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Uniprocessor Virtual Memory without TLBs

Bruce Jacob, Member, IEEE, and Trevor Mudge, Fellow, IEEE

Abstract—We present a feasibility study for performing virtual address translation without specialized translation hardware. Removing
address translation hardware and instead managing address translation in software has the potential to make the processor design
simpler, smaller, and more energy-efficient at little or no cost in performance. The purpose of this study is to describe the design and
quantify its performance impact. Trace-driven simulations show that software-managed address translation is just as efficient as
hardware-managed address translation. Moreover, mechanisms to support such features as shared memory, superpages, fine-
grained protection, and sparse address spaces can be defined completely in software, allowing for more flexibility than in hardware-

defined mechanisms.

Index Terms—Virtual memory, virtual address translation, virtual caches, memory management, software-managed address

translation, translation lookaside buffers.

1 INTRODUCTION

HANGING trends in technologies, notably cheaper and

faster memory hierarchies, have made it worthwhile to
revisit many hardware-oriented design decisions made in
previous decades. Hardware-oriented designs, in which
one uses special-purpose hardware to perform some
dedicated function, are a response to the high cost of
executing instructions out of memory; when caches are
expensive, slow, and/or in scarce supply, it is a perfectly
reasonable reaction to build hardware state machines that
do not compete with user applications for cache space and
do not rely on the performance of the caches. In contrast,
when the caches are large enough to withstand competi-
tion between the application and operating system, the
cost of executing operating system functions out of the
memory subsystem decreases significantly and software-
oriented designs become viable. Software-oriented de-
signs, in which one dispenses with special-purpose
hardware and instead performs the same function entirely
in software, can offer increased flexibility over hardware
state machines at a modest cost in performance. One
current example is the translation of x86 instructions by
Transmeta’s code-morphing software layer [11]; this per-
forms the same type of function as the front-end of the
Pentium Pro/II/III pipeline, which turns x86 instructions
into RISC-like uops in hardware [16].

This paper describes a software-oriented design for a
virtual memory management system. It shows that a
software-oriented scheme can perform nearly as well as
hardware schemes and it is more flexible. Eliminating
dedicated special-purpose hardware from processor design
can save chip area [25] and can reduce power consumption
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—e.g., the StrongARM TLB consumes 17 percent of the
chip’s power [26] and, so, eliminating the TLB would
therefore reduce power consumption by a significant
amount. Reducing die area and/or power potentially
lowers the overall system cost. Moreover, a flexible design
should aid in the portability of system software by allowing
the operating system to dictate details to the hardware, as
opposed to the other way around. A software-oriented
design methodology should therefore benefit architects of
many different microprocessor designs, from general-
purpose processors in PC-class and workstation-class
computers, to embedded processors where cost tends to
have a higher priority than performance.

1.1 Efficient Virtual Memory without TLBs

In this paper, we demonstrate software-managed address
translation, or softvm for short. The mechanism dispenses
with the translation lookaside buffers (TLBs) found in
nearly every modern microarchitecture and the page-table-
walking state machines found in x86 and PowerPC
architectures. It uses a software-handled cache miss, like
the VMP multiprocessor [8], except that VMP used the
mechanism to explore cache coherence in a multiprocessor,
while softvm uses it to simplify memory management
hardware in a uniprocessor. VMP also stored the cache-
miss handler in a dedicated buffer next to the processor,
while the softvm handler code is part of the operating
system in main memory. Softvm also resembles the in-cache
address translation mechanism of SPUR [32], [46] in its lack
of TLBs, but it takes the design one step further by
eliminating table-walking hardware.

The scheme is relatively simple and requires a minimum
of hardware components: a virtually indexed, virtually
tagged cache hierarchy and a mechanism to implement a
software-managed cache miss at the lowest cache level (L2,
for example). Because virtual caches do not require address
translation when requested data is found in the cache, they
obviate a TLB; further, if a miss in the L2 cache invokes the
operating system’s memory manager, the operating system
is free to implement any type of page table, protection
scheme, or replacement policy—even a software-defined
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Fig. 1. Space address spaces. The top address space is that of a traditional 4.3BSD process, with contiguous text, data, and heap segments and a
continuous stack against segment. The bottom address space contains modern features like dynamically loaded libraries and multiple threads of
control, which leave holes with the address space and thus would leave holes within a linear page table. A wired-down linear page table (as in

4.3BSD) would not be practical.

page size. This, then, is the extent of the mechanism studied
in this paper: a virtual cache hierarchy where accesses to
main memory are translated by the operating system, not
the TLB. It represents one end of the continuum of design
choices and, though simple, this configuration has not been
previously studied.

We show the efficiency of the scheme by analyzing a
specific implementation, thereby finding an upper bound
on virtual-memory overhead. We find that, for large caches,
the virtual-memory overhead is similar to that of hardware-
managed schemes. The example we study adds software-
managed translation to a conventional PowerPC memory
management organization. PowerPC segments support
address space protection and shared memory and provide
access to a large virtual address space. Segments are not an
essential component of software-managed address transla-
tion—for example, they could be replaced by long address
space identifiers or a 64-bit global address space. However,
the use of segments in conjunction with a virtual cache
organization is one method to solve the consistency
problems associated with virtual caches.

2 MEMORY-MANAGEMENT SYSTEM REQUIREMENTS

There is a core set of functional mechanisms associated
with memory management that computer users have
come to expect. These are found in nearly every modern
microarchitecture and operating system, and include the
following;:

Address space protection. User-level applications should
not have unrestricted access to the data of other
applications or the operating system. A common hard-
ware assist uses address space identifiers (ASIDs), which
extend virtual addresses and distinguish them from
addresses generated by different processes. An alter-
native hardware approach is paged segmentation, as
implemented in the PowerPC, PA-RISC, and IA-32
architectures, in which the virtual-physical translation
occurs in two steps. The first step maps user addresses to
a global address space at the granularity of segments; the
second step maps addresses from the global space to
physical memory at the granularity of pages. Finally,
protection can be provided by software means [41].

Shared memory. Shared memory allows multiple processes
to reference the same physical data through (potentially)
different virtual addresses. Space requirements can be
reduced by sharing application and library code between
processes. Using shared memory for communication
avoids the data-copying of traditional message-passing
schemes. Since a system call is typically an order of
magnitude faster than copying a page of data, many

researchers have investigated zero-copy schemes, in
which the operating system unmaps pages from the
sender’s address space and remaps them into the
receiver’s address space [40].

Large address spaces. Applications require increasingly
large virtual spaces; industry has responded with 64-bit
machines. However, a large address space does not
imply a large address: Large addresses are simply one
way to implement large address spaces. Another is to
provide each process a 4GB window into a larger global
virtual address space, the approach used by the
PA-RISC 1.X and 32-bit PowerPC architectures.

Fine-grained protection. Fine-grained protection marks
objects as read-only, read-write, execute-only, etc. The
granularity is usually a page, though a larger or smaller
granularity is sometimes desirable. Many systems have
used fine-grained protection to implement various
memory-system support functions, from copy-on-write
to garbage collection to distributed shared virtual
memory [2].

Sparse address spaces. Dynamically loaded shared libraries
and multithreaded processes are becoming common-
place and these features require support for sparse
address spaces. This simply means that holes are left in
the address space between different objects to leave room
for dynamic growth. In contrast, the 4.3BSD Unix
address space was composed of two continuous regions,
depicted in Fig. 1. This arrangement allowed the user
page tables to occupy minimal space, which was
important because the original virtual memory design
did not allow the page tables to be paged.

Superpages. Some structures must be mapped for virtual
access, yet are very large. The numerous page table
entries (PTEs) required to map them flood the TLB and
crowd out other entries. Systems have addressed this
problem with “blocks” or “superpages”—multiples of
the page size mapped by a single TLB entry. For
example, the Pentium and MIPS R4000 allow map-
pings for superpages to reside in the TLB alongside
normal mappings and the PowerPC defines a Block
TLB to be accessed in parallel with the normal TLB.
One can achieve significant performance gains by
reducing the number of TLB entries to cover the
current working set [38].

Direct memory access. Direct memory access (DMA) allows
asynchronous copying of data from I/0O devices directly
to main memory. It is difficult to implement with virtual
caches as the I/O space is usually physically mapped.
The I/0 controller typically has no access to the virtual-
physical mappings and so cannot tell when a transaction
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should first invalidate data in the processor cache. A
simple solution performs DMA transfers only to
uncached physical memory, but this may reduce
performance by requiring the processor to go to main
memory too often.

These represent a core set of features that any modern
virtual memory system must offer through either hardware
or software means. Therefore, it is fundamental to any
hardware design that, if the design does not offer a
particular feature, it must not preclude a software im-
plementation of that feature.

3 BACKGROUND AND RELATED WORK

This paper describes software-managed address-transla-
tion. Address translation is the mechanism by which the
operating system provides virtual address spaces to user-
level applications. The operating system maintains a set of
mappings from per-process virtual spaces to the system’s
physical memory in a page table and, for performance
reasons, most hardware systems provide a translation
lookaside buffer (TLB) that caches parts of the page table.
When a process performs a load or store to a virtual
address, the hardware translates this to a physical address
using the mapping information in the TLB. If the mapping
is not found in the TLB, it must be retrieved from the page
table and loaded into the TLB before processing can
continue.

3.1 Problems with Virtual Caches

Our scheme depends on virtual caches, which are known to
complicate support for virtual-address aliasing and protec-
tion-bit modification. Aliasing can give rise to the synonym
problem when memory is shared at different virtual
addresses [15] and this has been shown to cause significant
overhead [44]; protection-bit modification is used to
implement such features as copy-on-write [1], [31] and it
can also cause significant overhead when used frequently.

The synonym problem has been solved in hardware
using schemes such as dual tag sets [15] or back-pointers
[42]; it can also be avoided by setting policy in the operating
system. For example, OS/2 places all shared segments at
identical virtual addresses in all process address spaces
[10]. SunOS aligns shared pages on extremely large virtual
boundaries to ensure that aliases map to the same cache
block [7]." Single address space operating systems (SASOS)
such as Opal [5] or Psyche [35] eliminate the need for
virtual-address aliasing entirely: All shared data is refer-
enced through global addresses, allowing pointers to be
shared freely.

Protection-bit modification in virtual caches can also be
problematic. A virtual cache allows one to “lazily” access
the TLB only on a cache miss; if so, protection bits must be
stored with each cache line or in an associated page-
protection structure accessed every cycle or else protection
is ignored. When one replicates protection bits for a page

1. Note that the SunOS scheme only solves the problem for direct-
mapped virtual caches or set-associative virtual caches with physical tags;
shared data can still exist in two different blocks of the same set in an
associative, virtually indexed, virtually tagged cache.
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Fig. 2. PowerPC segmented address translation. Processes gen-
erate 32-bit effective addresses that are mapped onto a 52-bit address
space via 16 segment registers, using the top four bits of the effective
address as an index. It is this extended virtual address that is mapped by
the TLB and page table. The segments provide address space
protection and can be used for shared memory.

across several cache lines, changing the page’s protection
can be costly. Obvious, but expensive, solutions include
flushing the entire cache or sweeping through the entire
cache and modifying the affected lines.

3.2 PowerPC: Segmented Translation

The IBM 801 introduced a segmented design that remained
through the POWER and PowerPC architectures [4], [19],
[29], [43]; it is illustrated in Fig. 2 and described in detail
elsewhere [24], [23]. Applications generate 32-bit “effective”
addresses that are mapped onto a larger “virtual” address
space at the granularity of segments, 256 MB virtual regions.
This extended address is used to index the TLB and page
table. The operating system performs data movement and
relocation at the granularity of pages.

One of the advantages of this arrangement is that it
solves the virtual-cache synonym problem in a manner
similar to SASOS organizations while still supporting
private, protected address spaces that are not part of a
larger whole. This is illustrated in Fig. 3: If memory is
shared at a segment granularity, it is possible to use global
addresses for shared items transparently. Therefore, no
aliasing and no virtual-cache synonyms can occur and the
TLB and cache need not be flushed on context switch.?
Processes may map shared segments at arbitrary segment-
aligned addresses or even at multiple locations. Enforcing a
one-to-one correspondence between physical addresses and
global virtual addresses ensures that a physical datum can
exist in one and only block of a virtual cache in any given
instant, even if the cache is set-associative.

2. Flushing is avoided until the system runs out of identifiers and must
reuse them. For example, the address space identifiers on the MIPS R3000
and Alpha 21064 are six bits wide with a maximum of 64 active processes
[12], [27]. If more processes are desired, identifiers must be constantly
reassigned, requiring TLB and virtual-cache flushes.
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Fig. 3. Virtual address aliasing in a segmented architecture. The
figure shows three processes sharing two segments. None of the
processes use the same virtual address for the same physical data and
two of the processes go so far as to map a segment at multiple locations
within their address spaces. Nonetheless, these aliases will not result in
any synonym problems in a virtual cache since there is a one-to-one
correspondence between pages in the global virtual space and pages in
physical memory.

3.3 MIPS: A Simple Page Table Design

MIPS eliminated the page-table-walking hardware found in
traditional memory management units and, in doing so,
demonstrated that software can table-walk with reasonable
efficiency. It also presented a simple hierarchical page table
design, shown in Fig. 4. The MIPS virtual memory system is
described in detail elsewhere [23].

The architecture is one of the first designs to walk a page
table bottom-up [24]. The VPN of an address that misses the
TLB indexes the user-level page table as part of a virtual
address. The architecture provides hardware support for
this, storing the virtual base of the user page table in a
register (TLB Context) and concatenating this with the VPN
on TLB misses. This is illustrated in Fig. 5. The advantage is
that, in most instances, a PTE lookup will require only one
memory access—as opposed to top-down page tables and
traditional inverted tables, which require a minimum of
two. The software handler is less than 10 instructions long,
including the PTE load. We base our page table and cache
miss examples on this scheme for simplicity and clarity;
however, any other organization could be used as well.

Root page table: 2KB

A 4-byte PTE,
-

B which maps 4KB

Unmapped Physical Memory

Maps Mapped Virtual Memory
U table: 2MB
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4 KB A 4-byte PTE, which maps the darkened 4
4KB virtual page in the user address space
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Fig. 4. The MIPS 32-bit hierarchical page table. MIPS hardware
provides support for a 2 MB linear virtual page table that maps the 2 GB
user address space by constructing a virtual address from a faulting
virtual address that indexes the mapping PTE in the user page table.
This 2 MB page table can easily be mapped by a 2 KB user root page
table.
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Fig. 5. The use of the MIPS TLB Context register. The VPN of the
faulting virtual address of the mapping PTE. This PTE goes directly into
the TLB.

3.4 SPUR: In-Cache Address Translation

The memory-management scheme of Berkeley’s SPUR
processor (Fig. 6) [32], [45], [46] demonstrated that the
storage slots of the TLB are not a necessary component to
address translation. The architecture uses a virtually
indexed, virtually tagged cache to delay the need for
address translation until a cache miss occurs. When a
reference misses the cache, a hardware state machine
generates a virtual address for the mapping PTE and
searches the cache for that address. If this lookup misses,
the state machine continues using virtual addresses for
higher-level PTEs until the topmost level of the page table is
reached, at which point the hardware requests the root PTE
from physical memory. The walking of the page table is
depicted in Fig. 7. Note its similarity to walking the MIPS
table.

The SPUR design eliminates the specialized storage slots
of the TLB and instead keeps the page table entries in the
virtual cache (note that most operating systems cache the
page tables anyway). However, it replaced the TLB with
another specialized hardware translation mechanism: the
state machine that searches for PTEs in general-purpose
storage (the cache) instead of special-purpose storage (TLB
slots). Our design is inspired by the SPUR mechanism, but
moves this special state machine into software.

3.5 VMP: Software-Controlled Caches

The VMP multiprocessor (Fig. 8) [8] places virtual caches
under software control. Each processor node contains
several hardware structures, including a central processing
unit, a software-controlled virtual cache, a cache controller,
and special memory. Objects the system cannot afford to
have causing faults, such as root page tables and fault-
handling code, are kept in a separate area, called local
memory, distinguished by the high-order bits of the virtual
address. Code in local memory controls the caches; a cache
miss invokes a fault handler that locates the requested data,
possibly causes other caches on the bus to invalidate their
copies, and loads the cache. The scheme reduces the
amount of specialized hardware in the system, including
memory management unit and cache miss hardware, and it
simplifies the cache controller. Our mechanism is inspired
by this design and distinguishes itself by eliminating the
special buffer holding the cache-fill code (local memory),
instead keeping all handler code and page-table data in
main memory.
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consistency management was avoided by eliminating the TLB from each processor. Simulation studies showed that this “in-cache translation” was

as effective or more effective than a TLB. Like the PowerPC, SPUR used
level address space.

a segmented global space, assigning four 1 GB segments to each user-
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Fig. 7. The SPUR in-cache translation algorithm. The SPUR in-cache translation mechanism implements a two-level hierarchical page table
where the root level of the table is a subset of the main table. Thus, the two page tables can use the same base address. This translation algorithm is
performed by a hardware state machine when a reference misses the virtual cache. Diagram taken from Wood [45].

3.6 Multiprocessor Cache Coherency

In some sense, the software-managed address translation
model can be seen as similar to software-managed
coherency in multiprocessor cache systems; in both envir-
onments, software is responsible for the cache contents. The
difference is that the goal in software-managed address
translation is simply to translate virtual addresses to
physical ones; the fact that the operating system performs
cache fill is merely a by-product of this operation. In
multiprocessor cache coherency systems, software is re-

sponsible for determining when a cached item would
become stale with respect to the value in memory and
performing corrective actions to prevent errors (block flush,
block invalidate, TLB shootdown, etc.).

4 SOFTWARE-MANAGED ADDRESS TRANSLATION

As mentioned earlier, the hardware mechanism explored
in this study is simply a virtual cache hierarchy with a
software-handled cache miss. When a virtual address fails
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Fig. 8. The VMP multiprocessor. Each VMP processor node contains a
CPU (68020), local cache outside the namespace of main memory, and
a software-controlled virtual cache. The software-controlled cache made
multiprocessor cache coherency easiter to explore as the protocols
could be rewritten at will.

to hit in the bottommost cache level, a cache-miss exception
is raised. This invokes the operating system’s cache-miss
handler, which is responsible for translating the address
and fetching the physical data it references. We will refer
to the address that fails to hit in the lowest-level cache as
the failing address and to the data it references as the
failing data.

This general design is based on two observations. The
first is that many high performance systems have reason-
ably large L2 caches, from 256 KB found in even low-end
PCs to several megabytes found in workstations. Large
caches have low miss rates; were these caches virtual, the
systems could sustain long periods requiring no address
translation at all. The second observation is that the
minimum hardware necessary for virtual memory is a
mechanism to invoke a software cache miss handler at the
lowest level of a virtual cache hierarchy: If software resolves
cache misses, the operating system is free to implement
whatever virtual-to-physical mapping it chooses. Wood
demonstrated that, with a reasonably large cache (128KB+),
the elimination of a TLB is practical [45]. For the cache sizes
we are considering, we reach the same conclusion (see
Section 5 for details).

4.1 Handling the Cache-Miss Exception

On a cache-miss exception, the hardware saves the program
counter of the instruction causing the cache miss and
invokes the miss handler. The miss handler loads the data
at the failing address on behalf of the user thread. The
operating system must therefore be able to load a datum
using one address and place it in the cache tagged with a
different address. It must also be able to reference memory
virtually or physically, cached or uncached. For example, to
avoid causing a cache-miss exception, the cache-miss
handler must execute using physical addresses. These
may be cacheable, provided that a cacheable-physical
address that misses the cache causes no exception and that
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MAPPED-LOAD: mapld rP, rV
VCache.data[ rV.index ] <- Memory[ rP ]
VCache.tag[ rV.index ] <- rV.tag
VCache.prot[ rV.index ] <- rV.prot
Failing Virtual Address | VPN + cache index Bik bits |
rV (VTAG) operand ‘ VADDR bits Prot. Bits‘
i
Cache TAG Cache INDEX
Failing Virtual Address | Virtual Page Number | Page Offset |
Virtual address for PTE
| PTEBase | Virtual Page Number 0
LOAD
Page Table Entry
Prot. Bits ‘ Page Frame Number ‘
rP (PADDR) operand Page Frame Number Page Offset

Fig. 9. Mapped-load instruction. The top portion gives the syntax and
semantics; the bottom of the figure illustrates the source of the rV
(VTAG+prot bits) and rP (physical address) operands. The example
assumes a MIPS-like page table. Note: page = page offset bits.

a portion of the virtual space can be directly mapped onto
physical memory.

When a virtual address misses the cache, the failing data,
once loaded, must be placed in the cache at an index
derived from the failing address and tagged with the failing
address’s virtual tag; otherwise, the original thread will not
be able to reference its own data. We define a new load
instruction in which the operating system specifies a virtual
tag and set of protection bits to apply to the incoming data
as well as a physical address from which to load the data.
The incoming data is inserted into the caches with the
specified tag and protection information. This scheme
requires a privileged instruction to be added to the
instruction set architecture (ISA):> mapped-load, depicted in
Fig. 9.

The mapped-load instruction is simply a load-to-cache
instruction that happens to tell the virtual cache explicitly
what bits to use for the tag and protection information. It
does not load to the register file. Its has two operands, as
shown in the following syntax:

mapld rP, ¥V # register P contains physical
address
# register V contains VADDR and
protection bits

The protection bits in 1V come from the mapping PTE. The
VADDR portion of rV comes from the failing virtual
address; it is the topmost bits of the virtual address minus
the size of the protection information (which should be no
more than the bits needed to identify a byte within a cache
block). Both the cache index and cache tag are recovered
from VADDR; note that this field is larger than the virtual

3. Many ISAs leave room for such management instructions, e.g., the
PowerPC ISA mtspr and mfspr instructions (move to/from special purpose
register) would allow implementation of this function.
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page number. The hardware should not assume any overlap
between virtual and physical addresses beyond the cache
line offset. This is essential to allowing a software-defined
page size.

The rP operand can contain a virtual or physical address.
The datum identified by the rP operand is obtained from
memory (or perhaps the cache itself) and then inserted into
the cache at the cache block determined by the VADDR bits
and tagged with the specified virtual tag. Thus, an
operating system can translate data that misses the cache,
load it from memory (or even another location in the cache),
and place it in any cache block, tagged with any value.
When the original thread is restarted, its data is in the cache
at the correct line, with the correct tag. To restart the thread,
the failing load or store instruction is retried.

4.2 Correctness of Design

The single mapped-load instruction is an atomic operation.
The fact that the load is not binding (i.e., no data is brought
into the register file) means that it does not actually change
the processor state; moreover, protections are not checked
until the failing load or store instruction is retried (at which
point, it could be found that a protection violation
occurred), which simplifies the hardware requirements of
the mapped-load instruction. Because the data is not
transferred to the register file until a failing load is
retried, we do not need different forms of the mapped-
load for load word, load halfword, load byte, etc. There is
no compiler impact on adding the mapped-load to an
instruction set because the instruction is privileged and
will not be used by user-level instructions; it will be
found only in the cache-miss handler, which will most
likely be written in assembly code.

The execution of the cache-miss handler raises some
issues. The handler code should be cached for good
performance, but it need not be cached—for example, if
the instruction-fetch window is large, there is a good chance
that the entire handler can be fetched from memory in the
time it takes to obtain two cache blocks (the handler is ~10
instructions long). However, if the handler is cached, it
could be overwritten if it attempts to bring in requested
data that needs to reside in the same cache block. This is
typically not a problem in modern architectures in which
the instruction fetch and instruction execute are several
cycles apart in time: By the time the mapped-load is
executed, the handler code is no longer needed. This can,
however, be a problem if the mapped-load executes before
the trailing instructions in the handler (those that effect a
return from exception) are fetched from the instruction
cache. There are at least two possible solutions: One is that
the cache-miss handler can be aligned so that the mapped-
load instruction fits into the same cache block as the final
instructions in the handler. This will ensure that the
instructions all enter the pipeline before the mapped-load
takes effect. However, this is nonportable and susceptible to
human error. The second solution would be to alter the
semantics of the mapped-load to include a return-from-
exception: If it is the last instruction in the handler, then, by
the time the mapped-load executes, the handler code is no
longer needed in the instruction cache.
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|
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Fig. 10. The example mechanism. Segmentation extends a 32-bit user
address into a 52-bit global address. The top 20 bits of the global
address determine if the address is physical and/or cacheable.

4.3 An Example of softvm and Its Use

A PowerPC model of software-managed address translation
is shown in Fig. 10, with a two-level cache hierarchy. Both
caches in the hierarchy are virtual and split to make the cost
analysis clearer. Modification and protection bits are kept
with each cache line. In the analysis, we vary the L1 cache
from 2 KB to 256 KB (1K to 128K per side) and the L2 cache
from 1 MB to 4 MB.

We assume, for the sake of argument, a 4 GB maximum
physical memory. To parallel the MIPS design, the top bits
of the virtual address space (in this case, 20 of 52 bits)
determine whether an address is physical and/or cache-
able; this is to allow physical addresses to be cached in the
virtually indexed, virtually tagged caches. Also like MIPS, a
user process owns the bottom 2 GB of the 4 GB effective
address space. Therefore, only the bottom eight of the 16
segment registers are used by applications; the user address
space is composed of eight 256 MB virtual segments.

To demonstrate the implementation, we need also define
a page table and cache-miss handler. We would like
something similar to the MIPS page table organization as
it maps a 32-bit address space with a minimum of levels
and supports sparse address spaces easily. A global virtual
address space, however, suggests the use of a global page
table, which cannot be mapped by a small, wired-down
piece of memory, meaning that we might need more than
two levels in our page table. However, each process need
only map enough of the global page table to in turn map its
2 GB address space. Therefore, a process uses no more than
2 MB of the global table at any given time, which can be
mapped by a 2KB user root page table.

A virtual linear table is at the top of the global address
space, 242 bytes long, mapping the entire global space
(pages are software-defined at 4K bytes, PTEs are 4 bytes).
The page table organization, shown in Fig. 11, is a two-
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Fig. 11. An example page table organization based on the PUMA disjunct page table. There is a single linear page table at the top of the 52-bit
address space that maps the entire global space. The 256 KB Segment Page Tables that comprise the user page table are taken directly from this
global page table. Therefore, though it may seem that there is a separate user page table for every process, each page table is simply mapped onto
the global space; the only per-process allocation is for the user root page table. Though it is drawn as an array of contiguous pages, the user page

table is really a disjunct set of 4 KB pages in the global space.

tiered hierarchy. It is based on the PUMA disjunct page table
[20], so named because the user page table is a disjunct set
of regions in the global space. The lower tier is a 2 MB
virtual structure, divided into eight 256 KB segment page
tables, each of which (collectively) maps one of the 256 MB
virtual segments in the user address space. The segment
page tables come directly from the global table, therefore,
there is no per-process allocation of user page tables; if two
processes share a virtual segment, they share a portion of
the global table. The top tier of the page table is a 2 KB
structure wired down in memory while the process is
running; it is the bottom half of the process control block. It
is divided into eight 256-byte PTE groups, each of which
maps a 256 KB segment page table that in turn maps a
256 MB segment. PTE groups must be duplicated across
user root page tables to share virtual segments.

We illustrate in Fig. 12 the algorithm for handling misses
in the L2 cache. Processes generate 32-bit effective
addresses that are extended to 52 bits by segmentation,

replacing the top four bits of the effective address. In Step 1,
the VPN of a 52-bit failing global virtual address is used as
an index into the global page table to reference the PTE
mapping the failing data (the UPTE). This is similar to the
concatenation of PTEBase and VPN to index into the MIPS
user page table (Figs. 5 and 9). The bottom two bits of the
address are Os since the PTE size is four bytes. The top
10 bits of the address are 1s since the table is at the very top
of the global space.

If this misses in the L2 cache, the operating system takes
a recursive cache-miss exception. At this point, we must
locate the mapping PTE in the user root page table. This
table is an array of PTEs that cannot be indexed by a global
VPN. It mirrors the structure of the user’s perceived
address space, not the structure of the global address space.
Therefore, it is indexed by a portion of the original 32-bit
effective address. The top 10 bits of the effective address
index 1,024 PTEs that would map a 4MB user page table,
which would in turn map a 4GB address space. Since the
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Fig. 12. An example cache miss algorithm. Step 1 is the result of a user-level L2 cache miss; the operating system builds a virtual address for a
PTE in the global page table. If this PTE is not found in the L1 or L2 cache, a root PTE is loaded, shown in Step 2. One special requirement is a
register holding the initial failing address. Another required hardware structure, the per-process context register, points to the process control block

of the active process.
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top bit of the effective address is guaranteed to be zero (the
address is a user reference), only the bottom nine bits of the
top 10 are meaningful; these bits index the array of 512 PTEs
in the user root page table. In Step 2, the operating system
builds a physical address for the appropriate PTE in the
user root page table (the URPTE), a 52-bit virtual address
whose top 20 bits indicate physical + cacheable. It then
loads the URPTE, which maps the UPTE that missed the
cache at the end of Step 1. When control is returned to the
miss handler in Step 1, the UPTE load retry will complete
successfully.

The operating system then performs a mapped-load
instruction using the most significant bits of the failing
52-bit address and a physical address built from the PEN in
the UPTE and the page offset from the failing address. This
loads the failing data and inserts it into the cache using the
user’s virtual tag. A subsequent retry of the failing load or
store instruction checks protection bits and, if the protection
check is successful, loads the data from the cache into the
register file (for a load).

4.4 Memory System Requirements, Revisited

We now revisit the memory management requirements
listed earlier and discuss how a software-managed scheme
supports them.

Address space protection and large address spaces. These
memory management functions are not inherent to
software-managed address translation, but a software-
managed design does not preclude their implementation.
They are satisfied in our example through the use of
PowerPC segments. As described earlier, segments
provide address space protection and by their definition
provides a global virtual space onto which all effective
addresses are mapped. A process could use its 4GB space
as a window onto the larger space, moving virtual
segments in and out of its working set as necessary.

Shared memory. The sharing mechanism is defined by the
page table. One can simplify virtual cache management
by sharing memory via global addresses, a scheme used
in many systems [5], [35] and shown to have good
performance. Alternatively, one could share memory
through virtual-address aliasing.

Fine-grained protection. One can maintain protection bits
in the cache or in an associated structure like a TLB. If
one could live with protection on a per-segment basis,
one could maintain protection bits in the segment
registers. For our discussion we maintain protection bits
in the cache line. Protection granularity therefore
becomes a software issue; the page size can be anything
from the entire address space down to a single cache line.
Note the choice of this granularity does not preclude one
from implementing segment-level protection as well. The
disadvantage is that if one chooses a page size larger
than a single cache line, protection information must be
replicated across multiple cache lines and the operating
system must manage its consistency. We analyze this
later.

Sparse address spaces. Sparse address space support is
largely a page table issue. Hardware can either get out of
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the way of the operating system and allow any type of
page table organization or it can inhibit support for
sparse address spaces by defining a page table organiza-
tion that is not necessarily suitable. By eliminating
translation hardware, one frees the operating system to
choose the most appropriate structure.

Superpages. By removing the TLB, one removes hardware
support for superpages, but, as with sparse address
spaces, one also frees the operating system to provide
support through the page table. For instance, a top-down
hierarchical page table (as in the x86) would provide
easy support for superpages. A guarded page table [28]
would also provide support and would map a large
address space more efficiently, as would the inverted
page table variant described by Talluri et al. [37].

Direct memory access. While software-managed address
translation provides no explicit support for DMA and
actually makes DMA more difficult by requiring a
virtual cache, direct memory access is still possible. For
example, one could perform DMA by flushing affected
pages from the cache before beginning a transfer and
restricting access to the pages during transfer.

5 PERFORMANCE

Many studies have shown that significant overhead is spent
servicing TLB misses [1], [3], [18], [30], [33]. In particular,
Anderson et al. [1] show TLB miss handlers to be among the
most commonly executed primitives, Huck and Hays [18]
show that TLB miss handling can account for more than 40
percent of total run time, and Rosenblum et al. [33] show
that TLB miss handling can account for more than
80 percent of the kernel’s computation time. These are
extreme cases; typical measurements put TLB handling at 5
to 10 percent of a normal system’s run time [3], [6], [30],
[36]; this is an apparently acceptable cost that has changed
little in 10 years [9], despite significant changes in cache
sizes and organizations. The obvious question to ask is:
Does the TLB buy us anything? Do its benefits outweigh its
cost of management? We now discuss the performance
costs of eliminating the TLB.

5.1 First-Order Comparison of Hardware-Oriented

and Software-Oriented Designs
The SPUR and VMP projects demonstrated that, with large
virtual caches, the TLB can be eliminated with no
performance loss and, in most cases, a performance gain.
For a qualitative, first-order performance comparison, we
enumerate the scenarios that a memory management
system would encounter. These are shown in Table 1, with
frequencies obtained from SPECint95 traces on a PowerPC-
based AIX machine (frequencies do not sum to 1 due to
rounding). The model simulated has 8K/8K direct-mapped
virtual L1 caches (in the middle of the L1 cache sizes
simulated), 512K/512K direct-mapped virtual L2 caches
(the smallest of the three L2 cache sizes simulated), and a
16-byte linesize in all caches. As later graphs will show, the
small linesize gives the worst-case performance for the
software-managed scheme. The model includes a simulated
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TABLE 1
Qualitative Comparison of Cache-Access/Address-Translation Mechanisms

Frequency of

Actions Performed by Hardware and Operating System

Occurrence per Occurrence of Event
Event
. . TLB + Software-Mgd Addr
I-side D-side Virtual cache Translation
L1 hit, 96.7% 95.8% L1 access L1 access
TLB hit (w/ TLB access in parallel)
L1 hit, 0.01% 0.06% L1 access L1 access
TLB miss + page table access
+ TLB reload
L1 miss, L2 hit, 3.2% 3.9% L1 access L1 access
TLB hit + L2 access + L2 access
L1 miss, L2 hit, 0.03% 0.09% L1 access L1 access
TLB miss + page table access + L2 access
+ TLB reload
+ L2 access
L1 miss, L2 miss, 0.008% 0.12% L1 access L1 access
TLB hit + L2 access + L2 access
+ Memory access + page table access
+ memory access
L1 miss, L2 miss, 0.0001% 0.0009% L1 access L1 access
TLB miss + page table access + L2 access
+ TLB reload + page table access
+ L2 access + memory access

+ Memory access

MIPS-style TLB [27] with 64 entries, a random replacement
policy, and eight slots reserved for root PTEs.

The table shows what steps the operating system and
hardware take when cache and TLB misses occur. Note that
there is a small but nonzero chance a reference will hit in a
virtual cache but miss in the TLB. If so, the system must
take an exception and execute the TLB miss handler before
continuing with the cache lookup, despite the fact that the
data is in the cache. On TLB misses, a software-managed
scheme should perform much better than a TLB scheme.
When the TLB hits, the two schemes should perform
similarly, except when the reference misses the L2 cache.
Here, the TLB already has the translation, but the software-
managed scheme must access the page table for the
mapping (note that the page table entry may in fact be
cached). Software-managed translation is not penalized by
placing PTEs in the cache hierarchy; many operating
systems locate their page tables in cached memory for
performance reasons.

5.2 Memory-Management Simulations

In this study, we compare softvm with Ultrix and Mach and
simulate the memory-management performance of all three
virtual memory systems. From our previous study in
software-managed address translation [21], we choose to
look at the two worst-performing benchmarks: gcc and
vortex, as well as winword, a benchmark from the Etch
suite [14], as Etch benchmarks tend to have larger footprints
than SPEC benchmarks. We simulate the overheads of
managing L2 cache misses in software for the softvm design
and the overheads of managing TLB misses in software for
Ultrix and Mach. The following sections describe the Ultrix
and Mach simulations; more detail on the models can be
found in [22].

5.2.1 Ultrix Memory-Management Simulation

The Ultrix page table as implemented on the MIPS
processor is a two-tiered table [30]. The 2 GB user address
space is mapped by a 2 MB linear table (the user page table)
in virtual kernel space, which is in turn mapped by a
2 KB array of PTEs (the root page table). It requires at most
two memory references to find the appropriate mapping
information. The TLB (simulated as 256-entry, split into 128-
entry fully-associative I-TLB and 128-entry fully-associative
D-TLB; each TLB has 16 protected lower slots to hold
kernel-level mappings) provides protection information; if
the TLB misses on a reference, the page table is walked
before the cache lookup can proceed. The TLB miss handler
has two interrupt entry points: one for user-level misses,
one for kernel-level misses. The handlers are located in
unmapped space, so executing them cannot cause I-TLB
misses. The user-level handler is 10 instructions long, the
root-level handler is 20. The start of the handler code is
page-aligned.

5.2.2 Mach Memory-Management Simulation

The Mach page table as implemented on the MIPS
processor is a three-tiered table [30], [3]. The 2 MB user
page tables are located in kernel space, the entire 4 GB kernel
space is mapped by a 4 MB kernel structure (the kernel page
table), which is in turn mapped by a 4 KB kernel structure
(the root page table). It requires at most three memory
references to find the appropriate mapping information.
The Mach TLB-miss handler on actual MIPS hardware is
comprised of two main interrupt paths. There is a dedicated
interrupt vector for user-level misses (those in the bottom
half of the 4GB address space) and all other TLB misses go
through the general interrupt mechanism. This general-
purpose vector contains a large amount of administrative
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TABLE 2
Components of VMCPI

Tag Cost per Description

uhandler variable A TLB miss (or an L2 cache miss in the case of a SOFTVM simula-
tion) that occurs during application-level processing invokes the
user-level miss handler

upte-L2 20 cycles The UPTE lookup during the user-level handler misses the L1 data
cache; reference goes to the L2 data cache

upte-MEM 500 cycles  The UPTE lookup during the user-level handler misses the L2 data
cache; reference goes to main memory

khandler variable A TLB miss that occurs during the user-level miss handler invokes
the kernel-level miss handler

kpte-L2 20 cycles The KPTE lookup during the kernel-level handler misses the L1 data
cache; reference goes to the L2 data cache

kpte-MEM 500 cycles  The KPTE lookup during the kernel-level handler misses the L2 data
cache; reference goes to main memory

rhandler variable A TLB miss (or an L2 cache miss in the case of a SOFTVM simula-
tion) that occurs during the user-level or kernel-level miss handler
invokes the root-level miss handler

rpte-L2 20 cycles The RPTE lookup during the root-level handler misses the L1 data
cache; reference goes to the L2 data cache

rpte-MEM 500 cycles  The RPTE lookup during the root-level handler misses the L2 data
cache; reference goes to main memory

handler-L2 20 cycles During execution of a miss handler, code misses the L1 instruction
cache; reference goes to L2 instruction cache

handler-MEM 500 cycles  During execution of a miss handler, code misses the L2 instruction

cache; reference goes to main memory
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code that adds an enormous cost to interrupts that cannot
be handled by the dedicated vectors. Like the Ultrix
simulation, the handlers for the first two tiers of the page
table are 10 and 20 instructions long, respectively. Root-
level misses take a long path of 500 instructions and
perform a number of additional loads to simulate the effect
of administrative code. The handlers are located in
unmapped space (executing them cannot cause I-TLB
misses).

5.3 Description of Statistics Gathered

This study uses trace-driven simulation to measure virtual
memory overhead. The unit of measurement we use is
cycles per instruction (CPI), calculated as execution cycles
divided by the number of user-level instructions. This is a
direct measure of performance, given that the number of
user-level instructions is constant and the processor cycle
time will remain constant for different VM simulations. Our
definition of VMCPI is the number of execution cycles
imposed by the VM system divided by user-level instruc-
tions and so represents the additional burden of the virtual
memory system on top of program execution. When
simulating TLB-miss handlers, the contents of the I-caches
are overwritten with the handler code and PTE loads
overwrite the D-caches. VMCPI is, therefore, that portion of
CPI attributable to management of the TLB or cache.
VMCPI is subdivided into the categories shown in
Table 2. The uhandler, khandler, and rhandler components
refer to the cost of executing the instructions that make up
the TLB-miss handlers for the different levels of the page
table. The upte-L2 and upte-MEM components represent
instances where the PTE in the user-level page table is not
in the L1 data-cache and has to go to either the L2 data

cache or main memory, respectively. The analogous kpte-
and rpte- components correspond to PTE loads for the
kernel- and root-level page tables, respectively. The
handler-L2 and handler-MEM components refer to the cost
of instruction cache misses while executing TLB-miss
handlers. Note that not all of the categories apply to all
simulations; for instance, the softvm and Ultrix simulations
have no kernel-level miss handlers (khandler, kpte-L2, and
kpte-MEM events will not happen). The costs of the page-
table accesses that can occur in each of the simulations
(labeled variable in Table 2) are summarized in Table 3.
As an example, Table 4 gives a detailed breakdown of
costs for one of the benchmarks: GCC with 8K/8K L1
caches and 512K/512K L2 caches. Our example miss
handler from the previous section requires 10 instructions,
including one PTE load. It is very similar to the MIPS TLB
refill handler that requires less than 10 instructions,
including one PTE load, taking 10 cycles when the load

TABLE 3
Simulated Page-Table Events

VM Sim User Kernel Root
Handler Handler Handler
ULTRIX 10 instrs, n.a. 20 instrs,
1 PTE load 1 PTE load
MACH 10 instrs, 20 instrs, 500 instrs,
1 PTE load 1 PTE load 10 “admin”
loads + 1
PTE load
SOFTVM 10 instrs, n.a. 20 instrs,
1 PTE load 1 PTE load
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TABLE 4
Breakdown of GCC Overhead

Event VMCPI Frequency Penalty per Overhead
Component (per instr.) Occurrence (CPI)

L2 D-Cache uhandler 0.0021 10 cycles 0.0210
Ld/St miss (i-execute)
L2 I-Cache uhandler 0.0019 10 cycles 0.0194
|-fetch miss (i-execute)
Miss handler upte-L2 0.0006 20 cycles 0.0126
L1 D-miss (mem stall)
Miss handler upte-MEM 0.0001 500 cycles 0.0427
L2 D-miss (mem stall)
Miss handler handler-L2 0.0007 20 cycles 0.0145
L1 I-miss (mem stall)
Miss handler handler-MEM < 0.0001 500 cycles 0.0085
L2 I-miss (mem stall)
Miss handler rhandler 0.0001 20 cycles 0.0017
Recursion (i-execute)
Recursive rpte-L2 0.0001 20 cycles 0.0014
L1 D-miss (mem stall)
Recursive rpte-MEM < 0.0001 500 cycles 0.0004
L2 D-miss (mem stall)

Total CPI: 0.1222

hits in the cache or 40+ when the load misses in the cache,
thereby forcing the reference to main memory [3]. In our
model, the L2 cache miss handler always takes 10 cycles
and runs whenever we take an L2 cache miss while
executing in user mode (labeled L2 I-Cache miss or
L2 D-Cache miss in the table). When the PTE load in the
handler misses the L1 cache (Miss handler L1 D-miss), we
take an additional 20 cycles to go to the L2 cache to look for
the PTE. If that load misses, we either take a recursive cache
miss or the address is physical and goes straight through to
main memory (Miss handler L2 D-miss, 500 cycles). The miss-
handler code can miss in the L1 or L2 I-caches; since it is
mapped directly onto physical memory, it does not cause a
cache miss itself. However, for every instruction fetch that
misses in the L1 cache, we take a 20-cycle penalty to
reference the L2 cache; for every L2 miss, we take a
500-cycle penalty to reference physical memory. Cache
misses that cause recursive invocations of the cache-miss
handler are represented by the Cache-miss Recursion,
Recursive L1 D-miss, and Recursive L2 D-miss components.
These represent the handler execution, PTE loads that miss
the L1 cache, and PTE loads that miss the L2 cache,
respectively. Instruction-cache misses for recursive hand-
lers are accounted for in the components described earlier:
Miss-handler L1/L2 I-miss.

The cost of interrupts is not included here because it is
dependent on pipeline organization and is therefore
orthogonal to the mechanisms we have been describing;
however, we have covered it in detail (including presenta-
tion of experimental results) elsewhere [22]. That study
shows the interrupt overhead, if the number of instructions
flushed per interrupt is high, can be on a par with the
overhead of managing the TLB or cache.

We assume the memory system is large enough to hold
all pages used by an application and all pages required to
hold the page tables. To put the organizations on an even

footing, we ignore the cost of initializing the process
address space. This includes demand-paging data from
disk and initializing the page tables; a realistic measure-
ment is likely to be extremely dependent on implementa-
tion; therefore, this cost is not factored into the simulations
or the measurements given. It is also likely to be the same
for all virtual memory mechanisms and, therefore, its
inclusion would simply serve to blur performance distinc-
tions between the mechanisms. Though our measurements
do include the cold-start cost of warming the caches, they
do not include the cost of initializing the page table entries
as this overhead would be identical in every simulation.
Our measurements are intended to highlight only the
differences between the page table organizations, the TLB
implementations (hardware- or software-managed), and the
presence or absence of memory-management hardware.
Thus, the only part of the OS that is simulated is the TLB-
refill mechanism.

5.4 Results: VMCPI as a Function of Cache
Organization

We present the VMCPI overheads as a function of L1 and
L2 cache sizes and linesizes, based on three applications
executing on three different operating systems and instruc-
tion-set architectures. The benchmark/platform combina-
tions are GCC (a C compiler) executing on a Digital Unix/
Alpha machine, VORTEX (a database) executing on an IBM
AIX/PowerPC machine, and WINWORD (a word proces-
sor) executing on a Microsoft Windows/x86 machine. GCC
and VORTEX are SPEC benchmarks, and the traces were
generated in-house; WINWORD is in the Etch suite of
benchmark traces [14]. The L2 instruction and data-cache
misses per 1,000 user instructions are given in Table 5 for
these benchmarks. The numbers represent L2 caches with
32-byte linesizes.
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TABLE 5
Level-2 Cache Misses per 1,000 Instructions

L2 icache misses L2 dcache misses

Benchmark L2 I/l cache size per 1000 instrs per 1000 instrs
GCC/Alpha 512K/512K 2.10 1.94
1024K/1024K 1.37 1.88
2048K/2048K 1.18 1.85
VORTEX/PowerPC  512K/512K 1.10 8.80
1024K/1024K 0.83 7.96
2048K/2048K 0.71 7.54
WINWORD/x86 512K/512K 1.01 6.61
1024K/1024K 0.41 5.84
2048K/2048K 0.19 5.78

In general, the number of L2 misses per 1,000 instruc-
tions tended to be between 1 and 10 for the range of cache
organizations simulated. This means that, for every 1,000
user instructions executed, roughly five of them caused the
softvm cache-miss handler to execute, resulting in the
execution of 10-30 instructions, part of the instruction
caches being overwritten by handler instructions, and part
of the data caches being overwritten by page-table entries.
All told, this represents anywhere from 10 cycles to several
hundred cycles in VM overhead per L2 cache miss,
depending on the number of cache misses incurred by the
handler. Measured execution times for the cache-miss
handler averaged between 10 and 40 cycles per invocation.
This translates to 50-200 cycles per 1,000 user instructions,
assuming five L2 misses per 1,000 instructions. As the
graphs will show, the bulk of the softvm measurements were
in the range of 10-200 VM cycles per 1,000 user instructions
and, given appropriate cache configurations, were compar-
able in scale to overheads measured for both ULTRIX and
MACH. Recall that, for these latter simulations, the sizes of
the TLBs were modeled as 128 fully associative entries per
side (128-entry ITLB, 128-entry DTLB), which is on the
aggressive end of today’s TLB sizes.

Fig. 13 gives the VMCPI results for GCC, Fig. 14, and
Fig. 15 gives the results for WINWORD. We note several
things. First, the overheads are in the right ballpark to
represent a 5-10 percent overhead for a 1 CPI machine, even
without considering address space and page table initiali-
zation, paging, I/0O, etc. Recall that typical virtual memory
systems exact a run-time overhead of 5-10 percent in TLB
management [3], [6], [30], [36] (the figure does not including
paging, 1/O, etc.). We conclude that these results are
appropriate for our stated target domain of desktop-class
workstations. Second, for the Alpha and PowerPC studies
(GCC and VORTEX), the ULTRIX and MACH virtual
memory systems have surprisingly similar overheads,
despite the extremely high cost of managing the root-level
table in the MACH simulation. This would suggest that
even fairly complicated page tables can have low overheads
provided that the common-case portions of the structure are
efficient. However, given the factor-of-two difference in
performance between ULTRIX and MACH on the
WINWORD benchmark, we have to conclude that this

result is benchmark-dependent. Remember that the only
difference between ULTRIX and MACH VM organizations
is the addition of an expensive third level of the page table
in MACH. Though WINWORD misses the L2 cache just as
often as VORTEYX, it evidently requires significant manage-
ment at this third level in the page table, judging from the
differences in VMCPI overhead. This indicates a larger,
more sparsely populated address space. Third, the soft-
ware-managed cache (softvm) tends to do about as well as
the other schemes once the L2 cache is large enough and
once a suitable linesize is chosen (L2 linesize > 64 bytes);
however, its performance tends to be more sensitive to
choices of linesize and cache size than the other virtual
memory organizations. This is not surprising; the software-
oriented scheme places a much larger dependence on the
cache system than the other virtual memory organizations,
which are much more dependent on the performance of the
TLBs. We note that decreasing the TLB sizes to 64 entries
per side increases the overhead of the hardware schemes by
roughly an order of magnitude, while the software-
managed scheme would be unaffected. Last, we note that
the curves for the TLB-based schemes are roughly grouped
by L1 linesize: For small L1 caches, linesize is more
important than cache size. In contrast, the softvm curves
are roughly grouped by L2 linesize: For this scheme, L2
linesize is more important than L1 cache size.

Besides the familiar signature of diminishing returns
from increasing linesize (e.g., for GCC and VORTEX, the
largest overheads in the 1 MB softvm results are from the
smallest and largest linesizes), the softvm results show that
cache size clearly has a significant impact on the overhead
of the system. Overhead decreases by between a factor of
two and an order of magnitude when the L2 cache is
doubled and decreases by between a factor of two and a
factor of five as the L1 cache increases from 1 KB to 128 KB
(2 KB to 256 KB total L1 cache size). Within a given cache
size, linesize choice can affect performance by a factor of
two or more (up to an order of magnitude for some
configurations).

In general, the software-managed scheme performs
similarly to the other schemes and the fact that we see
similar trends across three very different OS/hardware
platforms is encouraging.
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graph with 1 MB L2 cache size.

5.5 Handling Writes

We discuss two options in handling writes: One can either
use a software-managed translation scheme with a write-
back cache or a write-through cache.

When a cache miss occurs in a writeback cache, a
common rule of thumb says that half the time the line
expelled from the cache will be dirty, requiring it to be
written back to main memory. This case must be dealt with
at the time of our cache-miss exception. There are two
obvious solutions. The translation is available at the time a
cache line is brought into the cache; one can either discard
this information or store it in hardware. If discarded, the
translation must be performed again at the time of the
writeback. A hardware-intensive solution to the problem is
to keep the translation with the cache line, simplifying
writeback enormously, but increasing the size of the cache
without increasing its capacity. This also introduces the
possibility of having stale translation information in the

cache. We do not discuss the hardware-oriented solution in
conjunction with a writeback cache, because it is not
necessary. If writebacks happen in 50 percent of all cache
misses, then 50 percent of the time we will need to perform
two address translations: one for the data to be written
back, one for the data to be brought into the cache. This
should increase overhead (VMCPI) by roughly 50 percent.
The problem this introduces is that the writeback handler
can itself cause another writeback if it touches data in
cacheable space or if the handler code is in cacheable space
and the caches are unified.

To implement stores to a write-through cache, there
must be some mechanism that translates the virtual
reference to a physical address. This can be done if the
translation for each cache line is held in the cache, as
mentioned earlier. This requires more hardware, but does
not impose excess performance overhead on the mechan-
ism. However, it does raise the issue of having potentially
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graphs with 1 MB and 2MB L2 cache sizes.

stale translation information in the cache. Keeping this
translation information consistent is the subject of the
next section, which looks at the problem of maintaining
protection-bit consistency—very similar to maintaining
translation consistency if the translation for each cache
line is stored with that cache line.

5.6 Fine-Grained Protection
As mentioned earlier, managing protection information can
be inefficient if we store protection bits with each cache line.
If the protection granularity is larger than a cache line, the
bits must be replicated across multiple lines. Keeping the
protection bits consistent across the cache lines can cause
significant overhead if page protection is modified fre-
quently. The advantage of this scheme is that the choice of
protection granularity is completely up to the operating
system. In this section, we determine the overhead.

We performed a study on the frequency of page
protection modifications in the Mach operating system.

The benchmarks are the same as in [30] and the operating
system is Mach3. We chose Mach as it uses copy-on-write
liberally, producing 1,000 times the page-protection mod-
ifications seen in Ultrix [30]. We use these numbers to
determine the protection overhead of our system; this
should give a conservative estimate for the upper bound.
The results are shown in Table 6.

Page-protection modifications occur on the average of
11.3 for every million instructions. At the very worst, for
each modification, we must sweep through a page-sized
portion of the L1 and L2 caches to see if lines from the
affected page are present. Overhead therefore increases
with larger page sizes (a software-defined parameter) and
with smaller linesizes (a hardware-defined parameter). On
a system with 4 KB pages and a 16-byte linesize (smaller
linesizes give more conservative results), we must check
256 cache lines per modification. Assuming an average of
10 L1 cache lines and 50 L2 caches lines affected per
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modification,* if L1 cache lines can be checked in three
cycles and updated in five cycles (an update is a check-and-
modify) and L2 cache lines can be checked in 20 cycles and
updated in 40 cycles, we calculate the overhead as follows:
Of 256 L1 cache lines, 10 must be updated (five cycles), the
remaining 246 need only be checked (three cycles); of 256 L2
cache lines, 50 must be updated (40 cycles), the remaining
206 need only be checked (20 cycles); the overhead is
therefore 6,908 cycles per page-protection modification
(10 % 54 246 * 3 4+ 50 * 40 4+ 206 * 20). This yields between
0.019 and 0.164 CPI (6,908%2.8%10% and
6,908 * 23.8 x 107%). This should translate to a worst case
of 2-7 percent total execution time. If the operating system
uses page-protection modification as infrequently as in

4. We chose these numbers after inspecting individual SPEC95 bench-
mark traces, which should give conservative estimates: 1) SPEC working
sets tend to be smaller than normal programs, resulting in less page overlap
in the caches, and 2) individual traces would have much less overlap in the
caches than multiprogramming traces.

Ultrix, this overhead decreases by three orders of magni-

tude to 0.0001 CPI, or about 0.01 percent execution time.

TABLE 6
Page Protection Modification Frequencies in Mach3

Page Protection Modifications

Workload Modifications Fnesrtll-\:ljicl:lti;: s
compress 3635 28
jpeg_play 12083 34
10zone 3904 5.1
mab 27314 15.7
mpeg_play 26129 19.0
gce 35063 223
ousterhout 15361 23.8
Weighted
Average: 11.3
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We can improve this by noting that most of these
modifications happen during copy-on-write. Often, the
protections are being increased and not decreased, allowing
one to update protection bits in each affected cache line
lazily—to delay an update until a read-only cache line is
actually written, at which point it would be updated
anyway.

5.7 Optimizations

As suggested earlier, there are numerous optimizations that
can be applied to this scheme, from lazy update of
protection bits to careful placement of the handler code in
physical memory so that it occupies a minimal number of
cache blocks. In addition, related work can be drawn upon;
for example, the software TLB explored by Bala et al. [3] is a
PTE cache that holds the most recently referenced PTEs in a
buffer in main memory, thus condensing useful data in a
manner that can better utilize cache blocks and effectively
fit more PTEs into the cache. This has the potential to lower
access time to the page table on average. The Tempest
group developed tricks in the compiler and operating
system that reduced translation-related interrupt invoca-
tions by recognizing when the same mapping or the same
data would be valid from one access to the next [34]. The
privileged-mode-bit optimization by Henry reduces the
need to flush the pipeline on taking a precise interrupt by
adding a mode bit to every pipeline register, as opposed to
using one global bit [17]. This would reduce the overhead of
every L2 cache miss by several cycles. Last, one could
handle the L2 cache in user mode directly, obviating the
need to vector into the kernel at all—hardware and software
support for such activity has been investigated by Thekkath
and Levy (user-level interrupt handling) [39] and the
Exokernel group (user-level virtual memory) [13].

6 SUMMARY

For the design of a memory management system, we have
returned to first principles and discovered a small set of
hardware structures that provide support for address space
protection, shared memory, large sparse address spaces,
and fine-grained protection at the cache-line level. This set
does not include address-translation hardware; we show
that address translation can be managed in software
efficiently, achieving similar performance compared to
TLB-based systems with very low-overhead designs. There-
fore, software-managed address translation is a viable
strategy for high-end computing today, achieving excellent
performance with less hardware.

The benefits of a minimal hardware design are four-fold.
First, moving address translation into software creates a
simpler and more flexible interface; as such, it supports
much more innovation in the operating system than would
a fixed design. Second, eliminating the TLB has the
potential to reduce power consumption significantly [26].
Third, a reduction in hardware will leave room for more
memory structures, perhaps helping to increase perfor-
mance. Last, simpler hardware should be easier to design
and debug, cutting down on development time.
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