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ABSTRACT

The problem of fair bandwidth sharing among adaptive (TCP) and non-adaptive (i.e. CBR-UDP)


ows at an Internet gateway is considered. An algorithm that drops packet preventively, in an at-

tempt to actively penalize the non-adaptive tra�c that attempts to "steal" bu�er space, and therefore

bandwidth from the adaptive tra�c 
ows, is presented. The algorithm maintains minimal 
ow state

information and is therefore scalable. The performance of the algorithm is compared with other

gateway algorithms and it is shown that, in the presence of non-adaptive tra�c, it achieves a more

balanced bandwidth allocation among the di�erent 
ows. The behavior of a 
ow subjected to the

given algorithm has also been analyzed in detail.
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1 Introduction

The major transport protocol in use over the Internet is the TCP that provides end-to-end conges-

tion control. The way TCP works is that it keeps increasing the sending rate of packets as long

as no packets are lost. As the network becomes congested and the bu�ers at the gateways �ll up,

packet losses occur. In response to that, TCP decreases the sending rate. Thus the sending rate of

the adaptive applications is changed according to the level of congestion perceived in the network.

In this manner TCP adjusts the long term transmission rate without any need for feedback from

the network.

With the proliferation of applications and users, it is no longer possible to rely exclusively on

the sources to implement end-to-end congestion control. In fact, many applications like Internet

telephony which are expected to be widely used do not have these congestion control mechanisms

and are therefore non-adaptive. The non-adaptive applications have no way of inferring and hence

reacting to the congestion in the network. When the network consists of both adaptive and non-

adaptive tra�c, the packets for both compete for bu�er space at the gateway. As congestion builds

up, packets for both types of applications may be dropped. In response to this, the adaptive

applications decrease their sending rate while the non-adaptive applications may not change their

sending rate of packets. As a result, the adaptive applications are penalized. While issues of

unfairness to the adaptive tra�c do arise, a major resulting problem is that this sort of behavior

acts as a disincentive for the deployment of applications incorporating end-to-end congestion control

mechanisms. This drives the network to undesirable, congestion dominated operating regimes,

characterized by large number of packet drops in the network with no useful work being done.

This possibility calls for designing mechanisms within the network which provide an incentive for

applications to have end-to-end feedback. The best place to provide such mechanisms is obviously

the gateway since the di�erent 
ows interact at the gateway. An approach for the gateway would

then be to keep a separate queue for each 
ow and use mechanisms such as round robin scheduling

[8] over the di�erent queues. This approach not only ensures fairness, but also acts as an incentive

for applications to have end-to-end congestion control. Another approach is for the gateways to
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provide feedback to the sources indicating how much data they are allowed to send [1]. But a

main problem with these approaches is that either they do not scale well considering that many

short-lived 
ows pass through an Internet gateway or they are not in conformance with the current

design principles of the Internet.

In this paper we provide a gateway algorithm that provides fairness to the di�erent 
ows pass-

ing through a gateway irrespective of whether the 
ow incorporates end-to-end feedback or not.

Furthermore, the algorithm conforms with the scaling and design principles of the Internet. The

resulting advantage is that non-adaptive applications have no incentive to remain so. The charac-

teristics of the algorithm provided, Balanced Random Early Detection (BRED), is that it is simple

to implement, maintains a small state and is hence scalable. It should be remarked that a 
ow in

this paper is identi�ed by its source/destination addresses.

The plan of the paper is as follows. In section 2, we look at the gateway algorithms proposed or

currently in use and point out the problems associated with these. The proposed algorithm BRED,

is given in section 3. In section 4, we analyze the behavior of both adaptive and non-adaptive 
ows

when subjected to the BRED gateway algorithm. Apart from leading to a better understanding of

the interaction between BRED and the 
ows using the gateway, the analysis also o�ers heuristic

guidelines for setting the di�erent parameters in BRED. In section 5 we present simulation results

demonstrating and comparing the performance of BRED with the other gateway algorithms.

2 Gateway Algorithms

The gateway bu�er management approach currently, in almost universal use is the drop tail gateway

in which packets arriving to a full bu�er are dropped. While simple to implement, these gateways

have many drawbacks associated with them [6] such as causing systematic discrimination against

some connections, being biased against bursty tra�c etc. A variation on the drop-tail strategy is

the drop-front strategy [13]. In case of drop front strategy, when packets arrive at a full bu�er the

arriving packets are accepted but the packets at the start of the bu�er are dropped.
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Random Drop gateways on the other hand, randomly choose a packet to drop from the gateway

queue when an arriving packet �nds the queue full. In Early Random Drop (ERD) gateways

[3], if the queue length exceeds a certain drop level, then the gateway drops each packet arriving

at the gateway with a �xed drop probability. But both these algorithms are not successful in

controlling misbehaving users since they do not di�erentiate between the adaptive and non-adaptive


ows. Random Early Detection (RED) gateways [7], on the other hand, were designed to address

the shortcomings of drop-tail gateways and also to provide a congestion avoidance mechanism.

The way RED works is that it calculates the average queue size using a low-pass �lter with an

exponentially weighted moving average. The average queue size is compared to a minimum and

maximum threshold. When the average queue size is less than the minimum threshold, no arriving

packets are dropped. When the average queue size is greater than the maximum threshold, all

arriving packets are dropped. When the average size of the queue is between the two thresholds

the probability of dropping a packet is a function of the average queue size. While RED gateways

have many advantages, they do not attempt to ensure fairness in terms of the bandwidth received

by each 
ow nor do they explicitly control misbehaving users. Dropping packets from 
ows in

proportion to their bandwidths as done in RED does not always lead to fair bandwidth sharing

[9]. Hence, additional mechanisms have to be added to RED gateways to prevent the misbehaving

non-adaptive tra�c from gaining at the expense of adaptive tra�c.

Currently, many studies have been concerned with changing RED at the routers [9, 5] so as

to make it fairer in the sense that, the di�erent 
ows passing through a RED gateway get an

approximately equal share of the bandwidth of the backbone link. The approach taken in [5] is to

identify the misbehaving users at a RED gateway and subject them to di�erent treatment using

the help of scheduling mechanisms. But, the problem of identi�cation of misbehaving users is not

properly set-up. On the other hand, FRED [9] suggests changes to the RED algorithm to ensure

fairness amongst all the 
ows. The approach proposed here is to maintain minimum and maximum

limits on the packets that a 
ow can have in the bu�er. Flows which consistently violate the

maximum limits are marked and subjected to more aggressive dropping. But it has been seen that

FRED frequently fails to achieve fair share for the 
ows in many cases.
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Another approach di�erent from RED is the longest queue drop (LQD) gateway [11]. With a LQD

gateway, whenever the bu�er is full, a packet of the 
ow with maximum number of packets in the

bu�er is dropped such that the chosen packet is farthest from the end of the bu�er. But as a result

of this the cbr 
ows are penalized very much when their input rate becomes far larger than their

fair share. This is due to the nature of dropping from front. Dropping packets from the front was

proposed in [11] since it would lead to faster detection of packet drops by the tcp 
ows but this leads

to a deterioration in the behavior of the non-tcp 
ows. Thus under this approach the gateways have

no control over the degree of penalization that a non-conforming non-adaptive 
ow is subjected to.

Other algorithms similar to LQD are also proposed in [11] such as approximated longest queue drop

(ALQD) and random LQD (RND). LQD gateways and its variants are complex to implement, cause

bu�er over
ows and also act as a congestion control mechanism and not a congestion avoidance

mechanism. Note that by allowing bu�er over
ows, schemes such as Explicit Congestion Noti�cation

[4] cannot be taken advantage of. Hence, the problem of designing an e�ective gateway algorithm to

deal with both adaptive and non-adaptive tra�c while providing incentives for 
ows to incorporate

end-to-end feedback is still unsolved. This problem is complicated by the fact that the gateway has

to deal with tra�c sources of di�erent durations also.

BRED, the algorithm proposed in this paper tries to regulate the bandwidth of a 
ow by doing

per 
ow accounting for the bu�er active 
ows. Drop or accept decision for a packet is then based on

the bu�er occupancy of the 
ow. The extra complexity introduced at the gateway is proportional

to the bu�er size since state is maintained only for the 
ows having packets in the bu�er. Note

that the concept of per active 
ow accounting has also been proposed elsewhere [9, 11]. As we see

later in the section on simulation study, BRED is very e�ective in ensuring fair bandwidth division

amongst the adaptive and non-adaptive 
ows.
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3 BRED

We consider 
ows, both adaptive and non-adaptive, from di�erent sources passing through the

gateway and sharing the bu�er. The packets in this bu�er are assumed to be dequeued on a FCFS

basis. The goal at this point is to come up with an algorithm according to which the congested

gateway performs, by making drop or accept decision on an incoming packet, such that fairness to

di�erent 
ows is ensured. Towards this end we propose the algorithm BRED, which is described

next.

BRED maintains a variable qleni, which is a measure of the number of 
ow i packets in the bu�er,

for each 
ow having packets in the bu�er. When a packet from a 
ow arrives, decision to drop or

accept the packet is based on the number of packets that the given 
ow already has in the bu�er.

By keeping state just for the bu�er active 
ows, the extra information needed to be maintained by

the gateway in the worst case scenario is proportional to the bu�er size. If the di�erent 
ows have

di�erent packets sizes then the algorithm would have to be used in the byte mode and not in the

packet mode as given. Regarding the notation, B denotes the bu�er size while variable Nactive is

a measure of the number of 
ows having packets in the bu�er. The algorithm is as follows:

Parameters

1. l1 : minimum number of packets that a 
ow can have in the bu�er before its packets start

being dropped with probability p1

2. l2 : number of packets that a 
ow can have in the bu�er before its packets start being dropped

more aggressively with probability p2 with p2 > p1

3. Wm :maximum number of packets that the 
ow is allowed to have in the bu�er

For each arriving packet from 
ow i

1. Initialize the 
ow state if state not already present. Flow state qleni is zero at initialization.

If 
ow state is zero, increment Nactive

6



2. if qleni � Wm OR bu�er over
ows drop packet and return

3. if Wm >qleni > l2 drop packet with probability p2 and return

4. if l2 �qleni � l1 drop packet with probability p1 and return

5. if qleni < l1 accept packet and return

6. Increase qleni if packet accepted

For each departing packet from 
ow i

1. Decrement qleni. If qleni is zero decrement Nactive

In the next section, we analyze the behavior of both adaptive and non-adaptive 
ows passing

through a BRED gateway where we also give guidelines as to the selection of the di�erent parame-

ters. Note that because of the TCP behavior it may not be possible for every 
ow to have the same

bandwidth share. The goal is to minimize the di�erences in the bandwidth achieved by each 
ow.

4 Performance Analysis

As can be seen from the description of BRED, there are �ve control parameters namely Wm, l1, l2,

p1 and p2. In this section our goal is to study the e�ects of these control variables on a 
ow so as to

obtain guidelines on setting these variables in practice. Hence, we analyze the behavior of TCP and

CBR 
ows passing through a BRED gateway. The analysis of TCP 
ows is based on the concept

of packet trains which we introduce next.

We now consider the packet train model. A Tahoe transmitter when sending new data is generally

either in the slow start phase or the congestion avoidance phase. The loss of a packet in either of

these phases is subsequently followed by mechanisms to recover the lost packet(s). A Tahoe sender

uses either the fast retransmit mechanism whereby the arrival of a certain number of duplicate acks

signals a packet loss or the retransmit timeout mechanism whereby the non-arrival of the packet
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acknowledgment within a certain time interval is taken to signify the packet loss. The sender resorts

to slow-start after the detection of a packet loss by reducing the window size to one. Hence, the

operation of a TCP transmitter can be considered in terms of cycles. A cycle of a Tahoe sender

starts with the slow start phase and ends following the detection of a packet loss either on the basis

of the ack based fast retransmit mechanism or the timer based retransmit timeout mechanism.

Thus, every cycle can be considered to have two stages, the �rst stage in which the sender is either

in the slow start or the congestion avoidance phase. The second stage consists of the retransmit

timeout interval. While the �rst stage is present in every cycle, the second stage may or may not

be present depending on whether enough packets are successful after the lost packet for the fast

retransmit mechanism to succeed. Hence, it can be seen that the window size increases during a

cycle since there are no packet losses in a cycle and window size decreases between cycles.

In order to explain the working of Tahoe, we de�ne kth minicycle of the �rst stage of ith cycle

to be the time taken to transfer the kth window of packets during the �rst stage of the ith cycle.

Hence, the �rst minicycle corresponds to the �rst window of packets on the start of a new cycle.

Thus, every cycle of TCP if in slow start phase begins with one packet being transmitted in the �rst

mini-cycle and if it is in the congestion avoidance phase, then the number of packets transmitted in

the �rst mini-cycle depends on the window size when the packet drop was detected in the previous

cycle. In every successive mini-cycle the number of packets transferred is double the number of

packets transferred during the present mini-cycle as long as TCP is in the slow start phase. During

the congestion avoidance phase the number of packets transferred in each mini-cycle is one more

than the number of packets transferred during the previous mini-cycle.� This goes on until there

are one or more packet drops in a particular cycle causing the ack cycle to either dry up or generate

enough duplicate acks resulting in the end of the �rst stage of the cycle. Thus a cycle consists of a

collection of contiguous mini-cycles such that no packet drops are detected by the sender between

the start of the �rst mini-cycle of the cycle and the end of the last mini-cycle of the same cycle. A

typical cycle of Tahoe is illustrated in �gure 1 with the notation being clari�ed later.

�For ease of explanation, we are ignoring some constraints like delayed acks, which though can be easily incorpo-

rated into the description
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Figure 1: Illustration of packet trains during a cycle of Tahoe

We assume that all the packets in a mini-cycle travel in what we call a train. Thus, there is a

packet train in every mini-cycle and the size of the packet train in the kth mini-cycle k > 1, depends

on the size of the packet train in the previous mini-cycle and the phase of TCP. A new packet train

starts once the ack for the �rst successful packet of the previous packet train comes back. This train

ends when the packets corresponding to the last ack of the previous train have been transmitted

by the sender or a certain number of duplicate acks reach the sender thus giving some length to

the train. Start of a successful timeout at any point also terminates a train. The length of the

packet train which is the distance between the �rst packet of the train and the last packet of the

train keeps on increasing since the number of packets in successive trains is an increasing function.

A great convenience o�ered by the packet train concept is that it helps to di�erentiate packets on

the basis of the mini-cycle that they belong to. This as we see later greatly helps in calculating the

throughput of a 
ow. This is because once we know the number of trains in a cycle as well as the

window size � when the packet drop was detected in the last cycle, the expected number of packets

in the cycle as well as the mean cycle duration can be easily calculated. As we see later, this is the

approach that we take to characterize the throughput of a 
ow.
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4.1 Single Congested Node{TCP 
ow

Now, consider a BRED gateway with many TCP 
ows passing through it. We concentrate initially

on a single TCP 
ow such that the other 
ows do not a�ect this 
ow. This can be ensured if the

bu�er occupancy of this 
ow is not a�ected by the other 
ows. A simple way to achieve this is

by having no constraint on the bu�er size. Of course, this is an unrealistic assumption which we

remove in the next subsection. Thus, when a packet of the 
ow of interest reaches the gateway, it

is accepted if there are less than l1 packets at the gateway. Hence, packets of the 
ow are dropped

only when the number of packets of the 
ow in the bu�er is greater than l1. Further, if there be

between l1 and l2 packets of the 
ow at the gateway, then a packet can be dropped with probability

p1 and if between l2 and Wm packets, then a packet can be dropped with probability p2. Note

that if a 
ow has l1 packets at the bu�er then the window size corresponding to the 
ow at that

time necessarily has to be greater than or equal to l1. For ease of analysis, we assume that the

window size equals the number of packets of the 
ow in the bu�er. This leads to a conservative

analysis of the TCP 
ows which should be okay as it is advantageous to the adaptive TCP 
ows.

The main purpose of this analysis is to study how the behavior of a TCP 
ow varies as a function

of the drop thresholds and the drop probabilities so that heuristic guidelines to setting these values

in the algorithm provided are obtained. To this end, we next concentrate on characterizing the

throughput of the TCP 
ow under the above scenario at the gateway.

Consider the packet train model. Let the number of packets transferred during a cycle be denoted

by Q̂ while the duration of the cycle be � . Now in order to determine the goodput � obtained by

the TCP connection we have

� =
E(Q̂)

E(�)
(1)

where E(Q̂) and E(�) denote the mean number of the corresponding quantities. Let there be n

trains in a given cycle. Let �k denote the number of packets in the kth train given that we start

with train 1 having one packet i.e �1 = 1. Further, �k = �k�1+1 in the congestion avoidance phase

and �k = 2�k�1 during the slow-start phase. Let �k denote the round trip time taken by a packet of

the kth train. A packet of the kth train can encounter a queue at the bu�er. Let qk be the queue
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size at the gateway that the �rst packet of the kth train has to encounter. Further let � denote the

bottleneck bandwidth and � denote the loss window size during the previous cycle. Hence, we have

E(Q̂) = E[E(Q=n; �)] + E(�) (2)

=
X
�

P (�)
X
n

P (n=�)E(Q=n; �) + E(�) (3)

E(Q=n; �) =
nX

k=1

�k (4)

� =
n+1X
k=1

(�k + qk=�) (5)

where � are the number of packets sent by the source after the packet loss but before the packet

loss is detected by the sender while Q is the number of packets sent by the source before the �rst

packet loss. We assume that E(�) = E(�). Let E(�k) = T where T is the average round trip time.

A problem that arises at this point is how to determine the average time spent in the bu�er during

a cycle since it depends on the bu�er occupancy. The bu�er occupancy depends on the number of


ows as well as on the train size of each 
ow. We assume that the �rst packet of every train in

the 
ow of interest to us experiences the same mean delay in the bu�er. We further let this mean

delay be clubbed in the measure of the average round trip time T . Thus with this, the unaccounted

time in the bu�er for the �rst packet of the �rst train equals the time to service this packet which

is 1=�. In the subsequent train the unaccounted time equals 3=�. Thus, this keeps on increasing

until the window size equals Wm. Hence, if the window grows to Wm, the total unaccounted time

in the queue during a cycle is given as

(Wm)(Wm + 1)

2�

For simplicity, we assume that in other cases also where the window does not grow to Wm, the total

queuing delay in a cycle is half of that given above. A main motivation for this approximation is

to keep the analysis simple. Thus, with this we have

E(�) = (E(E(n=�)) + 1)T +
(Wm)(Wm + 1)

4�
(6)

We next try to evaluate the expressions P (�); P (n=�)and E(Q=n; �) calling them as the window

probability calculation, train probability calculation and the packet count calculation respectively.
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4.1.1 Window Probability Calculation : TCP Tahoe

Let W� denote the loss window size in the �th cycle. l1 and l2 are the window sizes such that until

size l1 no packets are dropped and from size l1 to l2 packets are dropped with a probability p1. From

l2 to the maximum window size Wm, the packets are dropped more aggressively with probability p2

such that p1 < p2. Now fW�g� denotes the sequence of window sizes at which packets are dropped

in successive cycles. It is obvious that fW�g� forms a Markov chain. Hence, in order to determine

P (�); � = l1; l1+1; � � � ;Wm we seek to characterize the probability P (W�+1 = y+ k=W� = �) also

denoted as P (y + k=�) where y equals b�=2c and is thus the slow start threshold. Let q1 = 1� p1

and q2 = 1� p2. Also let the function s(x1; x2) be given by

s(x1; x2) = (x2 + 1)x1 +
x2(x2 + 1)

2
if x2 � 0

= 0 if x2 < 0

Depending on the relative values of y, l1 and l2 we have three di�erent cases, y � l1; l1 < y �

l2 and l2 < y. For lack of space we show the expression for the transition probability only for the

�rst case. Expressions for the other two cases also follow similarly.

Case 1: y � l1

P (j=�) =

8>>>>><
>>>>>:

q
s(l1;j�l1�1)
1

h
1� qj1

i
l1 � j � l2

qs(l1;l2�l1)1 qs(l2+1;j�l2�2)2

h
1� qj2

i
l2 < j < Wm

q
s(l1;l2�l1)
1 q

s(l2+1;Wm�l2�2)
2 j = Wm

We can now generate the stationary distribution P (�); � = l1; l1 + 1; � � � ;Wm from the above

transition probability matrix using any of the standard methods.

4.1.2 Train Probability Calculation: TCP Tahoe

We next need to determine the probability distribution of (n=�), the number of trains in a cycle

given �, the loss window size during the previous cycle. Given �, the minimum number of trains in
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a cycle is denoted by m1 and the maximum number of trains in the cycle is denoted by m3. Further,

after m2 trains have occurred in the cycle the dropping probability is increased to p2. The values

m1; m2 and m3 are given as

mi =

8><
>:

dlog2(y)e+ 1 + li � y y � li

dlog2(li)e+ 1 li < y
i = 1; 2 (7)

m3 = Wm � b
�

2
c + dlog2b

�

2
ce (8)

Hence, we now have the probabilities of the di�erent trains given as

P (n1 = m̂1 + k=�) = q

P
m̂1+k�1

i=m̂1
�i

1 (1� q
�m̂1+k

1 ) 0 � k � m̂2 � m̂1

P (n1 = m̂2 + k=�) = q

P
m̂2
i=m̂1

�i

1 q

P
m̂2+k�1

i=m̂2+1
�i

2 (1� q
�m̂2+k

2 )

0 < k < m̂3 � m̂2

P (n1 = m̂3=�) = q

P
m̂2
i=m̂1

�i

1 q

P
m̂3�1

i=m̂2+1
�i

2

Calculating E(n) given the above probability distribution can then be done as

E(n) = E[E(n=�)] (9)

=
X
�

P (�)
X
j

jP (n = j=�) (10)

4.1.3 Packet Count Calculation : TCP Tahoe

We next seek to characterize E(Q=n; �). The number of packets in a cycle depends on both n, the

number of trains in the cycle and �, the window size at the loss instant during the previous cycle.

Once n and � are given it is easy to calculate the number of packets in the cycle E(Q=n; �) which

we proceed to do next.

E(Q=n; �) =

8><
>:

(y+b)(y+b+1)
2

� (y�2)(y�1)
2

n � log2(y)

2n � 1 log2(l1) � n < log2(y)
(11)

where b = n� log2(y). At this point we have all the ingredients necessary to calculate the expected

throughput in a cycle using equations 3 and 6.
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Figure 2: Variation of 
ow bandwidth as a function of dropping probability variation for an adaptive


ow

Thus we now have an analytical model using which we next study the sensitivity of an adaptive


ow to the di�erent BRED parameters to determine which of these is most important to an adaptive


ow. We can consider the �ve parameters namely p1, p2, l1, l2 and Wm as �ve control variables

using which to control the bandwidth attained by a 
ow. In �gures 2 and 3 we plot the change

in the bandwidth attained by the TCP 
ow as a function of the change in a control variable while

keeping the other four control variables constant. The control variable which is varied is marked

against the curve shown. The change is calculated with respect to the �rst point corresponding to

the best value of the control variable considered, for e.g. the lowest value of the drop probability

or the highest value of the drop thresholds. As can be seen from �gures 2 and 3, the throughput

of a 
ow is more sensitive to p1 as compared to p2. This is understandable since large values of

p1 ensures that the window never grows to large values. Similarly of the three 
ow thresholds, the

throughput is most sensitive to Wm and the least sensitive to l2. This implies that for the adaptive


ows the higher the value of Wm the higher the throughput attained. Further, this also implies

that l1 have a high value and thereby l1 be as close to l2 as possible.
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ow threshold variation for an adaptive 
ow

showing sensitivity of the 
ow to the di�erent 
ow threshold parameters

4.2 Single Congested Node {CBR Flow

Since a cbr 
ow has no feedback any packet drops have no e�ect on the source rate. Thus the

thresholds of l1 and l2 have no e�ect on cbr assuming the cbr input rate is high enough compared

to the backbone bandwidth. Also with a packet drop probability of p, the cbr rate would be scaled

down by 1� p assuming no bu�er over
ows. Thus, it is obvious that a cbr 
ow is sensitive to only

Wm and p2. Purpose of p1 is to give an early warning which has no e�ect in case of cbr 
ows.

Hence, in the algorithm BRED, based on the sensitivity of both adaptive and non-adaptive 
ows to

the di�erent parameters, we let p1 to be far smaller than p2 and l1 to be close to l2 with the exact

di�erence being made clearer later. From the point of view of adaptive 
ows we also desire to have

Wm large enough compared to l2 but as noted above and as we also see later, this would confer a

tremendous advantage on a non-adaptive 
ow.
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4.3 Single Congested Node{Many Sources

4.3.1 TCP 
ows over BRED

While in the earlier analysis, we have analyzed the behavior of a tcp 
ow assuming an in�nite bu�er

size, in practice it is not so. Consider a �nite bu�er size B. Assume N 
ows passing through a

gateway. Since, these 
ows also share the pipe, we assume as earlier that the window size of a 
ow

equals the bu�er occupancy at the gateway. In such a case let Wm be the maximum window size

allowed at the gateway after which all the packets of the 
ow start being dropped. Then a necessary

and su�cient condition to prevent any bu�er over
ow is that

B > WmN

For ease of analysis without loss of generality, in the sequel we let

l1 = �l2 0 < � � 1

Wm = �l2 � > 1

(12)

Hence, in order to prevent bu�er over
ow we require

� <
B

Nl2
(13)

It is intuitive that the window size allowed to a 
ow in the absence of information about the round

trip times should depend on the bu�er size as well as the number of 
ows sharing the gateway.

Hence, we assume that l2 = B=2N unless otherwise stated. The coe�cient 2 in introduced in the

denominator since we desire to keep some bu�er space to accommodate the many short lived 
ows

that characterize the internet. With this, we require � < 2.

4.3.2 CBR 
ows over BRED

We next consider the performance of CBR 
ows passing through a BRED gateway. A misbehaving

cbr 
ow tries to occupy as many bu�er spaces as possible. Hence the bu�er occupancy of each
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non-conforming cbr 
ow is �l2. In contrast each conforming 
ow can have atmost l2 packets in the

bu�er on the average. The percentage bu�er occupancy of the non-conforming 
ow then equals

the throughput percentage obtained by it. Hence, a heuristic upper bound on the throughput of a

non-conforming cbr 
ow can be obtained by assuming that it occupies all the possible bu�er space

while the conforming 
ows occupy 0:5�l2 bu�er space on the average. Note that as the bu�er space

becomes smaller and smaller, this assumption re
ects reality and hence in such a scenario the non-

conforming 
ow is limited by the upper bound given below. As the bu�er size grows, the amount

of average bu�er space occupied by the conforming 
ows also grows and hence the non-conforming


ows get lot lesser than the possible upper bound. A heuristic expression for the upper bound on

the throughput of a non-conforming 
ow �cu in terms of percentage of the link bandwidth is then

given as

�cu =
100�

�nc + 0:5�nt
(14)

where nc is the number of non-conforming cbr 
ows and nt is the number of conforming cbr and tcp


ows. We show in the next section on simulation study that this bound is adhered to in the di�erent

scenarios considered. Thus, it is obvious that in order to reduce �cu, � should be low enough such

that 1 < � < 2. Further, � should be high enough such that 0 < � < 1. This also suits well the

earlier result which required that for an adaptive 
ow l1 be as large as possible. Hence, based on the

heuristic arguments and also on numerous simulation experiments, we choose � = 1:3 and � = 0:9

for the simulations. Note that making � and � very close to each other would militate against the

early warning mechanism for adaptive 
ows. Choosing � as given also helps to accommodate the

short lived 
ows in the bu�er. We have also veri�ed that the behavior of the algorithm is robust to

variations of � and � around the chosen values.
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5 Simulation Study

5.1 BRED Gateway Algorithm

In the previous sections we have described a gateway algorithm and analyzed it's behavior so as to

obtain heuristic guidelines on setting the values of the di�erent control parameters. Keeping this

in mind, for our simulations the parameters are �xed as follows.

l2 = B=(2dN̂e)

p2 =
q
(N̂)=(

q
(N̂) + 10)

p1 = p2=10 (15)

where N̂ is an estimate of the number of 
ows active at the gateway. It is calculated as

N̂ = (1� wn) � N̂ + wn �Nactive 0 < wn < 1 (16)

We have chosen wn = 0:02.

The network topology that we used for the simulations consists of a single router with an outgoing

backbone link as in [7] and [9]. The network is as shown in �gure 4. The sources connect to the

router through a feeder access link of 100Mbps. We experimented with di�erent number of sources,

though in the �rst set of graphs we show results with only 10 sources. The delay of the feeder

links was varied for the di�erent experiments. For the simulations, we assume that sources 4 and

5 and 10 are running non-adaptive applications while the rest of the sources are running adaptive

applications. Adaptive sources are modelled by TCP source and sink nodes that implement a
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congestion control algorithm equivalent to that of TCP tahoe. Further, the TCP 
ows denoted

tcp1, tcp2, tcp3, tcp6, tcp7, tcp8 and tcp9 had rtts of .04s, .1s, .06s, .04s, 0.1s, 0.06s and 0.04s

respectively excluding the service time which depends on the backbone link bandwidth. The packet

sizes and window sizes for the TCP connections were constant during a single simulation but varied

over the di�erent simulations from sizes ranging from 100 to 500 bytes. Non-adaptive sources

are modelled by constant bit-rate tra�c. We use ns2 [10] for the purpose of simulations. Each

simulation is run for 100s and the latter half of the simulation is used for the purpose of bandwidth

calculation. Further, each experiment is repeated 5 times and the average taken over all the �ve

trials. In the sequel all bandwidth values are in Mbps and hence the units may be omitted.

Figure 5a considers a backbone bandwidth of 1.5Mbps with 150 packets of bu�er which is equiva-

lent to 400ms of the backbone link speed. The cbr upper limit in this case as obtained from equation

14 is .2766 Mbps. Figure 5b considers a backbone bandwidth of 1.5Mbps with 50 packets of bu�er.

In these and subsequent �gures, all tcp 
ows having the same rtt are marked using the same marker

(either x, o or +). As can be seen irrespective of the sending rate of the cbr sources, the TCP 
ows

are not shut out as in case of the other gateway algorithms like RED. This is achieved by keeping a

little extra state. Further, with a reduced bu�er size, the non-conforming 
ows are at an advantage

and hence approach the upper bound as obtained from analysis. We have also veri�ed through

simulations the fact that if some of the non-adaptive 
ows have a rate within what is permissible

at the gateway, then they are not penalized in any manner which is a very important requirement

of a fair gateway algorithm.

We next study the performance of RED and BRED gateways for short-lived 
ows. The results

are shown in �gure6 with the cbr 
ows being denoted by squares and tcp 
ows with the same rtt

being shown by the same marker. In these �gures tcp1, tcp2 and tcp3 start at time 0 while tcp6,

tcp7, tcp8 and tcp9 start at 30s. Among the non-adaptive 
ows, cbr4 starts at 10s, cbr5 at 20s

and cbr10 at 50s and are assumed to have an input rate of 4.5Mbps each which is also the same as

the rate of the backbone link. Further, tcp7, tcp8 and tcp9 end at 50s while cbr 10 ends at 70s.

All the other 
ows are still active when the simulation ends at 100s. In this scenario tcp 
ows 7,
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Figure 5: Performance of BRED over 1.5Mbps link with 7 tcp and 3 cbr 
ows with Bu�er size of

a)150 packets and b) 50 packets

8 and 9 model short lived tcp 
ows while cbr10 models a short lived cbr 
ow. It can be seen that

in case of BRED gateways as seen from �gure6b, the tcp 
ows are not shut out even when all the

cbr 
ows are active and each sending at the rate of the backbone link. When 9 
ows are active as

between the time 30 and 50s, then the maximum possible rate for cbr from equation 14 is 1.0174

while after 70s when only 6 
ows (2 cbr and 4 tcp) are active the upper limit on the cbr bandwidth

from equation 14 is 1.3295. Between 50 and 70s when 3 cbr and 4 tcp 
ows are active, then the

upper limit for the cbr 
ows is 1.0263. Thus it can be seen that even for short lived 
ows, BRED
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Figure 6: Performance of a)RED and b)BRED gateways with short lived 
ows with a sampling

interval of 5 sec and cbr input rate of 4.5Mbps each over a 4.5 Mbps link

tries to ensure fairness in the division of the backbone bandwidth.

5.1.1 E�ects of Bu�er size

We now look at the e�ects of bu�er size on the performance of BRED. We assume 10 
ows as

earlier with 3 of the 
ows running non-adaptive cbr tra�c. The behavior is shown in �gure 7. On

the x-axis we plot the bu�er size in terms of the backbone bandwidth seconds. The y-axis shows
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Figure 7: E�ect of Bu�er size on performance of BRED with 10 
ows and 10Mbps link

the throughput of each of the 10 
ows. In these simulations, each of the non-adaptive 
ows have

an input rate equal to the backbone link bandwidth. As can be seen from �gure 7, if the bu�er

size is very small, about 50 ms of the link speed, then the cbr 
ows do gain though the adaptive


ows are not completely shut out as in RED even for this scenario. This is because of too many


ows and a small bu�er size due to which the e�ective bu�er size for each 
ow is far less than its

bandwidth-delay product. With a bu�er size of 100 ms which is what is generally used in practice,

the throughputs of the tcp 
ows increase much. Further increase in the bu�er size though does not

lead to very dramatic change in the throughput of the adaptive 
ows.

5.1.2 Fairness with many 
ows

In this subsection, we study the performance of BRED gateways in ensuring fairness amongst the

di�erent 
ows in the presence of many 
ows. The measure of fairness which we consider is the

fairness quotient (F) [2] which is de�ned as

F =
(
PN

k=1 bi)
2

N
PN

k=1 b
2
i

(17)
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where N is the number of 
ows and bi i = 1; � � � ; N is the bandwidth obtained by 
ow i. Some

of the properties of this index [2] are that the fairness is bounded between 0 and 1 with a totally

fair allocation having a fairness of 1 and a totally unfair allocation having a fairness of 1=N . The

fairness index is independent of scale and is also a continuous function.

We consider a network with a topology as in �gure 8. The backbone link delay is assumed to be

6ms and the delay for all the feeder links to the sinks is assumed to be 4 ms with the bandwidth

of each of these feeder links being 100Mb. For the feeder links from the source to the gateway,

the bandwidth is 100Mb while the delay is uniformly distributed between 10 and 100ms. All the

delay values are for the one-way delays. Thus we simulate 
ows with a rtt varying from 40ms to

220ms. One-fourth of the total number of 
ows in each case consist of non-adaptive cbr 
ows. The

total bandwidth of all the cbr 
ows is changed over the di�erent simulations and is shown on the x

axis for all the �gures. The fairness measure F, is plotted on the y axis. The system is simulated

once for 100s and the bandwidth values taken over the latter part of the simulation. Unlike earlier,

we do not consider averages 5 trials but consider just a single trial and take the values from this.

The adaptive 
ows run TCP Tahoe. Packet sizes of all the 
ows are assumed to be 500 bytes as

in many of the earlier cases. The receiver window is assumed to be large enough so as not to be a

constraint during the tcp data transfer. Each source is assumed to have an in�nite amount of data

to send. BRED gateway algorithm is used over the backbone link while drop-tail algorithm is used

23



0 1 2 3 4 5 6 7 8 9 10

x 10
6

0.75

0.8

0.85

0.9

0.95

1

Total bw of cbr sources b/s

F
ai

rn
es

s 
Q

uo
tie

nt

a

−−100 flows
−−50 flows 
−−20 flows 

Figure 9: Fairness of BRED with many 
ows over a backbone link of 1.5Mbps

over the feeder links. This is okay since only one 
ow traverses any given feeder link. Further, the

bu�er size at the gateways in each simulation is assumed to be equivalent to 400 ms of backbone

link bandwidth.

In �gure 9 the backbone link bandwidth is 1.5 Mbps and we consider cases of 20, 50 and 100


ows. As can be seen from this �gure, the performance of BRED is very good even with large

number of 
ows and a high cbr input rate. In fact, as the number of 
ows increase, the performance

of BRED gateway becomes more fair as expected with the fairness quotient values being about 90

percent. As the cbr 
ows increase their sending rate the fairness values decrease slowly till some

point after which they taper o�. Also note that with 20 
ows, in �gure 9, the fairness increases

�rst and then decreases. This is because in the �rst trial the cbr sources are sending far less than

their fair bandwidth share. But as they keep on increasing the input rates above their fair share,

BRED algorithm ensures that the goodput that the cbr sources receive is limited.

24



5.2 Comparison with Other gateway Algorithms

5.2.1 Comparison with RED gateways-Adaptive 
ows only

We next compare the performance of BRED gateways with other gateway algorithms. While using

RED gateways we let the lower threshold to be one-fourth of the bu�er size and the upper threshold

to be one-half of the bu�er size. The maximum dropping probability is taken to be 0.1. It is accepted

widely that RED ensures fairness while dealing with only adaptive 
ows. But as we show next, this

is true only over a large time interval. BRED gateways on the other hand are very fair even over

a short time interval. This is very much necessary in the internet which is characterized by many

short and bursty 
ows.

We again use the simulation topology as shown in �gure 4. 7 tcp 
ows are assumed to 
ow

through the gateway with a backbone bandwidth of 0.8Mbps. The rtts of the tcp 
ows are as given

previously. In �gures 10a and 10b we compare the performance of RED and BRED gateways by

making the bandwidth calculations every 2 seconds. In the graphs, curves with the same marker

(e.g. + x or o) denote 
ows with the same rtt. As can be seen from these curves, BRED gateways

ensure fair distribution of the bandwidths even over very short time intervals.

5.2.2 Adaptive and Non-adaptive 
ows

We next consider the case where both adaptive tcp 
ows and non-adaptive cbr 
ows share the

gateway and look at the bandwidth distributions for the di�erent 
ows considering a small time

window of 5 seconds for a backbone link of 4.5Mbps. The cbr input rates are 4 Mbps each. The

bu�er size is 450 packets equivalent to 400ms of backbone link speed. The results are shown in �gure

11. With RED, TCP 
ows are completely shut out by the cbr 
ows which split up the available

bandwidth amongst themselves. In contrast we see that the performance is very much better in

case of the BRED gateways.

Before concluding we also look at the fairness of LQD gateways. In order to facilitate comparison

with BRED gateways, the fairness of LQD gateways over a 1.5Mbps link is simulated under the
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Figure 10: Bandwidth distribution among 7 TCP 
ows with sampling interval of 2 sec with (a)RED

and (b)BRED showing more time homogeneous allocation of bandwidth with BRED

same conditions as used in �gure 9. The results for the LQD gateway are shown in �gure 12.

Comparing this with �gure 9 it can be concluded that not only are the LQD gateways di�cult to

implement but also the fairness quotient of the LQD gateways is far less than the fairness quotient

of the BRED gateways.
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Figure 11: Bandwidth distribution with sampling interval of 5 sec, 7 TCP and 3 CBR 
ows with a

cbr input rate of 4Mbps each over a 4.5Mbps link showing BRED behavior over short time intervals

6 Conclusion

In this paper we have proposed a gateway algorithm BRED which tries to ensure a fair division of

the bandwidth of the link to which the gateway is attached, among the di�erent 
ows sharing the

gateway bu�er. Not only is BRED simple to implement, but it is also scalable. Further, the fairness

quotient of BRED gateways far exceeds the fairness quotient of the other gateway algorithms. Note

that, in BRED we do not seek to explicitly identify the bad 
ows. We would also like to remark
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Figure 12: Fairness with many 
ows over a 1.5Mbps backbone link with LQD gateways

that BRED as given is addressed towards robust 
ows like Tahoe [12], New-Reno and Sack. While

dealing with 
ows like Reno which are not robust [12], it will also be necessary to ensure that

multiple packets are not dropped from a window. This may require another variable for each 
ow

to track the number of successful packets after the dropped packet. The drop or accept decision

may then need to be done based on both the queue occupancy and the number of packets accepted

since the last packet dropped for each 
ow.

An approach which we plan to investigate in the future is to identify the bad 
ows on the basis of

the bu�er occupancy and thereby constrain the bad 
ows by having di�erent set of 
ow limits on

them. We do not do this in BRED so as to keep the algorithm very simple and also to ensure that

the gateway has to do very little extra work. The approach of identifying bad 
ows and punishing

them would require more work by the gateway and if this could be done then a better division of

the bandwidth could be obtained. As part of the future study we also plan to look at BRED in

the context of multiple gateways. Simulations with TCP reno are also planned as also with a mix

of cbr 
ows, TCP Tahoe 
ows and TCP Reno 
ows. In this paper we have looked at the case of

short bursty 
ows for small number of 
ows and shown that the BRED performance in such a case

is also quite good. This study has also to be extended for the case of hundreds of short bursty 
ows

coexisting with longer lived 
ows and for a more realistic sending pattern.
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