TR-85-41

Estimation of the Rate of a Doubly-

Stochastic Time-Space Poisson Process

by

John Gubner and Prakash Narayan



SUBMITTED TO SYSTEMS & CONTROL
LETTERS

ESTIMATION OF THE RATE OF A

DOUBLY-STOCHASTIC TIME-SPACE POISSON PROCESS

John Gubner and Prakash Narayan!
Electrical Engineering Department
University of Maryland

College Park, Maryland 20742

Abstract

We consider the problem of estimating the rate of a doubly-stochastic, time-space Pois-
son process when the observations are restricted to a region D _C_ RZ. In the general case, we
obtain a representation of the minimum mean-square-error (MMSE) estimate in terms of the
conditional characteristic function of an underlying scatevprocess. In i.he‘ case D= R? we
extend a known result to compute the MMSE estimate explicitly. For a special form of the

rate process, a well-defined integra! equation is presented which defines the lfnear MMSE esti-

mate of the rate.
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I. Introduction

We consider a doubly-stochastic, time-space Poisson process N° with intensity function
At,ry= f(t,r ~H(t)z,), where t >0 and r& R®? Here, f is a known, deterministic
function; z, € R" is the solution of an Ito stochastic differential equation, and H(t) is a
known, deterministic, IR**"-valued function. The process N° under consideration counts
events which occur in all of IR% however, suppose that only those events which occur within a
region D C IR? can be observed. We wish to compute minimum mean-square-error (MMSE)
estimates of A(¢, r), given our limied observations. In the general case, D £ IR®, we obtain
a representation of these estimates in terms of the conditional characteristic functior ¢f z; .

1 -1
- 2r'R(¢) Yy
When D=R%* and f (t,r)=1¢ 2 , for some deterministic matrix R (t), we extend

a result of Rhodes and Snyder {1} to compute the MMSE estiruate of A(t, r) explicitly. We
also consider linecr esiimates of Mt, r) for the same choice of f when D% R® These
filtering problems are frequently encountered in optical communication systems {2, 3], particu-

larly in the context of hypothesis-testing; this issue is discussed in Section V.

. Probabilistic Setting

Let B? denote the Borel subsets of IR?. Next, if [ is any interval of R, let BB (I) denote
the Borel subsets of /. We define B ()@ B? to be the smallest o-field containing all sets of
the form £ X A, such that F€ B(I) and A€ B? Let (G, F,P ) be a probability space

on which we let
. N°={N(B): BE B(0.oc)®B*} ,

be a time-space point process. Sometimes, IN® is called a random point field or a random

measure. Here, this means that with each B € B(0,00)® B?, we associate a nonnegative,.

integer-valued random variable, N(B) = N(w, B); in addition, for each w € 2, N{w, » ) is
assumed to be an integer-valued measure on B (0,00)® B? We let F, represent the times

and locations at which points have occurred up to and including time t. More precisely, let



F', denote the trivial o-field, and for ¢ >0, set
F, =oc{ N(B): Be B(0,t]®B*} .
Now, let D be a Borel subset of IR2. We take {7, to be the trivial o-fleld, and for { >0, we
set
G, =o{ N(BM {(00) X D }):Be B(0,t|@B*}.

Note that &, represents the history of the point process restricted to the region D, up to
time t. We shall refer to €7, as our ‘‘observations up to time {.” On the same probability
space, (2, ', P ), let X be an n-dimensional Gaussian random vector with known mean,
m , and known, positive-definite covariance, S. Let { v, t >0 } be a s‘tandard ‘Wiener pro-

cess independent of X . We let the n -dimensional process { z, t 20 } be the solution to the

Ito stochastic differential equation
dz, = F({t)z, dt + V(t)dv, ; z5=X . (1)

Here F' and V are known matrices with appropriate dimensions. We also assume that F and
V' are piecewise-continuous so thai a unique solution of (1) exists (see Davis [4], pp. 108-111).

Let

X, 2 o{z,,08s <0} .
For t >0, let X, denote the smallest o-fleld containing F; U X ,. We write this symboli-
cally as

Xt A: F'\/XO; t >0.

We shall assume that N° is an {X, }-doubly-stochastic, time-space Poisson process, with X

measurable intensity (see Bremaud [5], pp. 21-23 and 233-238)
MNt,r)Y=f(t,r-H(t)x),

where t€ (0,00), r € R®, and =, is defined by (1). Assume that H:(0,00) — R**" and

f 1 (0,00) XIR® — (0,00) are deterministic and known. We further assume that the function



uty = [, r)dr (@)
is finite for all t <oo. This means that for each ¢t >0, the process
N* & {N(B):Be B(t, ©0)®@B*}

is a Poisson random field under the measure P( « | X, ), with rate A\(s, r), where s € (¢, o),
and r€ R?  This implies the following. First, for B€ B(0,00)®@ B2 let
A(B) & fB Ms, r) dr ds; then if B€ B(t, o0)@B? and n is an arbitrary, nonnegative

integer,

P(N(B):an,):-‘/L(-fT)—c"A(B), _ (3)
and hence, for § € R,
E [P | X, | =exp[(e’®-1)AB)]. (4)

The second implication is that if B, and B, are disjoint sets in B (¢, co)@ IB?, then the ran-

dom variables N ( B, ) and N( B, ) are independent under the measure P (« | X,).

Notation. Welet Ny=o0and for t >0, N, & N((0,t}xD ).

III. Nonlinear Filtering Results

We first establish some notation in order to state our results more compactly. Let
P,(z), € R™, denote the (reguiar) conditional probability of z, given &,. Let ¥, (n),

n € R", denote the conditional characteristic function of z, given &'y

W

vl 2 Bl €= [ 7T dPz); nER.
Next, let

M, r) 2 E(NMe.r) | G l=B[f(t, r-Ht)) | G ],

and



1w

1 o) 2 [ M r) el dr; ser

We also set,

F(e,0) & [, f(t r)e’" dr.
Theorem 1. Under the foregoing assumptions,

T, 0)=F(t,0) v (H(t)0).
Proof. Observe that
T, 0) = JLE(T @ r-H®)z) | G el dr
= fm2 fw ft,r—H(t)z)dP,(z) e’"" dr .
By Fubini’s Theorem,
e oy=[ [, fG. r—Ht)a) el dr dP(z)
=F(t, 0)f " dP(2)
»——F(t,H)flR" eICHEYSY2 gp (1)
— F(t,0) P, (H(t)8).

QED

Theorem 2. If D = R? and «f

S, r)y=e¢ * . ’ (5)

for some deterministic, positive-definite metriz R (t), then



}\(t,r) S E(Nt,r) | G,

=E([f(t, r-H(t)) [ G, ]

— ———_—“\‘}3%%‘) exp| — —;—-(r—H(t):;:,)' Q7 (r-H(t)z,)],
t

where
s %:E[It l Gg],
S, Y E((5, - 2 )z - 2.) | €, ] >0, P —as.,
Q. & H()S, H(tY + R(t),

and

dz, = F(t)r,dt (6)

+ fn2 i}PH(t—)' ! (r~H(t~):;:t_,)N(th dr) ; ;:ozzm ,

0%, = F()S,dt + S, F(ty dt + V()V(ty de ()

~ B H(t-y Q7 HE-S, N(@XRY); ,— S

Proof. First, since D= IR?, @,== F,. Next, in [1] it is proved that the conditional density
of 7, given F, is Gaussian with conditional mean z, and conditional covariance £, (which is

positive definite almost surely because of the assumption that S is positive deflnite) satisfying

(6) and (7) above. So,

<, 1 <
in'z, —’2—'1’2171

Pr(n) = e
Next, from equation (5), it follows that

~Logey

F(t,0)=2rVdet R(t)e 2

~

Hence, by Theorem 1,

1(¢.8) = on Jam R() e ®e Q0

Taking inverse Fourier transforms, we see by inspection that



B\(t ry = Vdet R (1)
' Vdet @

expl - L(r-H ()2, Q7 (r-H()z)] -
QED

When D 54 IR?, or equation (5) does not hold, ¥, (1) is, in general, not known. This has led us
t

to consider linear estimates of A(t, r). We discuss this in the next section.

IV. Linear Filtering Results

We call A (t, r) a linear estimate of A(¢, r) given & ,, if Ay can be written in the

form

- t _ '
)\L(t,r)———fofDh(t,r;f,p)[N(d‘erp)—)\(T,p)drdp] + ho(t, r), (8)

where b and h, are deterministic, and Nt,rYL E[X(t,r)]. We wish to choose h and Ak,

to minimize

E[ [Nt r)- A (t.7)]|%]. (9)

Lemma 1. (Grandell {6) ). Let B\L(t, r) be given by (8). Under the conditions outlined 1n

Section I, the quantity tn (9) will be minimized iffho(t, r)= ¢, r), and if b satisfies

t —
Nt rinp)=[ [ h(t.rio0f(e simp)dsdo + h(t,rin pX(r p). (10
where

r(t,r;7p) & cov [X(E, r), M7 p) ] -

With Lemma 1 in mind, we state our Theorem 3.

Theorem 3. If f (t, 1) s given by (5), and the conditions outlined tn Section II hold, then



- . Vdet R (t) 1 = -1 7
)\(t, f‘) == mexD[" —2—(1’——H(t )I(t)) Q(t) (T—H(t )z(t))] ’ (11)

where
() 2 Elzn],

() & cov iz,

Q(t) & H(S(HOHH() + R(¢).

Furthermore,

det R ‘Z) det R (7)

r(t,r;7,p) + X(t,r)i(r,p):\/

det @ (t, 7)
(12)
L] [Ee o (o] A [He o Eo
SR P PN 2
where
2(¢, 7 & eov (2,2,.],
and
. Q1) H(t)S(t, nH (7Y
QUD = H@n(r OH(tY Q1
Procf. For completeness, we make the following observations. Recall that
dr, = F(t)z, dt + V(t)dv, ; z,=X. " (13)
Let ®(t,. ¢,) be the transition matrix corresponding to F (¢}. Then
T(t)=®(t.0ym , (14)

and



min(t, r

)
(¢, 1) = d(t, 0)S ¥(r, 0f + j;) &(t,s) V(s)V(s) @®(r,8) ds .
Note that (t) == (¢, t).

To compute Mt, r) = E [ M(t, r)], observe that z, is Gausstan with mean 7 (¢) and
covariance S(f). By considering the proofs of Theorem 1 and Theorem 2, equation (11) is

immediate.

The computation of (12) is similar, but requires some judicious preliminary arithmetic.
First, observe that TI(t, r; 7 p)+ ;\-(t, T)X(T, p) is just another way of writing

E (Mt 1N, p) |. Next, rewrite M(t, #)N(7, p) as

_ L Ht) o % , R(t)? 0 i H(t) O [xt
o= - o mole) | o ko el o HO| =]V

which is equal to

L) [rey o =] [R@y o |7 fr] [HG o 7 |
exol-([,0 =1 o HO|{z,|" | o rR®]| Yp| | 0 H®]|2 ). s

Ty

Because { z,, t >0 } is a Gaussian process, l.x ] is a Gaussian random vector with mean,

T

7(t) _ Sty Bt 0l . L
7(7) _l and covariance S t) B J By the same reasoning used to deduce (i1}, (12)

also follows.

QED

Remark. In equation (10), if we regard t and r as fixed, and divide through by X7, p), then
the result has the form of the Fredholm equation

g — Bh + h

for known function g, Known_ operator B, and unknown function h.
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V. Discussion

The filtering problems considered above often arise in the design and implementation of
receivers for optical communication systems. Typically, a binary message source is used by a
transmitter to select the modulation of the intensity of a laser beam in accordance with
whether a ““0”’ or a ‘1" is to be sent. The laser beam travels to a receiver and strikes its pho-

todetector. We assume that the laser beam has an intensity profile of the form

vi(t)f (e, r); ¢ =o0,01.

Here, v;(t) is a known, deterministic function, where 1= 0 or 1 has been selected by the

transmitter.

We model the surface of the receiver’s photodetector as IR®. If the receiver, for exam-
ple, is subject to vibrations, the center of the spot cf laser light may wander randomly over
the photodetector surface [2]. We assume, as in [2], that the center of the spot of laser light is
given by H(t)z, € R®. The output of photoelectrons from the photodetector is modeled by

the process N° with stochastic intensity now given by

N r)y=vi(t)f(t,r —H(t)zx,) . (186)

Of course, an actual photodetector does not have an infinite photosensitive surface. We
account for this fact by assuming that only those photoelectrons which occur in a region
D C IR* are observed. For example, in this setting, D might be a square or a circle centered
at the oriéin. After observing photoelectrons occurring in D during some time interval
{0, T'], a decision as to whether a “0’’ or a "1' was sent has to be made based on one of the
estimates &;(t, r) or ﬂ>\,-,L(t, r). As an example of a decoding scheme, we could use the

likelihood ratio test
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to make the decision, using the minimum probability of error cost criterion and assuming
equiprobable hypotheses (see Snyder (3], section 2.5). The likelihood ratio, Ly, is given by

(see Snyder [3], pp. 471-476)

Nr | T .
IT M. ry) exp[—jo jD (s, r) dr ds)
LT - JN=TIA T “ ’ (17)
II Noltj, r7) exp[—fo fD Xo(s, 1) dr ds)
7=1

where t; and r; are respectively the time and the location of the jth photoevent in the
region D, and we adopt the convention that when Np= 0, the factors preceeding ezp in

equation (17) are taken to be unity. Here, of course,

N, r)y 2 E[NE, )] &) i =01
Now, using (16), (17) simplifies to

Ul(tj)

7=1 UO(tj )

LT:

T - -
exp[—fo fD M5, 1)Y= N6, 7)dr ds . (19)

In the general case, I’ R® X\;(t, r) is not known, and hence, Ly cannot be com-
puted. However, when D == IR?, it turns out that we do not need to know X, (¢, r) in order

to compute L. Observe that if D — IR?, then
Ly MG = s ) dr =B ([ N, r) = M5, r)dr | €, ]
=E[(ns)- vis)) [, f (s r-H(s)z) dr | &, ]
—E [(v(s)- vols))uls) | €, ] (20)
= p(s) [mis)— wols) .
In equation (20) we used the fact that for all r, € R?,
ps) & [ S rydr =] f(s.r~ro)dr

Thus, when D = R?, (19) becomes
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N .
Lr = 11 {-‘-E%exp[—j;Tu(S)[ vils) - vos) ] ds | (21)
j=1 YO0\%;

With (21) in mind, consider the following theorem.

Theorem 4. The random field

M' 2 {N(EXR?):E€B(t,o0)},

s independent of the o-field X, .
Proof. To prove that M! is independeut of X, it is sufficient to show that the conditicnal
characteristic function of N( E X IR?) is deterministic for E€ B(t, co). Now, it follows

immediately from the assumption that N° is an {X, }-doubly-stochastic, time-space Poisson

process, that for § € R,

E[e"’N(EXRQ) | X, ]| =exp[(e’?~1) fE fRQ)\;(s,r)dr ds )
= exp[ (e’?-1) fE u;(s)fsz(s, r-H(s)z,) dr ds ]

=exp( (e’ 1) [ vi(s) p(s) ds .
Hence M’ is independent of X, .

QED

It follows from equation (21) and Theorem 4 that for all { >0, the random variable L, is

independent of the o-field X, .
If we replace equation (1) by
dr, = F(t)r, dt + Gt u, dt + V(t)dv, ; zo= X, (22)

where { u,, { >0 } is predictable with respect to { €,. ¢t >0 } and G (t) is 5 known matrix

with appropriate dimensions., then most of the above results hold with -only minor
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modifications. The term G (¢)u, in (22) is interpreted as a control signal driven by the out~
put of the photodetector. Since H (¢)z, represents the center of the spot of laser light strik-
ing the receiver, one might try to use G (¢{)u, to drive z;, to the origin. This problem is
addressed in [1). If (1) is replaced by (22), Theorem 1 is unchanged. Theorem 2 still holds
except that equation (6) must be replaced by

dz, = F(t)z, dt + G(t)u, dt

+ fRQ ;E‘,_H(t—)' Q! (r—H(t—);,_)N(th dr); zo=m .

Lemma 1 is unchanged, and if ¥, == u (¢ ) for some deterministic control { u (t), ¢t >0 }, then

Theorem 3 holds; of course, (13) becomes (22) and (14) is replaced by
¢
T(t)=&(t,0)ym -+ fo &(t, s)G(s)u(s) ds .

In addition, the results of the preceding paragraphs of Section V, including Theorem 4, are
unchanged by substituting equation (22) for equation (1). Note also that since &, & X, and
L, is independent of X, when D = IR? it follows that Ly is independent of the control law
{u,0<t<T } when D= IR® This implies that the probability of a decoding error
corresponding to the likelihood ratio test preceding equation {17) is not a function of the coh—
trol law { u,,0<t<T } when D=R® 1In this sense, all controls-are optimal, when

D = R®. In general, when D £ IR? this is not to be expected.
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