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There are many benefits to using multi-arm systems over a single arm system

including higher flexibility in planning, better payload handling capacity, and re-

duction of joint torques. However, multi-arm systems are inherently more complex.

This complexity does not necessarily translate to “bigger” and “heavier”. This re-

search seeks to answer the question of whether or not a multi-arm system can have

lower mass than a single arm system.

Using a task-based methodology, Independent single-arm and cooperative dual-

arm manipulator systems are designed. A task defines the payload’s motion and thus

the manipulator’s trajectory. Utilizing linear programming, a new method is devel-

oped in order to optimize the distribution of forces among the multiple arms in

order to guarantee a minimum system mass. The mass of the motors and gears are

estimated based on the required torque and speed, obtained from the trajectory and

force-distribution.

This study shows that a well-designed multi-arm system can in fact have a

lower mass than a single-arm system. Further optimization demonstrates that a



multi-arm system, when designed as a complete system rather than individual parts,

can significantly reduce the total system mass.
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Chapter 1: Introduction

1.1 Motivation

Human expansion, both geographically and scientifically, drives the develop-

ment of newer machines, computer systems, machine learning, and robots. These

newer technologies help us to perform tasks we cannot do, and to work in environ-

ments we cannot currently work in. Space is one of the harshest environments in

which humans live and work today. Serial manipulators on the International Space

Station (ISS) help to accomplish spacecraft berthing, station maintenance, and were

instrumental in the assembly of the station itself. In the scope of space operations,

dexterous space manipulators are a great asset, expanding the frontier of in-space

assembly and repair, assisting astronauts, and supporting experiments.

As robotic systems become more sophisticated, they can accomplish increas-

ingly more complex and difficult tasks. Working with one dexterous manipulator at

a time is limiting, like performing daily household chores with one hand tied behind

your back. The addition of secondary manipulators is one method of expanding the

task performance of current robotics systems. Multi-arm robotics can accomplish

tasks which single arm systems are incapable of.

Multi-arm systems provide flexibility in planning and improve handling ca-
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pability. Some tasks, such as the coupling of two objects, can only be done with

multiple arms, e.g., dual manipulators. Other tasks, such as carrying heavy objects,

are easier with two arms, requiring less force and effort. In terms of robotic systems,

easier in a multi-arm system translates to lower joint torques required to carry out

a given task. This reduction in joint torques allows a pair of weaker arms to move

the same load as a single stronger arm. Furthermore, this reduction in joint torque

can be turned into a reduction in motor mass.

Weight is an essential concern for any system that needs to get into space.

Space is not only a harsh environment to work in; it is also exceedingly difficult to

get there. Weight of robotic systems becomes an important factor when considering

how to first get to, and then work in space. This leads to an important question:

Is there a multi-arm dexterous manipulator system that is lighter in weight than a

single arm system that can perform the same tasks?

Multi-arm systems are often created by taking an already designed manipu-

lator (usually capable of performing the task individually) and simply adding an

additional cloned arm. This results in many multi-arm systems being at least twice

as heavy as the single-arm system. In robotics, the idea that a dual (or even three)

arm system could be lighter than a single arm is therefore counter-intuitive. The

individual manipulators in a multi-arm system do not need to be as strong as that

of a single arm, since they do not need to produce as much torque as a single ma-

nipulator system. One key way of reducing the weight of the system is in reducing

the mass of the motors.

As previously mentioned, many multi-arm systems are made by attaching pre-
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designed and existing arms together. This leads to the erroneous conclusion of multi-

arm systems not only being complex, but also heavy. While the first conclusion is

true in many cases, especially facing challenges of efficiency and safety, the second

doesn’t have to be. If each arm of a multi-arm system is capable of producing 100% of

the necessary forces to accomplish the task, then the resulting system will be over-

designed and will weigh more than a single arm. These over-engineered systems

can be avoided by designing for a whole system rather than designing individual

manipulators. It is unnecessary for every arm to be capable of performing 100% of

the task. By working together, forces can be distributed and optimized to reduce

the overall mass.

By changing the focus of design to the whole system rather than individual

elements (e.g., individual manipulators), each arm can be optimized and sized to

work together to perform a desired task; resulting in a lower mass.

1.2 Contributions

A multi-arm robotic simulation was created to model how both a single and

multi-arm system would perform, given a specific task. The simulation calculates the

manipulator(s) dynamics and then estimates the mass of the manipulator structure

and its motors using estimated joint torques. In the case of the multi-arm system,

the forces are optimally distributed among the arms in order to minimize the overall

mass. This optimization allows a multi-arm system design to be as light, or lighter,

than a single arm system.
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Determining how much force and torque each arm must contribute to the

overall task is commonly known as the ”force distribution problem”. Many methods

look at the minimization of power in order to reduce the mass; however, while

lowering the power can lead to a lower mass, it is not guaranteed. While multiple

methods of solving the force distribution problem have been studied, none focus on

the minimization of the system mass.

This thesis looks at how to optimize a multi-arm system for space applications.

The study compares the system mass of a single arm system to that of multi-arm

systems. In addition to comparing the systems, a genetic algorithm optimizes the

individual link lengths for both the single arm system and that of the multi-arm

system. This shows how the optimization and design of the multi-arm system, as a

whole, further reduces the total system mass.

Multi-arm systems can be a lighter solution for many tasks. However, the

multi-arm system must be designed as such from the ground up, taking into con-

sideration the system as a whole. This thesis will demonstrate that a well-designed

multi-arm system can be lighter in weight than a single manipulator.

1.3 Overview

This section will provide an overview of the research methodology used. A

simulation was written in MATLab using the optimization toolbox as well as Peter

Corke’s robotics tool box. Using these tools, and custom code, a simulation was

made to estimate the mass of manipulators as they perform a given task. The mass

4



of the manipulator(s) is based on the required joint torques as well as structural

limits.

Figure 1.1: Mass estimation flowchart for single-and multi-arm systems

This simulation reduces a complex manipulator system to a total system mass.

For a single arm system, this is the mass of the single arm. For a dual-arm system,

this is the summation of both arm masses. This allows direct comparison and

optimization between the two systems. The various link lengths of the arm are then

optimized to produce the system with the lowest system mass, not only allowing

comparisons between single arm and multi-arm systems, but between the optimized

systems as well.
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1.3.1 Generation of Task

The task-based methodology starts with describing which task(s) must be

performed. This can be seen in the first column of Figure 1.1. There are several

constant variables embedded within the task definition, including key characteristics

(mass, gripping locations, and general size) of the payload. For the purpose of this

study, payload mass is set to be 14,000kg, which is near the maximum rated mass

the Shuttle Remote Manipulator Systems (SRMS) can move at a rate of 0.6m/s [1].

This study focuses on moving a large inertial payload from point A to point B.

The starting and ending points are both described as positions in 3D space (x, y, z)

at a rotation about the x,y, and z payload axis, Rx, Ry, Rz. The rotation terms do

not have to remain constant from start to finish. The task is described as moving

the payload, not only translationally, but rotationally as well.

Once the end-points of a task are defined, a trajectory is generated for the

payload. This is created using a trapezoidal trajectory function. Some additional

requirements need to be imposed on the simulation, such as maximum speed of the

payload/end-effector, maximum acceleration, and desired time to accomplish the

trajectory. If the desired time to accomplish the trajectory is set too low, then

the system will complete the trajectory as fast as possible, moving at the specified

maximum acceleration and maximum velocity.

The manipulator(s) are assumed to be rigidly attached to the payload. As

mentioned above, the location and angle of the manipulators relative to the payload

are pre-defined. While the gripping locations must remain constant throughout
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the task completion, the gripping angle does not. If the starting angle is defined

differently from the resulting angle, then a change of angle will occur throughout the

course of the trajectory. While the desired location and angle of each manipulator’s

end-effector are not explicitly given, they can be calculated based on the path of the

payload. Using inverse kinematics, the pose of the each arm can be determined. For

redundant manipulators, there is an infinite number of solutions, and the program

will select the one closest to a defined ’default’ pose.

1.3.2 Estimating the Mass

Once the trajectory for each arm has been calculated, it is possible to obtain

the force and torque for each joint. For a single manipulator system, this is done

using forward dynamics. For a multi-arm system, this becomes more complex, as

the force from the payload can be divided among various arms. The amount of force

each arm provides to the payload will directly affect the resulting joint torques and,

thus, motor masses.

The mass of the motors and the structure will affect the dynamics of the

system. Therefore an initial estimation of the dynamics is found without masses.

The kinematics and dynamics are then recalculated with the estimated masses. This

process is then reiterated until the change in system mass converges within a 5%

change from the previous iteration. More information can be found regarding the

heuristics for estimating the motor mass, gearbox mass, and structural mass in

Chapter 3.
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1.3.3 Optimizing the Kinematic Structure

In order to first calculate the arms’ trajectories, the kinematics of each arm

must first be known: specifically, the link lengths and joint configurations. Variable

link lengths will result in different trajectories, dynamics, joint torques, and thus

different manipulator masses.

The final step of this research will look at how to further optimize a multi-arm

system for mass reduction. This study will focus on the differences between the

optimization of individual arms and of the system as a whole. This optimization

uses a genetic algorithm to calculate the optimal link lengths for single and dual-arm

systems. These results are presented in chapter 7.

1.4 Organization of this Thesis

Chapter 1 focuses on background and previous work which has been done

on multi-arm robotics. The forces and torques of robotic systems are described

in Chapter 2. Chapter 3 describes the model used for estimating the mass of a

manipulator. An example single arm is described in Chapter 4 utilizing the forces

described in Chapter 2 and the mass model from Chapter 3. Chapter 5 describes

how the force/torque can be distributed among the multiple robotic manipulators to

better reduce the joint torques and, thus, the mass. Chapter 6 examines the results

of moving from a single arm system to a multi-arm system. Chapter 7 describes

the optimization process for each arm to further reduce the overall system mass.

Conclusions and future works can be found in Chapter 8.
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1.5 Literature Review

1.5.1 Background on Multi-Arm Robotics

There are a variety of ways in which multiple robotic systems work together,

including performing individual sub-tasks to finish an overarching task. In this case,

the robots themselves have no real interaction with each other, and are generally in

different work volumes. This is common on the floor of automotive plants. There,

multiple robots are used to handle tasks which do not require too much delicacy,

such as heavy lifting, welding, painting, etc. Other tasks, such as wrapping tape

around a pipe, means the manipulators must work closely together. However, the

task must be safely transferred from one robot to the other[2].

This method of utilizing a multi-robot system is a coordinated effort means

every robot knows its own task and performs them without aid from one another.

However, this research focuses on cooperative multi-robot systems, in which the

robotic systems actually cooperate with one another in order to better perform the

task. Forces and torques pass from one robot to another; the robotic systems truly

interact with each other and cooperate to accomplish a given task.

1.5.2 Benefits of Multi-Arm Robotics

Using multiple robots, to solve a problem or perform a task, is becoming more

and more common as the capabilities of systems increase. The obvious time to use

multi-arm systems is when the task requires it: a task which a single robot cannot
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accomplish independently. Fujii and Kurono are some of the first researchers to

study the control of dual manipulators, with a focus on tasks that required dual

manipulators. They focus on the joint control of dual manipulators to perform a

desired Cartesian motion, such as screwing a bolt into a nut. One arm holds the

nut while the other turns the screw. However, it should be noted that this method

does not account for the coupling effect between the two manipulators [3].

Multi-arm systems are beneficial even when a task does not necessarily require

multiple arms. [4, 5, 6, 7, 8, 9, 10] discuss the uses and classification of multiple

robot systems. Sirouspour talks about the increased dexterity, improved handling

capacity and enhanced robustness, due to redundancy, of multi-arm systems. Their

main focus is on the teleoperation of such a system using multiple ”master/slaves”

to control robots [11]. In their survey on dual arm manipulation, Smith et al. states

that dual arm manipulators are far more familiar to the operator since it has the

common human form factor. This familiarity aids in control and planning [12, 13].

Payload handling is one area that benefits from the use of multi-arm systems.

Multi-arm systems handle larger objects better than a single arm [14]. In addi-

tion, they allow for multiple grasping points, which, in turn, allows any necessary

moments/reactions applied to the payload to be countered. The various arms help

balance out the moments and torques necessary to move a payload. This is impor-

tant when handling large objects, where grasping an outer edge can result in large

undesirable torques. This is especially true for space manipulators, as the center of

mass, which is inside a frame or structure, is a highly coveted space for any and all

propulsion tanks and sensors. [15]
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Many researchers focus on how multi-arm systems aid in handling complex

objects. These complex objects can be flexible, fragile, or mobile. Sugar and Kumar

focus on performing tasks which require more than a single robot with flexible

objects [16]. Bais and Erhart focus on payloads, in the case of constant and slow

time-varying load constraints [17]. While it is highly preferable to have a constant

load, it is possible for an uncooperative satellite to start thrusting or moving as a

manipulator grabs it. Nakamura et al. studies how using multi-arms can minimize

the strain put on a payload in order to reduce the possibility of damage [18].

Many multi-arm systems focus on holding objects using friction, similar to how

the fingers on a hand work together to hold an object. This allows the movement

and manipulation of payloads without requiring special fixtures for robots to rigidly

attach to. However, relying on friction to hold a payload in space is often a poor

choice [19]. The complex dynamics result in operators wanting a firm, predictable,

and often dangerous grip on the payload, which are typically extremely expensive

satellites or even modules of a space station. These objects are all man-made and

generally adding grasping fixtures or finding an appropriate places to grab hold

would not be too difficult. Generally, the operator will have a full, or close to full,

model of the object they need to handle. This research focuses more on multi-arm

systems which do not rely on a friction hold, but rather are rigidly attached at

pre-defined grasping locations.

Often, the goal of aerospace designs is to reduce the system mass. In this study,

this is accomplished by reducing the motor mass by distributing and reducing joint

torques. Yoshida et al. designed a coordinated controller for a dual-arm space robot
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and showed that the torque required to follow a determined path is smaller when

using two arms [20]. Carignan and Akin show that the force each arm provides

to the task is based on the current geometry of the system, which can be used to

reduce the joint torques and to minimize the energy in order to accomplish a task

[21]. Researchers have found that multi-arm systems can lead to a reduction in joint

torques, improved payload handling, and overall more intuitive planning than single

arm systems.

1.5.3 Multi-arm Space Robotics

Space robotics have proven themselves to be useful tools in assembling the

International Space Station, EVA (extravehicular activity) assistance, and on-orbit

servicing. There are a few key defining characteristics of a space manipulator as

compared to their ground-based counterparts. As discussed earlier, weight is a

major concern for any aerospace project.

The coupled dynamics between a manipulator and its base is another major

concern for space manipulators. Ground-based manipulators are firmly mounted to

either the ground or to a platform mounted to the ground. The movement of a

manipulator is not going to change the movement of the base (i.e. Earth) that it is

mounted to. This is not true for on-orbit manipulators. A space manipulator must

react all forces through the spacecraft they are attached to. As the manipulator

imparts a force on the base, the base will move. How much the base moves is

dependent on the inertial mass of the base, the arm, and the acceleration. The
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movement of the base must be considered, making planning and control of the

system more difficult [22, 23, 24]. A reduction in the coupled dynamics translates

to space manipulators behaving more like ground-based ones.

One method of reducing this coupled dynamics is to move slowly with a limited

acceleration. Momentum wheels or control moment gyros can be utilized to stabilize

a spacecraft, but the amount of torque they can counter is limited. Carignan and

Akin describe how reaction stabilization systems can be used to counter the moment

of a space manipulator [25].

Many industrial robots are performing the same task over and over again.

The quicker the task time, the more productive the robot. Therefore, there is

a high premium put on speed. In comparison, space manipulators move much

slower. This reduction in speed also reduces the coupled dynamics. In addition,

space manipulators generally do not perform the same repeating task. Instead, each

individual task is carefully planned and practiced.

Researchers have been studying the control of space manipulators for decades.

Many researchers focus on how to move the space manipulators, such that the

satellite movement is minimal. Umetani and Yoshida developed an inverse kinematic

solution by defining the Generalized Jacobian Matrix for a multi-arm system [20].

This creates a Jacobian which is a function of the joint angles and inertia parameter

for multiple manipulators. They proposed a method for using two arms: one as the

main focus and the other as a “balancing arm”. The balancing arm would counter

the primary arm’s movements to maintain satellite attitude. Yale et. al. use the

redundant degrees of freedom from a multi-arm system to minimize a weighted norm
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of the actuator torques in order to reduce motion of the base [26].

Yoshida and Hashizume proposed the zero reaction maneuver. This uses the

manipulator’s degrees of freedom to carefully plan a maneuver which results in no

effect to the base during movement of the manipulator [27]. There is a limited

set of maneuvers for a 6 degrees of freedom (DOF) manipulator; however, as the

DOFs increase, the number of possible zero reaction maneuvers also increases. A

9-DOF manipulator can use the extra DOF to perform zero reaction movements

and keep the motion of the manipulator separate from that of the base. However,

the additional degrees of freedom greatly increase the complexity of they system.

Other researchers have studied how to predict, and thus eventually control, the

motion of the base as a manipulator moves. Dubowsky and Vafa developed a virtual

manipulator method, which allows ground-based manipulator control methods to be

used on a free-flyer [28]. Papadopoulos described the dynamics and the control of a

manipulator on a free-floating spacecraft in terms of the barycenter [29]. This allows

the the dynamics of the arm and the spacecraft base to be calculated relative to the

non-moving center of mass. This method allows the base motion to be predicted for

additional control of the system. Dubowsky and Papadopoulos continued studying

free-flying manipulators and found there exists dynamic singularities as a result of

being on a free-flying base [30]. These singularities are path dependent, and should

therefore be taken into account when developing trajectories for space manipulators.

Papadopoulos and Nanos focused on avoiding the singularities for a free-floating

manipulator in Cartesian motion [31].

Longman studied how a robotic manipulator, mounted to a free-floater, can
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move a large load. He found that the work space of the arm on a free-floater is

larger than a fixed-based manipulator [32]. This is difficult, as the dynamics and

the satellite altitude are a function of the path, and not just the current joint angles.

His research shows that the work space of the manipulator is load dependent, and is

inversely proportional to the load. He found that there is a “desired base orientation”

and that should be taken into account with path-planning.

Many of the existing manipulators in space are multi-arm systems, such as

Dextre. Dextre, also known as the Special Purpose Dexterous Manipulator (SPDM),

was launched in 2008 and is currently aboard the ISS. It was built by MacDonald,

Dettwiler, and Associates (MDA) and is maintained by the Canadian Space Agency

(CSA). Dextre is a dual-arm manipulator: each arm has seven joints, a length of

3.35 m, and a total mass of 1560 kg [33][34].

Dextre and other multi-arm space systems are highly capable; however, op-

erationally, the multiple arms do not typically interact with one another. Dextre,

despite having dual dexterous manipulators, only operates one at a time [35]. There

are very few instances of space manipulators working together. 2001 saw the first in

space robot-to-robot transfer as a payload was transported between robot arms. A

space lab pallet was passed from the SSRMS (Space Station Remote Manipulator

System) to the SRMS (Shuttle Remote Manipulator System) [36]. This was done

using single joint motions so as not to put major demands on the Station’s com-

puters, [13] and was done in such a way that the robot arms had very minimal or

no interaction. Though multi-arm systems are currently working in space, they are

not being used to their fullest potential.
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1.5.4 Dynamic Models

There are many benefits to the cooperative manipulation of multi-arm sys-

tems and their ability to move a payload in terms of capacity, dexterity, and even

flexibility[11, 37, 38, 39, 40]. This allows for more complex tasks to be completed.

In general, there are two approaches when planning how robots manipulate a

payload: model-based and reactionary-based. The first approach utilizes a model

which generates a set of desired physical parameters to accomplish the task, such

as desired path, joint torques, etc. The robots are then controlled to move to

those desired parameters [41][42]. The second approach is reactionary based, where

the robots interact with the payload and are controlled to deal with the resulting

dynamics. This can be seen in the leader-follower method of dual arm transport:

a leader moves and the follower, estimating the motion of the leader, performs the

cooperative task estimation. All desired motion information is passed to the follower

robots by moving the object. The follower’s path is determined by the payload’s

actions[43]. This method requires a powerful leader. Alberts and Soloway state

that the master/slave or leader/follower architecture for dual-arm control lacked

the primary benefit insofar as the arms do not truly share the load bearing task.

Space manipulation requires careful planning and practice; a model-based system is

used to ensure predictability[37].

Many of the early studies focus on the coupled dynamics between the manip-

ulator and the payloads. Hybrid position/force controllers are used to control dual

manipulators as they are allow to exert forces and torques onto each other [20, 44].
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Hemami used a master/slave scheme and studied the relative position of the slave’s

end-effector to the master end-effector [45]. He ensured the motion between the ma-

nipulators were symmetric either about a point or a plane. Pagilla and Tomizuka

did not assume the payload’s center of mass or inertial properties were certain [46].

They developed an adaptive motor controller and parameter adaptation laws for

estimating the uncertainties. They show that the nullspace of the grasp matrix

depends only on the location of the grasp points, and not the payload’s center of

mass.

1.5.5 Force Distribution Problem

Moving a large payload is a common task for studying multi-robot coopera-

tion. Here, multiple systems work together to move an object which is beyond the

capability of a single system. There exists a near infinite number of combinations

to distribute the load across the multiple robots. As previously mentioned, this is

commonly referred to as the load distribution problem, which has been studied for a

number of years. Alberts and Soloway present a force compensated control method

for multiple manipulators, with the load distribution being handled by minimizing

a quadratic cost function in task-space force and torque [37]. Bais et al. present

an allocation strategy to distribute a desired payload torque between two heteroge-

neous cooperative manipulators using weighting factors[17]. Experimentally, they

demonstrate that different weighting factors give rise to additional torques which

act on the payload. In an effort to minimize power, Nahon and Angeles minimize
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joint torques; this is an important consideration for space-based systems[47]. Their

proposed method show that minimizing internal forces was actually preferred to

minimizing the power.

Nakamura proposed a hybrid position/force control system to provide a neces-

sary internal force, concluding that both position and force control are required[41].

They divided the manipulator control into two phases: the first determines the re-

sultant force to control object’s trajectory and specifies the stiffness for the external

forces, and the second phase considers uncertainty and variety of the static friction

in order to determine the desired internal force. Wen and Kruez-Delgado also de-

compose the problem into two control problems: motion and force[48]. The internal

force, also referred to as the squeeze force, is optimized about a desired set point.

Koga assumed all the arms had the same performance and, thus, the load

sharing was equal among the manipulators[49]. He studies the motion of the payload

in order to resolve the desired internal force. The results are twofold: it prevents

the manipulators from damaging the object by applying too much internal force and

also prevents them from dropping the payload by not applying enough force.

Kerr and Roth focused on a linearized friction model where they found the

optimal internal force[50]. They did not assume the object was rigidly attached, but

rather, that there was a pure rolling motion between the payload and each finger.

This led to the point of contact between the payload moving in relation to the fin-

gers. Hu and Goldenberg [51] proposed an optimal control approach to control the

motion of the object and the internal force, this defining a constraint that the joint

torques must satisfy in joint space. They developed two coordinated control schemes,
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both of which uses torque optimization and internal force constraints. An adaptive

law, which is used to estimate uncertain parameters, is based on error equations

for position, contact force, and the internal force. Zheng and Luh studied a system

of manipulators where one arm is under position control and the other arm(s) are

subject to compliance force control to maintain a kinematic constraint[52]. They

utilize a master/slave relationship. Gueaieb, Karray, Al-Sharhan focused on the real

time control of a master/slave architect for joint trajectory generation for coopera-

tive systems[53]. They focused on using neural networks and neurofuzzy systems to

better calculate the inverse kinematics for the robotic system.

Many of the studies, based on internal forces, assume the load sharing is sym-

metric or known beforehand. Hayati developed a control architecture for position/force-

torque control for cooperating arms and, using a simplifying artificial constraint,

relates the load distribution between the multiple arms to the mass and the inertia

tensor of the payload[44].

Carignan and Akin proposed an optimization of the total torque between mul-

tiple manipulators rigidly attached to a single payload[54]. They show that the

system can be optimized to minimize the total torque during a motion, resulting in

significantly lower energy consumption. They do not consider the internal forces.

Uchiyama introduces the concept of a ‘virtual stick’ which is fixed to the hand

of each robot and extends through to the center of the payload. The absolute

and relative positions/orientation of the payload and hands, respectively, are given

as work-space coordinates allowing a simple coordinated control scheme to be used

[40]. Laroussi, Hemami and Goddard focuses on dual manipulators lifting a load and
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transporting it[45]. The two arms are rigidly attached to the payload. The contact

forces were estimated using knowledge of the trajectory and the input torques and

does not use force feedback.

Recently, there has been a paradigm shift in the focus of coordinated coopera-

tive control. It is no longer assumed that specific characteristics of each payload are

completely known. Uncertainties in the dynamics and kinematics of the payload and

the manipulators themselves have resulted in the use of adaptive and fuzzy control

schemes. Wang, Liu and Zhang [55] utilize the adaptive Jacobian control method

to accomplish a trajectory tracking task. This method uses a position/force hybrid

controller and optimization to both minimize the power consumption and ensure

the squeeze force does not deviate too far from the set-point. The internal force is

treated as an external disturbance, since it does not affect the motion.

While many researchers deemed the use of feedback sensors necessary, al-

ternative and cost effective methods have also been explored. Liu and Malek use

impedance control without external force feedback to control each robot using a slid-

ing mode control algorithm. Experimentation is used to find a selection of the proper

internal force vectors when necessary[56]. Rastegari and Moosavian [57] specifically

focuses on space robotics. They propose the use of an multiple impedance control to

enforce reference impedance, not only on both the manipulator’s end-effector, but

also the payload. An impedance controller enforces the relationship between the

external forces/torques acting on the environment and the position, velocity and

acceleration error of the end-effector. Mohajerpoor [58] presents an adaptive robust

controller based on the position and the exerted force on the environment. They

20



break the vector of the external forces and moments exerted on the object into two

parts: from the robot and from the environment. Tinos and Terra use a hybrid

control of motion and the internal force (squeeze force). They include the use of

passive joints, and relate the actuated and passive joint velocities. The Jacobian

matrix is used to relate the velocities of the load and the velocity of the actuated

joints [8].

Transporting or handling a single payload is a common task for cooperating

manipulators [46, 52, 59, 60, 61]. Lui and Arimoto look at not only controlling the

configuration of the payload, but also the internal forces [61]. Zhen and Luh assume

an evenly distributed force among multiple industrial manipulators to ensure one

manipulator does not experience large peak torques [52].

1.6 Optimization of Robotic Systems

Generally, there are multiple solutions for any given problem. This holds true

in designing robots for space systems as well. Designers and engineers are left with

a myriad of different variables they can tweak and change in order to optimize how

the system to operates (i.e. soft requirements). For example, an industrial pick-

and-place robot may have a task of picking of X types of parts and placing them

at location B. The goal would be to do this repetitively and as fast as possible.

When performing the task thousands of times a day, cutting the time down even

by a fraction of a second can have a large impact. The design criteria may be the

precision and accuracy of doing this task; however, it is also desirable to minimize
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time. For a large manipulator in space, performing a maneuver very quickly is

not necessarily a criteria that is considered; rather, power and mass are important

factors[20].

In 1997, Chocron and Bidaud[62] showed that a genetic algorithm (GA) could

be used to optimize robotic system parameters without using any design experi-

ence or database to start from. They demonstrated that optimization techniques

could be applied to the robotic design process, and that experience and intuition

were not the only ways to design a manipulator. However, in 2007, ten years after

[62] published their results, Rout and Mittal state that, despite this point, many

manipulator parameter tolerances are still selected by experience and intuition[63].

One of the reasons for this is that a manipulator can be optimized for a number of

different criteria, e.g., minimizing mass [64][65], dexterity [66][67][68], task comple-

tion time [69][70], minimize end-effector velocity [71], maximizing the work-space

[72], minimizing the dynamic stress [73], etc. Patel and Sobh survey a number of

manipulator performance metrics and how they are applied [74].

The mass of the link lengths, the type of motor, the gearing on the motor,

and the controller all affect the manipulator performance. Many authors focus on

an integrated structure/control design of robotic systems. [75] focuses on reducing

the settling time for a fast pick-and-place operation. [76] focuses on minimizing the

higher harmonic portion of the torques that are required to perform a task/trajec-

tory; allowing for high-speed maneuvers.

There are additional common parameters often modified to optimize a ma-

nipulator, regardless of the goals. Link lengths, angle of the joints, number of
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joints, etc., all contribute to the physical properties and robot kinematics of the

manipulator. Adjusting any of these parameters can alter the performance of the

manipulator. Many authors have used these parameters in order to optimize their

designs [77][78][79].

Denavit-Hartenberg (DH) parameters are a common method used to describe

the kinematic synthesis of a manipulator. These parameters include the number

of joints, the types of joints, and the configuration, as well as the link lengths and

offsets. It is a method of describing a manipulator using only four quantities per link.

The DH parameters describe the frame transformation from one joint to another.

Table 1.6 provides a brief description for each of these four parameters; for more

information see table [80].

Park, Chang and Yang use the grid method optimization with a very fast

simulated annealing to determine the kinematic properties to best reach a number

of task points [81]. Sobh, Tarek, et al. optimize the DH parameters to optimize an

average manipulability index [82]. Varalakshmi, Srinivas minimize the joint torques

by optimizing the redundant prismatic joint locations (link lengths) for a planar

parallel mechanism. The joint torques are calculated assuming a static force analysis

without the use of the dynamics of the system [83].

Kumar et al uses a global condition to optimize the link lengths ratios given a

series of task points [68]. Jarari et al. use a genetic algorithm to optimize the mass

of the gearboxes and link lengths of a 3DOF serial manipulator in order to minimize

manufacturing cost [84].

Dual arm and multi-arm optimization is not as common as single arm opti-
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Name Common Symbol Description

Link length ai Length between the origin of the frame

placed jointi to jointi+1 along the major

Xi+1 axis

Link twist αi Rotation between the frame placed jointi

to jointi+1

Link offset d Length between the origin of the frame

placed jointi to jointi+1 along the minor

axis (Zi+1)

Joint Angle θi Angle between links. For revolute joints

this is variable

Table 1.1: Summary of DH-Parameters

mization. [85] focuses on optimizing the joint configuration of a dual arm system,

creating a task-oriented dual-arm manipuability metric. Zhang et al develop a ma-

nipulability metric specific for dual-arm space manipulators: a metric which takes

into account the coupled dynamics [86].

This research looks at the optimization of a multi-arm system in order to

minimize the total system mass. The mass of the system is studied with the following

changing variables: the number of arms, the link lengths of each arm, and the base

locations.
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Chapter 2: Kinematics and Dynamics

This chapter focuses on the kinematics and dynamics of a multi-arm system.

The first section focuses on how the task description is used to calculated the desired

kinematics and the resulting dynamics of the payload. Sections two and three per-

tain to the discussion of dynamics and kinematics of single-and multi-manipulator(s)

respectively. Lastly, a brief discussion will be made on the internal force and how

this affects the overall dynamics of the kinematics.

2.1 Task Description

The goal of this section is to translate a task definition into the dynamics of

the payload; specifically, defining the equation of motion of the payload. While this

section goes over how the model finds the trajectory of the payload, it is not the

only method. Obstacle avoidance, which is not considered in this thesis, could also

be used to generate more complex trajectories.

A task is defined as moving a payload of a given mass, Mpayload, from point

A to point B (i.e. the starting and end point). The task presented in this research

assumes zero obstacles, and that the payload is moved in a straight line from the

starting to the end point. If the task has a rotational difference from the start to
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the end point, then the payload is rotated along the duration of the trajectory.

A trapezoidal trajectory is generated for the payload based on the maximum

acceleration and velocity given in the task description. The maximum velocity of

the trajectory is limited by the maximum velocity of the manipulator tip. Rather

than define the maximum acceleration as a function of maximum force applied to

the manipulator tip, it is based on how quickly the payload can safely go from zero

velocity to maximum velocity. Generally, this is on the order of one second.

Trapezoidal Trajectory Example

Figure 2.1: Example 1-dimensional trapezoidal trajectory

The shortest execution time for a given specified task is dependent on the max-

imum acceleration and velocity that can be achieved by the system. The maximum

acceleration and velocity limits the minimum time in which a task can be completed.
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This minimum time involves the payload accelerating and then decelerating at the

maximum rate during the entirety of the trajectory. If this task time is less than

the minimum time, the desired task time is ignored and the minimum time is used

instead.

If the desired time is greater than the minimum time, than the manipulator

will accelerate at the maximum rate, but will then proceed at a constant velocity

in order to adjust the maneuver (the movement from point A to B) to the desired

time.

Equation 2.1 describes the motion for the payload. x is the location of the

payload, ẋ is the velocity of the payload, and ẍ is the payload’s acceleration. This

provides the complete trajectory for the payload. Using the task defined velocities,

accelerations, and time, the equation of motion for the payload can be calculated.

Mpayload(x)ẍ+ cg(ẋ, x) + g(x) = Ftask (2.1)

c(ẋ, x) is the Coriolis and g(x) gravity terms on the payload. Since this thesis

focuses on space manipulators moving large inertial masses in micro gravity, the

gravity terms here are assumed to be zero.

Ftask is the force required on the payload to perform the desired motion. This

is the force that the manipulator(s) must apply in order to move the payload along

its desired trajectory.

Equation 2.2 defines the task force as a function of the manipulators’ grasping

location on the payload and the force applied from the end-effector to the payload.
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JEE defines the force transformation from the end-effector to the payload’s center

of mass. FEE is the amount of force applied by the manipulator at the end-effector.

Ftask = −JTEEFEE (2.2)

One of the most challenging problems with using a multi-arm system is deter-

mining how to control each arm in order to move the object in order to accomplish

the desired task.

2.2 Single Manipulator

This section briefly reviews the dynamics for a single manipulator as it per-

forms a task. Inverse kinematics solve the joint angles, qi, for a desired end-effector

location which is based on the payload’s location and grasping point, defined in the

JEE. The joint velocities q̇i and the accelerations q̈i can be calculated as shown

below.

There are multiple solutions to the inverse kinematic problems, even for a

non-redundant manipulator. In order to ensure a smooth motion, the joint angles,

which minimize the distance from the previous time step, are used. This provides a

smooth manipulator motion from start to finish. The joint angles, q, for a N degree

of freedom arm can be found in equation 2.3.
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q =



q1

q2

..

qN


(2.3)

Let v denote the end-effector’s linear and angular velocity. Assuming that

the payload is rigid and the arm is firmly attached, this is defined by the payload’s

motion. The end-effector’s velocities can be related to the joint velocities through

the use of the Jacobian matrix, J(q) .

v = J(q)q̇ (2.4)

The end-effector accelerations can be found by differentiating equation 2.4

with respect to time.

a = J̇(q, q̇)q̇ + J(q)q̈ (2.5)

The equation of motion for a single manipulator is given in equation 2.6. The

Coriolis and gravity forces are written in terms of the joint angles and joint velocities,

q and q̇ respectively. The joint torques are represented by T. The Jacobian, J , is

written as a function of the joint angles.

M(q)q̈ + cg(q̇, q) = T + J(q)TFtip (2.6)

The equation of motion for a single manipulator can be combined with the

equation of motion for that of the payload, see equation 2.7. This expresses the
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required end-effector force in terms of the desired task force, or the amount of force

required to move a payload in a desired trajectory.

M(q)q̈ + cg(q̇, q) = T − J(q)TJ−T
EEFTask (2.7)

Equation 2.7 contains a term, J(q)TJ−T
E , which is based on the geometry of

the arm. This contains the Jacobian term for the manipulator, which is based on

the joint angles and link lengths. JEE is the force transformation from the grasping

location to the payload’s center of mass. This term is also based on the geometry of

the situation. Carignan and Akin combined these terms into a single value, see 2.8

D = J−1
EEJ (2.8)

Substituting this value for D yields:

M(q)q̈ + cg(q̇, q) = T −DTFTask (2.9)

The above analysis describes the motion of the payload in terms of a single

manipulator. A coordinated cooperating system consists of multiple manipulators

handling a single object at the same time.

2.3 Multiple Arms

The equations of motion for fixed based arms rigidly attached to a payload

or environment can be found below. The joint torques are a function of the joint

angles, qi, and are defined as τTi = [τi1, τi2, ..., τiN ] for a manipulator with N joints.
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Mi(qi)q̈i + ci(ci, ċi) + gi(qi) = τi + Ji(qi)
Tfi (2.10)

Mi is the symmetric positive-definite inertia matrix for each manipulator. The

gravity vector is represented by gi and the Coriolis and centripetal force vectors

are combined into ci. The force exerted on the payload E by an arm is fTi =

[fix, fiy, fiz, Nix, Niy, Niz]. The first three terms are the forces in the x,y, and z

directions at the grasp point, while the other terms represent torque.

The dynamics for K manipulators can be written in extended joint space:

M(q)q̈ + c(q, q̇) + g(q) = τ + J(q)TF (2.11)

where

M = diag(M1,M2, ...Mk) (2.12)

F =



f1

.

.

.

fk


τ =



τ1

.

.

.

τk


g =



g1

.

.

.

gk


c =



c1

.

.

.

ck


(2.13)

The equation of the payload’s center of mass is written below as a function

of the multiple manipulator, where W represents an M × M matrix defined by the

grasping geometry.

Me(Xe)Ẍe + ce(Xe, Ẋe) + ge(Xe) = WF (2.14)
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When the payload is rigidly grasped, with no possibility of sliding, then the

matrix W is constant[87]. The Wc matrix also contains the load sharing between

the K different manipulators.

Wc =

[
w1 w2 ... wk

]
(2.15)

2.4 Internal Grasp Forces

In general, the total number of forces and torques exerted by the manipulators

are greater than the work-space. This results in an over constrained object. The

internal grasp forces are the statically indeterminate components which are used

when the manipulators have enough joints to control the components of the contact

forces.

Total Force on Payload = Ho = WcC

C = Cinternal + Cmotion

Cmotion = W−+
c Ho

(2.16)

The force vector acting on the payload F, an n x 1 vector, can be divided

into two components: the internal grasping force, which is in the null-space of the

Wc matrix, and the forces which contribute to the motion of the payload. Here, C

contains the contact forces, and Wc is the matrix relating the contact forces to the

forces acting on the payload.

W−+ is the Moore-Penrose pseudo inverse of the grasping matrix, Wc. If Wc

is an invertible square matrix, then the internal grasping force is zero, as the null-
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space is empty. This is only true when the number of degrees of freedom of the

manipulator match that of the work-space. For example, a 6DOF manipulator can

exert forces and torques along x, y, z. A single 6DOF manipulator results in a square

invertible Wc matrix.

If the manipulators rely entirely on friction to maintain a stable grasp, such as

fingers, the friction at the contact points must be controlled. This is done through

the Wc matrix. The internal grasp force should be also considered, if there is a limit

on the forces that can be applied to the payload (i.e., a fragile payload).

minAllowableForce <= Cinternal <= maxAllowableForce (2.17)

While the internal grasping forces do not contribute to the motion of the

payload, they do affect the joint torques. In the simplified static case, the joint

torques are related directly to the end-effector forces. The internal grasping force is

in the null space of the grasping matrix.

τ = JTFAppliedByArms

FAppliedByArms = Cinternal + Cmotion

τ = JT (Cinternal + Cmotion)

(2.18)

Constraints are assigned to ensure the internal grasping forces are within spec-

ified limits.

Depending on the number of constraints, there may be many different solutions

and the system should be optimized. [50] approximated the frictional constraints
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using linear constraints, and utilized a linear programming method to compute the

optimal internal forces. Other researchers choose to minimize the energy consump-

tion [88, 89].

Internal forces are important when the object is being held with friction, such

as fingers pinching or grasping a payload [90]. When the manipulators are rigidly

attached, there is no minimum internal force required. Ideally, all the force from

the manipulator will go into the motion of the payload.

Using the assumption that there are no restrictions on the internal motion, the

grasping matrix can be simplified. The case of rigidly attached manipulators allows

the extended Jacobian to be separated into individual grasping matrices. These

matrices are square and invertible, and therefore have an empty null-space.

Me(Xe)Ẍe + ce(Xe, Ẋe) + ge(Xe) = Ftask −
∑

Jei(Xe)
TFi (2.19)

2.4.1 Dual Arm Planar Example

This section describes a dual arm planar example moving a payload. The

payload is not exerting any force on the environment, therefore Ftask = 0. The only

force the manipulators must exert is to ensure the payload moves as required by the

task. For this example, the payload will move along the X direction from point X1

to X2. The two manipulators are designated as arms ‘a’ and ‘b’.
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2DOF Planar Example

Figure 2.2: Diagram of arms ‘a’ and ‘b’ attached to a payload. (Top) Shows the joint

angles between the manipulators (Bottom) Show the forces acting on the payload

from the two manipulators
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Me(Xe)Ẍe + ce(Xe, Ẋe) + ge(Xe) = −Jea(Xe)
TFa − Jeb(Xe)

TFb (2.20)

Jea and Jeb are the force transformation matrices for arms ‘a’ and ‘b’ respec-

tively, where Lea and Leb represent the length from the center of the payload to the

grasping points for each arm. θea is the angle of the payload relative to the end of

arm ‘a’. sea denotes the sin(θea) and cea denotes the cos(θea). θeb is the angle of

the payload relative to the end of arm ‘b’. The forces acting on the center of the

payload from each arm is found using the force transformation matrices, Jea and Jeb

Jea =


1 0 Leasea

0 1 −Leacea

0 0 1

 Jeb =


1 0 −Lebseb

0 1 Lebceb

0 0 1

 (2.21)

The equation for the ‘a’ and ‘b’ manipulators are given in Equation 2.22

Ma(qa)q̈a + ca(qa, q̇a) + ga(qa) = τa + Ja(qa)
TFa

Mb(qb)q̈b + cb(qb, q̇b) + gb(qb) = τb + Jb(qb)
TFb

(2.22)

The Jacobian for arm ‘a’, a 2 link planar manipulator, is given in Equation

2.23. This transforms the external forces applied at the wrist to joint torques. Si is

the sign of joint angle qi and Ci is the cosine of joint angle qi.

Ja =

−L1aS1a − L2aS12a −L2aS12a

L1aC1a − L2aC12a L2aC12a

 (2.23)
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This example provides the equation of motion for a planar two degree of free-

dom dual-arm system. The motion of the payload and joint angles are a function

of the task definition. It is clear to see that if the payload is not moving (static)

and not exerting any force onto the environment, the force contributed by the two

manipulators would either need to cancel each other out or be zero.

Static 2DOF Example

Me(Xe)Ẍe + ce(Xe, Ẋe) + ge(Xe) = 0

0 = −Jea(Xe)
TFa − Jeb(Xe)

TFb

(2.24)

The arms produce equal but opposite forces onto the static payload. One

solution would be if both arms produced zero force; the payload would remain

static (zero external forces) and there would be no internal forces as well. However,

it is clear from Equation 2.25 that the forces from each arm are not required to be

zero, just that they are equal but opposite between the dual manipulators.

− Jea(Xe)
TFa = Jeb(Xe)

TFb (2.25)

The static equation for each manipulator reduces to Equation 2.26.

τa = −Ja(qa)TFa

τb = −Jb(qb)TFb

(2.26)
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2.5 Conclusion

This chapter provides an overview of the dynamics for single-and multi-arm

systems. The equation of motions for a serial joint manipulator and a payload are

given. These equations of motion are used together to determine the forces/torques

necessary to accomplish the given task.

A multi-arm system can provide both internal and external forces. External

forces contribute to the motion of the payload, whereas an internal force does not.

However, the internal forces are reacted through the payload, and the payload must

be strong enough to withstand these forces. Finger-type end-effectors, which rely

on friction to maintain a grasp, must maintain a minimum internal force in order to

maintain control of the payload. Space manipulators are generally rigidly attached

to the payload through the end-effector, and do not have a minimum required in-

ternal force. The exact distribution of forces between the multiple manipulators is

the focus of Chapter 5.
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Chapter 3: Mass Estimation

Mass is a critical driving design requirement in getting space systems into

orbit. Reducing the mass of the system can significantly reduce launch costs and

increase launch opportunities.

This chapter provides methodology and equations for estimating the mass of

a manipulator for a given task, and is broken into two different sections: joints and

links. Each manipulator is made with various combinations of these two essential

parts. Joints are any actuators, motors, and gearboxes that produce movement, and

links provide the structural support of the manipulator.

3.1 Estimating Motor Mass

Sizing motors can be difficult, as there are many different parameters given to

describe a motor. Throughout the last decade, several researchers have sought to

provide a methodology to address this. Dermizanski focuses on sizing motors based

on the peak torque, [91] while others, like Wilcox, use power to find the stall torque,

which is related to the motor constant Km[92]. Hollerbach et al. found that the

motor constant has a linear relationship to the mass, also noting a dependence on

the diameter[93].
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It is highly desirable to obtain an estimation for a motors mass based on a given

performance metric. The datasheet for motors does not always provide the same

information, although there are a some parameters that are consistently provided,

including peak torque, or the maximum amount of torque a motor can provide for

a short time, and the continuous peak torque, the maximum amount of torque a

motor can provide continuously.

Dermitzaki et al. looks at scaling motors based on peak (stall) torque. They

compiled a survey of over 400 motors (see Figure 3.1), theorizing that the typical

motor had a linear relationship between the mass of the motor and the peak torque.

Most of motors that were studied consisted of typical consumer type motors, such as

low torque servo drives with a plastic gearbox. They also looked into one manufac-

turer of high-end motors: Maxon. The high-end motors did not fit with the linear

trend. It was noted that unlike the lower cost motors, they did not have a plastic

gearbox; in fact, the Maxon motors did not include any gearing. For these reasons,

it is unsurprising that the high-end motors do not fit the same linear model, as they

produce less torque per weight than the consumer grade motors with gearboxes.
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Figure 3.1: Replication of Mass/Torque plot by Dermizanki et al. [91]

Dermitzaki’s survey demonstrates that not all motor heuristics are created

equal. This survey shows that the heuristics for high-end motors without gearboxes

do not have the same trend as consumer grade motors with gearboxes, and that

using the trend found for one type of motor does not mean that it will hold true for

a second type.

While Dermitzaki uses consumer motors, this research focuses on purely high

end DC brushless motors typically found in high-end robotics. This study does not

include motors with pre-assembled gearing; gearbox sizing is considered in a later

section. A database was compiled of over 100 motors from seven different motor

manufacturers [94, 95, 96, 97, 98, 99, 100].

3.1.1 Continuous Stall Torque

Motor datasheets list the motors maximum torque as the peak torque. Gener-

ally, this peak torque is reached when first starting, or starting from ’cold’. As the
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motor continues to run, it will produce heat and warm up. They can only maintain

the peak torque for a short time before they have to reduce their output for thermal

reasons. Therefore, motors cannot continuously produce their peak torque. As a

result, using this dimension as a means of selecting a motor is not the best choice

unless the exact motion profile (trajectory) is known. The designer would need to

know how long a motor could produce a specific torque for. If the time is on the

order of a few seconds, using peak torque to size a motor is likely fine. However,

if the motor must run at a desired torque for a longer amount of time (minutes to

hours), then this is a poor metric.

The continuous stall torque (another common motor parameter) is the amount

of torque that a motor can continuously output at stall (i.e. 0 RPM). Using this

for motor selection and estimations puts fewer requirements/assumptions on the

system’s analysis; the designer does not need to know precisely how long the torque

must be maintained. Figure 3.1.1 shows the difference in relationship between the

continuous stall torque and the stall torque as a function of mass. It should be

noted that this is for a limited dataset to better compare with Dermitzaki’s dataset.

Fig 3.1.1 shows the full dataset collected for Maxon BLDC motors. The relationship

between the motor and continuous stall torque is closer to a linear relationship than

Dermitzaki found.
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Figure 3.2: Max Stall Torque and Continuous Stall Torque vs Mass; limited dataset

of Maxon BLDC motors to compare with Dermitzaki’s results

Figure 3.3: Max Stall Torque and Continuous Stall Torque vs Mass; full dataset of

Maxon BLDC motors
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3.1.2 Closer look at Motors by a Single Manufacturer

Before comparing motors from multiple manufacturers, it is important to first

consider how motors vary across a single manufacturer. Normally, it is assumed that

motors made by different manufacturers have more deviation than those created by

the same manufacturer. This is true, to a certain extent. Motor manufacturers

generally make several different families of motors. For example, Maxon has a five

different BLDC motor families: the EC, EC-flat, EC-i, EC-max, and the 4pole

motor. Each one of these families have a different design focus, with the overall goal

of still maintaining high performance. (see Table 3.1)

Maxon Motor Family Description

Motor Family Design Focus

EC Standard BLDC motor family

EC-Flat Maintain a low profile

EC-i Producing high torque

EC-max Emphasize on modular design

4 pole Focuses on delivering high performance per volume and weight

Table 3.1: Maxon Motor Family Descriptions

Figure 3.4 show the relationship between the continuous stall torque and the

mass of framed BLDC motors for various series by Maxon. Looking at the individual
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families, there is a strong linear relationship due to the fact that the manufacturing

and design processes within a family are similar.

Figure 3.4: Maxon Motor per torque

Figure 3.5 shows the probability residual plot for each family. Each graph show

very small tails and that most of the points lie along a line. This indicates that the

data has a normal error distribution, and that using standard regression techniques

to minimize the residual error are valid. Again, this is the type of relationship one

would expect within a motor family or manufacturer.

However, taking a step back and looking at Maxon as a whole, it is clear

that the same linear relationship does not hold true for every family for this single

manufacturer. The probability-residual graph, looking at all Maxon motors, shows

that the tails are becoming longer, see Figure 3.5(f). This indicates that the residuals

(and hence the errors) are not normally distributed. Thus, using a least squares
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regression model may not be the best approach to take, as it minimizes the square

sum of the residuals. A robust regression scheme, such as weighted least squares,

can be useful when working with a non-normal error distribution.

Statistical Analysis for Maxon Motor Families

Figure 3.5: Probability-Residual plot for each Maxon BLDC Family

As the number of different families and manufacturers included in the database

increase, the strong linear relationship between continuous stall torque and mass

46



becomes weaker. As more manufacturers are added with more motor families, the

residuals will grow. Moreover, motors are rarely only operated at stall. The next

step is to look at how the output torque varies as a function of the motor speed

across multiple manufacturers.

3.1.3 Torque vs Speed

Motor torque output depends on the speed of the motor. A typical speed/-

torque curve is shown below in Figure 3.1.3. This is the amount of torque which can

be continuously produced at the various motor speeds. Using data from the speed/-

torque curves for each of the motors, a relationship is found between the continuous

torque and the desired speed.

Figure 3.6: Replication of a speed/torque curve for a high performance motor [94]

The speed/torque curve data was collected for each of the 100+ motors across

seven different manufacturers: Anaheim, Gems, Kollmorgen, Mag, Maxon, Moog,

and Woodward. Each of these curves were digitized, allowing the torque at any
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motor speed to be interpolated. This allows a relationship to be found between

mass, speed, and torque. Figures 3.7 and 3.8 show that the continuous torque

to mass relationship changes from 0 RPM to 5000 RPM. Both a linear fit and

power fit describe the relationship; the change in coefficients between the two speeds

demonstrates that the motor speed should not be neglected.

0 RPM (Stall) Mass/Torque Fit

Figure 3.7: Example of a speed/torque curve for a high performance motor at 0

RPM
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5,000 RPM Mass/Torque Fit

Figure 3.8: Example of a speed/torque curve for a high performance motor at

5000RPM

Figure 3.1.3 shows the motor mass plotted as a function of the motor speed

(kRPM) and the continuous output torque (Nm). The continuous torque was cal-

culated from the speed/torque curve for each motor at regular steps from 0 RPM

to 20 kRPM.

49



Motor Mass, Continuous Torque, Motor Speed for all Manufacturers

Figure 3.9: Raw data for Motor Mass, Continuous Torque, Motor Speed

Interestingly to note, the raw data is not normally distributed. The mass of

each motor remains constant at each of the different points on the curve. This is the

reason for the ’horizontal bands’ of data: each one represents a single motor along

the speed/torque curve. Knowing this, and taking an in-depth look at Maxon’s

motors, the following study does not consist of data with a normal distribution of

errors.
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Regression Analysis for All Motor Data

Figure 3.10: Regression analysis for all motor data

Figure 3.1.3(a) shows the results of the statistical analyses performed on the

raw data, assuming a least-square linear model. From the probability-residual plot,

the data shows long tails. From looking closely at Maxon motors, motors across
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different families indicated a non-normal error. Different motor manufacturers have

different design criteria and different manufacturer processes; it is expected that

motors across different manufacturers would continue to show a non-normal error.

The long tails on the probability-residual plot indicates that the data has a non-

normal error variance.

The residual vs. fitted plot value shows a “megaphone’-type pattern made up

of bands of data, see Figure 3.1.3(b). If the error variance was constant across the

dataset, then the residual vs fitted graph would show randomly distributed points.

The bands are a result of the nature of the data: the motor mass remains constant

for each motor as the torque and speed change. The distinct shape indicates that

the error variance is not constant.

These two graphs show the data to be heteroscedastic. As a result of this

non-constant variance, the method of regression must be chosen carefully. The least

squares methods minimizes the sum of the error and works best with homoscedastic

data. A robust method, one that would minimize the absolute difference of the

residuals, will be less susceptible to outliers and provide a better fit.

3.1.4 Estimating the Motor Mass as a Function of Torque and Speed

Using the speed/torque curves for over a hundred brushless DC high-end mo-

tors, a relationship can be found to estimate the motor mass as a function of the

desired continuous torque at a desired motor speed. Both linear and power fits were

utilized and compared as found in Equation 3.1.
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MotorMass = c1 + c2Torque+ c3Speed

MotorMass = c1 + c2(Torque)
c4 + c3Speed

(3.1)

The coefficient c1 is the intersection value and can be thought of as a penalty

for having a motor. The torque coefficient, c2, is the weighting of the continuous

torque, and c3 is the weighting for the motor speed. The power fit has an additional

term: the exponent on the torque, c4.

The solved coefficients can be found in Tables 3.2 and 3.3. These were found

using non-linear regression techniques. The results contain both robust and non-

robust techniques to demonstrate that, even with the non-constant error variance

and non-normal distribution, the least squares method still produces usable results

with a reasonable goodness of fit (GOF). The non-normal distribution and non-

constant error covariance does not mean that a least squares method cannot be

used, but rather that the results are not guaranteed to be unbiased.

Ideally, c1 should positive or zero, as it is the intersection point. For the

linear case, this coefficient is positive. Even when a motor is not being used, the

linear relationship estimates a mass for the motor. The power fit calculates c1 to

be less than zero. A user must be careful to ensure this equation does not result

in a negative motor mass, which would be the case of the motor not being used

(produces zero torque at zero RPM).
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Non-Robust Linear and Power Fit

Method Goodness of Fit c1 c2 c3 c4

Linear 0.8584 0.56996 0.7247 -0.0324 1

Power 0.9147 -0.0629 1.6355 0.0036 0.7016

Table 3.2: Coefficients for Linear and Power fit (Non-Robust)

Robust Linear and Power Fit

Method Goodness of Fit c1 c2 c3 c4

Linear 0.9969 0.1829 0.9559 -0.0062 1

Power 0.9981 -0.0132 1.5305 0.0017 0.7414

Table 3.3: Coefficients for Linear and Power fit (Robust)

Even though the linear fit and power fit provide a good GOF, it should be

noted that there are a larger number of smaller motors with higher maximum speeds

than the larger motors. Therefore, if the data is looked at as a whole, there is a bias

towards small motors, which will lead to greater error when estimating the mass

for larger motors. To look at this in more detail, the data was broken up into two

different types: small motors and large. A small motor is defined as one producing

less than 2 Nm of torque. This piece-wise function should allow a better motor mass

estimate with less bias towards small motors.
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Non-Robust Piecewise Linear and Power Fit

Method Goodness of Fit c1 c2 c3 c4

Linear Small Motors 0.7277 0.1691 1.1666 -0.0030 1

Linear Large Motors 0.7496 2.7778 0.5325 -0.2503 1

Power Small Motors 0.7501 -0.0174 1.3940 0.0021 0.6476

Power Large Motors 0.8136 -6.3557 6.9533 -0.1691 0.3431

Table 3.4: Coefficients for Piecewise Non-Robust Linear and Power fit

Robust Piecewise Linear and Power Fit

Method Goodness of Fit c1 c2 c3 c4

Linear Small Motors 0.9902 0.0676 1.3788 0.0010 1

Linear Large Motors 0.9961 2.5067 0.6071 -0.2796 1

Power Small Motors 0.9938 -0.0179 1.3741 0.0016 0.6802

Power Large Motors 0.9816 -5.3463 6.4673 -0.2323 0.3484

Table 3.5: Coefficients for Piecewise Robust Linear and Power fit

The GOF values, presented in both Tables 3.4 and 3.5, show that the GOF

actually decreases when separated into large and small motor datasets. However, if

we take a closer look at the residual, it is apparent that the maximum error residual

is greatly reduced when the sets are broken apart. This is especially true of the

larger motors.
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Figures 3.11, 3.12, 3.13 show the entire dataset, the small motor dataset, and

the large motor dataset, respectively, with the robust linear fit residuals.

Regression Analysis for Full Dataset

Figure 3.11: Regression analysis of full dataset

56



Regression Analysis for Small Motors (T ≤ 2Nm) Dataset

Figure 3.12: Regression analysis of small motor dataset
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Regression Analysis for Large Motor (T > 2Nm) Dataset

Figure 3.13: Regression analysis of large motor dataset

It is clear that breaking up the dataset into two different curves reduces the

error residuals. There are a few design differences between small motors and large

motors. Smaller motors have a lower inertia, and are designed to operate at higher

motor speeds than larger motors. Larger motors often have a higher maximum

power and more poles. Figure 3.13 has the maximum residual error of -10kg for

the large motor dataset, whereas Figure 3.11 shows the maximum residual error of

approximately -20kg. While the GOF values for the piece-wise datasets are lower

than the entire dataset, the values themselves are still quite high and indicate a

good model.
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3.1.5 Sensitivity Analysis

Earlier, it was shown that adding more motors can have a large effect on the

resulting analyses (see Figures 3.1.1 and 3.1.1). A sensitivity model determines

how a relationship is altered by a change in data. In doing this, a new model was

generated with the same process described above, but with half the motors in each

dataset.

The sensitivity analysis shows the change in coefficients as the dataset changes.

Ideally, adding (or subtracting) a few motors would not drastically change the re-

sults. A large change in the estimated coefficients suggests that the analysis is very

sensitive and should be used with caution.

Coefficients for Linear and Power fit (Robust) for small motors (torque

≤2Nm) and large motors (torque >2Nm) with reduced dataset

Method Goodness of Fit c1 c2 c3 c4

Linear Fit All Motors 0.9987 0.1806 0.9711 -0.0056 1

Linear Small Motors 0.9966 0.0712 1.3551 0.0009 1

Linear Large Motors 0.9865 2.4345 0.5864 -0.2220 1

Power All Motors 0.9990 -0.0181 1.5650 0.0024 0.7530

Power Small Motors 0.9954 -0.0158 1.3945 0.0020 0.7028

Power Large Motors 0.9833 -4.5449 5.7450 -0.1927 0.3593

Table 3.6: Coefficients for Linear and Power fit (Robust) for reduced datasets
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Table 3.6 shows the calculated coefficients using only 50% of the motor data.

This simulation was completed for ten different reduced datasets, each randomly

generated from 50% the datasets.

The coefficients from the sensitivity analysis are compared to those found with

the full dataset in Tables 3.5 and 3.3. To better show how the models change with

the reduced data, the following figures show the change in the coefficient values for

each dataset over multiple runs.
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Reduced Dataset Coefficients over 10 runs

Figure 3.14: Sensitivity Analysis for Linear and Power Fit for Intercept Point (c1)

and Torque coefficient (c2)
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Reduced Dataset Coefficients over 10 runs

Figure 3.15: Sensitivity Analysis for Linear and Power Fit for Motor Speed coeffi-

cient (c3) and Torque exponent (c4)

Figures 3.14 and 3.15 show that the linear fit is not sensitive to a 50% data

reduction. The greatest change occurs in c3, the scaling value on the motor speed.

The average percent change for the small motor datasets is 35%. While this per-

centage may seem high, the actual c3 value is very small, and its impact is minimal.
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This study focuses on larger manipulators capable of handling large inertial pay-

loads; therefore, despite the variation, the study is still improved by the use of the

linear fit model for large and full datasets.

The sensitivity analysis for the power fit shows that separating the motors

into the two piece-wise functions increases the sensitivity of the results, especially

in the case of the exponent c4. This change in the exponent value greatly affects the

results. The coefficients and the exponents of the power fit model are more sensitive

to the initial motors than the linear fit model. Therefore, a linear fit model is used

to more accurately estimate the motor mass.

3.1.6 Motor Mass Estimation Conclusion

Linear and power fit regressions have been used to model the motor mass as

a function of continuous torque and motor speed. In order to reduce the residual

error for larger motors, the datasets were broken into two categories: small and

large motors. Breaking the motors into these two categories reduces the residuals

for both models, as well as increases the sensitivity to the motors used in the initial

data. The linear model is less sensitive than the power fit model and provides a

high goodness of fit (GOF).

The robust linear model, with the two categories of motors, will be used for

the rest of this study. This model has proven itself to be insensitive (i.e. robust),

able to produce a high goodness of fit, and small residuals for both the small and

large motor categories.
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This model estimates the motor mass given the desired torque and speed.

Equation 3.2 summarizes the motor mass estimation used in the rest of this study.

Here T is the motor torque given in Nm; S is the speed given in kRPM. While the

models were made with small motors, with a torque less than 2Nm, and with large

motors, the intersection point of both models is at 3.17 Nm.

MotorMass(T, S) =


0.0676 + 1.3788T + 0.0010S |T | < 3.17Nm

2.5067 + 0.6071T − 0.2796S |T | > 3.17Nm

(3.2)

As George Box famously noted: “...the statistician knows that in nature there

never was a normal distribution, there never was a straight line, yet with normal

and linear assumptions, known to be false, he can often derive results which match,

to a useful approximation, those found in the real world.” (1976)

3.2 Gearbox estimation

The motor mass estimation does not include any gearing. Instead, this esti-

mation is performed in the gearbox estimation found below using the desired output

torque and an assumption of harmonic gearing. This type of gearing eliminates back-

lash, provides high gear ratios (on the order of 100:1), and is very compact. Large

space manipulators, like the SRMS, usually utilize multi-stage gearboxes which can

result in a gear ratio on the order of 1000:1. Ranger, a highly dexterous manipu-

lator designed for satellite servicing, makes use of harmonic gearing which ranges

from 100:1 to 160:1, depending on the joint. [101] describe a lightweight space

manipulator with harmonic drive gearings.
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Figure 3.16: Harmonic Drive, LLC, gear box mass data, collected from harmonic

net using two series of gearboxes[102].

The mass of a harmonic gearbox is dependent on the rated output torque and

the gear ratio. As seen in Figure 3.16 and Table 3.7, a linear fit can be made for

each gear ratio. Taken together, the GOF is lower at 0.9017, see Equation 3.3.

HarmonicMass(kg) = 0.0078(RatedTorque(Nm)) (3.3)

Mass = C0 ∗RatedTorque

GearRatio 30:1 50:1 80:1 100:1 120:1 160:1

C0 0.0101 0.0146 0.0098 0.0076 0.0069 0.0065

GOF 0.7936 0.9954 0.9802 0.9905 0.9859 0.9933

Table 3.7: Linear Coefficient for Mass/Torque Relationship for Harmonic Gearing
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Figure 3.17: Stepped cantilever beam used for link mass estimation

3.3 Link Mass Estimation

The structural mass is calculated by sizing each link to ensure that the ma-

nipulator is not buckling and that a maximum deflection is not exceeded. For the

purpose of this study, the link deflections are designed to be two orders of magnitude

less than that of the total manipulator length.

TotalLinkMass =

EveryLink∑
i=1

πρ(Length)(r2outer − r2inner) (3.4)

A non-linear constrained optimization is used to calculate the thickness and

outer diameter of each link. It is assumed that the manipulator is fully extended

with a maximum force and moment applied at the end (e.g. in a worse case pose).

The maximum force and moment are based on the payload mass and the maximum

acceleration of the payload as dictated by the task definition. It is assumed the

manipulator is able to withstand this maximum force both tangentially and axially.

The deflection of each joint segment is molded as a stepped-cantilever beam.

Equation 3.5 shows the deflection due to both a force and a moment[103].
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δforce =
P

3E

d∑
i=1

1

Ii

(( d∑
j=i

Lj

)3

−
( d∑
j=i+1

Lj

)3
)

δmoment =
M

2E

d∑
i=1

1

Ii

(( d∑
j=i

Lj

)2

−
( d∑
j=i+1

Lj

)2
)

δtotal = δforce + δmoment

(3.5)

A second constraint ensures the manipulator will not buckle. Equation 3.6

calculates the critical buckling load based on axial compression. γ is a correlation

factor used to align the theoretical results to the experimental[104]. It is assumed

that the link length is a thin-walled cylinder.

γ = 1− 0.731(1− e−φ)

φ = (1/16)(OuterRadius/thickness).5

σx = γE/(3(1− µ2).5) ∗ (t/r)

(3.6)

Equation 3.7 is the critical buckling stress when under torsion. A correlation

factor is used, and the value below is recommended for moderately long cylinders.

γ3/4 = 0.67

τxy = 0.747 ∗ γ3/4E/
(
r/t)5/4

(
l/r).5

(3.7)

The total critical buckling stress is a combination of the buckling under torsion

and an axial force.
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Rc+Rb = 1

Rc = σcritical/σx

Rb = τcritical/τxy

σcritical = ((1/σaxial) + (/σtorsion))−1

(3.8)

The optimization is bounded, and the minimum allowable thickness accounts

for manufacturing limitations. This changes depending on the material used and

is part of the task description: 0.8mm (1/32 inch) is used as a default minimum

thickness. The maximum bounded value is used to ensure the thin wall cylinder

assumption remains true.

3.4 Conclusion

This chapter describes the details for estimate the motor mass, the harmonic

gear mass and the link mass for a manipulator. The motor and harmonic mass

are both a linear function of the required torque. This allows the joint mass to be

directly calculated once the manipulator’s trajectory is determined from the task

definition. The link mass is also derived from the task description. Once the task

has been defined and the individual joint torques calculated, the total mass of the

system can be estimated.

The link mass estimation is based on ensuring that the links can withstand

thin wall buckling and are stiff enough to avoid excessive deflection. A nonlinear

optimization is performed to find the thickness which will meet the constraints
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while minimizing the mass. The frequency of the structure is another method of

estimating the structural mass. This is based not only on the spring constant of the

links, but also of the joints. In addition, this requires the desired control bandwidth

to be known.
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Chapter 4: Mass Estimation of Single Manipulator

This chapter demonstrates how to model a single manipulator using the de-

scribed research methodology. An existing space manipulator provides a compar-

ison point for the mass estimation. The Shuttle Remote Manipulator Systems

(SRMS) was a large 6-DOF space manipulator. This particular manipulator was

first launched in 1981 and was retired with the space shuttle program after 30 years

and 90 flights. [105]

This manipulator is a prime example of a large space manipulator, designed

to move large inertial payloads. The SRMS was capable of maneuvering payloads

of up to 14,515 kg at a rate of 0.06 m/sec with a maximum contingency operation

payload weight of 265,810 kg [1]. In this example, a large payload requirement will

drive joint torques and thus the mass. Large systems like these, with a multi-jointed

single manipulator, have masses dominated by joints. The most mass-savings occur

when these systems are exchanged with multi-arm systems. Later, this study will

be expanded to include an example using multi-arm systems rather than a single

manipulator.

The trajectory planning for the SRMS is simple, as it is a non-redundant

manipulator. The following methodology is valid for both redundant and non-
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redundant manipulators, although it should be noted that the trajectory generation

for redundant manipulators can be complex. Redundant degrees of freedom (DOF)

would provide more freedom in designing trajectories, which could be used to further

reduce the joint torques.

The total length of the SRMS is 15.2m. The upper and lower arm boom

are approximately 5m and 5.8m respectively; see Figure 4.1 and Table 4.1 for the

estimated values of other link lengths, which are significantly shorter than the upper

and lower arm segments.

Figure 4.1: SRMS mechanical parts. Image Source: IEEE.ca [1]

The upper and lower arm links are a lightweight graphite epoxy composite; it is

assumed that the material of every link remains constant. The material properties

for the graphite epoxy can be found in Table 4.2. These values are necessary in
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Joint Length(m)

1 1.8

2 5

3 5.8

4 1.6

5 0.5

6 0.5

Table 4.1: Simulated SRMS with link lengths

estimating the structural mass for the system.

Figure 4.2 details the methodology for estimating the motor mass for a single

manipulator. Once the desired task is generated, the dynamics and mass estimates

can be calculated. This provides a mass estimate for a manipulator designed to

perform a given task.

While the exact task(s) driving the design of the SRMS are unknown, this

methodology works with all given tasks. Figure 4.3 shows the resulting mass of

100+ different tasks which are pseudo-randomly generated with different starting

and ending positions/orientations. Many of the tasks actually result in a lower mass

estimate than the actual SRMS.

The dotted and slashed lines in Figure 4.3 represent 10% and 20% of the actual

mass, respectively. Most of the mass estimates calculated are significantly lower than

the actual mass of the SRMS, although there are a few tasks that are higher. This
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Material Properties for Graphite Epoxy

Property Value

Poisson 0.2

Density(kg/m3) 1700

Modulus of Elasticity (GPa) 160

Allowable Max Stress (Pa) 138x106 (based on yield with a 2 factor of safety)

Minimum thickness 0.8mm (1/32inch)

Table 4.2: Material Properties for graphite epoxy

is to be expected, as robot designers must design for the worse allowable case.

Research Methodology for Single Arm System

Figure 4.2: Research Overview: Single Arm Study

The maximum calculated mass is 504kg, which is within 20% of the actual

SRMS mass. The total distance traveled by the arm is relatively small, only 5.2m.
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During this task, the manipulator is tasked with operating the tip near the base

of the arm, with the manipulator nearly folded in half. This is a difficult position

for any manipulator, and is not recommended for safely utilizing the system. The

manipulability of this task is very low, resulting in large joint torques and masses.

Figure 4.3 shows the minimum translational manipulability measurement for each

task.

Mass vs Manipulability for various tasks for Independent single arm

SRMS based manipulator

Figure 4.3: Mass vs Manipulability metric for each task. Dotted lines denote the

+/- 10 $ of the actual RMS Mass
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Figure 4.4: Mass comparison between worse case task and actual mass for SRMS

Figure 4.4 shows the comparison between the total mass estimation and actual

mass of the SRMS. The structural mass of the each of the major links are also

presented, showing the estimated mass to be lower than the actual mass. Again, the

material of the links are assumed to be constant, without any interfacing hardware.

4.1 Examining a Docking Maneuver

This section details the different results for a task which fully utilizes the capa-

bilities of the SRMS manipulator: the docking maneuver. This is a design -driving

task which results in larger joint torques and, thus, mass. See Figure 4.5 for images

of the manipulator performing this maneuver. This maneuver involves moving a

payload from the edge of the manipulator’s work-space to a docking position.

75



Points Along Trajectory for Moving An Inertial Payload into a Docking

Position

Figure 4.5: Docking Example: moving a large payload near the robot base

Figure 4.6 shows the joint accelerations, velocities, and angles over the course

of the maneuver which utilizes all six joints. The joint movements are continuous

and controlled, with no sudden jumps or flips through the joints. This creates a

smooth movement across the trajectory.

The total position error is the squared error between the desired and actual

payload location. If the error is large, then the arm is incapable of moving the
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payload to the desired point. This is an important consideration, especially as

optimization techniques are applied to adjust the link lengths.

Angle, Velocity and Acceleration of Payload During Docking Maneuver

Figure 4.6: Summary of Docking Trajectory

Maximum joint torques occur during the periods of acceleration and decelera-

tion, see Figure 4.7. During the constant velocity portion of the trajectory, the joint

torques are insignificant. The maximum joint torques are used to perform motor

and gearbox mass estimations.
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Joint Torques during docking maneuver

Figure 4.7: Joint Torques during docking maneuver. Lower Image contains the

zoomed in portion to show that the joints are producing torque during the entire

maneuver

The estimated and actual mass are 450 kg and 431 kg respectively, with a

4.4% error. The majority of the mass comes from the combination of the motor and

gearboxes (i.e. the actuators or joints), see Figure 4.8 and 4.9.
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Figure 4.8: Link and Actuator Mass per Joint

Figure 4.9 shows which joints contribute the most mass.

Figure 4.9: Link and Actuator Mass per Joint

The structural mass is heavily dependent on the required stiffness of the sys-

tem. Part of the task definition is allowable tip deflection. This maximum deflection

is set at 1/100 of the total length of the manipulator, or 15.2cm, when under maxi-
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mum load and torque at full extension.

Decreasing the allowable deflection at the tip increases the structural mass.

For example, reducing the allowable deflection to 1/200 of the total length results

in a 6 kg increase in mass. The estimated link masses increase to 24kg and 21kg,

for the lower and upper booms respectively. This allowable deflection is based on a

assumed static force, and not on dynamic impacts.

4.2 Conclusion

The mass estimation of the task-based design simulator is within 20% of the

actual mass of the SRMS space manipulator. Over 100 tasks were pseudo-randomly

generated to validate the mass estimation model. Many tasks result in mass estima-

tions within 10% of the actual mass of the SRMS, 431kg. The maximum estimated

mass is 504 kg for a difficult task with low manipulability. A representative task,

chosen to fully utilize the capabilities of the SRMS, shows an error within 5%.

This task highlights the conclusion that the mass estimator is heavily reliant

on design bias when selecting “critical” task(s). Often in space robotics, this is

difficult to define as the manipulators are expected to work for long periods of time

and perform unpredictable tasks. Without knowledge of the “critical” task(s), a

series of tasks can be used to provide insight and bound the situation, as seen in

this chapter. Many of the outliers, primarily those with larger masses, are due to

low manipulability or poor trajectory generation.

When a critical task is used, like the docking maneuver, the mass estimation
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for the SRMS was within 5% of the actual mass. Therefore, this method of mass

estimation is useful for a systems level analysis in comparing manipulator designs.

Finally, the example shows that the system mass is primarily driven by the

joint masses rather than the link masses. Figure 4.2 shows the percentage of the

total mass of each actuator.

The addition of a second manipulator reduces the required torques and allows

for smaller and weaker motors to be used. However, if the structural mass (link

mass) is responsible for over 50% of the total manipulator mass, then moving to

dual, or multiple arms will not result in a lighter system. The mass saving from

selecting smaller actuators can only be greater than the entire mass of the second

arm, if the actuator mass is significantly driving the system mass.

Figure 4.10: Percent the total arm mass that each joint contributes; broken down

into actuator mass and link mass
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Chapter 5: Force Distribution Between Multiple Manipulators

The task is defined as moving payload along a trajectory which require ma-

nipulators to provide forces along the desired directions. Typically, there are two

forces that act on a payload: internal and external. While the external forces result

from the motion of the payload itself, leading to the task, or trajectory completion,

the internal force, or squeeze force, is the force applied to the payload by each of

the multiple manipulators. The net internal force applied by the manipulators is

zero; the individual manipulator forces cancel, and no movement is translated to the

payload trajectory. However, these internal forces are reacted through the payload;

high values can potentially cause damage and low values may result in slipping at

the grasping points on the payload.

Due to multiple manipulators participating in the cooperative task, there ex-

ists an infinite number of individual end-effector forces and torques which result in

the same desired force/torque applied to the object. The force distribution must

be selected to yield the best results as dictated by the task definition and the de-

sign constraints. The next section reviews some of these constraints considered by

previous researchers.
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5.1 Literature Review

In order to avoid damaging the object, Nakamura (1988) focuses on minimizing

the strain energy in dual arm systems. Koga (1992) assumes that every arm has

the same performance and that load sharing is equal among them. Their aim is to

resolve both the internal and external forces, yielding a parameter required in the

task definition. This prevents the manipulators from breaking the object if they

applied too much internal force and also prevents them from dropping the payload

by not applying enough [49].

Orin and Oh (1981) and Cheng and Orin (1990) minimize the energy con-

sumption. Orin suggests that the load distribution problem could be eliminated

through an optimization approach: joint torques minimize energy consumption and

balance forces among the arms. This approach has the disadvantage of excessive

computational expense[88, 89].

Many researchers focus on the controller necessary to implement multi-arm

motion, using a force/torque sensor to aid in measuring the internal forces. These

sensors provide feedback used to ensure the internal force stays within acceptable

bounds. Dai and Liu show that the internal and external loads can be decoupled;

they can be designed to achieve different missions for mobile networked manipulators

[106]. Liu et al. simulate a dual arm space manipulator and shows that their

controls strategy, based on the knowing the task’s trajectory, can realize the dual-

arm coordinated operation. They also show that the internal force, which is not

considered in the controller, is still within reasonable range[107].

83



Carignan and Akin focus on the minimization of total energy for dual cooperat-

ing manipulators, assuming the manipulators are rigidly attached to the payload[21].

Thus, there are no minimum required internal forces, and all the provided force can,

and should, go into producing the desired motion of the payload.

Recently, Erhard and Hirche state that the complete characterization of in-

ternal forces and torques is still an open question[108]. They propose that char-

acterization of the internal loading violates kinematics constraints imposed on the

manipulator, and instead focus on an analytical expression for the external load

distributions. This characterization of internal stress offers additional degrees of

freedom (DOFs) for choosing a desired load distribution and allow incorporation of

heterogeneous payload capacities. Like Carignan and Akin, they found that with

all the end-effector forces contributing entirely to the desired motion, no internal

wrenches are present.

5.2 Force Distribution: Even Force

There are multiple methods of determining how forces are distributed among

multiple arms. Zheng and Luh focus on optimizing the load distribution in leader-

follower robots to ensure the exerted forces are only external; there are no internal

forces [52]. They asserted that, to reduce the computational complexity (a com-

mon issue with other optimization solutions [88]), the forces contributed by each

manipulator should be equal.

Here Fleader and Ffollower are the exerted forces by each manipulator onto the
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payload. FCOM is the force applied to the payload’s center of mass necessary to

accomplish the desired task.

Fleader = Ffollower = 0.5FCOM (5.1)

Equation 5.2 shows the relationship between the task force and the resulting

joint torques. The joint torques are described for the ith manipulator, as the force

is evenly distributed across n manipulators. More detail on the equations of motion

for manipulators can be found in Chapter 2.

Ti = Miq̈i + gi − (1/n)JTi FCOM (5.2)

Zheng and Luh were concerned with finding a computationally efficient method.

They focus on using industrial manipulators, whose peak force is generally known.

The simple solution of evenly distributing the forces allow Zheng and Luh to apply

this method onto their systems[52].

A simple trajectory is used to describe the payload’s motion as it is moved

from point A to point B. The trapezoidal trajectory accelerates the payload to a

constant velocity. The payload then travels at the constant velocity for the major-

ity of the trajectory and finally decelerates to zero velocity ending at point B. This

example has two manipulators moving a payload along the x-axis; this is a planar

motion without any rotation. This example uses two simple 3DOF planar manipu-

lators. Each manipulator is the same total length as the SRMS, 15.2m. Here, the

payload is placed equidistantly between the two manipulators, resulting in symmet-

ric manipulator motions throughout the trajectory. This can be seen in Figure 5.1.
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In this task, the two manipulators move the payload from (-2,8) to a (2,8).

Symmetric Planar Example

Figure 5.1: Simple Planar motion of SRMS type arms: symmetric case

Figure 5.2 shows the total force required to move the payload in the world

frame, which is divided by half through the use of evenly distributed forces among

the two manipulators. The majority of the imparted forces occurs at the beginning

and end of the trajectory when the payload is accelerating/decelerating.
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Symmetric Planar Example: Even Load Distribution

Figure 5.2: Symmetric Case: Force evenly distributed between dual SRMS type

arms for simple planar motion

Once the forces on each arm are known, the joint torques can be calculated.

The required joint torques are a function of forces on the manipulator and the joint

angles. Figure 5.3 shows the maximum (absolute) joint torques for the simple motion

described above. A single arm must produce joint torques which are twice as much

as the evenly distributed dual arm case. These results may seem very simple: evenly

distributing the forces between two arm reduces the joint torques by half.
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Symmetric Planar Example: Even Load Distribution

Figure 5.3: Symmetric case: Joint torques for forces evenly distributed between dual

SRMS type arms for simple planar motion

Figure 5.4 takes a closer look at a planar case with non-symmetric motion.

Here, the manipulators from previous example move the payload from (-2,8) to (-

2, 9). Note that the only change between this example and the previous is the

additional motion along the y-axis.
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Non-Symmetric Planar Example

Figure 5.4: Simple Planar motion of SRMS type arms: Non-Symmetric Case

Non-Symmetric Planar Example: Even Load Distribution

Figure 5.5: Force evenly distributed between dual SRMS type arms for simple planar

motion
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The required force to move the payload is divided evenly between the two

manipulators, see Figure 5.5.

In this case, the motion between the two manipulators are no longer symmetric;

some joints must now produce more torque than their counterparts (see Figure 5.6).

The joint torques are not same between the non-symmetric Arms 1 and 2; Arm 2

requires more torque to provide the required force.

Non-Symmetric Planar Example: Even Load Distribution

Figure 5.6: Max Torque per joint with load evenly distributed

These examples show that, even with a simple force distribution scheme, the

required joint torques can be greatly reduced. The even distribution method assumes

each arm will produce the same force. Other force distribution methods do not
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assume the force is evenly distributed, and can better utilize each manipulator.

5.3 Force Distribution: Minimizing Energy

Carignan and Akin find a load distribution between arms which results in the

lowest possible motor energy consumption, see Equation 5.3. A weighting matrix,

Wi, defines the motor efficiency and converts the torque values to energy. When the

weighting matrix is set to the identity matrix, then minimizing the energy results

in the minimization of the total squared torque.

Using Carignan’s methodology, the following section describes the optimiza-

tion for an n-arm system. The goal, as defined in Equation 5.3, is to minimize the

motor energy. Wi is assumed to be known and a positive definite matrix. In the

following examples, the identity matrix is used for all motor efficiency matrices.

C = (1/n)
n∑
i=1

T Ti WiTi (5.3)

In a static system, all the forces would balance and cancel each other out;

this results in the manipulators applying a net zero force and results in no motion.

Carignan and Akin considers the dynamics of the system and the equation of motion

for the payload as found in 5.4.

MeẌe + cge(Xe, Ẋe) =
n arms∑
i=1

(Fi,COM) (5.4)

Me is the mass matrix of the payload, Ẍe is the acceleration, and cge is the combined

Coriolis and gravitational terms. Fi,COM is the force from each end-effector acting
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on the payload’s center of mass (COM).

Miq̈i + cgi − JTi Fi,EE = Ti (5.5)

The equation of motion for each manipulator is given in Equation 5.5. Here Ji

is the Jacobian, which is a function of the joint angles, qi. The joint torques for the

ith manipulator are defined as Ti. Fi,EE is the force exerted by the ith manipulator

at the end-effector.

JTeiFi,EE = Fi,COM (5.6)

Equation 5.6 contains the relationship between the end-effector’s force and the

desired force on the payload’s COM. The force transformation matrix, Jei, is defined

by the angle and location of the end-effector on the payload.

Carignan and Akin introduce a geometry term, Di, based on the instantaneous

geometry of each manipulator and the payload. Jei is the geometry between the end-

effector and the payload’s COM. Ji is a function of the current joint angles.

Di = J−1
ei Ji (5.7)

The goal is to write the equation of motion for the payload as a function of

the joint torques.

MeẌe + cge =
narms∑
i=1

(D−T
i (Miq̈i + cgi − Ti)) (5.8)
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Lagrange multipliers provide a method for finding the optimal torque distri-

bution. The objective function, f , is defined by the minimization of the total motor

energy, see equation 5.9. This is a quadratic measure and gives an estimate of the

motor power.

f(T1...Tn) = (1/n)
narms∑
i=1

T Ti WiTi (5.9)

Without any constraints, the minimum energy force distribution would result

in a static system: the manipulators would not move the payload. Constraints ensure

that the manipulators produce the force necessary to move the payload along the

desired trajectory. The constraint function, g can be found in 5.10.

g(T1...Tn) = (
n∑
i=1

D−T
i (Miq̈i + cgi)−D−T

i Ti)−MeẌe − cge (5.10)

Equation 5.11 contains the full system for the Lagrangian multiplier optimiza-

tion.

L(T1...Tn, λ) = f(T1...Tn)− λg(T1...Tn)

δL/δTi = 0

(5.11)

The results of optimization are found in 5.12.

δL/δTi = 2T Ti Wi + λD−T
i = 0

T Ti = −(1/2)λD−T
i W−1

i

(5.12)

This simplifies to equation 5.13. The relationship between the manipulator

torques is a function of the geometry, Di.
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D1W
T
1 T1 = D2W

T
2 T2 = ... = DNW

T
NTN (5.13)

Equation 5.13 shows a clear relationship between the torques of each manipu-

lator, the geometry, and the motor efficiency. The joint torques of each manipulator

can be substituted and re-written in terms of a single manipulator, see equation 5.14.

Fdynamic, in 5.14, combines the dynamic terms for the payload and the manipulators.

The task statement defines the trajectory and geometry of the payload and

the manipulators. Di can be calculated at every step. At this point, the only

assumptions that have been made about the system are that the Jacobian and Di

are invertible or, at least, pseudo-invertible.

T1 = W−T
1 D−1

1 Fdynamic(
n∑
i=1

D−T
i W−T

i D−1
i )−1

Fdynamic = (
n∑
i=1

D−T
i (Miq̈i + cgi))−MeẌe − cge

(5.14)

At every time-step in the trajectory, the new torque values are calculated

based on equations 5.14 and 5.13. While this load distribution is significantly more

complex than just evenly distributing the loads, it produces a maneuver requiring

less motor energy without changing the payload’s or manipulators’ trajectory.

Using the planar symmetric example, figure 5.3 shows the force from the

minimum-energy load distribution, and compares it to those of a single arm. It

is assumed that each motor has the same efficiency, and Wi is assumed to be the

identity matrix for every arm. The arms exhibit a symmetric motion. The max-

imum torque for the joints of Arm 1 and Arm 2 are equal but occur at different
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points along the trajectory. Unlike in the single arm cases, the dual manipulators

also apply a force in the Y direction and a moment about Z. These forces/torques are

produced by both arms in opposite directions, resulting in net zero forces/torques.

These forces/torques are internal and do not contribute to the payload’s motion.

Symmetric Planar Example: Energy Minimization Method

Figure 5.7: Force distribution for between dual SRMS type arms for simple planar

motion

Figure 5.8 shows the maximum torque on each joint of the dual arm system.

As expected, due to symmetry of the motion, the maximum torque is the same for

each arm. The values are significantly less than the evenly distributed force method,

especially in joint 2. There is a 15% and a 34% reduction in the peak torque for

Joint 1 and Joint 2, respectively. The peak torques in Joint 3 are the same for both

load distribution methods.
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Symmetric Planar Example: Energy Minimization Method

Figure 5.8: Force distributed between dual SRMS type arms for simple planar mo-

tion to minimize energy

The minimum-energy force distribution method takes advantage of the dual

arm system. Forces and torques are reacted through the payload to the other ma-

nipulator, reducing the total joint torques and the required motor energy, T TWT .

Figure 5.9 compares the total motor energy for each load distribution method per-

forming the same symmetric task. The even-load distribution method requires 54%

more energy than the minimum-energy distribution method, with a single manip-

ulator requiring 77% more. The main disadvantage to this method is that it is

assumed that the payload is able to survive the internal forces imparted onto it by

the manipulators. This method does not provide constraints to ensure the internal

forces do not overload the payload.

96



Symmetric Planar Example: Energy Comparison

Figure 5.9: Energy requirement for Simple Symmetric Example: For a single arm,

Evenly distributed force

Reducing the motor energy also reduces the required joint torque, providing

a reduction in the motor mass. The minimum-energy distribution also results in a

mass savings.

5.4 Force Distribution: Minimize Mass

Carignan focuses on minimizing the total motor energy, which reduces the

joint torques and thus the motor mass. However, minimizing the energy does not

necessarily result in a minimum mass. A new force distribution method minimizes

the total joint mass and thus the system mass.

Chapter 3 concludes that the mass of a motor is a linear function of the torque

and speed. The speed is derived from the known trajectory of the payload. The

joint torques are a function of the force distribution. Once this is known, then the

joint torques can be calculated for the entire trajectory. The joint mass is linearly
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related to the joint torque, see equation 5.15.

Mjoint = Motor(T, Speed) +HarmonicMass(T ) (5.15)

The total joint mass, see equation 5.16, is found using the previous equation

and the results from Chapter 3. The joint mass is a function of the desired joint

torque (Nm), joint speed (kRPM), and the gear ratio. The gear ratio, denoted as

GR, converts the joint torques and joint speeds to motor torques and speeds. C0,

CT , CS, and Charmonic are the coefficients for the intercept, the torque, the speed,

and the harmonic mass terms, respectively.

Mjoint = C0 + CT (|T |/GR) + CS(S)GR) + Charmonic|T | (5.16)

The objective function is a linear equation that minimizes the total mass of

the system.

TotalJointMass =
Narms∑
n=1

Njonits∑
j=1

Mjoint (5.17)

Combining the objective function with equation 5.16 leads to a linear equation

for the total system joint mass.

TotalSystemJointMass =
Narms∑
i=1

Njoints∑
j=1

C0+CT (1/GRi,j)|Ti,j|+CS(Si,j)(GRi,j)+Charmonic|Ti,j|

(5.18)

Constraints ensure the manipulators maintain the required forces, accelera-

tions, and velocities in order to accomplish the given task. These are the same con-
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straints used in the minimum-energy force distribution method. For convenience, it

is restated in equation 5.19.

Narms∑
i=1

(D−T
i (Miq̈i + cgi))−MeẌe − cge =

Narms∑
i=1

D−T
i Ti (5.19)

The left hand side of equation 5.19 is independent of the load distribution; all

the terms are a function of the payload trajectory, manipulator trajectory, or the

task definition. The constraint equation can be re-written as a linear constraint, see

equations 5.20 and 5.21.

beq = AeqTmatrix (5.20)

With:

AeqTmatrix =
Narms∑
i=1

D−T
i Ti

beq =
Narms∑
i=1

(D−T
i (Miq̈i + cgi))−MeẌe − cge

(5.21)

The Tmatrix contains the joint torques for every manipulator. Aeq is a coefficient

matrix made up of the D−T
i terms.

The objective function and the constraints are both linear functions. This

allows the force distribution problem to be re-written as a Linear Programming

problem.

The mass of each joint is a function of the torque, speed, and gear ratio. Once

a gear ratio is chosen, the manipulator cannot change hardware mid-task. The force-

distribution optimization can be performed for different gear ratios, but the selection
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must occur before the optimization begins. The speed is task dependent and does

not change depending on how the force is distributed among the manipulators.

The only variable in the force-distribution is torque, which allows the lineariza-

tion to be further condensed, see equation 5.22. The gear ratio, speed term, and the

intercept term are combined into a ’Motor Penalty’ term. This is the mass penalty

for having/using a motor.

TotalJointMass = MotorPenalty +
Narms∑
i=1

Njoints∑
j=1

((CT (1/GRi,j) + Charmonic)|Ti,j|

(5.22)

It should be noted that the objective function is a function of the absolute value

of the torque. Equation 5.22 is the same objective function modified to account for

these absolute values. Pi,j is a substitution variable for the absolute value of each

joint torque, Ti,j.

TotaljointMass = MotorPenalty +
Narms∑
i=1

Njoints∑
j=1

((CT (1/GRi,j) + Charmonic)Pi,j

(5.23)

Additional constraints are placed to ensure that Pi,j = |Ti,j|.

Pi,j ≥ −Ti,j

Pi,j ≥ Ti,j

(5.24)

Equation 5.23, 5.20, and 5.24 allow the use of linear programming to solve

the force-distribution problem in order to directly minimize the joint mass of a
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multi-arm system.

Symmetric Planar Example: Mass Minimization

Figure 5.10: Force distribution for between dual SRMS type arms for simple planar

motion

Figure 5.11 shows the maximum joint torques for the minimum-mass force

distribution method. Joints two and three produce near-zero torque in both ma-

nipulators, which is only enough to overcome the motor friction and to move the

manipulator. Joint one provides the torque necessary to complete the actual task.
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Symmetric Planar Example: Mass Minimization

Figure 5.11: Maximum joint torque for a minimum-mass force distribution

The majority of the forces are applied at the beginning and end of the trajec-

tory, during the acceleration and deceleration of the payload. Figure 5.12 show the

forces/torques at the start of the trajectory for each of the distribution methods.

This model assumes no friction, though as the number of manipulators increases,

it is expected that the total losses due to friction will increase with the increased

number of joints.

The single arm cases only provide force in the direction of motion, along the

X-direction. Unlike the dual manipulator cases, these do not have a second arm

with which to counter any other forces or moments; thus, the single arm must re-

act all other torques out through the joints/motors. The even-force distribution

method does not allow for any internal forces and thus, like the single arm, must

react all forces through each manipulator independently. The minimum-energy and

minimum-mass force distributions both allow forces to be reacted through the pay-

load, resulting in significantly lower joint torques.
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Symmetric Planar Example: Mass Minimization

Figure 5.12: Force from each manipulator on the payload at start of trajectory

The total actuator mass for each force distribution method is in figure 5.13.

Both single arm cases produce the same actuator mass, 197kg. The even-force

distribution estimates a total joint mass of 102.5kg per arm, for a total joint mass of

204.4kg. While the joint torques are half that of a single arm case, the motor mass

estimate has a non-zero intercept, resulting in the evenly-distributed dual arm case

having a slightly higher joint mass than a single arm.

A minimum-energy and minimum-mass distribution yields a total joint mass

of 137kg and 120kg respectively. The minimum-mass distribution reduces each arm

to 60kg, which is a 70% reduction compared to the joint mass of a single arm.
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Symmetric Planar Example

Figure 5.13: Total joint mass for each force-distribution method

This shows that, for a symmetric case, the joint mass is greatly reduced with

the addition of a second manipulator when a proper force-distribution is chosen.

This continues to hold true for non-symmetric cases as well. The maximum joint

torques for each force-distribution methods is shown in figure 5.14 for the previously

described non-symmetric example. Comparing the maximum torque for each of the

single arm cases, it is clear that Arm 2 must produce more torque in order to accom-

plish the same task. The minimum-energy and minimum-mass force distributions

utilize Arm 1 over Arm 2. This allows for a further reduction in the total joint

torques.
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Non-Symmetric Planar Example

Figure 5.14: Maximum Joint Torque for Single Arm, Even force distribution,

Minimum-energy force distribution and minimum-mass force distribution

Figure 5.4 shows the total energy for each force distribution method. Each

of the multi-arm systems reduces the motor energy required for the maneuver, as

well as the total joint mass. As expected, the minimum-energy method produces

the lowest total energy; the minimum mass method produces the lowest joint mass.

Both the minimum-mass and minimum-energy methods reduce the mass and energy

as compared to the single arm and the even-force distribution method. Either of

these force distribution methods would work well for space manipulators as reducing
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the energy and mass are both driving criteria for designing space systems.

Non-Symmetric Planar Example

Figure 5.15: Total Joint Mass Comparison for all Force-Distribution Methods

Non-Symmetric Planar Example

Figure 5.16: Total Energy Comparison for all Force-Distribution Methods
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5.5 Conclusion

This chapter shows that multiple manipulators can work together to move a

payload, allowing the forces to be divided between the different manipulators. This

chapter presents three different methodologies: even-force, minimum-energy, and a

minimum-mass distribution.

The even-force distribution method is the least computationally complex of

these methods, and does not introduce any internal forces. When compared to

using single manipulators, this method reduces the joint torques in half, but there

are also twice as many joints. While this reduces the energy of the system and the

individual joint torques, it does not reduce the total joint mass.

The minimum-mass and minimum-energy force distributions both result in

internal forces or “squeeze forces” on the payload. These internal forces do not

contribute to the motion of the payload. However, they should not be ignored if the

payload is sensitive or fragile.

In the presented examples, both distributions reduce the total joint mass and

the total energy. While the minimum-energy distribution appears to reduce the total

joint mass, only the energy reduction is guaranteed. The minimum-mass method

is formulated as a linear programming problem with linear constraints to find the

minimum total joint mass. This results in a global solution and is guaranteed to

minimize the total joint mass, and thus total system mass. The total joint mass

was reduced by 40% in the symmetric case and 23% for the non-symmetric case by

adding a second manipulator, as compared to the mass of Arm 1. Therefore, the
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total system mass can be greatly reduced by adding a second manipulator and using

the minimum-mass force distribution.
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Chapter 6: Dual Manipulators Moving a Large Spacecraft

This chapter shows that it is possible for a dual, or multi-arm system to have a

lower mass than a single arm system and still perform the same task. This analysis

will show that, for some tasks, a dual manipulator system is not only lighter, but

also provides all the bonuses inherent in a dual arm system and should therefore be

considered as a viable option from the outset of the design process.

There are many tasks which can benefit from dual manipulators; this study

focuses on transporting large payloads. This task is necessary for larger missions,

such as satellite servicing, assembly, and berthing of a spacecraft.

The following example will go through the design methodology as shown in

figure 6.1. Previous chapters describe the various components in detail (e.g. mass

estimation and force-distribution). This chapter not only demonstrates how all these

pieces come together, but also how a well-designed dual arm system compares to a

single arm system.
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Figure 6.1: Research Methodology Overview

6.1 Task Definition

This is a task-based study; both single and dual arm systems are designed to

perform the same task. All systems have the same design requirements, allowing a

direct comparison. This methodology demonstrates how a multi-arm system can be

more mass efficient than a single manipulator system.

This example uses a docking task; the goal is to dock a large inertial payload, a

maneuver common in satellite servicing, assembly, and in berthing spacecraft. The

payload ends in a ’docking pose’ near the base of the manipulators after it is moved

along a desired trajectory. Unlike previous examples, this maneuver requires the

manipulators to rotate the payload while it moves along the trajectory.

This broad task definition leads to a number of design variables which can be
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broken into three categories: the payload properties, the manipulator parameters,

and the trajectory definition.

6.1.1 Payload Properties

In addition to the mass and size, the manipulator(s) must also know how and

where to grasp the payload. Rather than requiring specific additional hardware, the

manipulator(s) will attach to an existing band/structure on one side of the payload.

This structure is common for many satellites and is used to attach to the payload

fairing during launch.

The angle of attachment at the start and end of the payload movement along

the desired trajectory must also be defined to allow the end-effector to attach/detach

from the payload.

Table 6.1: Task Definition: Payload Parameters

Payload Parameters Example Values

Payload Dimensions 3m x 3m x 3m

Mass 14,515kg

Grasping Location(relative to the payload COM) Arm 1: Lower left corner, (-1.5m, -1.5m, 0)Arm 2: Lower Right corner, (+1.5m, -1.5m, 0)

Starting Angle of Attachment Arm 1: 0◦ relative to the payload Arm 2: 180 ◦ relative to the payload

Ending Angle of Attachment Arm 1: 0◦ relative to the payload Arm 2: 180 ◦ relative to the payload
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6.1.2 Trajectory

A trapezoidal trajectory is used to move the payload from the starting to

the ending point. Even this simple trajectory requires acceleration and velocity

limits. More complex trajectories, including obstacle avoidance and minimizing

base movements, can also be applied here.

The trajectory for each manipulator is found using payload’s trajectory and

knowledge of the grasping points. Inverse kinematics are used to determine the joint

angle along the trajectory.

The motion between joints is minimal between each time-step to ensure that

the manipulator moves in a smooth continuous motion.

The parameters, found in table 6.2, are necessary for a simple trapezoidal

trajectory.

6.1.3 Manipulator Parameters

Table 6.3 contains the DH parameters for each manipulator used in this study.

These parameters are based on the SRMS manipulator; many are estimated from

images of the manipulator. These used values can also be found in table 6.4, for those

less familiar with DH-parameters. Table 6.4 also contains additional manipulator

parameters, such as base location and information necessary to calculate the link

masses (e.g. material type and allowable deflection).
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Table 6.2: Task Definition: Trajectory Parameters

Trajectory Parameters Example Values

Starting Location (4.3, 2.5, 7.4)

End Location (7, 0, 2)

Starting Angle (about X,Y,Z) 20◦, 135◦, 20◦

End Angle(about X,Y,Z) 0◦, 0◦, 0◦

Maximum Payload Velocity 0.06m/s

Maximum Joint Velocity 20 deg/second

Maximum Acceleration 0.06m/s2

Joint Limits None

Defining variables upfront not only allows a designer to compare different

designs, but also provides the ability to see how changing these parameters can

affect the overall design. This chapter focuses on how increasing the number of

manipulators changes the overall design.

6.2 Force and Mass Estimation

In order to use dual manipulators, one must first determine how much force

each arm is contributing to the task. The minimum-mass force distribution method

introduces internal forces which are reacted through the spacecraft at the payload

fairing interface, which is assumed to be able handle the additional strain.
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Table 6.3: DH parameters for Docking Maneuver

Link αi−1 ai−1 (rad) di (m) θi

1 0 0 1.8 θ1

2 π/2 0 5 θ2

3 −π/2 0 5.8 θ3

4 π/2 0 1.6 θ4

5 −π/2 0 0.5 θ5

6 π/2 0 0.5 θ6

Using the minimal-mass force distribution method, the dynamics of each ma-

nipulator are calculated and the joint masses found. The joint masses, combined

with the link masses, provide an initial mass estimate for the total system. The link

mass is found using static requirements, and can be calculated based on the task

definition.

The masses of the joints and links both affect the dynamics. An iterative loop

first estimates the mass and then re-calculates the dynamics with these new masses.

The new and estimated masses converge after a few iterations. There are a few cases

where the mass estimations do not converge; these are near singularities when the

estimated torque values are extremely large.

This methodology provides a total system mass for a manipulator and multi-

arm system designed to perform a specific task. All systems are designed from the

same starting point and use the same mass estimation, providing a true comparison
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Table 6.4: Task Definition: Manipulator Parameters

Manipulator Parameters Example Values

Link Lengths (m) 1.8, 5, 5.8, 1.6, .5, .5

Joint offsets(m) 0, 0, 0, 0, 0, 0

Joint Configurations pitch,yaw,pitch, yaw pitch, yaw

Base location Arm1 =(-2,0,0)Arm2 = (2,0,0)

Link Material Graphite Epoxy

Allowable Deflection per Link Length 1/100

Minimum material thickness 1.587mm (1/16inch)

about how additional manipulators can affect the task.

6.3 Example Results

Two studies directly compare a single arm to a dual arm system. The first

study considers how Arms 1 and 2 independently perform the task, while the second

study focuses on a cooperative dual arm system. In the second system, the actuators

are re-sized to meet the forces/torques required for the dual arm case.

6.3.1 Study 1: Single Arm Systems

This section presents the mass estimation for a single arm performing the

given task. Arms 1 and 2 work independently and each have the same kinematic
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Starting and Ending Points for Arms 1 and 2 During Docking Maneuver

Figure 6.2: Starting and Ending points for Arms 1 and 2

properties; the only differences between them is their location with respect to both

the bases and the grasping of the payload. Figure 6.2 shows the starting and ending

points for a docking task.

Arm 1 must work harder to perform the same task as Arm 2, see Figure 6.3.

Arm 1 has a higher maximum joint torque for joints 1, 2, 4, and 6; therefore it is

expected to have a higher joint mass.

The link mass between the Arm 1 and 2 are the same, since both arms have the

same kinematic properties and structural requirements. Despite these similarities,
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Figure 6.3: Starting and Ending points for Arms 1 and 2

however, the difference in joint torques significantly affects the total joint mass.

Figure 6.4 shows that Arm 1 has a higher mass for most of the joints, and thus an

overall higher total manipulator mass.

Figure 6.4: Mass for links and joints for single arm docking example

Figure 6.5 shows that Arm 1 has a slightly higher total mass than Arm 2,

with a difference of only 10kg. The differences between Arms 1 and 2 are the base

locations and where they grasp the payload. Arm 1 grasps the payload’s lower left

corner, while Arm 2 grasps the lower right corner.
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Figure 6.5: Total Mass for Single Arm Docking Example

6.3.2 Study 2: Dual Arm System

The dual arm system design is based on the same task definition as the single

arm systems, including the same manipulator parameters for Arms 1 and 2. In the

dual arm case, both manipulators cooperatively work together to move the payload.

Dual Arm Trajectory

Figure 6.6: Starting and Ending points for Arms 1 and 2
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Figure 6.7 shows the maximum joint torques for both the single arm and dual

arm studies. In the dual arm case, less torque is required because the arms are

working cooperatively. Interestingly, Joint 3 of Arm 1 contributes very little to the

movement of the payload, only producing enough torque to overcome the motor

friction.

Figure 6.7: Starting and Ending points for Arms 1 and 2

The joint and link masses can be seen in Figure 6.8. The link masses for each

arm remain constant, as their design is dictated by the static requirements and the

task definition, rather than the dynamics.

Figure 6.9 shows the mass between the three systems: Independent Arm 1,

Independent Arm 2, and the cooperative dual arm case. In the dual arm case, the

mass of Arm 1 and 2 are reduced to 172kg and 176kg, respectively. The total mass

for the dual arm case is 348kg, which is 102kg lower than that of Arm 1 in the

independent arm case; a 23% mass savings.

While the introduction of additional manipulators reduces the total joint mass,

it also increases the total link mass. Figure 6.10 shows the percentage of the system
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Figure 6.8: Starting and Ending points for Arms 1 and 2

Figure 6.9: Starting and Ending points for Arms 1 and 2

mass made up of the link mass. The mass saving gained, from moving to a dual

arm system, originates from the reduction in the joint mass.

This chapter demonstrates that, for a typical docking maneuver, a cooperative

dual arm system can be significantly lighter in weight than independently working

single arm systems. The total system mass for the dual arm system is calculated to

be 348kg, a mass savings of 100kg and 90kg as compared to the independent single

systems Arms 1 and 2, respectively.
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Figure 6.10: Percentage of total system mass due to Link masses
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Chapter 7: Further Optimization: Preferred Link Lengths

Previous chapters demonstrate that the inclusion of a second manipulator can

greatly reduce the overall system mass. This chapter focuses on methods to further

reduce the mass of a dual arm system by optimizing the manipulator parameters.

Many researchers have focused on optimizing a single manipulator [62, 68, 69, 70,

81, 109, 110, 111]. This research looks at the differences in optimizing for multi-arm

systems compared to single manipulator systems.

Kivela divides the kinematic synthesis of a manipulator into two parts: topol-

ogy and dimensions [112]. The former synthesis involves the structure of the manip-

ulator (e.g. the number of joints, joint types, etc.). The latter synthesis is devoted

to the dimensions associated with the manipulator (e.g. link lengths). This study

focuses on the dimensional synthesis, specifically looking at the upper and lower link

lengths (i.e. the links associated with joints 2 and 3). These two link lengths have

the most variation.

7.1 Background

The genetic algorithm, GA, was first used by Holland in 1975 and is a type of

evolutionary algorithm based on Darwin’s theory of the Survival of the Fittest. A
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GA evolves the variables, or chromosomes, over a number of generations until only

the ’strongest’ survives. The chromosomes which best solve the problem, i.e. the

fittest, produce more “children”, passing the best “genes” from one generation to the

next[113, 114]. In this study, the “chromosomes” are comprised of the link lengths

for the manipulators, and the “strongest” solution is the one which minimizes the

total mass of the system.

Unlike other optimization schemes, the GA also includes mutations or random

variations. These mutations ideally allow the algorithm to move out of local minima

in order to find the global minimum, which results in a better solution.

One advantage of using a GA is that it does not require a smooth fitness

function. The fitness function, presented here, is the total mass of the system.

While one may expect the total system mass to increase smoothly as the link lengths

increase, the joint masses are highly dependent on the joint angles and the trajectory,

and will vary widely.

A number of researchers use a GA to optimize single serial manipulators; many

focus on optimizing the link lengths and using different objective functions. The

manipulability, or dexterity design parameter is a popular indicator of how well a

manipulator can perform a given task [62, 68, 110, 115].

Multi-objective GAs (MOGAs) are studied in order to balance various com-

peting performance requirements. Barissi focuses on combining different dexterity

and manipulability metrics [109]. Recently, Zeinoun uses a multi-objective GA in

order to weigh the manipulability while providing the desired force and velocity at

the end-effector [116]. Kivela et al. optimize an existing commercial heavy-duty
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hydraulic manipulator in order to reach and operate in multiple locations. Their

results conclude that the industrial heavy-duty manipulator is longer than their

optimized one (i.e. over-designed) [112].

MOGAs focus on how to combine different performance metrics to produce a

manipulator better able to accomplish a given task(s). This paper uses a constrained

GA to minimize the mass of the manipulator under the condition that the task(s)

must be completed.

7.2 GA Implementation

A GA is implemented using MATLab’s Global Optimization Toolbox[114].

This section goes into details about the specific major variables used to define the

GA.

7.2.1 Fitness Function

The fitness function includes a “penalty function” to ensure that the manip-

ulator(s) move the payload along the specified trajectory. If the manipulator(s) are

not able to reach desired the task points, then the result are heavily penalized. The

penalty function, equation 7.1, uses the pose error and the mass of a non-optimized

individual manipulator, see Chapter 6.

MassPenalized = 450kg + 10(PoseError) (7.1)

This penalty function is only used when a manipulator is unable to successfully
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accomplish the required task; the maximum pose error across the entire trajectory is

over 5%. The pose error is the distance between the desired and the actual position

divided by the arm length. Dividing by the arm length provides a generic error

value, which allows long and short manipulators to be compared without a bias.

The mass of the manipulator(s) are estimated according to the methodology

described in previous chapters. An optimization is performed on the independent

Arms 1 and 2, as well as the cooperative dual arm system from Chapter 6. This

shows how optimizing the individual arms compares to optimizing for a dual arm

system.

7.2.2 Variables

The main link lengths, those associated with joint 2 and 3, make up the

majority of the manipulator. This study focuses on optimizing those link lengths.

The links close to the end-effector are kept small to provide the same precise motion

the end-effector may need. For the single arm examples, there are two variables:

the upper and lower link lengths. The dual arm example has twice the number of

variables because it is changing the parameters of each arm.

The location of the manipulator(s) are also included in some of the studies.

For those studies, it is assumed that the manipulator(s) are on a railing, allowing the

Y-coordinate of the manipulator’s base to be re-positioned before the task begins.

For these studies an additional variable, the Y-coordinate of the base location, is

added for each manipulator.
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Single Arm Dual Arm Dual arm with Base Position

Number of Variables 2 4 6

Population Size 100 200 300

Max Number of Generations 200 400 600

Function Tolerance 10kg 10kg 1kg

Table 7.1: GA Parameters

7.2.3 Initial Population

A population size of 100 is used to provide ample diversity without excessively

long run-times for the single arm studies with two variables. A low population of

50 did not provide enough diversity, and the GA solution was highly dependent on

the initial population, which is randomly selected. Larger populations, such as 200

or 300, did not provide any additional insight and took significantly longer to run.

The initial population is increased as the number of variables are increased.

7.2.4 Bounds and Function Tolerance

The function tolerance is set to 10kg. A number of smaller tolerances were

used, however, the results were not significantly different. In addition, the mass

estimation is not guaranteed to be accurate down to the single gram. Therefore a

function tolerance of 10kg is used to ensure shorter run times. The GA concluded

when the function tolerance was met, rather than the maximum number of gener-

ations or any other stall conditions. This generally occurred after 21 generations.
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A lower function tolerance of 1kg resulted in a run with 33 generations, with no

significant difference in the results, before the GA met the function tolerance.

Upper and lower bounds, 0.1m and 35m respectively, are placed on the link

lengths. The upper bound of 35m is chosen to ensure the GA explores the entire

trade space. An adaptive function ensures that mutations fall within these bound-

aries.

7.3 Optimize Independent Systems

The upper and lower link lengths are optimized in order to design an inde-

pendent manipulator with a lower mass, while still performing the task described in

Chapter 6. This optimization is done for Independent Arms 1 and 2.

7.3.1 Independent Arm 1 Optimization

Figure 7.1 is the mass estimation for Arm 1 as the upper and lower links

lengths are varied. The original design has a mass of 450kg, which is on the lower

end of the mass spectrum. This is, in part, due to the severe mass penalty on any

arm design that cannot perform the given task (i.e. the docking maneuver). Figure

7.2 shows the pose error for each of the link lengths. This graph shows where the

penalty function is used and where mass estimation without a penalty is used. This

method of analysis includes many manipulator designs which are unable to reach

the task points; the task points lie outside the workspace of the manipulator. These

cases are heavily penalized.
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Figure 7.1: Mass Estimation for Arm 1 with a variety of link lengths

Figure 7.2: Position Error for Arm 1 over a variety of link lengths

Figure 7.1 shows the estimated mass over a large number of lower and upper

link lengths. The minimum, 410kg, is found at link lengths of 3.6m and 6.2m. This

minima is 40kg lighter than the original arm design. This shows that the total mass
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for Arm 1 can be reduced by 6.8% when optimized for this particular task.

This minimum value is found by sampling points across the trade space and

calculating the mass at each point. This exhaustive numerical approach is used to

demonstrate the nature of the fitness function, which is discontinuous with many

local minima. A GA can more efficiently search the trade space, especially when

the number of variables increases beyond two.

A GA is applied to the same manipulator. Using an initial population of 100,

and running for 21 generations, results in a final mass of 399.8kg. The optimal link

lengths for the lower and upper links were found to be 3.6m and 6.1m, see figure 7.3

GA: Arm 1 Performing Docking Task

Figure 7.3: Estimated mass of Single Arm1 as a function of link lengths

A GA is dependent on the initial population, which is random. The GA is

repeated multiple times in order to see the effect of the initial population on the

results. One of the benefits of a GA is that the mutations will explore the trade

space, and may result in “unexpected” optimized results which can give the designer

a new direction in which to explore.

The GA settles on two primary designs. The first minimum has link lengths

similar to those found in the exhaustive numerical approach, though more refined.
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Table 7.2: System mass with new link lengths from GA for Arm 1

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Lower Link (m) 4.2939 3.6164 3.5963 3.5871 4.2977 3.5945

Upper Link (m) 3.7613 6.0793 6.0854 6.0970 3.7634 6.0922

Estimated Mass (kg) 405 400.2 399.9 399.8 405.2 399.9

Figure 7.4 shows how the optimized joint and link masses compares to the original

design.

The second minimum has link lengths of 4.30m and 3.76m. While it is clear

that this second design is not the global minima, it is still a significant reduction

in mass from the original design. Though this design is heavier, the link lengths

are shorter. So while the longer arm design produces the minimum mass, the sec-

ond design may be the preferred design if there are additional volume restrictions.

The GA can reveal different designs and allows the designers to choose from other

options. The rest of this chapter focuses on the minimum mass solution.
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GA: Arm 1 Performing Docking Task

Figure 7.4: (Left)Estimated link mass of Single Arm 1, (Right) Total Mass per joint

of optimized and original Arm 1 design

While the joints make up the majority of the total mass, changing the link

lengths still affect the kinematics and the dynamics of the system. Figure 7.5 shows

the comparison between the joint torques for the optimized Independent Arm 1 and

the original design.
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GA: Arm 1 Performing Docking Task

Figure 7.5: (Left)Maximum Torque per joint for Optimized and Original Arm 1

Design (Right)Estimated actuator mass of Single Arm1

7.3.2 Independent Arm 2 Optimization

The same optimization procedure is followed for Independent Arm 2. The mass

estimation for Arm 2, originally estimated at 440kg, is reduced to 354kg. Figure 7.6

shows the optimized link lengths and how this affects the mass.
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GA: Arm 2 Performing Docking Task

Figure 7.6: Arm 2 Optimization Results

A variety of initial populations are used to determine how they affect the

GA. Unlike with Arm 1, the GA converges to the same point for all six trials. The

average lower and upper link lengths are 2.96m and 5.63m, with standard deviations

of 0.039 and 0.03, respectively. These trials produce an average mass of 354.6kg with

a standard deviation of 0.64kg.

The mass of Arm 2 is reduced from an original mass of 440kg to 354kg, a 19%

mass reduction. This shows that optimizing the link lengths can significantly reduce

the total system mass.
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Table 7.3: System mass with new link lengths from GA for Arm 2

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Lower Link (m) 3.0309 2.9203 2.9494 2.9576 2.9377 2.9822

Upper Link (m) 5.6812 5.6187 5.6356 5.6402 5.5918 5.6104

Estimated Mass (kg) 355.5670 353.8260 354.2887 354.4232 354.4565 355.2109

Single Manipulators Performing Docking Task

Figure 7.7: Comparison of Optimized and Original Total System Mass for an Inde-

pendent Single Arm System

7.3.3 Conclusion for Independent Single Arm System Analysis

The link and joint masses change depending on the manipulator parameters,

which can be optimized to reduce the overall mass. How these parameters affect the

overall mass is highly dependent on the trajectory. One cannot say that reducing

the arm lengths will always reduce the total mass; it is only guaranteed to reduce

the link mass.
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Arm 1 and Arm 2 were both optimized to better perform the docking task

described in previous chapters. Adjusting the lower and upper link lengths can be

used to significantly reduce the mass of each manipulator, see table 7.4.

Table 7.4: Original Single Arm System vs Optimized Single Arm System

Arm Name Lower Link(m) Upper Link (m) Estimated Mass (kg)

Original Arm 1 5 5.8 450

Optimized Arm 1 3.60 6.09 399.8

Original Arm 2 5 5.8 440

Optimized Arm 2 3.03 5.65 354

7.4 Base Location Study: Independent Arm 1

There are only two differences between Arm 1 and Arm 2: the location of the

base and where the end-effector grasps the payload. In the original design, there is

only a 10kg difference between the mass estimate for Arm 1 and Arm 2. However,

Arm 2 was able to see a significant improvement when optimized.

Originally, Arm 1’s base is mounted at (0, -2, 0) and Arm 2’s base is mounted

at (0, 2, 0), both given in the world frame. Arm 2 has a lower mass than Arm 1,

which leads to the question: is there a base location that significantly improves the

optimization of Arm 1?

The Space Station Remote Manipulator System (SSRMS) is attached to a

mobile base which travels along a rail [117]. This system allows the SSRMS to be
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relocated in order to better perform a task(s). This adds an additional variable

which can be further optimized [66, 118].

A single variable optimization is done on the Y-coordinate of Independent

Arm 1’s base, with the original link lengths of 5m and 5.8m. The optimized base

location is found to be at (0, 0.078, 0), resulting in a new mas of 415kg. This mass

saving comes from the large reduction in Joint 4’s required maximum torque.

Figure 7.8: Joint Torque and Mass of Arm 1 Design with Base Optimization

A second study optimizes the Y-coordinate of Independent Arm 1’s base, in

addition to the link lengths. This three variable optimization is done using a GA

with an initial population of 150.
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Table 7.5: Table of link Length Studies

Study Name link Length Base Location Description

Original, Base0 5m , 5.8m ( 0, -2, 0) Original Design, with origi-

nal base

Original,Base1 5m , 5.8m (0, 0.01, 0) Original link lengths, base

found as result of single vari-

able (Y-coordinate of the

base location) optimization

Optimize3,Base3 3.13m, 5.89m (0, 0.38682, 0) Optimized lengths and loca-

tion (result of 3 variable op-

timization)

Figure 7.9: Three Variable Optimization Results: Link lengths and Y-Coordinate

of Base location for Independent Arm 1
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Changing the base location and optimizing the link lengths reduces Arm 1

to 336kg. The optimized link lengths, with the new base location, are 3.13m and

5.89m, for the lower and upper links respectively. The relocation of the manipulator

allows for lower joint torques, resulting in a higher mass reduction.

Figure 7.10: Mass Summary of Independent Arm 1 Base Location Optimization

Figure 7.11 shows the optimized Arm 1 at the new base location as compared

to the original Arm 1 at the starting and ending points of the trajectory.

Figure 7.11: Arm 1 with optimized link and new base location
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Many times, the base and grasping locations are dictated by available hardware

or other restrictions. Optimizing the location, as well as the link lengths, results in

significant mass savings (an estimated mass of 336kg). However, changing the base

location alone will still result in mass savings; the mass of Arm 1 was reduced from

450kg to 415kg.

The more freedom one has in changing task parameters, the more a system

can be optimized to better perform the task(s). The dual arm study assumes the

original base locations are fixed and unable to be changed.

7.5 Optimization of Multi-Arm Systems

Often, a dual-arm system is created by using pre-existing manipulator designs

and affixing them together, as oppose to designing the dual arm system from the

ground-up (e.g. utilizing the optimized Independent Arm1 and Independent Arm2

designs and combining those into a dual arm system). When Arm1 and Arm2 are

optimized together as part of the dual arm system, the results will be different. This

section looks at the difference between a cooperative dual arm system comprised of

individually optimized arms and those that have been optimized together.

7.5.1 System Optimization

The procedure for optimizing a dual-arm system is similar to that of the inde-

pendent arm study. The number of variables double from two to four, as the upper

and lower link lengths for each arm are optimized together. The force distribution
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used between the dual arms is the minimization-mass method. Six optimization

trials were done; Table 7.6 shows the results.

Table 7.6: System mass with new link lengths from GA for Arm 2

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Lower

Link(m)

Arm1 5.121 5.029 4.7936 5.161 5.053 4.7221

Arm2 5.221 3.756 3.0548 3.659 3.708 3.7372

Upper

Link(m)

Arm1 1.518 1.629 1.6087 1.513 1.554 1.6881

Arm2 3.732 3.241 3.3718 3.568 3.59 2.1238

Mass(kg)
Arm1 78.7 88.9 95.6 90.3 87.6 89.8

Arm2 99.9 77.4 65.8 78.5 79.1 86.7

Total System Mass(kg) 178.67 166.3 161.4 168.9 166.7 176.4

The original dual-arm designs produced a system mass of 330kg, see Chapter

6. The optimized dual arm system reduces this mass to 160kg, a reduction greater

than 50%, see Figure 7.12.
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Figure 7.12: Single Arm1 Torque: Original vs Optimized

Figure 7.13 shows the maximum joint torques in the original dual arm system

and the newly optimized system. The decrease in joint torques leads to a decrease

in joint mass, see Figure 7.14.

Figure 7.13: Dual Arm Torque: Original vs Optimized
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Figure 7.14: Dual Arm Joint Mass: Original vs Optimized

While the lower link length for Arm 1 is approximately the same as the original

design, all other link lengths have significantly decreased. Figure 7.15 shows the link

mass for each link of each arm.

Figure 7.15: Dual Arm Link Mass: Original vs Optimized
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7.5.2 Individual Optimize

Table 7.7 contains the optimized link lengths for the Independent and Coop-

erative dual arm systems. It is clear that optimizing the latter system as a whole

results in different link lengths than those found when optimizing the Independent

single arm systems.

This study looks at a dual arm system when it is comprised of Independently

optimized manipulators. Figure 7.16 shows the mass for the individually optimized

dual arm system as compared to the optimized Cooperative dual arm system.

Table 7.7: Summary of Optimization Results

Independent Arm1 Independent Arm 2 Dual Arm

Lower

Link(m)

Arm1 3.6m - 4.8

Arm2 - 2.9 1.6

Upper

Link(m)

Arm1 6.1m - 3.1

Arm2 - 5.6 3.4

Mass(kg)
Arm1 399.9 - 95.6

Arm2 - 354.6 65.8

143



Figure 7.16: Dual Arm Mass: Original vs Optimized

The independently optimized system has a total system mass of 321kg, which

is only 27kg lighter than the original cooperative dual arm design. The total mass

for the optimized cooperative dual arm system is 160kg, significantly lower than the

independently optimized system. In this example, the individually optimized results

still produce a lighter design than the original; however, this is not guaranteed.

Taking existing manipulators and using them together in an cooperative system,

although they may each be optimized independently, still results in a sub-optimal

Cooperative dual arm system.

7.5.3 Cooperative Dual Arm Study with Changing Base Location

This study optimizes the link lengths and the Y-coordinate of each arm in the

dual arm system, for a total of six variables. The tolerance of the GA is reduced in

order to ensure that the system mass converges to a minimum value.

The optimal design has a total mass of 160kg, which is the same mass as

the previous optimization. This shows that adding more variables to optimize the

144



system may not significantly decrease the overall mass. Careful selection of variables

can keep the GA run-time low.

Table 7.8: Multi-arm Optimization with Base

Arm Number Lower Link (m) Upper Link(m) Base Y-coordinate

1 5.163 1.59 -2.90

2 2.78 4.13 3.761

7.6 Conclusion

The upper and lower links, associated with joints 2 and 3, make up the majority

of the total manipulator lengths. Changing the lengths of these links can greatly

affect the total mass of the system. These links are varied using a genetic algorithm

(GA) to optimize an Independent single and Cooperative dual manipulators for mass

reduction. The links further out (links 4-6) are kept small to ensure fine precision

motion at the end-effector.

When both manipulators in a dual arm system are optimized together, the

system as a whole is optimized, and the total system mass may be significantly

reduced. If both manipulators are optimized individually, the system mass will be

higher than that of manipulators that are optimized together.

Many multi-arm systems are built by combining two or more pre-existing

manipulators together. While this method can create a capable multi-arm system, it

can lead to the false impression that multi-arm systems are bigger and heavier than

a single arm. Creating dual arm systems from the onset of the task definition allows
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for comprehensive optimization of the total system. The arms are optimized together

towards the completion of the task(s), resulting in a well-designed cooperative dual-

arm system with a significantly lower mass.

146



Chapter 8: Contributions and Conclusions

8.1 Contributions

This thesis answers the question: can the mass of a multi-arm system be less

than that of a single arm system? This paper lays out a task-based methodology

that estimates the mass of single and multi-arm systems using the assumption that

both systems are designed for the same task. In doing so, it shows that when the

joint mass is a significant portion of the total mass, moving to a multi-arm system

can result in a lighter total system mass. This research was able to:

• Develop a relationship to estimate the mass of a brushless-DC motor based

on the desired torque at a desired speed.

• Develop a force distribution method for a multi-arm system which ensures

that the mass is minimized

• Optimize a multi-arm system for space applications

• Minimize the system mass by changing the number of manipulators, the link

lengths of each manipulator, and the base positions

• Determine that a multi-arm system can be more mass efficient than a single
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manipulator in performing a task

• Optimize a multi-arm system for space applications

Over 100 brushless DC motors, from seven different manufacturers, are ana-

lyzed in order to determine motor mass. High-end motors, like the ones found in

robotic systems, are used to find a linear heuristic which relates the motor mass to

the torque for a given trajectory.

Shifting from an Independent single arm system to a Cooperative multi-arm

system requires the force-distribution problem to be solved before the total mass

can be estimated. Using this motor mass relationship allows linear programming

techniques to be used in order to guarantee a resulting minimum mass system. The

mass for a multi-arm system can now be estimated, allowing a direct comparison

between the single-and multi-arm systems.

A multi-arm system can be lighter than a single arm system. The forces/-

torques between the multiple manipulators balance and cancel out opposing forces/-

torques imparted by the additional arms; the manipulators work together, allowing

them to have significantly lower joint torques. Thus, multiple lighter manipulators,

with lower joint torques, are just as powerful as one heavier arm.

In addition to looking at how the number of manipulators can lower the to-

tal system mass, the link lengths and base location are also analyzed. A genetic

algorithm is used to optimize these variables for both the single and the dual arm

system. Optimizing the link lengths showed a significant reduction in the total sys-

tem mass. The single arm case showed a mass reduction of 11% in Arm 1 and 19%
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in Arm 2.

The dual arm system can be optimized using two different methods. Method 1

optimizes each arm individually. The link lengths of each manipulator are optimized

to perform the task as if they were working independently. The second method is

to optimize both manipulators together. This method optimizes the system rather

than the individual components. Optimizing the system as a whole results in a

significantly lighter dual arm system, which is almost 50% lighter than the first

method and 55% lighter than Arm 2 working independently (even when Arm 2 was

optimized to perform the same task).

Multi-arm systems provide many benefits over a single arm system including

increased flexibility in mission planning, lower joint torques, and improved handling

capabilities. In addition, they can also have a larger workspace than a single arm.

There are many benefits that are inherent when working with multi-arm systems.

This paper shows that a multi-arm system can also be a lighter-weight option as

well. Though they are more complex, multi-arm systems can be incredibly powerful

tools.

8.2 Design Insight for Multi-Arm Systems

Mass estimations are done for single and dual arm systems using a task driven

study. A docking task, with a large inertial payload, was used to directly compare

the two systems. While the performances of each system are not guaranteed for

every additional task, this example provides insights into the design of multi-arm
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systems.

8.2.1 When can moving to multi-arms reduce the total mass?

Moving from an Independent single arm system to a Cooperative multi-arm

system can reduce the total system mass when the system mass is driven by the

joint masses. The mass reduction from moving to a multi-arm system results from

reducing the joint torques and thus the joint masses. A multi-arm system can only

be lighter than a single arm system when the joint masses account for the majority

of the total system mass. A multi-arm system will have a higher link mass than a

single-arm, assuming the manipulators have the same kinematic structure and thus

comparable link masses.

Equation 8.1 is a simplified estimation for the total system mass for a single

Independent manipulator. Equation 8.2 is the simplified system mass for an n-arm

Cooperative system.

SystemMassIndependent = LinkMass+ JointMassIndependent (8.1)

SystemMassCooperative = n ∗ LinkMass+
n arms∑
i=1

(JointMassesCooperative) (8.2)

The key is to find when the mass of a cooperative multi-arm system is less than

(or equal to) the independent single arm system. This would allow a cooperative

system to be used with all the benefits inherent to a multi-arm system, without a

mass penalty.
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Looking at the single arm design for a given task can give an indication of

whether or not moving to a multi-arm system will provide a lower mass option.

SystemMassCooperative ≤ SystemMassIndepedent (8.3)

Substituting equation 8.1 and 8.2 into 8.3, the inequality can be written in

terms of the joint and link masses. The sum of the joint masses in the cooperative

multi-arm system must be greater than zero, otherwise the resulting system would

have no motors and joints.

0 <
n arms∑
i=1

(JointMassesCooperative) ≤ JointMassIndependent − (n− 1)LinkMass

0 < JointMassIndependent − (n− 1)LinkMass

(n− 1)LinkMass < JointMassIndependent

(8.4)

If the inequality in equation 8.5 is found to be true for an Independent single

arm, then it is possible that a multi-arm system is a lower mass option. This

equation does not guarantee that a multi-arm system will be be lighter, but it is an

indication that it is worth expanding the design study.

(n− 1) < JointMassIndependent/LinkMass (8.5)

For a dual arm system, n = 2, the link mass should be less than the joint mass

in order to justify moving to a dual arm system. Using the same equation (Equation
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8.5 for a triple arm system, n = 3, the joint mass of the single arm must be at least

twice that of the link mass in order to justify moving to a three arm system. This is

a very simplified equation, and it assumes the link mass for all arms are the same.

This does not guarantee that the multi-arm system will be lighter, but it does give

an indication when moving to multi-arm design may provide some mass saving.

8.2.2 Shorter Arms are Not Always Lighter

Shorter links do not always lead to a lower system mass; shorter links lead to

a lower link mass. Changing the link lengths will alter the trajectory and thus the

required joint torques and the joint masses. It is difficult to say whether or not the

new link lengths will increase or decrease the system mass.

An exhaustive numerical study estimates the total mass for Arm 1 over a

number of link lengths. While the original Arm 1 design has a total mass of 450kg,

with main link lengths of 5m and 5.8m, there are a number of manipulator designs

with longer link lengths that can reduce the mass. For example, a design with link

lengths of 6.4m and 6.1m results in a total system mass of 430.5kg.

8.2.3 When to Optimize a Multi-arm system

Despite being given the same task and same mounting points, the optimized

single arm and multi-arm systems have different final link lengths. Optimizing each

arm independently and then affixing them together to form a cooperating multi-

arm system may not result in an optimal system, but rather an over-engineered
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design. Optimization should be done on the entire system after the task has been

well-defined.

8.3 Future Work

8.3.1 Multiple Tasks

While this work focused on a single task-based design methodology, it is im-

portant to consider how changing the task may impact the systems. For example,

it is very important that the same design works well for many tasks, but the system

cannot not be optimized for every task. Future design considerations should be

expanded to include multiple tasks.

This paper also focuses on tasks that took place in the combined workspace.

Tasks which occur outside the combined workspace, which are done by only one

arm, should also be considered when optimizing the manipulators.

8.3.2 Trajectory Design

All payload trajectories are calculated assuming a simple trapezoidal trajec-

tory between two points. More complex trajectory designs can be incorporated to

minimize spacecraft disturbances or to reduce the joint torques.

Although this study focused on non-redundant manipulators, the methodology

still holds true for redundant manipulators. The additional degrees of freedom in re-

dundant systems allows a designer to incorporate more complex trajectories in order

to further minimize joint torques. Future studies should include the incorporation
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of more complex trajectory designs.

8.3.3 Internal Forces

This research assumes that the payload is capable of handling internal forces.

If the payload is more fragile, the internal forces can damage the payload; additional

constraints should be applied to the minimum-mass force distribution method to en-

sure the internal forces do not exceed a specified limit. Future work includes studying

how constraining the internal forces affects the mass-minimizing and minimizing-

energy force-distribution methods.

8.3.4 Friction

This thesis did not include motor friction in torque estimates. A multi-arm

system with more motors will be more affected by friction. Including friction will not

only affect the total weight of the system, but can also change the force distribution

between the manipulators.

8.3.5 Transferring Payloads

One of the inherent benefits of multi-arm systems is the flexibility they provide

in planning. Here, it was assumed that every manipulator in the multi-arm system is

handling the payload at all times. However, a multi-arm system could also be used to

pass a payload between themselves. Considering how many and when manipulators

should be used, as well as where/when they should be grasping and transferring
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payloads is part of the flexibility multi-arm systems provide.

8.3.6 Further Optimization

Many of the task parameters can be defined as a constraint or range of values

rather than a single value. For example, the grasping locations on the payload may

not be a single point, but may instead lie around a ring, or on a hand rail, or an

entire side of the payload. In addition, the angle of attachment may be a range

of angles rather than a single pre-specified one. There are many different variables

which can be optimized to design a better multi-arm system.

The Y-coordinate of the base location was added to the optimization, in addi-

tion to looking at the major link lengths. Adding this additional variable was able

to reduce the mass for the single arm system. However, adding this variable to the

multi-arm system did not change the total optimized system mass.

The addition of different variables to the optimization should be considered

carefully, as some variables will have more of an effect than others, and the variables

will interact with each other.

8.4 Conclusion

This thesis shows that switching to a multi-arm system can reduce the to-

tal system mass when designed properly. While multi-arm systems are inherently

more complex than single arm systems, that complexity does not necessarily trans-

late to mass. In mass restricted systems, where the total mass is driven by the
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joints, switching to a multi-arm system should be considered as a method of further

reducing the mass.
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Appendix : Kollmorgen Motor Curves

Kollmorgen Motor RBE Family: 410 Series

Torque (Ncm)

RPM RBE_0410 RBE_0411 RBE_0412

_______ ________ ________ ________

0 0.01 0.01 0.01

500 0.0095 0.0095 0.0095

1000 0.009 0.009 0.009

1500 0.008 0.008 0.008

2000 0.0065 0.0065 0.0065

2500 0.0051 0.0051 0.0051

3000 0.004 0.004 0.004

3500 0.0015 0.0015 0.0015

4000 1e-06 1e-06 1e-06
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Kollmorgen Motor RBE Family: 510 Series

Torque (Ncm)

RPM RBE_0510 RBE_0511 RBE_0512 RBE_0513

_____ ________ ________ ________ ________

1 0.025 0.05 0.072 0.088

2500 0.023 0.048 0.068 0.0855

5000 0.022 0.047 0.065 0.08

10000 0.02 0.041 0.055 0.065

15000 0.017 0.034 0.042 0.042

17500 0.016 0.03 0.03 0.015

20000 0.014 0.021 0.025 1e-06

25000 0.01 1e-06 1e-06 1e-06

30000 0.004 1e-06 1e-06 1e-06

32500 1e-06 1e-06 1e-06 1e-06
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Kollmorgen Motor RBE Family: 710 Series

Torque (Ncm)

RPM RBE_0710 RBE_0711 RBE_0712 RBE_0713 RBE_0714

_____ ________ ________ ________ ________ ________

1 0.055 0.105 0.15 0.195 0.25

2500 0.053 0.1 0.145 0.185 0.235

5000 0.05 0.0975 0.14 0.175 0.22

10000 0.0475 0.085 0.115 0.14 0.165

15000 0.04 0.0675 0.07 0.07 0.03

17500 0.038 0.055 0.05 1e-06 1e-06

20000 0.031 0.031 1e-06 1e-06 1e-06

22500 0.0275 1e-06 1e-06 1e-06 1e-06

25000 0.02 1e-06 1e-06 1e-06 1e-06

28000 1e-06 1e-06 1e-06 1e-06 1e-06
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Kollmorgen Motor RBE Family: 1210 Series

Torque (Ncm)

RPM RBE_1210 RBE_1211 RBE_1212 RBE_1213 RBE_1214 RBE_1215

_____ ________ ________ ________ ________ ________ ________

0 0.12 0.22 0.32 0.4 0.49 0.65

2000 0.11 0.215 0.3 0.37 0.45 0.59

4000 0.105 0.2 0.27 0.34 0.38 0.45

6000 0.1 0.19 0.25 0.27 0.27 0.23

8000 0.095 0.17 0.2 0.2 0.1 1e-06

10000 0.08 0.13 0.11 0.04 1e-06 1e-06

12000 0.075 0.08 1e-06 1e-06 1e-06 1e-06

14000 0.06 1e-06 1e-06 1e-06 1e-06 1e-06

16000 0.05 1e-06 1e-06 1e-06 1e-06 1e-06

18000 0.02 1e-06 1e-06 1e-06 1e-06 1e-06

20000 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06
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Kollmorgen Motor RBE Family: 1510 Series

Torque (Ncm)

RPM RBE_1510 RBE_1511 RBE_1512 RBE_1513 RBE_1514 RBE_1515 RBE_1516

_____ ________ ________ ________ ________ ________ ________ ________

0 0.19 0.34 0.49 0.62 0.78 0.88 1.06

1000 0.18 0.33 0.46 0.59 0.72 0.82 0.96

2000 0.17 0.32 0.44 0.57 0.66 0.76 0.86

3000 0.16 0.3 0.4 0.48 0.56 0.62 0.66

4000 0.15 0.28 0.35 0.4 0.44 0.45 0.36

5000 0.14 0.24 0.3 0.3 0.14 1e-05 1e-05

6000 0.12 0.2 0.2 0.05 1e-05 1e-05 1e-05

8000 0.1 0.02 1e-06 1e-06 1e-06 1e-06 1e-06

10000 0.06 1e-06 1e-06 1e-06 1e-06 1e-06 0

12000 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 0
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Kollmorgen Motor RBE Family: 1810 Series

Torque (Ncm)

RPM RBE_1810 RBE_1811 RBE_1812 RBE_1813 RBE_1814 RBE_1815

_____ ________ ________ ________ ________ ________ ________

0 0.43 0.83 1.2 1.52 1.85 2.15

1000 0.42 0.8 1.15 1.44 1.72 2

2000 0.4 0.76 1.08 1.34 1.64 1.8

3000 0.38 0.72 1 1.18 1.32 1.48

4000 0.36 0.64 0.85 0.88 0.88 0.88

6000 0.3 0.44 0.3 1e-06 1e-06 1e-06

7000 0.28 0.24 1e-06 1e-06 1e-06 1e-06

8000 0.22 1e-06 1e-06 1e-06 1e-06 1e-06

10000 0.05 1e-06 1e-06 1e-06 1e-06 1e-06

12000 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06

Kollmorgen Motor RBE Family: 2110 Series

Torque (Nm)

RPM RBE_2110 RBE_2111 RBE_2112 RBE_2113 RBE_2114 RBE_2115

____ ________ ________ ________ ________ ________ ________

0 0.7 1.7 2.4 2.9 3.6 4.5

1000 0.68 1.6 2.3 2.8 3.3 4

2000 0.65 1.5 2.1 2.5 2.8 3.5

3000 0.6 1.35 1.75 2 2.05 2.5
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4000 0.58 1.2 1.25 1.25 0.75 0.0001

4500 0.55 1 0.75 0.05 0.0001 0.0001

5000 0.45 0.85 0.4 0.0001 0.0001 0.0001

6000 0.4 0.5 0.0001 0.0001 0.0001 0.0001

7000 0.25 0.0001 0.0001 0.0001 0.0001 0.0001

8000 0.05 0.0001 0.0001 0.0001 0.0001 0.0001

9000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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Kollmorgen Motor RBE Family: 3010 Series

Torque (Nm)

RPM RBE_3010 RBE_3011 RBE_3012 RBE_3013 RBE_3014 RBE_3015 RBE_3016

____ ________ ________ ________ ________ ________ ________ ________

0 3.2 5.2 7.8 9.8 11.2 13.5 15.2

500 3.1 5 7.5 8.6 10.8 12.5 14

1000 3 4.9 7 8.5 9.5 11 12

1500 2.9 4.5 6.2 7.3 8 8.3 9.2

1750 2.85 4.25 5.6 6.25 6.25 6.25 6.2

2000 2.6 4 5.3 5.5 5.1 3.8 0.0001

2250 2.5 3.5 3.7 4.2 3 0.0001 0.0001

2500 2.4 2.4 3.1 2 2 0.0001 0.0001

3000 2.1 2.2 0.0001 0.0001 0.0001 0.0001 0.0001

3500 1.8 1 0.0001 0.0001 0.0001 0.0001 0.0001

4000 1.3 0.0001 0.0001 0.0001 0.0001 1e-05 0.0001

4500 0.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

5000 0.0001 0.0001 0.0001 0.0001 0.0001 0 0.0001
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Kollmorgen Motor RBE Family: 4510 Series

Torque (Nm)

RPM RBE_4510 RBE_4511 RBE_4512

____ ________ ________ ________

0 7.1 14.8 21.2

500 6.9 14.2 20.2

1000 6.7 13.5 18.5

1500 6.3 12 16

2000 6 10.5 12

2500 5.5 8 5.5

3000 5 5 0.0001

3500 4.1 0.0001 0.0001

4000 3.3 0.0001 0.0001

4500 2 0.0001 0.0001

5000 0.0001 0.0001 0.0001
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Kollmorgen Motor RBE Family: 6210 Series

Torque (Nm)

RPM RBE_6210 RBE_6211 RBE_6212

____ ________ ________ ________

0 12.5 27 39

500 12 25.5 36

1000 11.5 22 32

1500 11 20 24

2000 10 14 19

2250 9.5 11 4

2500 9 6 0.0001

3000 7 0.0001 0

3500 4 0.001 0

4000 0.0001 0.0001 0
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Series Mass (kg) Series Mass (kg) Series Mass (kg) Series Mass (kg)

’0410’ 0.0864 ’0510’ 0.108 ’0710’ 0.221 ’1210’ 0.32

’0411’ 0.1116 ’0511’ 0.126 ’0711’ 0.265 ’1211’ 0.402

’0412’ 0.1386 ’0512’ 0.145 ’0712’ 0.304 ’1212’ 0.477

’0513’ 0.165 ’0713’ 0.344 ’1213’ 0.552

’0714’ 0.391 ’1214’ 0.641

’1215’ 0.85

Series Mass (kg) Series Mass (kg) Series Mass (kg) Series Mass (kg)

’1510’ 0.539 ’1810’ 0.85 ’2110’ 0.907 ’3010’ 3.43

’1511’ 0.665 ’1811’ 1.08 ’2111’ 1.46 ’3011’ 4.6

’1512’ 0.78 ’1812’ 1.3 ’2112’ 2 ’3012’ 5.9

’1513’ 0.895 ’1813’ 1.52 ’2113’ 2.5 ’3013’ 7.05

’1514’ 1.03 ’1814’ 1.73 ’2114’ 3.04 ’3014’ 8.1

’1515’ 1.13 ’1815’ 1.96 ’2115’ 3.54 ’3015’ 9.5

’1516’ 1.38 ’3016’ 10.6

Series Mass (kg) Series Mass (kg)

’4510’ 6.35 ’6210’ 10.1

’4511’ 8.39 ’6211’ 13.5

’4512’ 10.4 ’6212’ 16.9
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Appendix : Maxon Motor Curves
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Series Motor

Weight

(g)

Lower

RPM

mid

RPM

max

RPM

Torque

(Nm) at

low RPM

Torque (Nm)

at mid RPM

Torque (Nm) at

max RPM

EC90 flat 24 0.6 0 3000 5000 0.475 0.425 0.41

EC 60 Flat 12 a 0.47 0 3000 6000 0.265 0.275 0.25

EC 45 flat 70W 24 0.141 0 6000 10000 0.1175 0.128 0.124

EC45 flat 50 W 0.11 0 5000 10000 0.083 0.08 0.074

EC45 flat 30 W 0.075 0 6000 10000 0.05 0.06 0.058

EC45flat 12W 0.057 0 6000 10000 0.0275 0.022 0.025

EC32Flat 15W 0.046 0 6000 10000 0.021 0.026 0.028

EC32flat 6 W 0.032 0 6000 12000 0.006 0.008 0.011

EC20 flat 5W 0.022 0 8000 15000 0.006 0.008 0.009

EC20 flat 3W 0.012 0 7500 15000 0.0035 0.00425 0.005

EC 14 flat 0.008 0 12500 22000 0.0015 0.00175 0.002

EC 10 flat 0.00082 0 8000 22000 0.0002125 0.00021 0.000205

EC 9 flat .5 W 0.003 0 16000 25000 0.00081 0.000725 0.00065

EC-I 52 180W 0.82 0 3000 6000 0.64 0.575 0.3

EC-I 40 100 W 0.39 0 4000 8000 0.23 0.2 0.125

Ec-I 40 70W 0.25 0 6000 10000 0.16 0.135 0.09

Eci-40 50W 0.18 0 6000 10000 0.088 0.075 0.055

EC-4pole 32 220W 0.86 0 6000 12000 0.34 0.31 0.29

EC-4pole 30 200W 0.3 0 15000 25000 0.13 0.1 0

EC-4pole 30 150W 0.3 0 1500 25000 0.125 0.1 0

EC-4pole 30 100W 0.21 0 15000 25000 0.065 0.055 0.05

EC-4pole 22 120W 0.175 0 15000 25000 0.059 0.05 0.041

EC-4pole 22 90W 0.12 0 15000 25000 0.042 0.04 0.039

EC-max 40 120 W 0.72 0 6000 12000 0.175 0.165 0.145

EC-max 40 70 W 0.46 0 6000 12000 0.085 0.084 0.083
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Series Motor

Weight

(g)

Lower

RPM

mid

RPM

max

RPM

Torque

(Nm) at

low RPM

Torque (Nm)

at mid RPM

Torque (Nm) at

max RPM

EC-max 30 60W 0.305 0 7500 15000 0.058 0.05 0.045

EC-max30 40w 0.195 0 7500 15000 0.031 0.029 0.025

EC-max 22 25W 0.11 0 9000 18000 0.0225 0.0205 0.018

Ecmax 22 12W 0.083 0 9000 18000 0.011 0.0105 0.01

Ecmax 16 8W 0.052 0 10000 20000 0.0073 0.007 0.0065

Ecmax 16 5W 0.036 0 10000 20000 0.0031 0.00285 0.00275

EC 60 400 W 2.45 0 3500 7000 0.82 0.725 0.65

EC 45 250 W 1.15 0 6000 12000 0.31 0.295 0.27

E45 150W 0.85 0 7500 15000 0.18 0.165 0.15

EC 40 170W 0.58 0 9000 18000 0.16 0.145 0.11

EC 32 80W 0.27 0 12500 25000 0.048 0.041 0.038

EC 25 250W 0.24 0 35000 70000 0.048 0.042 0.034

EC-22 80W 0.21 0 10000 20000 0.055 0.0525 0.05

EC 22 100W 0.128 0 30000 60000 0.048 0.045 0.04

EC 22 40W 0.085 0 30000 60000 0.02 0.0185 0.0175

EC 16 60W 0.058 0 35000 70000 0.016 0.015 0.012

EC 16 30W 0.034 0 35000 70000 0.008 0.0075 0.0065

EC 13 50W 0.044 0 45000 90000 0.008 0.0075 0.00675

EC13 30W 0.037 0 45000 90000 0.00505 0.0046 0.004

EC13 12 W 0.029 0 25000 50000 0.0061 0.006 0.0059

EC 13 6W 0.019 0 25000 50000 0.0025 0.00245 0.0024

EC10 8 W 0.013 0 32500 65000 0.00182 0.00175 0.0015

EC 8 2 W 0.006 0 40000 80000 0.000835 0.000825 0.000775

EC 6 2W 0.003 0 60000 100000 0.00048 0.00047 0.00046

EC6 1.5W 0.003 0 60000 100000 0.000325 0.0003175 0.00031

EC4 1 W 0.0018 0 30000 50000 0.00032 0.0003 0.00028

EC4 .5W 0.0012 0 30000 50000 0.0002 0.00019 0.00018
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Appendix : Mag Motor Curves
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Series Motor

Weight

(kg)

Lower

RPM

mid

RPM

max

RPM

Torque

(Nm) at

low RPM

Torque

(Nm) at

mid RPM

Torque

(Nm) at

max RPM

B23-075 0.50 0 3000 6000 0.28 0.14 0

B23-150 0.82 0 3000 6000 0.56 0.28 0

B23-225 1.18 0 3000 6000 0.81 0.40 0

B23-300 1.50 0 3000 6000 1.02 0.51 0

B34-200 2.63 0 3000 6000 1.77 0.88 0

B34-300 3.36 0 3000 6000 2.68 1.34 0

B34-400 4.08 0 3000 6000 3.18 1.59 0

B34-500 4.81 0 3000 6000 4.17 2.08 0

BFA23-100 0.64 0 3500 7000 0.42 0.21 0

BFA23-200 1.09 0 3500 7000 0.81 0.41 0

BFA23-300 1.54 0 3500 7000 1.20 0.60 0

BFA23-400 1.95 0 3500 7000 1.62 0.81 0

BFA34-200 2.63 0 3000 6000 1.91 0.95 0

BFA34-300 3.36 0 3000 6000 2.68 1.34 0

BFA34-400 4.08 0 3000 6000 3.46 1.73 0

BFA34-500 4.81 0 3000 6000 4.24 2.12 0

BFA42-200 4.40 0 3000 6000 4.59 2.30 0

BFA42-300 5.81 0 3000 6000 6.36 3.18 0

BFA42-400 7.26 0 3000 6000 8.47 4.24 0

BFA42-600 10.98 0 3000 6000 11.30 5.65 0
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Appendix : Woodward Motor Curves
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Series Motor

Weight

(kg)

Lower

RPM

mid

RPM

max

RPM

Torque

(Nm) at

low RPM

Torque

(Nm) at

mid RPM

Torque

(Nm) at

max RPM

’D Short’ 0.128 0 10000 20000 0.11 0.10 0

’D Long’ 0.156 0 8000 20000 0.21 0.19 0

’E Short’ 0.255 0 8000 20000 0.28 0.27 0

’E Long’ 0.340 0 7000 20000 0.56 0.55 0

’E Double Long’ 0.567 0 10000 20000 1.48 1.13 0

’F Short’ 0.369 0 10000 20000 0.56 0.40 0

’F Long’ 0.680 0 11000 20000 1.34 1.17 0

’H Short’ 0.907 0 11000 20000 1.34 1.13 0

’H Long’ 1.191 0 10000 20000 2.82 2.12 0

’H Double Long’ 1.871 0 10000 18000 4.24 2.82 0

’L’ 2.835 0 7000 14000 5.65 4.59 0
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Appendix : Moog Motor Curves
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Series Motor

Weight

(kg)

Lower

RPM

mid

RPM

max

RPM

Torque

(Nm) at

low RPM

Torque

(Nm) at

mid RPM

Torque

(Nm) at

max RPM

BN42-231P-01 1.85 0 6050 6100 0 0.72 1.02

BN42-231P-02 1.85 0 5950 6100 0 0.80 1.10

BN42-231P-03 1.85 0 6140 6150 0 0.78 1.09

BN42-331P-01 2.95 0 3710 3850 0 1.50 1.88

BN42-331P-02 2.95 0 4710 4750 0 1.40 1.98

BN42-331P-03 2.95 0 4710 4750 0 1.41 2.03

BN42-431P-01 4.06 0 2380 2500 0 2.40 2.73

BN42-431P-02 4.06 0 3840 3950 0 2.05 2.81

BN42-431P-03 4.06 0 3840 4000 0 2.09 2.87

BN42-531P-01 5.17 0 1740 1810 0 3.18 3.50

BN42-531P-02 5.17 0 2820 2950 0 2.92 3.60

BN42-531P-03 5.17 0 2820 2900 0 2.96 3.66

179



Appendix : Gems Motor Curves

Series Mass (kg) Rated RPM Torque (mNm)

110-430 4.5 3000 3.2

140-430 5.8 3000 4.8

170-430 7 3000 6.4

170-415 7 1500 6.4

110-630 4.5 3000 3.2

170-630 7 3000 6.4

230-630 9.5 3000 9.6

230-730 9.5 3000 9.6
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Motor Series: GM110BLF
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Appendix : Anaheim Automation Motor Curves
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Series Motor

Weight

(kg)

Lower

RPM

mid

RPM

max

RPM

Torque

(Nm) at

low RPM

Torque

(Nm) at

mid RPM

Torque

(Nm) at

max RPM

BLWR092S-12V-8000 0.28 0 2800 6200 0.15 0.07 0.00

BLWR0935-12V-500 0.28 0 3200 5600 0.15 0.08 0.02

BLWR110S-15V-8000 0.28 0 8500 16000 0.15 0.05 0.00

BLWR112S-24V-3700 0.07 0 4800 10800 0.02 0.01 0.00

BLWR112S-24V-5000 0.13 0 300 1000 0.01 0.01 0.00

BLWR093S-24V-3500 0.12 0 2800 5950 0.05 0.03 0.00

BLWR092S-24V-4600 0.07 1000 4000 7000 0.02 0.01 0.00

BLY172D-24V-4000 2.60 2350 2800 3000 2.82 0.85 0.00

BLY171D-24V-4000 1.85 2700 3200 3600 1.41 0.49 0.00

BLY173D-24V-4000 4.00 2700 3200 3400 3.39 1.06 0.00

BLY174D-24V-4000 1.50 2750 3500 4100 0.71 0.21 0.00

BLWR111S-24V-10000 0.45 3000 3900 5500 0.19 0.11 0.00
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Series Motor

Weight

(kg)

Lower

RPM

mid

RPM

max

RPM

Torque

(Nm) at

low RPM

Torque

(Nm) at

mid RPM

Torque

(Nm) at

max RPM

BLWR112S-36V-10000 0.50 3300 4500 5700 0.20 0.08 0.00

BLWS232D-36V-4000 0.30 3500 4900 6100 0.08 0.04 0.00

BLWS231D-36V-4000 0.65 3500 4200 6000 0.26 0.15 0.00

BLWS234D-36V-4000 0.38 3600 4000 6100 0.11 0.06 0.00

BLWS235D-36V-4000 1.00 3700 4000 4900 0.42 0.30 0.00

BLWS233D-36V-4000 1.25 3800 4800 5100 0.56 0.14 0.00

BLY343S-48V-3200 0.75 4000 4800 5200 0.28 0.07 0.00

BLY342S-48V-3200 0.80 4000 4900 5800 0.28 0.12 0.00

BLY344S-48V-3200 0.08 4200 7800 10400 0.04 0.02 0.01

BLY341S-48V-3200 0.06 5200 7000 9300 0.02 0.01 0.00
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Appendix : Code: Load Variables

This code is used to load the various variables necessary to perform the task-based design.

These variables are organized in a structure which allows variables to be easily passed between

functions. These variables are NOT locked and are meant to be changed as part of optimization.

In addition to loading variables, this also generates the robotic arms using Peter Corke’s

Robotic Toolbox.

All the code for this dissertation can also be found on github under katzchen/Disserta-

tion OptimizedTaskBasedSpaceRobotics. The code was developed using MatLab 2017a and makes

use of the Optimization toolbox, parallel computing toolbox, and Peter Corke’s Robotics toolbox.

1 function AllVariables = LoadAllVariables SRMS simple()

2

3 'Loading SRMS'

4 path(path ,'C:/Users/.../MATLAB/RobotToolBox/rvctools')

5 path(path ,'C:/Users/.../MATLAB/RobotToolBox/rvctools')

6 startup rvc

7 format compact

8

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 %Task Description

11 totaldistancetotravel =0;
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12 x task start = −totaldistancetotravel/2;

13 x task end = −x task start;

14

15 %Create an array of all other variables htat will be passed in

16 %This is to just make it easier to keep track/pass all ...

information through

17 %the GA/whatever easier

18

19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20 %All Task related variables

21 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

22

23 AllVariables.Task.MinThickness= 0.0254*(1/16);

24 %m, min thickness between outer and inner diaemters, 1/16" = 1.58mm;

25 AllVariables.Task.maxVelocity xyz= .06;%m/s %SRMS

26 AllVariables.Task.maxVelocity rpy= .06;%m/s %SRMS

27 AllVariables.Task.Mpayload=14515; %kg

28 AllVariables.Task.Lpayload=[3 3 3]; %length in m

29 AllVariables.Depth.currentLevel = 0; %NOT USED, was for ...

workspace calculation

30 AllVariables.Depth.maxLevel = 3;%NOT USED, was for workspace ...

calculation

31 AllVariables.Task.DesiredTime= 1; %seconds, if complex this is ...

per segment

32

33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34 %Trajectory Variables
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35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36

37 AllVariables.Task.ComplexMotion.Code = 0;

38 %1 for circle, 2 for square, 3= rotating square

39 if AllVariables.Task.ComplexMotion.Code == 3

40 AllVariables.Task.ComplexMotion.Nsegments = 8;

41 %number of segments

42 else

43 AllVariables.Task.ComplexMotion.Nsegments = 4;

44 %number of segments

45 end

46 AllVariables.Task.ComplexMotion.XDistance = 4;

47 %either the radii of the circle, or the length of the planar square

48 AllVariables.Task.ComplexMotion.YDistance = 4;

49 %either the radii of the circle, or the length of the planar square

50 AllVariables.Task.task start=[4.3508 2.4570 7.4396];

51 % of the main payload relative to global;

52 AllVariables.Task.task end= [7 0 2];

53 %theta is about [z Y X]

54 AllVariables.Task.theta task start=[20 135 20]*pi/180;

55 %of the main payload relative to global;

56 AllVariables.Task.theta task end=[0 0 0];

57 AllVariables.Task.npoints=10;

58 %HALF the number of points used in trajecotries

59

60 AllVariables.Task.DecelerationTime xyz = 1;% must stop in 1 second

61 AllVariables.Task.DecelerationTime rpy = 1;% must stop in 1 second
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62 AllVariables.Task.maxAcceleration xyz =

63 AllVariables.Task.maxVelocity xyz/AllVariables.Task.DecelerationTime xyz;

64 AllVariables.Task.maxAcceleration rpy =

65 AllVariables.Task.maxVelocity rpy/AllVariables.Task.DecelerationTime rpy;

66 AllVariables.Task.ForceAtStart = [0 0 0 0 0 0]'; %these are ...

glbal coordinates

67 AllVariables.Task.ForceAtEnd = [0 0 0 0 0 0]';

68 AllVariables.Task.ForceContinuous = [0 0 0 0 0 0]';

69 %continous torque while moving in addition to the moving in GLOBAL

70 AllVariables.Task.Velocity angularlimit = 2*pi/10;

71 %1 full circle in 10 seconds

72 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

73 %Variables for plotting

74 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

75

76 AllVariables.Task.plot=0; %0 = no plot

77 AllVariables.Arm(1).plot=0;%0 = no plot

78 AllVariables.Arm(1).plotmovie=0;%0 = no plot

79 AllVariables.Arm(2).plot=0;%0 = no plot

80 AllVariables.Arm(2).plotmovie=0;%0 = no plot

81

82 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

83 %All Arm related variables

84 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

85

86 AllVariables.Arm(1).xyz base = [0 −2 0]; %base of arm 1

87 AllVariables.Arm(1).ArmLength= [1.8 5 5.8 1.6 .5 .5];% .1 .6 .4];0
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88 AllVariables.Arm(1).Armoffset= [0 0 0 0 0 0];

89 AllVariables.Arm(1).armtype= 2;

90 %armtype 1 == normal, %armtype 2= SRMS

91 AllVariables.Arm(1).PayloadGrip=[−AllVariables.Task.Lpayload(1)/2 ...

...

92 −AllVariables.Task.Lpayload(1)/2 0*AllVariables.Task.Lpayload(3)];

93 AllVariables.Arm(1).theta grasp start=[−0*pi/2 0 0];

94 %[−0*pi/180 0*pi/180 0*pi/180]; %relative to the payload

95 AllVariables.Arm(1).theta grasp end=AllVariables.Arm(1).theta grasp start;

96 AllVariables.Arm(1).IsPlanar = 0; %1 = yes

97 AllVariables.Arm(1).MotorTorqueSensitivity =

98 .07*ones(length(AllVariables.Arm(1).ArmLength),1);

99 AllVariables.Arm(1).gravity = [0 0 0]; %gravity vector

100 AllVariables.Arm(1).gearratio = 160;

101 AllVariables.Arm(1).MaxDeflectionPerLength = 1/200;

102 AllVariables.Arm(1).material.poisson = .2;

103 AllVariables.Arm(1).material.E = 160*10ˆ9;%Pa

104 AllVariables.Arm(1).material.BendingStressMax =

105 (276*10ˆ6)/2; %FOS = 2, based on yield (tensile)

106 AllVariables.Arm(1).material.Density = 1700; %kg/mˆ3

107 AllVariables.Arm(1).TotalArmLength = 15.2;

108 %is assigned in ChangeArmLength

109 AllVariables.Arm(1).material.MinThickness= 0.0254*(1/16)/2;

110 %m, min thickness between outer and inner diaemters, 1/16" = 1.58mm;

111 AllVariables.Arm(1).JointLimits = [−2*pi 2*pi; −2*pi 2*pi;...

112 −2*pi 2*pi;−2*pi 2*pi; −2*pi 2*pi;−2*pi 2*pi];

113 AllVariables.Arm(1).name ='arm1';
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114 AllVariables.Arm(1).linkcolor =[0 .5 0];

115 AllVariables.Arm(1).EEMaxMovementBy1Degree = .1; %m

116 AllVariables.Arm(1).EEJoints = 3;

117 %how many joints (from the end down) will have this limit

118 AllVariables.Arm(1).NumberOfStillViews= 2;

119 %used for plotting purpoes, how many still views per row

120 AllVariables.Arm(1).TrajGenAngle=[32.4 50.5 263 50.4 151 ...

88.2]*pi/180;

121 %gives an initial guess for the trajectory generation

122 %mostly used for more complex segments

123

124 AllVariables.Arm(2).xyz base = [0 2 0];%base of arm 2

125 AllVariables.Arm(2).ArmLength= AllVariables.Arm(1).ArmLength;

126 AllVariables.Arm(2).Armoffset= AllVariables.Arm(1).Armoffset;

127 AllVariables.Arm(2).PayloadGrip=[−AllVariables.Task.Lpayload(1)/2 ...

...

128 AllVariables.Task.Lpayload(2)/2 0*AllVariables.Task.Lpayload(3)/2];

129 AllVariables.Arm(2).theta grasp start=[−0*90 0 0]*pi/180;

130 AllVariables.Arm(2).theta grasp end=AllVariables.Arm(2).theta grasp start;

131 AllVariables.Arm(2).IsPlanar = 0; %1 = yes

132 AllVariables.Arm(2).MotorTorqueSensitivity =

133 .07*ones(length(AllVariables.Arm(2).ArmLength),1);

134 AllVariables.Arm(2).gravity = [0 0 0]; %gravity vector

135 AllVariables.Arm(2).gearratio = 160;

136 AllVariables.Arm(2).MaxDeflectionPerLength =

137 AllVariables.Arm(1).MaxDeflectionPerLength;

138 AllVariables.Arm(2).material = AllVariables.Arm(1).material;
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139 AllVariables.Arm(2).TotalArmLength = 15.2; %is assigned in ...

ChangeArmLength

140 AllVariables.Arm(2).JointLimits = [−2*pi 2*pi; −2*pi 2*pi;...

141 −2*pi 2*pi;−2*pi 2*pi; −2*pi 2*pi;−2*pi 2*pi];

142 AllVariables.Arm(2).name ='arm2';

143 AllVariables.Arm(2).linkcolor =[.5 0 .5];

144 AllVariables.Arm(2).EEMaxMovementBy1Degree = .1; %m

145 AllVariables.Arm(2).EEJoints = 3;

146 %how many joints (from the end down) will have this limit

147 AllVariables.Arm(2).NumberOfStillViews= ...

AllVariables.Arm(1).NumberOfStillViews;

148 AllVariables.Arm(2).TrajGenAngle=[1.6780 0.1969 ...

149 −0.5575 1.6761 2.9749 −0.6735]*pi/180;

150 gives an initial guess for the trajectory generation − mostly ...

used for more complex segments

151 AllVariables.Arm(2).armtype= 2;

152 armtype 1 == normal, %armtype 2= SRMS

153

154 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

155 %Generate Arms

156 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

157

158 for i = 1:length(AllVariables.Arm)

159 teach = 0;

160 AllVariables.bot(i)= ...

GenerateBot singleArm(AllVariables.Arm(i).ArmLength,...

161 AllVariables.Arm(i).IsPlanar,AllVariables.Arm(i).armtype,....
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162 AllVariables.Arm(i).Armoffset,teach);

163 AllVariables.bot(i).base = [eye(3,3) ...

AllVariables.Arm(i).xyz base';...

164 0 0 0 1];

165 AllVariables.bot(i).qlim =AllVariables.Arm(i).JointLimits;

166 end

167 \end{verbatim}

168

169 \end{landscape}

170

171 \hline

172 \small

173 \begin{verbatim}

174 function [bot]= ...

GenerateBot singleArm(Lengths,IsPlanar,armtype,offsets,teach)

175 %use robotics toolbox to find inverse kinematics and Jacobian

176 %step 1: put into DH parameters

177 %step 2: calculate joint angles

178 %Now with taking into account the velocity and acceleration of the

179 %end−effector. Note: V ee and vdot ee are given at the ...

END−EFFECTOR not the

180 %payload center

181

182 %armtype 1 == normal

183 %armtype 2= SRMS

184

185 %If it is planar (isPlan
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186 if (IsPlanar ==1)

187 PlanarFactor = 0;

188 else

189 PlanarFactor = 1;

190 end

191

192 m = zeros(length(Lengths),1);

193 if length(Lengths < 6);

194 m = zeros(6,1);

195 end

196

197 %for initial on

198 density = 2700; %kg/mˆ3

199 outerradii = 0.1524/2; %3in

200 thickness = 0.003175; %1/8in

201 area = pi*outerradiiˆ2−pi*(outerradii−thickness)ˆ2;

202

203 if armtype == 1

204 %alpha = 0 for all planar

205 for i = 1:length(Lengths)

206 if i == 1

207 L(i) = Link('d',offsets(i), 'a',Lengths(i), 'alpha',0);

208 else

209 if mod(i,2) == 0

210 L(i) = Link('d',offsets(i), 'a',Lengths(i),...

211 'alpha',0*PlanarFactor*pi/2);

212 else
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213 L(i) = Link('d',offsets(i), 'a',Lengths(i),...

214 'alpha',PlanarFactor*pi/2);

215 end

216 end

217 L(i).qlim = [0 2*pi];

218 mass(i) = density*area*Lengths(i);

219 L(i).m = mass(i);

220 L(i).Jm =.1; %set high .02 for motormass masses of 18kg

221 L(i).B = 0*6.51/1000;

222 L(i).G= 0;

223 end

224 elseif armtype == 2

225 %alpha = 0 for all planar

226 for i = 1:length(Lengths)

227 if i == 1

228 L(i) = Link('d',offsets(i), 'a',Lengths(i), ...

'alpha',pi/2);

229 elseif i == 2

230 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

231 'alpha',pi/2,'standard');

232 elseif i==3

233 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

234 'alpha',pi/2,'offset',pi/2);

235 elseif i==4

236 L(i) = Link('revolute','d',offsets(i), ...
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'a',Lengths(i),...

237 'alpha',pi/2,'standard');

238 elseif i==5

239 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

240 'alpha',pi/2,'offset',pi/2);

241 elseif i==6

242 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

243 'alpha',0,'standard','offset',pi/2);

244 end

245 %L(i).qlim = [−2*pi 2*pi];

246 mass(i) = density*area*Lengths(i);

247 L(i).m = mass(i);

248 L(i).Jm =.1; %set high .02 for motormass masses of 18kg

249 L(i).B = 6.51/1000;

250 L(i).G= 1;

251 %massoflink = density*area*Lengths(i);

252 end

253 elseif armtype == 3 %ranger

254 'Is Rnager'

255 %alpha = 0 for all planar

256 for i = 1:length(Lengths)

257 if i == 1

258 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

259 'alpha',pi/2,'standard','offset',0); %pitch
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260 elseif i==2

261 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

262 'alpha',pi/2,'standard','offset',pi/2); %roll

263 elseif i==3

264 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

265 'alpha',pi/2,'standard','offset',0);

266 elseif i==4

267 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

268 'alpha',0,'standard','offset',0);

269 elseif i==5

270 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

271 'alpha',pi/2,'standard','offset',0);

272 elseif i==6

273 L(i) = Link('revolute','d',offsets(i), ...

'a',Lengths(i),...

274 'alpha',pi/2,'standard','offset',0);

275 end

276 L(i).qlim = [0 2*pi];

277 mass(i) = density*area*Lengths(i);

278 L(i).m = mass(i);

279 L(i).G = 0; %setting gear ratio to 0

280 L(i).Jm =.1; %set high .02 for motormass masses of 18kg

281 L(i).I = eye(3); %mment o inertia of link
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282 %massoflink = density*area*Lengths(i);

283 end

284 end

285

286

287 gravityvector = [0 0 0];

288 bot = SerialLink(L);

289 if teach == 1

290 figure

291 if armtype ==3

292

293 bot.plot([0 200 0 320 30 30]*pi/180)

294 else

295

296 bot.plot([0 0 0 0 0 45]*pi/180)

297 end

298 bot.teach()

299 end

300 bot.gravity = gravityvector;
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