TECHNICAL RESEARCH REPORT

Design of the MANDATE MIB

by J. Haritsa, M. Ball, N. Roussopoulos,
J. Baras, and A. Datta

CSHCN TR 93-7/ISR TR 93-95

AN\

CENTER FOR SATELLITE &
HysrRID COMMUNICATION NETWORKS

A Nasa CENTER FOR THE
e COMMERCIAL DEVELOPMENT OF SPACE

DS
KK

AN

University of Maryland Institute for Systems Research

Integrated Network Management, III (C-12)

H.-G. Hegering and Y. Yemini (Editors)

Elsevier Science Publishers B.V. (North-Holland) 85
© 1993 IFIP. All rights reserved.

Design of the MANDATE MIB

Jayant Haritsa, Michael Ball, Nicholas Roussopoulos, John Baras, and Anindya Datta

Institute for Systems Research, University of Maryland, College Park, MD 20742

Abstract

A management information database is the heart of a network management system —
it provides the interface between all functions of the network management system, and
therefore has to provide sophisticated functionality allied with high performance. In this
paper, we introduce the design of MANDATE, a database system that is designed to
effectively support the management of large enterprise networks. MANDATE proposes to
use special characteristics of network management data and transactions, together with
recent advances in database technology, to efficiently derive its functionality.

1. INTRODUCTION

In today’s global marketplace, most large-scale enterprises have widely-dispersed
manufacturing and commercial operations that are connected by a communications net-
work. The enterprise communicaton networks of the future are expected to be hetero-
geneous in several dimensions: mixed-media physical transmission facilities (e.g. copper,
fiber-optic, satellite); multi-media information transmission (e.g. video, voice, data); multi-
ple vendor sub-networks; and varied performance objectives (e.g. high throughput for data,
low blocking probability for voice). As a result of this multi-faceted heterogeneity, future
enterprise networks are expected to be highly complex in their transmission, performance,
and communication characteristics. Due to this complexity, and due to the disparity
among management systems for individual subnetworks, efficient management of enter-
prise networks is an extremely challenging problem.

Network researchers are generally in common agreement that a global network data-
base, which contains all management-related data, is central to the development of an
efficient network management system (e.g. [Bapa91, Valt91, Terp92]). This database,
referred to in OSI parlance as Management Information Base (MIB), is required to store
information on network and system configurations, current and historic performance, trou-
ble logs, security codes, accounting information, etc. [Kler88]. While there has been
intensive research on network management systems in recent years, comparatively little
has been published with respect to the actual design and implementation of an MIB. In
this paper, we introduce the design of MANDATE (MAnaging Networks using DAtabase
TEchnology), an MIB system that is designed to effectively support the management of
large enterprise networks.

The guiding principle of the MANDATE design is to have the network operator(s)
interact solely with the database, that is, from the operator’s perspective, the database logi-
cally embodies the network. Whenever the operator wishes to make changes in the net-
work functioning, such as changing the routing scheme, for example, the operator merely
updates the appropriate variables in the database. The actual implementations of these
changes in the physical network are made by the database system. This design approach
allows the operator to concentrate on what has to be done, rather than on the mechanics of

st i s -

86

implementing the decisions. A second important aspect of the proposed MANDATE sys-
tem is that it is a bottom-up design, not a modified version of commercially available
database systems. This results in a system architecture that is tailor-made specifically for
network management. Finally, MANDATE plans to use special characteristics of network
management data and transactions, together with recent advances in database technology,
to efficiently derive its functionality.

2. ROLE OF DATABASES IN NETWORK MANAGEMENT

The ISO/ANSI standards committee [Cher87] has classified the sophisticatcd func-
tionality required of network management systems into' the well-known six categories of
Configuration Management, Fault Management, Performance Management, Security
Management, Accounting Management, and Directory Management. The functional archi-
tecture defined by these six categories clearly identifies the different facets of network
management and control, and enables a modular approach to be taken towards designing
network management tools. However, there is considerable overlap and interaction
between the various management sub-systems. For example, fault management and per-
formance management are closely interrelated, since poor performance is often the only
visible symptom of a fault deep down in the system. Similarly, detecting a faulty resource
and providing for its isolation requires both fault management and configuration manage-
ment. In order for the various management modules to co-ordinate their activities, a com-
mon "public workspace" or database is necessary. Therefore, a logically integrated data-
base is the heart of a network management system [Schw90] — it provides the interface
between all functions of the network management system. This database, or MIB, is the
conceptual repository of all management-related information.

2.1. Requirements on MIB

Ideally, the MIB module of an enterprise network management system should provide
the following major functionalities (a more comprehensive list is described in [Hari92]):

(1) Homogeneous interface: Present a uniform interface to the operator that is indepen-
dent of the individual sub-network characteristics.

(2) Fault-tolerance: Operate 24 hours on-line since the MIB is the core of the network
management system.

(3) Real-time Response: Store and process in real-time the "network health” data which
is continuously gathered by monitoring tools.

(4) Decision Support: Answer "what-if" questions by executing on-line simulations, thus
helping the operator to evaluate the potential'impacts of different control decisions.

(5) Embedded Optimization: Efficiently execute on-line optimization algorithms to adapt
the network routing, configuration, etc. in response to changes in the network traffic
or connectivity.

(6) High-performance: Minimize the overhead of network management on the perfor-
mance of the network. In addition, the network management performance should
gracefully degrade under overload conditions.

From this list, we observe that an MIB has architectural requirements, interface require-
ments, temporal requirements, control requirements, and performance goals. Clearly, the

dv51gn of the MIB is key to providing all of these complex functionalities in an integrated
fashion.

Since current database technology is falrly mature, one might think that using a popu-
lar database management package (e.g. ORACLE, INGRES) should be sufficient for
irnplementing a network management MIB. However, this is not the case for several rea-
sons: First, standard off-the-shelf DBMSs lack many of the required MIB functionalities
such as real-time capabilities and decision support facilities. Second, conventional

87

DBMSs have been developed for the commercial query processing environment and are
primarily geared towards applications such as banking, where the focus is on naive human
users interactively performing transactions. In network management, however, software
programs control the network behavior with human intervention restricted to skilled opera-
tors. Finally, the objective of conventional DBMSs is to efficiently implement a transac-
tion model that provides the so-called ACID property, that is, atomicity, consistency, iso-
lation, and durability. However, this transaction model is unsuitable for processing of net-
work management data, since some of these properties may not be essential here, as
explained in the following sections. In summary, the network management environment is
a specialized application area with unique characteristics that can best be taken advantage
of by a database system that is built specifically for this environment. In this paper, we
introduce the design of MANDATE, an MIB that is tuned to the task of network manage-
ment.

3. RELATED WORK

Issues similar to those addressed in this paper were considered in [Schw90]. The
focus in that work was on evaluating how conventional DBMS packages would serve in
the role of an MIB, and suggesting network-related modifications to these conventional
packages. In contrast, our focus is on developing a new database system whose design is
tailor-made for network management. The NETMATE project at Columbia University
[Dupu91] has also investigated many of the issues discussed here. They have concen-
trated on the model of the network and its architectural relationship with management
tools, whereas our attention is primarily on the MIB design aspect.

An overview of the issues involved in implementing the MIB interface definition laid
down by the OSI standards committee was presented in [Bapa91]. The issues considered
included the choice of data model, the architecture for distributing network management
data, and the mechanisms for ensuring integrity of replicated data. While the paper
describes several of the functionalities to be provided by a MIB, it does not, however, pro-
vide a detailed architectural design for achieving these functionalities.

4. NETWORK DATA

The first step in designing a database system is to understand the properties (seman-
tics) of the data items that are resident in the database and to understand the properties of
the tasks (or transactions) that store, process, and retrieve this data. Network management
data can be broadly classified into three types: Sensor Data, Structural Data, and Control
Data, as shown in Figure 4.1, which describes a high-level abstraction of the MIB data
model. As explained below, the structural data describes the physical and logical con-
struction of the network, the control data captures the operational settings of the network,
and the sensor data represents the observed state of the network.

4.1. Sensor Data

The sensor (or measurement) data is the raw information that is received from the
network monitoring processes, and includes variables such as node queue lengths,
reransmission rates, link status, call statistics, etc. The sensor data provides the primary
input for three of the six OSI network management categories: Accounting Management,
Performance Management, and Fault Management. It represents the current "health" of
the network in terms of the network usage and operational quality. In current large net-
works, the quantity of sensor data that is gathered may be as large as 20 to 30 gigabytes
per day [Spri92]. '

Sensor data can be divided into two groups: Persistent and Perishable. The per-
sistent data consists of sensor data whose utility is long-term and therefore needs to be
maintained permanently in the database. Critical data such as customer billing

&8

Operator
(o) f\
Consol Simulation and
E Views Optimization —
Query
STRUCTURAL
DATA

View Processor

SENSOR
DATA
CONTROL
DATA

! Accounting l __7/Bi1lingRecords/
Fault } > TroublcTickety

v

‘Network
Network Monitors Executors

Figure 4.1: Model of MIB

information, network alarms, and security violations belong to this category. Due to the
requirement of permanence, persistent sensor data requires recovery mechanisms similar to
those provided by commercial DBMSs.

Perishable sensor data, on the other hand, is data that is of limited time utility in the
sense that its current value is valid only untl the network characteristic that is being moni-
tored retains that value. Data such as node queue lengths, retransmission rates, and most
other dynamic performance statistics fall into this category. There is no need for logging
of these updates since the information will be out-of-date by the time the MIB recovers
from a failure. Also, unlike the persistent sensor data, updates to perishable sensor data
are not “sacred" since ignoring updates occasionally does not have serious irnplications.
While the perishable sensor data has only limited time utility with respect to the immedi-
ate operation of the network, it is necessary to retain some history of the data values
(using a versioning mechanism) for long-term post-mortem performance and fault analysis.

89

4.2, Structural Data

In contrast to sensor data, structural data is composed of static or slowly-changing
network information such as the network topology, the configurations of the network
switches and trunks, the data encryption keys, the customer description records, etc. This
data provides the primary input for the remaining three OSI network management
categories: Configuration Management, Security Management, and Directory Manage-
ment. A point to note here is that unlike sensor data, structural data is valid even when
the network is not in operation.

In a typical large network, the quantity of structural data depends on the detail at
which the network is represented and may be of the order of several gigabytes. Most of
the structural data is stored at system initiation time and is typically changed only in
responsc to significant network events such as adding a new switch to the system or
offering a new type of customer service. The structural data needs to be recoverable for
monetary reasons (customer records are of vital importance), for efficiency reasons (restart
quickly from a database crash), and for security reasons (accessing copies of data encryp-
tion keys remotely over the network could lead to security compromises).

4.3. Control Data

The final data category is the control data, which captures the current setting of net-
work tuning parameters such as the maximum flows on individual trunks, the traffic split
ratios cn the output links of switches, the routing table, etc. In addition to the current
parameter settings, the control database also stores a library of pre-defined control settings
that reflect the appropriate settings for a variety of common traffic patterns and network
configurations. For example, different suites of settings may be appropriate for day traffic
and night traffic.

5. NETWORK TRANSACTIONS

Having discussed the characteristics of network management data, we now move on
to considering the various types of transactions that operate on the sensor, structural, and
control databases. ‘

5.1. Sensor Data

Two distinct groups of transactions, "updaters” and "readers”, access the performance
data (perishable sensor data). The updaters are the network monitoring tools, while the
readers are internal MIB processes. The updaters work in private data partitions since
they update different sets of network variables and they therefore do not interfere with
each other. These updates are different from typical database updates in that the updated
value is independent of the current value of the data object. Such updates are referred to
as “blind writes” [Bemn87]. Since the performance data is versioned, readers can always
read the data that they want without delay. Therefore, due to the absence of Read-Write
and Write-Write conflicts, no concurrency control is necessary for the performance data.

For the accounting and fault information (the persistent sensor data), the updaters
from the network monitors append records to existing tables. The MIB intemnal processes
may both read and update these persistent records. For example, a network monitor may
register a trouble ticket in the fault database. Once the fault is fixed, the trouble ticket has
to be updated to reflect this fact. Due to the concurrent reading and updating, concurrency
contro! is necessary for the accounting and fault databases.

5.2. Structural Data

Structural data can be both read and written by the network operator(s) or by MIB
control processes. Since it is possible that multiple processes may access the same struc-
tural data simultaneously, concurrency control has to be implemented. However, since the

90

structural data is updated only very rarely, concurrency control is not a major performance
issue with respect to transactions having to block while accessing data objects. Yet, it is
wasteful to have all transactions pay the computational overhead of invoking the con-
currency control manager for each access to a data object given that regulated access is
only rarely necessary. In [Hari92], a simple mechanism is described by which this prob-
lem is overcome, thereby resulting in the concurrency control protocol being used only
when update transactions are executing.

5.3. Control Data

Control data can be both read and written by the network operator or by MIB control
processes. The process for changing an existing set of control settings is usually initiated
by the network operators. For example, if the operator observes from the sensor data that
some links are becoming excessively atilized, he/she may decide to replace the routing
scheme that is currently employed by a different scheme. Alternatively, the changes may
be automatically triggered as a function of the information contained in the sensor data.
For example, if there is a serious security violation at a node (e.g. introduction of a virus),
the links going through the node may be automatically shut down pending investigation of
the problem by the network operators. Another source of change for the control data is
that produced by re-executing the optimization algorithms to reflect changes in the net-
work configuration or activity profile, thus generating a new set of control settings.

In a properly designed network, no more than one process can update a given set of -
control variables at a time (it is meaningless to have concurrent updaters since the control
of the network then becomes a function of the order in which the transactions are pro-
cessed). Therefore, concurrency control is not required for this data category. However,
the transaction construct is necessary for installing the updates in order to ensure the atom-
icity of the updates (half-implemented control settings can cause havoc in the network).
Changes to the control data trigger off network executors (see Figure 4.1), which are
processes that actually implement in the physical network the new control structure that is
logically described by the updated control data.

6. Proposed MIB Design

In conventional database systems, an elaborate set of concurrency control and
recovery mechanisms are utilized to provide the ACID property. However, as described in
the previous sections, in the network management domain, weaker forms of the ACID pro-
perty may be acceptable for certain data categories. In the MANDATE design, we pro-
pose to incorporate mechanisms that permit concurrency control and recovery to be selec-
tively implemented on a data partition basis. By doing so, we expect to realize consider-
able performance improvements. :

The MIB should be able at all times to provide the operator(s) with a view of the
current state of the entire network. This is achieved by combining the current sensor
information, the structural information, and the control settings in effect, as shown in Fig-
ure 4.1. In MANDATE, we propose to generalize this notion to allow the operators to
create different views of the network by incorporating a view processor that provides the
appropriate view to each operator based on the information in the database. For example,
the structural database holds information about the customer sub-networks, which includes
details of the physical customer access links and the logical mapping of a customer to the
public shared network. An operator trying to find the cause of a customer complaint
would use a view wherein the customer sub-network is superposed on the public network
to determine whether the fault lies in the public network or is local to the customer sub-
net. The network views also serve as inputs to the embedded simulation and optimization
algorithms.

- s e

91

In the remainder of this section, we will describe how MANDATE proposes to use
recent advances in database technology to achieve some of the required MIB functionali-
tes. Due to space constraints, we discuss the system design for only a few functionalities
here; a more detailed discussion is provided in {Hari92]. In particular, we focus here on
the system architectural model and the rietwork control and decision support mechanisms.

6.1. Architectural Model

Although an MIB is logically a centralized repository of all network-management
data, its physical implementation in large networks will have to be distributed for perfor-
mance reasons. We assume that there is a.central main database which stores all the
structural data, the most critical sensor data and the major control settings, while the
remaining network state data is stored in the local memories and disks of network com-
ponents. As shown in Figure 6.1, the recently developed concept of a Client-Server
architecture integrates well with this design. In this picture, the DB Server is the primary
data store site where all updates are synchronized for maintenance of consistency. The
network switches periodically propagate status data to the DB Server; the switches can
also be queried on demand. The client modules are typically workstations that have_ a full
DBMS functionality for cacheing views (subsets) of the MIB data. At any point in time, a
particular view is maintained in each client. In many cases the client workstation will be
supporting an operator who is responsible for real-time control decisions. Therefore,
updates to the MIB must be propagated to the client views in real-time. The client and
Server DBMSs cooperate and split the task of query processing. By placing client works-
tations at strategic nodes on the network, database access is performed in parallel from
multiple client databases, thereby alleviating the bottleneck at the primary server.

While the above client-server architecture appears to be an attractive design choice,
there are serious problems that may arise in an actual implementation: First, the activities
of synchronizing and refreshing downloaded data are repeated very often in a network and
therefore, as the number of sites increases, the processing throughput rapidly deteriorates
due to blockmg Second, because sites collectively carry a large variety of data subsets

“with each subset pertinent to a particular client’s function, place of deployment, response

requirements, etc., the database servers waste most of their capacity in keeping track of

- who-needs-what-when in order to propagate changes that affect individual clients. On the

other hand, if all changes are broadcast to all clients, the clients would be incapacitated
due to having to check all received updates (most of them would be irrelevant to each
individual client). Therefore, the intelligence, namely who-needs-what-when, must be dis-
tributed to the client workstations which would selectively request only relevant updates
from the logs maintained at the servers.

6.1.1. Incremental Client-Server Architecture

The above problems associated with distributed network database processing in
client-server architectures can be resolved by integrating the client-server architecture with
the recently developed concept of incremental computation models [Rous86]. In this
model, the results of subsequent accesses to the same portion of the database are realized
by applying the computation to the input differentials, rather than re-executing the compu-
tation on the whole input. A recent study has shown that this "incremental client-server
architecture" achieves two orders of magnitude performance increase over a standard
client-server database architecture [Deli92]. More importantly, the incremental model
seems especially appropriate for the real-time maintenance of network views which are
continuously being used by the network operators and customers. This is because, with
this model, keeping the views uptodate requires only incremental computations and
relieves the system from the burden of having to recompute the entire view in each refresh
cycle. Since, under normal network operations, the views change only slowly over time,
the incremental model can realize great improvements in performance and minimize the

92

Switch Switch Switch Switch

ack-up DB Server
/ |

g gg D

y
|

Cust-Client Cust-Client

Customer Views

Figure 6.1: An enhanced client-server database architecture for MIB

overhead of view maintenance on the other system functions. In summary, the incremental
client-server architecture provides the functional advantages of a distributed architecture
while retaining the performance of a centralized system.

In MANDATE, we propose to use the incremental client-server database architecture
described above to provide the following: (1) Real-time refreshing of network views; (2)
Immediate update propagation from the primary server to its secondary backups — this
guarantees that, in case of failure, the secondary server is uptodate for promotion to be the
primary server; (3) Parallel access of dynamically distributed data on the enhanced clients
and significant reduction on the servers I/O; (4) Preservadon of the appropriate level of

. centralized control.

e o ot b o eSS i b <

93

6.2. Network Control

The fundamental goal of network management is to be able to control the state of the
network. In the context of an MIB, a network control process is any mechanism that
makes the network respond to stimuli collected by various network sensors. Though most
of this data is routine, events such as link failures and switch malfunctions may occur
which require remedial action by the network management system. The continued opera-
tion of the network in the presence of faults is achieved through the activation of control
processes which are triggered when the network is confronted with unusual circumstances.
For network MIB systems, we classify network control mechanisms along two dimensions:
local versus global and automatic versus manual. We present below brief descriptions of
each class with illustrative examples.

6.2.1. Local Control

Local control mechanisms rely on local data collection and local decision models.
By local we refer to specific components of the network as opposed to the network as a
whole. An example of a local network control mechanism is the classical window-based
flow control scheme for regulating traffic between a source destination pair [Ephr89]. The
advantage of local controls is that they incur little or no communication overhead since
decisions are made locally with local data and minimal information exchange is involved.
Due to this locality of operation, local control processes are unaffected by remote network
failures and network congestion. We propose to implement these local control processes
in MANDATE with simple triggers or rules.

6.2.2. Global Control-

Global control processes rely on network-wide data and global decision models.
Examples of global control mechanisms include routing algorithms that compute routes
based on network-wide traffic estimates. Clearly, global control processes are capable of
optimizing network-wide performance characteristics. However, they are more vulnerable
to network failures and have greater information overhead since decisions must be com-
municated across the network. Global controls are usually implemented as algorithms that
accept input from the MIB server, perform large computations and return the results to the
MIB server.

6.2.3. Automatic Control

Automatic controls monitor certain network performance characteristics. When
specific conditions are met, control settings are automatically changed without operator
intervention. For example, assume that a particular switch has a local control process that
allocates incoming calls between a source destination pair equally among three different
routes. If one of these routes becomes overloaded, an automatic control process embedded
in the switch is triggered such that only twenty percent of all new traffic is sent along the
saturated route and the remainder is split equally among the two other routes. Clearly,
implementing automatic controls requires active database features.

6.2.4. Manual Control

Manual control processes either permit or require human intervendon. Network
operators alter control settings in the network using these processes. In a sense, manual
controls represent one of the major justifications of the MIB. Clearly, the role of the MIB
is to provide the network manager with information that supports decision making regard-
ing the setting of control parameters. This supporting activity may be achieved passively
by simply providing an interface between the network operator and network status infor-
mation. Alternatively, it may be achieved actively through an alarm system that notifies
the network manager of network conditions that require actions on his or her part.

94

6.2.5. Control Architecture

In MANDATE, we propose to provide active support for automatic control by: (1)
Supporting active database clements that can monitor sensor data and automatically set
local controls; (2) Providing embedded optimization algorithms that analyze global net-
work data and automatically propagate control settings throughout the network.

We also propose to provide in MANDATE passive support for manual controls by
providing the operator with: (1) Flexible, fast access to network information; (2) Embed-
ded optimization and simulation algorithms, described in the next section, which support
control decisions; (3) Facilities that implement specified control decisions.

6.3. Embedded Optimization and Simulation Algorithms

While some present-day networks employ optimization algorithms to determine glo-
bal control settings, we plan to support in MANDATE the generation of alternate versions
of control settings as well as their detailed analysis using simulation. These features are
expected to help network operators make higher quality control decisions. Similar facili-
ties are provided in the NETMATE system [Dupu91].

We now discuss the interaction between embedded optimization and simulation algo-
rithms and the MIB. Figure 6.2 gives a detailed view of this interaction. Examples of
oplimization algorithms include algorithms that output. routes, flow controls, access con-
trols, etc. In general, the optimization algorithm draws input from the MIB and outputs
control settings. The inputs to the algorithm consist of the current network state as embo-
died by some network view and the existing control settings. We also envision the pres-
ence of archived control settings in the MIB, which consist of old control settings and the
corresponding network states for which they were used. These also may serve as input to
optimizing routines which may find commonality between the current network state and
some old state and may be able to use old settings.

The output from an optimization algorithm is used to update either an acrive setting
or a non-active setting. Active settings invoke immediate execution of control action — in
such a case, the algorithm would be part of an automatic control process. Implementation
of active settings may be achieved through triggers or rules. Non-active settings are usu-
ally examined by users who make the final decision on implementation. That is, if the
user wishes to use the control setting, he or she would transfer it from the non-active state
to the active state. Whether the output of an algorithm is active or non-active is deter-
mined by the network state that invoked the execution of the algorithm. For example, a
case of emergency may trigger the algorithm in an active output mode while a less critical
situation may permit non active output and the subsequent examination of the proposed
control settings by the operator. In the latter case, the user may wish to run the algorithm
several times, possibly with different parameters, and compare the outputs. Typically, in
this scenario, as a result of multiple invocations of the algorithm, several versions of con-
ol settings would be derived leading to the need for a version control scheme.

The role of simulation is to evaluate the performance effects of a proposed control
seiting. The inputs to the simulation consist of a network state, an existing control setting
and the proposed control setting. The output is a detailed analysis of the effect on perfor-
mance of using the proposed control setting.

The general environment that we propose to support in the MANDATE system is one
in which a user can invoke a given optimization algorithm several times or can invoke
alternate algorithms in order to produce different versions of the output (proposed control
settings). The user would typically examine and possibly modify various versions and
also may wish to invoke a simulation algorithm that produced a detailed analysis of the
proposed control setting. Finally, the user would choose one of the versions as a "final
version” which, in MANDATE, would correspond to making the central setting active.

R -

95

Optimization
Algorithm
/'
Control U
Setti ser .)
Ver;ri)ogns Active Settings

Simulation
Algorithms

™~

Network Current Network)
State State Execution
Versions) Operations
- ~
Projected
Performance
Versions

Figure 6.2: Interaction between algorithms and the MIB

7. CONCLUSIONS

In this paper, we introduced the design of MANDATE, a database system which is
geared towards effectively supporting the management of large networks. In the proposed
design, MANDATE provides the network operators and customers with an MIB interface
that allows them to control and evaluate the network operations by interacting solely with
the database. The actual implementation of the control decisions in the physical network
are handled by MANDATE’s internal processes.

The underlying structural framework of MANDATE is a client-server architecture
which is enhanced by the use of an incremental computational model. This architecture is
expecied to result in a high-performance interface which provides the functonal

96

advantages of a distributed architecture while retaining the performance of a centralized
system. Some of the other special features that we plan to incoporate in MANDATE are
selective elimination of concurrency control and recovery overheads, variety of local and
global control structures, support for embedded network simulation and optimization algo-
rithms, specialized view-based interfaces and historical views.

In summary, the MANDATE design proposes to use.special characteristics of net-
work management data and transactions, together with recent advances in database tech-
nology, to efficiently derive its functionality. As part of our future research, we plan to
test and tune MANDATE by implementing it on a "toy" network and to follow this up
with a detailed performance study.

REFERENCES

[Bapa91] Bapat, S., "OSI Management Information Base Implementation,” Integrated
Nerwork Management, II, eds. 1. Krishnan and W. Zimmer, Elsevier Science
Publishers B.V. (North-Holland), 1991.

[Bern87] Bernstein, P., Hadzilacos, V., and Goodman, N., Concurrency Control and
Recovery in Darabase Systems Addison-Wesley, 1987.

[Cher87] Chemick, M. et al, "A survey of OSI network management standards activi-
ties,” Tech. Report NMSIG87/16 ICST-SNA-87-01, National Bureau of Stan-
dards, 1987, '

[Delif2] Delis, A., and Roussopoulos, N., "Performance and Scalability of Client-

Server Database Architectures”, Proc. of 18th Int. Conf. on Very Large Data
Bases, August 1992,

[Dupu91] Dupuy, A., et al, "NETMATE: A Network Managemcnt Environment”,
IEEE Nerwork Magazine, March 1991,

[Ephr89] Ephremides, A., and Verduy, S., "Control and Optimization Methods in Com-

munication Network Problems,” JIEEE Trans., on Automatic Control, 34(9),
September 1989.

[Feld89] Feldkhun, L., "Integrated Network Management Systems," Integrated Net-
work Management, I, eds. B. Meandzija and J. Westcott,” Elsevier Science
Publishers B.V. (North-Holland), 1989.

[Hari92] Haritsa, J. et al, "MANDATE: MAnaging Networks using DAtabase TEch-
nology," Technical Report 92-98, Systems Research Center, Univ. of Mary-
land, Sept. 1992,

[Kler88] Klerer, S., "The OSI Management Architecture: an Overview", IEEE Net-
work, 2(2), March 1988.

[Rous86] Roussopoulos, N., and Kang, H., "Principles and Techniques in the Design of
ADMS®," IEEE Computer, 19(12), December 1986.

[Rous91] Roussopoulos, N., "The Incremental Access Method of ViewCache: Concept
and Cost Analysxs " ACM Trans. on Database Systems, 16(3), September
1991.

[Schw90] Schwab, B., Wasson, L., and Sholberg, J., "Database Management for an
Integrated Network Management System," Nerwork Management and Con-
trol, ed. A. .Kcrshcnbaum et al, Plenum Press, New York, 1990.

{Spri92] SPRINT Network Management Center, Virginia, Site Visit, April 1992.

[Terp92] Terplan, K., Communications Networks Management, Prentice-Hall, 1992,

[Valt91] Valta, R., "Design concepts for a Global Network Management Database,"
- Integrated Nerwork Management, 1I, eds. 1. Krishnan and W. Zimmer,
Elsevier Science Publishers B.V. (North-Holland), 1991.

