Estimation of the Rate of a Doubly-Stochastic Time-Space Poisson Process

Ъy

John Gubner and Prakash Narayan

ESTIMATION OF THE RATE OF A DOUBLY-STOCHASTIC TIME-SPACE POISSON PROCESS

John Gubner and Prakash Narayan¹

Electrical Engineering Department

University of Maryland

College Park, Maryland 20742

Abstract

We consider the problem of estimating the rate of a doubly-stochastic, time-space Poisson process when the observations are restricted to a region $D \subseteq \mathbb{R}^2$. In the general case, we obtain a representation of the minimum mean-square-error (MMSE) estimate in terms of the conditional characteristic function of an underlying state process. In the case $D = \mathbb{R}^2$, we extend a known result to compute the MMSE estimate explicitly. For a special form of the rate process, a well-defined integral equation is presented which defines the *linear* MMSE estimate of the rate.

Key Words: doubly-stochastic, time-space Poisson process, MMSE estimate, linear MMSE estimate, likelihood ratio.

¹This research was sponsored by the Office of Naval Research under grant no.N0001485-G-0102 and by the Minta Martin Fund for Aerospace Research from the University of Maryland at College Park.

I. Introduction

We consider a doubly-stochastic, time-space Poisson process \mathbb{N}^0 with intensity function $\lambda(t,r)=f(t,r-H(t)x_t)$, where t>0 and $r\in\mathbb{R}^2$. Here, f is a known, deterministic function; $x_t\in\mathbb{R}^n$ is the solution of an Ito stochastic differential equation, and H(t) is a known, deterministic, $\mathbb{R}^{2\times n}$ -valued function. The process \mathbb{N}^0 under consideration counts events which occur in all of \mathbb{R}^2 ; however, suppose that only those events which occur within a region $D\subseteq\mathbb{R}^2$ can be observed. We wish to compute minimum mean-square-error (MMSE) estimates of $\lambda(t,r)$, given our limited observations. In the general case, $D\neq\mathbb{R}^2$, we obtain a representation of these estimates in terms of the conditional characteristic function of t when t is t in the general case, t in the process t in the process t in the general case, t in t

II. Probabilistic Setting

Let B^2 denote the Borel subsets of \mathbb{R}^2 . Next, if I is any interval of \mathbb{R} , let B(I) denote the Borel subsets of I. We define $B(I) \otimes B^2$ to be the smallest σ -field containing all sets of the form $E \times A$, such that $E \in B(I)$ and $A \in B^2$. Let (Ω, F, P) be a probability space on which we let

$$\mathbf{N}^0 = \{ N(B) : B \in \mathbf{B}(0,\infty) \otimes \mathbf{B}^2 \},$$

be a time-space point process. Sometimes, N^0 is called a random point field or a random measure. Here, this means that with each $B \in B(0,\infty) \otimes B^2$, we associate a nonnegative, integer-valued random variable, $N(B) = N(\omega, B)$; in addition, for each $\omega \in \Omega$, $N(\omega, \bullet)$ is assumed to be an integer-valued measure on $B(0,\infty) \otimes B^2$. We let F_t represent the times and locations at which points have occurred up to and including time t. More precisely, let

 F_0 denote the trivial σ -field, and for t>0, set

$$\mathbb{F}_t = \sigma\{ N(B) : B \in \mathbb{B}(0,t) \otimes \mathbb{B}^2 \}.$$

Now, let D be a Borel subset of \mathbb{R}^2 . We take G_0 to be the trivial σ -field, and for t>0, we set

$$G_t = \sigma\{ N(B \cap \{ (0,\infty) \times D \}) : B \in \mathbb{B}(0,t] \otimes \mathbb{B}^2 \}.$$

Note that G_t represents the history of the point process restricted to the region D, up to time t. We shall refer to G_t as our "observations up to time t." On the same probability space, (Ω , F, P), let X be an n-dimensional Gaussian random vector with known mean, m, and known, positive-definite covariance, S. Let $\{v_t, t \geq 0\}$ be a standard Wiener process independent of X. We let the n-dimensional process $\{x_t, t \geq 0\}$ be the solution to the Ito stochastic differential equation

$$dx_t = F(t)x_t dt + V(t)dv_t ; x_0 = X .$$
 (1)

Here F and V are known matrices with appropriate dimensions. We also assume that F and V are piecewise-continuous so that a unique solution of (1) exists (see Davis [4], pp. 108-111). Let

$$X_0 \stackrel{\triangle}{=} \sigma \{ x_s, 0 \le s < \infty \}$$
.

For t>0, let X_t denote the smallest σ -field containing $F_t\bigcup X_0$. We write this symbolically as

$$X_t \stackrel{\triangle}{=} F_t \vee X_0$$
; $t > 0$.

We shall assume that N^0 is an $\{X_t\}$ -doubly-stochastic, time-space Poisson process, with X_0 -measurable intensity (see Bremaud [5], pp. 21-23 and 233-238)

$$\lambda(t,r) = f(t,r-H(t)x_t),$$

where $t \in (0,\infty)$, $r \in \mathbb{R}^2$, and x_t is defined by (1). Assume that $H:(0,\infty) \to \mathbb{R}^{2 \times n}$ and $f:(0,\infty) \times \mathbb{R}^2 \to (0,\infty)$ are deterministic and known. We further assume that the function

$$\mu(t) \stackrel{\Delta}{=} \int_{\mathbb{R}^2} f(t, r) dr \tag{2}$$

is finite for all $t < \infty$. This means that for each $t \ge 0$, the process

$$\mathbb{N}^t \stackrel{\triangle}{=} \{ N(B) : B \in \mathbb{B}(t, \infty) \otimes \mathbb{B}^2 \}$$

is a Poisson random field under the measure $P(\bullet \mid \mathbb{X}_t)$, with rate $\lambda(s, r)$, where $s \in (t, \infty)$, and $r \in \mathbb{R}^2$. This implies the following. First, for $B \in \mathbb{B}(0,\infty) \otimes \mathbb{B}^2$, let $\Lambda(B) \triangleq \int_B \lambda(s, r) dr ds$; then if $B \in \mathbb{B}(t, \infty) \otimes \mathbb{B}^2$ and n is an arbitrary, nonnegative integer,

$$\mathbf{P}(N(B) = n \mid \mathbf{X}_t) = \frac{\Lambda(B)^n}{n!} e^{-\Lambda(B)}, \qquad (3)$$

and hence, for $\theta \in \mathbb{R}$,

$$\mathbf{E} \left[e^{j\theta N(B)} \mid \mathbf{X}_{t} \right] = \exp \left[\left(e^{j\theta} - 1 \right) \Lambda(B) \right]. \tag{4}$$

. .

The second implication is that if B_1 and B_2 are disjoint sets in $B(t, \infty) \otimes B^2$, then the random variables $N(B_1)$ and $N(B_2)$ are independent under the measure $P(\bullet | X_t)$.

Notation. We let $N_0 \equiv 0$ and for t > 0, $N_t \stackrel{\Delta}{=} N((0,t) \times D)$.

III. Nonlinear Filtering Results

We first establish some notation in order to state our results more compactly. Let $P_t(x), x \in \mathbb{R}^n$, denote the (regular) conditional probability of x_t given G_t . Let $\psi_t(\eta), \eta \in \mathbb{R}^n$, denote the conditional characteristic function of x_t given G_t :

$$\psi_t(\eta) \stackrel{\triangle}{=} \mathbf{E} \left[e^{j\eta'x_t} \mid \mathcal{C}_t \right] = \int_{\mathbb{R}^n} e^{j\eta'x} dP_t(x); \quad \eta \in \mathbb{R}^n.$$

Next, let

$$\hat{\lambda}(t,r) \triangleq \mathbf{E} [\lambda(t,r) \mid G_t] = \mathbf{E} [f(t,r-H(t)x_t) \mid G_t],$$

and

$$\hat{l}(t,\theta) \stackrel{\triangle}{=} \int_{\mathbb{R}^2} \hat{\lambda}(t,r) e^{j\theta r} dr ; \quad \theta \in \mathbb{R}^2.$$

We also set

$$F(t, \theta) \stackrel{\Delta}{=} \int_{\mathbb{R}^2} f(t, r) e^{j\theta'r} dr$$
.

Theorem 1. Under the foregoing assumptions,

$$\hat{l}(t,\theta) = F(t,\theta) \psi_t(H(t)'\theta)$$
.

Proof. Observe that

$$\hat{l}(t,\theta) = \int_{\mathbb{R}^2} \mathbf{E} \left[f(t,r-H(t)x_t) \mid \mathcal{G}_t \right] e^{j\theta'r} dr$$

$$= \int_{\mathbb{R}^2} \int_{\mathbb{R}^n} f(t,r-H(t)x) dP_t(x) e^{j\theta'r} dr.$$

By Fubini's Theorem,

$$\begin{split} \hat{l}(t,\theta) &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^2} f(t,r - H(t)x) e^{j\theta'r} dr dP_t(x) \\ &= F(t,\theta) \int_{\mathbb{R}^n} e^{j\theta' H(t)x} dP_t(x) \\ &= F(t,\theta) \int_{\mathbb{R}^n} e^{j(H(t)'\theta)'x} dP_t(x) \\ &= F(t,\theta) \psi_t(H(t)'\theta). \end{split}$$

QED

Theorem 2. If $D = \mathbb{R}^2$, and if

$$f(t,r) = e^{-\frac{1}{2}r'R(t)^{-1}r}, \qquad (5)$$

for some deterministic, positive-definite matrix R(t), then

$$\hat{\lambda}(t, r) \stackrel{\triangle}{=} \mathbf{E} \left[\lambda(t, r) \mid G_t \right]$$

$$= \mathbf{E} \left[f(t, r - H(t)x_t) \mid G_t \right]$$

$$= \frac{\sqrt{\det R(t)}}{\sqrt{\det Q_t}} \exp \left[-\frac{1}{2} (r - H(t)\hat{x}_t)' Q_t^{-1} (r - H(t)\hat{x}_t) \right],$$

where

$$\hat{x}_{t} \stackrel{\triangle}{=} \mathbf{E} [x_{t} \mid G_{t}],$$

$$\hat{\Sigma}_{t} \stackrel{\triangle}{=} \mathbf{E} [(x_{t} - \hat{x}_{t})(x_{t} - \hat{x}_{t})' \mid G_{t}] > 0, \quad \mathbf{P} - \text{a.s.},$$

$$Q_{t} \stackrel{\triangle}{=} H(t)\hat{\Sigma}_{t}H(t)' + R(t),$$

and

$$\hat{dx}_{t} = F(t)\hat{x}_{t} dt$$

$$+ \int_{\mathbb{R}^{2}} \hat{\Sigma}_{t} H(t-)' Q_{t-}^{-1} (r - H(t-)\hat{x}_{t-}) N(dt \times dr); \quad \hat{x}_{0} = m ,$$
(6)

$$\hat{d}\,\hat{\Sigma}_t = F(t)\hat{\Sigma}_t \,dt + \hat{\Sigma}_t F(t)' \,dt + V(t)V(t)' \,dt - \hat{\Sigma}_{t-}H(t-)' \,Q_{t-}^{-1} \,H(t-)\hat{\Sigma}_{t-}N(dt \times \mathbb{R}^2); \,\hat{\Sigma}_0 = S.$$

$$(7)$$

Proof. First, since $D = \mathbb{R}^2$, $G_t = F_t$. Next, in [1] it is proved that the conditional density of x_t given F_t is Gaussian with conditional mean x_t and conditional covariance Σ_t (which is positive definite almost surely because of the assumption that S is positive definite) satisfying (6) and (7) above. So,

$$\psi_{t}(\eta) = e^{j\eta'\hat{x}_{t} - \frac{1}{2}\eta'\hat{\Sigma}_{t}\eta}$$

Next, from equation (5), it follows that

$$F(t,\theta) = 2\pi \sqrt{\det R(t)} e^{-\frac{1}{2}\theta'R(t)\theta}$$

Hence, by Theorem 1,

$$\hat{l}(t,\theta) = 2\pi \sqrt{\det R(t)} e^{j\theta'H(t)\hat{x}_t - \theta'Q_t\theta}.$$

Taking inverse Fourier transforms, we see by inspection that

$$\hat{\lambda}(t, r) = \frac{\sqrt{\det R(t)}}{\sqrt{\det Q_t}} \exp[-\frac{1}{2}(r - H(t)\hat{x}_t)' Q_t^{-1}(r - H(t)\hat{x}_t)].$$

QED

When $D \neq \mathbb{R}^2$, or equation (5) does not hold, $\psi_t(\eta)$ is, in general, not known. This has led us to consider *linear* estimates of $\lambda(t, r)$. We discuss this in the next section.

IV. Linear Filtering Results

We call $\hat{\lambda}_L(t,r)$ a linear estimate of $\lambda(t,r)$ given G_t , if $\hat{\lambda}_L$ can be written in the form

$$\hat{\lambda}_L(t,r) = \int_0^t \int_D h(t,r;\tau,\rho) \left[N(d\tau \times d\rho) - \overline{\lambda}(\tau,\rho) d\tau d\rho \right] + h_0(t,r), \quad (8)$$

where h and h_0 are deterministic, and $\overline{\lambda}(t,r) \stackrel{\triangle}{=} \mathbf{E} [\lambda(t,r)]$. We wish to choose h and h_0 to minimize

$$\mathbf{E}\left[\left|\lambda(t,r)-\hat{\lambda}_L(t,r)\right|^2\right]. \tag{9}$$

Lemma 1. (Grandell [6]). Let $\hat{\lambda}_L(t,r)$ be given by (8). Under the conditions outlined in Section II, the quantity in (9) will be minimized if $h_0(t,r) = \overline{\lambda}(t,r)$, and if h satisfies

$$\Gamma(t, r; \tau, \rho) = \int_0^t \int_D h(t, r; \sigma, \varsigma) \Gamma(\sigma, \varsigma; \tau, \rho) d\varsigma d\sigma + h(t, r; \tau, \rho) \overline{\lambda}(\tau, \rho), \quad (10)$$

where

$$\Gamma(t, r; \tau, \rho) \stackrel{\Delta}{=} \mathbf{cov} [\lambda(t, r), \lambda(\tau, \rho)].$$

With Lemma 1 in mind, we state our Theorem 3.

Theorem 3. If f(t, r) is given by (5), and the conditions outlined in Section II hold, then

$$\overline{\lambda}(t,r) = \frac{\sqrt{\det R(t)}}{\sqrt{\det Q(t)}} \exp\left[-\frac{1}{2}(r - H(t)\overline{x}(t))' Q(t)^{-1} (r - H(t)\overline{x}(t))\right], \qquad (11)$$

where

$$\overline{x}(t) \triangleq \mathbf{E}[x_t],$$

$$\Sigma(t) \triangleq \mathbf{cov}[x_t],$$

$$Q(t) \triangleq H(t)\Sigma(t)H(t)' + R(t).$$

Furthermore,

$$\Gamma(t, r; \tau, \rho) + \overline{\lambda}(t, r)\overline{\lambda}(\tau, \rho) = \sqrt{\frac{\det R(t) \det R(\tau)}{\det Q(t, \tau)}} \times \exp\left[-\frac{1}{2} \left(\begin{bmatrix} r \\ \rho \end{bmatrix} - \begin{bmatrix} H(t) & 0 \\ 0 & H(\tau) \end{bmatrix} \begin{bmatrix} \overline{x}(t) \\ \overline{x}(\tau) \end{bmatrix}\right)^t Q(t, \tau)^{-1} \left(\begin{bmatrix} r \\ \rho \end{bmatrix} - \begin{bmatrix} H(t) & 0 \\ 0 & H(\tau) \end{bmatrix} \begin{bmatrix} \overline{x}(t) \\ \overline{x}(\tau) \end{bmatrix}\right)\right],$$
(12)

where

$$\Sigma(t, r) \stackrel{\triangle}{=} \cos [x_t, x_r],$$

and

$$Q(t,\tau) \stackrel{\triangle}{=} \begin{bmatrix} Q(t) & H(t)\Sigma(t,\tau)H(\tau)' \\ H(\tau)\Sigma(\tau,t)H(t)' & Q(\tau) \end{bmatrix}.$$

Proof. For completeness, we make the following observations. Recall that

$$dx_{t} = F(t)x_{t} dt + V(t)dv_{t}; \quad x_{0} = X.$$
 (13)

Let $\Phi(t_2, t_1)$ be the transition matrix corresponding to F(t). Then

$$\overline{x}(t) = \Phi(t, 0)m , \qquad (14)$$

and

$$\Sigma(t, \tau) = \Phi(t, 0) S \Phi(\tau, 0)' + \int_0^{\min(t, \tau)} \Phi(t, s) V(s) V(s)' \Phi(\tau, s)' ds.$$

Note that $\Sigma(t) = \Sigma(t, t)$.

To compute $\overline{\lambda}(t, r) = \mathbf{E}[\lambda(t, r)]$, observe that x_t is Gaussian with mean $\overline{x}(t)$ and covariance $\Sigma(t)$. By considering the proofs of Theorem 1 and Theorem 2, equation (11) is immediate.

The computation of (12) is similar, but requires some judicious preliminary arithmetic. First, observe that $\Gamma(t, r; \tau, \rho) + \overline{\lambda}(t, r)\overline{\lambda}(\tau, \rho)$ is just another way of writing $\mathbb{E}\left[\lambda(t, r)\lambda(\tau, \rho)\right]$. Next, rewrite $\lambda(t, r)\lambda(\tau, \rho)$ as

$$\exp\left[-\frac{1}{2}\begin{pmatrix} r \\ \rho \end{pmatrix} - \begin{bmatrix} H(t) & 0 \\ 0 & H(\tau) \end{bmatrix} \begin{bmatrix} x_t \\ x_{\tau} \end{bmatrix}\right)' \begin{bmatrix} R(t)^{-1} & 0 \\ 0 & R(\tau)^{-1} \end{bmatrix} \begin{pmatrix} r \\ \rho \end{bmatrix} - \begin{bmatrix} H(t) & 0 \\ 0 & H(\tau) \end{bmatrix} \begin{bmatrix} x_t \\ x_{\tau} \end{bmatrix}\right),$$

which is equal to

$$\exp\left[-\frac{1}{2}\left(\begin{bmatrix}r\\\rho\end{bmatrix}-\begin{bmatrix}H(t)&0\\0&H(\tau)\end{bmatrix}\begin{bmatrix}x_t\\x_\tau\end{bmatrix}\right)'\begin{bmatrix}R(t)&0\\0&R(\tau)\end{bmatrix}^{-1}\left(\begin{bmatrix}r\\\rho\end{bmatrix}-\begin{bmatrix}H(t)&0\\0&H(\tau)\end{bmatrix}\begin{bmatrix}x_t\\x_\tau\end{bmatrix}\right)\right]. \quad (15)$$

Because $\{x_t, t \ge 0\}$ is a Gaussian process, $\begin{bmatrix} x_t \\ x_\tau \end{bmatrix}$ is a Gaussian random vector with mean,

$$\begin{bmatrix} \overline{x}(t) \\ \overline{x}(\tau) \end{bmatrix}$$
, and covariance $\begin{bmatrix} \Sigma(t) & \Sigma(t,\tau) \\ \Sigma(\tau,t) & \Sigma(\tau) \end{bmatrix}$. By the same reasoning used to deduce (11), (12)

also follows.

QED

Remark. In equation (10), if we regard t and r as fixed, and divide through by $\overline{\lambda}(\tau, \rho)$, then the result has the form of the Fredholm equation

$$g = Bh + h$$
,

for known function g , known operator B , and unknown function h .

V. Discussion

The filtering problems considered above often arise in the design and implementation of receivers for optical communication systems. Typically, a binary message source is used by a transmitter to select the modulation of the intensity of a laser beam in accordance with whether a "0" or a "1" is to be sent. The laser beam travels to a receiver and strikes its photodetector. We assume that the laser beam has an intensity profile of the form

$$\nu_i(t)f(t,r); i=0,1.$$

Here, $\nu_i(t)$ is a known, deterministic function, where i=0 or 1 has been selected by the transmitter.

We model the surface of the receiver's photodetector as \mathbb{R}^2 . If the receiver, for example, is subject to vibrations, the center of the spot of laser light may wander randomly over the photodetector surface [2]. We assume, as in [2], that the center of the spot of laser light is given by $H(t)x_t \in \mathbb{R}^2$. The output of photoelectrons from the photodetector is modeled by the process \mathbb{N}^0 , with stochastic intensity now given by

$$\lambda_i(t, r) = \nu_i(t) f(t, r - H(t) x_t). \tag{16}$$

Of course, an actual photodetector does not have an infinite photosensitive surface. We account for this fact by assuming that only those photoelectrons which occur in a region $D \subseteq \mathbb{R}^2$ are observed. For example, in this setting, D might be a square or a circle centered at the origin. After observing photoelectrons occurring in D during some time interval [0, T], a decision as to whether a "0" or a "1" was sent has to be made based on one of the estimates $\hat{\lambda}_i(t, r)$ or $\hat{\lambda}_{i,L}(t, r)$. As an example of a decoding scheme, we could use the likelihood ratio test

$$L_T$$
 $>$
 H_0
 $>$
 H_0

to make the decision, using the minimum probability of error cost criterion and assuming equiprobable hypotheses (see Snyder [3], section 2.5). The likelihood ratio, L_T , is given by (see Snyder [3], pp. 471-476)

$$L_{T} = \frac{\prod_{j=1}^{N_{T}} \hat{\lambda}_{1}(t_{j}, r_{j}) \exp[-\int_{0}^{T} \int_{D} \hat{\lambda}_{1}(s, r) dr ds]}{\prod_{j=1}^{N_{T}} \hat{\lambda}_{0}(t_{j}, r_{j}) \exp[-\int_{0}^{T} \int_{D} \hat{\lambda}_{0}(s, r) dr ds]},$$
(17)

where t_j and r_j are respectively the time and the location of the jth photoevent in the region D, and we adopt the convention that when $N_T=0$, the factors preceding exp in equation (17) are taken to be unity. Here, of course,

$$\hat{\lambda}_i(t,r) \stackrel{\Delta}{=} \mathbf{E} [\lambda_i(t,r) \mid G_t]; i = 0, 1.$$

Now, using (16), (17) simplifies to

$$L_T = \prod_{i=1}^{N_T} \frac{\nu_1(t_i)}{\nu_0(t_i)} \exp[-\int_0^T \int_D \hat{\lambda}_1(s, r) - \hat{\lambda}_0(s, r) dr ds]. \tag{19}$$

In the general case, $D \neq \mathbb{R}^2$, $\hat{\lambda}_i(t,r)$ is not known, and hence, L_T cannot be computed. However, when $D = \mathbb{R}^2$, it turns out that we do not need to know $\hat{\lambda}_i(t,r)$ in order to compute L_T . Observe that if $D = \mathbb{R}^2$, then

$$\int_{D} \hat{\lambda}_{1}(s, r) - \hat{\lambda}_{0}(s, r) dr = \mathbf{E} \left[\int_{\mathbf{R}^{2}} \lambda_{1}(s, r) - \lambda_{0}(s, r) dr \mid \mathbf{G}_{s} \right]
= \mathbf{E} \left[(\nu_{1}(s) - \nu_{0}(s)) \int_{\mathbf{R}^{2}} f(s, r - H(s)x_{s}) dr \mid \mathbf{G}_{s} \right]
= \mathbf{E} \left[(\nu_{1}(s) - \nu_{0}(s)) \mu(s) \mid \mathbf{G}_{s} \right]$$

$$= \mu(s) \left[\nu_{1}(s) - \nu_{0}(s) \right].$$
(20)

In equation (20) we used the fact that for all $r_0 \in \mathbb{R}^2$,

$$\mu(s) \stackrel{\triangle}{=} \int_{\mathbb{R}^2} f(s, r) dr = \int_{\mathbb{R}^2} f(s, r - r_0) dr.$$

Thus, when $D={\rm I\!R}^2$, (19) becomes

$$L_T = \prod_{j=1}^{N_T} \frac{\nu_1(t_j)}{\nu_0(t_j)} \exp\left[-\int_0^T \mu(s) \left[\nu_1(s) - \nu_0(s) \right] ds \right]. \tag{21}$$

With (21) in mind, consider the following theorem.

Theorem 4. The random field

$$\mathbf{M}^{t} \triangleq \{ N(E \times \mathbb{R}^{2}) : E \in \mathbb{B}(t, \infty) \},$$

is independent of the σ -field X_t .

Proof. To prove that \mathbf{M}^t is independent of \mathbf{X}_t , it is sufficient to show that the conditional characteristic function of $N(E \times \mathbb{R}^2)$ is deterministic for $E \in \mathbf{B}(t, \infty)$. Now, it follows immediately from the assumption that \mathbf{N}^0 is an $\{\mathbf{X}_t\}$ -doubly-stochastic, time-space Poisson process, that for $\theta \in \mathbb{R}$,

$$\begin{split} \mathbf{E} \left[e^{j\theta N(E \times \mathbf{R}^2)} \mid \mathbf{X}_t \right] &= \exp[\left(e^{j\theta} - 1\right) \int_E \int_{\mathbf{R}^2} \lambda_i(s, r) dr ds \right] \\ &= \exp[\left(e^{j\theta} - 1\right) \int_E \nu_i(s) \int_{\mathbf{R}^2} f(s, r - H(s)x_{\theta}) dr ds \right] \\ &= \exp[\left(e^{j\theta} - 1\right) \int_E \nu_i(s) \mu(s) ds \right]. \end{split}$$

Hence \mathbf{M}^t is independent of \boldsymbol{X}_t .

QED

It follows from equation (21) and Theorem 4 that for all $t\geq 0$, the random variable L_t is independent of the σ -field X_t .

If we replace equation (1) by

$$dx_t = F(t)x_t dt + G(t)u_t dt + V(t)dv_t; \quad x_0 = X,$$
 (22)

where $\{u_t, t \ge 0\}$ is predictable with respect to $\{C_t, t \ge 0\}$ and C(t) is a known matrix with appropriate dimensions, then most of the above results hold with only minor

modifications. The term $G(t)u_t$ in (22) is interpreted as a control signal driven by the output of the photodetector. Since $H(t)x_t$ represents the center of the spot of laser light striking the receiver, one might try to use $G(t)u_t$ to drive x_t to the origin. This problem is addressed in [1]. If (1) is replaced by (22), Theorem 1 is unchanged. Theorem 2 still holds except that equation (6) must be replaced by

$$\begin{split} \hat{dx}_t &= F(t)\hat{x}_t \, dt + G(t)u_t \, dt \\ &+ \int_{\mathbb{R}^2} \hat{\Sigma}_{t-} H(t-)' \, Q_{t-}^{-1} \, (r - H(t-)\hat{x}_{t-}) \, N(dt \times dr) \, ; \, \hat{x}_0 = m \, . \end{split}$$

Lemma 1 is unchanged, and if $u_t = u(t)$ for some deterministic control $\{u(t), t \ge 0\}$, then Theorem 3 holds; of course, (13) becomes (22) and (14) is replaced by

$$\overline{x}(t) = \Phi(t,0)m + \int_0^t \Phi(t,s)G(s)u(s) ds$$
.

In addition, the results of the preceding paragraphs of Section V, including Theorem 4, are unchanged by substituting equation (22) for equation (1). Note also that since $G_t \subseteq X_t$, and L_t is independent of X_t when $D = \mathbb{R}^2$, it follows that L_T is independent of the control law $\{u_t, 0 \le t \le T\}$ when $D = \mathbb{R}^2$. This implies that the probability of a decoding error corresponding to the likelihood ratio test preceding equation (17) is not a function of the control law $\{u_t, 0 \le t \le T\}$ when $D = \mathbb{R}^2$. In this sense, all controls are optimal, when $D = \mathbb{R}^2$. In general, when $D \ne \mathbb{R}^2$, this is not to be expected.

REFERENCES

- [1] I.B. Rhodes and D.L. Snyder, "Estimation and Control Performance for Space-Time Point Process Observations," *IEEE Transactions on Automatic Control* vol. AC-22, No.3, pp. 338-346 (June 1977).
- [2] D.L. Snyder, "Applications of Stochastic Calculus for Point Process Models Arising in Optical Communications," pp. 789-804 in Communication Systems and Random Process Theory, ed. J.K. Skwirzynski, Sijthoff and Noordhoff, Alphen aan der Rijn, The Netherlands (1978).
- [3] D.L. Snyder, Random Point Processes, Ch.7, John Wiley and Sons, (1975).
- [4] M.H.A. Davis, in Linear Estimation and Stochastic Control, Chapman and Hall, London (1977).

- [5] P. Bremaud, in *Point Process and Queues, Martingale Dynamics*, Springer-Verlag, New York (1981).
- [6] J. Grandell, "A Note on Linear Estimation of the Intensity of a Doubly Stochastic Poisson Field," Journal of Applied Probability vol. 8, pp. 612-614 (1971).