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Chapter 1: Introduction

Quantum graphs, networks of nodes connected by bonds that support waves, have been

extensively studied experimentally and theoretically for the last decades. Due to their simplicity,

they are useful for analyzing and understanding various quantum systems. The simplicity of the

quantum graphs comes from the one-dimensional nature of the system, the waves propagate on

one-dimensional bonds. Experimentally the bonds can be realized by coaxial cables where EM

waves propagate, and the nodes correspond to junctions where the waves interfere and interact. In

practice, the length of each bond is substantially larger than its width, and in this limit propagation

of the waves are constrained in a single transversal mode which propagates along the bond.

The quantum graph model was introduced by Linus Pauling in 1936 to describe free elec-

tron behavior in an organic molecule. Since then this model has been used in variety of wave

systems [4–7] including quantum wires [8, 9], mesoscopic quantum systems [10], electromag-

netic waveguide networks [11, 12], and others. The model carries the name ”quantum” due to

the fact that the system can be described by a one-dimensional Schrödinger equation, or similar

wave equation. Therefore, quantum graphs, like wave systems in two and three dimensions, have

a discrete set of eigenmodes and frequency eigenvalues.

The spectral properties of quantum systems in 2D and 3D domains have properties depen-

dent on their dynamics in the classical limit. These differences appear readily in the distributions
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of spacings between adjacent eigenvalues. If its corresponding classical dynamics are integrable,

then the quantum system has one type of spectral statistics. If its corresponding classical dynam-

ics are chaotic then the quantum system has a second type of spectral statistics. For integrable

system the spacing distributions tend to be described by a Poisson probability distribution func-

tion. For non-integrable (chaotic) systems the spacing distribution is that of the eigenvalues of

a random matrix drown from the Gaussian Orthogonal Ensemble (GOE) if the system has time

reversal invariance and drown from the Gaussian Unitary Ensemble (GUE) if time reversal is

broken.

Although the waves in a quantum graph propagate on one dimensional bonds, the system

is complicated by the topology of the graph. Multiple bonds of different lengths meet at nodes.

There may be multiple paths connecting pairs of nodes. Thus, it is natural to explore whether the

same spectral properties that apply to 2D and 3D enclosures also apply to quantum graphs. In

fact, modes of a quantum graph can feature the characteristics of waves in 2D and 3D enclosures.

Similar to 2D and 3D wave systems, quantum graphs can be divided into three categories: or-

thogonal, unitary and symplectic. The spectral properties of quantum graphs with time-reversal

invariance are similar to those of random matrices generated from the Gaussian Orthogonal En-

sembles (GOE). Such systems are realized experimentally by networks of transmission lines

connected at nodes characterized by symmetric scattering matrices. Without time-reversal in-

variance, quantum graphs have features similar to random matrices generated from the Gaussian

Unitary Ensemble (GUE). Such networks are experimentally produced by inserting circulators

onto transmission cables. Quantum graphs with Gaussian Symplectic Ensembles (GSE) spec-

trum can be approximated by creating graphs with symmetric pathways and circulators.

While quantum graph eigenmodes share features with 2D and 3D counterparts, a study [13]
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has shown that the statistics of quantum graph eigenmodes deviate from the RMT predictions,

which well-describe 2D and 3D cavity eigenmodes. This is due to two main factors. One mainly

appears in the experimental setup, and another one is found in both experimental measurements

and theoretical calculations. The first one is the incomplete spectra that are caused by the absorp-

tion of the energy levels by the cables. Thus, we have missing energy levels that cause deviations

from the RMT predictions. The second factor is wave reflection at the ends of bonds that causes

wave intensity to retrace its path and become partially trapped on a bond. Waves in a 2D or 3D

cavity typically strike the surface of the cavity at an angle and are specularly reflected. The full

wave intensity continues its trajectory. For cases in which the ray trajectories are chaotic, each

eigenmode can then be viewed as a random superposition of plane waves. In contrast, modes of a

quantum graph can be localized in a small portion of the graph. These modes are nongeneric due

to the fact that they do not perceive the chaotic nature of the underlying classical dynamics, which

occurs from scattering at all the nodes. These non-universal contributions lead to significant devi-

ations, especially for the long-range spectral properties, which can be investigated using number

variance [14] and power spectrum [15–17]. Here it should be noted that in experiments systems

with time reversal invariance have more significant deviations from RMT than those without time

reversal invariance. Higher deviations happen due to the fact that in experiments circulators are

used as nodes, which hinders backscattering. Therefore, fewer waves are trapped on bonds.

The statistics of the spacings between adjacent mode wave numbers, or the spacings of the

corresponding frequencies and energy levels, are studied extensively in various papers [13, 18–

21]. As has been mentioned, the distribution of spacings of mode wave numbers in integrable

systems is described by the Poisson probability distribution function. The Poisson distribution

describes the spacing between a sequence of random numbers that are independent and uniformly
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distributed on an interval. The Poisson distribution of spacings is realized in a quantum graph

when the nodes are fully reflecting. In this case each node reflects all the wave amplitude incident

on a bond, and none is transmitted to the other bonds shared by that node. This happens when

we set Dirichlet boundary conditions at all of the nodes and consider bonds of varying, random

lengths. As a result, waves are trapped on their corresponding bonds, bonds do not communicate

with other bonds. The total wavenumber spectrum is thus a superposition of independent spectra

with uniform spacing distributions. From here, we can conclude that the probability distribution

function of the level spacings of the mode wave numbers depend on the reflection coefficient of

the nodes.

Neumann boundary conditions apply when the wave functions on each bond connected to

a particular node have the same values, and the sum of the derivatives of the wave functions at

each node vanish. The signal reflection coefficient in this case is 2/n− 1, where n is the number

of bonds connected at the node. For n = 3 the magnitude of the reflection coefficient is 1/3,

and a very small amount of signal power is reflected, thus, giving the waves the ability to travel

inside the network and giving the system more universal wave chaotic properties. A system with

Neumann boundary conditions and with three bonds connected at each node is well-described by

RMT. In this thesis we will introduce a boundary condition that allows us to vary the magnitude

of the reflection coefficient between 1 and 1/3, and observe the transition between GOE spacing

statistics and Poisson statistics. We can also compare the spacing statistics of a graph with this

continuously variable reflection coefficient with graphs in which a fraction of nodes has reflection

coefficient magnitude 1/3 and the remainder have reflection coefficient unity. All these ideas will

be discussed in more detail in the next chapter.

In addition to the spacing distribution of wavenumbers, there have been studies [19] of other
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characteristics of wavenumbers, for example, the properties of the counting function, N(k), that

describes how many wavenumbers for a particular graph are less than k. The counting function is

a monotonically increasing function of k and is approximately N(k) = kLT/π for large k. Here

LT is the total length of the graph.

Less well studied are the statistical properties of the graph wave functions. We have investi-

gated the node wavefunction statistics and corresponding wave function amplitudes on the bonds.

For wavefunctions in 2D and 3D domains the statistics are described by the “random plane wave

hypothesis”. This results in the wavefunctions behaving as zero-mean Gaussian random variables

with a universal two-point correlation function. We find that a graph grows in size the statistics

of the node voltages approach the “random plane wave hypothesis”. The numerical calculations

and corresponding results will be discussed in the next chapter.

In this thesis, the statistics of the impedance matrix of the system is the central area of the

study. In the literature, one can find studies of the scattering matrix [3,22] and the Wigner reaction

matrix [23] (sometimes called the K matrix [24]). Both of these are related to the impedance ma-

trix. In wave chaotic systems, the impedance matrix is most often presented in normalized form.

The normalization is made using the real part of the radiation impedance matrix. The radiation

impedance matrix is diagonal and the elements are the real part of the radiation resistance of each

port. This is the real part of the impedance seen at each port and which determines the prompt

reflection for a wave incident on the port. It is very convenient to use because, in experiments, it

can be measured very well, and in addition, it can be easily computed in theoretical calculations.

The radiation impedance can be conceptualized in the following way. If other boundaries in the

system are perfectly absorbing or are moved to infinity, then the impedance we are calculating or

measuring at the port is the radiation impedance. The radiation impedance is a N by N complex-
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valued matrix. The elements of this matrix depend weakly on wave frequency change, and thus,

they have non-statistical values. The diagonal elements of the radiation impedance matrix de-

scribe the coupling between the port and the system. However, non-diagonal elements give us

information on how different ports communicate with each other [25].

The statistics of the normalized impedance matrix are described quite well by the random

coupling model (RCM) [26], which is based on RMT. Here we should note that, as we already

mentioned, other characteristics of the wave chaotic systems are described by RMT. There are

several studies [4,27,28] that compare experimental measurements of either Wigner’s reaction K

matrix or the impedance matrix of the microwave networks to the theoretical calculations based

on RCM or RMT [26,29] In these works, they showed that experimental and numerical results of

the diagonal elements of impedance or K matrices are in good overall agreement systems with the

time-reversal symmetry. The study [4] also shows that non-diagonal elements from experimental

measurements and theoretical calculations also match each other quite well. However, in theo-

retical calculations based on RCM, the loss parameter should be different from the one used in

calculations for diagonal elements. This means that when we have experimental measurements,

two loss parameters are needed in theoretical calculations. One is needed to match the diago-

nal elements, and another one is needed to match the non-diagonal elements. In addition, the

loss parameter used for diagonal elements is always higher than the one used for non-diagonal

elements.

Now let us summarize our results. We have developed a theoretical framework to calculate

the characteristics of the microwave network, including the impedance matrix. We have devel-

oped three different approaches to the calculation of the impedance matrix. One of the approaches

was using summed contributions from the different paths a signal may take in traversing the
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graph. This approach allows us to calculate the contributions only coming from the short-orbits

and, therefore, enables us to calculate the impedance matrix without short-orbit contributions.

Finally, we compared results from experimental measurements of the impedance matrix and the

theoretical calculations based on the predictions of RCM with the numerical calculations using

our theoretical framework. On the one hand, we have found that our theoretical framework is in

good agreement with the experimental results and, therefore, accurately describes the impedance

statistics of the microwave network.

On the other hand, during the comparison of the results of the impedance matrices to each

other, one coming from the numerical calculations from our theoretical framework and another

coming from the theoretical calculations based on RCM, we found out that to match these re-

sults, we needed two different loss parameter values in the calculations based on RCM. This is

quite similar to the studies [4, 27, 28] mentioned above, where we compared the experimental

measurements and the theoretical results from RCM. This is not surprising due to the fact that

our numerical calculations were matching to the experimental measurements.
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Chapter 2: Graph Topology

In this chapter, we will discuss the topology of the graph. First, we define a graph, the

kinds of graphs, and the simplifications we consider in the thesis. After that, we will define the

metric graph and then investigate the theoretical framework that exists on a metric graph. This

chapter mainly follows the book by G. Berkolaiko and P. Kuchment [30], and the review paper

by S. Gnutzmann and U. Smilansky [5].

2.1 Graph Definition

A graph is defined as a number of bonds (or edges) connected to a number of nodes (or

vertices). Let’s denote it as G = G(N,B), where N and B are the numbers of nodes and

bonds it contains correspondingly. N and B can be defined as sets of corresponding elements,

N = {ni}, B = {bi}. The way nodes and bonds are distributed in the graph is described by the

connectivity matrix (or adjacency matrix) Cij . Cij is N × N matrix and represents how many

bonds connect one node to another; thus, it is generally defined as

Cij =



m if i ̸= j, and node ni is connected to node nj by m bonds.

2m if i = j and ni is connected to itself with m loops.

0 if i and j are not connected by any bond.

(2.1)
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To further characterize the graph we have to mention some of its main features. These are

the valency (or the degree of the nodes), the neighborhood, and the boundary. The valency tells

us how many bonds connect to a particular node. We can denote it as vi corresponding to each

node, and to calculate it using the connectivity matrix, we can write the following equation

vi =
N∑
j=1

Cij . (2.2)

The neighborhood, denoted as Γi, is defined for each node ni, and it consists of the list

of which other nodes connect directly with node ni. In other words, all the nodes with at least

one connected bond to node ni are in the neighborhood of Γi. The last feature mentioned above

is the boundary, defined as the collection of the nodes surrounding the subgraph. The boundary

contains every node in the neighborhood of any node contained in the subgraph, where subgraph

is defined as a graph whose nodes and bonds are subsets of another graph.

The total number of bonds can be easily written in terms of the connectivity matrix

B =
1

2

N∑
i=1

N∑
i=j

Cij (2.3)

Let’s now define connected graphs. Graphs are called connected if we are not able to divide

a graph into two or more subgraphs such that any node from one subgraph does not connect

trough a bond to a node from another subgraph. In this thesis, we always assume that we have

a connected graph. Graphs can be divided into categories in terms of how they are connected.

Some of the most well-known categories are simple graphs, v-regular graphs, tree graphs, etc.

Simple graphs, as the name suggests, are graphs with no loops and without multiple bonds

connecting any two nodes. The connectivity matrix will have zeros at the diagonal, and the non-
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(a) Quadrangular graph (b) Tetrahedron graph

Figure 2.1: Simple examples of v-regular graph. (a) shows quadrangular graph which has 4
nodes with valency 2. It is also an example of ring graph with 4 nodes. (b) shows tetrahedron
graph with 4 nodes with valency 3. It is also an example of complete graph.

diagonal elements will be either zero or one. In terms of a connectivity matrix, it can be written

as

Cij =


1 if ni and nj are connected.

0 if ni and nj are not connected.

(2.4)

Simple graphs are the most commonly used graphs in quantum graph theory. This comes

from the fact that simple graphs can be created from any graph by adding more nodes into the

bonds without changing the spectral properties of the system.

The v-regular graphs, as the name suggests, are the graphs with the same valency for every

node. One of the good examples is the ring graph, which has four nodes, each with a valency of

two. Furthermore, if all the nodes are connected to each other then we have a subcategory of v-

regular graphs called a complete graph. A common example of complete graphs is a tetrahedron

graph, which has four nodes, and the valency is three for each node. Figure 2.1 shows the

examples of a quadrangular graph and a tetrahedron graph.

Tree graphs are the graphs having no cycle in them. A cycle is defined as having a sequence
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(a) Tree graph (b) Star graph

Figure 2.2: Simple examples of tree graphs. (a) shows one of the common case of the tre graph
which has 9 nodes. (b) shows star graph with 9 nodes and 8 bonds. It is a subcategory of tree
graphs.

of nodes that are connected to each other in a way that you can return to a starting point without

retracing your path on a bond. One of the interesting subgroups of graphs is star graphs, which

have one node with valency the same as the total bond number, vi = B. Other nodes have a

valency one, vi = 1. Figure 2.2 shows the example of a typical tree graph and a star graph.

As mentioned bonds can be directive, which we can use to define the trajectory inside the

graph. Recall, a directed bond; as its name suggests, permits information to travel only in one

direction between the two nodes it connects. A notation we use for a directed bond is b = [i, j],

meaning that you can travel from i to j. In addition, a notation for any function, f , defined on

the same bond is fij . If one directed bond ends on a node which is a starting point for the second

directed bond, this means that the second bond follows the first one. A trajectory is a path on

the graph starting from one node and ending on another; this type of object can be described by

a sequence of directed bonds from where ith directed bond, bi, follows bi−1, and bi+1 follows bi.

The topological length of the trajectory is the same as the number of bonds it contains; thus, it

might be anything from zero to infinity. A periodic orbit is a trajectory that ends on the same

node from where it starts. The simplest form of a periodic orbit is called a primitive periodic
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orbit, which is the trajectory that can not be written with two or more of the same periodic orbits.

Furthermore, closed trajectories are defined similarly to periodic orbits, and we can use them

interchangeably.

2.2 Schrodinger’s Equation on a metric graph

In the previous section, we talked about graphs as abstract objects. The nodes were con-

nected by the bonds mathematically and did not convey any physical properties. Let’s now define

metric graphs to be graphs where the bonds connecting the nodes are assigned lengths. A graph

is said to be a metric graph [30] if the following conditions are satisfied:

1. Each bond must have a positive length, Lij > 0.

2. The length of the bond is the same for both directions, Lij = Lji.

3. A coordinate xij defined on the bond satisfies, 0 ≤ xij ≤ Lji.

4. Coordinates on the same bond with reversal indices have the following relation, xji =

Lij − xij .

To consider metric graphs as quantum graphs, we should be able to apply a quantum oper-

ator to the graph, and primarily, a self-adjoint Hamiltonian operator is used. The simplest form

we can use is the negative second order derivative that is applied to the bond

f(x) → −d
2f

dx2
. (2.5)

Where, x is the coordinate on the bond, 0 ≤ x ≤ L.
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A more general way of writing operator on the graph is to use one-dimensional Schrödinger’s

operator with potential V (x).

f(x) → −d
2f

dx2
+ V (x)f(x) (2.6)

It should be said that the two operators defined here assume the bond has no preferred

direction. This is due to the lack of a first-order derivation operator, d/dx, in the equation.

However, if we take one of the most general forms of the Schrödinger’s operator that includes

both a scalar potential,V (x), and vector-like potential, A(x), then the direction of the graphs

plays an important role.

f(x) →
(
1

i

d

dx
+ A(x)

)2

f(x) + V (x)f(x) (2.7)

It is important to notice that magnetic potential, A(x), here is a vector field and it changes

sign according to the direction of x, A[i,j](x[i,j]) = −A[j,i](x[j,i]), recalling the fact that x[j,i] =

L[i,j] − x[i,j]. We have to make important assumptions about the electric and magnetic potentials.

The electric potential is non-negative and smooth on the whole bond length, V (x) ≥ 0 and

0 ≤ x ≤ Lb. Similarly, the magnetic potential is non-negative; however, it is mostly considered

a constant function over the length of the bond, A(x) = A and A ≥ 0. One of the quantum

graphs’ basic solutions is the eigenfunctions of the closed system. We assume that there are no

external energy sources, which is the general case in most literature. This assumption translates

as non-existence of electric potential, V (x) = 0. To find the wave function of this particular case,

we should solve the following equation
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(
1

i

d

dx
+ A

)2

ψ(x) = k2ψ(x) (2.8)

ψ(x) = e−iAx(c1e
ikx + c2e

−ikx) (2.9)

Here, k is the wave vector, ψ(x) is the wave function solution of the equation, c1 and c2 are

arbitrary constants. The form of the solution, ψ(x), shows that existence of magnetic potential,

A, breaks the symmetry under the the reflection of x, thus, ψ(x) ̸= ψ(−x). Furthermore, time

reversal invariance is broken because a complex conjugate of ψ(x), ψ∗(x), is not the solution of

the differential equation.

If we define the wave function solutions on the nodes as ϕi for node i, then we have the

following boundary conditions on the bond [i, j]

ψij(x) =


ϕi, x = 0.

ϕj, x = Lij .

(2.10)

These boundary conditions uniquely define the solution of the Equation (2.9) given by

(2.10). Thus, c1 and c2 can be written in terms of ϕi and ϕj in the following way

c1 =
ϕie

iAijLij − ϕje
−ikLij

2i sin(kLij)

c2 =
ϕie

ikLij − ϕje
iAijLij

2i sin(kLij)

this leads to the final form of the solution, given by (1.9), in terms of boundary values of the wave
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Figure 2.3: Example of a part of a graph with the node with valency 2.

function. Thus we have

ψij(x) =
e−iAijx

sin(kLij)

(
ϕje

iAijLij sin(kx) + ϕi sin(k(Lij − x))
)
. (2.11)

We have already ensured wave functions satisfy boundary conditions on the nodes. How-

ever, we have not shown yet that these boundary conditions guarantee continuity and current con-

servation on each node. The continuity means that every wave function on the bonds connecting

to the same node should have the same value on that node. The current conservation requires that

the current entering the node from the connected bonds is described by the boundary condition

on the node. To derive the current equation, we start from the Schrödinger’s equation on the

bond, and for simplicity, let’s look into the case with the node that has valency two. This case

is shown in figure 2.3. We are using a common assumption of having a delta potential (or delta

coupling) at the node. We focus on node 2, and we want to write the current equation on that.

We have already created a rule for how coordinates are defined on the bond. Basically, we have

following coordinates x12, x21, x23 and x32, and there are the following relations between them,

x12 = L12 − x21 and x23 = L23 − x32. Because we have two different bonds, and they have their

coordinate system, it will be hard to write Schrödinger’s equation on both bonds together. So,

let’s introduce a new coordinate y, and assign a value 0 at node 2, a value −L12 at node 1, and

a value L23 at node 3, as shown in Figure 2.4. Now we can write Schrödinger’s equation with
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Figure 2.4: Example of a part of a graph with the node with valency 2. Using y coordinate.

respect of y coordinate.

(
1

i

d

dy
+ A(y)

)2

ψ(y) + λδ(y)ψ(y) = Eψ(y) (2.12)

Let’s simplify it and then integrate from y = −ϵ to y = +ϵ, which means integrating around

node 2. Here, we should note that A(y) = A12 if −L12 < y < 0 and A(y) = A23 if 0 < y < L23

lim
ϵ→0+

∫ +ϵ

−ϵ

(
−d

2ψ(y)

dy2
− iA(y)

dψ(y)

dy
+ A2(y)ψ(y) + λδ(y)ψ(y)− Eψ(y)

)
dy = 0 (2.13)

After simple transformations we end up with the following equation

lim
ϵ→0+

(
d

dy
+ iA(y)

)
ψ(y)

∣∣∣∣+ϵ

−ϵ

= λψ(0) (2.14)

Now let’s translate the y coordinate into the x coordinates. For y < 0 we can use either x12 or

x21, and similarly, for y > 0 we can use either x23 or x32. We can assign the primary coordinates

with the following rule to remove the confusion between these options. If the first index is lower

than the second, then it is the primary coordinate, and we can simply call it x. This assignment

creates a rule that specifies conditions for x = 0 and x = Lij . Which can be described in the
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following way

x
∣∣
at node i

=


0, if i < j.

Lij, if i > j.

. (2.15)

Similarly, A(y) becomes A12(x) and A23(x) if y < 0 and y > 0, correspondingly. Finally,

the translated form of equation (2.14) from y coordinate to x coordinate reads the following way

(
d

dx
+ iA23(x)

)
ψ23(x)

∣∣∣∣
x=0

−
(
d

dx
+ iA12(x)

)
ψ12(x)

∣∣∣∣
x=L12

= λψ23(0) (2.16)

Here it should be noted that ψ23(0) = ψ12(L12) and it is defined as ϕ2. Equation (2.16) can

be easily generalized. Thus, the final and general form of the current equation reads the following

way ∑
i<j

(
d

dx
+ iAij

)
ψij(x)

∣∣∣∣
x=0

−
∑
i>j

(
d

dx
+ iAji

)
ψji(x)

∣∣∣∣
x=Lij

= λiϕi . (2.17)

Here, every λ is defined on the nodes and determined by the boundary condition on each

node.

Now we have the wave function equation given by (2.11) and the current equation on each

node given by (2.17); thus, we can use them to create an equation that describes the whole graph.

Let’s substitute ψij and ψji by their expressions from (2.11) inside (2.17), and calculate piece by

piece, (
d

dx
+ iAij

)
ψij(x)

∣∣∣∣
x=0

= −ϕik cot(kLij) + ϕj
keiAijLij

sin(kLij)
, (2.18)

and (
d

dx
+ iAji

)
ψji(x)

∣∣∣∣
x=Lij

= ϕik cot(kLij)− ϕj
keiAijLij

sin(kLij)
. (2.19)
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Here we used the fact that Aji = −Aij , and Lji = Lij . So, as a result we have,

(
−λi
k

−
∑
j ̸=i

cot(kLij)

)
ϕi +

∑
j ̸=i

eiAijLij

sin(kLij)
ϕj = 0 (2.20)

This is a set of linear equations for ϕ’s and can be written in a matrix form

∑
j

hji(k)ϕj = 0 (2.21)

where,

hii(k) = −λi
k

−
∑
j ̸=i

cot(kLij) , (2.22)

and

hji(k) =
∑
j ̸=i

eiAijLij

sin(kLij)
. (2.23)

Equation (1.21) has trivial solution by setting all the ϕ’s to zeros. However, we are only interested

in non-trivial solution that is

det(hij(k)) = 0 . (2.24)

Equation (2.24) is called secular equation [5], and its solution gives us the eigenspectrum of wave

vectors, k’s, of the system.
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Chapter 3: Random Coupling Model

Wave chaos refers ti the study of the systems in which high-frequency (or short-wavelength)

waves propagate in irregular enclosures. Since the waves have a shorter wavelength compared

to the geometrical sizes of the surrounding enclosure, they act like a particle that reflects and

bounces around in the enclosure. The geometrical characteristics of the system can cause the

interaction with the high-frequency wave, which can be represented as a particle, to be a chaotic

process. Wave chaos is actively studied in many different fields [31–38]. Because chaotic systems

are extremely sensitive to the initial conditions and the characteristics of the enclosure, direct

calculations of the wave fields take a long time and large resources. Therefore, a statistical

approach is a good alternative to describe the system and the solutions of the corresponding

processes. Such an approach has been developed based on random matrix theory (RMT) [39,40]

and is known as the random coupling model (RCM) [26].

Random matrix theory has been used extensively over the years and has successfully pre-

dicted the statistical properties of the wave chaotic systems. [29,41–46]. The statistics depend on

two main features. The first one is the time symmetry of the system, meaning that if the system

has time-reversal symmetry, it is described by GOE (Gaussian Orthogonal Ensemble), and if time

reversal symmetry is broken, it is described by GUE (Gaussian Unitary Ensemble). The second

one is the characteristics of the loss in the system.
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The random coupling model has been successfully used to study microwave electromag-

netic waves coupled with the chaotic systems. [26, 47–58]. Commonly, microwaves are coupled

with systems having several ports. In practice, the ports can be anything that can receive or send

an electromagnetic wave signal, for example, some sensors or antennas. Due to the success of the

random coupling model over the years, new fields have started adapting this model. People are

studying systems with both regular and chaotic ray dynamics and coupled chaotic systems. At

first, the random coupling model was used mainly for linear systems; however, now, the random

coupling model is used in nonlinear systems [59–69]. Nonlinear systems have more complex

settings; therefore, it will modify this model to address nonlinear chaotic systems’ problems cor-

rectly. One thing to note for nonlinear systems is that the universal properties of the system do

not work as a linear superposition of each system.

Wave chaotic systems have non-universal properties that alter the universal fluctuations of

the undergoing processes. The most common non-universal features are short-orbit effects and

the coupling between the ports and the electromagnetic waves. These non-universal features are

addressed quite well by the random coupling model. We can divide this model into two parts. The

first describes an integrable (or deterministic) process, which contains a non-statistical part of the

system. The second one describes a non-integrable (or non-deterministic) process with universal

statistics, which is assumed to be predicted by the random matrix theory. In other words, the

eigenvalues of large random matrices are used as the values of the characteristic elements of the

system. The random coupling model mainly defines the impedance matrix of the system. To cap-

ture the non-universal contributions from the impedance matrix, we can average the impedance

matrix over an ensemble of realizations that are easily doable experimentally and numerically.

Once we capture non-universal properties, we can remove them from the data, and the remain-
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ing data should match the predictions of the random matrix theory. This technique is used in

various dimensional (1D, 2D, 3D) wave chaotic systems [50, 51, 70]. Other than fluctuations of

the impedance matrix, the random coupling model also describes fluctuations of the scattering

matrix, which is closely related to the impedance matrix. The relation between the impedance

and the scattering matrices is the following

S = Z
1
2
0 (Z + Z0)

−1(Z − Z0)Z
− 1

2
0 , (3.1)

where S is the scattering matrix, Z0 is the matrix describing system specific features and Z is the

impedance matrix of the system. Each element in the matrix is complex, and (i, j) member of

the matrix contains the value of impedance between ith and jth ports. According to the random

coupling model, the impedance matrix contains the universally fluctuating impedance ξZ (also

known as normalized impedance matrix), and the impedance matrix equation is given in the

following way

Z = i Im[Zavg] + (Re[Zavg])
1
2 ξZ(Re[Zavg])

1
2 , (3.2)

where

Zavg = Re[Zavg] + i Im[Zavg] (3.3)

is the average impedance of the system, which is averaged over the ensembles of realization.

Zavg contains information on the specific system features it is realized on. It is non-statistical,

system-specific, and can be estimated if we know the radiation impedance and the geometrical

properties of the system. In other words, Zavg contains information on non-universal systems

properties, such as the radiation impedance and the short orbit effects. The radiation impedance
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can be easily measured experimentally and numerically. The diagonal elements of the radiation

impedance matrix give us information about the coupling between ports and the chaotic system.

These elements represent the impedance of the system at the ports in the case where the signal

waves injected to the port do not come back; they either are absorbed by the system or the system

is so large that the waves never return to the ports. In the experiments on quantum graphs, the

radiation impedance can be measured by setting high loss on the bonds (either taking relatively

long or relatively highly lossy bonds). In the 2D-3D cavities, the walls of the cavities can be

covered with the perfect absorbers. We assume the ports are perfectly coupled and communicate

with each other by passing waves through the chaotic system. Therefore, the radiation impedance

is a diagonal matrix where the diagonal elements correspond to the radiation impedance of each

port. The real part of the radiation impedance acts as radiation resistance because it essentially

represents the ability of far-field radiation of the ports. The imaginary part of radiation impedance

represents the near-field energy of the ports. As already mentioned above, short orbit effects are

the paths of the waves that are not ergodic and do not travel around the whole system. Therefore,

short orbit contributions are system-specific non-universal features.

The random coupling model (RCM) proposes the equation for the universally fluctuating

impedance matrix, it is given in the following form

ξZ,i,j =
i

π

M∑
m=1

Wi,mWj,m

iα− λm
, (3.4)

where ξZ,i,j is the impedance between the port i and port j, M is the number of mode in the sys-

tem, and i =
√
−1. The element Wi,m in the equation gives the value of the coupling between ith

port and mth eigenmode. In addition, Wi,m and Wj,m are assumed to be independent and identi-
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cally distributed while having Gaussian probability distribution with zero mean and unit variance.

These assumptions come from the hypothesis known as the random plane wave hypothesis (or

the Berry hypothesis). The idea is that eigenmodes behave as a superposition of random plane

waves, due to the superposition, we have a sum of the random values that are independent and

identically distributed; thus, using the central limit theorem, the corresponding summed value

should have Gaussian probability distribution. The term α is a loss parameter and determines the

statistics of the universal fluctuations of the impedance matrix or corresponding scattering matrix

of the system. According to the random coupling model, the loss parameter α is given by

α =
k2

∆k2nQ
, (3.5)

where k is the wave vector, Q is the quality factor of the chaotic cavity, ∆k2n = ⟨k2n+1 − k2n⟩ ≈

2kn∆kn, and here ∆kn is the mean level spacing of the mode wave vectors.

The final term in the equation that we have yet to discuss is λm is the mth eigenvalue of

the large random matrix, whose statistics are given by the random matrix theory. In the case of

time-reversal symmetry, the random matrix should be from the Gaussian Orthogonal Ensemble

(GOE). If the symmetry is broken, the random matrix should be from the Gaussian Unitary

Ensemble (GUE). The probability distribution function of the eigenvalues of the matrix coming

from the Gaussian Orthogonal Ensemble (GOE) is described by Wigner’s semicircle. Therefore,

the probability distribution function for λ is Wigner’s semicircle, too; however, according to

the random coupling model, the average spacing between the λm and λm+1 should be unity.

Therefore, we can numerically generate the distribution using the steps from this study [26].

Here are the key steps:
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1. Create 5M × 5M symmetric matrix which is a member of the Gaussian Orthogonal En-

semble (GOE).

2. Find the eigenvalues of the chosen matrix.

3. Normalize the middle M eigenvalues so that the spacings between them become unity.

Now let us discuss the ideas behind each step.

In step 1, let us explain more details about the Gaussian Orthogonal Ensemble (GOE). It is

a collection of symmetric matrices whose diagonal elements have unit variance and zero mean,

and non-diagonal elements have 1/2 variance and zero mean. This is because the symmetric

matrices are given by

H =
A+ AT

2
,

where H is the member of the Gaussian Orthogonal Ensemble (GOE), AT is a transpose of A

matrix, and A is a matrix whose each element is independent and identically distributed random

variable has a gaussian probability distribution function with zero mean and unit variance. There-

fore, on the diagonal element of H matrix, we simply have diagonal elements of A and AT (both

A and AT have the same diagonal elements). However, the non-diagonal elements are the sum

of the two independent and identically distributed random variables divided by two. That is why

non-diagonal elements of matrix H have a zero mean and 1/2 variance

In step 2, we find the eigenvalues because we assume that they describe the λ parameter in

the equation.

In step 3, if we choose theM number large enough (for exampleM ≥ 200), the eigenvalues

will not have uniform spacings and will be distributed as Wigner’s semicircle law. The mean
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spacing distribution will be given by

∆λ =
π√

10M − λ2
. (3.6)

If we multiply our eigenvalues, λ, on
√
10M/π, then the distribution of the mean spacings of the

eigenvalue, λ, became

∆λ =
1√

1− λ2

10M

. (3.7)

Here we want to make the mean spacing of the eigenvalues, λ, equal unity. This will happen if

λ << 10M . Since eigenvalues are distributed symmetrically around 0, the smallest eigenvalues

are in the middle of this distribution. That’s why we choose the middleM eigenvalues to normal-

ize by multiplying on
√
10M/π, and as a result, we have spacing that is very close to unity. The

numerical results following these steps are shown in Fig. 3.1, and we see that Wigner’s semicircle

law very nicely describes the probability distribution of λZ , having unit spacing for normalized

eigenvalues, λ→ λ
√
10M/π.

Now we have discussed how to numerically find every term except α from the equation of

the normalized impedance matrix (3.4). The α parameter is found experimentally by comparing

the statistics of the normalized impedance matrix, ξZ . We can measure the system impedance

matrix and corresponding deterministic features in the experiments. Therefore, we can extract

the data of a universally fluctuating impedance matrix. After that, we can change α parameter in

equation (3.4), where other terms are generated numerically. In the end, we say the system has a

loss parameter α for which experimentally and numerically generated statistics of ξ match each

other. Note that these calculations are for the two port systems; therefore, we have 8 different

25



-1500 -1000 -500 0 500 1000 1500
0

500

1000

1500

2000

λZ

N
um
be
r
of

λ
Z

(a) Histogram of the λZ parameter from the equation (3.4).
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(b) Probability distribution function of the λZ parameter from the
equation (3.4).

Figure 3.1: We generated the statistics of the λZ parameter using the random coupling model
and the steps discussed in this chapter. M = 500, and we used 2000 different realizations to
generate the sample data for the eigenvalues of the matrices from the Gaussian Orthogonal
Ensemble (GOE). Afterward, eigenvalues were normalized by multiplying on

√
10M/π.
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statistics to compare, which are imaginary and real parts of the 2× 2 matrix. However, we don’t

really need 8 different statistics because the statistics of ξ11 and ξ12 are the same, and also, the

statistics of ξ12 and ξ21 are the same. Thus, finally we have left the following 4 statistics to

compare, Re[ξ11], Im[ξ11], Re[ξ12], and Im[ξ12]. Finally, one more detail should be checked, and

that is if the one α parameter makes all 4 of the statistics from the experimental or the theoretical

assessment match the random coupling model predictions simultaneously. The studies [26, 52]

show that in 2D systems, we have the agreement between the experimental measurements and

the random coupling model predictions. In other words, all 4 of the statistics match each other

for one α parameter. However, the studies [4] on the quantum graphs show that we need two α

parameters to have a match. One α for diagonal elements and another for non-diagonal elements.
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Chapter 4: Transmission Lines

In this chapter, we will discuss the theory of transmission lines. Transmission lines are one

of the main realizations of quantum graphs, and understanding them is crucial. Transmission lines

are used to guide high-frequency electromagnetic waves in a contained manner. A transmission

line consists of two conductors arranged in a parallel that carrying current in opposite directions.

The necessity of transmission lines comes from the fact that electric cables not arranged in this

way will radiate away energy. If the wavelength of the electromagnetic signal is smaller than the

distance between a conductor and its return path, the cable acts as an antenna. In addition, high-

frequency waves tend to reflect at the connectors and joints and, afterward, travel back toward

the source; therefore, power signals do not reach the destination. These are the main reasons why

ordinary cables are only used to carry low-frequency waves. A couple of examples are utility

powers and audio signals.

Transmission lines are used to carry high-frequency waves. The term transmission line ap-

plies to cables when the cables are long enough that the wave nature of the transmission must be

taken into account. This applies especially to the cables transmitting high-frequency electromag-

netic waves. Due to the short wavelength, the wave phenomena arise over a very short distance.

However, at first, the theory was created to describe a very long telegraph line, in particular un-

derwater telegraph cables. Transmission lines’ main purpose is to connect wave transmitters or
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Figure 4.1: [1] Graphical view of the coaxial cable. It contains a main conducting cable, a
dielectric insulating material, a conducting shield and a plastic jacket.

receivers to the antennas. Therefore, the use cases are to distribute cable television signals, net-

work connections of computers, etc. Transmission lines are created to conduct electromagnetic

waves with minimal power loss and reflections. In order to diminish the reflections as much as

possible, the transmission lines have a uniform cross-sectional area along the line that ensures

constant impedance as a function of length, which prevents reflections along the cable. Types of

transmission lines include coaxial cables, parallel lines, etc.

The coaxial cable, shown in Figure 4.1, is a transmission line with a main conducting cable.

Around the conducting cable is a dielectric insulating material, and around it is a conducting

shield. Finally, this whole construction is protected by an outer plastic jacket. All elements are

concentric, which is why it is called coaxial cable. They share a geometric axis. Coaxial cables

are mainly used to carry radio frequency signals, for example, cable television signals, ethernet

connection signals, etc. The advantage of coaxial cables compared to others is that the perfect

coaxial cable keeps all the electromagnetic energy inside the cable, between the main conducting

cable and the conducting shield. Thus, it can be installed nearby metal constructions without any

power losses and interaction with outer objects.
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Figure 4.2: [2] Graphical view of the twin-lead transmission line. It contains two parallel
conducting cables held together by plastic band.

Parallel lines can be of different types. However, the twin-lead transmission line is the

most common, as shown in Figure 4.2. Twin-lead is two parallel conducting cables held apart by

a plastic band. Distance between the parallel conducting cables should be kept the same. Oth-

erwise, we have reflected waves going back and, therefore, signal loss. Twin-lead transmission

lines are mainly used to connect radio transmitters to their antennas. Their main advantage over

the other transmission lines is their low signal loss.

Now let us discuss the physical properties of the transmission line. In order to see how

the signal is transmitted through the cable, first, look at the arbitrarily small segment, δx, of the

transmission line, which commonly is presented as a lumped element circuit, given in Figure 4.3.

The properties such asR′, L′,G′, andC ′ are resistance, inductance, conductance, and capacitance

per unit length, correspondingly. I(x) and V (x) are the values of the current and the voltage at

the position x correspondingly. On the left-hand side of the arbitrarily small transmission line

segment, we choose to be the position x, and therefore, the current is I(x), and the voltage is

V (x). On the right-hand side, we choose the position x+ δx; therefore, the current is I(x+ δx),

and the voltage is V (x+ δx).
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Figure 4.3: A model of a arbitrarily small segment of the transmission line.

Now let us apply Kirchhoff’s circuit laws on the transmission line segment shown in Figure

4.3. The first Kirchhoff’s law we use the total current entering a node is zero. The second

Kirchhoff law we use is the sum of all the voltages around a loop is zero. As a result, applying

the current law to the node where the capacitor and inductor meet produces

I(x)−G′δxV (x+ δx, t)− C ′δx
δV (x+ δx, t)

δt
− I(x+ δx, t) = 0 . (4.1)

Applying the voltage law to a loop around all of Figure 4.3 produces

V (x, t)−R′δxI(x, t)− L′δx
δI(x, t)

δt
− V (x+ δx, t) = 0 . (4.2)

After simple modifications this equations can be written as

I(x+ δx, t)− I(x)

δx
= −G′V (x+ δx, t)− C ′ δV (x+ δx, t)

δt
, (4.3)
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and

V (x+ δx, t)− V (x, t)

δx
= −R′I(x, t)− L′ δI(x, t)

δt
. (4.4)

If we take the limits both of the sides, such that δx→ 0 and δt→ 0, we end up with the following

expressions

∂I(x, t)

∂x
= −G′V (x, t)− C ′∂V (x, t)

∂t
, (4.5)

and

∂V (x, t)

∂x
= −R′I(x, t)− L′∂I(x, t)

∂t
. (4.6)

These equations (4.5) and (4.6) are called the Telegrapher’s equation [71–74], and they are the

time-domain form of the transmission line. We can further transform these equations to have

each with only one dependent variable, either V (x, t) or I(x, t). To do these transformations,

at first, we should apply ∂/∂t on equation (4.5) and ∂/∂x to equation (4.6), and afterward,

substitute ∂2I(x, t)/∂t∂x inside the equation (4.6) by the left-hand side of modified equation

(4.5). Afterward, we should do the same things and vice-versa, and finally, we end up with the

following expressions

∂2V (x, t)

∂2x
− L′C ′∂

2V (x, t)

∂2t
= (R′C ′ +G′L′)

∂V (x, t)

∂t
+G′R′V (x, t) , (4.7)

and

∂2I(x, t)

∂2x
− L′C ′∂

2I(x, t)

∂2t
= (R′C ′ +G′L′)

∂I(x, t)

∂t
+G′R′I(x, t) . (4.8)

These equations, (4.7) and (4.8), are identical except for the dependent variable. Therefore, the

solutions for V (x, t) and I(x, t) will be different up to multiplication on a constant.

32



The Telegrapher’s equations (4.5) and (4.6) can be simplified for the sinusoidal steady-state

condition. While having cosine-based phasors. The simplified results are as follows

dV̂ (x)

dx
= −(R′ − iωL′)Î(x) , (4.9)

and

dÎ(x)

dx
= −(G′ − iωC ′)V̂ (x) . (4.10)

We can modify this equation to have each with only one dependent variable. Apply d/dx to

equations (4.9) and (4.10), and afterward, substitute dI(x)/dx and dV (x)/dx into modified

equations from the unmodified equations. In phasor forms, the voltage is written as V (x, t) =

Re
(
V̂ (x)e−iωt

)
, and the current is written as I(x, t) = Re

(
Î(x)e−iωt

)
. As a result, the modified

equations are given by

d2V̂ (x)

dx
− γ2V̂ (x) = 0 , (4.11)

and

d2Î(x)

dx
− γ2Î(x) = 0 , (4.12)

where

γ = γR + iγI =
√

(R′ − iωL′)(G′ − iωC ′) (4.13)

is a complex propagation constant. The real part, γR, is the attenuation constant that represents

how quickly the propagating wave gets dumped. The imaginary part, γI is the phase constant.
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The solutions of equations (4.11) and (412) are

V̂ (x) = V+e
γx + V−e

−γx , (4.14)

and

Î(x) = I+e
γx + I−e

−γx . (4.15)

These solutions represent propagating voltage and current waves, respectively.

We derived the theoretical framework and the Telegrapher’s equations for the transmission

lines using a model of the arbitrarily small segment, shown in Figure 4.3. Furthermore, we

simplified the Telegrapher’s equation and, afterward, found the solutions of the equations for the

simplified sinusoidal steady-state condition.
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Chapter 5: Network Model

In this section we present our model of a network of transmission lines. We will consider

both the normal modes of the network (the eigenmodes) and the case of the network driven by

an injected signal. We will then show how these two situations are related. In the case of the

normal modes, we will discuss eigenmodes of the propagating wave vectors. In addition, we

study the probability distribution functions of the voltage values at the nodes and the probability

distribution functions of the traveling voltage wave amplitudes corresponding to normal modes.

Furthermore, we will introduce several ways of calculating the matrices that describe the network.

The graph presented in Figure 5.1 serves as our network model. It is made up of trans-

mission lines (the bonds) and junctions (the nodes) where the transmission lines join. We use a

simple model that treats the graph as metric graph [5]; thus, the transmission lines has assigned

the lengths. Furthermore, we assume that all the bonds have a characteristics impedance Z0,

which, for simplicity, has the same value for every bond. Our simple model sets a single voltage

value Vi to each node-i. In addition, each node have an impedance Zi to the ground. All the

nodes can be used as a port to receive an external signal, and therefore, current signal entering to

the node-i travels to the ground through the impedance Zi.

Now we start formulating our theoretical framework. Let us start from the basic parts of

the graph, and look at two nodes i and j connected by a bond with the characteristic impedance
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Figure 5.1: A schematic representation of a tetrahedral network with 4 nodes and 6 bonds. It is
used as a representation of our network model.

Z0 and the length of Lij as shown on Figure 5.2. We have assumed that the voltages and currents

on the transmission lines satisfy the frequency domain version of the Telegraphers equations

ikV (x) = Z0
∂I(x)

∂x
(5.1a)

ikZ0I(x) =
∂V (x)

∂x
. (5.1b)

Here k = ω/v is a propagation constant, where ω is the angular frequency, and v is the prop-

agation speed. In the future, we will discuss the dumping rate on the bonds, and that case our

propagation constant will be represented as k = ω/v+ikim where kim is a damping (or loss) rate.

We will consider both frequency independent and frequency dependent loss rates.

The electromagnetic waves can travel in both directions along each transmission line with
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Figure 5.2: A model of two nodes i and j connected by one bond with the length of Lij and
characteristic impedance Z0. Vi and Vj are the voltage values on the nodes for node-i and
node-j, correspondingly. Vij and Vji are the amplitudes of the traveling waves through the bond.
Vij travels from node-i to node-j, and Vji vice-versa.

the propagation constant k. For simplicity, we assume all the transmission line properties are

identical from bond to bond except for their lengths Lij = Lji. The traveling voltage waves from

node-i to node-j have an amplitude labeled as Vij . We assume that the voltage wave has the

amplitude Vij when it leaves the node-i. In order to connect the voltage values on the nodes and

the amplitudes of the traveling voltage waves, we need to solve the Telegraphers equations (5.1a)

and (5.1b). To accomplish that we can substitute I(z) in the equation (5.1a) from the equation

(5.1b), and we get the following

∂2V (x)

∂x2
+ k2V (x) = 0 . (5.2)

The solution on this equation is the traveling wave given by

V (x) = Vije
ikx + Vjie

−ik(x−Lij) . (5.3)
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Here we should note that the voltage a distance z′ from the node-j can be found either by re-

placement z → Lij − z′ or by the interchange of indices i and j. Using the equation (5.3) we can

express the node voltage in terms of the wave amplitudes Vij .

Vi = Vij + Vjie
ikLij (5.4a)

Vj = Vji + Vije
ikLij . (5.4b)

From these equations we can derive expression for the traveling voltage wave amplitudes in terms

of the node voltages,

Vij =
i
(
eikLijVi − Vj

)
2 sin(kLij)

(5.5a)

Vji =
i
(
eikLijVj − Vi

)
2 sin(kLij)

. (5.5b)

Now let us derive similar expression for the current waves traveling along the transmission

line. In order to have every equation related to each other, we should express the current wave

in terms of voltage waves. Substituting V (z) from the equation (5.3) inside the equation (5.1b)

results in the following

I(x) =
1

Z0

(
Vije

ikx − Vjie
−ik(x−Lij)

)
, (5.6)

where Z0 is the characteristic impedance of the transmission line. This expression represents the

current flowing on the line in the +x direction. Thus, the current leaving node-i in the direction

of node-j is

Ii→j =
1

Z0

(
Vij − Vjie

ikLij
)
=

i

Z0 sin(kLij)
(Vi cos(kLij)− Vj) , (5.7)
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Figure 5.3: A schematic model of the node i connected node-j and other nodes. Ii is an injected
current, Ii→j is the current leaving from node-i to node-j. The arrows point out the current
leaving toward any connected node. Z0 is the characteristic impedance of the bond, and Zi is the
impedance to the ground at node-i.

where we have used the equations (5.5a) and (5.5b) to express the voltage wave amplitudes in

terms of the node voltages.

We now apply Kirchhoff’s current law to node-i. The schematic view of the nodes are

shown on Figure 5.3. We imagine there is a current source injecting a current Ii into node-i. This

current must balance all the other currents leaving node-i, either through the transmission line

bonds or through the impedance Zi to ground,

Ii =
∑
j ̸=i

Ii→j +
Vi
Zi

= Vi

(
1

Zi

+
i

Z0

∑
j ̸=i

cos(kLij)

sin(kLij)

)
− i

Z0

∑
j ̸=i

Vj
sin(kLij)

. (5.8)

Here it is understood that the sum over j is only over those nodes that share a bond with
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node-i. Relation (7) can be cast in the form of an admittance matrix,

Ii =
∑
j

Yij(k)Vj , (5.9)

where

Yii =

(
1

Zi

+
i

Z0

∑
j ̸=i

cos(kLij)

sin(kLij)

)
, (5.10a)

and

Yij = − i

Z0 sin(kLij)
, j ̸= i . (5.10b)

The inverse of this admittance matrix is an impedance matrix,

Vi =
∑
j

Zij(k)Ij . (5.11)

In the next sections we will investigate the properties of these matrices for networks of varying

complexity. Before doing that we will derive an expression for the impedance matrix in terms of

the normal modes of a network.

Normal modes of the system are found for values of the propagation constant k = kn for

which the node voltages are nonzero in the absence of injected current. This corresponds to

setting the determinant of the admittance matrix to zero,

det (Yij(kn)) = 0 . (5.12)

The discrete propagation constants kn will be real in the absence of losses, kim = 0 and Re(Zi) =

0. Further, if the load impedance is independent of frequency, dZi/dω = 0, all mode energy is
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stored on the bonds. In this case we expect the average spacing in wave numbers between modes

to be determined by the total length of the bonds, ⟨kn+1 − kn⟩ = π/LT , where LT =
∑

ij Lij .

This relation will be checked when we solve various network realizations numerically.

The energy stored on a bond is the sum of the electric and magnetic field energy of the

waves on the transmission line constituting the bond,

U
(n)
ij =

1

v

∫ Lij

0

dx

(
Z−1

0

|V (n)(x)|2

2
+ Z0

|I(n)(x)|2

2

)
=

2Lij|V (n)
ij |2

vZ0

. (5.13)

Here we have made use of the fact that the network is time reversal symmetric, and as a conse-

quence |V (n)
ij | = |V (n)

ji |. Also, we now use a superscript (n) to denote a voltage or current value

associated with the normal mode of the un-driven network having propagation constant kn. When

we solve for the modes of the network we will normalize the node voltages such that each mode

has the same total energy, U (n)
T =

∑
ij U

(n)
ij .

There is a relation between the normal modes and the impedance matrix, which for a driven

system Ij ̸= 0 is defined for all values of propagation constant k (see appendix A).

Zij =
∑
n

iV
(n)
j V

(n)∗

i

(k − kn)vU
(n)
T

, (5.14)

Here V (n)
i is the voltage amplitude at node-i for mode n, U (n)

T =
∑

ij U
(n)
ij , where U (n)

ij is given by

equation (5.13). It should be noted for this system that the sum is over modes with both positive

and negative values of kn and that the node voltages for the modes are real. This gives the

elements of impedance matrix the property that for real k they are imaginary and odd functions

of k. Further, if we give k = ω/v a small positive imaginary part the real parts of the diagonal
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elements of the impedance matrix are positive as demanded by causality. This expression will

be compared with direct inversion of the admittance matrix, equations (5.10a) and (5.10b), in the

next section.

There is also a third way to calculate the impedance matrix based on summing contributions

from the different paths a signal may take in traversing the graph. Specifically, we can express

elements of the impedance matrix in the following way. For diagonal elements we write

Zii,path = Zin,i

[
1 +

∑
paths

∏
Bonds

σbe
iθb

]
, (5.15)

and for off-diagonal elements we write

Zij,path = Zin,i

∑
paths

∏
Bonds

σbe
iθb . (5.16)

Here the sum over paths is a sum over all paths starting and ending at node-i in the case of the

diagonal elements and starting at node-i and ending at node-j in the case of the off-diagonal

elements. The products are over the bonds that constitute the steps in the paths. On each bond

a phase factor θb = kLb is accumulated, where Lb is the length of the bond. The factors σb

that are also accumulated are determined by how the path is followed from one bond to the

next. If the signal is reflected at the end of a bond and then retraces the same bond the factor is

given by σb = ρb where ρb is the voltage reflection coefficient at the node where the reflection

occurs. If the signal passes through the node to a different bond than σb = 1 + ρb, which is

the voltage transmission coefficient. The voltage reflection coefficient depends on the number of

bonds connected to a node and the impedance Zj that is connected to ground at that node. Let us
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define the equivalent impedance to ground of a node which is connected to Nj bonds,

Z−1
eq,j = Z−1

j + (Nj − 1)Z−1
0 . (5.17)

This is the impedance seen by a wave incident on one bond due to the load and the other bonds.

It is the parallel combination of the load to ground Zj and the Nj − 1 other bonds. The voltage

reflection coefficient is then

ρb =
Zeq,j − Z0

Zeq,j + Z0

. (5.18)

When a path ends on a node which is considered to be a port, then the factor σb = 1 + ρb is

applied as if the signal were passing to another bond. The input impedance at the node is the

parallel combination of the load impedance Zj and the Nj transmission lines forming the bonds,

Z−1
in,j = Z−1

j +NjZ
−1
0 = Z−1

eq,j + Z−1
0 . (5.19)

It can be shown that with these definitions each term in the sum for off-diagonal impedance

elements satisfies the reciprocity condition Zij = Zji.

In principle, the sum over paths gives the exact value of an element of the impedance matrix

only when an infinite number of paths is considered. However, useful approximations to the value

of an impedance element can be obtained with a finite number of paths in two cases. The first

case is if the network has loss, either in the transmission lines or the loads to ground. In this case

signals are attenuated fast enough as they propagate so that the size of the individual terms in

the sum over longer and longer paths decreases faster than the number of such paths increases.

The second case is the one in which the sliding window average using the Lorentzian weighting
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function is sought, rather than the precise value at a given frequency. Averaging over a window

of frequencies (or wavenumbers) of width ∆k, in this way, is equivalent to adding loss kim = ∆k

and causes the contribution of paths of length L to decrease as exp(−∆kL).
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Chapter 6: Numerical Analysis of the Graphs

In the previous section we discussed the theoretical framework necessary to study network

graphs. Now, we numerically analyze different graphs. The set of graphs we choose are the

graphs with 4 nodes and 3 bonds per node, with 6 nodes and 3 bonds per node, with 8 nodes and

3 bonds per node, with 8 nodes and 5 bonds per node, and with 8 nodes and 7 bonds per node.

We examine the properties of the eigenfunctions and the eigenvalues for these graphs. Recall the

eigenvalues are the set of propagation constants kn for which Equation (5.9) has solutions with all

injected currents Ii set to zero. For each propagation constant kn we find a set of node voltages,

which we normalize according to Equation (5.13).

For each graph we have choose the length of the bonds randomly in the range of 1 to 5,

1 ≤ Lij ≤ 5. We also make sure that the average length of the bonds is 3, that helps us to fix

the mean and total length in the similarly structured graph, with the same number of nodes and

number of bonds per node (or valency for each node). To create better statistics for each physical

feature, we use five different realizations. The lengths for each realization for each graphs are

given by the tables as follows:

• The bonds lengths of the graph with N = 4, B = 3 are shown on Table 6.1,

• The bonds lengths of the graph with N = 6, B = 3 are shown on Table 6.2,
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• The bonds lengths of the graph with N = 8, B = 3 are shown on Table 6.3,

• The bonds lengths of the graph with N = 8, B = 5 are shown on Table 6.4,

• The bonds lengths of the graph with N = 8, B = 7 are shown on Table 6.5,

We should also set other physical features of the graph in order to start to numerically analyze

the statistics of the graph. For now, we will set the impedance to ground at each node to infinity,

and the characteristic impedance on the bonds to 1.

N = 4, B = 3
Realization 1 1.304, 3.588, 2.305, 2.155, 4.082, 4.566

Realization 2 4.150, 4.932, 3.030, 3.569, 1.084, 1.235

Realization 3 4.413, 1.787, 2.187, 1.188, 4.333, 4.092

Realization 4 4.598, 3.256, 3.034, 1.462, 2.153, 3.497

Realization 5 4.271, 3.005, 2.368, 1.814, 4.620, 1.921

Table 6.1: The set of bond lengths for each realization in the graph with N = 4, B = 3.

N = 6, B = 3
Realization 1 3.038, 2.731, 1.184, 4.718, 3.265, 1.959, 4.603, 2.628, 2.873

Realization 2 1.167, 4.370, 4.683, 1.071, 2.706, 3.493, 1.109, 4.788, 3.614

Realization 3 1.674, 3.079, 3.256, 4.368, 3.979, 2.247, 1.699, 2.273, 4.426

Realization 4 2.509, 4.246, 1.884, 4.113, 1.244, 1.429, 4.421, 4.211, 2.942

Realization 5 4.284, 1.496, 3.544, 3.191, 3.997, 3.888, 2.661, 2.227, 1.713

Table 6.2: The set of bond lengths for each realization in the graph with N = 6, B = 3.
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N = 8, B = 3
Realization 1 3.748, 4.094, 3.669, 4.937, 1.869, 2.342, 1.938, 4.366, 1.721, 2.425, 3.732, 1.159

Realization 2 3.810, 4.368, 2.034, 1.301, 1.304, 1.525, 3.516, 4.942, 3.545, 4.194, 3.500, 1.962

Realization 3 4.517, 2.101, 2.094, 3.979, 3.256, 1.618, 1.397, 4.078, 4.186, 3.402, 2.013, 3.359

Realization 4 2.444, 3.185, 1.229, 4.451, 2.008, 3.157, 4.012, 4.021, 1.674, 2.232, 3.947, 3.642

Realization 5 3.089, 2.297, 4.019, 2.718, 3.610, 2.605, 3.936, 2.450, 2.561, 3.415, 2.998, 2.302

Table 6.3: The set of bond lengths for each realizations in the graph with N = 8, B = 3.

N = 8, B = 5
Realization 1 2.869, 1.958, 1.214, 1.206, 2.444, 2.188, 3.844, 2.967, 2.212, 3.765,

2.305, 4.072, 4.270, 3.297, 4.320, 3.006, 2.306, 4.250, 2.803, 4.703

Realization 2 1.677, 1.366, 2.001, 4.664, 1.199, 4.794, 1.924, 1.392, 3.825, 4.223,
3.374, 3.523, 4.586, 2.023, 2.591, 3.231, 2.628, 4.090, 4.681, 2.208

Realization 3 1.229, 2.722, 4.889, 3.714, 1.846, 3.178, 2.424, 3.038, 3.924, 3.919,
2.486, 3.887, 4.583, 3.409, 2.114, 3.359, 2.208, 2.194, 3.468, 1.409

Realization 4 2.711, 3.883, 3.127, 2.792, 3.343, 1.614, 1.123, 1.975, 3.165, 2.007,
3.004, 3.666, 3.918, 3.744, 4.566, 4.586, 3.918, 1.550, 3.411, 1.897

Realization 5 4.188, 4.020, 4.402, 2.461, 4.489, 3.050, 3.388, 2.686, 1.964, 4.561,
3.258, 1.309, 2.831, 3.529, 1.867, 4.921, 1.362, 1.943, 2.321, 1.449

Table 6.4: The set of bond lengths for each realizations in the graph with N = 8, B = 5.

Now we have set all the physical properties of the graph, and we can calculate correspond-

ing statistics. We start with the statistics of mode wave numbers. In spectral theory Weyl’s

law [75, 76] describes the asymptotic behavior of eigenvalues of the Laplacian operator. In our

case, both Schrödinger’s and Telegrapher’s equation are similar to Laplacian operator, and we
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N = 8, B = 7
4.883, 1.125, 1.334, 1.848, 3.435, 1.947, 2.294, 3.295, 2.834, 2.428,

Realization 1 2.949, 1.746, 3.850, 4.702, 2.275, 1.013, 4.861, 2.344, 3.534, 3.986,
2.769, 2.145, 4.641, 3.052, 2.241, 4.127, 4.185, 4.157

3.692, 1.186, 4.111, 1.339, 2.439, 1.581, 1.733, 3.673, 4.500, 1.365,
Realization 2 1.920, 4.240, 3.376, 4.437, 4.550, 2.943, 1.131, 3.571, 1.659, 4.087,

3.712, 4.828, 1.718, 3.159, 3.427, 1.684, 3.816, 4.125

2.411, 2.685, 3.060, 3.771, 2.067, 2.171, 3.610, 4.627, 2.651, 1.964,
Realization 3 2.907, 4.336, 2.144, 1.536, 1.496, 3.068, 4.288, 1.149, 1.937, 4.997,

1.293, 2.684, 3.842, 4.891, 1.187, 4.816, 4.348, 4.063

4.629, 1.433, 3.773, 3.149, 1.469, 3.171, 2.429, 1.077, 4.702, 4.742,
Realization 4 3.312, 4.911, 1.205, 3.417, 3.837, 4.479, 1.263, 3.819, 3.719, 3.132,

1.261, 1.632, 3.648, 3.369, 1.154, 3.181, 1.909, 4.179

3.164, 2.352, 2.025, 4.445, 2.012, 1.080, 1.517, 2.283, 1.092, 3.548,
Realization 5 4.960, 2.099, 4.545, 1.938, 4.170, 4.152, 2.335, 3.381, 4.164, 2.358,

3.437, 3.539, 4.677, 1.805, 2.300, 3.813, 2.159, 4.649

Table 6.5: The set of bond lengths for each realizations in the graph with N = 8, B = 7.

expect that the mode wave number will obey to the Weyl’s law, which is given by

N(k) =
k
∑
Lij

π
, (6.1)

where N(k) is the counting function, and it shows how many normal mode wave numbers are

less then k. k is wave number, and
∑
Lij is the total length of the graph. Using Equation (6.1)

we can conclude that on average normal mode wave number dependance on mode number should

follow this line

k =
π∑
Lij

n+ A , (6.2)

where kn is the wave number corresponding to n-th mode, n is the mode number,
∑
Lij is the
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total length of the graph, and A is the intersept. We have checked how the mode wave numbers

agree with Weyl’s law, and the result is shown on Fig. 6.1.

Knowing the mode wave numbers of the graphs, we can then construct histograms for the

corresponding normalized node voltages. The node voltages are normalized by dividing by the

square root of total energy, Vi/
√
U

(n)
T , where U (n)

T is the total energy, from the Equation (5.14).

In the case of total energy being unity for every mode, the normalized node voltages are just

the regular voltage values of the nodes. Furthermore, we normalize histograms to make them

probability density functions, in other words we set the integrals of the functions to unity. The

results are displayed in Figure 6.2. We have constructed the probability distribution functions

for different size graphs, and we expect a Gaussian to be a good fit based on experience with

eigenfunction of so-called ray-chaotic cavities in 2 and 3 dimensions. Here the statistics of values

of the eigenfunctions are Gaussian as a consequence of the random plane wave hypothesis. That

is, the field at any point in the enclosed domain can be viewed as a random superposition of a

large number of plane waves with random phases. We can clearly see that our expectation is

more accurate as the size of the graphs gets larger. We have plotted them compared to their best

Gaussian fits. The fitting is done by minimizing the root mean square difference between the

two functions, the numerical data and the Gaussian fit. The resulting minimum root mean square

values are shown on Table 6.6., where we can see that it gets smaller as the graph gets larger.

For example moving from the graph with N = 4, B = 3 to the graph with N = 8, B = 7, the

root means square value dropped more than 18 times. Therefore, we can anticipate that the node

voltage statistics for relatively large size graphs will have very good agreement with Gaussian

probability distribution.

Other than the node voltage statistics, we can calculate the statistics of the traveling voltage
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(a) The mode wave number values (colored dots) of the graph with N = 4, B = 3 compared to
Weyl’s law (black solid line) given by Equation 6.1.

(b) The mode wave number values (colored dots) of the graph with N = 6, B = 3 compared to
Weyl’s law (black solid line) given by Equation 6.1.
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(c) The mode wave number values (colored dots) of the graph with N = 8, B = 3 compared to
Weyl’s law (black solid line) given by Equation 6.1.

(d) The mode wave number values (colored dots) of the graph with N = 8, B = 5 compared to
Weyl’s law (black solid line) given by Equation 6.1.
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(e) The mode wave number values (colored dots) of the graph with N = 8, B = 7 compared to
Weyl’s law (black solid line) given by Equation 6.1.

Figure 6.1: Comparing Weyl’s law (black solid line) to the values of mode wave numbers
(colored dots) for different size graphs. In all of the cases interseption to y-axis is different, and
never equals to zero.
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with 4 nodes and 3 bonds per node plotted versus its Gaussian fit (Blue line).
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(b) Probability distribution function (Red dots) of the voltage values at the nodes of the graph with 6
nodes and 3 bonds per node plotted versus its Gaussian fit (Blue line).
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(c) Probability distribution function (Red dots) of the voltage values at the nodes of the graph with 8
nodes and 3 bonds per node plotted versus its Gaussian fit (Blue line).
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(d) Probability distribution function (Red dots) of the voltage values at the nodes of the graph with 8
nodes and 5 bonds per node plotted versus its Gaussian fit (Blue line).
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(e) Probability distribution function (Red dots) of the voltage values at the nodes of the graph with 8
nodes and 7 bonds per plotted versus and its Gaussian fit (Blue line).

Figure 6.2: Probability distribution functions (Red dots) of the voltage values at the nodes of
different size graphs plotted versus its Gaussian fit (Blue line). Gaussian fittings are done by
minimizing the root mean square value of the differences between numerical data and the
Gaussian.

55



Graph N = 4, B = 3 N = 6, B = 3 N = 8, B = 3 N = 8, B = 5 N = 8, B = 7√
1
n

∑
(xi − yi)2 0.328 0.253 0.191 0.059 0.018

Table 6.6: The root mean square fitting values between the probability distribution function of
node voltages and its Gaussian fit shown on Fig. 6.2.

wave amplitudes. Using Equations (5.5a) and (5.5b), the corresponding statistics are shown on

Figure 6.3 (b). As for the node voltages, the amplitudes here are normalized by dividing on the

square root of total energy, Vij/
√
U

(n)
T . On Figure 6.3 (b), we can see that as the graph gets

larger the probability of having smaller traveling voltage wave amplitudes increases. This is not

surprising due to the fact that the total energy is distributed over more bonds. Similarly, Figure

6.3 (a) shows that the larger the graph the smaller the values of the normalized node voltages.

Now we can start investigating the level spacing distributions of the wave numbers. We

have shown that the mode wave numbers follow Weyl’s law, given by Equation (6.1). The spac-

ings between the mode wave numbers are defined as kn+1 − kn, and thus, the notation for means

spacing is ⟨kn+1 − kn⟩. From the Equation (6.1) we can conclude that mean spacing of the mode

wave numbers are given by

⟨kn+1 − kn⟩ =
π∑
Lij

. (6.3)

Therefore, the mean spacing of eigenvalues kn was determined by the total length of the bonds.

We now define the normalized spacing sn = (kn+1−kn)/⟨kn+1−kn⟩, we make histograms of the

values sn. For this study we add a reactance Zi = iXi to ground at each node, and we construct

histograms for a number of values of the reactance.
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(a) Probability distribution function of the voltage values at the nodes for different size graphs.
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(b) Probability distribution functions of the traveling wave amplitudes in different size graphs.

Figure 6.3: Comparison of (a) the statistics of the values of node voltages and (b) the statistics
of the amplitudes of the traveling voltage waves. The larger total number of bonds is, and
therefore, total length of the graph, the higher the probabilities of smaller voltage values either
on the nodes or on the bonds.
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We varied reflection coefficients on the nodes in two different ways. On the one hand,

we changed reflection coefficients simultaneously on all nodes and at the same time, keep the

value the same across the nodes, displayed in Figure 6.4 (a). The main effect of the reactance,

Xi, is to increase the reflection coefficient for a wave incident on a node according to Equa-

tion (5.18). We note that for the lowest value of reflection coefficient the spacing distribution is

well approximated by the spacing distribution of eigenvalues of a random matrix drawn from the

Gaussian Orthogonal Ensemble, P (s) = (πs/2) exp(−πs/4). This is the distribution expected

for eigenvalues of a wave chaotic cavity. We note from Figure 6.4 (a), as the reflection coeffi-

cient at a node increases the shape of the histogram changes, approaching a Poisson distribution

P (s) = exp(−s) at the highest reflection value. This can be understood as follows. When the

reflection coefficient becomes large adjacent bonds become isolated from each other. The result

is that the eigenvalues are determined by quantizing the individual bonds. The eigenvalues then

fall uniformly distributed along the real k-line and there is no level repulsion as exhibited in a

wave chaotic cavity, or as exhibited in a graph with strong coupling between bonds. On the other

hand, we set Dirichlet boundary conditions on some bonds and Neumann boundary conditions

on the others, displayed in Figure 6.4 (b), where the average reflection coefficient for each node

is calculated by

|ρavg| =
√

1

9
+

8

9

ND

N
, (6.4)

where ND is the number of Dirichlet nodes used in the graph, and N is the total number of the

nodes. We wanted to check if the distributions look alike when the average reflection coefficient

on the nodes are the same. As we see from Figures 6.4(a) and 6.4(b), the distribution functions

are similar when the reflection coefficient is less than 0.75; however, starting from 0.75, when we
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use Dirichlet nodes the distributions changes and goes towards Poisson distribution faster than it

does when we use the same reflection coefficients on each node. Therefore, we don’t have one

to one similarities between these two use cases of reflection coefficients shown on Figure 6.4(a)

and 6.4(b).

In Chapter 5, we discussed that the impedance matrix can be calculated by inverting the

admittance matrix or by representing the impedance matrix in terms of modes of the undriven

network using Equation (5.14). We now check that here. In principle, using Equation (5.14)

requires summing over all normal modes of the system. As this is not practical we must truncate

the sum. From the form of Equation (5.14) we see that the representation of the impedance matrix

will be accurate only for k-values in the middle of the range of the eigenvalues kn of the modes

retained in the sum. In Figure 6.5, we show a comparison of the inverse of the admittance matrix

and Equation (5.14) for two different size graphs, one with N = 4, B = 3 and another with

N = 8, B = 5. For the graph with N = 4, B = 3, k-values are shown in three different ranges.

In the middle, 433 < k < 436, the left and the right edges of used values of the mode wave

numbers, 1 < k < 4 and 869 < k < 872, correspondingly. For the graph with N = 8, B = 5,

k-values are also shown in three different ranges. In the middle, 64 < k < 65, the left and

the right edges of used values of the mode wave numbers, 1 < k < 2 and 128 < k < 129,

correspondingly. In the sum in Equation (5.14), for the graph with N = 4, B = 3 we have

retained 5040 modes spanning the range of eigenvalues, 0 < k < 873. Furthermore, for the

graph with N = 16, B = 3 we have retained 2413 modes spanning the range of eigenvalues,

0 < k < 131. We see that on the edges of the used mode wave number values, the agreement is

not good. However, in the middle we have quite good agreement for both of the graphs.

A second comparison can be made between the inverse of the admittance matrix and the
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(a) Nearest neighbor spacing distribution for different reflection coefficients on the node. All the
node have the same reflection coefficient.

(b) Nearest neighbor spacing distribution for different reflection coefficients on the node. We use
either Dirichlet or Neumann boundary conditions on each node. ND defines how many Dirichlet
boundary conditions were used. ρ is averaged reflection coefficient inside the system.

Figure 6.4: Nearest neighbor spacing distribution of normal mode wave numbers in a graph with
N = 4, B = 3, where sn = (kn+1 − kn)/⟨kn+1 − kn⟩. Shown for different reflection coefficients
of the node. We have used different boundary conditions in (a) and (b).
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(a) Imaginary part of the diagonal elements of the impedance matrix with N = 4, B = 3. Middle
part of the used mode wave numbers.
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(b) Imaginary part of the diagonal elements of the impedance matrix with N = 4, B = 3. Left part
of the used mode wave numbers.
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(c) Imaginary part of the diagonal elements of the impedance matrix with N = 4, B = 3. Right part
of the used mode wave numbers.
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(d) Imaginary part of the diagonal elements of the impedance matrix with N = 8, B = 5. Middle
part of the used mode wave numbers.
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(e) Imaginary part of the diagonal elements of the impedance matrix with N = 8, B = 5. Left part
of the used mode wave numbers.
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(f) Imaginary part of the diagonal elements of the impedance matrix with N = 8, B = 5. Right part
of the used mode wave numbers.

Figure 6.5: Imaginary part of the diagonal elements of the impedance matrix for two different
graphs, one with N = 4, B = 3 and another with N = 8, B = 5. The impedance values were
determined two ways: by inverting the admittance matrix (Equation 9(a) and 9(b)) (red line) and
by sum over modes (Equation 5.14) (blue line).
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summed contributions from the different paths a signal may take in traversing the graph, Equa-

tions (5.15) and (5.16). Similar to the case of Equation (5.14) the infinite sums in Equations

(5.15) and (5.16) will have to be truncated. In Figure 6.6, we show comparisons between the in-

verse of the admittance matrix Equations (5.10a) and (5.10b) and the path sums Equations (5.15)

and (5.16) when the path sums have been truncated for lengths over six bonds and also, when the

path sums have been truncated for lengths over four bonds. Impedance values are shown as func-

tions of the real part of k for two different values of kim, and for two different graphs. Recall that

evaluating the impedance with a complex k is equivalent to evaluating it for real k using a sliding

Lorentzian window average for which the imaginary part of k defines the width of the window.

Figure 6.6 shows that for small imaginary kim = 0.03 the truncated path sums only reproduce

the coarse variations of the impedance. However, with larger kim = 0.3, the truncated sums

agree quite well with inverse of the admittance matrix. This is to be expected because for the

two graphs the average lengths of a bond are ⟨Lij⟩ = 3.00, for both graphs. Evaluating the matrix

with an imaginary k is equivalent to adding a spatial damping to the waves propagating on the

bonds. For both of the graphs in the case of using paths up to 6 bonds we find 6kim⟨Lij⟩ = 0.54,

and with kim = 0.3 we find 6kim⟨Lij⟩ = 5.4. In addition, in the case of using paths up to 4 bonds

we find 4kim⟨Lij⟩ = 0.36, and with kim = 0.3 we find 4kim⟨Lij⟩ = 3.6. Thus, the contributions

from 6 and 4 paths are sufficient for the kim = 0.3 case, but not in the kim = 0.03 case.

We now investigate the distribution of impedance values for networks of varying size. We

focus on the variance of the imaginary part of the elements of networks with N = 4, 8, and 16

nodes. We also consider two values of the number of bonds per node (the degree) B = 3 and

B = 5. We choose to characterize the imaginary part of the impedance as opposed to the real

part as it has zero mean and a pdf of even symmetry. The statistics of the real part of the diagonal
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Figure 6.6: Comparison between the inverse of the admittance matrix, Y −1
ij , and summed

contributions from the different paths a signal may take in traversing the graph, Zij,path. The are
results from two different graphs, one with N = 4, B = 3, and another with N = 16, B = 3.
Zij,path is used in two cases, one with up to 4 bonds per path, and another with up to 6 bonds per
path. Furthermore, we use two different losses, kim = 0.03 and kim = 0.3.
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elements are complicated by the fact that the real part is positive definite and has a nonzero mean.

The mean value of the real part of a diagonal element is independent of the loss rate. When the

loss rate is small the distribution of values of the real part of a diagonal element becomes skewed

in the sense the that there is a large probability of a small real value and a small probability of a

large value.

We computed the imaginary part of the diagonal and non-diagonal impedance elements of

20 realizations of networks of varying size, each for 49980 values of k, and with varying loss rate

kim. We then attempted to find universal scaling relations that characterized the variance. The

variance of the imaginary part of diagonal elements scaled by Np, Var(Im(Z11))N
p, where p is

adjusted to make the curves fall on top each other is plotted in Figure 6.7(a). We find p = −0.3 for

graphs with B = 3 and p = −0.4 for graphs with B = 5. The variance of the imaginary part of

non-diagonal elements, each averaged over 49980 values of k, versus kim
∑
Lij is plotted Figure

6.7(b), respectively. Here
∑
Lij is the total length of a graph. We find that scaling by Np for

diagonal, and by plotting versus kim
∑
Lij results from networks of different sizes and degrees

fall on top of each other. This is true for both large and small values of damping as indicated in

the figure and its inset. The scaling with kim
∑
Lij is similar to that which is obtained for 2 and

3 dimensional cavities.

The expected scaling of the variance of the diagonal and off-diagonal elements of the

impedance matrix based on the RCM are 2/(πα) and 1/(πα) respectively. Here α = kim/∆k,

where ∆k = π/
∑
Lij for the case of graphs. Thus, based on the RCM, one expects the variance

of the diagonal elements to scale as 2/(kim
∑
Lij) and the variance of the off diagonal elements

to scale as 1/(kim
∑
Lij). As can be seen in Figure 6.7(b) the variance of the off-diagonal ele-

ments agree with the RCM scaling while the diagonal elements show deviation.

67



Thus, these networks exhibit the an expected dependence on kim
∑
Lij , where

∑
Lij is the

total length of the bonds.

We also examined how the actual probability distribution functions compare to each other

when we have the universal scaling relations that characterizes their variances. In Figure 6.7

we can see that for kim
∑
Lij = 1.5 the variance of diagonal elements of the impedance matrix

scaled by Np fall on top of each other, and also, the same happens to the variances of non-

diagonal elements. To exclude the scaling factor that is used for diagonal elements of impedance

matrix, we compared the probability distribution functions of diagonal elements of impedance

matrix scaled by 1/
√
Np. Eventually, we found out that as long as their variances are very close,

their probability distributions does not fall on top each other. The results are provided on the

Figure 6.8.
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Figure 6.7: (a) The variance of imaginary part of diagonal elements of impedance matrix scaled
by Np, where p = −0.3 for graphs with B = 3 and p = −0.4 for graphs with B = 5, and (b)
non-diagonal elements plotted versus kim

∑
Lij . We have also plotted a fitting functions, to see

better what functions do the variances of the elements of the impedance matrix follow. There are
5 different sized graphs, each curve represents the result averaged over 20 different realizations,
and error bars on each plot point represents the range in which the values were varying during
all realizations.
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Chapter 7: Comparison with measured impedances

We now compare predicted impedance statistics with those measured on a network of ca-

bles. The experimental configuration is described extensively in Refs [3, 4, 22, 70, 77, 78]. It

consists of a tetrahedral network (N = 4, B = 3) of 50 Ohm coaxial cables of varying lengths.

These cables are connected at nodes using T-junctions. The experimental setup is shown on

Figure 7.1

Comparisons between our simulations and measured [3] impedance values are displayed in

Figure 7.3. For these comparisons, we simulated a tetrahedral graph (N = 4, B = 3) for which

we choose bond lengths that correspond to those in the experiment. The bond lengths are shown

on the Table 7.1. There are 9 different sized cables, and therefore 84 different realizations for

the tetrahedron graph (N = 4, B = 3). In the experimental setup, the nodes are not grounded

through an impedance, thus, we set Zi to infinity in the first numerical calculations.

N = 4, B = 3
Bond Lengths 0.31400, 0.38880, 0.42310, 0.45600, 0.49510,

0.53160, 0.56720, 0.63840, 0.7108

Table 7.1: The set of bond lengths used for experimental measurements and, correspondingly,
for theoretical numerical calculations.
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Figure 7.1: A schematic representation of the experimental setup [3] for the tetrahedral network
with 4 nodes and 6 bonds. Tee-Junctions are used as nodes, coaxial cables are used as bonds,
and network analyzer is connected to different ports (nodes) in order to measure signal going in
and going out.

To compare numerical results with that measured [3], we need to determine an attenuation

rate kim on the bonds. The calculated and measured attenuation rate on the coaxial cables is

presented in Appendix B of Ref. [3] as a function of frequency. The authors of Ref. [3] found

that the attenuation varies with frequency, the result is shown in the figure 7.2. They calculated

the attenuation using three different approach: direct measurement (by connecting the network

analyzer at the ends of the coaxial cable, and checking how much the signal is dumped), fitting

results to complex time delays, and direct modeling using Equation (B1) from [3].

We can conclude from this study [3] that we have data in five ranges: 3-6 GHz, 6-9 GHz, 9-

12 GHz, 12-15 GHz and 15-18 GHz, in which the variation of the attenuation rate with frequency

is approximately linear. The details about used kim is given on Table 7.2. Results for impedance

values in the form of histograms are shown in Figure 7.3 for all the frequency ranges. There
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Figure 7.2: This figure is from the study [3]. Comparison of thee different ways to determine the
attenuation: direct measurement, fitting results to complex time delays, and direct modeling
using Equation (B1) from [3]

are four panels for the real and imaginary parts of the diagonal and off-diagonal elements of the

impedance matrix. For each case, there are 84 different realizations of the network using bonds

of different lengths, and for each realization, the data is generated by changing wave number

value (essentially the frequency).

To investigate the dependence on the type of loss, we have added to Figure 7.3 calculated

impedance values assuming the cables are lossless, but instead, there are real impedance elements

connecting the nodes to the ground. The value of this impedance was adjusted to match the other
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N = 4, B = 3
3-6 GHz 0.086m−1 < kim < 0.129m−1

6-9 GHz 0.129m−1 < kim < 0.165m−1

9-12 GHz 0.165m−1 < kim < 0.198m−1

12-15 GHz 0.198m−1 < kim < 0.228m−1

15-18 GHz 0.228m−1 < kim < 0.256m−1

Table 7.2: Values of the used frequency ranges and corresponding kim that changes linearly.

histograms, Zi = 5.5 for f = 3-6 GHz, Zi = 4.0 for f = 6-9 GHz, Zi =2.9 for f = 9-12 GHz,

Zi = 2.6 for f = 12-15 GHz and Zi = 1.9 for f = 15-18 GHz. Note the lossy element connects

a node to ground, so a larger value of Zi corresponds to lower loss. As can be seen, the three

types of histograms (experiment, distributed loss simulated, and localized loss simulated) are

quite similar. This includes the multiple peaks in the Im(Z12) histograms, which are due to direct

paths from port 1 to port 2.

Previously [4], the impedance statistics of this configuration were compared with predic-

tions of the RCM. It was found that the statistics of the non-diagonal and diagonal elements of

the impedance matrix required fitting with different loss factors to obtain agreement. Generally,

the diagonal elements required higher loss than the off-diagonal elements to obtain a fit. Our

purpose here is to determine whether this is a feature of these networks reproduced by our simple

model. What we have found is that the histograms of the diagonal and non-diagonal elements

are matched to the experimental histograms by the same loss parameter. Thus, the network is

not modeled by the RCM. In Section I, we have described three different ways to compute the

impedance matrix. We found the most straightforward way to calculate the impedance matrix
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(a) Comparison between histograms of numerically generated impedance matrix elements and
experimentally measured values for an N = 4, B = 3 graph. Zi = 5.5 and kim = 0.0 (Blue),
Zi = ∞ and kim ∈ [0.086− 0.129] changing linearly (Red). Experimental data (Green) was
produced for the frequency range of 3− 6 GHz.
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(b) Comparison between histograms of numerically generated impedance matrix elements and
experimentally measured values for an N = 4, B = 3 graph. Zi = 4.0 and kim = 0.0 (Blue),
Zi = ∞ and kim ∈ [0.129− 0.165] changing linearly (Red). Experimental data (Green) was
produced for the frequency range of 6− 9 GHz.
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(c) Comparison between histograms of numerically generated impedance matrix elements and
experimentally measured values for an N = 4, B = 3 graph. Zi = 2.6 and kim = 0.0 (Blue),
Zi = ∞ and kim ∈ [0.165, 0.198] changing linearly (Red). Experimental data (Green) was produced
for the frequency range of 9− 12 GHz.
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(d) Comparison between histograms of numerically generated impedance matrix elements and
experimentally measured values for an N = 4, B = 3 graph. Zi = 2.6 and kim = 0.0 (Blue),
Zi = ∞ and kim ∈ [0.198, 0.228] changing linearly (Red). Experimental data (Green) was produced
for the frequency range of 12− 15 GHz.
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(e) Comparison between histograms of numerically generated impedance matrix elements and
experimentally measured values for an N = 4, B = 3 graph. Zi = 1.9 and kim = 0.0 (Blue),
Zi = ∞ and kim ∈ [0.228, 0.256] changing linearly (Red). Experimental data (Green) was produced
for the frequency range of 15− 18 GHz.

Figure 7.3: Comparison between histograms of numerically generated impedance matrix
elements and experimentally measured values for an N = 4, B = 3 graph. Loss is modeled in
two different ways: using Equations (5.10a) and (5.10b) with kim = 0.0 (Blue) and with Zi = ∞
(Red). Experimental data (Green) was produced for the frequency range given on each
subfigure, and corresponding kim changes linearly.
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accurately is to invert the admittance matrix given by Equations (5.10a) and (5.10b), which re-

sults in Equation (5.11). In general, the random coupling model (RCM) describes the systems

without short orbit [47] contributions. Therefore, to compare our results to RCM, we should

ensure that we have excluded short-orbit contributions from the calculations. For that purpose,

we can recall that we have discussed how to calculate the impedance matrix based on summing

contributions from the different paths, Zij,path, and was described by Equation (5.15) and Equa-

tion (5.16). However, if we use a finite number of paths in Zij,path, we can generate only the short

orbit contributions in the impedance matrix. Afterward, we can subtract these contributions from

the impedance matrix calculated using Equation (5.11), which results in the redefined impedance

matrix without short orbit contributions

Ẑij(k) = (Y (k))−1
ij − Zij,path(k) . (7.1)

We generated data for two different networks, (N = 4, B = 3) and (N = 16, B = 3). We set

a fixed loss rate, kim = 0.03, for both of the cases and varied α, the loss parameter in RCM.

We found out that the statistics of the redefined impedance matrix for the (N = 4, B = 3)

network, calculated by Equation (7.1), and RCM have the best agreement when α = 1.20 and

α = 1.00, for diagonal and non-diagonal elements respectively. The corresponding results for the

(N = 16, B = 3) network are α = 3.00 and α = 1.90, for diagonal and non-diagonal elements,

respectively. The results are shown in Figure 7.4

Our findings are consistent with those described in [4] based on measurements. The pre-

dicted distributions of values of the elements of the impedance matrix based on our model agree

with those measured. However, as in [4], the distributions of impedance values from our model,
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(a) Comparing impedance matrix pdf elements for the graph with N = 16, B = 3 (Red), calculated
by Equation (7.1), to RCM (Blue). kim = 0.03 and α = 3.00.
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(b) Comparing impedance matrix pdf elements for the graph with N = 4, B = 3 (Red), calculated
by Equation (7.1), to RCM (Blue). kim = 0.03 and α = 1.90.
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(c) Comparing impedance matrix pdf elements for the graph with N = 16, B = 3 (Red), calculated
by Equation (7.1), to RCM (Blue). kim = 0.03 and α = 1.20.

-1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Re[Z

11]

P
D
F
(R
e[
Z
11
])

Z

ij

GOE

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

Im[Z

11]

P
D
F
(I
m
[Z
11
])

Z

ij

GOE

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re[Z

12]

P
D
F
(R
e[
Z
12
])

Z

ij

GOE

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Im[Z

12]

P
D
F
(I
m
[Z
12
])

Z

ij

GOE

(d) Comparing impedance matrix pdf elements for the graph with N = 4, B = 3 (Red), calculated
by Equation (7.1), to RCM (Blue). kim = 0.03 and α = 1.00.

Figure 7.4: Comparing impedance matrix pdf elements, calculated by Equation (7.1), to RCM.
Equation (7.1) (Red) has been used for two different graphs, one with N = 4, B = 3 and
another with N = 16, B = 3. We have used two different kim for each cases, kim = 0.03. For
RCM (Blue) data generations, we used α values that was closest to the numerical data
calculated by Equation (7.1).
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when fit to the RCM, require different values of loss to fit the diagonal and off-diagonal elements.

A possible cause for this discrepancy is the non-vanishing reflection seen by a wave propagating

on a bond and incident on a node. Given our model of the nodes, the smallest magnitude of the

voltage reflection coefficient can be 1/3. This reflection is absent in 2D and 3D cavities for which

good agreement with the RCM is attained. We have found that increasing this reflection coeffi-

cient causes the mode eigenfrequency spacing statistics to transition from a GOE-like distribution

to a Poisson-like distribution. Thus, the small reflection may be responsible for the deviations

from RCM statistics. A recent study [79, 80] has modeled the nodes using a scattering matrix

based on a Fourier decomposition of the elements. Such a representation allows for the reflection

to be eliminated, and the authors find agreement with RCM statistics. Implementing such a scat-

tering matrix in an experiment is a challenge. Various matching techniques can be considered.

However, these are usually effective only over a limited range of frequencies, making generating

a large ensemble of impedance values difficult.
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Chapter 8: Conclusion

The main goal of the first four chapters of the thesis is to put together the knowledge and

the studies that preceded the work that have been done in this thesis. The detailed description of

our work is shown from chapters five to chapter seven.

In chapter one, we have described the work that has been done over the years in the field

of Quantum Graphs. A quantum graph is a network of nodes connected by bonds that support

waves. Linus Pauling was the first person to propose the idea of a quantum graph, and after that,

quantum graphs were extensively studied [4–12].

In chapter two, we follow the book by G. Berkolaiko, and P. Kuchment [30], and the review

paper by S. Gnutzmann and U. Smilansky [5] to present the vital theoretical framework that was

developed in their works. First, we defined the graph and showed examples of the most common

graphs. Then, we wrote Schrödinger’s one-dimensional equation on the metric graph, and after

setting boundary conditions at the ends of the bonds, we found the solutions, the wave functions,

given by Equation (2.11). Finally, we derive the secular equation [5] that describes the system’s

eigenvalues.

In chapters three and four, we have described the importance and use cases of the random

coupling model and transmission lines.

From chapter five to chapter seven, we described our work. At first, we created a theoretical
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framework that proposed how to calculate the normal modes of the system. We also presented

three different approaches to calculating the impedance matrix: one that is precise, one that is

based on summing over the normal modes of the graph, and one that is based on summing over

paths through the graph. We compared these approaches and determined the circumstances under

which they agreed.. As a result, we have obtained several interesting results. We found that by

changing the values of the reflection coefficients at the nodes, we can change the statistics of the

distribution of normal mode wave number spacings. This is shown in Figure 6.4. We have shown

that the results of the developed framework adequately reproduce the experimental results, see

Figure 7.1. Finally, we showed that there is a universal formula for the dependence of the size of

the fluctuations of Im(Z11) on propagation loss rate and the number of nodes in the graph. The

dependence is given in Figure 6.7.

Finally, I want to discuss what can be done in the future to continue this study. One of

the main results in this thesis is the scaling rule of variances of the diagonal elements of the

impedance matrix shown on Figure 6.7 (a). We have found out that when we multiply the vari-

ances by Np and plot versus kim
∑
Lij , the curves fall on top each other. Where p = −0.3 for

graph with B = 3, and p = −0.4 for graphs with B = 5. This phenomena can be studied further

for the graphs with different B. There might some kind of universal relation between B and p.

Another idea that can be continued in the future is the dependence of the spacing distribu-

tions of the wave numbers on the boundary conditions at the nodes. We have discussed the results

when we have Dirichlet and Neumann boundary conditions. However, these studies [79,80] show

that using Fourier boundary condition the reflection coefficient at the nodes can go to zero. Hav-

ing a zero reflection coefficient at the nodes cannot be done by Dirichlet and Neumann boundary

conditions. Therefore, Fourier boundary conditions open new possibilities to study statistics of
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the spacing distributions of the wave numbers.

Lastly, I want to mention our fascinating result, when we compared statistics of the el-

ements of impedance matrices with the experimentally measured ones. We had a great match

between them, shown on Figure 7.1. However, this was done only for tetrahedron graph, which

has N = 4 and B = 3. In future, there can be comparison between different size graphs to check

if this properties still hold.
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Appendix A: Appendix

To find the relation between normal modes and impedance matrix, which for a driven sys-

tem Ij ̸= 0 is defined for all values of propagation constant k, we first multiply the Telegrapher’s

equations by the conjugate of a mode voltage and current respectively, integrate in z over each

bond, add the two equations, and sum over bonds,

i(k − kn)
∑
ij

∫ Lij

0

dx
(
Z−1

0 V (n)∗V (x) + Z0I
(n)∗(x)I(x)

)
=
∑
ij

(
V (n)∗I(x) + V (x)I(n)∗

) ∣∣∣∣Lij

0

(A.1)

The right-hand side involves the evaluation of voltages and currents at nodes, and can be

converted into a sum over nodes. Each node will enter twice, first as the lower limit, (z = 0)

and second as the upper limit, (z = Lij). The current variables have opposite meanings in these

cases. At z = 0 the current variables represent the currents leaving a node, and at z = Lij they

represent the currents entering a node. Thus we write both in terms of the currents leaving node-i

in the direction of node-j

∑
ij

(
V (n)∗I(x) + V (x)I(n)∗

) ∣∣∣∣Lij

0

= −2

( ∑
nodes−i

V
(n)∗

i

∑
ij

Ii→j +
∑

nodes−i

Vi
∑
ij

I
(n)∗

i→j

)
.

The value of the sum of the currents leaving a node will depend on whether the current variables
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apply to a normal mode or a driven solution. In the case of a normal mode with index m,

∑
ij

I
(m)
i→j +

V
(m)
i

Zi

= 0 . (A.2)

Thus, if we consider the loss free case Z∗
i = −Zi the two terms cancel. As a result

i(k − kn)
∑
ij

∫ Lij

0

dx
(
Z−1

0 V (n)∗(x)V (m)(x) + Z0I
(n)∗(x)I(m)(x)

)
= 0 , (A.3)

and we conclude that the modes represent an orthogonal basis. In the case of a driven solution,

∑
ij

I
(m)
i→j +

V
(m)
i

Zi

= Ii , (A.4)

and we obtain

i(k − kn)
∑
ij

∫ Lij

0

dx
(
Z−1

0 V (n)∗V (x) + Z0I
(n)∗(x)I(x)

)
= −2

( ∑
nodes−i

V
(n)∗

i Ii

)
. (A.5)

We now expand the voltages and currents on the transmission lines in a superposition of voltages

and currents corresponding to normal modes,

(V (x), I(x)) =
∑
m

Cm

(
V (m)(x), I(m)(x)

)
. (A.6)

Using the orthogonality property we find for the coefficients Cn,

i(k − kn)Cn =
−2
(∑

nodes−i V
(n)∗

i Ii

)
∑

ij

∫ Lij

0
dx
(
Z−1

0 |V (n)|2 + Z0|I(n)|2
) (A.7)
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Consequently, we can express the voltage at a node in the driven case in terms of the impedance

matrix, which intern is expressed in terms of the normal modes.

88



Bibliography

[1] Eamon McCarthy Earls. Coaxial cable. https://www.techtarget.com/
searchnetworking/definition/coaxial-cable-illustrated, 2019.

[2] Electrical Academia. Wire gauge sizes. https://
electricalacademia.com/instrumentation-and-measurements/
wire-gauge-sizes-circular-mils-wire-size-wire-size-chart/,
2016.

[3] Lei Chen and Steven M. Anlage. Use of transmission and reflection complex time de-
lays to reveal scattering matrix poles and zeros: Example of the ring graph. Phys. Rev. E,
105:054210, May 2022.

[4] Z. Fu, T. Koch, T.M. Antonsen, E. Ott, and Steven Anlage. Experimental study of quantum
graphs with simple microwave networks: Non-universal features. Acta Physica Polonica A,
132:1655–1660, 12 2017.

[5] Sven Gnutzmann and Uzy Smilansky. Quantum graphs: Applications to quantum chaos
and universal spectral statistics. Advances in Physics, 55(5-6):527–625, 2006.

[6] D. Kowal, U. Sivan, O. Entin-Wohlman, and Y. Imry. Transmission through multiply-
connected wire systems. Phys. Rev. B, 42:9009–9018, Nov 1990.
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