UMIACS-TR-93-68.1 February, 1994
CS-TR-3109.1

Simplifying Polynomial Constraints Over Integers
to Make Dependence Analysis More Precise

Vadim Maslov William Pugh
vadik@cs.umd.edu pugh@cs.umd.edu

Institute for Advanced Computer Studies
Dept. of Computer Science Dept. of Computer Science

Univ. of Maryland, College Park, MD 20742

Abstract

Why do existing parallelizing compilers and environments fail to parallelize many re-
alistic FORTRAN programs? One of the reasons is that these programs contain a number
of linearized array references, such as A(MxN*i+N*j+k) or A(i*x(i+1)/2+]j). Performing
exact dependence analysis for these references requires testing polynomial constraints for
integer solutions. Most existing dependence analysis systems, however, restrict them-
selves to solving affine constraints only, so they have to make worst-case assumptions
whenever they encounter a polynomial constraint.

In this paper we introduce an algorithm which exactly and eflficiently solves a class of
polynomial constraints which arise in dependence testing. Another important application
of our algorithm is to generate code for loop transformation known as symbolic blocking

(tiling).

This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

Simplifying Polynomial Constraints Over Integers
to Make Dependence Analysis More Precise

Vadim Maslov William Pugh

vadik@cs.umd.edu, 301-405-2726 pugh@cs.umd.edu, 301-405-2705
Dept. of Computer Science
Univ. of Maryland, College Park, MD 20742

February 26, 1994

Abstract

Why do existing parallelizing compilers and environments fail to parallelize many realistic FORTRAN
programs? One of the reasons is that these programs contain a number of linearized array references,
such as A(M*xN#i+W*j+k) or A(i*(i+1)/2+j). Performing exact dependence analysis for these references
requires testing polynomial constraints for integer solutions. Most existing dependence analysis sys-
tems, however, restrict themselves to solving affine constraints only, so they have to make worst-case
assumptions whenever they encounter a polynomial constraint.

In this paper we introduce an algorithm which exactly and efficiently solves a class of polynomial
constraints which arise in dependence testing. Another important application of our algorithm is to
generate code for loop transformation known as symbolic blocking (tiling).

KEYWORDS: parallelizing compilers, polynomial constraints, linearized subscripts, symbolic blocking.

1 Introduction

In this paper we describe techniques for simplifying polynomial constraints. This work supersedes our
previous work on dependence testing of non-linear subscripts [Mas92] and allows us to handle polynomial
constraints that arise in a number of situations. This work is also an extension of the Omega test [Pug92,
PW92, PW93] — the system that simplifies conjunctions of affine constraints over integers and performs
exact elimination of existentially quantified variables.

Polynomial constraints arise in a number of situations:

e Dependence between references with linearized subscripts,

e Complicated terms in subscript functions arising from induction variable recognition,

e Tiling with symbolic block sizes (i.e., block sizes specified by a variable and not a constant).

Let’s consider some examples of problems with polynomial constraints. All the problems are taken from
the real-life programs and simplifying them exactly is crucial for our ability to parallelize these programs.

do i=p,p+L-1 p<iy,ir <p+L-1 (1)
do j=q,q+M-1 4 <Jjuw,jr <q+M-1
do k=r,r+N-1 r<ky,k <r+N-1
Si: A(M*N*i+N*j+k) =
i) p<iy=i <p+L-1
S2: oo = A(MAN*I+N*j+k) (< ju=jr <q+M—1
enddo r<ky =k <r4+N-1 (2)
enddo M>1AN>1
enddo

Figure 1: Product of variable and symbolic constant(s)

dodi=('.):g—.1 iw(i;+1) s _ ir(i;+1) s
e J7u.t , 0 <iw,ip < N-—1
S1: AGi*(i+1)/2 + j) = ... == (3)
0 < Juw < tw
enddo . .
; ; 0 < < 28
do j=0,1
52: =A(i*(i+1)/2+j) Ogjw:jrgiw:irgN_l (4)
enddo
enddo
Figure 2: Product of two variables: triangular linearization
do i=1,M do iB=1,M,N
do j=1,i do jn=1,MIN(iB+N-1,M)
st: A(i,j) = A(3,1) do in=MAX(iB,jn),MIN(iB+N-1,M)
enddo Si: A(in,jn) = A(jn,in)
enddo enddo
. . enddo
1 S Jo ?]\;0 SlM enddo
Elioajminajna]Vlb_ _Ti_ 1 ip =tN +1
t,a s.1. IN+a=1,- (5) 3¢ st 2-N<p <M (6)
O<a<N-1 TM>1AN>I
IJn = Jo N 1y =1, it Z 0

Figure 3: Symbolic blocking example

1.1 Rectangular symbolic linearization

The program in Figure 1 is one of many loop nests from the oil reservoir simulation program BOAST in the
RiCEPS benchmark suite. This is rather typical example of loop nest with linearized references, which are
met quite often in real programs, and [Mas92] discusses in length why linearization is used.

To be able to parallelize the i, j and k loops, we need to prove that the flow dependence from the
statement instance S [iy, ju , kw] to the statement instance Ss[iy, j., k,] is loop-independent. This dependence
is described by the set of constraints (1) that we want to be able to simplify to (2).

All existing dependence analysis techniques (that we know of) except for one fail to prove that this de-
pendence is loop-independent. Symbolic delinearization [Mas92] can prove this, but it has serious limitations
discussed in Section 8.

1.2 Triangular linearization

Consider the program in Figure 2. Since the one-dimensional array A is a linearized version of a triangular
matrix A, a reference to A(4, j) is expressed as A(i*(i+1)/2 + j). Linearized triangular matrices are used
quite often in scientific codes.

Loop i cannot be parallelized unless we know that flow dependence from Si[iy, ju] to Sa[i,, jr] is loop-
independent, that is, iy, = .. No existing dependence test (that we know of) can automatically prove this.
The problem describing this dependence is (3) and our techniques simplify it to (4), which proves that the
dependence 1is loop-independent. Since we also know that j, = j,, we can fuse the two j loops if we need to,
and since existing techniques cannot establish that j, = j,, they cannot perform fusion for this example.

1.3 Code generation for symbolic blocking (tiling)

Consider the program fragment in the left column of Figure 3. To improve locality (that is, to better use
the memory cache) the loop transformation known as blocking or tiling [AK87] is applied to this loop nest.
The idea of transformation is to block (tile) the iteration space into blocks such that each block requires
data which fits into cache. We perform loop blocking using a framework of Uniform Loop Transformations

6 Yy =95 —
Yy > 5 *
5k
4_
Y 3
9 L r>1 - -
0 l ! ! ! | ! | ! ! v=

Figure 4: Affinizing inequality zy > 5

[KP93]. The mapping from the old iteration space to the new iteration space is described by a relation
St lloydol = oy dnsin] | 6= [(lo = 1)/NIN+1 A jn=Jo A in =1, (7)

where i,, j, are old loop variables and 23, j,, ¢, are new loop variables.

If the blocking factor N is a known integer constant, then we have a pseudo-affine schedule and blocked
code is generated without difficulty. However, if N is a symbolic constant, then our schedule becomes non-
affine. So to generate the blocked code shown in the right column of Figure 3, we (among other things) have
to compute loop parameters for the new loop iB. The constraints on ¢ are described by the problem (5).
Our algorithm simplifies it to the problem (6) and then we extract the initial value of ¢, and upper bound
of ib.

2 Ouwur approach

Our basic approach is to try to transform a general polynomial constraint into a conjunction of affine
constraints and one of the special forms that we later affinize:

xy > ¢ A hyperbolic inequality

xYy =c A hyperbolic equality
agx’ + Qy y? > ¢ An elliptical inequality
azz? + ayy? = ¢ An elliptical equality

(8)

Here x and y are variables and a., ay and c are constants. These transformations are mostly factoring and
they are discussed in detail in Section 4.

Then we affinize the special form constraints. For example, zy > 5 is equivalent to (the first conjunction
of this is shown in Figure 4):

(x> 1IN22+y>TAx4+y>5A2+2y > TAy > 1)V (2 <—1A20+y <-TAx+y <-bAz+2y <-TAy <-1)

This is, perhaps, one of the few places where the fact that we are working with integers makes things easier
than if we were working with reals (it is not possible to convert polynomial constraints over real variables
into affine form). Details of affinization are given in Section 6.

Of course, not all polynomial constraints are of the form that we can factor and affinize. The details of
the algorithm that systematically applies factoring and affinization are given in Section 3.

Problem SimplifyPolynomial(Problem p) Begin

Boolean change := True

Integer n:=0

Pn=7"P

Do while (problem p,, has polynomial constraints A change)
change := False
v := affine variables of p,
Pnt1:=3v sd. p,
nt1 = gist pny1 given py
n:=n+1
If we can determine that p,, is unsatisfiable then Return(False)
For each constraint ¢ in polynomial constraints of p,

Try to factor and affinize constraint ¢
If (factoring and/or affinization succeeds) change := True

EndFor

EndDo

P=DPn ANgn Ngn—1 A - A @1

If polynomial constraints remain in p
Use affine equalities in p to derive substitutions
Try to simplify or eliminate polynomial constraints using substitutions
If this produces additional affine equalities, repeat

EndIf

Return(p)

End

Figure 5: Polynomial constraints simplification algorithm

3 Algorithm to simplify polynomial constraints

In this section we present our top-level algorithm to simplify the conjunction of a set of polynomial and
affine constraints.

Representing polynomial constraints. We use the following extension of the Omega test framework to
represent polynomial constraints. For each product of regular variables that we encounter in a polynomial
constraint we create a product variable that represents it. Then we divide polynomial problem in two parts:

e Affine part that is original problem in which products were replaced with product variables,
e Product part that essentially is a definition of product variables in terms of regular variables.

For example, polynomial problem
Njy+kw =Njr +kr N1 < juN=Njr + N N ¢ <ju,jr <qg+M-1
is represented as (product part uses := for defining product variables):

v+ ke =v2a+ ke A I<vy—va+ N A q<ju,jr Jq+M-—1
v = Nju, v3:= Ni,

Please note, that products Nj, and j, N are the same and therefore are referred to as one variable vy.

We further classify regular variables as:

e Affine variables. These are variables that do not appear in products. We single them out because
when we can eliminate affine variables using the Omega test without losing precision.
e Semi-affine variables. These are regular variables that appear in products. We cannot project them
out using the Omega test, because they are involved in polynomial constraints.
In the above example affine variables are &y, k., ¢, M, semi-affine variables are j,,, j-, NV and product variables
are vy, va.

We can simplify the affine part of a polynomial problem using the Omega test. However, when it comes to
factoring and affinization, we use definitions of the product variables from the product part of the problem.
Product variables that become unused, are removed.

Algorithm itself. We present the algorithm that simplifies a polynomial problem in Figure 5. The
algorithm applies factoring and affinization as many times as it can. Fach affinization lowers the order
of polynomial constraint by 1. So finally we either get affine problem or stop because no affinization nor
factoring can be done. Therefore algorithm always terminates.

To satisfy conditions for factoring and affinization we eliminate affine variables that stand in the way of
factoring. Basically our goal is to get polynomial constraint that has less variables than original constraint,
to factor out the common term (or apply more intricate factoring, as in triangular delinearization example)
and to affinize it.

Variables that are removed as a result of projecting out affine variables and constraints involving these
variables are memorized in ¢g; problems. When simplification is finished, we use ¢; problems to restore the
original problem. As restoration goes on, we use new equalities and inequalities produced by affinization to
simplify restored polynomial constraints.

4 Factoring

We use several techniques to transform a polynomial constraint to one of the forms (8). These techniques
are described for inequality constraints, but they work equally well for equalities.

Common term. If a factor # occurs in all terms of a constraint, except for a constant term, we can factor
this constraint. That 1s, we transform the constraint

n

Z a;xR; > ¢

i=1
where a; and ¢ are integer constants, « is a variable, each R; 1s a product of variables or the constant 1 to

y > im1 @R

Jdys.t. o> ¢

So we reduce the order of the original polynomial constraint by 1, hopefully making it affine, and we produce
a hyperbolic constraint that can be affinized.

Breaking quadratic constraint. As a more specialized case, a constraint of the form:
aZx? + box — azy2 —byy+c>0

where a, >0, ay > 0, b;, by and ¢ are known integer constants, and y are variables, is transformed to the
following equivalent constraint (that involves hyperbolic equality or inequality):

o = 2a%ayx—2axa§y—|—bxay —byay
Ja,Bst. 5 2a%ayx—|—2axa§y—|—bxay + byae
af ajb% — a%bi — 4a%a§c

VAT

If the coefficient of 2% (that is, a2) is not the square of some integer, we should multiply the whole
constraint by a positive integer constant which makes the coefficient of a square. If after this the coefficient
of y? (that is, az) i1s not a square, factoring cannot be done in integers, and therefore we give up on this
constraint.

Completing square. A constraint of the form:
apr? + bpx + ayy2 +byy+c>0

where a, >0, ay > 0, b;, by and ¢ are known integer constants, and y are variables, is transformed to the
following equivalent set of constraints (involving elliptical equality or inequality):

o = 2azz+ b,
Ja,Bst. = 2ayy+ by
ayoz2 +a.3 > aybi + axbj —dagayc

5 Representing integer division.

We transform constraint L that involves integer division (here E and F' are affine expressions):
L(E/F),)
to polynomial constraint:

Jt,ast. LE,.)ANtF+a=FEAN0<a<F-1

6 Affinization

Let’s consider the area described by a constraint (we discuss only <-inequalities here; inequalities with <,
>, or > operators can be converted into <-inequalities):

w<w<ze Ay < fx) 9)

We require this area to be conver, that is, Vo : 2y <z < 2, = f(x) < 0. If it is not so, we can break the
segment [, z.] into several segments, such that this requirement is satisfied in each segment, and consider
these segments separately. When we have the convex area, the derivative of f(x) steadily decreases as x
increases, so we can break interval [z, #.] into 4 intervals (some of them can be empty):

pp<r<z, = 1< flx)

<<y => 0 flx) <1
r<e<e; => —-1< fi(z) <0
r1<z<z, =) <-1

Affinization Theorem. If the above conditions are satisfied, the non-affine constraint (9) is equivalent
to a conjunction of affine constraints:

[2p] <2 < [ze] Ay < [flzo)] A

L] Lf(z0)—1]
A line (GG, LS, G+ LISGHDI) <0 A A line (7 @O0, (7 G+ D]+ 1) < 0A
i=[z] i=[f(z1)]

[(zo)—1] [ze]
A\ line (LIZD)0a), (ZHE+ D] i+ 1) =0 A A dine (= L LfG = 1)), (7, [F()]) <0
i=[f(z-1)] i=[w_1]
(10)
Here the function f_lfl(y) is inverse function of f(x) for 23 < & < xo and f='(y) is inverse function of f(z)
for #g < & < ®w_3. The function line ({x1,41), (x2,y2)) gives back an expression that is zero along the
straight line passing through the points (z1,y1) and (za, y2), positive to the left of that line (as we move
from {(x1,41) to (@2, y2)) and negative to the right of that line:

line ((x1,y1), (x2,42)) = (@2 —21)(y — 1) — (y2 — y1)(x — 1)

In the rest of this section we show how the affinization theorem is applied to hyperbolic and elliptical
inequalities.

6.1 Affinizing inequalities
Hyperbolic inequalities with positive constant. To affinize the inequality

Ty >c

where ¢ > 1, we break the domain of f(z) = ¢/x into 2 convex areas: 2y > ¢ > 1= (¢ < -1 A y <
e/x) V (¢ >1 A y>c/x). Applying the affinization theorem to the each area, we get that the inequality
xy > ¢ > 1 1is equivalent to:

[Ve-1]
r>1Ay>1A N\ (line ((i, [ﬂ) (i+1, [H%b)gomme«m,i), <L+LJ,Z'+1>)§0) v

i=1
—1
r<—1Ay<—1A A (ine ({7 EJ) (i1, L
i=(1-v2]

C

2o aine ([o 25| - <o)

Hyperbolic inequalities with non-positive constant. The inequality zy > 0 is equivalent to
(x>0Ay>0)V(e<0Ay<O0).

If ¢ < —1, then the inequality zy > ¢ describes non-convex area between two hyperbola branches. We
transform this inequality to negation of positive-constant hyperbolic inequality:

ry>c = —(2'y >) where 2’ = —z, ¥ =y, /=1-c>1

Negation of conjunct produces disjunction of several constraints.

Elliptical inequalities. Affinizing elliptical inequalities is similar to affinizing hyperbolic inequalities.

6.2 Affinization of equalities

An equality constraint of the form zy = ¢ or ayz* + ayy® = ¢ has a finite number of integer solutions. We
convert this constraint to affine form by enumerating these solutions.

Hyperbolic equalities. Let’s consider the hyperbolic equality xy = ¢. We replace it with a disjunction
of several constraints. For each t = 1 up to [/|¢|], if ¢ divides ¢ then we add to the disjunction constraints:

(x =1t A y=e¢ft) Vo (z=c/ft A y=1t) \Y
(x=—=t AN y=—c/t) V (x=-¢/t N y=-1)

For example, the equality zy = 5 is equivalent to: (x =1 Ay=5) V(e =5Ay=1)V(ie=—-1Ay=
=5)V (t=-5ANy=-1).

Elliptical equalities. Similar to hyperbolic equalities.

6.3 Number of constraints generated

For hyperbolic inequalities and equalities number of constraints generated is O(y/¢) where c is constant from
(8). As our preliminary study shows, ¢ values are usually small, and that means that few constraints need
to be generated.

Affinizing polynomial constraint only over the feasible domain. Often, we can further restrict
number of constraints generated if we know the range of the participating variables is limited. Before
generating affine constraints, we find the rectangular bounding box for # and y (the Omega test has this
capability):

Ly =minz, L, =miny, U, = maxz, U, = maxy

Then constraints that do not intersect with the bounding box are not generated at all.

For example, if we know that z is non-negative, then zy > 2 is equivalent to affine set of constraints
z>1Az+y>3Ay>1.

7 Examples

7.1 Rectangular delinearization

We start with computing p1, the projection of (1) onto variables involved in products (iy, iy, ju, jr, M and
N), and ¢y, everything else:

MNi, + Njy +ky = MNi, + Nj. + k,
1—-N<MNty+ Njy—MNz2 —Nj. <N-—-1 _ Py, <p+L—1

p= 1—M<jy—jr<M-1 o q < Juw,Jr <qg+M-—1
r<ky ky <r+N-1

We can factor and affinize the polynomial constraints. The constraints in p; imply N > 1, so we generate
only one branch of hyperbola:

1<N
1< N(Miy — Miy + juy —jr + 1) . = . . 1<N

LS N = Miy 4G = Ju 1) = Sy T e T o iy = M,
We again eliminate all affine variables (N, jy, jr):

1< N
Miy + juw = Mir + jr

_ . . _ 1< M(iy —ir+ 1) _

p2 = 1_M§MZT_MZ“’§M_1:1§M(ir—iw—|—1)’ q2 =
Affinizing we get po = 1 < M Aty = 2p.

Having reduced p to affine form, we restore constraints involving eliminated variables and simplify:

lw = i
MNiy, + Njy +ky = MNt. + Nj, + ki
p<iy,ip <p+L-1
qgjw,jrSQ'i'M_l
r<ky, bk <r4+ N -1

P=Ep2 NG AN ¢ =

Substituting i, for ¢, allows us to derive j,, = j,, which in turn allows us to substitute j, for j, deriving
ky =k,

p<iw=4 <p+L-1

qgjw:jTSQ'i'M_l

r<ky =k <r4+N-1

7.2 Triangular delinearization

Before applying our algorithm to the problem (3), we convert integer division by 2 to integer multiplication:

2 +a=i?+4i; A 0<a<l 0<ja<is <N

A+ B=i24+is A 0<p<1 0<j1<i1 <N
=31¢,1 .t . . == = . e . .
b iz fs ti+jh=to+jo A 0<i,ia<N-1 io + 2js + 142 < 1414y + 251 + 43
0<ii < A 0<52<1 i1+ 251 + 43 < 14y + 255 + i3

We now compute p;, the projection of p onto variables involved in products, and ¢1, everything else
needed so that p = p1 A ¢1:

0<i
0 < iy
in + i3 < 14 3ip + 43
i1+ 17 < 14 3ip + 43

We factor the polynomial constraints in p;:

P11 =

430 —i5—iy >0

0<ja<ia <N
0<ihn<u<N
io + 2j2 +i2 < 14idy + 251 + 2
i1 4251 + 02 < 14 iy + 2js + 13

1 =

(i1 =2+ 1)(1 +i2 +2)

= > 2
3435 -3 —i1 >0 = (iz—i1+1)(ia+i1+2)>2

and affinize the factored forms:

(i —do+ 1)({1 +42+2)>2
(lo—d1+ 1)(la+4+2)>2

iv—dp+ 121 A0 +ia+ 22> LA (i —d2 + 1) + (i1 + 42 + 2)

>3
ip—t1+ 121N+ +2> 1A —i1 + 1)+ (ia+i1 +2) >3

Replacing these two polynomial constraints with their affine equivalent and simplifying yields:
p1=0<1d =iy
Since p; is completely affine; we are done. We combine p; and ¢; and simplify, yielding:
1 = 19
0<ja<ia< N
0<n<iu<N

io+ 2jo + 15 < 1+ 141 + 251 + i3
i+ 251 17 < 1+ do + 2j5 + i

P=Ep1 AN =

By substituting i; for iz, we get:

iz::il
0<j2<uu <N

iz::il
0<jp<u<N

iz = il

0<jp<it <N 0<jp<iu<N

P= 0<jn < <N = 0<ha<u<N =0<Hp<u<N = ia =11
i+ 2j0 +15 < 1+i + 25 + 43 252 <1425 J2<hn J2=7
i 4 2j1 + i <141+ 2jp + 147 2j1 < 1+ 2j J1 < ja

This is the final result (4).

7.3 Symbolic blocking

Using our algorithm we can simplify polynomial problems that arise in code generation for symbolic blocking.
Let’s consider code generation for program in Figure 3. The constraints on old loop variables are

IS=1<j,<i, <M
We use them and schedule (7) to compute constraints on new loop variables. First, we convert the equality
iy = [(i,— 1)/N|N + 1
used in the schedule to polynomial constraint
Jtst. g =tIN+1AtN+a=t,—-1A0<a<N-1
So constraints on new variables iy, j,, i, are:

1<jo<in<M

iy =tN + 1
18 =34,,j,,t,a5t. IN+a=1i,—1
0<a<N-1

jn:jo A iy =1,

We use the problem IS5’ to generate new loop bounds, proceeding from the outer loop 7, to the inner
loop in:

e To compute bounds on 7, we should eliminate from IS5’ all affine variables except ¢; and symbolic
constants. First, we use our polynomial algorithm to simplify 1.5’. Eliminating all affine variables and
affinizing produces:

pp=N+tN>1AN>1 = Nt+D)>1AN>1 = t>0AN>1
Adding p; to the original problem and simplifying produces:

1<jn<in<M
iy = tN + 1
IN < i, < N +1tN
>0

IS' =3¢ s.t.

Projecting 15" onto 7, and symbolic constants produces:

tp =tN +1
_ 2-N<iyp <M
pi, = 3 s.1. M>1AN>I (11)
>0

Having these bounds, code generation routine determines that i 1s step-/N variable and that the step
is positive. Now we should extract an initial value of 7; from these constraints.

The initial value of 7; is the lowest possible number that satisfies I.5”. As long as we have polynomial
equality, we can not be sure that the inequality ezpr < ¢; means that expr is the initial value, because
it’s possible that ezpr does not satisfy the polynomial equality (in this example 2 — N is not divided
by N, so 2 — N is not the initial value).

To circumvent this difficulty, we instead compute the lower bound on the iteration counter ¢t. We
project out variable ¢, and affinize p;, to get constraints on ¢:

w=tN +1

. I N<N4+1<M 0<t
Bip st 4o SN = MZIANZT = iN<M-1 (12)
= = >0 M>1AN>1

>0

Here we have no equality constraints, so we are sure that the initial value of ¢ is 0, and therefore the
imitial value of 4 st %0+ 1= 1.

The iB loop second parameter (“final” value of 7;) does not have to be tight, so we can use the inequality
1y < M to decide that M is the “final” value of 7;.

e Bounds on j, are: gist mar n i, j. 18 (1S") given (11). Simplifying we get:

1<jn <M A jn<N+ip—1 (13)

e Bounds on i, are gist Tar N iy j,,i0.¢,eN(LS7) given (11) A (13). Simplification produces:

gn <in <M A iy <ip <N+ —1 (14)

Having constraints (12) and (13) and (14), uniform methods loop generation routine generates loops as
shown in the right column of the Figure 3.

8 Related Work

Polynomial constraints simplification vs delinearization. In this paragraph we compare our poly-
nomial constraints simplification algorithm with symbolic delinearization [Mas92].

10

First, we prove that our algorithm exactly simplifies all problems that can be handled by symbolic
delinearization. The essence of delinearization is transforming the constraints:

Ney+e3 =0 to e1 =0
1—N§62§N—1 62:0
where e1, ey are expressions, and N is a variable. Using our algorithm, we substitute es = —Ne; into the

inequality 1 — N < e; < N — 1. Factoring and simplifying produces: N(1 —e1) > 1 A N(1+e1) > 1.
Affinizing both inequalities we get e; > 0 A e; < 0 and therefore e; = 0. Substituting this equality to the
original problem, we finally prove that e; = e; = 0.

Symbolic delinearization has several serious restrictions that are not present in our algorithm:

e It can handle only subscript functions linearized according to FORTRAN rules: reference A(i1,4a, ..., in)
to array A(0: D1,0: Dy, ...,0: Dy) is converted to A(iy + Dyig + -+ Dy - Dp_1iy). We call this
rectangular linearization. Triangular linearization (see Section 1.2) that is used quite often in scientific
codes i1s not handled.

e Even for the case of rectangular linearization it cannot handle constraints imposed by triangular iter-
ation space.

Parafrase-2. In [HP91] the authors propose to use a symbolic version of Banerjee’s inequalities for depen-
dence testing, but it is known that Banerjee’s inequalities do not detect independence in case of linearized
subscript functions [Mas92].

To alleviate the inexactness of Banerjee’s inequalities; Haghighat and Polychronopoulos propose to detect
monotonically increasing and decreasing subscript function using the finite differences method [HP93]. When
the subscript function is monotonically changing, the reference cannot hit the same memory cell on the next
iteration, and therefore no output dependence can exist from the reference to itself. Our induction variable
recognition system also can discover that the closed form of induction variable is monotonically changing
and we are able to use this fact to prove the absence of the output dependence.

However, when monotonicity cannot be proven — it happens, for example, for program in Figure 2 —
Haghighat and Polychronopoulos finite difference method cannot be used and their techniques cannot prove
that the flow dependence in this example is loop-independent and output dependence does not exist.

Other approaches. A number of computer algebra books and papers [KL92, Buc85, DST88] are devoted
to solving polynomial constraints over the complex and real numbers. Since we are interested in polynomial
constraints over the integers, we cannot directly use their results. However, we should study adaptation of
their factoring techniques to our needs.

9 Conclusion

We have presented an algorithm that exactly simplifies conjunctions of affine and polynomial constraints
over integers.

This algorithm is not capable of affinizing arbitrary polynomial constraint. However, we do not always
need complete affinization. For example, in the symbolic blocking example we produce simplified polynomial
problems that can be directly used for generating loop bounds for the loop iB.

Our algorithm for simplifying polynomial constraints is expandable: we can add more sophisticated
factoring techniques to it, and we can consider affinization of more complicated constraints than 2-variable
hyperbolic and elliptical inequalities and equalities (8). We think that expansion of the algorithm should be
guided by practical needs of the concrete application.

More experiments are needed to prove that this set of techniques can affinize most of the polynomial
problems that arise in dependence testing and other parallelizing compiler analyses. Preliminary investigation
shows that we can affinize polynomial constraints that arise due to rectangular and triangular linearization
of subscript functions which seems to be a primary source of polynomial constraints.

11

References

[AKS7]

[Buc85]

[DSTS8]

[HP91]

[HP93]

[KL92]

[KP93]

[Mas92]

[Pug9?]

[PW92]

[PW93]

J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM
Transactions on Programming Languages and Systems, 9(4):491-542, October 1987.

B. Buchberger. Grobner bases: an algorithmic method in polynomial ideal theory. In N. K. Bose,
editor, Multidimensional Systems Theory. D. Reidel Publishing Co., 1985.

J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra, Systems and Algorithms for Alge-
braic Computation. Academic Press, 1988.

M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis for high-performance par-
allelizing compilers. In Advances In Languages And Compilers for Parallel Processing, August

1991.

M. Haghighat and C. Polychronopoulos. Symbolic analysis: A basis for parallelization, optimization
and scheduling of programs. In Sizth Annual Workshop on Programming Languages and Compilers
for Parallel Computing, Portland, OR, August 1993.

Deepak Kapur and Yagiti Lakshman. Elimination methods: an introduction. In Bruce Donald,
Deepak Kapur, and Joseph Mundy, editors, Symbolic and Numerical Computation for Artificial
Intelligence. Academic Press, 1992.

Wayne Kelly and William Pugh. A framework for unifying reordering transformations. Technical
Report CS-TR-3193, Dept. of Computer Science, University of Maryland, College Park, April 1993.

Vadim Maslov. Delinearization: an efficient way to break multiloop dependence equations. In
ACM SIGPLAN °92 Conf. on Programming Language Design and Implementation, San Francisco,
California, June 1992.

William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence
analysis. Communications of the ACM, 8:102-114, August 1992.

William Pugh and David Wonnacott. Going beyond integer programming with the Omega test
to eliminate false data dependences. Technical Report CS-TR-3191, Dept. of Computer Science,
University of Maryland, College Park, December 1992. An earlier version of this paper appeared
at the SIGPLAN PLDI’92 conference.

William Pugh and David Wonnacott. An evaluation of exact methods for analysis of value-based
array data dependences. In Sizth Annual Workshop on Programming Languages and Compilers for
Parallel Computing, Portland, OR, August 1993.

12

