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This study presents a nonlinear dynamic methodology for detecting fatigue 

damage precursor in an isotropic metallic cantilever beam exposed to harmonic 

transverse, rotation or combined – transverse and rotation – base excitations. The 

methodology accounts for important dynamic nonlinearities due to the complex 

loading generated by uniaxial and multiaxial nonlinear oscillations. These 

nonlinearities include: 1) structural stiffening due to gyroscopic motion and high-

response amplitude at the structure fundamental mode, 2) structural softening due to 

inertial forces and gyroscopic loads, and localized evolution in the material 

microstructure due to fatigue damage and 3) cross-axis coupling due to multiaxial 

loading. The loading intensity and number of vibration cycles intensified these 

nonlinearities. The damage precursor feature is acquired by quantifying the reduction 

in the nonlinear stiffness term in the equation of motion due to localized evolution in 

the material micromechanical properties at high stress concentration regions. 

Nanoindentation studies near high stress concentration sites confirmed the evolution 

in the local micromechanical properties, as a function of loading cycles. The 



  

nonlinear analytical approach tracks the degradation in the structural stiffness as a 

function of the nonlinear dynamic response for the uniaxial transverse or rotation base 

excitation. The change in the dynamic response due to damage precursor is captured 

experimentally. The nonlinear stiffness terms are found to be sensitive to fatigue 

damage precursor for translational or rotational excitation. Therefore, the nonlinear 

stiffness sensitivity to fatigue damage precursor appeared to be a promising metric for 

structural health monitoring applications. This method is applicable to a cantilever 

beam only. Additional investigations will be required to extend its applicability to 

more complex structures. 

For the combined transverse and rotation base excitation, the experimental 

and analytic results demonstrated the importance of cross-axis coupling. The 

Experiments are performed using a unique multiaxial electrodynamic shaker with 

high controllability of phase and base excitation frequencies. The analytical model 

captures the modulation in the nonlinear dynamic response behavior seen in the 

experiments as a function of cross-axis coupling and the phase relation between the 

axes. Although the model is successful in capturing these general trends, it does not 

agree with the beam deflection absolute values obtained from the experiments. The 

discrepancy is due to fatigue damage accumulation during the experiments, which is 

manifested by a shift in the resonance frequency and an increase in the response 

amplitude.  
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Chapter 1 Introduction 

Complex multiaxial vibration environments have been the cause of many fatigue-induced 

failures, in part due to nonlinear dynamic response of flexible structures. As such, nonlinear 

vibration has long been an area of study. This work will extend on the available knowledge base 

to bridge nonlinear vibration with fatigue damage by exploiting the sensitivity of dynamic 

nonlinearities to damage precursors (incubators), under both uniaxial and multiaxial vibration. 

1.1 Research Objectives   

The motivation for the multiaxial vibration research efforts is prompted by the serious 

need to understand “real-world” complex dynamic systems operating in multiaxial vibratory 

environments such as helicopter blades, aircraft wings, ground vehicles, accelerometers, sensors, 

MEMS, energy harvesters and electronics. There is also a need to understand the nonlinear 

interactions and amplification of the response of structures exposed to simultaneous multiaxial 

dynamic loads that can be only simulated with multiaxial excitation shaker [1, 2]. The effects of 

vibration-induced fatigue damage and damage precursors and their effects on the structural 

nonlinear dynamic response (uniaxial and multiaxial response) are equally important. 

Uniaxial shakers have been the prevailing tools for performing vibration testing because 

multiaxial shakers are not commonly available. Military and commercial standards were 

developed to mitigate this equipment limitation by proposing sequential uniaxial excitation as a 

compromise for simultaneous multiaxial excitation. When qualifying products subject to 

vibration, it is common therefore to test under uniaxial excitation, sequentially along different 

axes. The vibration profiles used for such uniaxial tests are provided in standards such as MIL-

STD-810G. Current standards do not provide vibration methodologies for simultaneous 
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multiaxial vibration, and uniaxial excitations are applied to test products even though most field 

operational data indicate that these products are exposed to multiaxial dynamic loading 

environments. Sequential vibration testing along various orthogonal axes may be an acceptable 

proxy for the ideal of simultaneous multiaxial testing for linear systems, but is inadequate when 

it comes to nonlinear response. Unfortunately, uniaxial sequential testing may provide overly 

optimistic fatigue durability results [2, 3]. However, uniaxial excitations are applied to test 

products even though most field operational data indicate that these products are exposed to 

multiaxial dynamic loading environments. Thus, serious compromises must be made in the 

experimental design to perform meaningful tests on a uniaxial electrodynamic shaker, which are 

discussed in Chapter 3. For example, to simulate multiaxial vibrations, the MIL-STD-810G 

recommends performing the vibration tests by sequentially applying uniaxial excitation to a test 

article along three orthogonal axes (X, Y and Z), which can be accomplished by exciting the 

structure one axis at a time. Subsequently, the principle of superposition is employed, where the 

system outputs are added [4]:  

𝑋!"#$%&'( = 𝑋!"#(𝑋!"#$%)+ 𝑋!"#(𝑌!"#$%)+ 𝑋!"#(𝑍!"#$%) 

where 𝑋!"# 𝑋!"#$% , 𝑋!"# 𝑌!"#$% , and ,𝑋!"#(𝑍!"#$%) are the output response as a function of 

𝑋!"#$%, 𝑌!"#$%, and 𝑍!"#$% inputs, respectively. Such superposition assumes that the structural 

dynamic response is linear. 

Realistically, mechanical systems are not rigorously linear, and consequently linear 

models have limitations. In general, linear models are applicable only in restrictive conditions 

such as very low vibration amplitude. The multiaxial excitation environment introduces 

additional complexity to the structural response and thus enhances the nonlinear behavior. Thus, 

the principle of linear superposition may generate misleading results. Furthermore, increasing the 
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amplitude of oscillations along multiple axes amplifies the nonlinearity and exacerbates the 

inaccuracy of the superposition approach. To accurately estimate the dynamic response of a 

structure under multiaxial base excitations, it is important to include the nonlinearities in the 

analysis.    

Typically, Hooke’s law is a very good approximation for structures exhibiting linear 

elastic response to external forces. In long slender structures, most materials are capable of 

enduring reasonably large deformations before their intrinsic stress-strain characteristic shows 

any significant departure from the linear regime. Nonetheless, it is common to encounter 

dynamic nonlinearities in slender mechanical structures long before the intrinsic material 

nonlinearity is reached. For example, kinematic nonlinearity produces nonlinear hardening 

(stiffening) effect that appears in many engineering applications. The most noticeable nonlinear 

stiffening effect is in the form of a force that is proportional to the cube of displacement, 𝑥, in the 

equation of motion [5]. Thus, the restoring force becomes a function that combines linear and 

nonlinear stiffness components. For a stiffness element with linear and nonlinear (cubic) 

components, the force can be expressed as a function of displacement as follows: 

𝐹 𝑥 = 𝑘𝑥 + 𝛼𝑘𝑥! 

The element stiffness and nonlinear stiffness coefficients are 𝑘  and 𝛼 , respectively. 

Consequently, the linear equation of motion with nonlinear restoring force becomes the Duffing 

equation, which contains an additional nonlinear geometric term [6]. If 𝛼 is positive, it can assist 

the linear restoring force, thus making the structure stiffer (hardening effect) and increasing its 

natural frequency. Unlike in the case of a linear system, the maximum value of the amplitude 

occurs at an excitation frequency higher than the structure natural frequency [5]. If 𝛼 is negative, 

it will oppose the linear restoring force, thus making the structure softer (softening effect) and 
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reducing its natural frequency [7]. 

Furthermore, inertial nonlinearities often add to the damping mechanisms. Whenever 

forces acting on a structure are expanded up to the cubical displacement, they should be expected 

to add to the linear damping (which is proportional to the response velocity of the structure), a 

nonlinear damping term in the equation of motion [8]. The added nonlinear damping term (due to 

nonlinear inertial forces) increases with the motion amplitude. The nonlinear inertial damping 

effect is included in the dynamic analysis in this research effort. Additional sources of 

nonlinearity may appear due to practical reasons such as the manner in which the beam is 

clamped by its boundaries to the surrounding material and the multiaxial base loading. The prior 

will not be an issue in this study since our test article is a slender deformable cantilever beam 

clamped to a rigid fixture. The multiaxial loading contribution is a major focus in this research, 

and is discussed in Chapter 6.    

Several researchers have investigated structures under nonlinear oscillatory loading, 

which are detailed in the Chapter 3. In these investigations dynamic models were developed in a 

consistent manner through the formulation of energy expressions and application of Hamilton’s 

principle. The models included nonlinear dynamic stiffening and inertial softening terms. 

However, most of the research reported in the literature on these systems is focused on either 

transverse excitation or constant spin velocity with various combinations of free, clamped, and 

simply-supported boundaries [9, 10]. What is absent in the structural dynamics and structural 

health monitoring literature is a comprehensive theory for predicting the nonlinear response of 

structures exposed to simultaneous combinations of varying rotation and base excitation that 

includes all of the following nonlinearities: 1) geometric gyroscopic stiffening, 2) inertial and 

gyroscopic softening, 3) coupling between the rotational excitation (primary motion at the base), 



 

 5 
 

and local displacement (secondary motion), and 4) cross-axis nonlinear coupling. These 

nonlinearities become important when modeling fast and flexible robot manipulators, robotic 

arms, and adaptive structures.  

Furthermore, high cycle vibrations in these structures may lead to fatigue, and instability. 

Thus, monitoring structural health of the system is important in aiding vibration control to 

correct the system’s operational drift due to fatigue damage accumulation and to prolong the life 

cycle.  

The objective of this study is to develop a fatigue damage precursor detection method for 

monitoring the structural degradation of an isotropic cantilever beam prior to crack initiation. 

Fatigue damage precursor is defined here as any observable early degradation of the material 

microstructural morphology and resulting changes in or the physical properties of a structure, 

prior to any detectable fatigue crack initiation. Examples of measurable precursors to fatigue 

crack development may involve, but are not restricted to, changes in the microstructure, chemical 

composition, electrical signal, acoustic response, thermal signature or mechanical response of a 

structure. Recognizing a damage precursor requires classifying and recognizing damage 

incubators and initiators such as residual or compressive stress, phase changes, and microvoids. 

This study presents a nonlinear vibration methodology to detect fatigue damage precursor by 

exploiting the sensitivity of the nonlinear stiffness term in the equations of motion to material 

fatigue degradation. This approach appears to be promising health monitoring metric for 

predicting fatigue damage precursor. This study shows that the nonlinear vibration-based 

measurement techniques can successfully sense the development of fatigue damage precursor too 

well in advance of actual fatigue crack initiation. Localized material evolution due to 

accumulative damage (change in the apparent material stiffness as a function of loading cycles) 
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at high stress concentration sites is confirmed through nanoindentation.  

1.2 Research Objectives  

The objectives of this research are as follows:  

• Experimentally demonstrate the sensitivity nonlinear stiffness to fatigue damage precursor in 

a cantilever metallic beam exposed to transverse harmonic base excitation. 

• Experimentally demonstrate the sensitivity nonlinear stiffness to damage evolution in a 

cantilever metallic beam exposed to rotational harmonic base excitation. 

• Develop uniaxial nonlinear analytical dynamic model for transverse excitation to model the 

effect of damage precursor on the structural response of a cantilever beam, which includes 

inertial and geometric nonlinearities.  

• Develop uniaxial nonlinear analytical dynamic model for rotational excitation to model the 

effect of damage precursor on the structural response of a cantilever beam, which includes 

inertial and geometric nonlinearities and gyroscopic effects. 

• Experimentally study the nonlinear dynamic response of a cantilever beam under combined 

rotation and transverse base vibration using multiaxial electrodynamic shaker  

• Develop a model to study the nonlinear response of a cantilever beam due to varying phase 

angle between rotation and transverse excitation, while holding the rotation and transverse 

base amplitudes constants. The model includes inertial and geometric nonlinearities, 

gyroscopic effects and cross-axes contribution.  

1.3 Dissertation Overview  

The focus of this research effort is on studying the nonlinear dynamic response of 

structures under transverse, rotation and combined multiaxial vibration loading. An additional 

focus is on developing a nonlinear dynamic methodology for detecting and quantifying fatigue 
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damage precursor in isotropic metallic cantilever beam, prior to fatigue crack initiation, based on 

measurement of the structure nonlinear response to harmonic base excitation. The effort that 

instigated this research is document in Appendix A, where a notched cantilever beam was 

exposed to broadband stationary random vibration excitation. Linear mechanics principles were 

applied to determine the time to failure in the frequency domain. However, the major focus of 

this research is to study the nonlinear dynamic response of structures under transverse, rotation 

and combined multiaxial vibration loading. A damage precursor feature is extracted for 

cantilever beams by quantifying the reduction in the nonlinear stiffness due to localized 

microscopic material softening. The reason for using a cantilever beam in this research effort is 

because the beam is one of the fundamental elements of an engineering structure. The dynamics 

of a beam can be used as an approximate idealization of complex structures such a helicopter 

rotor blades, spacecraft antennae, flexible satellites, airplane wings, robotic arms, and electronic 

interconnects. In other words, studying the dynamic response, both analytically and 

experimentally, of a simple structural element under various base excitation conditions may 

provide insights into the behavior of complex structures under similar loading. 

This dissertation is structured into individual chapters, with each chapter comprising a stand-

alone publication with multiple authors. Consequently, there is some amount of necessary 

redundancy across the chapters, in the interest of completeness, to make each chapter self-contained. 

The contribution of each other is stated in the beginning of each chapter. Chapter 2 was published in 

the ASM Journal of the Failure Prevention and Analysis, and it describes a modified computational 

approach to model large electronic components exposed to multiaxial random vibrations using 

Spectral Finite Element Method (S-FEM). The approach uses a multiscale approach with local 3-

dimensional S-FEM and global 2-Dimensional FEM model to reduce computational time. Chapter 3 

is a comprehensive review of the response and damage of linear and nonlinear systems under 



 

 8 
 

multiaxial vibrations, and includes the experimental results for the durability and nonlinear response 

of large electronic components exposed to multiaxial random. The paper was published in the 

Journal of Shock and Vibration. Chapter 4 is an article currently under review in the Journal of 

Structural Control and Health Monitoring (SCHM). The paper contains a nonlinear vibration-based 

methodology for exploiting the sensitivity of the nonlinearities in the equation of motion to 

damage precursor in isotropic cantilever beam, prior to fatigue crack initiation, based on 

measurement of the structure nonlinear response to transverse base excitation. The experimental 

results are utilized to update the nonlinear stiffness in the equation of motion. Chapter 5 is an article 

currently under review in the International Journal of nonlinear Mechanics (IJNM), which provides 

a promising analytical approach to model and predict the response of cantilever beam exposed to a 

varying rotation base excitation. This type of dynamic load reveals interesting nonlinearities due to 

the gyroscopic effects due to the harmonic base rotation. The model takes into account the evolution 

of the material due to damage accumulation. Chapter 6 is an article being prepared for publication in 

Shock and Vibration Journal. The article presents analytical and experimental results that show 

structural dependency on the phase difference between different axes of excitation, when a 

structure is exposed to multiaxial vibration. Results show that cross-axis coupling between 

rotation and simultaneous transverse excitations promoted nonlinear amplification/attenuation in 

the response of the structure, depending on the phase relationship between the rotational and the 

translational excitations. Chapter 7 presents the overall conclusions and contributions of this 

dissertation, discusses its limitations and suggests relevant future work. The complete mathematical 

derivations of the models are provided in Appendices B and C. 
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Chapter 2  Approach To Improve Electronics Reliability Under 

Complex Vibration Conditions  

Published in ASM International Journal of Failure Analysis and Prevention, 2012 

This was published in the ASM Journal of the Failure Prevention and Analysis, and it 

describes a modified computational approach to model large electronic components exposed to 

multiaxial random vibrations using Spectral Finite Element Method (S-FEM). The approach uses 

a multiscale approach with local 3-dimensional S-FEM and global 2-Dimensional FEM model to 

reduce computational time. The authors are Mr. Ed Habtour, Mr. Cholmin Choi, Dr. Michael 

Osterman and Professor Abhijit Dasgupta. Mr. Ed Habtour (first author) conducted the analytical 

and FEM modeling.  Mr. Mr. Cholmin Choi provided the multiaxial shaker table response. Dr. 

Michael Osterman provided assistance designing the circuit cards. Professor Dasgupta provided 

technical and academic guidance in this effort.  

Abstract: 

The functionality of next-generation the US Army’s platforms, such as the Small 

Unmanned Ground Vehicles (SUGV) and Small Unmanned Arial Vehicles (SUAV), is strongly 

dependent on the reliability of electronically-rich devices. Thus, the performance and accuracy of 

these systems will be dependent on the life cycle of electronics. These electronic systems and the 

critical components in them experience extremely harsh environments such as shock and 

vibration. Therefore, it is imperative to identify the failure mechanisms of these components 

through experimental and virtual failure assessment. One of the key challenges in re-creating 

life-cycle vibration conditions during design and qualification testing in the lab is the re-creation 

of simultaneous multi-axial excitation that the product experiences in the field. Instead, the 
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common practice is to use sequential single-axis excitation in different axes or uncontrolled 

multi-axial vibration on repetitive shock shakers. Consequently, the dominant failure modes in 

the field are sometimes very difficult to duplicate in a laboratory test.  

This chapter presents the joint effort by the US Army Materiel Systems Analysis Activity 

(AMSAA) and the Center of Advanced Life Cycle Engineering (CALCE) at the University of 

Maryland to develop test methods and analytic models that better capture unforeseen design 

defects prior to the qualification phase, by better replication of the life-cycle vibration 

conditions. One approach was to utilize a novel Multi-Degrees of Freedom (M-DoF) 

electrodynamic shaker to ruggedize designs for fatigue damage due to multi-directional random 

vibration.  The merits of vibration testing methods with six-DoF shaker and cost saving 

associated with such an approach will be addressed in this chapter. There is a potential for M-

DoF to detect critical design flaws earlier in the development cycle than has been traditionally 

possible with existing shaker technologies; and therefore produce more cost effective, reliable 

and safe systems for the warfighters. 

2.1 Introduction 

In military applications, electronic devices play a vital role in mission success.  These 

devices, which provide control, guidance, communication, and reconnaissance, are vital 

components in modern unmanned vehicular applications.   This trend in modern warfare has 

increased the complexity of electronic equipment, especially in low volume, highly 

sophisticated, and dense electronic systems. Figure 2-1 and Figure 2-2 show the SUGV and 

SUAV [1]. These modern systems take advantage of the remarkable advances made in low cost 

commercial electronics. It is becoming progressively more beneficial to use such components in 

military applications for improved computational performance, on-demand availability, 
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addressing obsolescence, and providing state-of-the-art capabilities.  This current movement of 

using commercial-off-the-shelf (COTS) electronics and devices for military applications has led 

to concerns about their reliability in harsh battlefield environments. Typically, these types of 

systems are subjected to various complex loadings, including shock and vibration, during their 

life-cycle. These loads may impose significant stresses on the PCB substrate, component 

packages, leads and solder joints [1].  These stresses can be due to a combination of bending 

moments in the PCB and/or inertias of components.  They may lead to several failures such as 

delamination in the PCB, solder joint fatigue, lead fracture or structural damage to components.  

 

 

Figure 2-1. Small Unmanned Ground 

Vehicle (SUGV) 

 

Figure 2-2. Small Unmanned Aerial Vehicle 

(SUAV) 

When conducting PoF analysis of electronic systems, the large variety of package types is 

perhaps one of the main challenges to consider, since failure may occur due to one of several 

failure drivers. One of the most frequent failures in electronics is the package to board 

interconnect in heavy components with large center of mass (CM) and low profile surface mount 

packages (SMT).  The failure in heavy components with large CM can be predominantly due to 

inertial loads. While in light low-profile SMT packages, the dominant stress source can be due to 
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board deflection. Both of these failure drivers may compete in heavy and large electronic 

components such as inductors and transformers. Depending on the architecture of these 

components, they can also significantly alter the local vibration response. It is common to 

increase the board stiffness to reduce the overall response of the PCB. However, increasing the 

board stiffness may increase local bending moments.  

The current available vibration fatigue life prediction methods for large/heavy 

components force reliability engineers to use one of two extremes.  One method is to construct a 

detailed 3-D FEA. This approach may be impractical when dealing with large circuit card 

assemblies (CCA) containing many components; each with multiple leads and solder joints. 

Further, these methods can be computationally expensive and their accuracy may be 

compromised due to assumptions in material properties and support conditions.  The other 

extreme is to use simple empirical equations. Probably the best-known empirical method to 

estimate component life under vibration is Steinberg’s model [2]. However, these models are 

also limited to a defined set of boundary conditions and package structures. Therefore, they 

cannot be the only design tool to evaluate new products or emerging technologies with a high 

level of confidence. 

      This chapter is concerned with a rapid analytical technique for analyzing heavy/large 

components that can provide an engineer high fidelity assessment while reducing the 

computational time. A PoF approach was developed that may improve the reliability assessment 

of CCAs containing large/heavy components. This approach is a hybrid-method that combines 2-

D and 3-D FEA where the mechanical and inertial properties of the components at the local level 

are taken into consideration. These properties may be used to extract an accurate natural 
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frequency value for the CCA. Nonetheless, this approach may not eliminate the need to address 

the components inertial effects.   

2.2 Physics of Failure Approach 

2.2.1 Simplified Single Degree of Freedom Approach   

As mentioned above one of the most known simplified models for analysis of PCB 

vibration fatigue is Steinberg’s model [2]. Steinberg model defines a critical maximum vibration 

induced displacement for components as [2]: 

𝑑 =
0.00022  𝐵
𝐶  ℎ  𝑟   𝐿

 
Eq.  2-1         

where B is the length of the PCB edge parallel to the component located at the center of the 

board in units of inches. L and h are the length of the component and the thickness of the PCB in 

inches, respectively. C is a constant coefficient, which depends on the component type, and r is 

the relative position factor of the component relative to the PCB. The Steinberg model assumes a 

dynamic single-amplitude displacement for the PCB This model is valid only for single-degree-

of-freedom (SDOF) systems. The out-of-plane root-mean-square (rms) displacement is 

calculated as follows [2]: 

𝑍!"# =
9.8  𝐺!"#  
𝑓!!  

 Eq.  2-2 

where fn is the natural frequency and Grms is the root-mean-square output acceleration.  The Grms 

can be estimated using Miles’ equation: 

𝐺!"# =
!  !"!!    

  !
  and  𝑄 = 𝑓! 

Eq.  2-3 
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where P is the input Power Spectral Density and Q is the transmissibility.  Steinberg states when 

the dynamic single-amplitude displacement at the center of the PCB is limited to the critical 

value d, the component is expected to achieve a fatigue life of 20 million stress reversals in a 

random vibration environment and 10 million stress reversals under sinusoidal vibration. One 

must be cautious when using this model since Steinberg’s empirical approach is based on a 

specific experimental data set from a particular collection of specimen architectures and 

boundary conditions. Thus, this empirical approach may be more accurate when applied to PCBs 

assembled in exactly the same manner. The drawback of his model is that it cannot be used 

outside the range and configuration of the assembly used in the derivation of the model. It cannot 

be used to evaluate new products or emerging technologies with high confidence. Nonetheless, 

this approach may help designers obtain a rough estimate of the acceleration factors for 

accelerated vibration durability tests and for comparing the relative dynamic robustness of 

competing designs. 

Electronically dense military platforms have to endure severe and complex dynamical 

loading conditions during the life cycle, resulting in high-cycle fatigue. For complex structure 

and dynamic loading the Steinberg’s model alone may not be an adequate approach for assessing 

the survivability of military devices.  
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Figure 2-3 CAD model of PCB with large components 

In this study a 127x101.6 mm2 PCB with six large/heavy inductors was designed, as 

shown in Figure 2-3. The inductor geometry is shown in Figure 2-4. The PCB was assumed to be 

fixed (clamped) along the short edges of the board, as illustrated in Figure 2-4 with the red dots. 

The objective is to evaluate 2-D and 3-D FEA approaches to assess the reliability of large 

electronic components. A more cost effective approach combining 2-D and 3-D FEA was 

developed to extract the natural frequency of the PCB and more accurately determine the 

maximum deflection, curvature, and stress. The goal is to evaluate whether this approach can 

detect critical failure risks early in the development cycle. The modeling also provides effective 

guidance for future vibration testing using a multi-degree-of-freedom (M-DoF) electrodynamic 

(ED) shaker. The test results will be used in the future to evaluate the accuracy of this modeling 

approach and to assess the effect of the local inertia of large/heavy components on the fatigue 

life of interconnects.   
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Figure 2-4 Large inductor used in this study 

2.2.2 Two-Dimensional Approach   

A more detailed approach than the Steinberg model when conducting PoF analysis is a 

simplified 2-D (plate or shell) FEA of a PCB. The mass of the components are “smeared” over 

their PCB footprints to reduce computational time and cost. This method was developed by 

Pitarresi and Primaver where they performed experimental and FEA modeling work to 

characterize the natural frequencies, mode shape, and transmissibility at the board level [3].  

Later, they used the simple plate vibration models, using the property smearing approaches, as 

well as detailed finite element modeling. In the case where the local inertias are significant, a 

traditional 3-D FEA might be necessary. Transforming a 3-D PCB model in Figure 2-3 to 2-D 

FEA using the smeared technique is shown in Figure 2-5. The PCB was discretized into 

rectangular shell elements, as shown in Figure 2-5. The individual elements were defined by four 

nodes. Typically in traditional FEA, the shell element nodes in a continuum structure have six-

DoF. For PCB PoF analysis, the number of degrees of freedom was reduced to three plate DOFs, 

which includes one out of plane displacement, uz, and two rotations about the two orthogonal 
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axes in the plane of the board.  The displacement of each node is driven by the element’s 

stiffness matrix. The element stiffness matrix is a function of the element geometry and the 

constitutive material properties. Because PCBs have multilayer composite construction, 

laminated plate theory was used to calculate the element stiffness matrix. The layers’ geometric 

and material properties were designed symmetrically about the middle surface of the board. 

Therefore, the bending-extension coupling effect was not a cause for concern and the extension 

and the coupling matrixes were eliminated [4]. This led to a simplified plate equation with only 

the bending stiffness: 

 Eq.  2-4 

where {M} and 𝜅  are the moment resultant and board curvature written as vectors in reduced 

Voigt notation. The flexural (or bending) rigidity matrix, [D], is the measure of how easily the 

board bends. [D] can be calculated as follows: 

𝐷!" =
1
3 𝑄!"! (ℎ!! − ℎ!!!! )

!

!!!

    𝑓𝑜𝑟  𝑖  , 𝑗 = 1,2,3 
 

Eq.  2-5 

where i and j coincide with the natural axes of the material and n is the number of layers in the 

PCB. The distance of the outermost fiber of the kth layer from the mid-surface of the plate is hk. 

Qk
ij is the material stiffness matrix for the material in layer k [4] for additional information on 

how to calculate Qij.  For a uniform, symmetrical, homogeneous composite construction the 

board rigidity, D11=D22=D, may be approximated as: 
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𝐷 =
𝐸  𝑡!

12(1− 𝜈!) 
Eq.  2-6 

where E is the elastic modulus, t is the board thickness and 𝜈 is the Poisson’s ratio. After 

obtaining the [D] matrix, the board curvature can be calculated from the simplified plate 

equation (4). The smeared-technique was then implemented using 2-D shell elements. 

 

Figure 2-5. 2-D FEA of PWB and inductors, using smearing method 

The smeared technique includes the mass of the board and components by simply 

increasing the mass of the shell element under the footprint of each component. However, the 

component stiffness is not included in this simplified smearing approach. The first mode natural 

frequency for this board, using this smearing approach, is 108 Hz.    

However, for large/heavy thru-hole components, some 2-D codes may approximately 

include the stiffening effect of the components. In this approach, the mass and stiffening effects 

are included by locally increasing the PCB’s density and Young’s modulus, respectively.  

Unfortunately, such an approach does not address the inertias and radius of gyration of large 

components with high stand-off. These effects can cause additional stresses in the leads and 

interconnects and a traditional 3-D FEA might be necessary to analyze this effect.  
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Table 2-1 Inductor modal response for various standoff heights 

 

 

Figure 2-6. Inductor modal shapes when lead base is fixed 

2.2.3 Three Dimensional Approach 

In this study, modal analyses were first conducted on just the inductor with various 

standoff heights as shown in Table 2-1. In this task, the component leads were assumed to be 

“fixed” at the interface with the PWB, as shown in Figure 2-4. As expected the modal frequency 

dropped as the standoff height increased, due to the component’s significant inertia. Resulting 

mode shapes are shown in Figure 2-6. This additional motion will clearly have a significant 

impact on the stresses induced in the interconnects but these effects are typically neglected in the 

smeared properties technique. 
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To more accurately model the system, a 3-D model of the board with attached inductors 

was constructed and analyzed. In this analysis, the modal frequencies of the inductors dropped 

significantly because of the compliance of the PWB attached to the lead foot. The first mode 

response of the middle inductors is depicted in Figure 2-7. The inductor standoff height in this 

analysis was 2.0 mm and the maximum response occurred in the components located at the 

middle of the PCB. The frequency for the first vibration mode for the middle components and 

the components closer to the fixed edges was approximately 71 Hz, which is approximately 20% 

lower than the frequency for a rigidly clamped lead foot. The PCBs first vibration mode was 159 

Hz, which was about 45% higher than that predicted by the smeared 2-D model, because of the 

additional stiffening effect of the components. The first mode shape of the PCB is shown in 

Figure 2-8.  

 

Figure 2-7 Middle inductor’s first modal 

response 

 

Figure 2-8 PCB first modal response

In typical vibration fatigue analysis, the PCB is treated as a thin plate. Therefore, many 

researchers reasoned that the PCB’s natural frequency is dependent upon the geometry and the 

material of the board and not necessarily on the components [5]. This might be valid for 

microelectronic components with low mass and low stand-off, where the drop in natural 
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frequency due to the added mass of the components is compensated for by the increase in the 

natural frequency due to the local increase in stiffness from component mounting. However, for 

large/heavy components the scheme may not be applicable since the increase in the component 

mass and the leads stiffness might not cancel each other.  The first vibration mode for the PCB 

described above when neglecting both the inertial and stiffness effects of the components was 

approximately 310 Hz. Clearly, neglecting the mass and stiffness effects of the inductor over 

estimated the natural frequency of the PCB. If the mass effect of the components was included 

only in this particular PCB, the natural frequency was108 Hz, while inclusion of the stiffening 

effects also, (using the 3-D global FEA model) increases the frequency to 159 Hz.    

 

Figure 2-9. Local FEA model 

2.2.4 Combined Two and Three-Dimensional Approach   

In this study the simplicity of the global 2-D FEA was combined with a more detailed 

local 3-D FEA. The advantages of this approach are significant cost and time reduction without 

resorting to full 3-D FEA. In this approach, the local 3D FEA model was considered first. Based 

on the knowledge of the effective moment-curvature relationship near the component of interest, 



 

 24 
 

a local effective stiffness was determined. The warpage was evaluated by simply applying a local 

unit load to the local model, as shown in Figure 2-9. This caused the PCB to experience small 

dynamic deflection or warpage. The local deformation was modeled with two radii of curvature. 

This was accomplished through the use of Kirchhoff-plate moment-curvature equations, where 

the local radii of curvature and the local applied bending moments are related as follows:  

                                  
 

Eq.  2-7 

                                     

 

Eq.  2-8 

where, Dij=Eijh3/12 for i, j = 1, 2, 3. Assuming an isotropic Poisson’s ratio for simplicity, the 

local effective stiffness due to the presence of the component can be calculated as follows: 

𝐷!! =
𝑀! − 𝜈𝑀!

𝜅!(1− 𝜈!)
 

Eq.  2-9 

Similarly,  

𝐷!! =
𝑀! − 𝜈𝑀!

  𝜅!(1− 𝜈!)
  

            Eq.  2-10 

The curvature can be calculated from the PWB deflection of the local 3D FEA model, by 

the relationship below: 

𝜅! =
𝑑!𝑦
𝑑𝑥!

(1+ 𝑑
!𝑦
𝑑𝑥!)

!/!
 

 

Eq.  2-11 
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where, the elastic deflected curve was expressed mathematically as y=f(x). The component was 

assumed to remain rigid and all the deformation was assumed to occur in the PWB and the leads.  

This assumption was made in the local model to make the displacement calculation more 

manageable. 

 

Figure 2-10. NAVMAT P9492 ASD/PSD 

The global 2-D FEA model was constructed in the manner discussed above. However, 

the local flexural rigidity matrix, [D], was replaced at the footprint of each component, with the 

ones calculated from the local 3-D FEA model. The first vibration mode was then obtained from 

the 2-D global model, which was 160 Hz. This value was close to that obtained from the full 3-D 

FEA model discussed above. Therefore, one may use a combined two-three-dimensional 
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approach to reach similar results to a full 3-D FEA with the advantages of less computational 

time and cost reduction. 

 

Figure 2-11. Response Analysis 

Although this approach may improve the prediction of the first mode of the CCA, it does 

not take into account the inertial effect of the large components. Therefore, a spectral response 

analysis was conducted using the global 3-D FEA model, for the NAVMAT P9492 

Acceleration/Power Spectral Density (ASD/PSD) profile, Figure 2-10. The profile was clipped at 

350Hz, meaning the analysis was performed for 0-350 Hz range. This was done to study the first 
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two modes of the assembly. A base motion excitation was used at the boundary for each in-plane 

direction (x and y directions) and out-of-plane (z direction) individually. The direction of the 

excitations and responses are shown in Figure 2-11. This analysis was followed by combined 

excitation in all directions: x, y and z. The PSD acceleration responses are given in Figure 2-12. 

It can be seen from Figure 2-13 that the center component experienced the highest excitation in 

the in-plane y direction as well as a slightly lower excitation in the out-of-plane direction at the 

first mode frequency of the component, 70 Hz. Another interesting observation is the component 

is excited in the out-of-plane direction at the first frequency mode of the board. In terms of the 

PWB, the dominant mode is the first mode of the board, as expected. Nonetheless there were 

dynamic effects due to the excitation in the y direction that caused an acceleration peak in the 

PWB at the component natural frequency, 70 Hz. This peak is generated by the component’s 

high inertia, which produces a rocking motion as shown in Figure 2-11.  

Finally, the PSD of the analyzed lead stress due to the combined dynamic loading is 

shown in Figure 2-13. The maximum stresses were located at the leads of the center components, 

as illustrated in Figure 2-14. The stresses shown in this figure were the z-component stresses. 

This stress component represents the bending stresses in the leads, caused by combination of 

inertial loads and the board deflection. Because of the board architecture and the components’ 

inertial effect there might be alteration in the local vibration response. As mentioned above, it is 

a common practice to increase the board stiffness under the footprint of the component, to reduce 

the overall response of the PCB but this may increase local bending moments and stresses in the 

PWB. 
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Figure 2-12. Spectral Response Analysis 

 

Figure 2-13. Stress Due to Combined Loading 
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Figure 2-14. Maximum Stresses at Component Leads  

Clearly, the modified smeared technique may address the overall stiffness of the CCA 

and produce an accurate PWB first mode frequency, however, it doesn’t tackle failure in heavy 

components. Therefore, the best practice is to conduct a M-DoF accelerated vibration test to 

assess the actual damage accumulation rates in the components, leads and PWB; followed by full 

3-D FEA modeling to generate acceleration factors that can be used to extrapolate the test results 

to various life cycle conditions and mission profiles.  In practice, engineers often use one of these 

two approaches (i.e. modeling or testing) to qualify the product. The next section addresses the 

testing methodology.  

2.3 Testing Approach  

When considering PoF of electronics in ground vehicles, there are two types of motion 

that should be considered. One motion is the induced curvature or bending in the PCB as the 

assembly moves in a vibratory manner (global motion). The other motion is the movement of 

individual components with respect to the PCB due to the compliance of the components’ 
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attachment (local motion). To accurately assess how the excitations are transmitted from the 

vehicle to the electronic component level, some researchers have suggested modeling the 

dynamic response of the vehicle subsystems. This approach, however, can be an arduous task 

[6]. The main reason for this lies in the fact that the vehicle chassis and body are complex 

systems. The reaction forces and vibration velocities depend not only on the strength of 

excitation within the chassis but also on the coupling of the chassis and the subsystems. Thus, 

one has no choice but to count on engineering judgment in estimating the boundary conditions 

and system inputs. A more practical approach perhaps is using experimental Frequency 

Response Function (FRF) data to represent the vehicle then combine it with the FEA models of 

the subassembly.  

 

Figure 2-15. Typical RS Shaker Architecture 

Two approaches utilized in this study for M-DoF testing are based on a Repetitive Shock 

(RS) shaker and a M-DoF ED shaker. A typical RS shaker, as depicted in Figure 2-15, utilizes a 

collection of pneumatic actuators to impart impact energy to a specially designed vibration table 

that transmits the resulting multiaxial vibration energy to test specimens mounted on the table. 

The RS shaker is often used in the industry to identify marginal designs and design weaknesses 

that, due to statistical variability, would eventually result in premature field failures when 
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production quantities of the product are exposed to life cycle conditions. This method relies on 

the use of elevated stresses to determine the operating and destruct limits of the design.  

The test is performed in a chamber, which typically has a broad spectrum of vibration 

energy from 10 to 5,000 Hz and runs from 1 to 150 Grms. The RS testing typically does not 

provide quantitative information of acceleration factors for precipitated failure mechanisms, due 

to two major limitations [7]. First, the only input that can be controlled during vibration testing is 

the Grms in the vertical direction (or Z direction). Thus, it is impossible to control the shape of the 

PSD profile. Secondly, since the chamber employs pneumatically driven hammers, it is 

impossible to independently control each DoF. It is difficult to determine the acceleration of 

failure and/or the DoF that instigates the most damage to the components. Therefore, a 

quantitative relationship between performance in the field and performance in the test is difficult 

to establish.  

 

Figure 2-16. Multiaxial six-DoF ED Shaker   
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Due to these limitations of RS shakers in M-DoF vibration testing, this team is 

investigating the possibility of utilizing multiaxial electrodynamic (M-DoF ED) shakers. The 

objective is to study the differences in failure modes and fatigue life for simultaneous multi-axis 

excitation versus single-axis excitation.  

 

Figure 2-17. PSD in M-DoF ED Shaker [7]             

 

Figure 2-18. Coherence in M-DoF ED Shaker [7] 
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The M-DoF ED shaker used in this study consists of 12 electrodynamic actuators; 4 for 

each of the three orthogonal excitation axes. Eight are in-plane and four out of plane (underneath 

the shaker table), as shown in Figure 2-16. The twelve ED shakers are mechanically coupled to 

the table via self-aligning hydrodynamically lubricated bearings. The four actuators in each axis 

can be run in-phase or out-of-phase to produce translation in that axis or rotation about 

transverse axes. This architecture allows the shaker to produce a true M-DoF vibration 

environment. The actuators can exert up to 200lbf force per axis with max translation of ±0.25 

inches and max rotation of ±5o. The excitation limit is up to 30Gs with 0-3000Hz for a 10lb 

payload. Unlike other testing methodologies, multiaxial ED shakers provide a more controlled 

simultaneous loading along different axes of a test specimen, thus, allowing controlled 

exploration of cross-axis interactions that could not be easily explored with single-axis excitation 

or with RS shakers. The input PSDs and coherences can be controlled for all axes, as 

demonstrated by CALCE, Figure 19 [7].  Figure 2-17 shows excellent control of the shape of the 

excitation PSD profile.  CALCE has also shown that the coherence between the axes is excellent 

as shown in Figure 2-18. Therefore, it is possible to identify the most dominant failure 

mechanisms or the DoF that instigates the most damage to the components.  

The M-DoF ED shaker at CALCE will be utilized to excite the test PWB with large 

insertion-mount components, to levels seen on the battlefield, such as the NAVMAT P9492 PSD 

profile. The FRF experimental data will be combined with the FEA model where the 

interconnect fatigue results would be extracted with the aid of FEA.   

This approach may help in establishing a quantitative relationship between performance 

in the battlefield and performance in the test. It may also produce a modified smeared modeling 
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approach that addresses inertial effects of large/heavy components without the need to resort to a 

fully 3-dimensional detailed FEA model.  

2.4 Outcomes   

As discussed above, the fatigue damage in the interconnects can be due to a combination 

of flexural deformations in PCBs and/or due to inertial forces caused by the mass of large/heavy 

components with high stand-off. When conducting electronics PoF, a hybrid two/three-

dimensional FEA approach may provide natural frequency results closer to full 3-D FEA while 

reducing cost and computational time. However, failures predominantly due to inertial loads may 

require full 3-D FEA, testing, or both. 

It is essential to understand the structural characteristics of large/heavy components in 

electronics devices in order to correlate the defects with the dynamic responses. As mentioned 

above, the main challenge in electronics packaging is the prediction of the reliability and lifetime 

of the critical components. Therefore, it is imperative to identify the failure mechanisms of the 

components through experimental analysis. However, the experimental approach has to emulate 

the real world operational conditions, which includes simulating M-DoF dynamic loads. This 

involves experimentally measuring the transient in-plane and out-of-plane displacement 

responses, which can be accomplished with the aid of a multiaxial shaker.  
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Chapter 3  Review of Response and Damage of Linear and 

Nonlinear Systems under Multiaxial Vibration  
Published in Shock and Vibration, 2014 

This chapter contains a comprehensive review of the response and damage of linear and 

nonlinear systems under multiaxial vibrations, and includes the experimental results for the 

durability and nonlinear response of large electronic components exposed to multiaxial random. 

The paper was published in the Journal of Shock and Vibration. Authors are Mr. Ed Habtour, 

Mr. William (Skip) Connon, Mr. Michael F. Pohland, Dr. Samuel C. Stanton, Dr. Mark Paulus, 

and Professor Abhijit Dasgupta. Mr. Ed Habtour (first author) conducted the literature review 

and all the multiaxial vibration experiments and analysis conducted at University of Maryland. 

Skip Connon, Michael Pohland, Dr. Samuel Stanton, and Mark Paulus provided insights about 

the US Department of Defense guidelines, and standards related to multiaxial vibrations, test and 

evaluation and reliability. They also provided reports and publications related to the topic. 

Professor Dasgupta provided technical and academic guidance in this effort. 

Abstract: 

A review of past and recent developments in multiaxial excitation of linear and nonlinear 

structures is presented. The objective is to review some of the basic approaches used in the 

analytical and experimental methods for kinematic and dynamic analysis of flexible mechanical 

systems, and to identify future directions in this research area. In addition, comparison between 

uniaxial and multiaxial excitations and their impact on a structure’s life-cycles is provided. The 

importance of understanding failure mechanisms in complex structures has led to the 

development of a vast range of theoretical, numerical, and experimental techniques to address 
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complex dynamical effects. Therefore, it is imperative to identify the failure mechanisms of 

structures through experimental and virtual failure assessment based on correctly identified 

dynamic loads. For that reason, techniques for mapping the dynamic loads to fatigue were 

provided. Future research areas in structural dynamics due to multiaxial excitation are identified 

as (i) effect of dynamic couplings, (ii) modal interaction, (iii) modal identification and 

experimental methods for flexible structures, and (iv) computational models for large 

deformation in response to multiaxial excitation.  

3.1 Introduction 

The study of fatigue failure was instigated in the 19th century following several 

catastrophic train accidents [1]. This field has evolved drastically to include substantial scientific 

efforts to gain an understanding of failure mechanisms in structures under dynamic loading [2–

10]. The scientific studies of fatigue accelerated in the 1940s to mitigate fatigue failures seen in 

military systems during World War II. These studies began to include multiaxial loading in the 

1960s; such studies increased significantly in the 1990s due to the proliferation of complex 

components in the electronics, military, aerospace and automotive platforms [2]. In spite of the 

significant accomplishments achieved in the twentieth century the introduction of sophisticated 

and high precision devices in the 2000s, such as micro/nano-electromechanical systems 

(MEMS/NEMS) and electronics has exposed the limitation of our knowledge of fatigue due to 

multiaxial vibration. Researchers are still struggling to systematically model high-cycle fatigue 

of linear and nonlinear structures under multi- axial loading; thus, prediction methods for high-

cycle fatigue life remain somewhat immature. Life-cycle prediction under multiaxial dynamic 

loading has been shown to be extremely complex and more intractable than uniaxial models [11]. 

This is primarily because the validation of multiaxial models is extremely difficult since 



 

 38 
 

multiaxial vibration shakers, shown in Figure 3-1.  

The initial assumption at the beginning of this literature review was that there would be 

an abundance of research performed in multiaxial vibration since most mechanical and 

electronics products are universally subject to multi-degrees of freedom (MDoF) dynamic 

loading. However, only limited life-cycle modeling studies focusing on multiaxial vibration have 

been published in the literature. Analytical and experimental investigations of structures exposed 

to multiaxial harmonics and random loading are also scarce. Most studies found in the literature 

are focused on uniaxial loading. Furthermore, military and commercial standards were developed 

to mitigate the testing limitations by proposing sequential uniaxial excitation as a compromise 

and proxy for simultaneous multiaxial excitation. In qualifying products subject to vibration, it is 

common to test sequential uniaxial vibration profiles found in standards such as MIL-STD-

810G. Unfortunately, current standards do not provide vibration profiles for simultaneous 

multiaxial vibration. Single axis electrodynamic and hydraulic shakers have been the prevailing 

tools for performing harmonic and random vibration testing. Unfortunately, uniaxial sequential 

testing may provide overly optimistic fatigue durability results [10, 13].  
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Figure 3-1. Six-DoF electrodynamic shaker at CALCE (with TEAM Inc. permission) 

While several different schemes are widely used to test devices sequentially in the 

various axes, it is understood that they are rough approximations to the ideal of simultaneous 

multiaxial testing and must be in the linear regime. Uniaxial excitations are applied to test 

products even though most field operational data indicate that these products are exposed to 

multiaxial dynamic loading environments. Examples include a spacecraft launch, a military 

ground vehicle over rough terrains, a helicopter blade during instability, and an aircraft wing 

exposed to turbulent flow. Thus, serious compromises must be made in the experimental design 

to perform meaningful tests on a single-axis electrodynamic shaker. For example, to simulate 

multiaxial vibrations, the MIL-STD-810G recommends performing the vibration tests by 

sequentially applying single axis excitation to a test article along three orthogonal axes (X, Y, and 

Z). This can be accomplished by exciting the structure in one direction then repeating the 

procedure twice after rotating the structure 90o each time. Depending on the complexity of the 

structure, this procedure may require designing a different fixture for each rotation.  
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Understanding the failure mechanisms due to complex vibration loading is becoming 

increasingly important for current systems that are progressively complex and electronically rich 

[14]. These failure mechanisms can be exploited through accelerated multiaxial vibration testing, 

which may provide reliability improvements at significantly lower cost [15]. Unfortunately, 

difficulties encountered in this approach have limited its application and acceptance. Some of 

these difficulties can be traced, in part, to a lack of understanding of the propagation of 

multiaxial dynamic loads from the system level to individual components. To appreciate a 

particular failure mechanism by means of testing, it is important to resolve the dynamic loads by 

simulating the actual vibration conditions, which can be accomplished with a multiaxial shaker.  

The objective of this literature review is to provide engineers and researchers with an 

overview of the work that has been done in the area of uniaxial and multiaxial vibration. The 

review provides most of the significant accomplishments in the past century in uniaxial and 

multiaxial vibration and high-cycle fatigue. State-of-the-current technologies and state-of-the-art 

technologies are provided. The review is broken into four major parts: the first section focuses on 

the industrial studies and research in complex dynamic loading and high-cycle fatigue, whereas 

the second part focuses on the theoretical and experimental aspects. The third section discusses 

mapping fatigue to multiaxial dynamic loading. The final portion of this chapter summarizes 

proposed and future efforts in the field of multiaxial vibration.  

3.2 Physics of Failure Approach 

3.2.1 Automotive Applications  

The automotive industry has produced an abundance of publications on the use of 

uniaxial and multiaxial excitation for durability and qualification testing, to meet warranty and 

reliability requirements demanded by consumers. A typical automobile prototype is subjected to 
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a variety of vibration profiles that simulate operational conditions in a laboratory environment. 

According to Dodds and Ward [16] and Awate et al. [17] automotive manufacturers utilize 

accelerated life testing for critical components to meet the life-cycle requirement while reducing 

the testing cost. This can be accomplished by driving on various road surfaces (proving grounds) 

similar to those seen in the field. During testing, acceleration data are collected for the critical 

components. The measured conditions are then simulated on shakers in the test laboratory, where 

the critical components are exposed to similar dynamic conditions, but accelerated. Another 

approach that automotive manufacturers rely on is the four-post hydraulic shaker. This is a 

common testing tool for validating vehicle durability [17]. It is a relatively simple and cost 

effective configuration for performing a complete vehicle vibration evaluation. A typical four-

post hydraulic shaker consists of four vertical servohydraulic actuators for a simple shaker to 

four actuators in the vertical direction and eight actuators in the transverse direction for more 

advanced shakers (total of twelve actuators, three actuators per post) to simulate a multiaxial 

environment A simple four-vertical servohydraulic shaker, which excites a vehicle through its 

tires, is shown in Figure 3-1. Similar to the component accelerated life testing, the wheels’ 

accelerations and forces and the wheel-to-body displacements data obtained from the proving 

ground can be reproduced by such a shaker. The dynamic loading produced by the shaker 

induces stresses on the vehicle and its components. However, using a four- or twelve-hydraulic 

actuator shaker introduces two major limitations [17, 18]. The first limitation is the inability to 

simulate the effect of rolling tires on the overall stiffness and damping of the suspension system 

and vehicle structure. The second issue is that hydraulic shakers have limited frequency range, in 

general 1–80 Hz [16].  
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Figure 3-2. Four-post hydraulic simulator, from Awate et al. [17] 

Because of these limitations, estimating and modeling vibration fatigue for components 

in higher frequency ranges can be an arduous task. High-frequency dynamic loading, especially 

random loading, is a major contributor to fatigue in vehicular components [19]. These high 

frequencies can easily generate other high frequencies caused by rotating speeds, random 

vibration, and noise radiation that can potentially augment the severity of damages. These high- 

frequency loads are transmitted from the chassis to the vehicle body and eventually to the 

components [20]. One of the common multiscale hierarchical approaches for modeling fatigue in 

vehicular components is to model global dynamic responses of the vehicle and progressively 

generate the effect of these responses on the vehicle subsystems and eventually on individual 

components, which can be an expensive and time consuming approach. Another common 

approach is to rely on engineering judgment in assuming realistic boundary conditions and loads 

directly at the subsystem or component level. Subsequently, finite element methods (FEM) are 

used for stress and fatigue assessment, based on these assumptions and on linearizing 

approximations of the structure, which may lead to erroneous results and vehicle recalls. Liu [20] 
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suggested a more practical approach where FEM is coupled with experimental transfer functions. 

Liu detailed a methodology for extracting an experimental frequency response function (FRF) 

that represents the body and then combining it with the FEM models.  

As mentioned above, random vibration in automobiles is one of the major contributors to 

fatigue damage. Typically, automotive fatigue researchers rely on power spectral densities 

(PSDs) to represent stochastic dynamic behaviors [18, 21–24]. A detailed approach to estimating 

fatigue life due to random vibration loading for a truck was provided by Bonte et al. [22]. They 

developed an analytic model where symmetric in-phase road excitations were applied to all 

wheels of a full truck. They also applied asymmetric excitations (180-degree phase difference) to 

the left and right tracks to generate out- of-phase conditions. Biaxial stress power spectral 

densities (PSDs) were calculated from multiple random excitations and equivalent von Mises’ 

stress PSDs were derived. Later, Bonte et al. [23] developed a new analytical approach to 

estimating the equivalent von Mises’ stress PSDs from several random vibration inputs while 

accounting for phase differences. The damage ratio was then calculated based on a uniaxial 

fatigue analysis approach based on the Dirlik method [25]. This approach provided qualitative 

results for design improvements to linear structures that can be implemented as a fast tool to 

evaluate different design concepts and the effect of dynamic loading on fatigue life.  

Unfortunately, these tests and analytical tools are not always successful in producing 

failures observed in the field. The Ford Corporation found that a module could pass the 

qualification test but fail in the field [26]. A test or health monitoring system that could capture 

every failure or intermittent in real time does not exist. In spite of the great wealth of fatigue 

research generated by the automotive industry, the industry continues to maintain the same 

practice of qualifying their products by subjecting them to uniaxial vibration with the option of 
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sequential vibration testing. However, there seems to be consensus in the literature that such an 

approach can be both time consuming and cost ineffective and may result in the acceptance of 

unreliable components.  

3.2.2 Aerospace Applications 

Surprisingly, studies published in the open literature pertaining to uniaxial and multiaxial 

vibration testing for aerospace applications are somewhat limited. This is due to the proprietary 

nature of the aerospace industry. In aeronautic applications, the majority of the dynamic loads 

stem from turbulent flow and during landing and takeoff, which are multiaxial in nature. Aircraft 

wings, for example, are constantly exposed to multiaxial dynamic loading since the wings are 

connected to a flexible support, such as the fuselage. In addition to bending in the wing, the root 

of the wing experiences dynamic rotation because of the inherent flexibility at the point of 

attachment [27]. In astronautic applications, one of the most critical and persistent spacecraft 

design problems is the launch survivability of sensitive and expensive systems. The acceleration 

levels input to a typical spacecraft are over a wide frequency range from about 30 Hz to 2000 Hz 

or higher [15]. Billions of dollars in lost satellites or degraded performances of payloads are 

attributed to damage accumulated from vibration due to launch loads [28].  

In spite of the lack of specificity of multiaxial vibration and fatigue in aerospace 

applications, most of the multiaxial loading investigations performed by aerospace researchers 

have focused on the dynamics of beam-like structures as idealization of the of helicopter blades, 

aircraft wings, or deployable solar panels in satellites [27, 29–32]. Only two major studies, at the 

system level, are reviewed in this section. The first study is an early investigation of the 

dynamics of a blade in a compressor [33]. The other is a more recent study of fatigue assessment 

of a military helicopter flare- dispenser bracket [34]. In the study performed by Whithead [33], 
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experimental the power spectra of vibration response were measured for blades in axial 

compressors exposed to turbulent flow. In deriving the equations of motion, the effect of 

aerodynamic coupling between the blades was assumed to be a minor effect and thus neglected. 

Aykan and Celik [34] compared fatigue damage accumulated under uniaxial and multiaxial 

broadband random excitation. The PSD of the dynamic response was obtained for a military 

helicopter flare-dispenser aluminum bracket during flight. The PSD profile was used as an input 

for uniaxial excitation testing. However, due to lack of multiaxial excitation testing capability, 

the simultaneous three-axial loading was modeled using FEM to calculate the structural 

response. Similar to most studies found in the literature, Aykan and Celik assumed that 

sequential uniaxial loadings were equivalent to multiaxial loadings. Thus, the fatigue analysis 

was performed in frequency domain with the assumption of linear structural behavior. They 

concluded that the cumulative fatigue damage in multiaxial excitations was higher than adding 

the damage for sequential axes even for linear structures. It is important to point out that, for 

military aircraft, the MIL-STD-810G provides single-axis PSD profiles for simulating the 

dynamic inputs in various fixed-wing aircrafts and in rotorcrafts.  

3.2.3 Electronics Applications 

One of the predominant failure modes in electronics is solder joint fatigue due to 

vibrations [35, 36]. Analyses of solder joint stresses associated with uniaxial vibration are widely 

seen in the literature: Lau et al. [37– 39], Liu et al. [40], Yang et al. [41], and Zhou et al. [42]. 

One of the most detailed methodologies for monitoring, recording, and analyzing life-cycle 

vibration loads of electronics was developed by Gu et al. [43]. They developed this methodology 

by exciting circuit card assemblies (CCAs) in the out-of-plane direction using broadband PSD 

profiles. Strain data was collected for different PSD levels from a series of experiments. FEM 
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simulation was then conducted and calibrated based on the experimental responses of the CCAs. 

A strain transfer function was calculated to predict the damage ratio in the solder where the 

structure was assumed to be linear. Unfortunately, literature does not provide any methodology 

that con- siders multiaxial vibration in electronics systems. Zhou et al. [36, 42] estimated 

vibration fatigue of Sn3.0Ag0.5Cu and Sn37Pb solders for CCAs exposed to linear harmonic 

uniaxial excitation. The analysis was conducted in the time domain to quantify the fatigue 

damage caused by harmonic excitation at the first natural frequency. In their study, they 

observed two competing failure sites in the solder interconnect and in the printed wiring board 

(PWB) copper trace just below the failed components. Several researchers studied high-cycle 

fatigue in CCAs exposed uniaxial harmonic and random excitations in the range of 10 Hz to 10 

kHz [36, 42, 44-48]. Based on this extensive literature review, there are two multiaxial vibration 

fatigue studies in electronics components. The first study by Habtour et al. [15] provided a rapid 

analytical technique for analyzing the response of heavy/large components under biaxial random 

vibration excitation. A modified 2-D FEM smeared technique was used to model the CCA, 

which was coupled with a detailed local 3D FEM for heavy components. Based on the 

knowledge of the effective moment-curvature relationship near the component of interest, a local 

effective stiffness was calculated. This was accomplished through the use of Kirchhoff-plate 

moment-curvature equations. The modified smeared technique correctly predicted the overall 

stiffness of the CCA and produced an accurate PWB first mode frequency; however, the model 

does not take into account the inertial effect of the large component on the overall response of 

the CCA. The second study by Ernst et al. [49] is the only experimental study that exposed 

heavy/large electronic components to biaxial planar random excitations. This study is discussed 

in detail later in this chapter in the section titled “Mapping Dynamic Loads to Fatigue.”  
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3.3 Theoretical Approach 

3.3.1 Beam Vibrations  

The beam has many characteristics of typical aeronautical and astronomical structures. 

Indeed, high aspect ratio aircraft wings, spacecraft deployable solar panels, and helicopter rotor 

blades are frequently idealized as beams. Even for low aspect ratio wings, the bending and 

torsional deformation can be approximated by use of beam theory with an adjusted stiffness [27].  

3.3.2 Stochastic Vibrations  

There have been significant scientific contributions in stochastic vibrations since the 

1950’s. During that time, random vibration received significant attention due to its importance in 

fatigue damage in aircraft and naval ships. One of the earlier studies in random vibration of 

beams was performed by Eringen [50], where he derived a closed-form solution for space-time 

correlation functions of a simply supported beam. Eringen employed generalized harmonic 

vibration analysis of damped beams exposed to one-dimensional randomly distributed external 

pressure loads. His approach provided cross-correlation functions for displacements and stresses 

in terms of the external pressure cross-correlation function. Herbert [51] applied Markoff process 

and Fokker-Planck equations to investigate large vibration of a simply supported elastic beam 

exposed to broadband white noise external pressure acting on the entire beam surface. He 

obtained the joint probability density function (PDF) of the modal amplitudes using the Fokker-

Planck equation. An approximate expression for the mean-squared displacement of the beam was 

derived and was then compared to numerical computation, which indicated a reduction in the 

mean-square displacement due to the nonlinearity. Herbert [51] also showed that when the 

deflection was sufficiently large, the first mode still represented a good estimate of the total 

mean-squared deflection; however, the effect of the higher modes must be considered in 
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calculating the response of the first mode. The studies reported by Herbert lacked experimental 

validation. Elishakoff and Livshits [52] utilized Eringen’s and Herbert’s findings to produce 

closed-form solutions for a simply sup- ported Euler-Bernoulli beam under random vibration 

with different damping mechanisms. The excitation was spatially and temporally random 

stationary white noise induced on the entire bottom surface of the beam. Elishakoff stated that 

using a span averages approach instead of the maximum random vibration responses could yield 

an underestimate of the stresses. In a different study, Elishakoff [3] generalized the Eringen 

problem to include the effect of axial loading on a beam exposed to a random transverse load. 

Later, Elishakoff et al. [53] employed a stochastic linearization to investigate large amplitude 

random vibrations of simply supported and clamped beams on an elastic foundation under a 

stochastic loading. He stated that, for different boundary conditions and the loading patterns, the 

stochastic linearization method was superior to the classical stochastic technique, especially in 

nonlinear structures. Ibrahim and Somnay [54] investigated the response of an elastic Euler-

Bernoulli beam with one frictional support at each end, which was exposed to single point 

harmonic and stochastic excitations (randomized only in time). The beam was allowed to slide 

on the two frictional supports. A Monte Carlo simulation was utilized to estimate the beam 

mean-square response for the stochastic excitation case. For the harmonic excitation case, the 

quality factor improved as the excitation frequency increased beyond the resonance frequency. 

The friction in the random excitation case caused a significant reduction of the system mean-

square response.  

3.3.3 Nonlinear Vibrations  

Substantial attention has been devoted to nonlinear dynamics and vibrations of beams 

because of their vital importance in many engineering applications and fatigue problems. One of 
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the most cited studies in nonlinear dynamics is the work of Hodges and Dowell [32], where they 

developed the multiaxial equations of motion for a rotor blade, idealized as a cantilevered beam, 

using Hamilton’s principle. They maintained the cubic nonlinear terms and included the effect of 

warping. Ho et al. [55, 56] examined free and forced nonplanar oscillations of fixed- fixed and 

cantilever inextensional beams, respectively. Ho et al. reduced the nonlinear partial-differential 

equations of motion to two coupled nonlinear ordinary-differential equations using separation of 

variables, where they assumed only one mode in each plane. They also ignored the axial inertial 

and Poisson effects. It was concluded that whirling oscillations might occur for significantly 

large excitation amplitude. Crespo da Silva and Glynn [57, 58] developed a set of partial-

differential equations for flexural-flexural- torsional motions of inextensional beams, which 

contained geometric and inertial nonlinearities. It was found that the geometric nonlinearities 

were critical for low modes and must not be neglected. Later, Da Silva [29] extended the above 

approach to extensional beams where he constructed partial- differential equations for flexural-

flexural-torsional motions. The axial displacement due to warping was considered in the 

derivations. These equations were then applied to study the nonlinear response of an extensional 

cantilever beam to a fundamental resonant excitation [59]. Crespo da Silva concluded that the 

nonlinear terms due to midplane stretching were predominant in extensional beams. Nayfeh and 

Pai [60] and Pai and Nayfeh [61] also investigated nonlinear nonplanar responses of 

inextensional cantilever beams to parametric and resonant excitations using the partial-

differential equations of motion developed by Crespo da Silva and Glynn [58]. The method of 

multiple scales was utilized to construct nonlinear first-order ordinary- differential equations 

governing the modulation of the amplitudes and phases of the interacting modes in each plane. 

They conclude that the geometric nonlinear terms had a stiffening effect, whereas the inertial 



 

 50 
 

terms had a softening effect. Crespo da Silva and Zaretzky [30] and Zaretzky and Crespo da 

Silva [62] continued to study the nonlinear response of an inextensional beam exposed to one of 

the flexural modes resonant excitation. The method of multiple scales was applied to the 

governing partial-differential equations to produce the equations of motion that provide the 

capability for modulating the amplitudes and phases of the beam interacting modes. Arafat et al. 

[63] showed that the partial- differential equations of motion of Crespo da Silva and Glynn [57, 

58] can be derived using Hamilton’s extended principle. Nayfeh and Arafat used the method of 

multiple scales to the Lagrangian terms to derive the modulation equations for amplitudes and 

phases of the two interacting modes [64]. Nayfeh and Arafat [65] and Arafat [66] derived the 

Lagrangian equations of motion for nonlinear flexural- flexural-tensional vibrations of 

symmetric laminate composite and isotropic metallic long slender cantilever beams with nearly 

square cross-sections under uniaxial harmonic excitation of the base. Perturbation procedure was 

then applied to establish approximate solutions for the weakly nonlinear equations of motion. 

The beam was assumed to be inextensible with negligible torsional inertia, leading to two partial-

differential equations governing the motions of the beam. Banerjee [67] provided a methodology 

for deriving exact expressions for the mode shapes of free vibration of composite beams. The 

effect of material coupling between the bending and torsional modes was considered. The 

equations of motion of the bending-torsion were solved analytically for bending and torsion. 

Malatkar and Nayfeh [68, 69] and Malatkar [70] extended Arafat’s equations of motion 

development to their experimental and theoretical study of the response of a flexible long 

cantilever beam exposed to external single axis harmonic plane excitation near the beam third 

mode. They observed that the beam response contained significant contributions from the first 

mode when the beam third mode amplitude and phase were slowly modulated. The energy 
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leakage between these modes depended on how close the modulation frequency was to the 

frequency of the first mode.  

 

Figure 3-3. L-shape structure excitation, Balachandran and Nayfeh [77] 

Anderson et al. [71] experimentally investigated the response of a thin steel cantilever 

beam with an initial curvature to a combination parametric excitation exposed to uniaxial base 

excitation. The first four natural frequencies were 0.65, 5.65, 16.19, and 31.91 Hz. Their study 

suggested that over a range of forcing frequency above 32 Hz, the first and fourth modes were 

initiated by a combination parametric resonance with the first mode dominating the response. 

The experimental results confirm the occurrence of external subcombination resonances in 

structures found in the study by Dugundji and Mukhopadhyay [72]. These resonances can be 

utilized as mechanisms for instigating large amplitude low- frequency modes with high-

frequency excitations.  

The dynamics of nonlinear beams with complicated boundary conditions were also 

investigated. Dowell [31] per- formed an analytical study of large motion of axially sliding 

beams with dry friction damping. In Dowell’s study, an Euler- Bernoulli beam pinned at both 
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ends was considered; however, the beam was fixed at one end against the axial motion and with 

a sliding restraint. Coulomb dry friction damping was assumed. The Galerkin modal solution 

method was applied for a single mode. Dowell concluded that, for large beam response, damping 

was created due to dry friction and equivalent to a linear viscous damper. Tang and Dowell [73] 

performed a numerical and experimental study to support Dowell’s analytical work [31] using a 

pinned-pinned beam under single axial harmonic excitation for slip and no-slip conditions. Their 

model was more reliable for the first mode than higher modes and can be applied to a beam with 

well- separated modes.  

Sophistications were added to beam models to idealize more complex structures such as 

antenna and radar structures and aircraft wings. This can be achieved with cantilever beams or L-

shape beams models with tip mass under a base excitation. To [74] analyzed the dynamics of an 

antenna by deriving the natural frequencies and mode shapes of a cantilever beam with an 

eccentric tip mass under a base excitation. To assumed small deflection and neglected the effect 

of the axial deflection due to the heavy mass at the tip. The model was appropriate only for linear 

structures with uniaxial excitation. Later, Cartmell and Roberts [75] conducted theoretical and 

experimental investigations of the stability of a cantilever beam with tip mass having two 

simultaneous combination parametric bending and torsion resonances. The multiple scales 

method was utilized. It was possible to reach an agreement between theoretical and experimental 

results within limited ranges of excitation frequency, but unattainable in periodic modulation 

regions. Cartmell and Roberts did not consider the effect of inherent nonlinearities in the system. 

In 1990, Balachandran and Nayfeh [76] reported the planar response of a flexible L- shaped 

beam-mass structure with the second natural frequency twice the first natural frequency of the 

structure, as shown in Figure 3-3. They showed that weakly nonlinear analysis can be used to 
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qualitatively and quantitatively predict the response of an internally resonant structural system 

subjected to small primary resonant excitations. Balachandran and Nayfeh developed the 

Lagrangian for weakly nonlinear motions of the L-shape structure where they assumed that the 

structure was undamped. It was possible through their approach to identify the Hopf bifurcations, 

thereby ascertaining the parameters that control the possibility of periodic and chaotic modulated 

motions. Later, Balachandran and Nayfeh [77] presented experimental results on the influence of 

modal interactions on the nonlinear response of the L- shape structure. The major conclusion was 

that the frequency relationships between the different modes of oscillation in the structures led to 

modal interactions during the resonant excitations and nonlinear responses. Jaworski and Dowell 

[78] performed a theoretical and experimental investigation of the free vibration of a cantilevered 

beam with multiple cross-section steps. The natural frequencies were obtained experimentally 

using modal impact testing. The experimental results were then compared against Euler-

Bernoulli beam theory solutions from Rayleigh-Ritz FEM results, where the asymptotic 

approximation was utilized for higher modes to avoid numerical error. A detectable difference in 

the first in-plane bending natural frequency was noted between the beam theory results and those 

of the higher-dimensional FEM models and experimental observation.  

3.3.4 Microsystems Vibrations  

For the past two decades, consumers’ demand for miniaturized smart devices has 

continued to increase at a considerable pace. As a result, microsystems devices have become 

ubiquitous in almost every product that humans interact with on daily bases such as smart 

phones, computers, medical devices, and automobiles. Recent advancements in microsystems 

fabrication have allowed for new possibilities in designing an assortment of microstructures such 

as piezoelectric energy harvesters, sensors, accelerometers, bistable piezoelectric devices, 
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microgyroscopes, and MEMS [79, 80]. Fortunately, these microstructural components’ behavior 

can be formulated based on the Euler-Bernoulli beam or Timoshenko beam theory [81– 85]. 

Researchers have investigated both linear and nonlinear vibration based energy harvesting 

devices, in which these devices were modeled using beam theory [84, 86–90]. Beam theory was 

also extended to nanomechanical cantilevers, such as the efforts performed by Villanueva et al. 

[91]. Some of these microstructures are submerged in fluids with various viscosities to achieve 

optimal performance, such as the work presented by Green and Sader [86]. They developed a 

theoretical model for the torsional response of a linear cantilevered beam excited by an arbitrary 

driving force while submerged in a viscous fluid. Esmaeili et al. [84] developed equations of 

motions for a microgyroscope, which was modeled as a linear cantilever beam with a tip mass 

exposed to excitation at the base. Their governing equations were derived from Hamilton’s 

principle with a 6-DoF base motion where the torsion was neglected. Esmaeili et al. resolved the 

measurement error in oscillating gyroscopes due to cross-axis effects resulting from a 

combination of lateral rotation and longitudinal speeds in the linear regime.  

Ansari et al. [79] developed an exact frequency analysis of a rotating beam with an 

attached tip mass while the beam undergoes coupled torsional-bending vibrations, where the 

base angular velocity was the instigator of the coupling. The extended Hamilton principle was 

utilized to derive the coupled equations of motion and the associated boundary condition. Ansari 

et al. demonstrated that the undamped structure experiencing base rotation has complex 

eigenvalues, which revealed a damping behavior. They also showed analytically that increases in 

the rotational velocity cause an increase in the frequencies. Later, Ansari et al. [81] presented a 

more complex vibration and parametric sensitivity analysis of a vibrating gyroscopic 

microdevice. The device consists of four beams attached to a stiff substrate with a mass at the 
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center, as shown in Figure 3-4. Thus, the device experienced coupled flexural and torsional 

responses. The results obtained from their analysis revealed that an increase in the base rotation 

increased the real and imaginary components of the eigenvalues.  

 

Figure 3-4. Schematic of a rocking-mass gyroscope Ansari et al. [79] 

Kumar et al. [92] studied the effects of structural and inertial nonlinearities on near 

resonant response for a flexible cantilever inextensional beam exposed to base excitation 

combined with simultaneous parametric excitation. They conducted base excitation experiments 

for a cantilevered spring steel beam: 190×19×0.5 mm3, which was oriented at 80o angle to induce 

both direct and parametric excitations. The energy method was utilized to derive the governing 

equations for their structure, where the rotational inertia and the torsion were assumed negligible 

[93]. Kumar et al. claimed that this work provided a baseline understanding of the effect of 

nonlinearities on parametrically excited systems.  

It was apparent during this literature review that resonant energy harvesters were 

analyzed and designed for uniaxial base excitation at a single frequency, whereas many real-
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world applications encompass multiaxial excitations, broadband spectrum, and time varying 

dynamic loading. In terms of multiaxial excitations for microsystems, the only study that can be 

found in the open literature is the work of Esmaeili et al. [84]. Limited studies were found in the 

literature that investigated energy harvesters for time varying broadband random excitations [80, 

85, 94]. Ali et al. [94] employed a linearized stochastic methodology to a cantilever beam 

configuration energy harvester exposed to uniaxial stationary Gaussian broadband base 

excitations. Wickenheiser [80] developed an optimization methodology for designing linear and 

nonlinear vibration energy harvesters for maximizing power production by vibrations due to 

uniaxial broadband random loading environments at low frequencies. Wickenheiser [80] also 

linearized his approach by employing a close form approximation. Stanton et al. [85] 

investigated the nonlinear dynamics and stability of a broadband energy harvester under 

broadband random excitation. The harvester was modeled analytically and numerically as a 

cantilever beam with tip mass under uniaxial broadband base excitation, which were validated 

experimentally. Stanton et al. [85] considered the bifurcation parameter within the harvester as 

either a fixed or an adaptable tuning mechanism for enhanced sensitivity to broadband random 

excitation. Later, Stanton et al. [87] modeled nonlinear damping of uniaxial weakly excited 

piezoelectric actuators, which included nonconservative piezoelectric constitutive relations. In 

their analysis, a piezoelectric actuator was idealized as a cantilever beam with tip mass. Stanton 

et al. showed that the tip mass precipitated nonlinear resonances at lower base excitations. 

Stanton et al. [88] extended the method of harmonic balance to estimate the presence and impact 

of a bistable piezoelectric inertial generator. In their model, they included nonlinear dissipation 

and cubic softening influences in the electroelastic laminates. Westra et al. [89] investigated the 

interactions between a directly and a parametrically excited mode of a clamped- clamped 
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micromechanical beam resonator. They were able to detect the motion of a parametrically 

excited mode that provoked a change in another mode of the same structure. They demonstrated 

that the parametric excitation of one mode instigated a change in the fundamental frequency of 

the other modes.  

3.3.5 Nanosystems Vibration  

Nanomechanical cantilevers recently received increased consideration in biomedical 

sensing and prognostics and diagnostics applications. The biomolecular community deserves the 

majority of the credit for accelerating the research in nanomechanical cantilevers by generating 

applications that ranged from high-throughput biomolecular detection to bioactuation [95]. 

Biomolecular researchers and physicists suggested that the cantilever motion of DNA can be 

manipulated by controlling the entropy change during DNA hybridization [95]. Later scientists 

were able to measure the resonant frequency shift based on a nanomechanical cantilever 

augmented with an actuating layer for the detection of a prostate-specific antigen in fluid setting 

[96]. Dorignac et al. [97] estimated the stochastic dynamic response of biofunctionalized 

structures by utilizing the nanomechanical cantilever beam idealization. Their model assumed 

that the structure was linear and immersed in viscous fluid, where random excitations are 

generated by biomolecular interactions only; the model ignored any inertial loading. Salehi-

Khojin et al. [98] presented a modeling approach to dynamic characterization of nanomechanical 

cantilevers with geometrical discontinuities. The linear analysis provided eigenvectors and 

eigenvalues for the first three modes and compared them with those obtained from the 

experiment and theory for uniform beams. The uniform beam theory was unsuccessful in 

predicting the system’s response, while the discontinuous beam model provided better estimates. 

Seena et al. [99] studied the mechanical and dynamic characteristics of highly sensitive 
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piezoresistive nanomechanical cantilever sensors in detecting explosives in vapor phase, where 

the system was assumed to be linear. There were limited studies that investigated the nonlinear 

dynamic characterization of nanomechanical cantilever beams. Villanueva et al. [91] investigated 

the fidelity of Euler-Bernoulli’s beam theory in estimating the dynamic response of 

nanomechanical cantilever beams in the nonlinear domain, where the beam was exposed to 

single axial harmonic base excitations. They showed that the Euler-Bernoulli’s beam theory 

predictions differ significantly from their measurements for the nonlinearity of the first 

fundamental mode.  

3.4. High-Cycle Fatigue  

The main objective of this section is to provide a general overview of the available 

literature on high-cycle fatigue, with an emphasis on uniaxial and multiaxial harmonic and 

random dynamic loading. A brief review of early fatigue studies is provided; however, the core 

of this review is focused on recent theoretical, experimental, and computational advancements. 

The railway industry deserves the credit for instigating serious scientific studies for 

understanding, analyzing, classifying, and mitigating cyclic fatigue in the late 1800’s. One of 

these early studies was by Wohler, who is considered one of the earliest pioneers of fatigue, for 

investigating fatigue failures in railway carriage axles [2]. Industrial investment in fatigue studies 

in the early 20th century led to the popular exponential relationships between stress amplitude 

and loading cycles by Dowling and the secondary effect on life due to mean stresses by Suresh 

[2, 100]. In many of these efforts, the focus was on stresses due to a constant amplitude 

sinusoidal loading, which led to the sinusoidal fatigue equations found in many fatigue textbooks 

[2, 101]. Significant considerations were dedicated to examining the mean stress effects for 

fatigue in welds due to harmonic and random loading [102, 103].  
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3.4.1 Uniaxial Loading  

There are many circumstances in fatigue problems where it is unrealistic to always 

consider a constant amplitude sinusoidal loading. Examples of such cases are components in an 

off-road vehicle, electronic components in a rotorcraft, and an aircraft wing exposed to turbulent 

flow. Methods and standards were developed to determine the time to failure (TTF) with 

constant and variable loading amplitudes. The most well known is the “linear cumulative damage 

rule” for variable amplitude loading, which was attributed to Palmgren [104] and later 

popularized by Miner [105]. The Palmgren-Miner rule reasoned that fatigue damage is 

cumulative; thus, each stress cycle contributed to damage as a function of the number of cycles 

to failure for that cycle amplitude. Their linear cumulative damage approach neglected any 

sequence effects that may change fatigue life, that is, low amplitude stress followed by high 

amplitude versus the opposite sequence. Later, Miles [106] utilized the Palmgren-Miner 

cumulative damage rule for analyzing narrowband random vibration fatigue. The linear 

summation of damage was extended to an integral of stress peaks scaled by the PDF of the peaks 

for a narrowband random vibration fatigue problem. The resulting damage equation was a 

function of the sinusoidal stress versus the number of fatigue cycles (known as S- N curve), the 

material fatigue constants, and the standard deviation of stress. Crandall [107] and Lin [108] 

produced influential studies on nonlinear response PDFs and their effect on fatigue. Crandall 

developed equations for the rates of zero crossings for nonlinear non-Gaussian systems for 

structures with nonlinear restoring forces. The analytical relationship that Lin developed for 

nonlinear stress PDFs was based on a quadratic displacement to stress equation, where the 

displacement PDF was assumed to be nonlinear.  

The narrowband random vibration loading case, deservingly, received significant 
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attention in the 1960’s. Bendat [109] proposed the first significant step towards a method of 

determining fatigue life from the PSDs. For a narrowband time history loading, Bendat assumed 

that corresponding depressions of comparable size would follow positive peaks in the time 

history. Using this method, it was shown that the PDF of peaks for a narrowband signal tended 

towards a Rayleigh distribution. Bendat used a series of equations derived by Rice [110] to 

estimate the expected number of peaks using moments of area under the PSD. The narrowband 

solution was extremely conservative when broadband time history profiles were used. This was 

due to the assumption that peaks were matched with corresponding troughs of similar magnitude. 

The narrowband random vibration loading case was extended to arbitrary stress cycles using 

loading cycle versus amplitude counting methods. The narrowband time-domain approach 

emerged as the standard method in estimating the fatigue life of structures, widely known as the 

“rainflow” cycle counting method and attributed to Matsuishi and Endo [2].  

To overcome the conservatism in the narrowband method of Bendat, Dirlik [25] proposed 

an important and extensive fatigue model that corrected for Bendat’s method. Dirlik’s model was 

based on a closed-form expression for the PDF of rainflow ranges using a Monte Carlo 

technique. For a given set of material properties, life estimates may be made for any number of 

different component geometries of load histories. Bishop [111] and Bishop and Sherratt [112] 

enhanced the rainflow cycle counting method by adding more mathematical rigor to improve its 

robustness and accuracy. The time-domain based theoretical approach formulated by Bishop was 

computationally intensive and showed little improvement on the accuracy over Dirlik’s empirical 

model. Currently, the Dirlik’s approach is widely applied to fatigue problems and fatigue codes 

such as HBM nCode and MSC-NASTRAN [21–23, 113].  

Stochastic FEM provided high accuracy for antisymmetric laminates with different 
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boundary conditions under transverse random loading. Sweitzer [9] developed statistical 

methods for determining TTF for nonlinear clamped steel beam subjected to random loading. 

Broadband uniaxial base acceleration was applied with a frequency range from 20 to 500Hz for 

0.5, 1, 2, 4, and 8 Grms. The total strain was predicted by summing the strains from the linear, 

square, and cubic displacements. Sweitzer observed that the displacement PDF became skewed, 

that is, kurtosis less than 3.0, while the acceleration PDF was skewed in an opposite direction, 

but the velocity remained Gaussian. Sweitzer was unable to explain kurtosis behavior of the 

displacement, velocity, and acceleration as the system became more nonlinear.  

Most recent work in high-cycle fatigue with application to random loads was the 

development of an analytic model by Paulus et al. [11] to predict the remaining life of a 

cantilever beam with notches experiencing random vibration excitation. The model utilized 

Paris’ law to estimate fatigue life, where only the input power spectral density and damping 

factor were required. The model applied linear elastic fracture mechanics for crack propagation 

and included the shift in frequency that resulted from the crack growth. Habtour et al. [114] 

developed an FEM model to predict the stress intensity and natural frequency during damage 

accumulation. The analytic model developed by Paulus et al. was coupled with the FEM to 

predict TTF for complex geometries for which stress intensity values were not available.  

 

3.4.2 Multiaxial Loading 

The autoregressive moving average (ARMA) model was applied in fatigue problems by 

scientists. Leser et al. [4] discussed the use of ARMA for stationary variations and Fourier series 

model for nonstationary variations. They obtained strain history of an automotive front 

suspension component driven through proving ground maneuvers. Critical fatigue damage plane 
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was selected, followed by rainflow cycle counting of the strain data. The critical plane approach 

involves obtaining the maximum shear strain and the plane that acts on it, then using the 

maximum normal stress acting on the plane to calculate an effective stress [2]. A multiaxial 

fatigue model, valid for proportional loading, was employed, and two fatigue failure modes due 

to normal strain and shear strain were considered. Reconstructions using the ARMA model 

introduced a number of large cycles that are not present in the original loading; all 

reconstructions were tending to be biased toward shorter lives. Lu [115] applied the ARMA 

model to higher-order nonlinear beams and composite plates subjected to stochastic loading. A 

fourth-order nonlinear beam equation was examined to study the effect of rotary inertia and shear 

deformation on the root mean square (RMS) values of displacement response. A linearly coupled 

equivalent linearization method was applied to the simulated data of nonlinear beams. 

Reasonable estimations of both the nonlinear frequencies and the power spectral densities were 

shown. However, Lu stated that accurate result for MDoF systems and other linearization 

techniques need to be explored for the higher-order beams.  

The usability of the energy parameter, being the sum of the elastic and plastic strain 

energies in the critical plane, for structures experiencing cyclical loading received significant 

attention from fatigue experts. Lagoda et al. [116] experimentally evaluated its use by exposing 

steel specimens to biaxial nonproportional random tension and compression loads. They 

developed an algorithm to predict fatigue life under a biaxial stress state in high-cycle regimes 

using the energy parameter. Lagoda et al. concluded that normal strain energy density in the 

critical plane seemed to be an efficient parameter for fatigue life prediction under random and 

cyclic nonproportional loading conditions in high-cycle fatigue. Pitoiset et al. [6] studied 

multiaxial fatigue of structures exposed to random vibration. They developed frequency- domain 
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methods for estimating the high-cycle fatigue life of metallic structures [117]. The cycle 

counting concept was extended to multiaxial random processes. The multiaxial rainflow method 

consisted of counting rainflow cycles on all possible linear combinations of the random vector 

components. Pitoiset and Preumont frequency domain methods were computationally more 

efficient than the time-domain approach and with reasonable correlation with the time- domain 

method in terms of localizing the critical areas in the structure. They also proposed the frequency 

domain implementation of Crossland’s failure criterion, which also was found in very good 

agreement and much faster than its time-domain counterpart. Pitoiset et al. [118] showed that a 

mean value other than zero determined the presence of a very low frequency component that did 

not exist in the real process. This incoherence was mitigated by the construction of a process 

having the same RMS of von Mises stress, but with correct frequency content. This approach did 

not take into account phase differences between the multiaxial stress components. Carpinteri et 

al. [119, 120] investigated theoretical and experimental application of the weight function 

method to estimate the principal stress directions under multiaxial random loading. The stress 

tensor and its eigenvectors (principle direction cosines) changed at each time increment. The 

Euler angles were calculated from the matrix of the eigenvectors for a generic time instant and 

then the angles were averaged by employing suitable weight functions. The experimental data 

were successfully correlated with the theoretical model using the maximum principal stress 

direction estimated by the weight function method. Liu and Mahadevan [5] developed a model 

where a multiaxial high-cycle fatigue principle based on the critical plane was correlated with the 

fatigue crack plane. They introduced an adjustment factor to consider the effect of the mean 

stress, which can be calibrated by utilizing experimental fatigue results. Liu and Mahadevan 

[121] extended the model to predict the fatigue life of a composite beam under off-axis loading, 
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which caused proportional multiaxial stress within the material. Later, Liu [122] extended the 

same model for composite beams under uniaxial and biaxial fatigue loading at a frequency of 10 

Hz. The results of the proposed fatigue model were validated experimentally for low frequency 

loading.  

In high-cycle fatigue, probabilistic methodology is common in assessing the reliability of 

structures subject to multiaxial random loading. Lambert et al. [123] developed a probabilistic 

approach for structures exposed to Gaussian random loading with a nonzero mean. This 

approach was used to estimate the octahedral shear stress distribution for stationary random 

stresses. A Monte Carlo simulation was then employed to characterize the octahedral shear stress 

distribution. According to the authors, the experimental results were not available; thus, errors 

may have occurred due to the quality of the random process generator and the limited frequency 

range of the PSD input load, which was approximately 5–100Hz. Braccesi et al. [124] reduced 

multiaxial stress analysis to an equivalent uniaxial process that defined random process in the 

time and frequency domains. This analytical approach was based on the energy contents of the 

shear stress acting on the planes belonging to the octahedral cone [125]. Allegri and Zhang [126] 

applied the inverse power laws to assess the fatigue damage of structures exposed to accelerated 

broadband Gaussian random vibration. A scaling law was used to relate the test time in a 

laboratory to the actual operational life. Allegri and Zhang stated that fatigue accumulation in a 

random multiaxial loading environment was more rapid than for constant amplitude loading; that 

is, the S-N curve slope was larger in the case of random loading. This implied that the correct 

value of the exponent, which appears in the inverse power scaling law, was estimated by random 

fatigue tests on representative material samples. Zhou et al. have also pointed the same 

observations for uniaxial random vibration [42].  
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One of the most common approaches found in the literature was the application of 

stochastic analysis that combined structural failure models with linear FEM to develop a 

methodology for the reliability assessment [127, 128]. Segalman et al. [7] provided an approach 

for calculating the RMS von Mises stresses for structures loaded randomly. Segalman et al. 

estimated the RMS von Mises stresses from stress component transfer functions that were 

extracted from the FEM. The RMS stresses were calculated directly from the linear stress and 

displacement modes and compared to the traditional Miles’ approach, which uses a spectrum of 

root mean square acceleration response to a random PSD applied to a single degree-of-freedom 

system [101]. Lei and Qiu [127] developed dynamic stochastic FEM to study the dynamic 

response of frame structures with stochastic parameters to dynamic excitation. The dynamic 

response of random structure was analyzed using a perturbation approach and modal 

superposition. They provided linear numerical examples to indicate that using dynamic 

stochastic FEM reduced the computation time while improving accuracy of the solution for the 

dynamic analysis of structures with stochastic parameters of dynamic excitation. However, the 

randomization was applied to the structural parameters, that is, mass and stiffness, but not for the 

excitation. Similarly, Lagoda et al. [129] developed an algorithm for estimation of fatigue life 

under multiaxial random vibration using spectral methods based on fatigue experiments 

performed on steel samples. The method retained the accuracy of the linear FEM model and 

modal analysis. Tibbits [130] extended the approached developed by Segalman et al. to calculate 

the percentiles of von Mises stress in linear structures subjected to random loads having nonzero 

mean values. He constructed von Mises stress statistics as a series of noncentral Chi-square 

distributions. The desired precision of the model was based on the number of terms in the series. 

Guechichi et al. [131] proposed a method for predicting the fatigue life for different materials 
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subjected to constant amplitude multiaxial proportional loading that covered high- cyclic fatigue. 

FEM was developed to evaluate the fatigue life and to localize the critical region. Two cases 

were solved: the first case was a rectangular plate with low thickness under single axial and 

alternating bending loads; the second case was a circular cross-section rod subjected to uniaxial 

load and alternating torsion moment. The Crossland criterion and FEM analysis were used to 

compute the maximum equivalent stress. McNeill [128] provided statistical failure prediction of 

orthotropic composite plates under random loading. Stochastic FEM solutions of damaging load 

of the structures were obtained with layerwise plate theory. First- order perturbation technique 

was utilized to estimate the mean and variance of failure.  

 

Figure 3-5. High accelerated life testing (HALT) chamber [15] 

3.5 Experimental MDoF Vibration Studies  

The typical product development approach is an iterative cycle known as design-

prototype-test-fix [45]. Unfortunately, this process is time consuming and requires expensive 

physical prototyping and testing. The lack of reliability prediction capability of a product leads to 

deficiency in its development. To overcome this impediment, the design-prototype- test-fix 

approach was greatly modified in the electronics industries, with the introduction of high-

accelerated life testing (HALT) methodology during the prototyping and qualification stages. 

This can be accomplished by utilizing a HALT shaker table/chamber, shown in Figure 3-5. A 
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typical HALT chamber has a broad frequency spectrum between 10 and 10kHz and runs from 1 

to 150 Grms. The intent of HALT is to accelerate the failures in electronic devices by applying a 

higher than normal stress to failure while assessing the design robustness through rigorous root 

cause failure analyses. The basic idea of HALT is to produce repetitive shocks to the shaker table 

using multiple pneumatic actuators at different locations of the table, thus producing multiaxial 

energy. Thus, the device under test is exposed to uncontrolled broadband multiaxial random 

excitation, with the exception of the RMS acceleration value. Furthermore, the HALT chambers 

are capable of exposing the test article to thermal stresses, and in some cases to humidity while it 

is under vibration. Designers and quality engineers have utilized HALT testing to expose design 

weaknesses that would eventually emerge as field failures [14]. Unfortunately, HALT provides 

only a qualitative rather than a quantitative understanding of the failure modes and mechanisms 

due to two limitations [14]. First, the only acceleration input to the actuators that can be 

controlled is an acceleration RMS, Grms; thus, the only excitation that can be achieved is a quasi-

random vibration. The second limitation is the fact that HALT uses pneumatic actuators; 

consequently, it is impossible to control the energy input to each axis individually. Due to these 

limitations, it is nearly impossible to ascertain the most dominant failure mode or the axial load 

that initiates the damage. It is also impossible to precisely correlate structural failure during 

HALT to life-cycle seen in the field.  
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Figure 3-6. Dimensions of samples tested by Whiteman and Burman [10] 

Due to the limitations of single axis electrodynamic shakers, hydraulic actuators, and 

HALT shakers, researchers are currently investigating the utility of multiaxial electro- dynamic 

shakers to understand the response of structures exposed to multiaxial vibrations and 

subsequently the failures due to these complex dynamics. However, studies evaluating the merits 

of multiaxial vibration testing using multiaxial electrodynamic shakers are very limited. This 

deficit is attributed to high cost constraints associated with these shakers. Only a few 

investigators such as Whiteman and Burman [10, 13], French et al. [12], Gregory et al. [132], 

and Ernst et al. [49] have pointed out the shortcomings of the sequential single axis vibration 

method. They have also reported evidence of differences in failure modes and fatigue life for 

multiaxial loadings versus single-axis inputs by utilizing multiaxial electrodynamic shakers. 

These studies are discussed in detail below.  
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Figure 3-7. Dimensions of samples tested by French et al. and test setup [12] 

Some of the limited work performed using multiaxial shakers was by Fullekrug [133], 

who characterized the modal response in the frequency and time domains of a structure under 

base excitation using a hydraulic shaker that had limited frequency range from 0 to 120 Hz. 

Fullekrug developed kinematic relationships between loads at the base and structural responses 

due to these loads. The primary conclusion was that the frequency domain was best suited for a 

general and reliable modal identification of linear systems, whereas the time-domain method was 

more suited for analyzing transient vibration. Whiteman and Burman [13] investigated the 

differences between fatigue mechanisms and the effects of uniaxial versus triaxial testing. The 

samples used in this study were 250mm long aluminum beams with a 9.5 mm diameter and a 

0.235 cm radius notch stress concentrator around the entire circumference of each specimen as 

shown in Figure 3-6. Whiteman and Burman [10] performed a uniaxial random excitation 

experiment in the transverse direction and then repeated the same test for sequential excitation in 

the axial direction followed by the transverse direction. The random vibration acceleration inputs 

were 3.0, 3.5, 4.0, and 4.5 Grms with a frequency range from 15 to 85Hz. The tests were then 

repeated using simultaneous triaxial excitation. It was found that the excitation in the axial 



 

 70 
 

direction did not weaken the specimens; on the contrary, it increased the samples’ fatigue life. 

Whiteman and Burman [10] believed that work or strain hardening took place during the axial 

excitation portion of the second set of tests, which increased the fatigue failure resistance in the 

transverse direction. In the triaxial vibration experiments, the stresses that eventually caused 

fatigue failure were predominantly in the axial direction. However, simultaneous triaxial 

excitation accelerated the crack initiation more rapidly. By comparison, the TTF for the single 

axis experiments was appreciably longer than the triaxial experiments for the same input energy 

level. French et al. [12] performed durability experiments on notched beam specimens using both 

sequential uniaxial and simultaneous biaxial testing on a TEAM tensor triaxial shaker, which 

was electrodynamically driven. The specimens were 19×0.25×0.25 in3 aluminum beams with 

notches located at two adjoining sides of the beam, as shown in Figure 3-7. One notch was 

normal to a transverse excitation (x-direction) while the other notch was normal to the other 

transverse excitation (y-direction). The notches were introduced to act as stress concentrators 

with depth of 0.08 in. The notch normal to y-direction was 0.5in above the notch normal to the x-

direction, as shown in Figure 3-7. The base excitation signal was a sine chirp from 10 to 35Hz 

over 30s. The peak-to-peak acceleration amplitude was held constant at 4G. The sequential 

uniaxial and simultaneous biaxial experiments produced different TTF, different failure 

distributions, and different failure modes. French et al. concluded that sequential uniaxial testing 

generally takes longer time to conduct than simultaneous multiaxial testing. Furthermore, the 

results from the sequential uniaxial testing are prone to produce questionable results. 

Unfortunately, the bandwidth in this study was limited and inapplicable to realistic structures.  
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Figure 3-8. Simple structure under multiaxial loads [132] 

At Sandia National Laboratories, Gregory et al. [132] investigated the prospect of using a 

six-DoF multiaxial electrodynamic shaker, developed by TEAM Inc., to illustrate the importance 

of multiaxial excitations in performing realistic tests. Dynamic characterization experiments 

were performed in uniaxial and multiaxial modes to compare the responses of a structure under 

the different loadings with bandwidth of 10–2000Hz. The specimen used for this experiment was 

a short rectangular aluminum beam with a lumped mass mounted at the tip, as shown in Figure 

3-8. Acceleration PSD input level of 0.0032G2/Hz was chosen to yield an overall level of 2.5Grms 

for the X, Y, and Z translations. A spectral FEM model of the structure was constructed to 

investigate the differences in the calculated von Mises stresses. According to Gregory et al., the 

control system was configured for a full six-DoF random vibration input from 20 to 2000Hz with 

zero coherence between the inputs. The experiment was then configured for uniaxial translation 

for each DoF. The PSD levels were selected to be the same as for the previous six-DoF tests to 

allow comparison of responses for uniaxial versus multiaxial excitations. The experimental 

results showed significant differences in the acceleration response of the mass as well as the 
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strain measured in the beam. The modal participations were different for the multiaxial 

experiment, and the resulting instantaneous stresses and accelerations states were different, not 

only in magnitude, but also in location and direction. This indicated that the potential failure 

modes would be different.  

 

Figure 3-9. Approach for mapping dynamic loads to fatigue [136] 

3.6 Mapping Dynamic Loads to Fatigue  

Some fatigue specialists maintain that the stress levels caused by vibration are usually too 

low to contribute to fatigue damage and that fatigue cracks start because of higher stresses 

present in the loading history [2]. It is also commonly known that the substantial number of 

stress cycles produced by high-frequency excitations can considerably contribute to fatigue 

damage and may cause failure without reaching high load levels [5, 134]. Special analysis is 
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often required in these situations since the vibration data is not in a form that can be used directly 

in a common fatigue damage model such as the Palmgren-Miner rule. A common approach in 

mapping stationary random dynamic loads to fatigue is through performing a summation of all 

modal spectral densities and determining the response standard deviations in a broadband 

frequency range, covering all resonance frequencies of the structure within broadband frequency 

range. The modal cross-spectral densities are typically neglected [135]. Nonetheless, Dahlberg 

states that lightly damped structures with well-separated fundamental frequencies are not a 

sufficient reason to neglect modal cross-spectral densities even if the random excitation of the 

structure is broadband where several modes of the structure are excited [135].  

To accurately estimate multiaxial vibration durability and damage accumulation, the 

dynamics response model of the structure must be coupled with experimental data, as illustrated 

in Figure 3-9 [136]. This approach requires an iterative and arduous development. The reason for 

this is that the reaction forces and vibration velocities in complex structures depend not only on 

the strength of excitation, but also on the coupling between structures and their components, as 

shown in Figure 3-9. The computational and experimental coupling is necessary since the FEM 

cannot model structures adequately up to mid frequency range due to the higher modal density. 

The experimental tasks provide FRF dynamic characterization of the structure and its 

components as well as time history data. A more practical approach is to utilize the experimental 

FRF data to represent the structure and then combine it with the FEM models as shown in Figure 

3-9. However, this approach is not applicable if the structure is exposed to high amplitude 

excitation that could generate nonlinear behavior. Thus, the time history data must be combined 

with the FEM models. This approach is intended to yield accurate results but is time consuming 

to set up and is computationally expensive.  
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Figure 3-10. CCA with six large inductors, dimensions are in inches 

Currently, the Center for Advanced Life Cycle Engineering (CALCE) at the University 

of Maryland and the US Army Research Laboratory (ARL) are investigating the utility of 

multiaxial electrodynamic shakers. The objective is to study the differences in failure modes and 

fatigue life for multiaxial versus single-axial excitations by utilizing multiaxial electrodynamic 

shakers. The multiaxial electrodynamic shaker used for this study was developed by TEAM Inc. 

It consists of eight plane actuators and four out-of- plane actuators underneath the shaker table, 

as shown in Figure 3-10. The twelve electrodynamic shakers are mechanically coupled to the 

table. This architecture allows the shaker to produce a true six-DoF vibration environment. Each 

axis has four shakers with 200lbf rotation per axis. The excitation limit is up to 30Gs with 0–

3000Hz. The objective is to establish a quantitative and qualitative relationship between complex 

random multiaxial dynamic loading and the failure mechanisms. In this study, CALCE 

performed two sets of three random excitation experiments on CCAs. The first set was for low 

amplitude broadband stationary random excitations, which consisted of the following single-axis 

in- plane, single-axis out-of-plane and combined in-plane and out-of-plane excitations. Each 

CCA was clamped along the two short edges while it was free along the two long edges, as 
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shown in Figure 3-10. The CCA contained six large heavy inductors with high center of mass 

and with high standoff, as shown in Figure 3-10. Each inductor was attached to the CCA via two 

leads to instigate bending motion in the in-plane direction and a gyroscopic motion. In the first 

set of tests, the excitation was a uniform broadband random stationary profile at low PSD 

acceleration input of 0.0025 g2 /Hz and 0.78Grms.  

 

Figure 3-11. Component 2 acceleration response in the x-direction 0.78Grms 

The acceleration responses of the middle component for the three different excitations 

mentioned above are shown in Figure 3-11 and compared to the superposition technique. The 

same sets of tests were repeated for higher PSD acceleration input of 0.04g2 /Hz and 3.14Grms. 

The acceleration responses in the in-plane direction (X) of the middle component for the three 

different excitations mentioned above are shown in Figure 3-11 and Figure 3-12 and compared to 
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the superposition technique. Figure 3-11 and Figure 3-12 show the component response due to 

multiaxial excitations is equivalent to the linear superposition of corresponding uniaxial 

responses. Furthermore, as the acceleration input increases, the deviation between the actual 

component response due to multiaxial vibration and the linear superposition of uniaxial 

responses increases as well. This deviation may be justified based on three reasons. First, the 

modal participation and nonlinear interactions between components and PWB could be the major 

contributors to this deviation. Second, the geometry of each component may create gyroscopic 

forces, which are proportional to the velocities consistent with viscous damping forces; however, 

they are conservative forces [137]. Finally, the material non- linearity of the PWB and the solder 

joints may augment the drastic difference in TTF between multiaxial excitations and sequential 

uniaxial superposition, as shown in Figure 3-13. Further studies are needed to quantify these 

contributions. The fatigue damage in the components’ interconnects site, shown in Figure 3-14, 

is due to a combination of flexural deformations in PCBs and inertial forces (translation and 

gyroscopic motions). The inertial forces are generated by the mass of large/heavy components 

with high standoff. Thus, simultaneous multiaxial vibration may have the potential to generate 

higher stresses through nonlinear cross-axis interactions at the component level.  

In this study, the change of the natural frequencies of a middle component (L5) and an 

edge component (L1) were monitored during the experiments mentioned above. Ernst et al. [49] 

showed that the frequencies shifted linearly across all components under single axial and biaxial 

vibration conditions, as shown in Figure 3-15. Ernst et al. assumed that this shift corresponded to 

fatigue crack growth in the component lead shown in Figure 3-14. Their results also revealed that 

natural frequency was lower when the CCA was exposed to multiaxial excitation, but they 

indicated that further investigation is needed to verify this phenomenon. Ernst et al. proposed 
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using this approach as a possible method for failure prognostics and prediction for the 

components’ remaining life. This approach has been observed in current studies exploring 

methods for improving accelerated fatigue testing by simultaneously monitoring the modal 

parameters of critical components [138–142].  

 

Figure 3-12. Component 2 acceleration response in the x-direction at 3.14Grms 
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Figure 3-13. Component 2 damage accumulation rate at 3.14Grms 

 

Figure 3-14. Component L2 failure due to in-plane and out-of-plane excitations at 3.14 Grms 
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Figure 3-15. Change in the natural frequency as a function of damage accumulation [49] 

3.7 Future Directions 

Based on the literature review and interaction with government agencies, industries, and 

academia, the authors recognized three major thrust areas for continued research and 

deployment: modeling and simulation, experimental and testing, and standards and procedures 

updating. These thrust areas are summarized in Figure 3-16. As mentioned above, several closed-

form solutions and computational models were developed to approximate the response and 

fatigue life of linear and nonlinear structures exposed to complex vibration loading. Most of 

these models are based on unique approximations and can only be applied to specific loading and 

boundary conditions. Some of these loading conditions were not possible to duplicate in a 

laboratory environment prior to the introduction of the multiaxial electrodynamic shaker capable 

of producing rotational degrees of freedoms. This capability is opening a plethora of 
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opportunities to validate and update existing multibodies and flexible-bodies dynamic models 

and produce new realistic models to adequately approximate the response of structures and 

subsequently their remaining life. Analysts may be able to move beyond the laborious approach 

of conducting explicit FEM analysis calibrated with suspect transfer functions obtained from 

sequential testing, then following it by another explicit analysis based on time history data and 

comparing the strain results to those from testing. There might be a possibility for developing 

spectral FEM models to avoid using the cumbersome and expensive explicit FEM.  

 

Figure 3-16. Research areas and potential gaps 

As shown above, CALCE/ARL has shown that simultaneous multiaxial vibration may 

have the potential to generate higher stresses through nonlinear cross-axis interactions at the 

component level. This was possible because of the capabilities that the MDoF electrodynamic 

shaker was able to provide. However, generating the loads for different complex operational 
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conditions and tracking the structural response of critical components require significant signal 

processing, data reduction, and real-time computation of the inputs/outputs. Stochastic models 

may potentially be updated as a result of the coherent/incoherent multiaxial random vibration 

excitation that can be achieved with the MDoF electrodynamic technology. Accelerated test 

factors are currently incorporated in the MIL-STF-810G combined with exaggeration factors to 

provide conservatism in the uniaxial test schedules. Multiaxial vibration studies may provide 

insights into whether these factors are reasonable or not and provide new guidelines for 

accelerated life testing using MDoF technologies. Furthermore, the design for prognostic and 

diagnostics, structural health management and condition-based maintenance may be enhanced 

and ruggedized through real-world multiaxial dynamics laboratory simulations.  

3.8 Conclusion  

It can be concluded from this literature review that it is essential to understand the 

structural characteristics of devices in order to correlate the defects with the dynamic responses. 

As mentioned above, the main challenge in structural systems is the prediction of the reliability 

and lifetime of the critical components. Therefore, it is imperative to identify the failure 

mechanisms of the components through adequate computational and experimental analyses. 

How- ever, the experimental and computational approaches must emulate the real-world 

operational conditions, which include simulating MDoF dynamic loads. This involves estimating 

and measuring the transient multiaxial displacements, which can be accomplished with the aid of 

a multiaxial shaker.  

Establishing the relationship between different flexible structures formulations is an 

important issue since there is a need to clearly define the assumptions and approximations 

underlying each formulation. This may allow for establishing guidelines and criteria that define 
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the limitations of each approach used in flexible structures dynamics. This task can now be 

accomplished by utilizing multiaxial vibration capability, which is making it possible to perform 

the CALCE/ARL joint research efforts to study large deformation of flexible systems exposed to 

multiaxial excitations.  
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Chapter 4  Fatigue Damage Precursor Detection in  

Structures Vibrating under Nonlinear Harmonic Transverse Base 

Excitation 

Under Review: Structural Control Health Monitoring, 2015 

Chapter 4 is an article currently under review in the Journal of Structural Control and Health 

Monitoring (SCHM). The paper contains a nonlinear vibration-based methodology for exploiting the 

sensitivity of the nonlinearities in the equation of motion to damage precursor in isotropic 

cantilever beam, prior to fatigue crack initiation, based on measurement of the structure 

nonlinear response to transverse base excitation. The experimental results are utilized to update the 

nonlinear stiffness in the equation of motion. Authors are Mr. Ed Habtour, Dr. Daniel Cole, Dr. 

Jarret Riddick, Dr. Volker Weiss, Dr. Samuel C. Stanton, Dr. Mark Robeson, and Professor 

Abhijit Dasgupta. Mr. Ed Habtour (first author) conducted the vibration experiments and 

developed the analytical model.  He also conducted the SEM experiments. Dr. Daniel Cole 

conducted the nanoindentation measurements. Mr. Roman Sridharan provided assistance with the 

control software for the multiaxial vibration shaker. Dr. Samuel Stanton at the Army Research Office 

checked the derivations. Prospective and insights about Army’s applications, environmental 

standards, reliability guidelines, and testing methodologies were provided by Dr. Jarret Riddick, Dr. 

Mark Robeson and Dr. Volker Weiss. Professor Dasgupta provided technical and academic 

guidance in this effort. 

Abstract: 

A nonlinear vibration methodology is developed for detecting and quantifying early 

precursors to cyclic fatigue damage, prior to fatigue crack initiation, in isotropic metal structures, 
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prior to fatigue crack initiation, based on measurement of the structure nonlinear response to 

harmonic base excitation. As an example, a damage precursor feature was extracted for 

cantilever beams by quantifying the reduction in the nonlinear structural stiffness due to 

localized microstructural fatigue damage accumulation. A nonlinear dynamic analytical model 

was developed to parametrically track the changes in the nonlinear structural stiffening term in 

the equation of motion, as a function of the structural response history. Experimental results are 

obtained by exciting the base of cantilever beams at various amplitude levels. At high response 

amplitudes, the beams experience three competing nonlinear dynamic mechanisms 

simultaneously: 1) structural stiffening due to kinematic nonlinearity caused by high response 

amplitude at the fundamental mode; 2) structural softening due to inertial forces; and 3) 

structural softening due to localized microstructural fatigue damage in the material. The third 

mechanism—a potential precursor to fatigue crack initiation in the structure—resulted in a 

cumulative structural softening and is the focus of this study. The loading intensity and number 

of cycles influenced the relative contribution of these dynamic mechanisms. Nanoindentation 

studies near the clamped boundary of the cantilever beam were conducted to confirm progressive 

evolution in the local mechanical properties, as a function of loading cycles. In particular, the 

apparent indentation stiffness measured from the slope of the unloading curve showed a 

systematic reduction as a function of fatigue damage accumulation.   

The proposed detection method of tracking the changes in the nonlinear part of the 

structural stiffness successfully detects the presence of damage but lacks the resolution to discern 

the spatial distribution of the damage intensity. Furthermore, this nonlinear dynamic detection 

method is found to be a sensitive metric as a fatigue damage precursor, making it an effective 

method for monitoring structural degradation prior to fatigue crack development. Additional 
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development of the proposed methodology will be essential to implementing it as a cost effective 

alternative to current complex inspection techniques. 

4.1 Introduction 

The purpose of preventive maintenance techniques used in high-value mechanical 

systems—such as those in aerospace, automotive, and military platforms—is to reduce the risks 

and costs associated with late-lifecycle maintenance and repairs [1]. Current damage predictors 

are based on strain measurements and crack detection, which makes estimating the remaining 

useful life of a system extremely difficult and possibly inaccurate. The objective of this study is 

to develop a fatigue damage precursor detection method for monitoring the early stages of 

structural fatigue degradation prior to crack initiation. Fatigue damage precursor is defined here 

as any observable early degradation of the material microstructural morphology and resulting 

changes in or the physical properties of a structure, prior to any detectable fatigue crack 

initiation. Examples of measurable precursors to fatigue crack development may involve, but are 

not restricted to, changes in the microstructure, chemical composition, electrical signal, acoustic 

response, thermal signature or mechanical response of a structure. Recognizing a damage 

precursor requires classifying and recognizing damage incubators and initiators such as residual 

or compressive stress, phase changes, microstructural evolution, microvoid nucleation, etc. This 

study focuses on detecting a fatigue damage precursor by tracking its effect on nonlinear 

structural response to harmonic vibratory loads.  

Research to monitor a structure and detect damage at the earliest possible stage is 

ubiquitous throughout aerospace, civil, mechanical, and electronics engineering communities [6, 

7]. In the present study, early identification of fatigue damage precursor in a vibrating beam was 

possible through exploiting the sensitivity of the nonlinear terms in the equations of motion to 
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fatigue degradation of the beam material. One of the potential impacts of this technique is that it 

may provide an opportunity for assessing the structural durability of mechanical systems when 

exposed to extreme vibratory loads using conventional sensors such as accelerometers, making it 

feasible to use the proposed technique in existing health monitoring systems. Physical 

replacement or addition of sensors to existing systems would not be necessary because the 

nonlinear terms can simply be included in the detection codes.   

According to the literature, vibration-based damage detection techniques are the most 

common methodologies for assessing the health of engineering structures [2-5]. The popularity 

of monitoring the fundamental frequencies to detect cracks is due to the fact that the 

measurements can be obtained easily using an accelerometer, a strain gage, or a piezoelectric 

sensor at a single point of interest. The core idea behind vibration-based damage detection built 

on system-identification is that modal parameters (notably fundamental frequencies and modal 

damping) are functions of the physical properties of the structure (mass, damping, and stiffness). 

Therefore, changes in the physical properties may cause detectable changes in the modal 

properties that can be captured and extracted from vibratory data.  

Most vibration-based damage identification methods in the literature rely on linear 

dynamic models [3, 8]. Linear methods are generally inappropriate when the structural response 

is nonlinear, which is a common occurrence in many mechanical and electro-mechanical systems 

[9-10]. Furthermore, linear vibration-based procedures do not always provide useful results 

because of their inherent low sensitivity to defects [4]. This study suggests that nonlinear 

dynamic system identification methods may hold a better promise for more sensitive damage 

detection capabilities. Additional information on various vibration-based recognition methods 

can be found in comprehensive reviews on damage identification and health monitoring of 
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structural and mechanical systems in the literature [3, 11, 12].  

In this study, we provide a new vibration-based methodology that accounts for the effects 

of nonlinear response of a cantilever beam by combining a model-based approach with 

measurement of the acceleration response. This is accomplished by modifying the nonlinear 

Euler-Bernoulli beam model to account for changes in the local stiffness at high-stress sites. The 

study shows that the nonlinear vibration-based measurement techniques detected the onset of 

fatigue prior to crack initiation. Furthermore, microstructural evolution observed at the 

maximum stress site is believed to exacerbate the nonlinear softening response of the beam and 

is believed to be direct evidence of the damage precursor of fatigue crack initiation. The 

effectiveness of nonlinear vibration testing for identifying damage precursors is illustrated 

through the application of global damage detection methods.  Further work is required to extend 

this methodology to complex structures. Prior to discussing the details of the nonlinear dynamic 

model and the detection techniques, we provide a brief overview of the nonlinear vibration 

response of damaged structures.    

4.1.1 Nonlinear Structural Dynamics 

Nonlinearity in the dynamic response of structures can be instigated by material 

properties such as nonlinear constitutive relations [13, 14], non-ideal boundary conditions [15, 

16], complex multiaxial loading [17], damping mechanisms [18], and large-deformation 

kinematics (geometric nonlinearity) with inertial effects [19]. Geometric nonlinearity arises from 

nonlinear strain-displacement relations for large deformations, and produces a nonlinear 

structural stiffening effect that appears in many engineering applications [20-21].  (This effect is 

called a “hardening effect” in the nonlinear dynamic literature. Since this chapter addresses 

nonlinear structural sensitivity to microstructural degradation, we will use “stiffening effect” 
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instead.) The most noticeable nonlinear effect is a restoring force that is proportional to the cube 

of displacement in the equations of motion [22]. Thus, the total restoring force includes both 

linear and nonlinear stiffness components. Inertial nonlinearities, on the other hand, augment the 

effective mass of the structure, thus causing a nonlinear softening response. In general, linear 

models are applicable only in restrictive conditions such as very low vibration amplitude [10], 

making them inaccurate when the amplitudes of oscillations are sufficiently high and the natural 

frequencies become increasingly dependent on these amplitudes [23]. 

Many structural materials are capable of enduring reasonably large deformations before 

their intrinsic stress-strain characteristic starts to deviate from the linear regime. Therefore, it is 

common to encounter geometric and inertial nonlinearities in dynamic mechanical systems long 

before the intrinsic material behavior reaches the nonlinear regime especially in micro/nano 

systems [16, 24 and 25]. Consequently, the linear equation of motion with linear restoring force 

has to be replaced with nonlinear models, which contain additional nonlinear terms such as 

geometric stiffness, inertial effects, and gyroscopic contributions [24]. The analytical model in 

this chapter includes these geometric and inertial effects. The nonlinear geometric term can assist 

the linear restoring force, thus stiffening the structure and increasing its resonant frequency. 

Unlike the case of a linear system, the maximum value of the amplitude occurs at an excitation 

frequency higher than the structure’s natural frequency [26]. The nonlinear inertial term softens 

the response of the structure and reduces its natural frequency [27]. Inertial nonlinearities often 

appear in damping mechanisms. The nonlinear inertial term becomes increasingly sensitive to 

the amplitude displacements at resonances higher than the first mode [19]. Potentially, additional 

sources of nonlinearity may appear during the experimental study of cantilever isotropic slender 

beams due to practical reasons such as the manner in which the beam is clamped to the 
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surrounding material at its boundaries [17]. The clamping nonlinearities are assumed to be 

negligible in this study since the beams are clamped to a rigid fixture, which is a reasonable 

idealization.  

4.1.2 Dynamics of Damaged Structures 

Crack detection and monitoring methods were developed by the power industry in the 

early 1970s [2]. The presence of cracks in a structure is usually detected by adopting a linear 

approach through the monitoring of changes in the structure’s dynamic response features, such as 

natural frequencies and mode shapes [28, 29]. Several studies have reported analytical and 

experimental results for vibration of cracked Euler-Bernoulli beams and the effects of surface 

cracks on fundamental frequencies and vibration modes of beams [30-32]. Ismail et al. 

investigated the effect of crack closure on the resonance frequency changes of cracked cantilever 

beams and claimed that vibration testing is a reliable method for detecting the presence of cracks 

[28]. Shen and Chu used a Galerkin procedure to develop the equation of motion of a uniform 

simply supported beam containing one single-edge breathing crack [33]. Nonlinear behavior was 

uncovered in the time history and frequency spectrum. Changes in the dynamic response of 

cracked structures were utilized to infer the size of the crack. Using closing crack Finite Element 

Model (FEM) model (fully open or fully closed crack) to represent a damaged element, Ruotolo 

et al. studied the response of a cracked cantilevered beam due to harmonic excitation [34]. They 

employed first and higher order harmonics to characterize the nonlinear behavior of the cracked 

beam, which was a computationally expensive approach. Tsyfansky and Beresnevich presented 

computational results of flexural vibrations encountered in a cracked aircraft wing under 

harmonic excitation, where they included an initial static deformation in the stiffness term of the 

equations of motion [35]. 
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Several authors presented sophisticated techniques, which accounted for the change in the 

stiffness at the crack site, in order to correctly estimate the dynamic response of the cantilever 

beam with breathing cracks exposed to harmonic excitation [30, 36-38]. Pugno et al. used a crack 

function to account for the variation in local stiffness at the crack [36]. Chondros et al. used 

continuous cracked beam vibration theory to predict changes in transverse vibration of a simply 

supported beam with a breathing crack [30]. Saavedra and Cuitino presented an FEM model to 

estimate the dynamic behavior of beams containing a transverse crack [37]. The change in the 

local stiffness in the vicinity of the crack was accounted for by continuously updating the finite 

element stiffness matrix. Loutridis et al. implemented a similar approach, where a simple single-

degree-of-freedom (SDoF) system with time varying stiffness was used to simulate the dynamic 

behavior of a cracked beam [38]. The time-varying stiffness was modeled using a simple 

empirical function based on the experimental results. Paulus et al. provided a semi-analytical 

model to estimate the evolution in the dynamic behavior of a cantilever beam due to the presence 

and propagation of a crack, which was then validated with an experimental approach coupled 

with an FEM analysis utilizing linear fracture mechanics theory [31-32]. 

Acoustics and Lamb-wave diagnostic techniques have been developed in recent years to 

monitor fatigue crack detection growth in metallic and composite structures exposed to a 

vibratory environment. These techniques rely on diagnostic signal generation, signal processing, 

and damage interpretation that can be fairly complex [29, 39, 40]. The drawbacks of these 

powerful techniques are that they require significant signal processing, on-board computations, 

and recalibration during the service life of the system; they additionally assume that the structure 

is linear. Sun et al provided an excellent review on the latest acoustic wave generation and 

detection techniques for structural health monitoring [12]. 
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4.1.3 Proposed Approach 

The observation that changes in microstructural properties and damage precursor 

instigate changes in the nonlinear dynamic response is the impetus for using nonlinear vibration-

based methods for damage identification and health monitoring. The nonlinear vibration-based 

method is an attractive and simple global approach for monitoring the changes in the structural 

dynamic characteristics due to damage. Specifically, the present study shows that linear vibration 

approaches are inherently less sensitive than nonlinear vibration approaches to fatigue 

degradation features prior to crack initiation. The nonlinear vibration approach can detect very 

early stiffness changes, even prior to crack development. The experimental results confirmed that 

there was microstructural evolution at high stress sites, even though the beam stress-strain 

characteristic is intrinsically linear. The nonlinear equation of motion is updated accordingly to 

capture the local microstructural evolution by adjusting the nonlinear stiffness term. The global 

nonlinear vibration-based method uses the nonlinear structural updates from the experiments to 

estimate the beam tip response and number of fatigue cycles. Unlike linear dynamic model, the 

nonlinear stiffness term in the nonlinear dynamic model provided more useful sensitivity to the 

evolution in the material due to fatigue-induced damage. The method appears to be a promising 

health mentoring metric and may potentially provide reasonable estimate for structural damage 

precursors. This study provides a detailed description of the analytical model and the 

experimental approach. 

4.2 Modeling Development 

As discussed, studies in the literature predict a stiffening effect in the response of a 

linear-elastic, isotropic, cantilever beam under harmonic excitation at the first fundamental 

frequency, due to geometric nonlinearity. In contrast, a softening effect is predicted for higher-
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order modes [19]. However, in the present study, experiments on steel cantilever beams revealed 

a softening effect during extended harmonic base excitation near the resonance frequency. This 

softening phenomenon at the fundamental mode has been reported in several investigations of 

harvester piezoceramics [41-43]. In these investigations, parameters that yielded stiffening 

responses were based on the nonlinear Euler-Bernoulli beam model, while their experimental 

response produced softening curves. The studies’ common hypotheses—none of which were 

verified—were that these devices experienced material nonlinearity, residual stresses due to 

fabrications, and/or nonlinear boundary conditions. Villanueva et al observed similar softening 

effects at the fundamental mode in a nonlinear nanomechanical cantilever beam exposed to 

transverse harmonic base excitations [16]. They showed that the nonlinear Euler-Bernoulli beam 

theory predictions differ significantly from their measurements for the nonlinearity of the first 

fundamental mode. They speculated that the deviation from nonlinear Euler-Bernoulli beam 

theory was due to the beam’s short aspect ratio (AR=Length/width=8) and potential material 

nonlinearity, but did not provide conclusive evidence of the cause of the nonlinearity. 

The focus of this study is the nonlinear response of a slender isotropic cantilever beam 

exposed to harmonic transverse base excitation near its fundamental frequency. An analytical 

model is developed using nonlinear Euler-Bernoulli beam theory, with modified nonlinear 

stiffness to account for possible changes in the local material stiffness near the beam root (at the 

fixed end). A beam with AR=8 is analyzed and tested, similar to the study of Villanueva et al 

[16]. The experimental results demonstrated a softening effect due to long dwells at specific 

frequencies, over a range of frequencies. A global method utilizing nonlinear dynamic theory is 

used to capture a global structural softening response as a function of the excitation level and 

number of fatigue cycles, due to local degradation in the material stiffness. An investigation of 
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the local micromechanical properties near the fixed boundary condition showed that there is 

significant reduction in the local elastic modulus, where the maximum stress amplitudes occur. 

The geometric and inertial nonlinearities in a cantilever beam with symmetric cross-

section and tip mass are included in the equations of motion according to nonlinear Euler-

Bernoulli beam theory. This section describes the nonlinear dynamics of a uniform cantilever 

beam carrying a tip mass exposed to a transverse base excitation (Figure 4-1). The beam is 

idealized as an inextensional beam (that is, stretching of the neutral axis is insignificant). Beams 

with one end clamped and the other end free can be assumed to be inextensional [44]. Therefore, 

nonlinear Euler-Bernoulli theory is employed to model the beam response; the effects of warping 

and shear deformation are ignored. The consequence of large peak response amplitude is that the 

nonlinear terms in the equations of motion become comparable to the linear ones. Since the beam 

length to width ratio is kept short (AR<30), it can be assumed that the beam undergoes purely 

planar flexural vibrations as long as the tip mass and cross-section geometry are symmetric with 

respect to the beam’s centerline [45]. The assumed first mode deflection is the exact linear mode 

shape generated from solving the linear problem with attached lumped mass that includes the 

rotary inertia effect [19]. 



 

 110 
 

 

Figure 4-1 Slender beam with tip mass under base excitation 

The beam is considered to be a uniform and straight isotropic cantilever beam of length 𝐿 

and volumetric density 𝜚, clamped at the base with tip mass 𝑀 and rotary inertia 𝐽 (Figure 4-1). 

The Z-axis is taken as the neutral axis associated with pure bending. It is assumed the loci of 

both shear centers and mass centers of the undeformed beam are coincident with the Z-axis. The 

base motion causes each cross section of the beam to experience an elastic displacement of its 

centroid. The dynamics of the beam with respect to the Y and Z axes at the undeformed length 

from the root of the beam to the reference point, s, and time, t, can be described in terms of: the 

axial displacement 𝑤(𝑠, 𝑡), the transverse displacement 𝑣(𝑠, 𝑡) along the inertial coordinate 

system YZ, and the rotational angle 𝜓. The orthogonal unit vectors for the inertial coordinate 

system are (𝑖! , 𝑖!). The local curvilinear coordinate system at s, in the deformed position, has the 

orthogonal unit vectors (  𝑖! , 𝑖!). 

The kinetic energy can be expressed as follows [43]: 
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𝑇 =
1
2 𝜚

!!

!!

!

!
𝑤! + 𝑣! + 𝑉!! + 2V!𝑣 + 2𝜂𝑤𝜓 cos𝜓 + 𝜂!𝜓! − 2𝜂𝑣𝜓𝑠𝑖𝑛𝜓

− 2V!𝜂𝜓𝑠𝑖𝑛(𝜓) 𝑑𝐴𝑑𝑠 +
1
2𝑀 𝑤! + 𝑣! + 𝑉!! + 2V!𝑣

!!!

+
1
2 𝐽𝜓

!

!!!
 

Eq. 4-1 

where the dots denote derivatives with respect to time. Set: 

𝜌 = 𝜚
!!

!!
𝑑𝐴  𝐽! = 𝜚

!!

!!
𝜂𝑑𝐴  𝐽! = 𝜚

!!

!!
𝜂!𝑑𝐴 

Since the reference point coincides with the mass centroid and 𝜂 is a principal axis of the 

differential beam element, 𝐽! is set equal to zero. For a uniform slender beam the rotational 

inertia, 𝐽!, is very small and can be ignored [19]. Therefore, the kinetic energy becomes:  

𝑇 =
1
2 𝜌 𝑤! + 𝑣! + 𝑉!! + 2V!𝑣 𝑑𝑠

!

!
+
1
2𝑀 𝑤! + 𝑣 + 𝑉!

!

!!!

+
1
2 𝐽𝜓

!

!!!
 

Eq.  4-2 

Performing Taylor’s expansion up to cubic nonlinearities and assuming 𝑤 and 𝑣 are 

small but finite, the kinetic and potential energies can be expressed as follows [46]:  

𝑇 =
1
2 𝜌

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣! + 𝑉!! + 2V!𝑣 𝑑𝑠
!

!

+
1
2𝑀

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣 + 𝑉!
!

!!!

+
1
2 𝐽 𝑣

!" + 𝑣!"𝑣!"
!!!

  

Eq. 4-3 
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Π =
𝐸𝐼
2 𝑣!!" + 𝑣!!"𝑣!" 𝑑𝑠

!

!
   Eq. 4-4 

where the primes denote derivatives with respect to distance. Approximate series solutions are 

now assumed of the form: 

𝑣(𝑡, 𝑧) = 𝑞!(𝑡)𝑌!(𝑧)
!

!!!

    

where the trial functions, 𝑌! , are known linearly-independent comparison functions from a 

complete, orthogonal, sufficiently differentiable function set that satisfies the kinematic 

boundary conditions of this cantilever beam problem. The undamped linear mode shapes offer a 

convenient set of trial functions. The term 𝑞! denotes the generalized modal coordinates and 

describes the modal participation. For unimodal response the assumed solution becomes [47]: 

𝑣(𝑡, 𝑧) = 𝑞(𝑡)𝑌(𝑠)    

Substituting the assumed solution into the kinetic energy, Eq. 4-4, and the potential 

energy, Eq. 4-3, and simplifying yields the following: 
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𝑇 =
1
2 𝜌 𝑌!

!

!
𝑑𝑠 +𝑀𝑌! !!! + 𝐽𝑌!" !!! 𝑞!

+
1
2 𝜌 𝑌!"𝑑𝑠

!

!

!

𝑑𝑠
!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

+ 𝐽𝑌!" !!! 𝑞!𝑞! + 𝜌 𝑌𝑑𝑠
!

!
+𝑀𝑌 !!! V!𝑞

+
1
2 𝜌𝐿 +𝑀 !!! 𝑉!! 

Eq. 4-5 

𝛱 =
𝐸𝐼
2 𝑞!𝑌!!" + 𝑞!𝑌!!"𝑌!"   𝑑𝑠

!

!
   Eq. 4-6 

 The Euler-Lagrangian equation is then applied to the Lagrangian, 𝐿 = 𝑇 − Π  as 

follows: 

𝜕
𝜕𝑡

∂𝐿
𝜕𝓆 −

∂𝐿
𝜕𝓆 = 0 

 The nonlinear equation of motion becomes: 

𝛼!𝑞 +   𝛼! 𝑞!𝑞 + 𝑞𝑞! + 𝐾!𝑞 + 𝐾!𝑞! = 𝛼!V!   Eq. 4-7 

where the inertial coefficient including the rotary inertia (or effective mass) is: 

𝛼! = 𝜌 𝑌!𝑑𝑠
!

!
+𝑀𝑌! !!! + 𝐽 𝑌!" !!!  

The nonlinear inertial coefficient including tip rotary inertia is: 

𝛼! = 𝜌 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

+ 𝐽𝑌!" !!!  

The linear stiffness coefficient (or effective elastic stiffness) is: 
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𝐾! = 𝐸𝐼 𝑌!!"𝑑𝑠
!

!
 

The nonlinear geometric stiffness coefficient is: 

𝐾! = 2𝐸𝐼 𝑌!𝑌!! !𝑑𝑠
!

!
 

and the base excitation inertial coefficient is: 

𝛼! = −𝜌 𝑌𝑑𝑠
!

!
−𝑀𝑌 !!! 

Adding a viscous damping term to the equation of motion leads to the final form of the 

governing equation for a transversely excited beam:  

𝛼!𝑞 +   𝛼! 𝑞!𝑞 + 𝑞𝑞! + 𝑐𝑞 + 𝐾!𝑞 + 𝐾!𝑞! = 𝛼!V!   Eq. 4-8 

The mass normalized eigenfunction of the nth free undamped vibration mode is expressed 

as follows [47]: 

𝑌 𝑥 = 𝐴! cos𝛽!𝑥 − cosh𝛽!𝑥 + 𝐶! sin𝛽!𝑥 − sinh𝛽!𝑥  

where, 

𝐶! =
sin𝛽!𝐿 − sinh𝛽!𝐿 + 𝛽!𝐿𝑀 cos𝛽!𝐿 − cosh𝛽!𝐿
cos𝛽!𝐿 + cosh𝛽!𝐿 − 𝛽!𝐿𝑀 sin𝛽!𝐿 − sinh𝛽!𝐿

 

Thus, the first mode is: 

𝑌 𝑥 = 𝐴 cos𝛽𝑥 − cosh𝛽𝑥 + 𝐶 sin𝛽𝑥 − sinh𝛽𝑥  

where, 

𝐶 =
sin𝛽𝐿 − sinh𝛽𝐿 + 𝛽𝐿𝑀 cos𝛽𝐿 − cosh𝛽𝐿
cos𝛽𝐿 + cosh𝛽𝐿 − 𝛽𝐿𝑀 sin𝛽𝐿 − sinh𝛽𝐿
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 A  is a modal amplitude constant which is obtained by normalizing the 

eigenfunction. 

4.3 Experimental Development 

The slender cantilever beams used in the experimental study were made of blue-finished, 

polished, spring-tempered AISI 1095 high-carbon steel. This type of steel is typically fabricated 

using cold rolling, which can cause a temper to form in the material, increasing the yield 

strength. The cold rolling process may cause some degree of material orthotropy. Therefore, the 

isotropy assumption is an approximation in this study. The principal alloying elements are 

0.95wt% C, 0.4wt% Mn, and 0.2wt% Si. The density and the elastic modulus of the material are 

7.85g/cm3 and 205GPa, respectively. The hardness is Rockwell C48 with AR= 8. The beam 

length and cross-section area are 127mm and 15.88mm × 1.08mm, respectively. 

4.3.1 Beam Characterizations 

The overall surface profile of the beam was assessed to ensure that potential initial 

curvature did not cause any anomalous geometric softening effect. Therefore, a topological 

surface profile of the slender beam was measured using a Keyence LK-G5001 laser displacement 

sensor. The beam was mounted on a motion platform that is capable of precise motion, down to 

±1µm. The beam’s three-dimensional surface profile is shown in Figure 4-2. The curvature of 

the beam along its length was insignificant (Figure 4-3). The maximum beam height at the center 

of its width was less than 0.1mm. Since the product of the initial curvature and the beam width is 

much smaller than unity, it is reasonable to assume the initial curvature did not contribute to 

nonlinear effects [48]. 
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Figure 4-2. Three-dimensional surface profile of beam 

A static defection experiment was performed to determine the initial nonlinear stiffness 

of the beam. The tip displacement of the cantilever beam was measured for different levels of 

transverse static force applied at its tip. The applied force versus displacement is shown in Figure 

4-4. At low external force, the beam deflection was small and the bending resistance took the 

role of opposing the external force. Thus, the beam experienced linear behavior; i.e., the slope of 

the straight line is the linear stiffness. As the forces increases, the beam deflection increased and 

its curvature was noticeable, resulting in a foreshortening of the horizontal span of the beam. 

Thus, the axial strain created a membrane force, which caused an additional resistance, which 

dominated the behavior of the beam (Figure 4-4). At that point, the beam behaved nonlinearly, 

resulting in nonlinear stiffening; i.e., the stiffness curve was no longer a straight line. The test 

results suggest that the initial material nonlinearity, warpage, or residual stresses due to 

fabrication were not significant enough to overcome the geometric nonlinear stiffening and 

therefore could not be responsible for the nonlinear dynamic softening reported later in the 

vibration experiments. 



 

 117 
 

 

Figure 4-3. Beam curvature along its length 

 

Figure 4-4. Nonlinear stiffening due to large static deflection 
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4.3.2 Experimental Dynamic Approach 

The vibration experiment setup and instrumentation schematics are shown in Figure 4-5. 

Each beam was mounted horizontally on a rigid fixture where the bolts were torqued to 22.6 N-

m. The system was then attached to an electrodynamic single-axis shaker table controlled by a 

triaxial accelerometer, which was mounted on the base fixture (Figure 4-5). The beam tip 

displacement was measured using accelerometer. The tip accelerometer mass was approximately 

1.5g. 

 

Figure 4-5. Experimental setup for vibration test 

 
Table 4-1 Nonlinear experimental cases 

 
 

Triaxial 
Accelerometer  

Z  

Y  X  

Z  

Fixture 

Beam 
    L 

VY 

Fixture 
Triaxial 

Accelerometer  

   w 

Case 

  

Test Total Cycles (103) 

I 
Base Excitation (g) 0.1 

1 0-97 

2 97-173 

Linear Resonance (Hz) 47.41 3 173-248 
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Three sets of experiments—Cases I, II, and III—were conducted. Table 4-1 lists the 

detail of each case. Once the linear fundamental frequency for each beam was identified using 

sine-sweep excitation, the beams were exposed to the transverse harmonic base excitation 

amplitudes stated above at discrete forward dwell frequencies near the fundamental frequencies. 

The ramp-up time and dwell time for each frequency were 30s and 20s, respectively. An 

example of time history data for the base excitation and tip response is shown in Figure 4-6. The 

dwell time at each excitation frequency ensured that steady state response conditions were 

reached. Figure 4-6 is an example of a close-up dwell period for the base excitation and the beam 

tip response. The constant response amplitudes in Figure 4-7 are clear indications that steady 

state conditions were reached during the dwells at each frequency. The frequency step for each 

dwell was 0.05 Hz. Therefore, the excitation frequency was increased 0.05 Hz every 50s (30s 

4 248-324 

Max. Strain (10-3) 0.1 
5 324-400 

6 400-475 

II 

Base Excitation (g) 0.2 1 0-71 

Linear Resonance (Hz) 46.64 2 71-130 

Max. Strain (10-3) 

 

0.3 

 

3 130-183 

4 183-244 

III 

Base Excitation (g) 0.3 1 0-97 

Linear Resonance (Hz) 47.52 
2 97-182 

3 182-279 

Max. Strain (10-3) 0.6 
4 279-362 

5 362-454 
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ramp-up plus 20s dwell). 

 

Figure 4-6. Ramp up and dwells of a) base excitation and b) corresponding tip response 
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Figure 4-7. Example of 1.0s dwell period of a) base excitation and b) corresponding tip response 

4.3.3 Local Mechanical Characterization  

Instrumented nanoindentation is a method used for examining local mechanical 

properties of materials [49]. The technique has been used to characterize the elastic modulus, 

elastic-plastic stress-strain curves, creep properties, and hardness of a wide range of materials 

and structures, including traditional steels [50], film-substrate systems [51], functionally graded 

structures [52, 53], polymers and polymer composites [54-56], and individual microfibers [57]. 

In the current study, the local mechanical properties of the beam samples near the fixed 

boundary were examined using nanoindentation (Figure 4-8). Each sample was carefully cut to 

minimize mechanical damage to the edges to prevent unintended alterations to the overall 

mechanical properties. The surface of each sample was then polished up to 0.1 microns to 
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minimize the effect of surface roughness on the indentation response. The indentation 

experiments were performed using a diamond Berkovich tip (radius of curvature approximately 

100 nm). Positions along the center of the beam surface were located using the optical 

microscope in the indentation system. For each targeted location, 100 indentations were 

performed in a 10×10 grid, spaced 5 µm apart. The edge of the initial indent array was 

positioned 10 µm from the clamped portion of the beam; subsequent arrays were positioned in 

approximately 2 mm increments stepping away from the fixed boundary position and moving 

toward the beam-free end. Measurements were performed in load control mode, with a 

maximum applied force, P, of approximately 5000 µN. A drift correction was performed prior to 

indentation using a preload of 1 µN for 20s. A triangular force profile was used with a quasi-

static loading rate of 625 µN s-1. 

 

Figure 4-8. Surface microstructure near beam root after 0.3g vibration test, 1000X magnification 

Indentation results provided a reduced indentation stiffness Er, which can be related to 

the sample indentation modulus Es through: 1/Er = (1-νi
2)/Ei + (1-νs

2)/Es, where Ei is the elastic 

modulus of the tip and νi and νs are the Poisson’s ratios of the tip and sample, respectively. The 

Free end 

X  

Z  

Beam 

Fixture 

Fixed end 



 

 123 
 

indentation stiffness is obtained from the initial slope of the unloading part of the indentation 

load-displacement curve.  Some studies relate the indentation stiffness to the material stiffness. 

To obtain sample properties in this study, Ei, νi and νs were assumed to be 1140 GPa, 0.17, and 

0.30, respectively.   

4.4 Results and Discussion 

Detailed discussion of the experimental results is provided in this section. The utilization 

of the nonlinearities in the dynamic model provided good agreement between the model 

predictions and the experimental results. The sensitivity of the nonlinear geometric stiffness to 

fatigue damage precursor is discussed as well. This section also exploits the sensitive link 

between micromechanics and global nonlinear dynamics, which was a powerful tool in detecting 

the local fatigue damage precursor. 

4.4.1 Experimental Results of Nonlinear Vibration Tests 

Each dynamic experimental set contained four to six step-dwell tests, as shown in Figure 

4-9 through Figure 4-11. The objective was to capture the shift in the fundamental frequency and 

the softening phenomenon due to repeated dwells. Figure 4-9 through Figure 4-11 reveal that the 

resonance frequency continued to decrease every time the test was repeated due to continuing 

accumulation of cyclic fatigue damage. The nonlinear softening effect on the fundamental modes 

was apparent in the beam tip responses. The frequency-response curves were skewed to the left, 

indicating a softening nonlinearity and a dominance of material softening over the structural 

nonlinear kinematic stiffening. 
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Figure 4-9. Experimental and analytical nonlinear softening response for Case I 

 

Figure 4-10. Experimental and analytical nonlinear softening response for Case II 
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Figure 4-11. Experimental and analytical nonlinear softening response for Case III 

The beams continued to experience softening due to an increase in the number of 

vibration cycles and in the level of the base excitation. The accumulation of loading cycles led to 

continuing fatigue damage buildup, resulting in a corresponding reduction in the local stiffness, 

with the reduction in magnitude being proportional to the stress level. These experimental results 

diverged from several theoretical models that predicted nonlinear stiffening at the fundamental 

mode [14, 44]. This discrepancy can be explained by the fact that there were three competing 

mechanisms occurring simultaneously in the experiments: 1) structural stiffening due to 

nonlinear kinematic effects at high amplitude response; 2) nonlinear structural softening due to 

inertial effects; and 3) progressive structural softening due to localized material degradation 
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is attributed to the fact that the third effect (material fatigue degradation) is stronger than the first 

two.  

Malatkar encountered similar material degradation phenomena, but avoided potential 

fatigue from the high-amplitude and high-cyclical loading by reducing the number of dwells and 

repeating each experiment only twice [46]. Interestingly, experimental results to illustrate the 

effect of material degradation on the fundamental vibration mode have been limited [16]. Priya 

et al. and Yu et al. observed similar softening phenomena at the fundamental frequency when 

studying harvester piezoceramics, but did not provide any explanation for the softening [41, 42]. 

Stanton et al. assumed that the nonlinear softening was due to material nonlinearities in their 

piezoceramic device or instrumentation errors [43]. Saavedra and Cuitino also witnessed 

softening trends on a cracked mild steel beam exposed to harmonic vibratory loads [37]. The 

present experimental results displayed similar trends to the studies mentioned above, which 

deviated from nonlinear Euler-Bernoulli beam theory. 

4.4.2 Microstructural Analysis 

To investigate the local change in the beam material and the associated stiffness, the 

beam root microstructure of Case III was examined using Scanning Electron Microscopy (SEM), 

as discussed in Section 4.3.3. Figure 4-12a shows the microstructure of the fatigued beam; the 

edge seen in the right side of the image is the clamped position of the beam.  The beam surface 

near the fixed boundary displayed coarsening of features and a relatively high density of long 

dark, slender elliptical regions (Figure 4-12c). The concentration of these dark regions lessened 

as distance from the clamped boundary increased (Figure 4-12b). The literature has presented 

some evidence that this type of microstructural variation near these highly stressed regions is 

likely due to localized dislocation motion resulting in the formation of persistent slip bands 
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(PSBs) [58-60].  Dislocation motion is the primary mechanism of plastic deformation in metals 

and has been shown to result in slip within the grains in similar polycrystalline materials [60, 

61]. The authors provide no evidence that PSBs are forming in the material used in this study. 

Further investigation is required and it is beyond the scope of this study. A pristine beam surface 

was also examined and compared to the fatigued beam microstructure (Figure 4-13). The 

microstructure of the unfatigued beam appeared uniformly more fine-featured throughout (Figure 

4-13b).  

 

Figure 4-12. Surface microstructure near beam root for case III after 454x103 cycles, a)1000X 

magnification b) 2100X magnification away from beam fixed end c) 2100X magnification at 

fixed end 

a) 

b) c) Near Clamped End (2100x) Away from Clamp (2100x) 

Fatigued (1000x) 
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Figure 4-13. Surface microstructure shows a) higher concentrations of dark bands near the fixed 

end for case III after 454x103 cycles and b) uniform microstructure of unfatigued beam 

4.4.3 Local Degradation Characterization 

As discussed earlier in Section 4.3.3, nanoindentation tests were organized in 10 ×10 

arrays and positioned at various points along the central axis of the beam (Figure 4-14). The 

location x=0 indicates the clamped edge during cantilever excitation (and the expected position 

of maximum stress according to beam theory). The indentation stiffness is shown as a function of 

position x, from the clamped end of the beam. The dotted lines in Figure 4-14 show the upper 

and lower bounds of indentation tests performed on a control sample, while the inset shows 

scanning probe imaging of a typical indent array on beam surface. Tests were performed in load 

control mode using a peak force of 5000µN; these applied forces resulted in indentation depths 

of approximately 150–200 nm (approximately 1.5–2.0% of the cross-sectional depth). For 

comparison, an unfatigued control sample was tested at three separate locations near the center 

of the specimen, for a total of 300 indents (shown with dotted interval lines in Figure 4-14). 

a) Fatigued a) Unfatigued a) Fatigued a) Unfatigued 

b) Unfatigued  (1000x) a) Fatigue (1000x) 
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Figure 4-14. Local mechanical characterization of fatigued beam as determined by 

nanoindentation 

Indentation results on the fatigued sample showed a clear localized reduction in the 

indentation stiffness of the material near the clamped position of the beam. As indicated earlier, 

this apparent stiffness is obtained from the initial slope of the unloading part of the load-

displacement curve in the indentation test. The defined zero position, which includes tests as 

close as 10 µm from the fixed boundary location, showed an average indentation stiffness of 

approximately 100 GPa. Stepping away from the clamped position, the average apparent 

indentation stiffness eventually approached 220 GPa, which was the approximate baseline elastic 

modulus of the unfatigued control sample (Figure 4-14). The results suggest that the average 

indentation stiffness over the first few hundred nanometers near the sample surface was reducing 
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as a result of the high number of tension-compression cycles. The literature suggests that such 

loading may be expected to result in PSB formation [60]. This reduction in the indentation 

stiffness appeared more pronounced in areas adjacent to the clamped beam positions, which was 

not surprising considering the high-cycle fatigue damage expected in these locations due to the 

flexural stress concentration expected near the root of a cantilever beam. To be clear, these initial 

indentation tests cannot fully describe variations in the dynamic behavior of the beam, but are an 

important first step in explaining how cyclic fatigue damage accumulation may affect surface 

microstructure and thus local mechanical properties in areas of interest. It is important to point 

out that the approximate maximum strain near the root is 0.6x10-3 strain, which is still in the 

linear region of the stress-strain curve for 1095 steel.  

4.4.4 Model Results 

Excitations that produced a nonlinear response led to localized damage, which caused 

local softening near the fixed boundary (Figure 4-15). Attempts were made to tune the linear 

stiffness term in the equation of motion to track the fatigue degradation; however, minute 

modifications to the linear stiffness term caused drastically unrealistic shifts in resonance 

frequency. Thus, nonlinear dynamics analysis was implemented where the nonlinear geometric 

stiffness was modified to account for the fatigue-induced material evolution near the fixed end. 

This modification to the nonlinear stiffness provided a better curve fit to the experimental results. 

Unlike linear dynamic model, the nonlinear stiffness term in the nonlinear dynamic model 

provided more useful sensitivity to the evolution in the material due to fatigue-induced damage. 

The nonlinear equation of motion was solved numerically using the Runge-Kutta method, where 

the integration time step was 10-5 s and the initial conditions were zero displacement and 

velocity. The integration time limits were set from 0s to 30s to ensure that steady state condition 
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was reached. A selection of the numerical response curves over a frequency range near the first 

mode is provided in Figure 4-16. As expected, the model results indicate that increasing the base 

excitation stiffens the beam, i.e. the fundamental flexural frequency increases (Figure 4-16). The 

accelerometer mass was included in the model, but its contribution was relatively minor. 

Subsequently, the geometric nonlinear stiffening effect dominated over inertial nonlinear 

softening. 

 

Figure 4-15. Example of analytical beam tip response after 30 s 
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Figure 4-16. Selection of numerical nonlinear response curves 

The experimental results provided in Figure 4-9 through Figure 4-11 show that increasing 

the excitation amplitudes enhances the softening effects (resonant frequency decreases), which 

contradicts the nonlinear Euler-Bernoulli model. This contradiction is because the nonlinear 

dynamic model (Eq. 4-8 and other similar models in the literature [19-22]) does not incorporate 

material property evolution due to fatigue. When examining the data closely, it is clear that 

cyclic fatigue played an important role in altering the results. Damage accumulated near the 

beam root due to ramp-up and dwell cycles, causing the beam to soften locally, thus increasing 

the beam tip response amplitude, and reducing the resonant frequency. Figure 4-17 shows the 

maximum amplitudes for Cases I, II, and III (base excitations 0.1, 0.2, and 0.3g, respectively). 

The cycles of each case is provided in Table 4-1. The maximum response amplitudes from 

Figure 4-9 through Figure 4-11 are plotted as a function of loading cycles. Not surprisingly, the 
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beam tip maximum response amplitudes increased as a result of increasing the excitation 

amplitudes [62]. However, for each excitation level, the maximum response amplitudes 

increased logarithmically as a function of the loading cycles due to the local material degradation 

caused by the cyclic fatigue damage accumulation (Figure 4-17). 

 

Figure 4-17. Maximum tip displacement response for each test, as a function of number of 

fatigue cycles 

The softening in the dynamic beam structural response, observed in the nonlinear 

dynamic experiments as a results of fatigue damage precursor, is captured in the analytical model 

by adjusting the nonlinear geometric stiffness term, K* in the equation of motion, Eq. 4-9. This 

types of parametric adjustments were also utilized by Carrella and Ewins [63], and Zwink [4] to 

model the response of lump mechanical systems. The governing equation was modified as 

follows: 
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𝛼!𝑞 +   𝛼! 𝑞!𝑞 + 𝑞𝑞! + 𝑐𝑞 + 𝐾!𝑞 + 𝐾∗𝑞! = 𝛼!V!   Eq. 4-9 

where parameter K* was modified as follows: 

𝐾∗ = 𝛿𝐾! 

 

Figure 4-18. Nonlinear stiffness and damping changes due to fatigue cycles for Case I 

where the modified nonlinear stiffness, 𝐾∗, is the geometric stiffness, 𝐾!, multiplied by the 

nonlinear adjustment factor, 𝛿. The model results for the response amplitude superimposed on 

top of the experimental data in Figure 4-9 through Figure 4-11 illustrate that calibration of the 

nonlinear stiffness term in the model can provide good agreement between the experiment and 

model results. The nonlinear adjustment factor for each run is plotted as a function of the total 

number of cycles in Figure 4-18 through Figure 4-20. The experimental and numerical results 

show that the nonlinear adjustment factor logarithmically decreases as the number of loading 

cycles increases. Furthermore, the adjustment factor has a negative sign, which is clear indication 
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of a softening phenomenon due to fatigue, even though the stresses in the beams were still in the 

elastic region. The logarithmic decay in the material stiffness was consistent with fatigue 

behavior [61]. For completeness, the damping ratio was plotted as a function of fatigue cycles. 

Figure 4-18-20 show that the beams displayed slight logarithmic decay in damping. The beams 

may exhibit nonlinear damping behavior, which is worthy of further future investigation. 

Nonetheless, 𝛿 had significantly more influence on the nonlinear geometric stiffness term than 

on the damping term. 

 

Figure 4-19. Nonlinear stiffness and damping changes due to fatigue cycles for Case II 
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Figure 4-20. Nonlinear stiffness and damping changes due to fatigue cycles for Case III 

 

 
Figure 4-21. Nonlinear stiffness and damping changes as a function of displacement for Case I 
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Figure 4-22. Nonlinear stiffness and damping changes as a function of displacement for Case II 

 

 
Figure 4-23. Nonlinear stiffness and damping changes as a function of displacement for Case III 
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It was reasonable to conclude that the local material degradation decreased the resonance 

frequency when it was appreciable, i.e. when the base excitation amplitude was large. It resulted 

in an effective nonlinear stiffness reduction for oscillations with large amplitude and high cycle 

loading, making it necessary to include the stiffness reduction in the model as a function of the 

beam response history for each excitation. The modified nonlinear stiffness of the beam 

decreased linearly with an increase in the response amplitude (Figure 4-21 through Figure 4-23). 

It is important to point out that the sensitivity of the nonlinear stiffness decreased with increase 

in the base excitation amplitude. This is because the beams experienced three opposing 

mechanisms simultaneously: 1) structural kinematic stiffening due to high tip displacement; 2) 

structural softening due to inertial forces; and 3) structural softening due to local material 

damage accumulation as a precursor to fatigue damage. All three mechanisms increased with 

increase in the base excitation and beam response. To illustrate the importance of the nonlinear 

stiffness term as a potential health monitoring metric, the changes in the nonlinear stiffness ratio 

are compared to for the change in the maximum dip deflection form from 100,000 to 245,000 

loading cycles Cases I, II and III, as shown Figure 4-24. The nonlinear stiffness sensitivity is 

more sensitive than the nonlinear deflection.  For Cases I and III, the sensitivity of the nonlinear 

stiffness ratio is approximately double the nonlinear deflection sensitivity.  However, for Case II, 

the stiffness sensitivity is three times the deflection sensitivity. The cause of higher stiffness 

sensitivity in Case II is not clear. Nonetheless, exploiting the nonlinear stiffness term as a 

potential health monitoring metric appears to be a promising and deserve further investigation 

and development.  
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The changes in the damping ratio as a function of displacement are illustrated in Figure 

4-21 through Figure 4-23. The linear decline in the damping with an increase in the beam tip 

displacement was minor.  

 

Figure 4-24. Changes in nonlinear stiffness ratio and maximum tip displacement from100,000 to 
245,000 cycles for Cases I, II, and III  

4.5 Summary and Conclusions 

This study presents clear evidence of the sensitivity of nonlinear vibration response of 

slender metallic structures to fatigue damage precursor, which occurs prior to any fatigue crack 

initiation in toughened steel structures. The sensitivity of the nonlinear geometric stiffness in an 

analytic model of the equation of motion enabled the detection of this fatigue damage precursor. 

As an example, steel cantilever beams were fatigued using nonlinear vibration loading. The 
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nonlinear dynamic model provided a methodology for estimating the changes in the nonlinear 

dynamic response due to local material degradation prior to crack initiation. This is 

accomplished by adjusting the nonlinear geometric stiffness term in the equation of motion. The 

effect of viscous damping on the nonlinear structural response is also studied and found to be 

relatively small when compared to the effect of the nonlinear geometric stiffness term. The 

experimental results also the effects of three competing mechanisms that influenced the beam 

response: 1) structural stiffening due to kinematic nonlinearity in high response amplitude; 2) 

structural softening due to inertial forces; and 3) structural softening due to localized 

microstructural material damage precursor. Linear vibration-based detection would have not 

captured the damage precursor making the sensitivity of the nonlinear vibration approach a 

viable method in monitoring the state and health of the structure materials. 

Higher order nonlinearities beyond the cubic terms and the beam rotational inertia are 

investigated as well and found to be insignificant. However, it is possible to include an additional 

cubic damping term of the form 𝑞!. Combining the nonlinear geometric stiffness and cubic 

damping terms may provide designers and structural health monitoring systems with additional 

sensitivities to predict, detect, and monitor the longevity of complex system, which can be the 

subject of future studies. 

The simplicity of the proposed nonlinear dynamic methodology for detecting damage 

precursor makes it a powerful alternative to current inspection methods. The attraction of the 

nonlinear approach is that it provides a sensitive method that utilizes conventional sensors such 

as accelerometers and can be implemented in many platforms without the replacement of 

existing sensors.  
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Chapter 5  Fatigue Damage Precursor Detection in  

Structures Vibrating under Nonlinear Harmonic Rotational Base 

Excitation 

Under Review: International Journal of Mechanical Sciences, 2015 

Chapter 5 is an article currently under review in the International Journal of nonlinear 

Mechanics (IJNM), which provides a promising analytical approach to model and predict the 

response of cantilever beam exposed to a varying rotation base excitation. The model takes into 

account the evolution of the material due to damage accumulation. Authors are Mr. Ed Habtour, Dr. 

Daniel Cole, Dr. Samuel C. Stanton, Mr. Roman Sridharan and Professor Abhijit Dasgupta. Mr. 

Ed Habtour (first author) conducted the vibration experiments and developed the analytical 

model. He also conducted the SEM experiments. Dr. Daniel Cole conducted the nanoindentation 

measurements. Mr. Roman Sridharan provided assistance with the control software for the 

multiaxial vibration shaker. Dr. Samuel Stanton at the Army Research Office checked the 

derivations. Professor Dasgupta provided technical and academic guidance in this effort. 

Abstract:  

This chapter presents a nonlinear dynamic methodology for monitoring early precursors 

of fatigue damage in a slender metallic cantilever beam structure under time varying rotational 

base excitation. The methodology accounts for important dynamic nonlinearities due to the 

complex loading generated by rotational loading. These nonlinearities include: structural 

kinematic stiffening due to gyroscopic motion and high-response amplitude at the fundamental 

mode, structural softening due to inertial forces and gyroscopic loads, and due to localized 

microstructural material evolution due to cyclic fatigue degradation. The loading intensity and 
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number of vibration cycles intensify these nonlinearities. The change in the dynamic response 

due to fatigue damage accumulation is experimentally investigated by exciting a cantilever beam 

at variable rotational base motions. Nanoindentation studies near the beam clamped boundary are 

conducted to confirm gradual progression in the local mechanical properties, as a function of 

loading cycles, and microstructural studies are conducted to obtain qualitative preliminary 

insights into the microstructure evolution. 

The observed fatigue evolution in the material microstructure at regions of large stresses 

(and the resulting progressive structural softening) is tracked by quantifying the growth in the tip 

response, the change in the natural frequency of the beam and the skewedness of the stepped-sine 

response curve. The systematic reduction in the measured apparent indentation stiffness near 

high stress concentration region confirmed the existence of localized fatigue damage 

accumulation. A nonlinear analytical model is presented to track the degradation in the structural 

stiffness as a function of the nonlinear dynamic response, by tracking the progressive reduction 

in the nonlinear part of the beam stiffness in the equation of motion.  

5.1 Introduction 

There are many engineering systems that experience varying rotational base excitations, 

such as flexible robotics components, heavy electronics components, and unmanned ground and 

aerial systems [1, 2]. Many of these systems may experience harsh dynamic loads during their 

life cycles [3, 4]. Mechanical structures under varying rotational base excitations may experience 

complex dynamic effects such as gyroscopic stiffening and softening, nonlinear geometric 

stiffening, and nonlinear inertial softening [1, 2]. Modeling and measuring the dynamic response 

can be complicated when the material properties evolve due to fatigue damage evolution.  In this 

study we are interested in the growth of early precursors to such fatigue degradation. Fatigue 
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damage precursor is defined here as any observable early degradation of the material 

microstructural morphology and resulting changes in or the physical properties of a structure, 

prior to any detectable fatigue crack initiation. Examples of measurable precursors to fatigue 

crack development may involve, but are not restricted to, changes in the microstructure, chemical 

composition, electrical signal, acoustic response, thermal signature or mechanical response of a 

structure.  

This study demonstrates that the nonlinear dynamic response to rotational vibration 

excitation can serve as a particularly sensitive precursor for fatigue degradation evolution.  To 

facilitate this demonstration, this study provides an analytical nonlinear dynamic model that 

includes nonlinearities due to high amplitude response coupled with nonlinearities generated by 

harmonic rotational base excitation. The presented methodology shows that it is possible to 

capture fatigue damage precursor by tracking the nonlinear stiffness term in the equations of 

motion. The nonlinear equation of motion is updated accordingly to capture the local 

microstructural evolution by adjusting the nonlinear structural stiffness term. The global 

nonlinear vibration-based method uses the nonlinear structural updates from the experiments to 

estimate the beam tip response and number of fatigue cycles. Unlike linear dynamic model, the 

nonlinear stiffness term in the nonlinear dynamic model provided more useful sensitivity to the 

evolution in the material due to fatigue-induced damage.  

Multiple studies have been devoted to nonlinear dynamics and vibrations of beams 

because of their importance in many engineering applications. One of the most cited studies in 

nonlinear dynamics is the effort presented by Hodges and Dowell [6], where they developed the 

equations of motion for a rotor blade–idealized as a beam–using Hamilton’s principle. They 

maintained the cubic nonlinear terms and included the effect of warping. Partial-differential 
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equations for the motion of nonlinear inextensional and extensional beams were developed for 

planar and nonplanar base excitation, where the geometric and inertial nonlinearities were 

included [7-12]. 

Beam models were improved to idealize more complex structures such as antenna and 

radar structures and aircraft wings. Tip mass was utilized to enhance the dynamic performance of 

wind turbines and to modify the vibration frequency of components such as rotor blades. 

Modeling the above cases was achieved with cantilever beam, stepped beam, or L-shape beam 

models with tip mass under a base excitation [13-17].  

Several researchers have investigated the dynamics of rotating linear and nonlinear 

flexible beams and flexible hub-beams (rotor-blades) with tip mass [18-20]. These dynamic 

models were developed in a consistent manner through the formulation of energy expressions 

and application of Hamilton’s principle. The models included dynamic stiffening and inertial 

softening [21]. Hodges [22] developed nonlinear dynamic models for composite beams and 

blades exposed to base rotation excitation. Radially rotating uniform linear beams under constant 

and non-constant angular velocity has also been investigated [23-25]. However, most of the 

research performed in studying the vibrational behavior of radially rotating beams was focused 

on constant spin velocity with various combinations of free, clamped, and simply-supported 

boundaries [17, 20, 26]. 

What is absent in the structural dynamics and structural health monitoring literature is a 

comprehensive theoretical and experimental study of the nonlinear response of structures 

exposed to vibrational rotational base excitation that includes all of the following nonlinearities: 

1) geometric stiffening, 2) inertial effect, 3) gyroscopic stiffening and softening, 4) higher order 

nonlinear gyroscopic stiffening, and 5) coupling between the rotational excitation (primary 
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motion) and local displacement (secondary motion). These five nonlinearities become important 

when modeling fast and flexible robot manipulators, robotic arms, and adaptive structures. High 

cycle vibrations in these structures may lead to fatigue, instability, and loss of position accuracy.  

The problem is exacerbated in structures where the system dynamic response progressively 

changes as the material continues to degrade due to accumulation of cyclic fatigue damage. 

Thus, monitoring structural health of the system is important in aiding the vibration control to 

correct the system’s operations and prolong the life cycle.  

In the current research study, we exploit the sensitivity of the nonlinear geometric 

stiffness to fatigue damage, by modifying the nonlinear stiffness terms in the equation of motion 

to account for degradation in the local stiffness at high-stress sites. This approach appears to be a 

promising metric for providing sensitive and robust structural health monitoring predictions of 

structures with fatigue damage precursor. The study shows nonlinear vibration-based 

measurement techniques that can sense the development of fatigue damage precursor prior to 

crack initiation. The fatigue-induced structural softening of the beam vibration response was 

evident even at excitation level where the deformations remained in the elastic domain. SEM 

observations reveal that the localized material microstructure is progressively evolves at high 

stress concentration regions, with accumulation of fatigue cycles. Nanoindentation 

measurements at the regions of high stress concentration reveal an accompanying reduction in 

the apparent stiffness (nanoindentation stiffness) of the material. This study demonstrates the 

effectiveness of nonlinear vibration response to identify fatigue damage precursors in slender 

structures through the application of global damage detection methods..  

5.2 Model Development 

The focus of this chapter is to examine the nonlinear vibration response of a slender 
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isotropic cantilever beam exposed to harmonic rotational base excitation near its fundamental 

frequency in order to observe the influence of fatigue cycles. As discussed later in this paper (in 

Section 5.3), the authors studied a cantilever beam with an aspect ratio of 8 (AR=length/width). 

The experimental results with forward stepped harmonic rotational vibration of the base 

demonstrated progressive structural softening.  An analytical model is developed in this section, 

using nonlinear Euler-Bernoulli beam theory with a tunable nonlinear structural stiffness term to 

account for the observed changes in the global structural response due to possible local changes 

in the material ‘stiffness’ near the beam root (at the fixed end). In other words, the model uses a 

global structural parameter to capture the global structural softening response; due to local 

changes in the material microstructure. In addition, the model accounts for other nonlinear 

structural stiffening and structural softening phenomena due to large deformation as a function of 

the rotational vibration level, such as: the gyroscopic stiffening and softening effects, the inertial 

softening effects and the geometric stiffening effect. 

5.2.1 Kinematics Development 

Figure 5-1 illustrates the nonlinear dynamics of a cantilever beam with a uniform cross-

section, carrying a tip mass exposed to a varying rotational base excitation. The beam is 

idealized to be inextensional; that is, stretching of the neutral axis is insignificant [27]. The beam 

is fixed rigidly at one end and free at the other end (Figure 5-1). Nonlinear Euler-Bernoulli 

theory is employed to estimate the beam tip displacement, where the effects of warping and 

transverse shear deformation are neglected [14].  

At the large peak response amplitudes encountered in this study, the nonlinear terms in 

the equations of motion become as important as the linear ones. The beam length-to-width ratio 

is long enough to cause significant nonlinear flexural deformation but is short enough to assume 
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that the beam undergoes purely planar flexural vibrations as long as the tip mass and cross-

section geometry are symmetric with respect to the beam’s centerline [1]. The first flexural mode 

is approximated to be same as the mode shape generated from solving the linear problem with tip 

mass that contains the rotary inertia effect. 

 

Figure 5-1. Slender beam with tip mass attached to a rigid fixture 

The cantilever beam is considered to be a uniform and straight isotropic structure of 

length 𝐿 and volumetric density 𝜚, clamped at the base with tip mass 𝑀 and rotary inertia 𝐽, as 

shown in Figure 5-2. The Z-axis is taken as the neutral axis associated with pure bending. It is 

assumed the loci of both shear centers and mass centers of the undeformed beam are coincident 

with the Z-axis. The base motion causes each cross section of the beam to experience an elastic 

displacement of its centroid. The dynamics of the beam with respect to Y and Z axes at the 
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undeformed length from the root of the beam to the reference point, s, and time, t, is described in 

terms of: the axial displacement 𝑤(𝑠, 𝑡), the transverse displacement 𝑣(𝑠, 𝑡) along the inertial 

coordinate system YZ, and the rotational angle 𝜓. The orthogonal unit vectors for the inertial 

coordinate system are (𝑖! , 𝑖!). The local curvilinear coordinate system at s, in the deformed 

position, has the orthogonal unit vectors (  𝑖! , 𝑖!). The rotating reference frame approach is used, 

where the reference frame is attached to the undeformed position of the beam (at the base of the 

beam). The position vector of a point is expressed as follows:  

 

Figure 5-2. Slender beam with tip mass under rotation base excitation 
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𝑹 = 𝑣𝒊𝒀 + 𝑠 + 𝑤 𝒊𝒁 + 𝜂𝒊! Eq. 5-1 

The variable 𝑠 denotes the arc-length along 𝑹, and the local deformation is 𝜂𝑖!. 

Differentiating 𝑹 with respect to 𝑡:  

𝑹 = 𝑣 − 𝜂𝜓𝑠𝑖𝑛(𝜓) 𝒊! + 𝑤 + 𝜂𝜓 cos𝜓 𝒊𝒁 + 𝛀𝑩𝒂𝒔𝒆×𝑹 Eq. 5-2 

where: 

𝛀𝑩𝒂𝒔𝒆 = 𝛺! 𝑡 𝒊𝒙 

The tracking frame primary motion is 𝛺! 𝑡 . Since the reference frame is selected a 

priori, 𝛺! 𝑡  becomes a known quantity, instead of a variable [28]. Substituting 𝛀𝑩𝒂𝒔𝒆×𝑹 and 

combining terms yields the following: 

𝑹 = 𝑣 − 𝜂𝜓𝑠𝑖𝑛 𝜓 − 𝑠Ω! − 𝑤Ω! − 𝜂Ω!𝑠𝑖𝑛 𝜓 𝒊!

+ 𝑤 + 𝜂𝜓 cos𝜓 + 𝑣Ω! + 𝜂Ω!𝑐𝑜𝑠(𝜓) 𝒊𝒁 
Eq. 5-3 

5.2.2 Equation of Motion Development 

Kinetic energy can be expressed as follows: 

𝑇 =
1
2 𝜚

!!

!!

!

!
𝑹 ∙ 𝑹  𝑑𝐴𝑑𝑠 +

1
2𝑀 𝑹 ∙ 𝑹

!!!
 Eq. 5-4 

Substituting 𝑹 into the kinetic energy expression and set: 

𝜌 = 𝜚
!!

!!
𝑑𝐴  𝐽! = 𝜚

!!

!!
𝜂𝑑𝐴  𝐽! = 𝜚

!!

!!
𝜂!𝑑𝐴 

Since the reference point coincides with the mass centroid and 𝜂 is a principal axis of the 

differential beam element, 𝐽! is set equal to zero. However, the beam rotary inertia is maintained 

in the kinetic energy. Therefore, 
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𝑇 =
1
2 𝜌 𝑣! + 𝑤! + 𝑣!𝛺!! + 𝑤 + 𝑠 !𝛺!! − 2 𝑠 + 𝑤 𝑣Ω! + 2𝑣𝑤Ω!

!

!

+ 𝐽! Ω! + 𝜓
! 𝑑𝑠

+
1
2𝑀 𝑣! + 𝑤! + 𝑣!𝛺!! + 𝑤 + 𝑠 !𝛺!! − 2 𝑠 + 𝑤 𝑣Ω!

+ 2𝑣𝑤Ω!
!!!

+
1
2 𝐽 Ω! + 𝜓

!

!!!
 

Eq. 5-5 

Performing Taylor’s expansion up to cubic nonlinearities and assuming that 𝑤 and 𝑣 are 

small but finite, the potential energy and the kinetic energy can be expressed as follows [11]:  

Π =
𝐸𝐼
2 𝑣!!" + 𝑣!!"𝑣!" 𝑑𝑠

!

!
−
1
2𝜌𝑔 (𝐿 − 𝑠)𝑣!"𝑑𝑠

!

!
−
1
2𝑀𝑔 𝑣!"𝑑𝑠

!

!
 Eq. 5-6 

𝑇 =
1
2 𝜌 𝑣! +

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣!𝛺!!
!

!

+ −
1
4 𝑣!"𝑑𝑠

!

!

!

+ 𝑠 𝑣!"𝑑𝑠
!

!
+ 𝑠! 𝛺!!

− 2𝑠 − 𝑣!"𝑑𝑠
!

!
𝑣Ω! − 𝑣Ω!

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

+ 𝐽! 𝛺!! + 2Ω!𝑣! + Ω!𝑣!𝑣!" + 𝑣!" + 𝑣!"𝑣!" 𝑑𝑠

+
1
2𝑀 𝑣! +

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

!!!

+
1
2 𝐽 𝑣

!" + 𝑣!"𝑣!"
!!!

  

Eq. 5-7 

where the dots and the primes denote the temporal and spatial derivatives, respectively. 

The approximate solutions are assumed in series form, as follows: 
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𝑣(𝑡, 𝑧) = 𝑞!(𝑡)𝑌!(𝑧)
!

!!!

 Eq. 5-8 

where 𝑌! are  known comparison functions from a complete orthogonal function set and denote 

the undamped linear mode shapes;  while 𝑞! denote the generalized modal coordinates [29]. For 

a single response mode, the assumed solution becomes: 

𝑣(𝑡, 𝑧) = 𝑞(𝑡)𝑌(𝑧) Eq. 5-9 

 Eq. 5-9 is substituted into the kinetic energy and potential energy equations. The Euler-

Lagrangian equation is then applied to the Lagrangian, 𝐿 = 𝑇 − Π as follows: 

𝜕
𝜕𝑡

∂𝐿
𝜕𝓆 −

∂𝐿
𝜕𝓆 = 0 

The equation of motion with the appropriate nonlinear terms for the system understudy 

is: 

𝑎!𝑞 + 𝑎! 𝑞!𝑞 + 𝑞𝑞𝟐 + 𝑎!Ω!𝑞! + 𝑘! − ℎ!𝛺!! 𝑞 + 𝑘! − ℎ!𝛺!! 𝑞! = 𝑎!Ω! Eq. 5-10 

Adding a viscous damping term to the equation of motion leads to the final form of the 

governing equation for a cantilever beam with varying rotational base excitation:  

𝑎!𝑞 + 𝑎! 𝑞!𝑞 + 𝑞𝑞𝟐 + 𝑐𝑞 + 𝑎!Ω!𝑞! + 𝑘! − ℎ!𝛺!! 𝑞 + 𝑘! − ℎ!𝛺!! 𝑞!

= 𝑎!Ω! 
Eq. 5-11 

The inertial coefficient including the rotary inertia (or effective mass) is: 

𝑎! = 𝜌 𝑌!𝑑𝑠
!

!
+ 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! + 𝐽𝑌!" !!! 

The nonlinear inertial coefficient including tip rotary inertia is: 
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𝑎! = 𝜌 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+ 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

+ 𝐽𝑌!" !!! 

𝑎! =
1
2 −𝜌 𝑌 𝑌!"𝑑𝑠

!

!
𝑑𝑠

!

!
+ 𝐽! 𝑌!!𝑑𝑠

!

!
−𝑀𝑌 𝑌!"𝑑𝑠

!

! !!!
+ 𝐽𝑌!!

!!!
 

The linear stiffness coefficient is: 

𝑘! =   𝐸𝐼 𝑌!!"𝑑𝑠
!

!
− 𝜌𝑔 𝐿 − 𝑠 𝑌!"𝑑𝑠

!

!
−𝑀𝑔 𝑌!"𝑑𝑠

!

! !!!
 

The gyroscopic stiffening and softening coefficient is [26, 28]: 

ℎ! = 𝜌 𝑌!𝑑𝑠
!

!
−
1
2𝜌 (𝐿! − 𝑠!)𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! −

1
2𝑀(𝐿

! − 𝑠!)𝑌!" !!! 

The nonlinear geometric stiffness coefficient: 

𝑘! = 2𝐸𝐼 𝑌!!"𝑌!"𝑑𝑠
!

!
 

The nonlinear gyroscopic stiffness coefficient: 

ℎ! =
1
2 𝜌 𝑌!"𝑑𝑠

!

!

!

𝑑𝑠
!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

 

The base excitation inertial coefficient is: 

𝑎! = 𝜌 𝑠𝑌𝑑𝑠
!

!
− 𝐽! 𝑌!𝑑𝑠

!

!
+𝑀𝐿𝑌 !!! − 𝐽𝑌! !!! 

If the rotational base motion is dropped, we recover the classical free vibration nonlinear 

equation of motion with the nonlinear inertial effect (terms two and three) and the nonlinear 

geometric stiffness [30]: 
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𝑎!𝑞 + 𝑎! 𝑞!𝑞 + 𝑞𝑞𝟐 + 𝑘!𝑞 + 𝑘!𝑞! = 0 

 As seen above, the rotational motion introduces additional nonlinearities and coupling 

between base motion and local motion. Accordingly, coefficients ℎ! and ℎ! are included in the 

equation of motion. The contribution of positive terms in ℎ! increases the gyroscopic stiffness 

while the negative terms augment the gyroscopic softening. The equation of motion produced in 

this study is an expansion of the model provided by Smith and Baruh [26], which did not include 

the nonlinear geometric stiffness and nonlinear inertial terms: 

𝑎!𝑞 + 𝑘! − ℎ!𝛺!! 𝑞 = 𝑎!Ω! 

 For flexible structures such as compliant robotic arms and legs, the nonlinear inertial 

and geometric stiffness effects become important. Furthermore, high displacement vibratory load 

may intensify the structural softening effect due to localized fatigue damage precursor at high-

stress concentration sites. This structural softening effect due to fatigue can be globally 

accounted for by introducing the nonlinear structural adjustment factor, which is discussed in the 

following section. The contribution of the rotational motion is also included in the nonlinear 

stiffness calculation (coefficient ℎ!). 

5.3 Experimental Approach 

5.3.1 Test Specimen 

The slender Blue-finished and polished spring-tempered AISI 1095 high carbon steel 

cantilever beams were used in this study. This type of steel is typically fabricated using cold 

rolling, which may produce some level of material orthotropy. Accordingly, the isotropy 

assumption is an approximation in this study. The density and the elastic modulus of the material 

are 7.85 g/cm3 and 205 GPa, respectively. The hardness is Rockwell C48 with AR= 8. The beam 
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length and cross-section area are 127 mm and 15.88x1.08 mm2, respectively. 

5.3.2 Test Setup 

To produce varying rotational base excitations, it was necessary to utilize a multiaxial 

electrodynamic shaker. The multiaxial shaker was used in this study; it consists of eight plane 

actuators and four out-of-plane actuators underneath the shaker table (Figure 5-3), which are 

mechanically coupled to the table. This architecture allows the shaker to produce a true six 

degrees-of-freedom (DoF) vibration environment (three translations and three rotations). The 

four out-of-plane actuators underneath the shaker table are employed to drive the base rotation 

about the x-axis. The other eight actuators are used to ensure a pure rotational excitation by 

reducing potential noise and misalignments. For additional details related to the multiaxial 

shaker, refer to Ernst et al. [2]. 

 

Figure 5-3. Multiaxial shaker (Team Corporation) 

The vibration experiment setup and instrumentation are shown in Figure 5-4. Each beam 
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was mounted vertically on a rigid fixture and its bolts were torqued to 22.6 N-m. The system was 

then attached to multiaxial shaker table controlled by four triaxial accelerometers. Each corner 

on the shaker table was assigned one accelerometer. Two additional accelerometers were 

mounted on the fixture as shown in Figure 5-4; these two accelerometers were used as a backup 

to ensure that the base excitation was purely rotational. The beam tip displacement was measured 

using two accelerometers, which were mounted on each side of the beam. The mass of each 

accelerometer was approximately 1.5g. 

 

Figure 5-4. Experimental setup for vibration test 

Three sets of experiments (Cases I, II, and III) were conducted. The details of each case 

are listed in Table 5-1. The beam in each case was exposed to a constant amplitude rotational 

harmonic base excitation. The loading cycles depended on the shift in the resonance frequency 

due to material softening, meaning the tests were repeated until significant change in the 

resonance was observed. Furthermore, the continual move in the resonance made it challenging 
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to control the loading cycles. Once the linear fundamental frequency for each beam was 

identified using sine-sweep excitation, the beams were exposed to the rotational harmonic base 

excitation at discrete forward dwell frequencies near the fundamental frequencies. The ramp-up 

time and dwell time for each frequency were 30s and 25s, respectively. The ramp-up time and 

dwell time at each excitation frequency ensured that steady state response conditions were met. 

The frequency step for each dwell was 0.05Hz. Therefore, the excitation frequency was 

increased 0.05Hz every 55s (30s ramp-up plus 25s dwell). 

Table 5-1. Nonlinear experimental cases 

Case 

  

Test Total Cycles (103) 

I 

Base Excitation (rad/s2) 30 
1 0-67 

2 67-135 

Linear Resonance (Hz) 42.35 
3 135-202 

4 202-269 
Max. Strain (10-3) 0.3 

II 

Base Excitation (rad/s2) 50 1 0-81 

Linear Resonance (Hz) 42.35 2 81-151 

Max. Strain (10-3) 

 

0.4 

 

3 151-220 

4 220-290 

5 290-359 

III 

Base Excitation (rad/s2) 70 1 0-81 

Linear Resonance (Hz) 42.33 
2 81-151 

3 151-224 
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Max. Strain (10-3) 0.8 4 224-294 

 

Instrumented nanoindentation is a method used for examining local mechanical 

properties of materials [31]. The technique has been frequently used to characterize a wide range 

of complex materials and structures, including film-substrate systems [32], functionally graded 

structures [33-35], single microfibers [36], and polymer nanocomposites [37-38]. In the current 

study, local mechanical properties of similarly-fatigued beams were probed via instrumented 

nanoindentation.  Samples were polished to 0.1 µm and indentation experiments were performed 

using a diamond Berkovich tip (radius of curvature approximately 100 nm). Positions along the 

beam surface were located using the optical microscope in the indenter machine. For each 

targeted location, 25 indentations were performed in a 5×5 grid, spaced 5 µm apart. The edge of 

the initial indent array was positioned approximately 10 µm from the clamped portion of the 

beam; subsequent arrays were positioned in approximately 2 mm increments, stepping away 

from the fixed boundary position and moving toward the beam-free end. Measurements were 

performed in load control mode, with a maximum applied force, P, of approximately 5000 µN. 

The applied forces resulted in indentation depths of approximately 150–200 nm (approximately 

1-2% of the cross-sectional depth). A drift correction was performed prior to indentation using a 

preload of 1 µN for 20s. A triangular force profile was used with a quasi-static loading rate of 

625 µN s-1. 

5.4 Results and Discussion 

The results of the dynamic model showed good agreement with the experimental results 

due to the utilization of nonlinearities in the equation of motion. The sensitivity of the nonlinear 
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geometric stiffness to fatigue damage precursor is discussed as well. This section also illustrates 

the link between micromechanics and global nonlinear dynamics, which is a powerful approach 

for detecting fatigue damage precursors. 

5.4.1 Experimental Results of Nonlinear Vibration Tests 

Each experimental set (Cases I, II, and III) contained four to five step-dwell tests (Table 

5-1; Figure 5-5 and  

Figure 5-7). The objective of conducting multiple tests for each case was to capture the 

shift in the fundamental frequency and the increase in the response amplitude due to repeated 

dwells, which are symptomatic of localized material softening. Figure 5-5 to  

Figure 5-7 show that the resonance frequency continued to drop every time the test was 

repeated due to ongoing accumulation of fatigue damage. The nonlinear softening effect on the 

resonance frequency was apparent in the increase in the beam tip response amplitude, as shown 

in Figure 5-5, 5-6 and 6-7. The frequency-response curves were skewed to the left, indicating a 

softening nonlinearity due to material change that eventually surpassed the structural nonlinear 

geometric stiffening. It can be said for all cases that the accumulation of loading cycles led to 

continuing fatigue damage accumulation, resulting in a corresponding increase in the maximum 

beam tip deflection reduction in the local stiffness, with the reduction magnitude being 

proportional to the stress level.  
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Figure 5-5. Experimental and analytical nonlinear softening response for Case I 

 
Figure 5-6. Experimental and analytical nonlinear softening response for Case II 
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Figure 5-7. Experimental and analytical nonlinear softening response for Case III 

Malatkar [11] encountered similar softening phenomena in a cantilever beam exposed to 

transverse nonlinear base excitations. Malatkar avoided fatigue damage due to high amplitude 

loading by reducing the number of dwells and repeating each experiment only twice. The 

authors’ observation of the softening behavior at the fundamental mode is similar to the 

softening response seen in harvester piezoceramics investigations [39-41]; however, these 

studies did not explain the cause of the softening. Stanton et al. [42] assumed that the nonlinear 

softening was due to material nonlinearities in their piezoceramic device. Softening trends were 

also witnessed by Saavedra and Cuitino in their study on a cracked mild steel beam exposed to 

harmonic vibratory loads [43]. Villanueva et al. encountered the softening response for the first 

mode of a nano-cantilever beam, where they assumed residual stresses due to the fabrication 

process as a possible instigator [44].  
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Figure 5-8. Maximum tip displacement response for each test, as a function of number of fatigue 

cycles 
 

To verify the potential damage accumulation in the current study, nano-indentation tests 

were performed on a similarly-fatigued beam near the fixed boundary, which was an area of 

relatively high stress. The local elastic modulus of a sample exposed to approximately 150,000 

cycles was compared to an unfatigued control sample. Figure 5-9 displays the results of the 

indentation experiments. The location x=0 indicates the clamped edge during cantilever base 

excitation, which was the expected position of maximum stress. The apparent indentation 

stiffness, as measured by the unloading curve of the nano-indentation test, is shown as a function 

of x. The horizontal dotted line in Figure 5-9 shows the average value of the indentation stiffness 

for the unfatigued sample (0 cycle). Indentation results for the fatigued specimen showed a clear 

reduction in the local apparent elastic modulus near the clamped position of the beam. The 
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showed an average indentation stiffness of approximately 120 GPa for the fatigued sample. 

Stepping away from the clamped position, the average apparent stiffness eventually approached 

183 GPa. The results suggest that the first few hundred nanometers of the sample surface were 

becoming apparently more compliant as a result of the high number of tension-compression 

cycles. The average indentation stiffness of an unfatigued (control) sample obtained from the 

nanoindentation measurement was approximately 225 GPa (Figure 5-9). 

 
Figure 5-9. Local mechanical characterization of fatigued beams as determined by nano-

indentation 

 
To further investigate the local change in the beam material, and in the associated 

stiffness, the microstructure of the material near the root of the beam of a similarly-fatigued test 

specimen was examined via Scanning Electron Microscopy (SEM). Figure 5-10A shows the 

microstructure of an unfatigued control sample, while Figure 5-10B shows the microstructure of 
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clamped position of the beam.  The control sample showed a uniform microstructure throughout, 

while the surface of the fatigued beam near the fixed boundary displayed a relatively high 

density of long dark slender elliptical regions. The concentration of these long dark ellipses 

decreased with respect to distance from the beam clamped boundary. According to the literature, 

microstructural variation near these highly stressed regions could be due to localized dislocation 

motion resulting in the formation of persistent slip bands (PSBs) [45-50].  Dislocation motion is 

the primary mechanism of plastic deformation in metals and has been shown to result in slip 

within the grains in similar polycrystalline materials [46-47]. The PSB band is often believed to 

be a preferential precursor mechanism under strain cycling, accompanied by extrusion and 

intrusion regions [48]. The formation of the extrusion or intrusion regions is due to the 

dislocation motion under cyclical loading (compression-tension), which intensifies micro-plastic 

deformation.  

 The indentation tests cannot fully describe variations in the dynamic behavior of the 

beam, but are an important first step in elucidating how cyclic fatigue damage accumulation may 

affect surface microstructure and thus local mechanical properties in areas of high stress 

concentrations. It is important to point out that the approximate maximum strain near the root is 

0.8x10-3 strain, which is still in the linear region of the stress-strain curve for 1095 steel. The 

combination of (1) the increase in the nonlinear response of the beam and (2) the change in 

localized apparent material stiffness through instrumented indentation is able to identify early 

strain localization through potential PSB formation, which is a known precursor to crack 

formation [48-50]. 
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Figure 5-10 Microstructure of (a) unfatigued control sample with uniform microstructure and (b) 

fatigued specimen near clamped position (high density of long dark ellipses) 

5.4.2 Model Results 

The dynamic base excitations in Case I, II, and III produced nonlinear responses, which 

led to localized damage caused by local evolution in the material micromechanical properties 

near the clamped boundary. The application of linear dynamic theory does not account for the 

structural degradation, thus, it limits the accuracy of the dynamic response and the structural 

health. Attempts were made to tune the linear stiffness term in the equation of motion to track the 

fatigue degradation; however, minute modifications to the linear stiffness term caused drastically 

unrealistic shifts in resonance frequency. Thus, nonlinear dynamics analysis was implemented 

where the nonlinear geometric stiffness was modified to account for the fatigue-induced material 

evolution near the fixed end. This modification to the nonlinear stiffness provided a better curve 

fit to the experimental results. Consequently, the nonlinear dynamics analytical approach was 

implemented and modified to incorporate the material evolution near the clamped end. The 
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nonlinear equation of motion was solved numerically using the Runge-Kutta method, where the 

integration time step was 10-4s. The integration time limits were set from 0s to 30s to ensure that 

steady state condition was reached. The accelerometer mass was included in the model, but its 

contribution was relatively minute. 

It is clear that cyclic fatigue played an important role in altering the results. Damage 

accumulated near the beam root due to ramp-up and dwell cycles, causing the beam to soften 

locally (hence the reduction in resonant frequency and increase the beam tip response 

amplitude). The maximum response amplitudes in Figure 5-5 through  

Figure 5-7 for Cases I, II, and III (base excitations: 30, 50, and 70 rad/s2, respectively) are 

plotted as a function of loading cycles in Figure 5-8. The number of loading cycles for each case 

is reported in Table 5-1. The beam tip maximum response amplitudes increased as a result of 

increasing the excitation amplitudes; however, for each excitation level, the maximum response 

amplitudes increased logarithmically as a function of the loading cycles (Figure 5-8) due to the 

structural softening caused by the cyclic fatigue damage accumulation. 

The structural softening response in the beam, observed in the nonlinear dynamic 

experiments as a damage-precursor for cyclic fatigue damage, is captured in the analytic model 

by adjusting the nonlinear geometric stiffness term, 𝑘∗ in the structural equation of motion (Eq. 

5-12). The governing equation was modified as follows: 

𝑎!𝑞 + 𝑎! 𝑞!𝑞 + 𝑞𝑞𝟐 + 𝑐𝑞 + 𝑎!Ω!𝑞! + 𝑘! − ℎ!𝛺!! 𝑞 + 𝑘∗ − ℎ!𝛺!! 𝑞!

= 𝑎!Ω! 
Eq. 5-12 

where, parameter 𝑘∗ was modified as follows: 

𝑘∗ = 𝛿𝑘! 
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where the modified nonlinear stiffness, 𝑘∗, is the geometric stiffness, 𝑘!, multiplied by the 

nonlinear adjustment factor, 𝛿. The model results for the response amplitude superimposed on 

top of the experimental data in Figure 5-5-7 illustrate that calibrating the geometric stiffness term 

in the model can provide reasonable agreement between the experiment and model results. The 

nonlinear adjustment factor for each run is plotted as a function of the total number of cycles in 

Figure 5-11, Figure 5-13, and Figure 5-15. The experimental and numerical results show that the 

nonlinear adjustment factor logarithmically declines as the number of loading cycles increases. 

Furthermore, the adjustment factor has a negative sign, which is an indication of structural 

softening due to fatigue, even though the stresses in the beams were still in the elastic region. 

The logarithmic decay in the structural stiffness was consistent with fatigue behavior [51].  

For completeness, the damping ratio was plotted as a function of fatigue cycles as shown 

in Figure 5-11, Figure 5-13, and Figure 5-15. It can be seen that the beams displayed slight 

logarithmic decay in damping as a function of cycles. The beams may exhibit nonlinear damping 

behavior, which is beyond the scope of this chapter and is worthy of further future investigation. 

Nonetheless, 𝛿 had significantly more influence on the nonlinear geometric stiffness term than 

on the damping term. 
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Figure 5-11. Case I: Nonlinear stiffness and damping changes due to fatigue cycles  

 

 
Figure 5-12. Case II: Nonlinear stiffness and damping changes due to fatigue cycles 
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Figure 5-13. Case III: Nonlinear stiffness and damping changes due to fatigue cycles 

 
Figure 5-14. Case I: Nonlinear stiffness and damping changes as a function of displacement  
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Figure 5-15. Case II: nonlinear stiffness and damping changes as a function of displacement 

 
Figure 5-16. Case III: Nonlinear stiffness and damping changes as a function of displacement  

Damping (%) = -1.2 x + 11.8 

K*/K2= -12.1 x + 56.5 

-6.0 

-5.5 

-5.0 

-4.5 

-4.0 

-3.5 

-3.0 

-2.5 

-2.0 

-1.5 

-1.0 

-0.5 

0.0 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

4.90 4.92 4.94 4.96 4.98 5.00 5.02 

N
on

lin
ea

r 
St

ifn
es

s 
R

at
io

  

D
am

pi
ng

 (%
) 

Dispalcement (mm) 

Damping (%) = -0.4 y + 7.9 

K*/K2  = -0.5 y + 3.8 

-4.0 

-3.5 

-3.0 

-2.5 

-2.0 

-1.5 

-1.0 

-0.5 

0.0 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 

N
on

lin
ea

r 
St

ifn
es

s 
R

at
io

  

D
am

pi
ng

 (%
) 

Dispalcement (mm) 



 

 178 
 

 
It is reasonable to conclude that the local material microstructural evolution decreased the 

resonance frequency when it was appreciable, that is, when the base excitation amplitude was 

large. The local material evolution caused an increase in the tip deflection. Therefore, it was 

necessary to include the evolution in the nonlinear stiffness as a function of the beam response 

amplitude for each excitation. Indeed, the drop in the nonlinear stiffness of the beam grew 

linearly with an increase in the response amplitude and base excitation amplitude, as shown in 

Figure 5-12, Figure 5-14, and Figure 5-16. This is because the beams experienced three 

competing mechanisms simultaneously: 1) structural stiffening effect due to nonlinear geometric 

and kinematics effects at high amplitude response, 2) nonlinear structural softening due to 

inertial, and 3) structural softening effect caused by material microstructural evolution due to 

fatigue damage precursor. These three mechanisms all amplified with the increase in the base 

excitations, beam dynamic response, and fatigue cycles. The change in the damping ratio as a 

function of displacement is illustrated in Figure 5-12, Figure 5-14, and Figure 5-16.  

The dynamic trends were consistent in all cases with the exception of Case II, where the 

resonance frequency in Tests 2, 3 and 4 remained unchanged at approximately 42.10Hz; the 

resonance frequency decreased in Test 5. It is believed that the competing mechanisms between 

the stiffening effect (due to high response amplitude influence on geometric and gyroscopic 

stiffness) and the softening effect (due to nonlinear inertia term and gyroscopic softening) caused 

this deviation. Eventually, the material evolution (increase in the apparent stiffness) overcomes 

the nonlinear dynamic stiffening effect due to the continual damage induced by the high cycle 

fatigue and the beam tip response continued to increase while the resonance frequency 

decreased. 



 

 179 
 

5.5 Summary and Conclusion  

This chapter reports a unique nonlinear approach to detect vibration fatigue damage 

precursor when a structure is subjected to rotational excitation. The damage precursor occurred 

prior to any crack initiation in toughened steel structures. Nonlinear terms due to the coupling 

effect of the primary and secondary motions are included in the equation of motion. Exploiting 

the sensitivity of the nonlinear geometric stiffness enabled the detection of fatigue damage 

precursor. A damage precursor detection approach, based on nonlinear varying rotational 

vibration testing and modeling, is presented for an elastic isotropic cantilever beam. The 

nonlinear dynamic model provided a methodology for estimating the nonlinear dynamic 

response due to local material degradation prior to crack initiation. This was accomplished by 

adjusting the nonlinear geometric stiffness term in the equation of motion. The effect of viscous 

damping was also studied and found to be insignificant when compared to the geometric stiffness 

term. It was also found that there are three opposing mechanisms that influenced the beam 

response: 1) stiffening due to high beam tip response amplitude and gyroscopic motion, 2) 

softening due to inertial forces and gyroscopic load, and 3) softening due to localized 

microscopic materials damage precursor (surface material compliance).  
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Chapter 6  Nonlinear Structural Dynamic Response under Multiaxial 

Vibrations: Rotational and Transverse Base Excitations 

To be submitted to Shock and Vibration (2015) 

Chapter 6 is an article being prepared for publication in Shock and Vibration Journal. The 

article presents analytical and experimental results that show structural dependency on the 

phase difference between different axes of excitation, when a structure is exposed to 

multiaxial vibration. Results show that cross-axis coupling between rotation and 

simultaneous transverse excitations promoted nonlinear amplification/attenuation in the 

response of the structure, depending on the phase relationship between the rotational and the 

translational excitations. Authors are Mr. Ed Habtour, Dr. Samuel C. Stanton, and Professor 

Abhijit Dasgupta. Mr. Ed Habtour (first author) conducted the vibration experiments and 

developed the analytical model. Dr. Samuel Stanton at the Army Research Office checked the 

derivations. Professor Dasgupta provided technical and academic guidance in this effort.  

Abstract:  

This chapter presents a nonlinear dynamic analytical model and experimental results 

to investigate the dynamic response of a cantilever metallic beam structure under varying 

combinations of rotational and translational harmonic base excitation in the transverse 

direction. The study demonstrates the importance of cross-axis coupling between the 

rotational and translational harmonic base excitations, especially as a function of the relative 

phase angle between the two excitations.  The experiments are performed using a unique six 

degree-of-freedom electrodynamic shaker with high degree of controllability over the 

excitation frequency spectrum of each axis, the relative phase between different axes for 

harmonic excitation, and cross-axis coherence for random vibration.  
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The analytic and the experimental results show that increasing the phase angle 

between the rotational and translational excitations from 0o-180o increased the beam tip 

response and the beam nonlinear stiffening effect. The beam response decreased as the phase 

increased from 180o-360o, where 360o is equivalent to 0o. However, the beam tip 

displacement predictions obtained from the model do not agree with the experimental results. 

The discrepancy is due to the buildup of fatigue damage during the experiments, which is 

manifested by a shift in the resonance frequency and an increase in the response amplitude as 

a function of the accumulated number of vibration cycles. The current nonlinear analytical 

model does not take into account this reduction in the structural stiffness due to accumulation 

of cyclic fatigue damage. Exploiting the sensitivity of the phase angle between the rotation 

and transverse base excitation enabled structural control without changing the loading 

amplitudes. 

6.1 Introduction 

The reliability of mechanical systems exposed to vibration environment depends 

primarily on the vibration response of their internal components. Designers rely on the use of 

vibration isolators, stiffeners and dampers in mechanical systems, without full understanding 

of the dynamic loads being transmitted though the system, Uninformed use of vibration 

isolators, stiffeners, and dampers is inadequate for sustaining the desired life-cycle of 

mechanical systems operating, which are often inadequate for sustaining the desired life-

cycle in vibratory environments. There are two major reasons for these conventional 

strategies. The first reason is that cost and time limitations often drive designers to employ 

linear modeling tools to predict the response of structures. Linear models are inaccurate in 

slender mechanical structures when the amplitudes of oscillations are sufficiently high and 
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the natural frequencies become increasingly dependent on these amplitudes [1]. Realistically, 

many slender mechanical systems have to operate beyond the regime of linear dynamic 

response and consequently, linear response models of such systems have severe limitations.  

Second, designers often have an inadequate understanding of how the nonlinear 

responses of mechanical components are aggravated when exposed to complex vibrational 

environments containing multiaxial excitations. Many mechanical systems such as aircraft, 

rotorcraft, and automotive and military platforms are exposed to complex dynamic 

environments that tend to be multiaxial. It is essential to characterize how the dynamic 

excitations in those systems are transmitted through the structure and into critical 

components. Systems exposed to such multiaxial vibration experience synergistic dynamic 

nonlinearities due to cross-axes coupling [2–4]. One of the key challenges in recreating 

vibration conditions during design and qualification testing in the laboratory is reproducing 

simultaneous multiaxial vibratory environments that structures experience during their 

operational cycle. Dynamic response predictions under multiaxial dynamic loading have 

been shown to be extremely complex and less tractable than uniaxial models [5, 6]. 

Furthermore, multiaxial shakers are extremely complex to develop and use.  The traditional 

vibration testing practice therefore has been to sequentially apply uniaxial excitation to test 

articles along three orthogonal axes then superimpose the responses. Such sequential testing 

is well suited to traditional uniaxial shakers and has been used to test products even though 

most field data indicate that these products are exposed to multiaxial dynamic loading 

environments [2–4, 7, 8]. In fact, military and commercial standards have also traditionally 

adopted this practice of sequential uniaxial excitation as a compromise for simultaneous 

multiaxial excitation. The vibration profiles used for such uniaxial tests are provided in 
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standards such as MIL-STD-810G [7].  

Thus, serious compromises must be made in the experimental design to perform 

meaningful sequential tests on uniaxial electrodynamic shakers [3]. One of those 

compromises is the application of the principle of linear superposition, which in some cases 

generates misleading results. Furthermore, increasing the oscillation amplitude (as in 

accelerated stress testing) increases the nonlinear cross-axis coupling and exacerbates the 

inaccuracy of the linear superposition approach. To accurately estimate the dynamic response 

of a structure under multiaxial base excitations, it is important to include the nonlinearities in 

the analysis.  

It was apparent during the literature review that research related to multiaxial 

vibrations is limited. One of the common approaches in industry to simulate multiaxial 

environments is termed ‘High Accelerated Life Testing’ (HALT©), which is widely used in 

industry during prototyping, and product qualification [2]. The basic idea of HALT is to 

induce random repetitive shock response of the shaker table, using multiple pneumatic 

impact actuators located at different locations of the table along different orientations 

(relative to the table axis system).  The actuators are fired in some pre-selected sequence to 

generate a sequence of ‘bursts’ of quasi-random shock response spectra, based on the table 

dynamics. The typical excitation frequency spectrum for most commercially available HALT 

shakers ranges from 10-10 kHz. The shape of this spectrum cannot be controlled and is a 

function of the table design, fixture design and test specimen dynamics. The average RMS 

(Root Mean Square) amplitude of the excitation is usually controlled only along one axis 

(usually in the direction orthogonal to the plane of the shaker table).  The response along the 

other axes therefore varies in some proportional manner but is not independently 
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controllable. In summary, the shaker table and the structure under test are exposed to 

inadequately controlled multiaxial random excitation, which makes it difficult to accurately 

predict dynamic response of the structure [2, 7].  

Studies evaluating the merits of multiaxial vibration testing using multiaxial 

electrodynamic shakers are limited [2–4, 9–11]. These studies have pointed out the 

shortcomings of the sequential uniaxial vibration method. These studies also reported 

evidence of different failure modes and fatigue durability between uniaxial and multiaxial 

vibration loading generated by multiaxial shakers. Whiteman and Berman performed a 

uniaxial translational random vibration experiment in the transverse direction then repeated 

the same test for sequential excitation in the axial direction followed by the transverse 

direction and compared the results to simultaneous triaxial translational excitation [9]. Their 

study reports that the excitation in the axial direction did not weaken the specimens; on the 

contrary, it increased the samples’ fatigue life. Whiteman and Berman did not provide a 

theoretical explanation or approach to predict structural response or life-cycle of the 

specimens under multiaxial excitation [9]. French et al. performed durability experiments on 

notched beam specimens using both sequential uniaxial and simultaneous biaxial testing on a 

hydraulic triaxial shaker [10]. The base excitation signal was a sine chirp from 10–35 Hz 

over 30 s. The peak-to-peak acceleration amplitude was held constant at 4G. The sequential 

uniaxial and simultaneous biaxial experiments produced different damage accumulation rates 

and different failure modes. Gregory et al. utilized a six degrees-of-freedom (DoF) multiaxial 

electrodynamic shaker to perform a dynamic characterization for a short cantilever beam 

with large tip mass [11]. The beams were subjected to uniaxial and multiaxial broadband 

random excitations with a bandwidth of 20–2000Hz at low acceleration power spectrum 
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density (PSD) input level of 0.0032 G2/Hz. The experimental results showed significant 

differences in the beam response for uniaxial and multiaxial excitations. Ernst et al. 

experimentally investigated the synergy between axial and transverse translational excitation 

of an electronic circuit card containing tall, heavy electronic components [4]. The study 

uncovered nonlinear dynamic coupling between different response modes, in response to 

simultaneous transverse and axial random vibration base excitation. The combination of 

inertial nonlinearity (due to component heavy mass) and fatigue damage accumulation in the 

system produced a softening dynamic response and a drop in the components’ resonance 

frequencies [4].  

Limited analytical studies are found in the literature that dealt with structures under 

multiaxial base excitations [12, 13]. Esmaeili et al. developed equations of motion for a 

micro-gyroscope, which was modeled as a linear cantilever beam with a tip mass exposed to 

excitation at the base [12]. The governing equations were derived from Hamilton’s principle 

with six DoF base motion where torsion and nonlinear effects were neglected. Kumar et al. 

studied the effects of structural and inertial nonlinearities in near-resonant response for a 

flexible inextensional slender cantilever beam exposed to base excitation combined with 

simultaneously parametric excitation [13]. The parametric excitation of a system transpired 

when the resonance frequency to the excitation frequency ratio is close to n/2 (n = 1, 2, 3…) 

To simulate simultaneous biaxial base excitation the beam was oriented at 80o, which induce 

both direct and parametric excitations using a uniaxial shaker. The energy method was 

utilized to derive the governing equations, where rotational inertia and the torsion were 

assumed to be negligible. 
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The motivation for the multiaxial vibration research effort in this study is prompted 

by the serious need to understand “real-world” complex dynamic systems operating in 

multiaxial vibratory environments such as helicopter blades, aircraft wings, accelerometers, 

sensors, MEMS, energy harvesters and electronics. The need to understand the nonlinear 

response of structures exposed to complex dynamic loads requires the use of a fully 

controllable multiaxial excitation shaker. The objectives of this research effort are to 

understand the nonlinear dynamic response of a cantilever beam exposed to combined 

rotational and translational base excitation and to provide an analytical approach to include 

the cross-axis coupling effects experienced under multiaxial excitations due to geometric and 

inertial nonlinearities. A slender cantilever beam is selected in this research effort because it 

is one of the fundamental elements of an engineering structure. The dynamics of a beam can 

provide important insights into the nonlinear response of many complex flexible structures 

such as helicopter rotor blades, spacecraft antennae, flexible satellite structures, airplane 

wings, robotic arms, and electronics interconnects. In this research effort, an isotropic 

metallic slender cantilever beam is exposed to combined base rotation and base translation in 

the transverse direction, using a unique multiaxial electrodynamic shaker capable of 

simultaneously producing three translational and three rotational excitations. The time-

varying flexural base rotation and transverse excitations are chosen to be harmonic functions 

with constant amplitudes and the same constant frequency for both axes, for all experiments. 

The phase angle between the rotation and transverse base excitations was varied from 0o-

360o. The analytical and experimental results revealed the important of the phase relationship 

between the rotation and transverse base motions, which can amplify or mitigate the 

nonlinear structural response. Manipulating the phase relation between the base excitations 
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can be a useful parameter in controlling the structural response without applying any changes 

to the loads at the base. The analytical model shows (and experimental measurements 

confirm) that increasing the phase angle from 0o-180o increases the beam tip response and the 

beam shows structural stiffening, due to an overall increase in the combined base excitation.  

The results also reveal that increasing the phase angle from 180o-360o creates the opposite 

effect, where the beam tip response decreases. However, the analytical model does not 

predict the absolute beam tip response accurately. This is due to possible localized micro-

plasticity at the high stress concentration site near the fixed end of the beam, caused by high-

cycle fatigue [14]. The analytical model provides an option to include materials 

nonlinearities, as discussed in previous chapters of this dissertation, but is not considered 

here since it is beyond the scope of this chapter.   

 
6.2 Model Development 

This section describes the nonlinear dynamics of a cantilever beam with uniform 

cross-section carrying a tip mass exposed to a selected harmonic combination of rotational 

and translational base excitation in the flexural direction, as shown in Figure 6-1. The beam 

is idealized to be inextensional; that is, stretching of the neutral axis is insignificant [15]. The 

beam is rigidly fixed at one end and free at the other end, as shown in Figure 6-1. Nonlinear 

Euler-Bernoulli theory is employed to estimate the beam tip displacement, where the effects 

of warping and shear deformation are neglected [16]. 
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Figure 6-1. Slender beam with tip mass attached to a rigid fixture 

The significance of large peak response amplitude is that the nonlinear terms in the 

equations of motion become as important as the linear ones. Since the beam length to width 

ratio is kept short (AR<30), it can be assumed that the beam undergoes purely planar flexural 

vibrations as long as the tip mass and cross-section geometry are symmetric with respect to 

the beam’s centerline [14]. The first flexural mode is assumed to be the exact linear mode 

shape generated from solving the linear problem with tip mass that contains the rotary inertia 

effect [17].    
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Figure 6-2. Slender beam with tip mass under combined rotational and translational base 

excitation in the flexural direction 

The cantilever beam is considered to be a uniform and straight isotropic structure of 

length 𝐿, clamped at the base, with volumetric density 𝜚, tip mass 𝑀 and rotary inertia 𝐽, as 

shown in Figure 6-2. The Z-axis is taken as the neutral axis associated with pure bending. It 

is assumed the loci of both shear centers and mass centers of the undeformed beam are 

coincident with the Z-axis. The base motion causes each cross section of the beam to 

experience an elastic displacement of its centroid. The dynamics of the beam with respect to 

Y and Z axes at the undeformed length from the root of the beam to the reference point, s, and 

time, t, is described in terms of the axial displacement 𝑤(𝑠, 𝑡), the transverse displacement 
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𝑣(𝑠, 𝑡) along the inertial coordinate system YZ, and the rotational angle 𝜓. The orthogonal 

unit vectors for the inertial coordinate system are (𝑖! , 𝑖!). The local curvilinear coordinate 

system at s, in the deformed position, has the orthogonal unit vectors (  𝑖! , 𝑖!). The rotating 

reference frame approach is used, where the reference frame is attached to the undeform 

position of the beam (at the base of the beam). The position vector of a point is expressed as 

follows:  

𝑹 = 𝑣𝒊𝒀 + 𝑠 + 𝑤 𝒊𝒁 + 𝑹𝒍𝒐𝒄𝒂𝒍 Eq. 6-1 

The variable 𝑠 denotes the arc-length along 𝑹. 

𝑹𝒍𝒐𝒄𝒂𝒍 = 𝜂𝒊! 

Therefore,  

𝑹 = 𝑣𝒊𝒀 + 𝑠 + 𝑤 𝒊𝒁 + 𝜂𝒊! Eq. 6-2 

where, 

𝒊! = 𝑐𝑜𝑠 𝜓 𝒊! + 𝑠𝑖𝑛 𝜓 𝒊! 

Substituting 𝒊! into Eq. 6-2 yields: 

𝑹 = 𝑣 + 𝜂𝑐𝑜𝑠(𝜓) 𝒊! + 𝑠 + 𝑤 + 𝜂𝑠𝑖𝑛 𝜓 𝒊𝒁 Eq. 6-3 

Differentiating 𝑹 with respect to 𝑡:  

𝑹 = 𝑉! + 𝑣 − 𝜂𝜓𝑠𝑖𝑛(𝜓) 𝒊! + 𝑤 + 𝜂𝜓 cos𝜓 𝒊𝒁 + 𝛀𝑩𝒂𝒔𝒆×𝑹 Eq. 6-4 

Where the dots denote the time derivatives, and  

𝛀𝑩𝒂𝒔𝒆 = 𝛺! 𝑡 𝒊𝑿 
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The tracking frame primary motion is 𝛺! 𝑡 .  Since the reference frame is selected a 

priori, 𝛺! 𝑡  becomes a known quantity, instead of a variable [18]. Substituting Eq. 6-3 into 

Eq. 6-4 and combining terms yields the following: 

𝑹 = 𝑉! + 𝑣 − 𝜂𝜓𝑠𝑖𝑛 𝜓 − 𝑠Ω! − 𝑤Ω! − 𝜂Ω!𝑠𝑖𝑛 𝜓 𝒊!

+ 𝑤 + 𝜂𝜓 cos𝜓 + 𝑣Ω! + 𝜂Ω!𝑐𝑜𝑠(𝜓) 𝒊𝒁 
Eq. 6-5 

The kinetic energy can be expressed as follows: 

𝑇 =
1
2 𝜚

!!

!!

!

!
𝑹 ∙ 𝑹  𝑑𝐴𝑑𝑠 +

1
2𝑀 𝑹 ∙ 𝑹

!!!
 Eq. 6-6 

Set:  

𝜌 = 𝜚
!!

!!
𝑑𝐴                          𝐽! = 𝜚

!!

!!
𝜂𝑑𝐴                  𝐽! = 𝜚

!!

!!
𝜂!𝑑𝐴 

Since the reference point coincides with the mass centroid and 𝜂 is a principal axis of 

the differential beam element, 𝐽! is set equal to zero. However, the beam rotary inertia is 

maintained in the kinetic energy. Substituting Eq. 6-5 into the kinetic energy expression, Eq. 

6-6 yields the following: 
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𝑇 =
1
2 𝜌 𝑣! + 2𝑣𝑉! + 𝑉!! + 𝑤! − 2𝑠𝑣𝛺! − 2 𝑠 + 𝑤 𝑉!𝛺! − 2𝑣𝑤𝛺!

!

!

+ 2𝑣𝑤𝛺! + 𝑣!𝛺!! + 𝑤 + 𝑠 !𝛺!! + 𝐽! 𝛺! + 𝜓
! 𝑑𝑠

+
1
2𝑀 𝑣! + 2𝑣𝑉! + 𝑉!! + 𝑤! − 2𝑠𝑣𝛺! − 2 𝑠 + 𝑤 𝑉!𝛺!

− 2𝑣𝑤𝛺! + 2𝑣𝑤𝛺! + 𝑣!𝛺!! + 𝑤 + 𝑠 !𝛺!!
!!!

+
1
2 𝐽 𝛺! + 𝜓

!

!!!
 

Eq. 6-7 

 Performing Taylor’s expansion up to cubic nonlinearities and assuming that 𝑤 and 𝑣 

are small but finite, applying inextensionality and neglecting torsion, the potential energy and 

the kinetic energy can be expressed as follows:  

Π =
𝐸𝐼
2 𝑣!!" + 𝑣!!"𝑣!" 𝑑𝑠

!

!
−
1
2𝜌𝑔 (𝐿 − 𝑠)𝑣!"𝑑𝑠

!

!
−
1
2𝑀𝑔 𝑣!"𝑑𝑠

!

!
 Eq. 6-8 
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𝑇 =
1
2 𝜌 𝑣! + 2𝑣𝑉! + 𝑉!! +

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑉!𝛺!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑣𝛺! −

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!
𝑣𝛺! + 𝑣!𝛺!!

+ 𝑠 −
1
2 𝑣!"𝑑𝑠

!

!

!

𝛺!!

+ 𝐽! 𝛺!! + 2Ω!𝑣! + Ω!𝑣!𝑣!" + 𝑣!" + 𝑣!"𝑣!" 𝑑𝑠

+
1
2𝑀 𝑣! + 2𝑣𝑉! + 𝑉!! +

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑉!𝛺! + 𝑣!"𝑑𝑠

!

!
− 2𝑠 𝑣𝛺!

−
𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!
𝑣𝛺! + 𝑣!𝛺!! + 𝑠 −

1
2 𝑣!"𝑑𝑠

!

!

!

𝛺!!

!!!

+
1
2 𝐽 𝛺!

! + 2Ω!𝑣! + Ω!𝑣!𝑣!" + 𝑣!" + 𝑣!"𝑣!"
!!!

 

Eq. 6-9 

where, the primes denote the spatial derivatives.  The approximate solutions are assumed in 

the form: 

𝑣(𝑡, 𝑧) = 𝑞!(𝑡)𝑌!(𝑧)
!

!!!

   Eq. 6-10 

where, the trial functions, 𝑌!, are known independent comparison functions from a complete 

orthogonal function set and denote the undamped linear mode shapes, while 𝑞! denotes the 

generalized modal coordinates [19].  For a single mode, the assumed solution becomes: 
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𝑣(𝑡, 𝑧) = 𝑞(𝑡)𝑌(𝑧)   Eq. 6-11 

 Eq. 6-11 is substituted into the kinetic energy and potential energy equations (Eq. 

6-8, and Eq. 6-9). The Euler-Lagrange equation is then obtained for the Lagrangian 

functional, 𝐿 = 𝑇 − Π, as follows: 

𝜕
𝜕𝑡

∂𝐿
𝜕𝓆 −

∂𝐿
𝜕𝓆 = 0   Eq. 6-12 

The equation of motion with the appropriate nonlinear terms for the system under 

study is: 

𝑎!𝑞 + 𝑎! 𝑞!𝑞 + 𝑞𝑞𝟐 + 𝑎!Ω!𝑞! + 𝑘! − 𝑛!𝑉!𝛺! − ℎ!𝛺!! 𝑞

+ 𝑘! − ℎ!𝛺!! 𝑞! = 𝑎!𝑉! + 𝑎!Ω! 
Eq. 6-13 

 The inertial coefficient including the rotary inertia (or effective mass) is:  

𝑎! = 𝜌 𝑌!𝑑𝑠
!

!
+ 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! + 𝐽𝑌!" !!! Eq. 6-14 

 The nonlinear inertial coefficients including tip rotary inertias are:  

𝑎! = 𝜌 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+ 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

+ 𝐽𝑌!" !!! Eq. 6-15 

𝑎! =
1
2 −𝜌 𝑌 𝑌!"𝑑𝑠

!

!
𝑑𝑠

!

!
−𝑀𝑌 𝑌!"𝑑𝑠

!

! !!!
+ 𝐽! 𝑌!!𝑑𝑠

!

!
+ 𝐽𝑌!!

!!!
   Eq. 6-16 

The first order structural stiffness coefficients (or effective elastic structural stiffness 

coefficients) are:  

𝑘! =   𝐸𝐼 𝑌!!"𝑑𝑠
!

!
− 𝜌𝑔 𝐿 − 𝑠 𝑌!"𝑑𝑠

!

!
−𝑀𝑔 𝑌!"𝑑𝑠

!

!
 Eq. 6-17 
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𝑛! = 2𝜌 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!
+ 2𝑀 𝑌!"𝑑𝑠

!

! !!!
   Eq. 6-18 

ℎ! =   𝜌 𝑌!𝑑𝑠
!

!
−
1
2𝜌 𝐿! − 𝑠! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! −

1
2𝑀 𝐿! − 𝑠! 𝑌!"

!!!
   Eq. 6-19 

The third order nonlinear geometric elastic stiffness coefficients are:  

𝑘! = 2𝐸𝐼 𝑌!!"𝑑𝑠
!

!
 Eq. 6-20 

ℎ! =
1
2 𝜌 𝑌!"𝑑𝑠

!

!

!

𝑑𝑠
!

!
+
1
2𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

 Eq. 6-21 

The base excitation inertial coefficients are:  

𝑎! = 𝜌 𝑌𝑑𝑠
!

!
+𝑀𝑌 !!! Eq. 6-22 

𝑎! = −𝜌 𝑠𝑌𝑑𝑠
!

!
−𝑀𝑠𝑌 !!! + 𝐽! 𝑌!𝑑𝑠

!

!
+ 𝐽𝑌! !!!   Eq. 6-23 

Adding a viscous damping term to the equation of motion leads to the final form of 

the governing equation for this cantilever beam whose base is undergoing simultaneous 

flexural rotation and transverse translational excitation: 

𝑎!𝑞 + 𝑎! 𝑞!𝑞 + 𝑞𝑞! + 𝑐𝑞 + 𝑎!Ω!𝑞! + 𝑘! − 𝑛!𝑉!𝛺! − ℎ!𝛺!! 𝑞

+ 𝑘! − ℎ!𝛺!! 𝑞! = 𝑎!𝑉! + 𝑎!Ω! 
Eq. 6-24 

The equation of motion contains distinctive nonlinearities in additional to the 

traditional inertial (second and third terms) and geometric nonlinearities (ninth term) due to 

this combined multiaxial vibration loading. The fifth term is the nonlinear inertial 

contribution due to the variable rotational base excitation. The seventh term is the nonlinear 
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coupling effect between the rotation and transverse base excitation. This coupling term has a 

negative sign, which reduces the overall structural stiffness of the beam. The eighth term also 

reduces the beam structural stiffness due to time varying rotational base excitation. Finally, 

time varying rotation in the tenth term lowers the nonlinear geometric stiffness.  

6.3 Experimental Approach 

This section describes the test specimen’s properties. Detailed explanation of the 

experimental setup and procedure are also provided.    

 
6.3.1 Test Specimens: 

The cantilever beams for this study were constructed from blue-finished and polished spring-

tempered AISI 1095 high carbon steel. The beams were fabricated using cold rolling method, 

which may generate some level of material orthotropy. Accordingly, the isotropy assumption 

is an approximation in this study. The density and the elastic modulus of the material are 7.85 

g/cm3 and 205 GPa, respectively. The hardness is Rockwell C48 with AR= 8. The beam 

length and cross-section area are 127 mm and 15.88×1.08 mm2, respectively. 

6.3.2 Test Setup 

To produce combined transverse translation and flexural rotation of the base, it was 

necessary to utilize a multiaxial electrodynamic shaker. A commercially produced prototype 

multiaxial shaker was used in this study.  This 6 DOF electrodynamic shaker consists of eight 

actuators in the plane of the shaker table (two pairs along each X and Y directions) and two 

more pairs of out-of-plane actuators underneath the shaker table in the Z direction, as shown 

in Figure 6-3. These twelve electrodynamic actuators were mechanically coupled to the table 

through self-aligning hemispherical hydrodynamic bearings. This architecture allowed the 
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shaker to produce a true six degrees-of-freedom (DoF) vibration environment (three 

translations and three rotations).  

In this study, the four out-of-plane actuators underneath the shaker table were 

employed to produce base rotation about the x-axis. This produced flexural vibration because 

the beam was vertically oriented (along the z direction), as shown in Figure 6-4. The four 

horizontal actuators in the Y-direction, shown in Figure 6-3, were utilized to produce the 

simultaneous translational excitation in the transverse (Y) direction. The other four actuators 

were used to reduce potential noise along other axes due to misalignments, thus ensuring a 

pure rotational excitation about the X-direction and pure translation in Y-direction. 

Additional details related to the capabilities of the multiaxial shaker are provided elsewhere 

in the literature [3]. 
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Figure 6-3. Multiaxial shaker (TEAM Corp.) 

 

Figure 6-4. Experimental setup for vibration test

The vibration experiment setup and instrumentation are shown in Figure 6-4. Each 

beam was mounted vertically (pointed along the Z direction, as shown in Figure 6-4) on a 

rigid fixture and the four clamping bolts were torqued to 22.6 N-m. As shown in Figure 6-3, 
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the fixture was mounted to the multiaxial shaker table using four clamping bolts.  The shaker 

table was controlled using four commercial triaxial accelerometers. One accelerometer was 

attached to each corner on the shaker, as shown Figure 5-4. The beam tip displacement was 

measured using two accelerometers; one accelerometer for each side of the beam. The mass 

of each accelerometer was approximately 1.5 g. Two additional accelerometers were 

mounted on the fixture (Figure 5-4) to ensure that that the base excitation was pure rotation 

about the X-axis and pure translation along the Y-direction.  

6.3.3 Test Procedure: 

Four sets of experiments (Cases: I, II, III, and IV in Table 6-1) were conducted. The 

details of each case are listed in Table 6-1. The beam in each case was exposed to constant 

amplitude rotational and transverse harmonic base excitation, 70 rad/s2 and 0.3 g, 

respectively. The phase angle, 𝜃, between the rotation and transverse harmonic excitations 

was varied for each case, as stated in Table 6-1. The number of loading cycles applied in this 

study depended on the observed irreversible shift in the resonance frequency and the 

irreversible change in the beam tip displacement response due to material ‘softening’ caused 

by early fatigue degradation. In other words, the tests were repeated until significant changes 

in the resonant frequency or tip displacement were observed. Furthermore, the continual shift 

in the resonance made it challenging to control the multiaxial loading. After the linear 

fundamental frequency for each beam was identified using sine-sweep excitation, the beams 

were exposed to the specified base excitations at discrete number of forward-stepping dwell 

frequencies near the fundamental frequency. The ramp-up time and dwell time for each 

frequency were 35s and 25s, respectively. The ramp-up time and dwell time at each 

excitation frequency was selected to be long enough to ensure that steady state response 
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conditions were met. The frequency step for each dwell was 0.05Hz. Thus, the excitation 

frequency was increased by 0.05 Hz every 60s (35 s ramp up plus 25s dwell). It is important 

to point out that this study we do not address the effect of backward stepping dwell. Thus, the 

conclusions provided in this chapter are applicable to forward-stepping excitations only. 

Table 6-1 Nonlinear experimental cases 

Case Test Total Cycles 
(x103) 

Phase 
(o) 

Linear Resonance 
(Hz) 

Strain 
Amplitude 

(x10-3) 

I 

1 0-41 

0 40.77 1.4 

2 41-117 
3 117-188 

4 188-247 

II 

1 0-68 

45 40.28 1.7 

2 68-135 

3 135-202 

III 

1 0-68 

90 40.65 2.3 
2 68-137 

3 137-205 

IV 

1 0-70 

135 40.30 3.0 

2 70-140 

3 140-210 
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6.4 Results and Discussion  

6.4.1 Experimental Results 

Detailed discussion of the experimental results is provided in this section. Each 

experimental set contained three stepped-dwell tests with the exception of case I, as shown in 

Table 6-1, Figure 6-5 and Figure 6-8, for Cases I, II, III, and IV, respectively. The base 

excitation frequency and resonance frequencies are 𝜔 and 𝜔!, respectively. In Case I, the 

first stepped-dwell test (Test 1) was terminated at 𝜔/𝜔! = 1.002 due to unexpected power 

loss with one of the shaker’s actuators (Figure 6-5). Thus, unlike Cases II, III and VI, Case I 

contains four tests instead of three tests, as shown in Table 1.  

 

Figure 6-5. Tip response due to 70 rad/s2 and 0.3g base rotation and transverse excitations, 

𝜃=0o 
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Figure 6-6.Tip response due to 70 rad/s2 and 0.3g base rotation and transverse excitations, 𝜃 
=45o 

 

Figure 6-7. Tip response due to 70 rad/s2 and 0.3g base rotation and transverse excitations, 𝜃 

=90o 
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Figure 6-8. Tip response due to 70 rad/s2 and 0.3g base rotation and transverse excitations, 𝜃 

=135o 

The experimental objectives were to monitor the shift in the resonance frequency and 

changes in the beam tip response due to changes in the phase angle between the rotation and 

transverse nonlinear base excitations. The shift in the fundamental frequency and the increase 

in the response amplitude due to repeated dwells were indicative of four possible 

mechanisms: 1) localized material ‘softening’ effect (due to possible micro-plasticity) caused 

by high-cycle fatigue [14], 2) softening due to nonlinear inertial forces [4], 3) kinematic 

(geometric) stiffening due to high amplitude displacement [20], and 4) phase variation 

between the rotational and transverse base excitations. Figure 6-5–Figure 6-8 show that the 

resonance frequency decreased every time the test was repeated, due to continuous 

accumulation of fatigue damage. In each individual case where the phase was held constant, 

nonlinear material ‘softening’ amplified the beam tip response each time the test was 
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repeated, as shown in Figure 6-9. In other words, the increase in the number of cycles 

increased the beam tip response amplitude.  

 

Figure 6-9. Tip response as function of cycles, at four different relative phases, due to 70 

rad/s2 and 0.3 g base rotation and transverse excitations, respectively 
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Figure 6-10. Phase 𝜃 = 0o curves skewedness indicates slight softening effect 

 

Figure 6-11. Phase 𝜃 = 45o curves skewedness indicates softening effect 
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Figure 6-12. Phase 𝜃 = 90o curves skewedness indicates no softening effect 

 

Figure 6-13. Phase 𝜃 = 135o curves skewedness indicates stiffening effect 

The frequency-response curves in Cases I, and II (𝜃 = 0o and 45o) were skewed to the 

left, indicating that nonlinear softening surpassed the nonlinear geometric stiffening, and the 
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gyroscopic stiffening with time, as shown in Figure 6-5 and Figure 6-6, respectively. The 

appearance of no stiffening effect in Case III (𝜃 = 90o) is believed to be due to material 

‘softening’ and the nonlinear geometric countered each other (Figure 6-12). The beams 

dynamic showed a simultaneous increase in the amplitude response and decrease in the 

resonance frequencies for Case IV (𝜃 = 135o, Figure 6-8). The shift from softening to 

stiffening was illustrated by normalizing the tip displacement and the excitation frequency 

for each test, as shown in Figure 6-10–Figure 6-13. Dividing by the maximum displacement 

for each curve provided a normalized tip displacement with a maximum value of 1.0 for all 

the tests in each case. The excitation frequency was normalized as follows:  

𝜔!"#$ =
𝜔
𝜔!

− 1 Eq. 6-25 

The subtraction of 1.0 forced the data points for each curve before and after the 

resonance to line-up on top of each other, thus, the effects of the phase increase on the curve 

skewedness can be visualized. The red and blue curves in Figure 6-10-Figure 6-13 are the 

beam response prior to reaching the peak amplitude and after reaching the maximum 

amplitude, respectively. When 𝜃 equal to 0o and 45o (case I and II), it can be seen from 

Figure 6-10, and Figure 6-11 the beam response exhibited softening behavior where the blue 

curves were above the red curves. In Cases I, and II, the localized material ‘softening’ 

influence was stronger than the geometric stiffening effect. The blue and red curves were 

nearly coincident when 𝜃 increased to 90o in Case III (Figure 6-12). In Case III, it is likely 

that the increase in the tip displacement reached a sufficient level to equally counter the 

structural softening effect, which generated frequency responses that appeared to be linear, as 

shown in Figure 6-7, and Figure 6-12. The lack of skewedness was apparent in Figure 6-12. 
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In reality, the dynamic response for Case III was not linear due to the high amplitude 

displacement, where the maximum displacement reached approximately 11 mm. The 

structural stiffening response became more apparent in Case IV, when 𝜃 increased to 135o, as 

shown in Figure 6-8. The skewedness of the response curves for Case IV was shown in 

Figure 6-13, where the red curves moved above the blue curves. It is also important to point 

out that the gaps between the beam tip response prior to reaching the maximum displacement 

amplitude (blue curves) and post the maximum displacement (red curves) were wider for 

Case I, II and IV when the softening or stiffening effects dominated. However, the gaps were 

much narrower for the Case III when the phase and tip displacement were 90o and 11mm, 

respectively. Thus, the frequency response curves in Case III may appear linear (Figure 6-7 

and Figure 6-12), but in reality stiffening and softening nonlinearities counteracted each 

other. This observation was found in the forward-stepping dynamic experiments and may not 

be applicable to backward-stepping. The backward-stepping effect may have different and 

important consequences in nonlinear excitation, which will be the subject of future studies.     
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Figure 6-14. Beam tip response as a function of cycles and phase 

The accumulation of loading cycles led to continual fatigue damage accumulation, 

resulting in a corresponding reduction in the local stiffness, when the excitation phase was 

less than 90o. Beyond 90o the beam frequency response curves are skewed to the right 

indicating that the beam was stiffening, but the resonance frequency shifted to the left and the 

maximum displacement amplitude increased for each test, as shown in Figure 6-8. The 

decrease in the resonance and increase in the amplitude response as a result of loading cycles 

accumulation of are clear evidence of fatigue damage precursor build up. The experimental 

results also demonstrated that the simultaneous increase in the loading cycles and phase 
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angle between the rotation and transverse excitation increased the beam tip response, as 

shown in Figure 6-14. The contour in Figure 6-14 is produced by preforming a curve fit on 

the frequency response data obtained from the experiments. The sum of squares due to error 

(SSE) and the adjusted R2 statistics are 0.02585 and 0.9998, respectively. The SSE and R2 

values suggest the model fits the data well. A SSE statistic value closer to zero is an 

indication of a better fit. The adjusted R2 statistics is generally an indicator of the fit quality. 

The polynomial fit is:  

  𝑣(𝜃,𝑁)   =   𝑝!,!   +   𝑝!,!𝜃  +   𝑝!,!𝑁  +   𝑝!,!𝜃!   +   𝑝!,!𝜃𝑁  +   𝑝!,!𝑁  ! +   𝑝!,!𝜃!   +   𝑝!,!𝜃!𝑁 

where, N is the number of cycles and polynomial coefficients (with 95% confidence bounds) 

are: 𝑝!,! = 5.592  , 𝑝!,! =0.06369,  𝑝!,! = 5.527E-06, 𝑝!,! = -0.0001469, 𝑝!,! =  -1.17E-07, 

𝑝!,! =-4.16E-12, 𝑝!,! =-2.667E-07, and 𝑝!,! = 2.081E-09.  

It is important to point out that Figure 6-14 curve fit are applicably only to the 

structural configuration tested in this study using forward-stepping excitations. The 

displacement response as a function of the number of loading cycles and the phase angle 

between the base excitation can be use as a fatigue damage precursor indicator. Response 

contour plots of representative mechanical component similar to Figure 6-14 can be 

generated experimentally and stored in a structural health monitoring system to track the 

health of the component and provide dynamic control laws to adapt to health of the structure. 

Ideally, the structural health monitoring system can determine the number of loading cycles 

based on the displacement and loading conditions.   
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6.4.2 Model Results and Discussion 

The combined rotational and transverse base excitations investigated in this study 

produced a nonlinear displacement response, which caused localized damage manifested by 

changes in the material compliance near the clamped boundary. The linear dynamic theory is 

not adequate in assessing the structural degradation or the effects of the high amplitude 

excitations and phase variation between the base excitations. Hence linear dynamic theory 

limits the accuracy of the structural response and endurance. Nonlinear structural dynamic 

analysis, which takes into account the effects of the nonlinear coefficients due to multiaxial 

excitations, was implemented. The nonlinear equation of motion, Eq. 6-24, was solved 

numerically using the Runge-Kutta method, where the integration time step was 10-5 s. The 

initial displacement and velocity were set equal to zero. The integration time limits were set 

from 0 to 30 s to ensure that steady state condition was reached. The accelerometer’s mass 

was included in the model. The experimental rotational and transverse base excitations 

amplitudes were used as vibration load inputs in the models, which were 70 rad/s2 and 0.3g, 

respectively. The equation of motion was solved for four phase angles: 0o, 45o, 90o, and 135o 

(Figure 6-15). The rotation and transverse excitations frequencies were maintained identical 

in both analytical and experimental studies. The rotation and transverse excitations 

frequencies 𝜔/𝜔! ranged from approximately 0.985 to 1.015 Hz/Hz.  
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Figure 6-15. Tip response due to 70 rad/s2 and 0.3g base rotation and transverse excitations,  

 
The absolute values of the beam tip response obtained from the model (Figure 6-15) 

for various phase angles did not agree with the experimental results. However, there were 

common trends between the experimental and modeling results; e.g. the beam tip 

displacement amplitude increased with an increase in the phase angle between excitations, 

while holding the rotation and transverse excitations frequencies identical. Additional 

dynamic analysis was conducted to capture the maximum tip displacement amplitude for 

phase angles from 0o-360o (Figure 6-16). The tip maximum amplitude increased as a function 

of phase until reaching 180o angle (Figure 6-16). The response amplitude decreased after 

increasing the phase angle beyond 180o. Figure 6-16 provides clear evidence that the effect 

of the phase angle is periodic. Increasing the phase angle from 0o-180o increased the tip 
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response from 7.17 to 16.65 mm, respectively, without any increase to the excitation 

amplitudes. Increasing the phase angle from 180o-360o brought back the tip displacement 

from 16.65 to 7.17 mm, respectively. Thus, the dynamic response of a structure can be tuned 

by manipulating the phase angle between axes of excitations to achieve an optimal 

performance, while maintaining a stable structure. This type of structural control can be 

achieved without changing the base excitation magnitude or frequency.  

The calculated maximum strain values are listed in Table 6-1. These strain values 

show that the beam response is still nominally within the elastic limit of the material. 

However, the shift in the natural frequency is a clear indication that fatigue damage is 

occurring. The analytical model did not take into account the effect of vibration fatigue 

cycles in this study, but it will be the subject of future multiaxial vibration research.  

The fatigue damage accumulation is the primary cause of the model deviation from 

the experimental results. Malatkar [21] encountered similar softening phenomena in a 

cantilever beam exposed to transverse nonlinear base excitations. Malatkar avoided fatigue 

damage due to the high amplitude loading by reducing the duration and number of dwells 

and repeating each experiment only twice [21]. Limited experimental results have 

substantiated the rationale of our softening assumption for the fundamental mode [22, 23], 

where they observed softening phenomena at the fundamental frequency when studying 

harvester piezoceramics, but did not provide any explanation. Stanton et al. [24] assumed that 

the nonlinear softening was due to material nonlinearities in their piezoceramic device. 

Villanueva et al. [25] encountered the softening response for the first mode of a nano-

cantilever beam, where they assumed residual stresses due to the fabrication process as a 

possible instigator.  
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Figure 6-16. Tip response, as a function of phase due to 70 rad/s2 and 0.3g base rotation and 

transverse excitations 
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Figure 6-17. Tip response due to 70 rad/s2 and 0.3g base rotation and transverse excitations, 

𝛿=-0.5 (nonlinear adjustment factor) 

In a previous uniaxial transverse vibration study, Habtour et al. [14] introduced a 

modified nonlinear stiffness, 𝐾∗, which was the geometric stiffness, 𝑘!, multiplied by the 

nonlinear adjustment factor, 𝛿. Habtour et al. approach provided good agreement between the 

experiment and model results for uniaxial transverse harmonic translation of the base. Their 

experimental and numerical results showed that the nonlinear adjustment factor decreased as 

the number of loading cycles increased [14]. Furthermore, 𝛿 was negative value in the 

present of material microplasticity and positive in the existence of structural stiffening. 

Adjusting the nonlinear stiffness approach was examined for 𝛿= -0.5 and -1.0, as shown in 

Figure 6-17, and Figure 6-18, respectively. Adjusting 𝛿 captured the softening and stiffening 

trends seen in the experiments not, but was not sufficient enough to match the experimental 
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values. This is due to potential micro-plasticity in structures under complexity of multiaxial 

dynamic loading influences additional nonlinearities besides 𝑘! that must be considered. 

Habtour et al. confirmed the reduction in the local stiffness of the beam surface near the 

clamed boundary by applying nano-indentations at high stress concentration sites within 0-10 

mm distance from the clamped boundary [14]. They also witnessed changes in the 

microstructure near the clamped boundary using Scanning Electron Microscope (SEM). 

Thus, micromechanics models must be coupled with dynamic models to improve the 

structural response prediction. A quantitative investigation of fatigue contribution under 

combined multiaxial loading is the subject of future studies and is beyond the scope of this 

chapter.   

 

Figure 6-18. Tip response due to 70 rad/s2 and 0.3g base rotation and transverse excitations, 
𝛿=-1.0 (structural softening) 
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The application of the principle of linear superposition was investigated in this study. 

For single axis transverse excitation, the rotation base excitation was set equal to zero. Thus, 

the equation of motion becomes: 

𝑎!𝑞 + 𝑎! 𝑞!𝑞 + 𝑞𝑞! + 𝑐𝑞 + 𝑘!𝑞 + 𝑘!𝑞! = 𝑎!𝑉! Eq. 6-26 

For single rotation base excitation, the transverse base excitation was set equal to 

zero. Thus, the equation of motion becomes: 

𝑎!𝑞 + 𝑎! 𝑞!𝑞 + 𝑞𝑞! + 𝑐𝑞 + 𝑎!Ω!𝑞! + 𝑘! − ℎ!𝛺!! 𝑞 + 𝑘! − ℎ!𝛺!! 𝑞!

= 𝑎!Ω! 
Eq. 6-27 

The response of the cantilever beam due to transverse, rotation and combined base 

excitations was calculated and compared to the superposition approach, as shown in Figure 

6-19. The tip beam response for both 0.3g transverse and 70rad/s2 rotation excitation base 

excitations were plotted separately in Figure 6-19. The results were compared to the 

nonlinear combined excitation, where the relative phase,  𝜃, was set equal to zero. The beam 

response due to the combined excitation can be seen to be lower than the response due to the 

rotation base excitation by approximately 38%. The reason for the reduction in the beam 

response is due to combined transverse and rotation base excitations at  𝜃=0, which were 

expressed by the terms 𝑎!𝑉!, and 𝑎!Ω!  in the full equation of motion (Eq. 6-24). When 

examining the velocity vector in Eq. 6-5, one can notice that the base velocity, 𝑉!, and 

rotation velocity, 𝛺! , have opposing signs in the unit direction 𝒊! . On the other hand 

at  𝜃=180, the sings for 𝑉!, and 𝛺! are the same, thus higher excitation energy is transited into 

the system.  The cross-axis coupling has also an interesting effect on the structural stiffness. 

In the full equation of motion (Eq. 6-24), the system structural stiffness is expressed as: 
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𝑘! − 𝑛!𝑉!𝛺! − ℎ!𝛺!! . Thus, cross-axis coupling, 𝑛!𝑉!𝛺! , reduces the overall structural 

stiffness, which would increase the beam tip amplitude. However, the opposing effect of 𝑉!, 

and 𝛺!  excitations is stronger than the cross-axis coupling, 𝑛!𝑉!𝛺! . Nonetheless, for 

systems with significant tip mass and beam inertia the effect of the cross-axis coupling, 

𝑛!𝑉!𝛺!, since 𝑛! is a function of 𝜌 and 𝑀. It is worth noting that the structural stiffness term 

becomes a nonlinear variable parameter that changes as a function of the structural inertia. 

The beam response due to uniaxial transverse excitation and uniaxial rotation excitation were 

linearly added (superposition principle). The principle of superposition response predicted a 

larger tip response than the nonlinear combined excitation response by approximately 57%, 

as shown in Figure 6-19. The beam response prediction using the superposition principle 

generated overly conservative results. The high oscillation amplitude augmented the 

nonlinearity and exacerbated the inaccuracy of the superposition approach. To accurately 

estimate the dynamic response of a structure under multiaxial base excitations, it is important 

to include the nonlinearities in the analysis.  
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Figure 6-19. Comparison between combined (phase 𝜃 =0) multiaxial and superposition at 

0.3g transverse and 70rad/s2 rotation 

6.5 Summary and Conclusion 

This chapter provides a nonlinear dynamic model for cantilever beam with tip mass 

exposed to simultaneous nonlinear rotational and transverse base excitations. The coupling 

due to the multiaxial interactions is shown to contribute to the overall structural stiffness. 

Exploiting the sensitivity of the phase angle between the rotation and transverse base 

excitation enables control of the beam response without changing the loading amplitudes. 

The model captures only the dynamic stiffening effects due to the nonlinear time-varying 

rotational excitation coupled with harmonic transverse vibration. The model and the 

experimental results show that increasing the phase angle between the harmonic rotation and 

transverse signals from 0o-180o increases the beam tip response. Furthermore, due to the 

rotational excitation and the cross-axis coupling, the structural stiffness in the equation of 
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motion became time varying and nonlinear. For zero phase angle, cross-axis coupling cause 

small reduction in the structural stiffness. Increasing the angle up to 180o would increase the 

structural stiffness. The beam response decreases as the phase increases from 180o-360o, 

where 360o is equivalent to 0o. Although the model is successful in capturing the increase in 

the tip displacement amplitudes with the increase in the phase angle from 0o-180o, the model 

does not agree the absolute values witnessed in the experiments. The cause of the deviation 

for the experiments is because the model does not include material nonlinearity due to fatigue 

damage buildup. Based on extrapolation from the nonlinear dynamic studies reported in 

Chapters 4 and 5, the nonlinear dynamic model provided in this chapter needs further 

development to include potential localized change in the materials properties, even though 

the strain measurements in the experiments show that the beam is still in the elastic region.  

It can be concluded that it is essential to understand the dynamic characteristics of 

mechanical structures in order to correlate damage with the nonlinear dynamic response. 

Studies of multiaxial excitation of nonlinear structures are lacking. In addition, comparison 

between uniaxial and multiaxial excitations and their impact on the structure’s response are 

not well understood. Experimental and analytical studies are also limited for nonlinear 

structures under variable multiaxial rotational base excitation. Additional studies are required 

to understand the nonlinear effects of cross-axis coupling. Utilization of multiaxial 

electrodynamic vibration technologies with high controllability may enable the development 

of nonlinear dynamic models that incorporate material damage precursors due to distributed 

microstructural damage prior to crack initiation. Understanding the coupling effects due to 

multiaxial base excitation is an important step in predicting the structural response and life-

cycle of complex systems, which will be the subject of future studies. 



 

 
 

227 
 

6.6 References 

[1] Nayfeh, A. H. and D. T. Mook, Nonlinear Oscillations, Wiley-VCH, New York, 1995. 

[2] Habtour, E., C. Choi, M. Osterman, and A. Dasgupta. "Novel Approach to Improve 

Electronics Reliability in the Next Generation of US Army Small Unmanned Ground 

Vehicles Under Complex Vibration Conditions." Journal of Failure Analysis and Prevention 

12.1 (2012): 86-95. 

[3] Habtour, E., W. Connon, M. F. Pohland, S. C. Stanton, M. Paulus, and A. Dasgupta. 

"Review of Multiaxial Vibration in Linear and Nonlinear Structures." Shock and Vibration 

2014 (2014): DOI: 10.1155/2014/294271. 

[4] Ernst, M., E. Habtour, A. Dasgupta, M. Pohland, M. Robeson, and M. Paulus. 

"Comparison of Electronic Component Durability under Uniaxial and Multiaxial Random 

Vibrations." Journal of Electronics Packaging 137.1 (2015): n. pag. DOI: 

10.1115/1.4028516. 

[5] Paulus, M., A. Dasgupta, and E. Habtour. "Life Estimation Model of a Cantilevered 

Beam Subjected to Complex Random Vibration." Fatigue & Fracture of Engineering 

Materials & Structures 35.11 (2012): 1058-70. 

[6] Habtour, E., M. Paulus, and A. Dasgupta. "Modeling Approach for Predicting the Rate of 

Frequency Change of Notched Beam Exposed to Gaussian Random Excitation." Shock and 

Vibration, vol. 2014, Article ID 164039, 2014-b. doi: 10.1155/2014/164039. 

[7] E. Habtour, C. Choi, G. Drake, A. Dasgupta, and M. Al- Bassyiouni, “Improved 

reliability testing with multiaxial electrodynamics vibration,” in Proceedings of the 56th 

Annual Reliability and Maintainability Symposium, San Jose, Ca, USA, 2010.   



 

 
 

228 
 

[8] G. V. Chary, E. Habtour, and G. S. Drake, “Improving the reliability in the next 

generation of US army platforms through physics of failure analysis,” Journal of Failure 

Analysis and Prevention, vol. 12, no. 1, pp. 75–58, 2012.  

[9] W. E. Whiteman and M. S. Berman, “Fatigue failure results for multi-axial versus 

uniaxial stress screen vibration testing,” Shock and Vibration, vol. 9, no. 6, pp. 319–328, 

2002.   

 [10] R. M. French, R. Handy, and H. L. Cooper, “A comparison of simultaneous and 

sequential single-axis durability testing,” Experimental Techniques, vol. 30, no. 5, pp. 32–37, 

2006.   

[11] D. Gregory, F. Bitsy, and D. O. Smallwood, “Comparison of the response of a simple 

structure to single axis and multiple axis random vibration inputs,” in Proceedings of the 

79th Shock and Vibration Symposium, Orlando, FL, USA, 2008.  

[12] M. Esmaeili, N. Jalili, and M. Durali, “Dynamic modeling and performance evaluation 

of a vibrating beam microgyroscope under general support motion,” Journal of Sound and 

Vibration, vol. 301, no. 1-2, pp. 146–164, 2007.   

[13] V. Kumar, J. K. Miller, and J. F. Rhoads, “Nonlinear parametric amplification and 

attenuation in a base-excited cantilever beam,” Journal of Sound and Vibration, vol. 330, no. 

22, pp. 5401– 5409, 2011.  

 [14] Habtour, E., Cole, D. P., Riddick, J. C., Weiss, V., Robeson, Sridharan, R., and 

Dasgupta, A., “Detection of Fatigue Damage Precursor Using a Nonlinear Vibration 

Approach”, Journal of Structural Health Monitoring, (under review). 



 

 
 

229 
 

[15] Anderson, T.J., B. Balachandran and A. H. Nayfeh, Nonlinear Resonances in a Flexible 

Cantilever Beam, Journal of Vibration and Acoustics 116 (4) (1994), 480-484. 

[16] Balachandran, B., and A. H. Nayfeh. "Nonlinear Motions of Beam-mass Structure." 

Nonlinear Dynamics 1.1 (1990): 39-61. 

[17] Hamdan, M. N., and M. H. F. Dado. "Large Amplitude Free Vibrations Of A Uniform 

Cantilever Beam Carrying An Intermediate Lumped Mass And Rotary Inertia." Journal of 

Sound and Vibration 206.2 (1997): 151-168. 

[18] Baruh, H. Analytical Dynamics. Boston, MA: WCB/McGraw-Hill, 1999. 

[19] Meirovitch, L. Fundamentals of Vibrations. Boston: McGraw-Hill, 2001. 

[20] Glaz, B., Friedmann, P. P., and Liu, L., "Vibration Reduction and Performance 

Enhancement of Helicopter Rotors Using an Active/Passive Approach," AIAA Paper 2008-

2178, Proceedings of the 49thAIAA/ASME/ ASCHE/AHS/ASC Structures, Structural 

Dynamics & Materials Conference, Schaumburg, IL, April 2008. 

[21] Malatkar, P. Nonlinear Vibrations of Cantilever Beams and Plates. Diss. Virginia 

Polytechnic Institute and State University, 2003. Blacksburg, VA. 

[22] Priya S, Viehland D, Carazo A, et al. “High-power resonant measurements of 

piezoelectric materials: importance of elastic nonlinearities.” Journal of Applied Physics 

90(3): 1469–1479. (2001) 

[23] Yu, S., He S., and Li W. Theoretical and Experimental Studies of Beam Bimorph 

Piezoelectric Power Harvesters.” Journal of Mechanics and Materials of Structures 5.3 

(2010): 427-445. 

[24] Stanton, S. C., A. Erturk, B. P. Mann, E. H. Dowell, and D. J. Inman, “Nonlinear 



 

 
 

230 
 

nonconservative behavior and modeling of piezoelectric energy harvesters including proof 

mass effects,” Journal of Intelligent Material Systems and Structures, vol. 23, no. 2, pp. 183–

199, 2012. 

[25] Villanueva, L. G., R. B. Karabalin, M. H. Matheny, D. Chi, J. E. Sader, and M. L. 

Roukes. "Nonlinearity in Nanomechanical Cantilevers." Physical Review B 87 (2013). 

  



 

 
 

231 
 

Chapter 7 : Summary 

This chapter contains a summary of the results contained in previous chapters, the major 

contributions of this dissertation, discussion of the limitations of this study and recommendations 

for relevant future work.  

7.1 Major Conclusions 

Experimental results from nonlinear vibrations of a cantilevered metallic beam showed 

there are three competing mechanisms that influenced the nonlinear structural response: 1) 

kinematic structural stiffening due to high displacement amplitude, 2) structural softening 

due to inertial forces and gyroscopic load, and 3) structural softening due to localized 

microscale evolution in the material microstructure and mechanical properties. This 

microstructural evolution is an early precursor to embryonic fatigue crack initiation, which 

can be best detected using methods of nonlinear dynamic oscillations.  The hypothesis is that 

this fatigue damage evolution is caused by cyclic localized micro-plasticity although the 

macro-scale strains are well below the elastic limit. Confirming the precise nature of this 

fatigue-induced microstructural evolution is beyond the scope of this dissertation. Instead, 

the focus is on the effect of this microstructural evolution on the nonlinear dynamic response 

of the tested beam structure for SHM purposes.   

This study found that this microstructural evolution resulted in an effective structural 

softening of the tested beam and a sensitive way to quantify this change was to estimate the 

change in the nonlinear part of the vibration response.  This notional partitioning between the 

linear and nonlinear contributions to the total dynamic deformation of the beam was 

conducted with the help of an analytic nonlinear beam model.  During nonlinear forward 

stepped-sine-dwells vibration, damage accumulation was found to decrease the structure’s natural 
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frequency while increasing the structural response amplitude. This evolution is tracked in the 

dynamic model by adjusting the nonlinear geometric stiffness term in the equation of motion. 

The evolution of this nonlinear stiffness term was found to serve as a convenient and 

sensitive metric to monitor the early precursor to cyclic fatigue damage in slender structures 

exposed to nonlinear oscillation. It is important to note that linear vibration-based detection 

would have not captured the damage precursor. 

This nonlinear modeling and testing exercise was conducted as SHM proof of concept 

for both transverse nonlinear excitation as well as rotational flexural excitation of the base.  

The SHM metric (nonlinear stiffness degradation) had slightly different mathematical forms 

in these two cases because of the different structure of their equation of motion. It is 

important to point out that this concept was demonstrated for a simple isotropic cantilever 

beam only. Therefore, additional studies are required to investigate the applicability of this 

concept to more complex structures.     

The research outcomes also provide insights into the dynamic and structural behavior 

of slender cantilever beam exposed to combined harmonic nonlinear rotation and transverse 

base excitations. The effect of the nonlinear multiaxial coupling on the dynamic response of 

the cantilever beam is experimentally investigated and analytically modeled. The sensitivity 

of the phase angle between the rotation and transverse base excitation is an important enabler 

in controlling the beam response without changing the dynamic loading amplitudes. The 

nonlinear dynamic model captures only the dynamic stiffening effects due to the nonlinear 

time varying rotational excitation coupled with harmonic transverse vibration. The effect of 

fatigue degradation of the material is not included in the combined response model.  

The experimental and analytical results show that increasing the phase angle between 
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the rotation and transverse from 0o-180o increases the beam tip response and the beam 

nonlinear stiffening effect. The beam response decreases as the phase increases from 180o-

360o. Although the model is successful in capturing these general trends, it does not agree in 

absolute terms with the experimentally measured response. The cause of the deviation from 

the experiments is because the model does not include material microstructural degradation 

due to fatigue damage accumulation. The analytical model requires further development to 

include the localized plastic strain, number of dislocations, associated energy, and the stress 

filed caused by the location motion for each loading cycle. The enhancement of the model to 

include the localized material damage evolution is the subject of future studies.  

It is important to point out that linear vibration-based detection would have not 

captured the damage precursor making the sensitivity of the nonlinear vibration approach 

extremely critical in monitoring the state and health of the structure materials. The simplicity 

of the proposed nonlinear dynamic methodology for detecting damage precursor appears to 

be a promising alternative to current structural health monitoring methods. The attraction of 

the nonlinear approach is that it utilizes conventional sensors such as accelerometers and can 

be implemented in many platforms without the replacement of existing sensors.  

It can be concluded that it is important to understand the structural characteristics of 

mechanical systems to correlate the fatigue damage accumulation with the dynamic 

responses. The main challenge in structural systems is the prediction of the reliability and 

lifetime of critical components. The approach demonstrated in this study can be useful in 

SHM for fatigue failure modes of dynamic structures through adequate inclusion of nonlinear 

parameters in the analysis. The study also demonstrated the importance of experimental and 

analytical approaches capable of emulating real-world operational conditions, which must 
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include MDoF dynamic loads. This study is a first step in establishing guidelines and criteria 

that define multiaxial vibration testing for structural and mechanical applications dynamics.  

7.2 Contributions of this Research 

The contributions of this dissertation are as follows:  

Although there are reports in the literature showing the effectiveness of monitoring 

the decrease in the natural frequency of cracked structures using health monitoring methods 

based on changes in linear vibration response frequency, precursor detection methods are still 

lacking to detect damage accumulation before any cracks are initiated [1-7]. This work 

expands structural health monitoring beyond crack detection and detects very early fatigue 

precursors by utilizing nonlinear vibration methods. Exploiting the sensitivity of the 

nonlinear stiffness coefficient in the equation of motion can be a viable SHM metric to sense 

the evolution in the material due to damage accumulation.  

The experimental work is also the first to present qualitative and quantitative 

differences between three types of nonlinear harmonic excitations of a cantilever beam 

structure:  transverse base excitation, rotational flexural base excitation, and combined 

rotation and transverse with varying phase differences.  This novel set of experimentation has 

been possible because of a unique 6-DOF shaker facility that was available for this study. 

The differences in the structural response due to these three types of vibration and the effect 

of damage precursor are provided. The analytical model illustrates the contribution of cross-

axis coupling to structural nonlinearities under simultaneous rotation and transverse vibratory 

loads.    

The analytic models developed in this research effort allow the quantification of the 
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damage precursor accumulation due to complex nonlinear uniaxial and multiaxial vibration 

environments. These models are a substantial improvement over existing models because 

they allow explicit ability to exploit the sensitivity of the nonlinear equation of motion to 

quantify fatigue damage precursors.  The decrease in the natural frequency and the structural 

response amplitude can be used and detection parameters to track the criticality of damage 

precursors. This work is the first step towards developing a more general nonlinear multiaxial 

vibration models for structural health monitoring. The power of the nonlinear dynamic 

methodology for detecting damage precursor makes it a viable alternative to current 

structural health monitoring systems. The attraction of the nonlinear approach is the fact that 

it utilizes conventional sensors such as accelerometers.  

The important of connecting nonlinear dynamic to materials and solid mechanics is 

illustrated in this investigation. Surprisingly, the physics connecting nonlinear dynamics and 

fatigue mechanics are lacking. Relating the material mechanics at the micro-level to the 

structural nonlinear dynamics provided insights into the structural softening effect seen in the 

structural response as a function of the loading history. Linking nonlinear dynamics to 

materials and solid mechanics is a first step in guiding the health assessment of current 

engineering systems as well as developments of future innovative self-reporting engineering 

material and structures about their health. The holistic nonlinear dynamic methodology 

provided in this study is a fundamentally new innovation in structural health monitoring that 

needs further development.  

7.3 Limitations and future work 

The analytic models are currently restricted to one-dimensional response at the first 

fundamental mode of a simple cantilever beam under harmonic transverse, rotational, and 
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combined transverse and rotation base vibration. In general, using a cantilevered beam subject to 

uniaxial transverse vibration or uniaxial varying rotational base excitation, the analytical model 

provided good agreement with experimental results, when the geometric stiffness is adjusted. 

However, under combined rotation and transverse loading the analytical model captures, in 

general, the change in the nonlinear structural response seen in the experiments as a function of 

the phase angle, but does not provide adequate fit with the experimental results. The analytical 

model should be improved to encompass 1) higher modes, 2) three-dimensional structural 

response, 3) additional DOFs for more complex multiaxial vibration environments, and 4) 

stochastic vibratory loading.  

 
Figure 7-1. Microstructural evolution in material at high stress concentration sites at 
magnification: a) 1000×, b) 2100× away from boundary c) 2100× near boundary 

This study demonstrated that the nonlinear dynamic model worked reasonably well for 

elastic response for uniaxial excitation when the nonlinear structural stiffness is parametrically 

calibrated based on the experimental results. The calibration is an attempt to address the localized 

effect of material degradation and microstructural evolution with increasing loading cycles 

(Figure 7-1). For engineering application, this approach can be a practical and cost effective 

a) 

b) c) 
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method for structural health monitoring. A structure can be tested in a laboratory environment to 

extract nonlinear engineering model or a library of models to obtain the nonlinear parameters for 

the appropriate loading cycles. However, future detailed investigation is necessary to develop 

possible nonlinear factors that could be introduced in the analytic model.  

 

Figure 7-2. Local mechanical characterization of fatigued beams as determined by nano-
indentation 

A preliminary investigation was conducted during this study to verify the progression 

of material micromechanical properties as a function of loading cycles. Nano-indentation 

testing was utilized to measure the local apparent stiffness of the beam samples near the fixed 

boundary, which was the high stress concentration site (Figure 7-1). The vertical cantilever 

beams (Figure 7-1) were exposed to 0.3g harmonic excitation at their fundamental 

frequencies. Four samples are selected after 0 (unfatigued), 75,000, 150,000, and 225,000 
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loading cycles. For each targeted location, 25 indentations are performed in a 5×5 grid, 

spaced 5 µm apart along the central axis of the top surface of the beams. The indentation 

measurements were positioned approximately 2 mm apart, starting  from the fixed boundary 

position and moving toward the beam-free end, as shown in Figure 7-2. Measurements were 

performed in load control mode, with a maximum applied force, P, of approximately 5000 

µN. The applied forces resulted in indentation depths of approximately 150–200 nm. The 

indentation results are shown in Figure 7-2. x=0 indicates the clamped edge of the cantilever 

beam, which was the expected position of maximum stress. The apparent elastic modulus, as 

measured by the nanoindentor is shown as a function of position from the clamped beam end; 

x=0. The horizontal dotted line in Figure 7-2 shows the average apparent elastic modulus for 

an unfatigued sample (0 cycles). Indentation results for the fatigued specimens showed a 

clear reduction in the apparent local elastic modulus near the clamped position of the beam. 

The defined zero position showed average apparent elastic modulus values of approximately 

160, 120, and 100 GPa for the samples with 75,000, 150,000, and 225,000 cycles, 

respectively. Moving away from the clamped position, the average apparent elastic modulus 

eventually approached 200 GPa, which was both the approximate baseline response of the 

unfatigued pristine sample and the theoretical elastic modulus of steel 1095. Quantifying the 

change in the micromechanical properties and integrating them into the dynamic nonlinear 

model to update the linear and nonlinear structural stiffness terms may improve the ability of 

the analytic model to predict the structural response and damage accumulation history.  
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Figure 7-3. Structural component with large tip mass under complex loading 

 
The nonlinear analytical model was verified for simple beams with small tip mass. 

The next step is to extend the nonlinear detection methodology for complex structures such 

as: electronic assemblies or complex mechanical systems. In particular, use of the model for 

vibration durability of solder interconnects in electronic components, where appreciable 

amount of viscoplasticity is present, may prove to be difficult. Furthermore, application of 

the model to complex structures with multiple stress concentration sites adds more 

difficultly.  It is essential to understand the structural characteristics of large/heavy structural 

components in electronic devices in order to correlate the defects with the dynamic 

responses. The inertial and rotational effects due to the mass contribution must be 

investigated in future research efforts.   

Higher order nonlinearities beyond the cubic terms and the beam rotational inertia 

were investigated as well and found to be insignificant. However, it is possible to include an 

additional cubic damping term of the form 𝑞!. Combining the nonlinear geometric stiffness 

and cubic damping terms may provide designers and structural health monitoring systems 
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with additional sensitivities to predict, detect, and monitor the longevity of complex system, 

which can be the subject of future studies.  

Studies of multiaxial excitation of linear and nonlinear structures are lacking. 

Comparison between uniaxial and multiaxial excitations and their impact on the structure’s 

response are not well understood. Experimental and analytical studies are also limited for 

nonlinear structures under variable multiaxial rotational base excitation. Additional studies 

are required to understand the nonlinear effects of cross-axis coupling and modal 

participation. Utilization of multiaxial electrodynamic vibration technologies with high 

controllability may enable the development of nonlinear dynamic models that incorporate 

materials damage precursors prior to crack initiation. Understanding multiaxial base 

excitation coupling is an important step in predicting the structural response and life-cycle of 

complex systems, which will be the subject of future studies. Acceleration factors should be 

explored in future to examine the range of validity of the model over larger ranges of time to 

failure.  

 
Figure 7-4. Research opportunities to bridge disparate disciplines 

Finally, an interdisciplinary spectrum of research is needed develop a broader 

understanding of structural reliability and health monitoring by linking the nonlinear 
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dynamic behavior to the evolution of materials as a function of life cycle (Figure 7-4). Thus, 

within this interdisciplinary spectrum the following must be developed: 1) theoretical, 

experimental methods connecting global dynamics behavior to micromechanics, 2) 

contemporary techniques to address modern materials and multifunctional structures, 3) self-

aware structures capable of reporting their own health, and 4) models to predict and identify 

damage precursors in more complex materials systems. Clearly, an interdisciplinary spectrum 

is needed to bridge seemingly disparate disciplines.  
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Chapter 8 Appendices  

Appendix A: Modeling Approach for Predicting the Rate of Frequency Change of Notched 

Beam Exposed to Gaussian Random Excitation   

Published in Shock and Vibration (2014) 

 During fatigue damage accumulation, cracks propagate through the material leading 

to catastrophic failure.  As the cracks propagate, the natural frequency lowers, leading to a 

changing stress state.   A new method has been developed where the damage accumulation 

rate is computed in the frequency domain using Linear Elastic Fracture Mechanics (LEFM), 

stress intensity and the natural frequency.  A finite element model was developed to predict 

the stress intensity and natural frequency during damage accumulation.  Validation of the 

LEFM technique was done through comparison to experimental data.  Reasonably good 

correlation between the FEM and the analytic model were achieved for the stress intensity 

and natural frequency.  

Introduction 

 It is common knowledge that when a structure experiences vibration, a fatigue crack 

may eventually develop. When the crack becomes appreciably large, the natural frequency 

and mode shapes of the system will change [1]. Extensive health assessment work has been 

performed by utilizing the change in natural frequency as a damage indicator, prior to 

catastrophic failure. In order to make a meaningful life prediction of failure during random 

vibration, the change in natural frequency must be accounted for.  It is possible to account 

for the change in the natural frequency using the virtual crack technique within the Finite 

Element Method (FEM).     
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The growing role of virtual crack simulation during the design process of mechanical 

components induces engineers to improve the progress of life prediction using this technique. 

Industries that wish to improve the reliability of products by simulation of the dynamic 

response often use the FEM. This approach provides a mathematically stable environment 

and allows for modeling structures with complex geometries, both of which are essential for 

industrial application.  

One may simulate the level of structural weakness using the virtual crack technique to 

predict the remaining useful life. For example, despite the presence of cracks in the wings of 

a typical aircraft, the aircraft may continue to be flight-worthy as long as the cracks do not 

exceed the damage tolerance. Nonetheless, calculating the remaining life of structures 

continues to be a challenge, especially when the vibration loading is random.  Many methods 

have been developed for fatigue life evaluation based on a representation of the stress state, 

both in the time and the frequency domains [2-8]. Approaches using the Power Spectral 

Density (PSD) and the root-mean-square acceleration, Grms, were developed to obtain an 

equivalent maximum uni-axial stress or von Mises stress value to estimate the life of critical 

structures [4, 9]. Reference [3] contains an excellent survey of various equivalent fatigue 

damage models. Unfortunately, many of these models may not be fully suitable for a general 

use of the virtual approach to fatigue, especially when the frequency shifting or random 

dynamic loading is present.  

The solution to the problem can be determined using the Rate of Frequency Change 

(RFC) model [10]. This model characterizes multi-axial dynamic behavior of the mechanical 

system in the frequency domain. The stress intensity and natural frequency for each crack 

extension increment are required to fully predict time to failure. The RFC model and FEM 
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are used to predict the life of structures experiencing random vibration.  This method utilizes 

the frequency domain to model the crack growth. This approach incorporates the change in 

natural frequency and may offer reasonable predictions of the time to failure. Regardless of 

the structure complexity, the FEM feeds the RFC model with an updated natural frequency, 

fn, and a stress intensity factor, KI, for each virtual crack extension [10]. The model employs 

Linear Elastic Fracture Mechanics (LEFM) for fatigue crack propagation and accounts for 

the frequency shifting. The FEM development and its implementation into the RFC model 

are discussed in this paper. The full details of the RFC and experimental results are presented 

in reference [10]. 

 The major advantage of the RFC approach is the ability to estimate time to failure in 

the frequency domain, where only the input power spectral density and damping factor are 

required. Monitoring the changes in the natural frequency and the stress intensity factor, 

regardless of the complexity of the geometry, may lead to a reasonable estimate of the 

remaining life of weakened structures.  Experiments are conducted in parallel to validate the 

FEM models. Correlation between the analytical model and both FEA and experimental 

results are achieved.  

Finite lelemtn Method Development 

 In this study, single-edge V-notched cantilever beam specimens were tested and 

modeled to validate the RFC-FEM coupled model, as shown in Fig 1 and 2. The beam 

specimens were fabricated from cold rolled 1018 steel. The cantilevered beam was 2.50in 

long with a cross-sectional area of 1.250x0.1875in2, as shown in Fig. 2. The V-notch 

detailed dimensions are depicted in Fig. 3. The test sample was designed such that the first 

and second modes were closely spaced.  The first bending mode in the vertical direction was 
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330 Hz.  In the transverse direction, the first bending mode was also 330 Hz. Detailed 

explanation of this design is provided in reference [10]. The beam specimen was clamped by 

a four bolt fixture, as shown in Fig. 1. Each bolt was torqued to 30ft-lb. Final failure was 

defined to occur when the beam tip made contact with a limit-bar located approximately 2.5 

cm below the tip of the beam, as shown in Fig.1.     

      

Fig. 1 Single-edge cracked cantilever beam experimental and modeling setups 

 

 

Fig. 2 Test Beam 
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Notches in structures increase the localized stress concentration, which decreases the 

maximum load the structures can sustain. Hence, a criterion to evaluate the maximum load 

that a notched component can sustain is vitally important. The simplest and most frequent 

geometries are V-notches. They are commonly observed in test samples and in notched 

structural components [11-13]. Studies show that the critical notch intensity factor as a 

function of notch angle can be used as a fracture criterion, provided that the V-notches are 

sharp and plasticity is contained [11, 12]. 

 

Fig. 3 Test Beam 

 In order to assess the validity of the RFC-FEM model, stress intensity factors and 

change in the frequency data were recorded for beams exposed to stationary, Gaussian, 

random vibration inputs. The input level was 0.0349 G2/Hz from 20 to 2000Hz. The FEM 

was utilized to predict the beam modal response, track the natural frequency shift and 

predict the stress intensity factor for mode I, KI. Details of the particular vibration 

environments are discussed in reference [10].  
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 The KI characterizes the local mode of the crack tip stress field in linear elastic 

material for mode I loading condition where the principle load is applied normal to the crack 

plane. Mode I of the crack surface displacement is considered to be the opening of the crack. 

Modes II and III are the sliding and tearing of the crack respectively. Based on the FEM 

modal response analysis, the beam bending is the dominating mode. Therefore, only mode I 

was considered in this study. The KI depends on the applied remote stress, the geometries of 

the structure and the crack size as follows: 

 YarKI πσ=  Eq. (1) 

where, sr is the remote stress, a is the crack size and Y is the structure geometric factor.  For 

simple structures, Y can be obtained from handbooks [14]. For complex structures, it is 

difficult to calculate Y analytically. Numerical methods such as FEM can be utilized to 

predict Y. Therefore, KI was determined from FEM using the J-contour integral approach 

and updated as the virtual crack increased. This approach provided accurate results with 

surprisingly coarse mesh [13].     

 In designing the FEM mesh for fracture mechanics problems, the common focus is on 

the tip of the crack. The crack tip is a singularity point where the stress field becomes 

mathematically infinite. If the cracked region is modeled with conventional polynomial-

based FEM, the mesh must be exceptionally dense around the crack tip. This approach may 

not be feasible and, depending on the problem complexity, may be costly and time 

consuming.   

 In FEM fracture mechanics, it is recommended to use 9-node bi-quadratic Lagrangian 

elements for two-dimensional problems and 27-node tri-quadratic Lagrangian elements in 

three-dimensional problems [13, 15]. The 8-node two dimensional and 20-node three-
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dimensional elements are also common in crack problems.  In this study, conventional 8-

node fully elastics elements were used for the beam (away from the crack) and the fixture. 

For the area near the crack tip, 20-node elements were used and will be discussed in detail 

later.  Multi Point Constraints beam elements were utilized to model the torqued bolts used to 

clamp the cantilever beam, as shown in Fig. 1. The preload value was applied to each bolt in 

the FEM model to produce accurate results.  

 The stresses near the crack tip are characterized by KI and expressed as follows [15]:  

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
3sin

2
sin1

2
3cos

2
sin

2
3sin

2
si1

2
cos

2
θθ

θθ

θθ

θ

πσ
σ

σ
n

r
KI

yy

xy

xx

 

Eq. (2) 

 For plane stress zzσ is zero and for plane strain is equal to )( yyxx σσν + . The 

displacement near the crack tip is calculated as follows [15]: 
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Eq. (3) 

where G is the shear modulus. r and q are shown in Fig 4. It can be seen from the 

relationships above that the stress varies inversely with r1/2 and the displacement varies 

proportionally with r1/2.  The present of a singularity of the stress at the tip was attained when 

r approached zero.   
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Fig. 4 Crack opening deformation 

During fatigue crack growth, both plane strain and plane stress will be present along 

the crack front [16].  However, the conditions ahead of a crack are neither plane stress or 

plane strain, but require treatment in three-dimensional case [13]. The material near the crack 

tip is at higher stresses than the surrounding material. Since there is no stress normal to the 

free surface, the material on the surface is in a state of plane stress. At the mid-plane of the 

crack, plane strain conditions exist and zzσ is )( yyxx σσν + .  

 In this investigation, the behavior of the stress and displacement near the crack tip 

were modeled using 20-node hexahedral fully elastic elements degenerated down to wedges.  

The wedge element was identical to the 20-node quadratic hexahedral element, except the 

nodes facing the crack site collapsed to form a wedge, as shown in Fig. 5. Each of the red 

three-node edges were collapsed to one corner location, as shown in Fig. 5, while the two 

middle nodes collapsed into one center location.  The collapsed nodes were not merged into 

one node, but tied together and became coincident. Subsequently, the collapsed nodes formed 

one line, which was the crack front. The middle nodes located at the faces orthogonal to the 

crack front were shifted by a quarter of the edge length closer to the crack tip.  This 

modification enhanced the numerical accuracy without requiring significant mesh refinement 

to capture the crack tip stress field [13]. The final result was a “spider web” meshing 
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configuration at the crack tip region, as shown in Fig. 6, which is also called the “spider web” 

meshing technique.  

 As mentioned above, the stress state at the crack tip in a linear elastic material 

exhibits a mathematical singularity: 

r

1
∝σ  

where, for plane stress:  

 

2

2

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

y

K
r

σπ  
Eq. (4) 

and for plane strain:  

2

6
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

y

Kr
σπ

 

where, sy is the yield stress.  The variable r in this case is a first order correction of the plastic 

zone size.  In reality, the crack tip is surrounded by a zone where plastic deformation and 

material damage may occur. As can be seen from the FEM stress contour in Fig. 7, the crack 

tip caused stress concentrations, where the stress gradient became larger as the crack tip was 

approached. The mesh was refined in the vicinity of the crack tip to extract accurate stresses.  

It is important to point out that LEFM is not accurate inside the plastic zone. However, 

LEFM may provide accurate results provided the plastic zone is small enough.  It was 

necessary to take advantage of Paris law to predict the crack growth as a function of time.  

The crack growth rate can be calculated as follows [3]:  

 ( )mIKC
dN

da
Δ=

 
Eq. (5) 
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and 

 YaKKK rIII πσΔ=−=Δ min,max,  Eq. (6) 

 

Fig. 5 20-node crack tip element (wedge) 

 

              

 

Fig. 6 Spider-web configuration mesh at the crack region 
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             Fig. 7 Stress concentration at crack tip            Fig. 8 Assumed virtual crack extension 

where, N is the number of cycles, C and m are constant fatigue material properties, KI,max and 

KI,min are the maximum and minimum stress intensity factors, respectively. To apply the Paris 

law, the stress intensity factor was calculated by means of the J-contour integral first 

introduced by Rice [17]. The J-contour integral is usually used in rate-independent quasi-

static fracture analysis to characterize the energy release associated with crack growth. It can 

be related to the stress intensity factor if the material response is linear. The J-contour 

integral is formulated as a path-independent line integral with a value equal to the decrease in 

potential energy per increment of crack extension in the material. The path independent 

implies that J can be seen as a measure of the intensity of stresses and strains at the tip of the 

notch and crack [18]. Through the J-contour integral, it is possible to calculate accurate KI 

values with coarse meshes without maintaining precise local stress values. It is important to 

point out that the J-contour integral should be independent of the domain used; however, the 

J-contour integral approximations from different rings in the web-mesh may vary due to the 

approximate nature of the finite element solution [14]. The strong variation in these estimates 

is commonly called domain or contour dependence. Therefore, the spider-web mesh was 

refined in the crack region with 18 contours, as shown in Fig 7 and 8.  Although 18 contours 

r
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might be excessive for this analysis, computing resources and the simplicity of the problem 

allowed this excess. Further study into the sensitivity of the results to the number of contours 

would be warranted. The crack front-line consisted of 21 nodes, which produced a 20-

element-thick spider-web mesh, as shown in Fig. 7. 

The crack front was defined on the collapsed plane of the wedge elements, which is 

called the “edge plane”. The edge plane is orthogonal to the crack direction. Fig. 7 is a 

magnified image of the V-notch spider-web meshed region, where the center of the spider-

web mesh is the crack front. Although not precisely true, the crack front is assumed to be a 

straight line. In the FEM model, the direction of the virtual crack extension was assumed to 

be in the downward vertical direction, which is denoted as the vector r in Fig. 8.  The latter 

assumption is consistent with the experimental results obtained by Paulus et al. [10].  The 

virtual crack extension was updated in the FEM model manually based on Paulus et al. 

experimental results. Four virtual cracks extensions (a=0.000, 0.0206, 0.0311 and 0.0516 in) 

were analyzed, as shown in Fig. 9. The refined spider-web mesh at the crack tip was 

maintained for every crack extension.        

  

Fig. 9 Virtual crack extension 
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Rate of Frequency Change Model 

This section describes the implementation of the RFC model. Paulus et al. provided 

the derivation of the RFC model in a separate paper [10]. The model implementation is 

summarized in flowchart in Fig. 10.  The first step was to obtain the base excitation PSD 

PSDw!! . For an equivalent single degree of freedom system, the root-mean-square relative 

displacement can be calculated as follows [20]: 
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where,  f  is the frequency and fnc is the natural frequency for each crack extension. The zn is 

the equivalent viscous damping coefficient.  Once the relative displacement is known for a 

given natural frequency, the root-mean-square far-field stress range can be calculated using 

equivalent strain energy as follows: 
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Eq. (8) 

where, fn is the natural frequency for an uncracked uniform cantilever beam and E is the 

Young Elastic Modulus. In this study, c is the beam half height of the rectangular cross-

section and b is a simplified parameter that can be obtained from the first mode Eigenvalue 

solution of a uniform uncracked cantilevered beam [10].    

 

During failure, the natural frequency will change as the crack grows. Paulus et al. 

provided a general model for calculating the rate of natural frequency change, RFC, as 

follows [10]: 
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Eq. (9)    

where, DfT, total change in natural frequency and Cray is an equivalent damage constant 

based on Rayleigh’s approximation.  The constant Cray represents a correction factor for the 

statistical distribution of the random vibration response, which is assumed to be narrowband, 

stationary and Gaussian.  Determination of Cray can be accomplished statistically as 

discussed in detail by Paulus et al. [10]. The Rayleigh’s approximation can be applied when 

the response is narrow band, as was the case for this analysis. The RFC model relates the 

crack growth rate to the change in the natural frequency of the structure. The major 

advantage of this model is that time-to-failure (TTF) estimation can be conducted in the 

frequency domain.  However, the focus of this paper is on the rate of change in the natural 

frequency and not TTF prediction. The FEM allows the model to be extended to structures 

with complex geometry, where it may not be possible to compute the equivalent strain 

energy or the shift in the natural frequency. Fig. 11 illustrates how the FEM can be 

combined with the RFC model to provide an approximate result instead of a closed form 

solution.   
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Fig. 10 Implementation of the RFC Model 

 

 

Fig. 11 FEM results feed into the RFC model 
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 Finally, the cracked structure TTF is obtained by integrating the inverse of the RFC 

with respect to the change in the natural frequency as follows: 

 ∫=
startnc

failnc

f

f nc
df

RFC
TTF

_

_

1

 Eq. (10)     

where, fnc_start and fnc_fail are the natural frequencies of the cracked structure at the initial life 

(when the crack is discovered) and end of life (when failure is reached), respectively.  

 

Resutls 

Computation of natural frequencies and the stress intensity factors as a function of the crack 

length were performed experimentally and numerically. In the first computation, the modal 

response analysis was performed for zero crack extension, a=0.000. The experimental and 

numerical first bending mode values in the vertical direction were 330 and 351Hz, 

respectively, as shown in Fig. 12. In the transverse direction, the experimental and numerical 

first bending mode results were also 330 and 351Hz, respectively. This analysis was 

repeated at varying crack depths from 0.010 to 0.114 in, as shown in Fig. 13. Although a 

slight bias is apparent, the FEM modal analysis shows a linear relationship between the 

natural frequency and the crack depth, as shown in Fig. 13. These results are in agreement 

with Paulus et al. assumption that the natural frequency varies linearly as a function of the 

crack depth [10]. The modal analysis also confirmed that the FEM model is correlated with 

Paulus et al. experimental results. Therefore, when analytical tools are unavailable or the 

structure geometry is complex, the rate of frequency shift from the FEM tool can be 

combined with the RFC model to calculate the remaining life, as shown in Fig. 11. 
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Fig. 12 First mode for crack extension, a=0.000in natural frequency shift 

 

 

Fig. 13 FEM and experimental 

The second computational analysis consisted of predicting the stress intensity factors 

for crack extensions: a=0.0000, 0.0206, 0.0310 and 0.0516 in, as shown in Fig. 14. After 

a=0.0516, the beam started to experience excessive plasticity, which meant the use of the 

stress intensity factor was no longer possible, but the experiment was conducted to full 

failure. The stress intensity factor was calculated by applying a static load at the tip of the 
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beam that was equivalent to the rms dynamic load obtained from the experiments performed 

by Paulus et al. [10]. For the zero crack case, both FEM and analytical methods were used to 

calculate the KI for each node along the crack front-line, which consisted of 21 nodes. The 

analytic stress intensity was determined using handbook calculations as described in [10].  

The distribution of the stress across the cross section was required to determine the stress 

intensity factor.   This distribution of stress was determined using the stress concentration 

factor as determined by FEM. An average KI was calculated for each node on the crack front-

line. Eighteen contours (rings) in the spider-web mesh were included in the calculations to 

insure that the J-contour integral was not domain dependent (or contour dependent). This is 

because the stress intensity factors have the same domain dependence features as the J-

contour integral. Numerical tests suggest that the estimate from the first ring of elements 

adjoining the crack front does not provide a high accuracy result [21].  
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Fig. 14 KI along the crack front for various crack extensions 

 The KI values obtained from FEM model were consistent with the analytical model, 

especially towards the center of the crack front-line for a=0.0000in, as shown in Fig. 14. 

There was a slight deviation at the surface nodes. For the other crack extensions, the FEM 

and analytical KI values were in close proximity to each other and maintained the same 

trend. Ultimately, the RFC model required a root-mean-square stress intensity factor, KI,rms, 

as shown in Fig. 11. Thus, KI,rms is calculated for both analytical and FEM analyses for each 

crack extension by averaging the nodal KI values and listed in Table I. The KI,rms values from 

the FEM and the analytical model are plotted as a function of the crack extension, as 

depicted in Fig. 15.  It is inferred from Fig. 15 that the FEM KI,rms values are close to the 

KI,rms values obtained from analytical model. The KI,rms increased as the shift in the natural 

frequency decreased (or as the crack depth increased).  
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Fig. 15 KI along the crack front FEM and analytical results 

 

Table I. FEM and analytical KI,rms  

Crack 

Extension  

(in) 

KI,rms (ksi-

in1/2)  

FEM 

KI,rms (ksi-

in1/2)  

Analytical 

0 4.49 5.26 

0.0206 8.67 7.77 

0.031 8.16 7.32 

0.0516 10.63 9.56 
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Conclusion 

 This study provided a general virtual model that combined FEM with RFC.  This 

model was used to predict change in the natural frequency, thus estimating fatigue life, using 

only frequency domain information.  Execution of the model required only the input power 

spectral density, damping factor and material properties. Integrating the FEM and the RFC 

model allows the model to be extrapolated to more complex geometries for which closed 

stress intensity values are not available.   

 The FEM further demonstrated the validity of the assumption of a linear relationship 

between crack depth and natural frequency over limited crack lengths.  Although this 

assumption was used for the closed form solution of the RFC model, use of the FEM allows 

this assumption to be relaxed in lieu of FEM results.  The stress intensity quantities as a 

function of the crack growth are extracted from the FEM using the J-contour integral. 

Reasonably good correlation between the FEM and the analytic model are achieved for the 

stress intensity and natural frequency.  From the model, it can be deduced that the average 

stress intensity factor increased as the natural frequency decreased. Additional work is 

needed to conduct experimental and computational time to failure comparison.      

The proposed model in this paper may be extended to accelerated life testing, virtual 

qualification and reliability assessment. It can be used as a degradation model to analyze the 

relative severities of complex structures under harsh vibration environments. No explicit 

knowledge of the time history is needed.  Thus, structural engineers could harness the 

flexibility of this model to reasonably predict the life-cycle when the only input is a PSD 

vibration profile.  This approach may reduce the computation time and cost required to run a 

fully explicit FEM analysis.   
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Appendix B: Equation of Motion Development 

 
𝑹 = 𝑣𝒊𝒀 + 𝑠 + 𝑤 𝒊𝒁 + 𝑹𝒍𝒐𝒄𝒂𝒍   

The variable 𝑠 denotes the arc-length along 𝑹. 

𝑹𝒍𝒐𝒄𝒂𝒍 = 𝜂𝒊! 

𝑹 = 𝑣𝒊𝒀 + 𝑠 + 𝑤 𝒊𝒁 + 𝜂𝒊! 

𝒊! = 𝑐𝑜𝑠 𝜓 𝒊! + 𝑠𝑖𝑛 𝜓 𝒊! 

Substituting 𝒊! into 𝑹 yields: 

𝑹 = 𝑣 + 𝜂𝑐𝑜𝑠(𝜓) 𝒊! + 𝑠 + 𝑤 + 𝜂𝑠𝑖𝑛 𝜓 𝒊𝒁 

Differentiating 𝑹 with respect to 𝑡:  

𝑹 = 𝑉! + 𝑣 − 𝜂𝜓𝑠𝑖𝑛(𝜓) 𝒊! + 𝑤 + 𝜂𝜓 cos𝜓 𝒊𝒁 + 𝛀𝑩𝒂𝒔𝒆×𝑹 

𝛀𝑩𝒂𝒔𝒆×𝑹 =
𝒊𝑿 𝒊! 𝒊!
Ω! 0 0
0 𝑣 + 𝜂 cos 𝜓 𝑠 + 𝑤 + 𝜂𝑠𝑖𝑛 𝜓

= − 𝑠 + 𝑤 + 𝜂𝑠𝑖𝑛 𝜓 Ω!𝒊𝒀 + 𝑣 + 𝜂𝑐𝑜𝑠(𝜓) Ω!𝒊𝒁 

Substitute 𝛀𝑩𝒂𝒔𝒆×𝑹 into 𝑹 

𝑹 = 𝑉! + 𝑣 − 𝜂𝜓𝑠𝑖𝑛(𝜓) 𝒊! + 𝑤 + 𝜂𝜓 cos𝜓 𝒊𝒁 − 𝑠 + 𝑤 + 𝜂𝑠𝑖𝑛 𝜓 Ω!𝒊𝒀

+ 𝑣 + 𝜂𝑐𝑜𝑠(𝜓) Ω!𝒊𝒁 

𝑹 = 𝑉! + 𝑣 − 𝜂𝜓𝑠𝑖𝑛 𝜓 − 𝑠Ω! − 𝑤Ω! − 𝜂Ω!𝑠𝑖𝑛 𝜓 𝒊!

+ 𝑤 + 𝜂𝜓 cos𝜓 + 𝑣Ω! + 𝜂Ω!𝑐𝑜𝑠(𝜓) 𝒊𝒁 
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𝑇 =
1
2 𝜚

!!

!!

!

!
𝑹 ∙ 𝑹  𝑑𝐴𝑑𝑠 +

1
2𝑀 𝑹 ∙ 𝑹

!!!
 

Substituting 𝑹 into the kinetic energy expression. 

𝑇 =
1
2 𝜌 𝑣! + 2𝑣𝑉! + 𝑉!! + 𝑤! − 2𝑠𝑣𝛺! − 2𝑠𝑉!𝛺! − 2𝑣𝑤𝛺! − 2𝑉!𝑤𝛺!

𝑨𝟐

𝑨𝟏

!

!

+ 2𝑣𝑤𝛺! + 𝑠!𝛺!! + 𝑣!𝛺!! + 2𝑠𝑤𝛺!! + 𝑤!𝛺!! + 2𝑤𝜂𝜓𝑐𝑜𝑠𝜓

+ 2𝑤𝜂𝛺!𝑐𝑜𝑠𝜓 + 2𝑣𝜂𝜓𝛺!𝑐𝑜𝑠𝜓 + 2𝑣𝜂𝛺!!𝑐𝑜𝑠𝜓 + 𝜂!𝜓!𝑐𝑜𝑠𝜓!

+ 2𝜂!𝜓𝛺!𝑐𝑜𝑠𝜓! + 𝜂!𝛺!!𝑐𝑜𝑠𝜓! − 2𝑣𝜂𝜓𝑠𝑖𝑛𝜓 − 2𝑉!𝜂𝜓𝑠𝑖𝑛𝜓 − 2𝑣𝜂𝛺!𝑠𝑖𝑛𝜓

− 2𝑉!𝜂𝛺!𝑠𝑖𝑛𝜓 + 2𝑠𝜂𝜓𝛺!𝑠𝑖𝑛𝜓 + 2𝑤𝜂𝜓𝛺!𝑠𝑖𝑛𝜓 + 2𝑠𝜂𝛺!!𝑠𝑖𝑛𝜓

+ 2𝑤𝜂𝛺!!𝑠𝑖𝑛𝜓 + 𝜂!𝜓!𝑠𝑖𝑛𝜓! + 2𝜂!𝜓𝛺!𝑠𝑖𝑛𝜓! + 𝜂!𝛺!!𝑠𝑖𝑛𝜓! 𝑑𝐴𝑑𝑠

+
1
2𝑀 𝑣! + 𝑤! + 𝑣!𝛺!! + 𝑤 + 𝑠 !𝛺!! − 2 𝑠 + 𝑤 𝑣𝛺! + 2𝑣𝑤𝛺!

!!!

+
1
2 𝐽 𝛺! + 𝜓

!

!!!
 

Set:  

𝜌 = 𝜚
!!

!!
𝑑𝐴                          𝐽! = 𝜚

!!

!!
𝜂𝑑𝐴                  𝐽! = 𝜚

!!

!!
𝜂!𝑑𝐴 

Since the reference point coincides with the mass centroid and 𝜂 is a principal axis of the 

differential beam element, 𝐽! is set equal to zero.  

Expand and rearrange:  
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𝑇 =
1
2 𝜌 𝑣! + 2𝑣𝑉! + 𝑉!! + 𝑤! − 2𝑠𝑣𝛺! − 2 𝑠 + 𝑤 𝑉!𝛺! − 2𝑣𝑤𝛺! + 2𝑣𝑤𝛺!

!

!

+ 𝑣!𝛺!! + 𝑤 + 𝑠 !𝛺!! + 𝐽! 𝛺! + 𝜓
! 𝑑𝑠

+
1
2𝑀 𝑣! + 2𝑣𝑉! + 𝑉!! + 𝑤! − 2𝑠𝑣𝛺! − 2 𝑠 + 𝑤 𝑉!𝛺! − 2𝑣𝑤𝛺!

+ 2𝑣𝑤𝛺! + 𝑣!𝛺!! + 𝑤 + 𝑠 !𝛺!!
!!!

+
1
2 𝐽 𝛺! + 𝜓

!

!!!
 

The local stress and strain geometry contributions are utilized to account for the 

geometric nonlinearity (Nayfeh and Pia, 2004). According to the Euler-Bernoulli beam 

theory plane sections perpendicular to the undeformed reference axis remain plane and 

perpendicular to the deformed reference axis. The local displacement can be expressed as 

follows: 

𝑼 = 𝑢!𝒊𝜼 + 𝑢!𝒊𝜻 

where 

𝑢! = 𝑢!! − 𝜂𝑠𝑖𝑛𝜓                                            𝑢! = 𝑢!! − 𝜂 1− 𝑐𝑜𝑠𝜓          

where 𝑢!! and 𝑢!! are the displacement of the reference point on the observed element with 

respect to the 𝜁 and 𝜂 the local coordinate system and 𝜓 is the rotation angle of the element. 

Since the local coordinate system is assigned to the observed element, the displacement of 

the reference point is: 

𝑢!! = 0                                        𝑢!! = 0                                            𝜓 =
𝜕𝑢!!

𝜕𝑠 = 0 

The local displacement,𝑢! , is defined on the deformed local reference line 𝜁, thus: 
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𝜕𝑢!!

𝜕𝑠 = 𝑒 

Differentiating the local displacement vector, with respect to 𝑠 and assuming small 

local rotation angle yields: 

𝜕𝑼
𝜕𝑠 =

𝜕𝑢!
𝜕𝑠 𝒊𝜼 + 𝑢!

𝜕𝒊𝜼
𝜕𝑠 +

𝜕𝑢!
𝜕𝑠 𝒊𝜻 + 𝑢!

𝜕𝒊𝜻
𝜕𝑠  

𝜕𝑢!
𝜕𝑠 = 𝑒 −   𝜂𝜓!𝑐𝑜𝑠𝜓 = 𝑒 −   𝜂𝜓!                                                         

𝜕𝑢!
𝜕𝑠 = −  𝜂𝜓!𝑠𝑖𝑛𝜓 = 0 

Therefore, 

𝜕𝑼
𝜕𝑠 = 𝑒 −   𝜂𝜓! 𝒊𝜻 

Differentiating the local displacement vector, 𝑼, with respect to 𝜂 and assuming small 

local rotation angle yields: 

𝜕𝑼
𝜕𝜂 =

𝜕𝑢!
𝜕𝜂 𝒊𝜼 + 𝑢!

𝜕𝒊𝜼
𝜕𝜂 +

𝜕𝑢!
𝜕𝜂 𝒊𝜻 + 𝑢!

𝜕𝒊𝜻
𝜕𝜂  

𝜕𝑢!
𝜕𝜂 = −𝑠𝑖𝑛𝜓 = 0                                                  

𝜕𝑢!
𝜕𝜂 = 𝑐𝑜𝑠𝜓 − 1 = 0 

Therefore, the strains can be expressed as follows: 

𝜀!! =
𝜕𝑼
𝜕𝑠 ∙ 𝒊𝜻 = 𝑒 −   𝜂𝜓! 𝒊𝜻 ∙ 𝒊𝜻 = 𝑒 −   𝜂𝜓! 

𝜀!" =
𝜕𝑼
𝜕𝑠 ∙ 𝒊𝜼 +

𝜕𝑼
𝜕𝜂 ∙ 𝒊𝜻 = 0 

𝜀!! = 𝜀!! = 𝜀!" = 0 

The strain along the elastic axis, 𝑒, and the rotation angle, 𝜓, are related to 𝑢 and 𝑣: 
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𝑒 = 1+ 𝑤! ! + 𝑣!" − 1         

𝑐𝑜𝑠𝜓 =
1+ 𝑤!

1+ 𝑒                                   𝑠𝑖𝑛𝜓 =
𝑣!

1+ 𝑒 

The beam is assumed to be inextensional, which is typically true for isotropic elastic 

structures with an axial stiffness much larger than tension. The longitudinal motions have 

much smaller amplitude and much higher axial natural frequency; thus the longitudinal 

motion is neglected (i.e. e<<1). Therefore, the strain along the axial direction is: 

𝑒 = 0 = 1+ 𝑤! ! + 𝑣!" − 1         

The inextensionality criterion reduces the dependent variables from two to one.  

Therefore,  

𝑤! = 1− 𝑣!" − 1       

Thus: 

𝑐𝑜𝑠𝜓 = 1+ 𝑤!                                        𝑠𝑖𝑛𝜓 = 𝑣! 

Performing Taylor’s expansion up to cubic nonlinearities and assuming that 𝑤 and 𝑣 

are small but finite yield: 

𝑤! ≈ −
1
2 𝑣

!"                                                                  𝑤 = −
1
2 𝑣!"𝑑𝑠

!

!
 

𝑤 = −
1
2
𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!
 

𝑤! =
1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!
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  𝑐𝑜𝑠𝜓 = 1−
1
2 𝑣

!"                                        𝑠𝑖𝑛𝜓 = 𝑣!                                𝜓 = tan!!
𝑠𝑖𝑛𝜓
𝑐𝑜𝑠𝜓                                

𝜓 = tan!!
𝑣!

1+ 𝑤′ = 𝑣! − 𝑤!𝑣! + 𝑤!"𝑣! −
1
3 𝑣

!" +⋯ 

Substitute 𝑢′ into 𝜓: 

𝜓 ≈ 𝑣! +
1
6 𝑣

!" 

Taking the temporal and spatial derivatives yield:  

𝜓 ≈ 𝑣! +
1
2 𝑣

!𝑣!"                              𝜓! ≈ 𝑣!" + 𝑣!"𝑣!"                             

The normalized curvature can be expressed as follows (Nayfeh and Pai, 2004): 

𝜌! = 𝜓! = 𝑣!! +
1
2 𝑣

!!𝑣!" 

  𝜌!! = 𝑣!! +
1
2 𝑣

!!𝑣!"
!

= 𝑣!!" + 𝑣!!"𝑣!" +
1
4 𝑣

!!"𝑣!" ≈ 𝑣!!" + 𝑣!!"𝑣!"               

The beam strain energy for isotropic beam, which includes strains due to extension, 

bending and torsion, is as follows: 

Π =
1
2 𝐸𝐴𝑒! + 𝐸𝐼𝜌!! 𝑑𝑠

!

!
+
1
2 𝑐𝐺𝐽 𝜓!"𝑑𝑠

!

!
− 𝜌𝑔 𝑤𝑑𝑠

!

!
−𝑀𝑔𝑤!"#  

 Neglecting torsion and applying the inextensionality reduce the strain energy to:  

Π =
1
2 𝐸𝐼𝜌!!𝑑𝑠

!

!
−
1
2𝜌𝑔 𝑣!"𝑑𝑠

!

!
𝑑𝜁

!

!
−
1
2𝑀𝑔 𝑣!"𝑑𝑠

!

!
 

𝑣!"𝑑𝑠
!

!
𝑑𝜁

!

!
= 𝑣!"𝑑𝜁

!

!
𝑑𝑠

!

!
= 𝑑𝜁𝑣!"

!

!
𝑑𝑠

!

!
= (𝐿 − 𝑠)𝑣!"𝑑𝑠

!

!
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 The potential energy can be expressed as follows:  

Π =
𝐸𝐼
2 𝑣!!" + 𝑣!!"𝑣!" 𝑑𝑠

!

!
−
1
2𝜌𝑔 (𝐿 − 𝑠)𝑣!"𝑑𝑠

!

!
−
1
2𝑀𝑔 𝑣!"𝑑𝑠

!

!
 

 Substitute 𝑤 and 𝜓 into the kinetic energy equation: 

𝑇 =
1
2 𝜌 𝑣! + 2𝑣𝑉! + 𝑉!! +

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑉!𝛺!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑣𝛺! −

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!
𝑣𝛺! + 𝑣!𝛺!!

+ 𝑠 −
1
2 𝑣!"𝑑𝑠

!

!

!

𝛺!! + 𝐽! 𝛺!! + 2Ω!𝑣! + Ω!𝑣!𝑣!" + 𝑣!" + 𝑣!"𝑣!" 𝑑𝑠

+
1
2𝑀 𝑣! + 2𝑣𝑉! + 𝑉!! +

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑉!𝛺!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑣𝛺! −

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!
𝑣𝛺! + 𝑣!𝛺!!

+ 𝑠 −
1
2 𝑣!"𝑑𝑠

!

!

!

𝛺!!

!!!

+
1
2 𝐽 𝛺!

! + 2Ω!𝑣! + Ω!𝑣!𝑣!" + 𝑣!" + 𝑣!"𝑣!"
!!!

 

The approximate solutions are assumed in the form: 

𝑣(𝑡, 𝑧) = 𝑞!(𝑡)𝑌!(𝑧)
!

!!!

 
 

where the trial functions, 𝑌!, are known independent comparison function from a complete set 

and denote the undamped linear mode shapes and 𝑞!  denotes the generalized modal 

coordinates, (Meirovitch, 2001).  For single mode the assumed solution becomes: 
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𝑣(𝑡, 𝑧) = 𝑞(𝑡)𝑌(𝑧) 
 

Substitute in the kinetic energy equation and simplify (details provided in Appendix 

C): 

𝑎!𝑞 + 𝑎!𝑞!𝑞 + 𝑎!𝑞𝑞𝟐 + 𝑎!Ω!𝑞! + 𝑎! − 𝑎!𝑉!𝛺! − 𝑎!𝛺!! 𝑞 + 𝑎! − 𝑎!𝛺!! 𝑞!

= 𝑎!𝑉! + 𝑎!"Ω! 

The inertial coefficient including the rotary inertia (or effective mass) is:  

𝑎! = 𝜌 𝑌!𝑑𝑠
!

!
+ 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! + 𝐽𝑌!" !!! 

The nonlinear inertial coefficients including tip rotary inertias are :  

𝑎! = 𝜌 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+ 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

+ 𝐽𝑌!" !!! 

𝑎! =
1
2 −𝜌 𝑌 𝑌!"𝑑𝑠

!

!
𝑑𝑠

!

!
−𝑀𝑌 𝑌!"𝑑𝑠

!

! !!!
+ 𝐽! 𝑌!!𝑑𝑠

!

!
+ 𝐽𝑌!!

!!!
 

The first order stiffness coefficient s(or effective elastic stiffness) are:   

𝑎! =   𝐸𝐼 𝑌!!"𝑑𝑠
!

!
− 𝜌𝑔 𝐿 − 𝑠 𝑌!"𝑑𝑠

!

!
−𝑀𝑔 𝑌!"𝑑𝑠

!

!
 

𝑎! = 2𝜌 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!
+ 2𝑀 𝑌!"𝑑𝑠

!

! !!!
 

𝑎! =   𝜌 𝑌!𝑑𝑠
!

!
−
1
2𝜌 𝐿! − 𝑠! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! −

1
2𝑀 𝐿! − 𝑠! 𝑌!"

!!!
 

The third order nonlinear geometric stiffness coefficients:   
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𝑎! = 2𝐸𝐼 𝑌!!"𝑑𝑠
!

!
 

𝑎! =
1
2 𝜌 𝑌!"𝑑𝑠

!

!

!

𝑑𝑠
!

!
+
1
2𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

 

and the base excitation inertial coefficients are:  

𝑎! = 𝜌 𝑌𝑑𝑠
!

!
+𝑀𝑌 !!! 

𝑎!" = −𝜌 𝑠𝑌𝑑𝑠
!

!
−𝑀𝑠𝑌 !!! + 𝐽! 𝑌!𝑑𝑠

!

!
+ 𝐽𝑌! !!! 

Equation of motion is: 

𝑎!𝑞 + 𝑎!𝑞!𝑞 + 𝑎!𝑞𝑞𝟐 + 𝑎!Ω!𝑞! + 𝑎! − 𝑎!𝑉!𝛺! − 𝑎!𝛺!! 𝑞 + 𝑎! − 𝑎!𝛺!! 𝑞!

= 𝑎!𝑉! + 𝑎!"Ω! 

Dividing by 𝛼! yields: 

𝑞 + 𝛽!𝑞!𝑞 + 𝛽!𝑞𝑞𝟐 + 𝛽!Ω!𝑞! + 𝛽! − 𝛽!𝑉!𝛺! − 𝛽!𝛺!! 𝑞 + 𝛽! − 𝛽!𝛺!! 𝑞!

= 𝛽!𝑉! + 𝛽!"Ω! 

𝛽! =
𝑎!
𝑎!
    𝛽! =

𝑎!
𝑎!
        𝛽! =

𝑎!
𝑎!
      𝛽! =

𝑎!
𝑎!
      𝛽! =

𝑎!
𝑎!
   

    𝛽! =
𝑎!
𝑎!
      𝛽! =

𝑎!
𝑎!
    𝛽! =

𝑎!
𝑎!
    𝛽!" =

𝑎!"
𝑎!

 

1+ 𝛽!𝑞! 𝑞 + 𝛽!𝑞𝑞𝟐 + 𝛽!Ω!𝑞! + 𝛽! − 𝛽!𝑉!𝛺! − 𝛽!𝛺!! 𝑞 + 𝛽! − 𝛽!𝛺!! 𝑞!

= 𝛽!𝑉! + 𝛽!"Ω! 

𝛾 = 1+ 𝛽!𝑞!  
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Dividing by 𝛾 yields: 

𝑞 +
𝛽!
𝛾 𝑞𝑞

𝟐 +
𝛽!
𝛾 Ω!𝑞

! +
𝛽! − 𝛽!𝑉!𝛺! − 𝛽!𝛺!!

𝛾 𝑞 +
𝛽! − 𝛽!𝛺!!

𝛾 𝑞! =
𝛽!
𝛾 𝑉! +

𝛽!"
𝛾 Ω! 

  



 

 
 

277 
 

Appendix C: Euler-Lagrangian Development 

Expand the kinetic energy and rearrange:  

𝑇 =
1
2 𝜌 𝑣! + 2𝑣𝑉! + 𝑉!! +

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑉!𝛺!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑣𝛺! −

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!
𝑣𝛺! + 𝑣!𝛺!!

+ 𝑠 −
1
2 𝑣!"𝑑𝑠

!

!

!

𝛺!! + 𝐽! 𝛺!! + 2Ω!𝑣! + Ω!𝑣!𝑣!" + 𝑣!" + 𝑣!"𝑣!" 𝑑𝑠

+
1
2𝑀 𝑣! + 2𝑣𝑉! + 𝑉!! +

1
4

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!

!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑉!𝛺!

+ 𝑣!"𝑑𝑠
!

!
− 2𝑠 𝑣𝛺! −

𝜕
𝜕𝑡 𝑣!"𝑑𝑠

!

!
𝑣𝛺! + 𝑣!𝛺!!

+ 𝑠 −
1
2 𝑣!"𝑑𝑠

!

!

!

𝛺!!

!!!

+
1
2 𝐽 𝛺!

! + 2Ω!𝑣! + Ω!𝑣!𝑣!" + 𝑣!" + 𝑣!"𝑣!"
!!!

 

Substitute 𝑣(𝑡, 𝑧) = 𝑞(𝑡)𝑌(𝑧) into the kinetic energy equation: 
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𝑇 =
1
2 𝜌 𝑞!𝑌! + 2𝑞𝑌𝑉! + 𝑉!! +

1
4

𝜕
𝜕𝑡 𝑞!𝑌!"𝑑𝑠

!

!

!

+ 𝑞! 𝑌!"𝑑𝑠
!

!
− 2𝑠 𝑉!𝛺!

!

!

+ 𝑞! 𝑌!"𝑑𝑠
!

!
− 2𝑠 𝑞𝑌𝛺! −

𝜕
𝜕𝑡 𝑞! 𝑌!"𝑑𝑠

!

!
𝑞𝑌𝛺! + 𝑞!𝑌!𝛺!! + 𝑠!𝛺!!

− 𝑠𝑞! 𝑌!"𝑑𝑠
!

!
𝛺!! +

1
4 𝑞

! 𝑌!"𝑑𝑠
!

!

!

𝛺!!

+ 𝐽! 𝛺!! + 2Ω!𝑞𝑌′+ Ω!𝑞𝑞!𝑌′! + 𝑞!𝑌!" + 𝑞!𝑞!𝑌!" 𝑑𝑠

+
1
2𝑀 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

!!!
+
1
2 𝐽 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 !!!

 

𝑇 =
1
2 𝜌 𝑞!𝑌! + 2𝑞𝑌𝑉! + 𝑉!! + 𝑞!𝑞! 𝑌!"𝑑𝑠

!

!

!

+ 𝑞! 𝑌!"𝑑𝑠
!

!
𝑉!𝛺! − 2𝑠𝑉!𝛺!

!

!

+ 𝑌!"𝑑𝑠
!

!
𝑞!𝑞𝑌𝛺! − 2𝑠𝑞𝑌𝛺! − 2𝑞!𝑞 𝑌!"𝑑𝑠

!

!
𝑌𝛺! + 𝑞!𝑌!𝛺!!

+ 𝑠!𝛺!! − 𝑌!"𝑑𝑠
!

!
𝑠𝑞!𝛺!! +

1
4 𝑌!"𝑑𝑠

!

!

!

𝑞!𝛺!!

+ 𝐽! 𝛺!! + 2Ω!𝑞𝑌′+ Ω!𝑞𝑞!𝑌′! + 𝑞!𝑌!" + 𝑞!𝑞!𝑌!" 𝑑𝑠

+
1
2𝑀 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

!!!
+
1
2 𝐽 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 !!!
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𝑇 =
1
2𝜌𝑞

! 𝑌!𝑑𝑠
!

!
+ 𝜌𝑞𝑉! 𝑌𝑑𝑠

!

!
+
1
2𝜌𝐿𝑉!

! +
1
2𝜌𝑞

!𝑞! 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!

+
1
2𝜌𝑞

!𝑉!𝛺! 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!
−
1
2𝜌𝐿

!𝑉!𝛺! −
1
2𝜌𝑞

!𝑞𝛺! 𝑌 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!

− 𝜌𝑞𝛺! 𝑠𝑌𝑑𝑠
!

!
+
1
2𝜌𝑞

!𝛺!! 𝑌!𝑑𝑠
!

!
+
1
6𝜌𝐿

!𝛺!!

−
1
2𝜌𝑞

!𝛺!! 𝑠 𝑌!"𝑑𝑠
!

!

!

!
𝑑𝑠 +

1
8𝜌𝑞

!𝛺!! 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+
1
2 𝐽!𝐿𝛺!

!

+ 𝐽!𝑞Ω! 𝑌′𝑑𝑠
!

!
+
1
2 𝐽!𝑞𝑞

!Ω! 𝑌′!𝑑𝑠
!

!
+
1
2 𝐽!𝑞

! 𝑌!"𝑑𝑠
!

!

+
1
2 𝐽!𝑞

!𝑞! 𝑌!"𝑑𝑠
!

!
+
1
2𝑀 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

!!!

+
1
2 𝐽 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 !!!
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𝑇 =
1
2𝜌𝑞

! 𝑌!𝑑𝑠
!

!
+ 𝜌𝑞𝑉! 𝑌𝑑𝑠

!

!
+
1
2𝜌𝐿𝑉!

! +
1
2𝜌𝑞

!𝑞! 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!

+
1
2𝜌𝑞

!𝑉!𝛺! 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!
−
1
2𝜌𝐿

!𝑉!𝛺! −
1
2𝜌𝑞

!𝑞𝛺! 𝑌 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!

− 𝜌𝑞𝛺! 𝑠𝑌𝑑𝑠
!

!
+
1
2𝜌𝑞

!𝛺!! 𝑌!𝑑𝑠
!

!
+
1
6𝜌𝐿

!𝛺!!

−
1
4𝜌𝑞

!𝛺!! 𝐿! − 𝑠! 𝑌!"𝑑𝑠
!

!
+
1
8𝜌𝑞

!𝛺!! 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+
1
2 𝐽!𝛺!

!𝐿

+ 𝐽!Ω!𝑞 𝑌!𝑑𝑠
!

!
+
1
2 𝐽!Ω!𝑞𝑞

! 𝑌!!𝑑𝑠
!

!
+
1
2 𝐽!𝑞

! 𝑌!"𝑑𝑠
!

!

+
1
2 𝐽!𝑞

!𝑞! 𝑌!"𝑑𝑠
!

!
+
1
2𝑀 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

!!!

+
1
2 𝐽 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 !!!
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𝑇 =
1
2𝜌𝑞

! 𝑌!𝑑𝑠
!

!
+ 𝜌𝑞𝑉! 𝑌𝑑𝑠

!

!
+
1
2𝜌𝐿𝑉!

! +
1
2𝜌𝑞

!𝑞! 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!

+
1
2𝜌𝑞

!𝑉!𝛺! 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!
−
1
2𝜌𝐿

!𝑉!𝛺! −
1
2𝜌𝑞

!𝑞Ω! 𝑌 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!

− 𝜌𝑞Ω! 𝑠𝑌𝑑𝑠
!

!
+
1
2𝜌𝑞

!𝛺!! 𝑌!𝑑𝑠
!

!
+
1
6𝜌𝐿

!𝛺!!

−
1
4𝜌𝑞

!𝛺!! 𝐿! − 𝑠! 𝑌!"𝑑𝑠
!

!
+
1
8𝜌𝑞

!𝛺!! 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+
1
2 𝐽!𝛺!

!𝐿

+ 𝐽!Ω!𝑞 𝑌!𝑑𝑠
!

!
+
1
2 𝐽!Ω!𝑞𝑞

! 𝑌!!𝑑𝑠
!

!
+
1
2 𝐽!𝑞

! 𝑌!"𝑑𝑠
!

!

+
1
2 𝐽!𝑞

!𝑞! 𝑌!"𝑑𝑠
!

!
+
1
2𝑀𝑞

!𝑌!
!!!

+𝑀𝑞𝑉!𝑌 !!! +
1
2𝑀𝑉!

!

!!!

+
1
2𝑀𝑞

!𝑞! 𝑌!"𝑑𝑠
!

!

!

!!!

+
1
2𝑀𝑞

!𝑉!𝛺! 𝑌!"𝑑𝑠
!

! !!!
−
1
2𝑀𝐿𝑉!𝛺!

+
1
2𝑀𝑞

!𝛺!!𝑌!
!!!

+
1
8𝑀𝑞

!𝛺!! 𝑌!"𝑑𝑠
!

!

!

!!!

−
1
4𝑀𝑞

!𝛺!! 𝐿! − 𝑠! 𝑌!"
!!!

+
1
6𝑀𝑠

!𝛺!!
!!!

−𝑀𝑞Ω!𝑠𝑌 !!! −
1
2𝑀𝑞

!𝑞Ω!𝑌 𝑌!"𝑑𝑠
!

! !!!

+
1
2 𝐽 𝛺!

! + 2Ω!𝑞𝑌! + Ω!𝑞𝑞!𝑌!
! + 𝑞!𝑌!" + 𝑞!𝑞!𝑌!"

!!!
 

Collect the generalized coordinates:  



 

 
 

282 
 

𝑇 =
1
2 𝜌 𝑌!𝑑𝑠 + 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! + 𝐽𝑌!" !!!

!

!
𝑞!

+
1
2 𝜌 𝑌!"𝑑𝑠

!

!

!

𝑑𝑠 + 𝐽! 𝑌!"𝑑𝑠
!

!

!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

+ 𝐽𝑌!" !!! 𝑞!𝑞! + 𝜌 𝑌𝑑𝑠
!

!
+𝑀𝑌 !!! 𝑞𝑉!

+ −𝜌 𝑠𝑌𝑑𝑠
!

!
−𝑀𝑠𝑌 !!! + 𝐽! 𝑌!𝑑𝑠

!

!
+ 𝐽𝑌! !!! 𝑞Ω!

+
1
2 𝜌 𝑌!"𝑑𝑠

!

!
𝑑𝑠

!

!
+𝑀 𝑌!"𝑑𝑠

!

! !!!
𝑞!𝑉!𝛺!

+
1
2 −𝜌 𝑌 𝑌!"𝑑𝑠

!

!
𝑑𝑠

!

!
−𝑀𝑌 𝑌!"𝑑𝑠

!

! !!!
+ 𝐽! 𝑌!!𝑑𝑠

!

!

+ 𝐽𝑌!!
!!!

𝑞!𝑞Ω!

+
1
2 𝜌 𝑌!𝑑𝑠

!

!
−
1
2𝜌 𝐿! − 𝑠! 𝑌!"𝑑𝑠

!

!

+𝑀𝑌! !!! −
1
2𝑀𝑞

!𝛺!! 𝐿! − 𝑠! 𝑌!"
!!!

𝑞!𝛺!!

+
1
8 𝜌 𝑌!"𝑑𝑠

!

!

!

𝑑𝑠
!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

𝑞!𝛺!! +
1
2 𝜌𝐿 +𝑀 !!! 𝑉!!

+
1
2 −𝜌𝐿! −𝑀𝐿 𝑉!𝛺! +

1
2
1
3𝜌𝐿

!+
1
3𝑀𝑠

!

!!!
+ 𝐽!𝐿 + 𝐽 !!! 𝛺!!  

Set: 

𝛼! = 𝜌 𝑌!𝑑𝑠 + 𝐽! 𝑌!"𝑑𝑠
!

!
+𝑀𝑌! !!! + 𝐽𝑌!" !!!

!

!
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𝛼! = 𝜌 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠 + 𝐽! 𝑌!"𝑑𝑠
!

!

!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

+ 𝐽𝑌!" !!! 

𝛼! = 𝜌 𝑌𝑑𝑠
!

!
+𝑀𝑌 !!! 

𝛼! = −𝜌 𝑠𝑌𝑑𝑠
!

!
−𝑀𝑠𝑌 !!! + 𝐽! 𝑌!𝑑𝑠

!

!
+ 𝐽𝑌! !!! 

𝛼! = 𝜌 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!
+𝑀 𝑌!"𝑑𝑠

!

! !!!
 

𝛼! = −𝜌 𝑌 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!
−𝑀𝑌 𝑌!"𝑑𝑠

!

! !!!
+ 𝐽! 𝑌!!𝑑𝑠

!

!
+ 𝐽𝑌!!

!!!
 

𝛼! = 𝜌 𝑌!𝑑𝑠
!

!
−
1
2𝜌 𝐿! − 𝑠! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! −

1
2𝑀 𝐿! − 𝑠! 𝑌!"

!!!
 

𝛼! = 𝜌 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

 

𝛼! = 𝜌𝐿 +𝑀 !!! 

𝛼!" = −𝜌𝐿! −𝑀𝐿 

𝛼!! =
1
3𝜌𝐿

!+
1
3𝑀𝑠

!

!!!
+ 𝐽!𝐿 + 𝐽 !!! 

Substitute into the kinetic energy: 

𝑇 =
1
2𝛼!𝑞

! +
1
2𝛼!𝑞

!𝑞! + 𝛼!𝑞𝑉! + 𝛼!  𝑞Ω! + 𝛼!𝑞!𝑉!𝛺! +
1
2𝛼!𝑞

!𝑞Ω! +
1
2𝛼!𝑞

!𝛺!!

+
1
8𝛼!𝑞

!𝛺!! +
1
2𝛼!𝑉!

! +
1
2𝛼!"𝑉!𝛺! +

1
2𝛼!!𝛺!

!  
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𝜕𝑇
𝜕𝑞 = 𝛼!𝑞𝑞! + 2𝛼!𝑞𝑉!𝛺! + 𝛼!𝑞𝑞Ω! + 𝛼!𝑞𝛺!! +

1
2𝛼!𝑞

!𝛺!!  

𝜕𝑇
𝜕𝑞 = 𝛼!𝑞 + 𝛼!𝑞!𝑞 + 𝛼!𝑉! + 𝛼!  Ω! +

1
2𝛼!𝑞

!Ω! 

Π =
𝐸𝐼
2 𝑞!𝑌!!" + 𝑞!𝑌!!"𝑌!" 𝑑𝑠

!

!
−
1
2𝜌𝑔𝑞

! 𝐿 − 𝑠 𝑌!"𝑑𝑠
!

!
−
1
2𝑀𝑔𝑞

! 𝑌!"𝑑𝑠
!

!
 

𝜕𝛱
𝜕𝑞 = 𝐸𝐼 𝑌!!"𝑑𝑠

!

!
𝑞 + 2𝐸𝐼 𝑌!!"𝑌!"𝑑𝑠

!

!
𝑞! − 𝜌𝑔 𝐿 − 𝑠 𝑌!"𝑑𝑠

!

!
𝑞

−𝑀𝑔 𝑌!"𝑑𝑠
!

!
𝑞 

Set: 

𝛼!" =   𝐸𝐼 𝑌!!"𝑑𝑠
!

!
− 𝜌𝑔 𝐿 − 𝑠 𝑌!"𝑑𝑠

!

!
−𝑀𝑔 𝑌!"𝑑𝑠

!

!
 

𝛼!" = 2𝐸𝐼 𝑌!!"𝑌!"𝑑𝑠
!

!
 

𝜕𝛱
𝜕𝑞 = 𝛼!"𝑞 + 𝛼!"𝑞!                     

𝜕𝛱
𝜕𝑞 = 0 

∂𝐿
𝜕𝓆 =

𝜕𝑇
𝜕𝓆 −

∂Π
𝜕𝓆 

∂𝐿
𝜕𝓆 = 𝛼!𝑞𝑞! + 2𝛼!𝑞𝑉!𝛺! + 𝛼!𝑞𝑞Ω! + 𝛼!𝑞𝛺!! +

1
2𝛼!𝑞

!𝛺!! − 𝛼!"𝑞 − 𝛼!"𝑞! 

∂𝐿
𝜕𝓆 =

𝜕𝑇
𝜕𝓆 −

∂Π
𝜕𝓆 

∂𝐿
𝜕𝓆 = 𝛼!𝑞 + 𝛼!𝑞!𝑞 + 𝛼!𝑉! + 𝛼!  Ω! +

1
2𝛼!𝑞

!Ω! 
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𝜕
𝜕𝑡

∂𝐿
𝜕𝓆 = 𝛼!𝑞 + 2𝛼!𝑞𝑞𝟐 + 𝛼!𝑞!𝑞 + 𝛼!𝑉! + 𝛼!Ω! + 𝛼!𝑞𝑞Ω! +

1
2𝛼!𝑞

!Ω! 

𝜕
𝜕𝑡

∂𝐿
𝜕𝓆 −

∂𝐿
𝜕𝓆 = 0

= 𝛼!𝑞 + 2𝛼!𝑞𝑞𝟐 + 𝛼!𝑞!𝑞 + 𝛼!𝑉! + 𝛼!Ω! + 𝛼!𝑞𝑞Ω! +
1
2𝛼!𝑞

!Ω! − 𝛼!𝑞𝑞!

− 2𝛼!𝑞𝑉!𝛺! − 𝛼!𝑞𝑞Ω! − 𝛼!𝑞𝛺!! −
1
2𝛼!𝑞

!𝛺!! + 𝛼!"𝑞 + 𝛼!"𝑞! 

Simplify  

0 = 𝛼!𝑞 + 𝛼!𝑞𝑞𝟐 + 𝛼!𝑞!𝑞 + 𝛼!𝑉! + 𝛼!Ω! +
1
2𝛼!𝑞

!Ω! − 2𝛼!𝑞𝑉!𝛺! − 𝛼!𝑞𝛺!!

−
1
2𝛼!𝑞

!𝛺!! + 𝛼!"𝑞 + 𝛼!"𝑞! 

𝛼!𝑞 + 𝛼!𝑞!𝑞 + 𝛼!𝑞𝑞𝟐 +
1
2𝛼!Ω!𝑞

! + 𝛼!" − 2𝛼!𝑉!𝛺! − 𝛼!𝛺!! 𝑞 + 𝛼!" −
1
2𝛼!𝛺!

! 𝑞!

= −𝛼!𝑉! − 𝛼!Ω! 

The inertial coefficient including the rotary inertia (or effective mass) is:  

𝑎! = 𝛼! = 𝜌 𝑌!𝑑𝑠
!

!
+ 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! + 𝐽𝑌!" !!! 

The nonlinear inertial coefficients including tip rotary inertias are:  

𝑎! = 𝛼! = 𝜌 𝑌!"𝑑𝑠
!

!

!

𝑑𝑠
!

!
+ 𝐽! 𝑌!"𝑑𝑠

!

!
+𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

+ 𝐽𝑌!" !!! 

𝑎! =
1
2𝛼! =

1
2 −𝜌 𝑌 𝑌!"𝑑𝑠

!

!
𝑑𝑠

!

!
−𝑀𝑌 𝑌!"𝑑𝑠

!

! !!!
+ 𝐽! 𝑌!!𝑑𝑠

!

!
+ 𝐽𝑌!!

!!!
 

The first order stiffness coefficients (or effective elastic stiffness) are:   
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𝑎! = 𝛼!" =   𝐸𝐼 𝑌!!"𝑑𝑠
!

!
− 𝜌𝑔 𝐿 − 𝑠 𝑌!"𝑑𝑠

!

!
−𝑀𝑔 𝑌!"𝑑𝑠

!

!
 

𝑎! = 2𝛼! = 2𝜌 𝑌!"𝑑𝑠
!

!
𝑑𝑠

!

!
+ 2𝑀 𝑌!"𝑑𝑠

!

! !!!
 

𝑎! = 𝛼! =   𝜌 𝑌!𝑑𝑠
!

!
−
1
2𝜌 𝐿! − 𝑠! 𝑌!"𝑑𝑠

!

!
+𝑀𝑌! !!! −

1
2𝑀 𝐿! − 𝑠! 𝑌!"

!!!
 

The third order nonlinear geometric stiffness coefficients:   

𝑎! = 𝛼!" = 2𝐸𝐼 𝑌!!"𝑌!"𝑑𝑠
!

!
 

𝑎! =
1
2𝛼! =

1
2 𝜌 𝑌!"𝑑𝑠

!

!

!

𝑑𝑠
!

!
+
1
2𝑀 𝑌!"𝑑𝑠

!

!

!

!!!

 

And the base excitation inertial coefficients are:  

𝑎! = 𝛼! = 𝜌 𝑌𝑑𝑠
!

!
+𝑀𝑌 !!! 

𝑎!" = 𝛼! = −𝜌 𝑠𝑌𝑑𝑠
!

!
−𝑀𝑠𝑌 !!! + 𝐽! 𝑌!𝑑𝑠

!

!
+ 𝐽𝑌! !!! 

Equation of motion is: 

𝑎!𝑞 + 𝑎!𝑞!𝑞 + 𝑎!𝑞𝑞𝟐 + 𝑎!Ω!𝑞! + 𝑎! − 𝑎!𝑉!𝛺! − 𝑎!𝛺!! 𝑞 + 𝑎! − 𝑎!𝛺!! 𝑞!

= 𝑎!𝑉! + 𝑎!"Ω! 
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