthe subscript function is monotonically changing, the reference cannot hit the same memory cell on the nextiteration, and therefore no output dependence can exist from the reference to itself. Our induction variablerecognition system also can discover that the closed form of induction variable is monotonically changingand we are able to use this fact to prove the absence of the output dependence.However, when monotonicity cannot be proven | it happens, for example, for program in Figure 2 |Haghighat and Polychronopoulos �nite di�erence method cannot be used and their techniques cannot provethat the
ow dependence in this example is loop-independent and output dependence does not exist.Other approaches. A number of computer algebra books and papers [KL92, Buc85, DST88] are devotedto solving polynomial constraints over the complex and real numbers. Since we are interested in polynomialconstraints over the integers, we cannot directly use their results. However, we should study adaptation oftheir factoring techniques to our needs.9 ConclusionWe have presented an algorithm that exactly simpli�es conjunctions of a�ne and polynomial constraintsover integers.This algorithm is not capable of a�nizing arbitrary polynomial constraint. However, we do not alwaysneed complete a�nization. For example, in the symbolic blocking example we produce simpli�ed polynomialproblems that can be directly used for generating loop bounds for the loop iB.Our algorithm for simplifying polynomial constraints is expandable: we can add more sophisticatedfactoring techniques to it, and we can consider a�nization of more complicated constraints than 2-variablehyperbolic and elliptical inequalities and equalities (8). We think that expansion of the algorithm should beguided by practical needs of the concrete application.More experiments are needed to prove that this set of techniques can a�nize most of the polynomialproblems that arise in dependence testing and other parallelizing compiler analyses. Preliminary investigationshows that we can a�nize polynomial constraints that arise due to rectangular and triangular linearizationof subscript functions which seems to be a primary source of polynomial constraints.11

References[AK87] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACMTransactions on Programming Languages and Systems, 9(4):491{542, October 1987.[Buc85] B. Buchberger. Grobner bases: an algorithmic method in polynomial ideal theory. In N. K. Bose,editor, Multidimensional Systems Theory. D. Reidel Publishing Co., 1985.[DST88] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra, Systems and Algorithms for Alge-braic Computation. Academic Press, 1988.[HP91] M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis for high-performance par-allelizing compilers. In Advances In Languages And Compilers for Parallel Processing, August1991.[HP93] M. Haghighat and C. Polychronopoulos. Symbolic analysis: A basis for parallelization, optimizationand scheduling of programs. In Sixth Annual Workshop on Programming Languages and Compilersfor Parallel Computing, Portland, OR, August 1993.[KL92] Deepak Kapur and Yagiti Lakshman. Elimination methods: an introduction. In Bruce Donald,Deepak Kapur, and Joseph Mundy, editors, Symbolic and Numerical Computation for Arti�cialIntelligence. Academic Press, 1992.[KP93] Wayne Kelly and William Pugh. A framework for unifying reordering transformations. TechnicalReport CS-TR-3193, Dept. of Computer Science, University of Maryland, College Park, April 1993.[Mas92] Vadim Maslov. Delinearization: an e�cient way to break multiloop dependence equations. InACM SIGPLAN '92 Conf. on Programming Language Design and Implementation, San Francisco,California, June 1992.[Pug92] WilliamPugh. The Omega test: a fast and practical integer programming algorithm for dependenceanalysis. Communications of the ACM, 8:102{114, August 1992.[PW92] William Pugh and David Wonnacott. Going beyond integer programming with the Omega testto eliminate false data dependences. Technical Report CS-TR-3191, Dept. of Computer Science,University of Maryland, College Park, December 1992. An earlier version of this paper appearedat the SIGPLAN PLDI'92 conference.[PW93] William Pugh and David Wonnacott. An evaluation of exact methods for analysis of value-basedarray data dependences. In Sixth Annual Workshop on Programming Languages and Compilers forParallel Computing, Portland, OR, August 1993.
12

