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A decrease in data storage costs and widespread use of scanning devices has led to 

massive quantities of scanned digital documents in corporations, organizations, and 

governments around the world. Automatically processing these large heterogeneous 

collections can be difficult due to considerable variation in resolution, quality, font, 

layout, noise, and content. In order to make this data available to a wide audience, 

methods for efficient retrieval and analysis from large collections of document 

images remain an open and important area of research. In this proposal, we present 

research in three areas that augment the current state of the art in the retrieval and 

analysis of large heterogeneous document image collections. 

 

First, we explore an efficient approach to document image retrieval, which allows 

users to perform retrieval against large image collections in a query-by-example 

manner. Our approach is compared to text retrieval of OCR on a collection of 7 

million document images collected from lawsuits against tobacco companies. Next, 

we present research in document verification and change detection, where one may 

want to quickly determine if two document images contain any differences (document 

verification) and if so, to determine precisely what and where changes have occurred 

(change detection).  A motivating example is legal contracts, where scanned images 

are often e-mailed back and forth and small changes can have severe ramifications. 

Finally, approaches useful for exploiting the biometric properties of handwriting in 

order to perform writer identification and retrieval in document images are examined.  
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Chapter 1: Introduction 

In the last thirty years, a combination of faster computing, cheaper storage,  

increased bandwidth, and widespread use of scanning devices has led to massive 

growth in the number and size of scanned document collections as home users, 

organizations and governments continue to digitize materials that traditionally resided 

on paper. Documents such as forms, contracts, bills, memos, and official 

correspondences are often printed in hard copy format and kept as official records in 

corporate and government settings. Recent litigation cases against companies [1], [2] 

and government officials [3] accused of wrongdoing, have also led to the creation of 

millions of document images for legal departments to manually sort through and 

organize.  

Concurrently, there are massive efforts underway by organizations and 

governments throughout the world [4], [5], [6], [7] to digitize historical documents, 

newspapers, magazines and books by scanning and saving them, thus allowing 

widespread public access to printed materials that would otherwise only be accessible 

on site. For example, recent estimates by the United States National Archives 

indicated that it currently holds over 10 billion documents in its collection, containing 

historical records from the U.S. government spanning the past 400 years [4].  Many 

of these are of great interest to historians, policy makers, universities, and the general 

public.  Nevertheless, the fact that these documents are in image form makes them 

difficult to access using traditional information retrieval techniques. 
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Figure 1: Examples of varied documents present in large document image collections 

Ideally, we would like to build automated systems, with efficient and accurate 

algorithms, that allow users to quickly find and analyze documents of interest. While 

conversion to electronic form may work in some situations, these large datasets pose 

challenges that make this unrealistic.  This includes considerable variation in 

resolution, quality, font, layout, and noise, as well as an eclectic mix of content 

containing handwriting, forms, photographs, charts, graphs, and signatures as shown 

in Figure 1.  

This dissertation presents work in three areas that augment the current state of 

the art in the retrieval and analysis of large heterogeneous document image 

collections. The first topic is document image retrieval, which allows users to 

perform retrieval against large image collections in a query-by-example manner to 

find visually similar sub-images. The second topic explores document verification 

and change detection, where one may want to quickly determine if two documents 

contain any differences (document verification) and if so, to determine precisely what 

4 



 3 

 

and where the changes have occurred (change detection). This is useful in both the 

filtering and summarizing of retrieval results.  Finally, the third research area uses 

biometric properties of handwriting to perform writer identification and retrieval 

on document images. The remaining sections of this chapter introduce these three 

topics. 

 

Figure 2: Draft of President Clinton’s 1997 Inaugural speech containing his handwritten annotations 

To further motivate these three research areas, imagine the scenario of a 

historian researching the decision process of President Clinton by analyzing records 

kept from the administration at his presidential library. President Clinton is famous 

for often editing his own speeches and the historian is hoping that draft edits 

containing his handwritten annotations as shown in Figure 2 might give an unfiltered 

insight into his thought process on important policies. The historian can easily access 

draft versions of speeches without the handwritten edits, but unfortunately the records 

containing the handwritten edits are not well organized and millions of scanned 

images would have to be searched through, which would take years to analyze 

individually. Hence, the historian uses a document image retrieval system to search 

for near duplicates of each of the speeches. The system then uses an analytic for 
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change detection between the queried and retrieved versions of the draft to 

automatically isolate the handwritten annotations or changes from the constant 

machine print text. It turns out that President Clinton was not the only one making 

handwritten edits to these speeches, but that several of his advisors would also make 

similar annotations. Thus the historian turns to a writer identification analytic to only 

retrieve annotations consisting of similar handwriting style to those belonging to 

President Clinton. 

1.1: Document Image Retrieval 

Traditionally, the most widely used approach for providing access to 

document image collections has been to leverage the enormous amount of research in 

text retrieval by first using Optical Character Recognition (OCR) algorithms to 

convert the scanned document images to text. There are several problems with such 

approaches.  First, OCR techniques, even if they are perfect, often do not fully 

capture visual clues such as the font, style (bold, italics, etc.), page layout (genre), 

table structures, or identify non-text graphical objects such as logos that can help 

address a user’s information needs.  

Second, even when documents are primarily text, retrieval algorithms have 

been optimized for “clean” text. However, OCR algorithms are error prone, with 

substantial variations in accuracy even with state of the art commercial algorithms, 

due to factors such as script complexity, noise, resolution, and page layout. While 

some techniques exist to deal with noisy text, even the best text retrieval techniques 

begin to break down as the character accuracy rate falls below 75-80% [1].   
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A large portion of traditional document image research has focused on 

improving OCR performance, but more recent research has focused on using images 

in either classification or retrieval applications to perform image retrieval against the 

pixel representation of the content. Recent progress in image retrieval and increasing 

computational power has made it possible to scale to datasets with millions of 

document images.  While the information retrieval community has been using 

collections of this size for decades now, pixel-based document image retrieval 

research has traditionally focused on much smaller sets.  Moreover, image retrieval 

research has tended to focus on designing algorithms optimized for specific tasks 

such as logo recognition or page layout analysis, with the implicit assumption that 

such capabilities would be useful in a more global pipeline. 

     

Figure 3: Examples showing SURF extraction and matching for graphical objects, signatures, text and stamps 

Chapter 2 presents a large scale, segmentation-free image retrieval algorithm 

that indexes local features and uses geometric verification to efficiently search 

millions of images. The approach is first tested on a logo dataset and experiments 

demonstrate that the approach can accurately match graphical logos and images of 

text regions as shown in Figure 3. We then directly compare the image retrieval 

algorithm to standard text retrieval on OCR'd data on a large real world collection in 
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an attempt to answer the question, “Is image retrieval useful for general document 

retrieval applications?” Experiments were conducted using topics generated by 

lawyers, for which relevance judgments are available using seven million document 

images obtained from lawsuits against tobacco companies.   

Our primary contributions include: 

 A scalable, segmentation-free approach to retrieval of text block and 

graphical objects in document images [8]. 

 The first study to directly evaluate an image query-by-example technique 

for user relevance on a large real world dataset [9]. 

1.2: VisualDiff: Document Verification and Change Detection 

The second topic explores the related problems of verification and change 

detection in document images to determine if two images differ, and if they do, to 

determine precisely what content may have been added, deleted, or otherwise 

modified. As with our retrieval work, this is accomplished in the image domain, 

without the need for complete conversion to electronic form.  A motivating example 

for these capabilities comes from the results of large-scale document image retrieval 

systems like the one discussed in Section 1.2. These systems often return a list of 

similar results, and document verification could be used to cluster or suppress 

identical results. Change detection, on the other hand, could be used as a way to trace 

the revision history from similar results or could be used to quickly highlight changes 

of importance from a given query document. 

Document images of contractual agreements (“contracts”) provide another 

motivating example for these capabilities. During a contract negotiation process, it is 
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typical for modified versions of the contract to be emailed or faxed back and forth 

multiple times, often in a scanned image format, prior to a final copy being signed by 

all parties. Small, undetected changes inadvertently or maliciously introduced prior to 

signing could lead to severe legal or financial repercussions. Professional contract 

administrators currently verify changes between two versions of a scanned contract 

by manually comparing both documents line by line, which is both time consuming 

and subject to human error.  

The goal of document verification is to provide a Boolean decision as to 

whether the content of two documents is indeed identical, even if the pixel values and 

image sizes are different. There are many factors which can cause large differences in 

pixel values between two identical document images. For documents scanned using a 

traditional flat bed or autofed scanners, common reasons for these changes include 

2D rotations, lossy compression, resolution changes, binarization, and embedded 

enhancement algorithms. Many mobile devices now also include scanning apps that 

allow users to take pictures of their documents in lieu of a scanner. Even though these 

popular apps often provide image enhancement algorithms to remove affine or 

perspective distortion of the image, this form of scanning can introduce more difficult 

forms of distortion such as 3D pose, lighting, motion blur, and slight warping from 

curved surfaces since the “scanning” is no longer done in a controlled environment. 

Noise can also come from the document itself in the form of creases, stains, and ink 

bleed.  
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Figure 4: Change detection example for 2 similar documents. Deletions in red; Additions in green. 

In cases for which document verification indicates a difference, the goal of 

change detection is to assist a user in determining the precise differences between two 

documents as shown in Figure 4. There are many modifications that can cause large 

changes to the appearance of a document.  These range from very basic formatting 

changes (font size or style, margins, line spacing, etc.) to complex rewriting of the 

content. For most applications the addition or deletion of content, including text, 

graphics, or handwriting such as signatures and notes is of primary importance. Users 

may also want to detect when the content is identical but the layout of the page, line 

spacing, font style, size and/or color of text has changed. The work presented in 

Chapter 3 constrains the world of possible changes to additions and deletions of 

content. 

Our primary contributions include: 

 A document verification algorithm to determine if two document images 

contain identical content across common image transformations [10]. 

 A change detection approach to detect word level changes by applying the 

longest common subsequence algorithm to local features extracted from 

text line images [11]. 
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 A segmentation-free change detection technique to detect word or 

character level changes even if page or line segmentation fails [11]. 

1.3: Writer Identification and Retrieval 

Handwriting is a behavioral biometric, which has been used for over one 

thousand years to identify the authors of unattributed pieces of handwriting. An 

example of variation present in samples from the same writer as well as their 

distinctiveness in relation to different writers is shown in Figure 5. Even with the 

decreasing popularity of handwriting for daily use, writer identification and retrieval 

remains a relevant and important research area for law enforcement agencies. For 

example, in 2010 the FBI used handwriting analysis to identify and arrest an 

individual who mailed threatening handwritten letters containing white powder to 

political leaders. Worldwide there are estimated to be several hundred forensic 

handwriting experts, the most widely known group is the Questioned Documents Unit 

of the FBI, which compares handwriting samples from questioned documents (i.e. 

ransom notes, death threat letters, or fraudulent official documents) to samples taken 

from suspects in order to identify perpetrators. Forensic examiners estimated it takes 

2 investigators approximately 2-3 days to adequately complete a case involving 

approximately a dozen documents. Cases that involve several thousands of 

handwritten documents would overwhelm Forensic examiners, and the hope is that an 

automated or even semi-automated solution would help assist these experts. 
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Figure 5: Examples of two handwriting samples written by several different individuals 

There are applications for research in writer identification and retrieval 

beyond law enforcement as well. Paleographers, who study ancient handwriting, are 

often interested in identifying all the manuscripts from a certain scribe because a 

scribe often uses the same vernacular constructs and abbreviations throughout their 

writings, which make it easier for a Paleographer to translate at one time. One could 

also imagine school officials wanting to ensure that a student’s handwriting is 

consistent throughout exams and homework assignments to ensure another individual 

had not taken their place.  

One final motivating example comes from optical character recognition of 

large volumes of handwriting, which remains an unsolved and challenging problem 

for the document image community due to large variations present in the shapes and 

styles between writers. Recent research has shown that handwriting models adapted 

to a particular writer do significantly better than general models [12], [13]. One could 

imagine writer identification being used to match a new handwriting sample to a pre-

trained OCR engine that contained the closest writing style. 

Chapter 4 presents two approaches using local features for writer 

identification. The first method extracts adjacent line segments from the contour of 

connected components and improves upon existing edge based features. The second 

approach introduces a more general framework for writer identification that attempts 

to mimic an approach taken by forensic examiners. Repeatable character-like 
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segments are extracted to form a pseudo alphabet and these pseudo-characters are 

described using an improved contour based gradient descriptor. We also explore 

using the more powerful Fisher Vector [14] for feature pooling and combinations 

local features to produce state-of-the-art results. These methods are validated on 

datasets and contests consisting of hundreds of writers across several languages and 

shown to produce state of the art results.  

Our primary contributions include: 

 Applying the K-Adjacent Segments (KAS) feature to writer identification. 

[15]. This is the strongest edge-based feature used for writer identification.  

 An automated, general framework for writer identification inspired by 

allograph matching performed by handwriting forensic examiners. [16] 

o This method won the ICDAR 2013 Writer ID Contest [17].  

 Weighted combinations of local features including KAS, Contour 

Gradient Descriptors, and SURF to produce state-of-the-art results [18].  

1.4: Dissertation Overview 

The remainder of the thesis is organized by topic, with each topic in a separate 

chapter. Document image retrieval, change detection, and writer identification are 

presented in Chapters 2, 3, and 4 respectively. Each of these chapters includes related 

work, approaches, experimental evaluations, and conclusions with open areas for 

future research. Chapter 5 summarizes our contributions and publications.  
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Chapter 2: Document Image Retrieval 
 

In this chapter, we explore the problem of document image retrieval in an 

image query-by-example context with the intent of creating a general technique that 

can be applied to large heterogeneous collections. A scalable, segmentation-free 

document image retrieval approach is introduced that can accurately retrieve sub-

images of graphical objects and structured text blocks using only one query image. 

We first demonstrate the effectiveness of our approach in an experiment designed for 

logo retrieval. Next, we scale our algorithm to 7 million document images collected 

from tobacco lawsuits with the goal of studying user relevance in a more general 

information retrieval setting.  

2.1: Related Work 

The most common method of information retrieval on document images 

continues to be text retrieval on the output generated from OCR programs. This is a 

popular option due to the efficiency of text retrieval systems as well as the increasing 

speed and precision of OCR technology. However, OCR still suffers from varying 

degrees of inaccuracy depending on the language, so strategies have been researched 

in the past to cope with different levels of OCR degradation. In the past decade, 

techniques were developed that allow image retrieval researchers to begin performing 

query by example image retrieval for graphical objects within a document image. 

Active research supporting this includes word spotting, page layout analysis and logo 

retrieval especially when OCR error rates are too high to perform adequate text 
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retrieval. Surprisingly, little work has been done directly comparing the text retrieval 

against the benefits of image retrieval techniques. 

2.1.1: Information Retrieval Basics 

The field of information retrieval (IR) is a user-centered discipline in which 

computer algorithms are designed to efficiently examine vast volumes of content in 

order to satisfy a user’s information needs. While the field originated in the library 

sciences in order to support librarians in quickly retrieving reading material for 

patrons, the Internet has helped expand the field from books to other forms of content 

such as web pages, music, video, and images. In the traditional IR model a user 

formulates their information needs into a query that can be input to a system and the 

system generates a set of ranked results for review by the user. The notion of 

relevance, which describes results that satisfy the user’s information need, is central 

to the field. From a computer science perspective, the goal is to create a general 

purpose retrieval algorithm that can return all relevant items at the top of the ranked 

list in real time. In order to measure the effectiveness of an information retrieval 

system, several evaluation measures have been devised, the most basic of which are 

precision and recall. Precision, shown in equation (1), measures the percentage of 

returned results that are relevant. Recall, shown in equation (2), measures the 

percentage of relevant documents returned relative to the number of relevant 

documents in a dataset.  

Recall = R(k) =
|{relevant documents} ⋂ {retrieved documents}|

|{relevant documents}|
 (1) 

 

Precision = P(k) =
|{relevant documents} ⋂ {retrieved documents}|

|{retrieved documents}|
 (2) 
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When using a ranked list, both precision and recall need to be calculated at 

various ranks to generate a plot in order to gain a complete picture of how a system is 

performing. In response, two single value metrics were created, the F-measure and 

Average Precision. The F-measure, shown in equation (3), balances between 

precision and recall and can be thought of as the harmonic mean. 

 

F − measure =  2 ∗
Precision ∗  Recall

Precision +  Recall
 (3) 

 

Average precision is one of the most common information retrieval metrics 

and can be calculated by equation (4) where n is the number of results, P(k) is the 

precision at rank k, rel(k) is 1 if result k is relevant and 0 otherwise, and R is the 

number of relevant documents in the dataset. Mean Average Precision (MAP) is the 

mean of the average precision across all queries, Q. 

Avg Precision =  AvgP =
∑ P(k) ∗

n

k=1
rel(k)

R
 (4) 

 

MAP =  
∑  AvgP(q) 

𝑄

𝑞=1

|Q|
 

 
 

(5) 

2.1.2: OCR Text Retrieval 

In 2007, the Tesseract [19] OCR system, which had been acquired by Google, 

open-sourced their OCR platform and began publishing a series of papers [20], [21], 

[22] providing insight into the inner working of general commercial OCR systems. 

The basic flow for converting a document image to text is shown in Figure 6. The 

intent of this diagram is not to focus on the inner workings of Tesseract, but rather to 

show the many areas an OCR application can be susceptible to mistakes. Errors in the 
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page and line segmentation or skew correction could cause large blocks of text to be 

entirely missed. This commonly happens for document images with non-standard 

layouts. Errors in the word segmentation, character segmentation, or character 

classification often cause errors at the word level.   

 

Figure 6: Algorithm flow for a general OCR system such as Tesseract. 

Table 1 shows reported character and word error rates for various languages 

from various OCR systems. Please note that these results often come from 

experiments with ideal test data. Studies on large real world data-sets have shown 

OCR retrieval systems may have word error rates of greater than 50% on 1/3 of all 

English document images [23] even though academic and commercial systems 

commonly report less than 1% character error rates with English. 

Language Character Error Rate (CER) Word Error Rate (WER) 

English 0.5% [21] 3.72% [21] 

Hindi 15.41% [21] , 8.7% [24] 69.44% [21] 

Chinese 3.77%  [21] N/A 

Arabic N/A 14.1% [25] 

Arabic, Handwritten N/A 30% [26] 

Table 1: Table showing various error rates for current state of the art OCR 

The work of Doermann [27] and Beitzel et al. [28] provides an overview of 

recent OCR error correction and retrieval techniques that are tolerant to the character 

and word errors. Please note that no text based retrieval algorithm can handle errors 
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where entire regions of text are missing, as is common with poor page segmentation. 

The most common first step has been to use natural language processing techniques 

to fit the OCR output into a probabilistic language model such as a finite state 

transducer to choose the most likely sentence [29].  While obtaining training data is 

relatively easy, this technique is limited by its dictionary and can often have trouble 

with out of vocabulary terms such as uncommon names or other pronouns. Another 

approach taken by Kolak et al. [30] creates a noisy channel model specific to the 

OCR algorithm and calculates the probability that the OCR algorithm will make 

certain character errors, given a ground truth training data mapping common OCR 

errors in the model. Experiments have shown the WER decreases from 20% to 5% 

using this approach on OCR text from the French Bible. 

Given blocks of OCR text with varying levels of accuracy, past research has 

also examined how to best index text for efficient and fault tolerant retrieval. As a 

general rule, prior research on OCR shows that 1) for character accuracy between 70-

80% character n-gram techniques perform well, 2) for 80-95% accuracy, enhanced IR 

techniques work well, and 3) most vector-space retrieval algorithms are only tolerant 

on OCR above 95% accuracy [27]. In [31] and [32] Taghva et al. show the vector 

space retrieval model is largely unaffected by simple OCR errors, especially when 

there is a large amount of content present in the data-based documents. Using simple 

OCR correction techniques, they were able to recover most documents that were 

retrieved due to OCR errors, except in cases with very low OCR quality or large 

segmentation errors. The work by Harding et al. [33] used character n-grams to 

perform retrieval on OCR'd text and showed that it significantly outperformed 
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traditional retrieval techniques with character error rates greater than 10%. Recent 

work by Bulco-Neto et al. in [34] showed that Latent Semantic Indexing (LSI) can be 

used to retrieve documents with OCR errors since the surrounding context for 

misspelled words is often similar. Hassann et al. [35] on the other hand used Latent 

Dirichlet Allocation (LDA) to perform retrieval based on the topic model for a given 

document and demonstrated that OCR with a 22% CER can be performed using this 

technique. 

2.1.3: Document Image Retrieval 

Document image researchers have begun actively exploring methods for 

retrieval by using an image as a query in order to address cases where the OCR is 

unavailable or visual features are more descriptive than the textual content. There 

have been three main areas of research in document image retrieval, which are 

covered in the sections below. The first section discusses page layout analysis where 

documents with similar structures are matched. The second section reviews past 

approaches for retrieval of graphical objects such as logos or signatures. Finally the 

third section discusses keyword spotting of distinct symbols and words, which is 

useful when other approaches for OCR fail. 

2.1.3.1: Page Layout 

The original purpose of page layout analysis was to break a page into zones 

that could be fed into an OCR engine. Early work by O’Gorman focused on simple 

layouts such as those found in magazines, books, and journals [36].  More recently 

Kise et al. proposed an approach for non-Manhattan layouts which found zones by 

creating a Voronoi diagram around connected components on the page [37] that was 



 18 

 

further extended by Agrawal and Doermann for complex and handwritten material 

[38].  Page layout analysis was also one of the earliest techniques for performing 

document image retrieval without using the OCR text because the structure of a 

document image can sometimes provide just as much information as the textual 

content. For example, when looking for official memos or forms from a company that 

always has the same structure, one can key off of the layout of the page even though 

the textual content can change. A full survey of this page layout research can be 

found in [27] and [39].  Much of the early work on the topic focused on using a 

document’s layout to perform genre classification [27], [40]. In recent work, Huang et 

al. proposed a retrieval algorithm in [41] that compared quadrilaterals formed from 

lines on the pages from two documents to determine whether two documents have 

similar layouts. They achieved a MAP of 0.7 on a 2855 document dataset.  In [42], 

Gordo and Valveny used a cyclic polar description of text zones in a page to create a 

rotation invariant descriptor for a page. Experiments demonstrated a MAP of 0.6 on a 

dataset of 823 Spanish government documents. Marinai et al. [43] directly compare 

the trees from XY-cut page segmentation to determine page similarity. Their 

experiments on 22,253 pages extracted from 53 books demonstrate that documents 

with similar structures are clustered together.  In [44] Nakai et al. introduces Locally 

Likely Arrangement Hashing (LLAH), to return near duplicate images that are 

invariant to affine translations from camera pictures. He uses the center of word 

features as interest points and describes each point with geometric relationships to 

neighboring points rather than the actual content. More recently in [45] Takeda et al. 

scale the algorithm to ten million images, though the index is required to reside in 
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memory and requires over 150 GB. Results show that he is able to find the same 

document across pose changes with 92% precision viewing as little as 1/8th of the 

document.   

2.1.3.2: Graphical Objects 

In recent years, there have been a number of papers exploring the related 

topics of detection, recognition, and retrieval in document images of graphical objects 

such as logos and signatures, which cannot be handled by OCR. Given a document 

image, detection can be defined as the problem of finding a graphical object's 

boundary on the page without regard to class. Recognition (or matching) on the other 

hand is the problem of determining to which class a given logo or signature belongs. 

Retrieval can be viewed as a combination of the two problems where one wants to 

efficiently and simultaneously detect and recognize a graphical object across a large 

dataset given some query image. 

Doermann et al. presented one of the first approaches for logo retrieval on 

document images in [46]. He first performs logo detection on zones from a page 

using texture features based on wavelets and then performs logo recognition using 

shape descriptors based on algebraic and differential invariants.  Logo detection was 

more recently explored by [47], [48] and [49]. In [47], Zhu and Doermann detect 

logos on a page using connected component features and a Fisher classifier. Wang 

and Chen use a decision tree to grow rectangle boundaries around candidate logos in 

[48]. In [49], Li et al. use local descriptors found using difference of Gaussians and 

described using connected component features to detect logos. In [50], Rusinol and 

Llados explore efficient logo retrieval on logos by indexing shape context descriptors 
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and achieves 82.6 mean average precision (MAP) on the Tobacco 800 dataset. Zhu et 

al. extend their detection work in [51] to build a retrieval system and performs 

recognition by matching local shape context descriptors, reporting a MAP score of 

82.6%. The closest work to ours has been done by Rusinol and Llados [52], who 

perform logo retrieval using a bag of SIFT features. He reports a true positive rate of 

90.2 % and a false positive rate of 1%, but the experiments are done on a different 

dataset that is not publicly available making direct comparison difficult. Similar 

approaches have been used for retrieval of graphical structures on a page such as 

engineering drawings [53]. 

While there is a long history of work on signature verification and 

identification [54], more recent research has focused on performing document image 

retrieval based on handwriting signatures. In [55] Srihari et al. assume that a signature 

has already been extracted and designs a retrieval system that removes machine text 

noise from the signature and uses gradient, structural and concavity features to 

perform retrieval across a large dataset on signatures present in document images. He 

achieves a precision of 89.6% and recall of 88.6% when comparing the top 10 results 

on a dataset of 447 signatures. Agam et al. extend this work in [56] by combining text 

retrieval with signature retrieval on the CDIP Tobacco dataset to show that signatures 

could be tied to certain attributes such as the amount of money a tobacco CEO 

handled. While there was little experimentation, as far as we know this is one of the 

only other studies to examine the relationship between text retrieval and document 

image retrieval of graphical objects using a large real world dataset.  Zhu et al. creates 

a signature detection algorithm [57], which takes advantage of the distinct attributes 
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of a signature by employing a multi-scale approach that looks for salient regions 

based on the curvature of a given connected component. Signature retrieval is then 

performed using a shape matching algorithm that compares the relative positions of 

points sampled between two signatures.  

2.1.3.3: Keyword Spotting 

In cases where general purpose OCR algorithms fail and the font and script 

has little variation within a dataset, document image researchers have employed 

techniques that match the image of a word directly against a document image. Rath 

and Manmatha had one of the first successes using this approach in noisy handwritten 

historical manuscripts [58]. A word segmentation algorithm was used to extract all 

the words from the page and then an exemplar word is matched against all the words 

on a page using contour and gradient features. The average precision of this algorithm 

is 72%, but a downside is that the algorithm is limited by the accuracy of the page and 

word segmentation. More recently Rusinol et al. proposed a segmentation free word 

spotting algorithm [52], built on their earlier work in [59]. He uses dense SIFT 

features in a bag of features framework, which is similar to the approach used in 

Chapter 3. The features are mapped to code words and then represented using Latent 

Semantic Indexing. During the retrieval, a document image is scanned over several 

scales for areas with many similar patches and candidate patches are verified 

geometrically. He reports a MAP of 42% and demonstrates that the algorithm works 

across a large variety of fonts and languages.  
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2.2: Segmentation Free Document Image Retrieval 

2.2.1: Local Feature Extraction 

Our use of local descriptors was motivated by the work of Ke et al. [60], 

which showed excellent results for the near duplicate image retrieval problem when 

using the SIFT descriptor. One can imagine retrieval in document images as an 

extension of the near duplicate image retrieval problem in computer vision, where 

one wishes to find all similar images that could have been created from simple image 

transformations such as cropping, scaling, or rotating. Thus local features that are 

scale and rotation invariant are desirable for logo retrieval because of their ability to 

match sub sections of images with these transformations. Large affine translations are 

not a concern for document image retrieval since most large collections contain 

images that are created by scanning on a flat surface.   Local feature extraction for 

images can be split into two steps: interest point detection and feature description. A 

good interest point detector extracts patches from an image that are distinct and 

repeatable across common image transformations such as scaling, rotating, and 

cropping. An illustration of these patches can be found in Figure 7. Next, each patch 

is represented by a feature vector, which ideally captures the shape and texture of the 

pixels within the patch, but is invariant to noise and variations that occur across 

similar images. Document images are especially challenging because the pixels are 

often binary, meaning that there is little texture information and a substantial amount 

of noise present in images from the binarization process.  
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Figure 7: Example showing SURF extraction and matching 

Speeded Up Robust Features (SURF) [61] were chosen for this work because 

it has shown good performance for image retrieval, is fast to compute, and is more 

resilient to noise than other popular local features such as SIFT [62]. SURF uses the 

fast Hessian interest point detector, which finds patches with the largest high gradient 

change in comparison to neighboring patches and in scaled space. The SURF feature 

descriptor for a given patch is calculated by first equally subdividing a given patch 

into a 4x4 grid. For each subsection, the Haar wavelet response Dx and Dy are 

computed in the x and y directions respectively. The original SURF descriptor 

calculates the following four attributes (∑Dx, ∑Dy, ∑ |Dx|, ∑|Dy| ) per interest point. 

However, the first two features ∑Dx and ∑Dy contain little information in binary 

images. Hence they are excluded to form a more compact 32 dimensional feature 

vector, which is ¼ the size of the SIFT descriptor, without any loss in accuracy.  An 

open source C++ implementation of the SURF algorithm from the OpenCV software 

package has been modified to produce the smaller feature vector described above. A 

more detailed analysis of SURF can be found in the original paper [61]. 
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To build a naïve retrieval system using these descriptors one would first 

extract SURF features from each document image offline. Then at query time one 

would extract SURF features from a region of interest in the image and do a pair-wise 

comparison between all the features extracted from the document and the logo and 

then choose the document with the most matches. Given that on average 7000 

features are extracted from each document, 1000 features are extracted from small 

regions of interest, and 32 calculations are required for each feature comparison, it 

becomes quickly apparent that this approach will not scale to datasets with millions of 

images due to its computational requirements.  

2.2.1: Feature Indexing 

An indexing technique that maps feature vectors to hash codes in order to 

build an inverted index was explored to improve query speed.  The method used for 

this study was motivated by a recent indexing technique for near duplicate images 

[63], which attempts to group feature vectors that are distinct along the same 

dimensions. The original technique defined the distinctiveness D for a given feature 

vector v as: 

𝐷(𝑖) = |v𝑖 − μ
𝑖 
| ∗ σ𝑖 (6) 

 

Where μ
i 
 and σi are the mean and standard deviation for the distribution of 

position i over the feature vector. The method proposed in that paper did not perform 

well because the equation they used to quantify the distinctiveness was rewarding, 

instead of penalizing, dimensions with high variance.  Also, the direction of the 
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distinctiveness is lost by taking the absolute value. Instead the following alternative 

distinctiveness measure using the Z-score from statistics is proposed: 

𝐷(𝑖) =
v𝑖 − μ𝑖 

σ𝑖
 (7) 

 

Both μ
i 
and σi are computed offline for each of the 32 dimensions in the 

SURF feature vector using feature vectors from randomly selected documents in the 

CDIP collection. Two index keys for each feature vector are formed by taking the six 

positions with the highest distinctiveness as well as the six positions with the lowest 

distinctiveness score and sorting the two index values numerically. Note there are 

fewer hashes than the six required for the algorithm presented in [63]. The index is 

further expanded by using one bit to represent the sign of the Laplacian in the fast 

Hessian detector and another bit to represent whether the hash came from the highest 

or lowest distinctness scores. The use of six positions to create the hash is determined 

empirically since it provides a hash space of 3,624,768 values with a tradeoff of 

slightly more neighboring feature vectors not being hashed to the same point. 

To clarify the indexing procedure, an example of a ten dimensional feature 

vector and an index made of three positions is given in Table 2. Here the index keys 

become the positions with the three highest distinctiveness scores (highlighted in 

blue) and the positions with the three lowest distinctiveness scores (highlighted in 

yellow) sorted numerically. The first (or high) key is (6, 7, 10) and the second (or 

low) key is (4, 5, 8). 

As with all approximate nearest neighbor algorithms there is no guarantee that 

two points indexed to the same key truly match.  To solve this problem a low 
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dimensional representation of the feature vector is stored along with the index key 

and verify that an indexed feature vector falls within a given distance threshold of the 

query at runtime. To minimize the storage cost and computational requirements of 

this matching, the SURF feature vector is reduced to eight dimensions using PCA. 

This indexing scheme is used to create an inverted index as follows: 

Key 1 -> Doc ID -> X, Y coordinates, Orientation, Feature Vector 

Key 2 -> Doc ID -> X, Y coordinates, Orientation, Feature Vector 

Each index key points to the unique ID for the document it was computed 

from and its associated feature vector. The X and Y coordinates, as well as the 

orientation of the interest point, are stored for geometric filtering.  This index reduces 

search complexity by >108 over the naïve approach. 

X 1 2 3 4 5 6 7 8 9 10 

v𝑖   5 7 3 2 1 9 8 0 6 10 

μi  5 5 5 5 5 5 5 5 5 5 

σi 1 1 1 1 1 1 1 1 1 1 

𝐷(𝑖) 0 2 -2 -3 -4 4 3 -5 1 5 
Table 2: Distinctiveness scores for an example feature vector 

2.2.3: Properties of the Index 

Figure 8 shows the document frequency of a given hash for a set of 1000 

scanned documents and approximately seven million interest points. The hashes 

clearly follow a power law distribution using local descriptors and this phenomenon 

has been noticed in previous papers using local features [64]. In this case, the most 

frequent hashes appear to be associated with straight lines, which occur frequently 

throughout the dataset. The 1000 indexes with the high frequency are put on a stop 

wordlist because these points are not discriminative and occur several times in most 

documents. This removes approximately 20% of the interest points from the index 
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and significantly speeds up query performance since indexes with the largest number 

of entries take the longest time to load from a disk. 

 

Figure 8: Graph of the index key frequencies sorted by their rank. 

This indexing scheme is designed to reside on disk. Each entry in the index is 

19 bytes (six bytes for the document ID, four bytes for the X, Y coordinates, one byte 

for the key point orientation, and eight bytes for the Feature Vector). Thus an average 

image with 7000 features, each with two entries, requires approximately 266KB of 

disk space. Once the high frequency hashes are removed, this is reduced to 212KB of 

disk space per image. This could likely be reduced by half with better bit 

management and a better dimensionality reduction technique than PCA. 

     
a)                                                                                          b)   

     Figure 9: Hash properties given L2 distance between 2 SURF features. a) Probability of a hash collision. b) 

Given a brute force query with matches marked true or false if they correspond with the correct region: Gray – 

Accuracy of SURF features. Blue –Accumulating percentage of true SURF matches. Orange – Percentage of true 

SURF matches that also have hash collisions. 
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Figure 9 provides an analysis of the hashing technique given the L2 distance 

between SURF features compared using the brute force method between pairs of 

images with matching regions. SURF matches were marked true if they linked the 

correct region between the two images, and otherwise were marked as false. Figure 

9a shows the probability of a hash collision given the L2 distance between SURF 

features. To put these probabilities in context, Figure 9b shows that about 45% of all 

valid matches are retained until SURF has a false match rate of 80% at a L2 distance 

of 0.1, and 40% of all valid matches are retained until SURF has a false match rate of 

96% at a L2 distance of 0.14. In practice, matches beyond a distance of 0.1 create too 

large a false positive rate to be useful for retrieval. While a substantial number of 

SURF matches are lost, experiments show only a small reduction in recall due to the 

large number of features being extracted per image allowing many opportunities for 

point matches between corresponding regions. Figure 10 shows an example of the 

matches found using the hash index in comparison to the Brute force method. Other 

current state of the art feature indexing approaches such as KD-trees [65], which 

could potentially provide much higher recall, would also require a very large amount  

 
a)     b)    c)    d) 

Figure 10: Example Query. a) Query Image. b) Indexed Image. c) Brute Force matches with geometric 

verification. d) Indexed matches with hash collisions and geometric verification. Note about 50% of matches are 

lost from 2c. 
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of RAM to be practical with the volume of features being extracted. The simplicity of 

this indexing scheme, its large hash space, and ability to allow efficient indexing on 

traditional hard disks sets this hashing technique apart from other approaches. 

2.2.4: Filtering Using Geometric Consistency  

Image retrieval systems built on indexing local descriptors have traditionally 

used RANSAC [66] to perform geometric verification. Others have used Hough 

transforms [62] for the same purpose because RANSAC performance degrades if a 

significant portion of matching features are outliers. Since affine transformations are 

not a priority for scanned document images, a much simpler two-step geometric filter 

is used. The first step takes advantage of the orientation information provided by 

interest points found using the fast Hessian detector. The orientation difference of 

valid matching points between a logo query and document image should be relatively 

constant and equal to the skew between the images. Thus, the orientation of each 

query interest point is subtracted from all matching interest points in the database and 

normalized to fall within 0 and 360 degrees. For a given image with matching interest 

points, a sliding scale of six degrees is used. Interest points that fall within the 

window with the largest number of matches are kept and the rest are discarded. In 

cases of images with erroneously matched interest points this can significantly reduce 

the error rate. The sliding window is trivial in cost and can be programmed on the 

order of O(n), where n is the number of matching points. Note how the number of 

false matches is significantly reduced in Figure 5b. 
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Figure 11: An illustration of the triangle filter. 

The second step uses a stricter filter, but with the tradeoff that its 

computational cost is O(n3). Triangles are computed from all combinations of three 

matching points between the query and document image. Given paired triangles in the 

query and document image, the difference between the corresponding angles is 

computed. If the angles differ by three degrees, the triangle is ignored. Features that 

are a part of at least two valid triangles are retained and the final score returned by 

this step for ranking results is the number of matching triangles. Figure 11 illustrates 

this triangle filter and Figure 12 shows how these two filters remove false positives.  

To limit the effect of a large number of matches on the computation of the 

triangle filter, the 100 matches with the smallest distances are stored per image before 

applying the second filter. To reduce the cost of the triangle filter in a large scale 

implementation, one could randomly sample the set of all triangles. However, in 

practice this filtering is nominal in cost because there were few erroneous matching 

points after the first filter was applied, so all triangles were sampled in the 

implementation. While efficiency is always a concern, the filtering can afford to be 

more expensive than the feature matching because only the top results need to be 

verified and this process takes much less time than the index retrieval. 
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Figure 12: (a) no filters, (b) orientation filter, (c) triangle filter 

2.3: Experiments: Logo Retrieval 

2.3.1: Dataset 

The UMD Tobacco 800 dataset ( [1], [56], [67]) is an 800 document/1290 

page subset of the CDIP 7 million document/42 million page dataset received after 

state litigation related to tobacco. All images have been scanned in binary format and 

range in resolution from 150 DPI to 300 DPI. Figure 13 shows how noisy the images 

can be as a result of the binarization. It has become the standard public dataset for 

work on logos in document images. Ground truth labels of the logos were created in ( 

[47], [51] ) and only consist of the graphical portion of the logo. The dataset contains 

35 unique logo classes across 435 pages. Only logo classes with two or more 

occurrences are used as query images in experiments.  Each image is resized to have a 

greatest dimension of 2000 pixels or 180 DPI to reduce the number of features 

generated for images with much higher resolution.  
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Figure 13: 15 sample pages from the CDIP dataset 

2.3.2: Evaluation measures 

The score reported in the results for a given system is the mean average 

precision (MAP), shown in Equation (5), which is the mean of the average precision 

scores across all queries. A few logos are disproportionately represented in this 

dataset so the MAP score is also computed by taking the average across all classes as 

well as all queries. Queries are submitted for each of the ground truth logos provided 

by [47] against all 1290 pages of the Tobacco 800 dataset. Examples of these logos 

can be seen in Figure 13. 

2.3.3: Results 

2.3.3.1: Results on the Tobacco 800 dataset 

The following three configurations of the system were tested and the results 

are in Table 3: Brute force searching, indexed search with geometric verification, 

indexed search with/without geometric verification. The results using the graphical 

logo alone were lower than expected. A close inspection of the results showed that 
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the system was operating with high precision for all of the logos, but noisy logos that 

were heavily impacted by the binarization or small logos that comprised of a small 

portion of the entire page for which few features were extracted had low recall. One 

positive result from this data was that there was only a 10-14% drop in the MAP 

score between the brute force query and the indexed query. Most of this loss was due 

to a loss in recall from fewer matching points. Another positive result from this data 

was that the geometric verification significantly improved the results by increasing 

the MAP by 17-22%. This was largely due to the increase in precision. 

System MAP  per logo MAP  per query 

Brute force  .67 .59 

Index with geometric verification .57 .45 

Index without geometric verification .35 .28 
Table 3: Results on the tobacco 800 dataset for graphical logos 

 

2.3.3.2: What is a logo? 

The logo queries chosen from the ground truth of [47] omit contextual text 

from the logo when possible to limit the test set to graphical objects. However, in 

reality for each logo there is almost always uniquely identifying titles or text blocks 

adjacent to the logo that could be used as part of a query image to boost performance. 

In many cases the text is more consistent, prominent and distinct than the logo. Three 

more image queries are run on the Tobacco 800 dataset using the indexed search with 

geometric verification to compare how the contextual text surrounding the logo 

affects performance: Logo alone, Text1 alone, Logo + Text Image1.  The logos are 

reused from the prior experiment and the Text and Logo + Text images are manually 

extracted for each page containing logo. The MAP per query and MAP per logo class 

                                                 
1 In this context, “Text” refers to Images of Text, as opposed to electronic text 
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are again used as metrics for performance. Examples of the Logo, Text, and Logo + 

Text images can be found in Table 4. 

Logo Text Logo + text 

   

 

 

 

Table 4: Examples of the text context found with logos 

The results in Table 5 show a significant improvement gained by combining 

the textual and logo information and indicate that graphical objects should not be 

isolated from their surrounding context when performing logo retrieval on document 

images. For some documents, logos contain the most distinctive features and for 

others, the text surrounding the logos is more distinctive. By combining the two, the 

image query algorithm benefits from having more information and more descriptors. 

Since the algorithm operates with high precision, the additional text descriptors do 

not result in many more false positives. One exception was the “Philip Morris” text 

image, which found several other document images that contained the words but not 

the logos. 

System MAP Score per logo class MAP Score per query 

Logo only .57 .45 

Text only .56 .63 

Logo + text .87 .88 
Table 5: Results for graphical and text logos 
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2.4: Experiments: Large Scale Retrieval for User Relevance 

2.4.1 Dataset 

The collection used for the experiments is the Complex Document 

Information Processing (CDIP) test collection [1], which is a superset of the 

Tobacco800 dataset used in the previous experiments. CDIP includes 7 million 

scanned documents and over 42 million pages, received from tobacco company 

lawsuits. All images have been scanned in binary format from many different 

scanners and range in resolution from 150 DPI to 300 DPI. There are many types of 

documents in the collection, including research papers, e-mails, letters, memos, 

books, and handwritten notes. The documents have many nonstandard layouts and 

often include graphics such as logos, tables, graphs, photos, and signatures. Figure 13 

shows how noisy the images can be as a result of the binarization. The CDIP 

collection also includes English OCR text and annotated metadata for each document. 

This collection was used for the TREC Legal Track from 2006-2008 [ [68], [23]], but 

the complexity of the scanned documents resulted in poor OCR text quality, making 

this collection an interesting IR challenge for noisy text. TREC Legal worked with 

lawyers to create “mock” complaints, over 100 topics, and associated Boolean 

queries. It was impractical for the TREC team to ground truth the entire dataset, so 

instead they created relevance judgments by pooling the top results from participating 

systems and truth marking samples from those results. Topics with fewer than 5 

judgments of “relevant” were discarded, leaving 55 topics.  
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2.4.2 Experimental Design 

The goal of the experiments was to compare the technique described in 

section 2.2 to text retrieval of OCR and determine if it provided any utility in 

satisfying a user’s information need for a set of topics on the CDIP tobacco dataset. 

The setup of this experiment closely mimics the evaluation of TREC Legal. The hope 

was that the two modes of retrieval would be complementary and that the image 

retrieval results would improve retrieval performance on at least a few topics when 

the results of the two techniques were combined. A more modest goal of the 

experiment was to see if there was a positive relationship between document image 

retrieval and increased query performance to show that these techniques could be 

used in cases where OCR failed and text retrieval was not possible.   

Due to limited resources (we used one server to build the index), it was not 

possible to process, index, and store the 1.5 TB, 42 million page collection for image 

retrieval. Instead, only the first page for each of the seven million documents from the 

CDIP collection was used resulting in 40 billion indexed features. Lucene [69] was 

chosen as the text retrieval system for this experiment since it is very popular both 

commercially and academically for text based information retrieval. Unlike text 

retrieval, one major drawback with most image retrieval algorithms is that it is almost 

impossible for a user to make a query without having an existing image of interest. To 

overcome this limitation in the experiments, text queries using the words from each of 

the TREC Legal Boolean queries were run and the text and images corresponding to 

the top 1000 ranked results were retained. The actual Boolean queries were not used 

because they do not provide ranked results. 
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2.4.2.1 Relevance Feedback 

The first two experiments evaluated the two retrieval strategies using 

relevance feedback, where the top N relevant documents that were returned by the 

initial query were used to resubmit new queries. Rocchio’s algorithm, which is 

commonly used to perform relevance feedback, is shown in Equation (8).  

𝑄𝑚
⃗⃗⃗⃗⃗⃗  =  (𝛼 ∗  𝑄𝑂

⃗⃗⃗⃗  ⃗)  +  (𝛽 ∗   
1

|𝐷𝑟|
∗  ∑ 𝐷𝑗

⃗⃗  ⃗ 

𝐷𝑗⃗⃗ ⃗⃗   ∈ 𝐷𝑟

)  −  (𝛾 ∗   
1

|𝐷𝑛𝑟|
∗  ∑ 𝐷𝑘

⃗⃗ ⃗⃗   

𝐷𝑘⃗⃗ ⃗⃗  ⃗ ∈ 𝐷𝑛𝑟

) (8) 

Here 𝑄𝑂 is the original query vector, 𝐷𝑗
⃗⃗  ⃗ is a related document vector, 𝐷𝑟 is the 

set of relevant documents, and 𝐷𝑛 is the set of unrelated documents. 𝛼, 𝛽, and 𝛾 are 

constants used to balance the importance of the relevance feedback results against 

query drift from the original query. In the experiments, unrelated documents were not 

used in the relevance feedback so 𝛾 was always set to zero.  𝛼 and 𝛽 were varied 

experimentally to determine the optimal performance for relevance feedback and to 

verify that the relevance feedback does indeed improve performance. When 

comparing two systems note that (𝛼 ∗  𝑄𝑂
⃗⃗⃗⃗  ⃗) cancels out and that the only metric 

needed to directly compare both relevance feedback algorithms is the relative ranking 

using only the feedback from applying: 

𝑄𝑟𝑒𝑙
⃗⃗ ⃗⃗ ⃗⃗  ⃗  =   

1

|𝐷𝑟|
∗  ∑ 𝐷𝑗

⃗⃗  ⃗ 

𝐷𝑗⃗⃗ ⃗⃗   ∈ 𝐷𝑟

    (9) 

While application of this formula is straightforward for text retrieval by 

substituting TF-IDF scores, the image retrieval query vectors occupy a different 

vector space than the original query. Thus instead of applying the formula using the 

TF-IDF score from each query, the rank of the result was substituted instead. For both 

experiments three combinations were evaluated: the original query alone, the original 
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query + text relevance feedback, and the original query + image relevance feedback. 

The image queries were conducted using the algorithm presented in Section 3 with 

the entire document image result. Document images submitted to the text retrieval 

system used the text OCR and the entire textual content was used for the text query. 

The first experiment simulated user relevance feedback by using the top five relevant 

documents returned from the initial query for relevance feedback. The second 

experiment simulated blind relevance feedback, where the Top 10 ranked results 

(relevant or not) were submitted for relevance feedback. 

 

2.4.2.2 User Queries 

The third experiment attempted to determine if users could improve image 

retrieval by only selecting relevant sub-images rather than the entire document image.  

In order to avoid biases, three different users selected five distinct topics from the 

collection on which they thought image processing would perform best. They were 

supplied with all relevant images from the initial query for each TREC topic and 

asked to select three distinct document images from the collection that they felt were 

most relevant to the topic. To be fair to both retrieval systems, the users were asked to 

select the best image sub-region and the best text sub-region. Both of these regions, as 

well as the full document image, were then submitted to both retrieval algorithms and 

each was treated as a new ad-hoc query when evaluating the system. 

2.4.2.3 Evaluation Measures 

Mean Average Precision (MAP) is a widely used evaluation metric that 

balances precision and recall into a single value metric averaged across all queries. 
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However, recent studies have shown that MAP, breaks down when used with 

incomplete relevance judgments. Because the relevance judgments are sparse, we 

have chosen to report Bpref [70], an evaluation measure optimized for experiments 

with sparse relevance judgments.  Bpref is a relative measurement that works by 

ignoring documents without relevance judgments and instead measures the number of 

relevant documents found above non-relevant documents in a ranked list. It is 

calculated by Equation (10): 

Bpref =  
1

𝑅
 ∑(1 − 

| 𝑛 ranked higher then 𝑟 |

min (R, N )
𝑟

) (10) 

 

Where R is the number of judged relevant documents, N is the total number of 

judged non-relevant documents, r is a retrieved document that is relevant, and n is the 

number of non-relevant documents ranked higher than r. Query results of up to a 

depth of 10,000 were considered due to the sparse number of relevance judgments. 

The experimental procedure and metrics used are consistent with the experiments 

done by the TREC Legal Track on this collection [23]. 

A measurement for precision was also used to complement the Bpref results, 

especially because we expected image retrieval results to be less well represented in 

the existing TREC Legal relevance judgments.  For that reason, we asked three new 

assessors to provide relevance judgments for the top 10 results from 20 randomly 

selected queries, using each system for the three experiments. We used a majority 

vote to produce a new ground truth from which a traditional precision at 10 measure 

could be computed.  These results, denoted as P(10), are informative as an indication 
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of early precision, but are not directly comparable to the results we report using the 

sparse TREC Legal relevance judgments. 

2.4.3: Results 

2.4.3.1: Simulated Relevance Feedback 

    
a)      b) 

Figure 14: Simulated Relevance Feedback Results. a) Retrieval improvement using text/image relevance feedback.  

b) Retrieval performance of the combined image+text relevance feedback with varying weight (α) 

Both image and text retrieval approaches positively impact query performance 

when the top relevant results were resubmitted for relevance feedback. The graph in 

Figure 14a shows the Bpref score in order to examine the relationship between the 

original query and the relevance feedback results. The image relevance feedback is 

optimal with a weighting of α=.7 and β=.3, which provided an average improvement 

of 20% over the original query and improved 40 of the 55 queries. The text relevance 

feedback is optimal with a weighting of α=.2 and β=.8, which provided an average 

improvement of 71% over the original query and improved 46 of the 55 queries. 
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Figure 15: Relevance feedback improvement of image+text retrieval over text retrieval: topics ranked worst to 

best based on text retrieval performance 

Since both image and text retrieval positively impact relevance feedback 

performance, the question is now whether image + text retrieval is better than text 

retrieval alone. The results in Table 6 show the Bpref and Precision scores averaged 

across all queries. When compared independently, the text retrieval outperforms the 

image retrieval. Figure 14b displays the Bpref score for various weights of image and 

text retrieval.  The image + text retrieval combination only improves the results by 

0.25% mainly because there is a substantial amount of overlap between the positive 

matches in the two results sets. Hidden from the graph is the fact that image retrieval 

outperformed text retrieval on 4 queries and image+text retrieval outperformed text 

retrieval on 17 queries.  

Feedback Bpref P(10) 
Text 0.25 0.66 

Image 0.11 0.44 
Table 6: Bpref and Precision at 10 results for the simulated relevance feedback. 

The CDIP topics were not built with image retrieval capabilities in mind, and 

thus even modest improvement of the image retrieval system on a few queries is 

sufficient to indicate the potential of these algorithms in retrieval settings. One 

advantage of an image retrieval system is that it can work on degraded documents and 

in cases where the OCR fails. To test this hypothesis, the results are sorted in 
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ascending order based on the text retrieval Bpref score and the Bpref improvement 

from the image + text retrieval is measured in Figure 15. The results show that several 

of the first 15 topics with lowest text retrieval performance have substantial 

improvement by combining the text and image retrieval results. 

2.4.3.2: Blind Relevance Feedback 

   
a)                                                              b) 

Figure 16: Blind Relevance Feedback Results. a) Retrieval improvement using text/image relevance feedback.  

b) Retrieval performance of the combined image+text relevance feedback with varying weight (α) 

The results for BRF follow the same pattern as the previous section. The 

graph in Figure 16a shows that both image and text retrieval approaches positively 

impact query performance when the top 10 results were resubmitted for blind 

relevance feedback with the text retrieval again outperforming the image retrieval. 

The blind relevance feedback for image queries is optimal with a weighting of α=.9 

and β=.1 and provides an average improvement of 10% over the original query. The 

text relevance feedback is optimal with a weighting of α=.2 and β=.8 and provides an 

average improvement of 36% over the original query. The image retrieval improved 

29 of 55 queries and the text retrieval improved performance 40 of the 55 queries.  
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Figure 17: Relevance feedback improvement of image+text retrieval over text retrieval: topics ranked worst to 

best based on text retrieval performance 

The results in Table 7 also show that the precision was lower than the 

simulated relevance feedback and that the precision of the image retrieval was again 

lower than the text retrieval. This could be due to the poor performance of the original 

query. In many cases only one or two of the top ten documents used for BRF were 

actually relevant to the topic. Image retrieval in general is error prone and the fact that 

it was not more adversely impacted by the presence of non-relevant documents is 

surprising.  

 

Feedback Bpref P(10) 

Text 0.15 .57 

Image 0.04 .34 

 Table 7: Bpref and Precision at 10 results for the blind relevance feedback. 

Figure 16b shows that text retrieval outperforms any combination of text 

retrieval and image retrieval on average across the datasets. However, the image 

retrieval outperforms the text retrieval on two queries and the combined image+text 

retrieval performs better than text retrieval on 8 of 55 queries. The improvement of 

the combined image+text retrieval over text retrieval is again examined in Figure 17 

for cases where the text queries performed poorly. The results are mostly negative 

with results appearing to somewhat improve in a couple of the bottom cases, but they 

also appear to get substantially worse for most of the other queries. 
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2.4.3.3: User Queries 

The results in Table 8 show the Bpref scores for the text, image, and 

combined retrieval for the text region, image region selected by the user as well as for 

the entire page. Even though the image region is labeled with the word “Image” the 

regions selected by users contained at least some text in almost all cases. For many of 

the documents selected by users, there were no graphical objects and thus users 

struggled to select a region and often chose unique parts of the page layout.  Unlike 

the relevance feedback results, each of the three image queries were treated as new 

ad-hoc queries, which is why the results may seem lower in comparison to the other 

two studies. The combination of both retrieval techniques was tried for various 

weights similar to the relevance feedback experiments and the optimal weighting 

scheme is shown in Table 8. Image+Text Bpref performance improved by a modest 

3.3% for image region queries. 

Bpref results for user queries  Precision at 10 results for user queries 

 Text Image Entire Page   Text Image Entire Page 

Text 0.159 0.092 0.181  Text 0.69 0.45 0.80 

Image 0.038 0.037 0.046  Image 0.45 0.45 0.49 

Text+Image 0.159 0.095 0.180  Text+Image 0.71 0.49 0.80 

% Change 0% 3.3% -0.5%  % Change 2.8% 8.5% 0% 
Table 8: Bpref and precision at 10 retrieval results for user selected regions 

This is also reflected in the P(10) results in Table 8, which shows an 8.5% 

improvement in precision for the image region and 2.8% improvement for the text 

region. This suggests that there is relevant content in the image region that is not 

available to the OCR. The difference in relative scores between the Bpref scores and 

P(10) results (a factor of 4 compared to a factor of 2), also suggests that the relevance 

judgments are biased against image retrieval as relevant documents were likely not 

included in the judgment pools, lowering the Bpref scores for image querying. The 
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image retrieval on its own outperformed text retrieval on four queries when 

evaluating the text region. It also outperformed text retrieval on three queries when 

evaluating the entire page, and 14 queries when evaluating the image regions. When 

the image retrieval was combined with the text retrieval it outperformed the text 

retrieval on seven queries for text region, eight queries for the entire page, and 15 

queries for image regions. This improvement on a limited number of queries also 

suggests that the image retrieval may be beneficial in some unique cases when 

prominent visual features exist in an image. The use of sub-regions did not help query 

performance for either technique, likely because less information was available to the 

algorithms. This was the first time users had tried the image query paradigm and one 

explanation for the drop in performance is that they were unable to select the best 

documents or regions for optimal image retrieval. 

2.4.3.4: Impact of Poor OCR 

The accuracy or quality of an OCR system is typically expressed using 

character and/or word error rates. However, in the absence of a substantial amount of 

ground truth test data, both of these values are difficult to accurately measure.  The 

work in [71] and [23] used a more ad-hoc measure known as OCR Score, which gives 

a rough estimate of the word error rate. OCR Scores can be calculated by counting the 

number of 4+ letter words in the page that appear in a dictionary and dividing it by 

the total number of 4+ letter words in a page. One of the major advantages of image 

retrieval over text retrieval is that it is not dependent on OCR output and thus 

hypothetically better handles poor quality document images. To evaluate this 
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hypothesis, the top 1000 ranked results from the text and image retrieval were 

evaluated to determine the frequency for various ranges of OCR Scores. 

OCR Score 100-95 95-90 90-80 80-70 70-60 60-50 50-25 25-0 

Image Retrieval 14.3 27.5 28.7 11.3 3.42 1.98 3.08 9.56 

Text Retrieval 22.2 37.8 31.5 6.6 1.4 0.4 0.1 0 
Table 9: Comparison of image and text retrieval OCR Scores 

The results in Table 9 show image retrieval returns substantially more 

documents at an OCR Score of 80% or lower. Results with an OCR Score of 25% or 

lower make up about 10% of the image retrieval results even though not a single 

result with an OCR Score this low was returned by the text retrieval system. 

Unfortunately, there were few relevance judgments on document images with poor 

OCR quality because the pooling of results in the tobacco collection was based on the 

top results from text retrieval systems that entered the TREC competition. Even, the 

TREC study in [23] showed approximately 33% of the CDIP collection had an OCR 

score below 50% and text retrieval approaches in the study had difficulty retrieving 

documents from this subset of the collection. This made it difficult to assess how 

beneficial the image retrieval would be in these cases when OCR is likely to fail. The 

OCR score was calculated for the judgments provided by our assessors for the P(10) 

calculation in order to determine whether this same phenomenon was seen in the 

limited results available. In this case, the average OCR score for the text results was 

0.89, the average OCR score for the image results was 0.81, and the distribution was 

similar to Table 9, providing further evidence that the text retrieval favors documents 

with high OCR quality. 
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Figure 18: Percentage of documents retrieved with a given word count for both retrieval systems.  

While OCR Score is a great measure for studying the effect of the word error 

rate on retrieval performance, it will not accurately reflect the effect of segmentation 

errors, where large portions of the page do not have OCR. Instead, this would be 

manifested by the image retrieval results having fewer words per result. The top 1000 

ranked results are again taken from both retrieval systems and this time the 

percentage of results returned are shown for various word counts in Figure 18. The 

average word count for the image retrieval is far lower at 167, while the average OCR 

for the text retrieval is 287. The fact that 19% of the image retrieval results has less 

than 50 words, while only .1% of text retrieval results did, indicates that that there 

may be relevant information on the page that the OCR is unable to extract. While 

image retrieval may not always be needed when OCR quality is good, these results 

indicate that recall may be increased if image retrieval technology is used for 

documents with a low OCR score or when few words are extracted from a page. 

Since systems that participated in the Legal Track used text retrieval of OCR or 

Metadata, the pooled relevance judgments are possibly biased towards the capabilities 

of these systems, meaning that documents with little text or poor OCR quality were 

less likely to have been evaluated. 
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2.4.3.4: Further Analysis 

The results from simulated relevance feedback were analyzed further in order 

to provide greater insight into the performance of the image retrieval system. In order 

to give tangible examples the types of queries and results that were generated, Figure 

19 and Figure 20 include a text description of the topic (from CDIP), the initial text 

query (from CDIP dataset), query images used for relevance feedback, and ranked 

results from image and text retrieval for two of these topics. Topic 78 was chosen 

because the relevance feedback results using image retrieval outperformed text 

retrieval by 2% using the Bpref metric. Similarly, Topic 13 was chosen since the text 

retrieval results were far superior to the image retrieval results with a 35% increase in 

Bpref. As the results in Figure 19 and Figure 20 show, the image retrieval results 

were generally near duplicates of the query images at the highest ranks. At lower 

ranks, the image retrieval results show that the system primarily matched prominent 

sub-images of the query images such as the US Patent header, the Lorillard logo, or 

the law offices header and address block. 

In the case of Topic 78, which was looking for any documents related to 

patents of odors, the visual representation of the US Patent Header was important 

because it is found on all patent submissions and the image query therefore brought 

back a significant number of relevant patents. This is in contrast to the text retrieval 

results, which brought back a large number of studies referencing odors, but did not 

bring back a significant amount of documents also referencing patents. While the 

OCR did pull out “United States Patent” correctly for text retrieval, the visual 
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importance of the header given its size, font, and location is not conveyed in the OCR 

text used in the relevance feedback. 

Topic 13, which focuses on documents related to chocolate or candy 

cigarettes, presents a case in which the image retrieval system can fail if the visually 

prominent portions of the images are not relevant to the topic. This can also occur in 

cases where there is little content for the image retrieval system to match, such as a 

document containing pure text with no repeatable visual patterns in common with 

other relevant documents. Even though, the first couple of image retrieval results for 

this topic were relevant near duplicates, the majority of results afterwards largely 

contained either the Lorillard logo or the Brumbaugh law header. Since documents 

from these companies occurred frequently in the CDIP collection and candy 

cigarettes were a very small portion of their work, the vast majority of the documents 

returned were about the business of these companies rather than the topic of interest. 

The text retrieval results on the other hand focused on chocolate or candy cigarettes 

since the terms appear often in the query documents and likely had low document 

frequency raising their prominence in the TF-IDF bag of words model. Unfortunately, 

none of the CDIP topics centered on individual companies or people, where matching 

sub-images such as the headers, logos, or address blocks like in the examples above 

would have likely done very well. Most of the topics were focused on general illegal 

actions taken by all tobacco companies such as hiding harmful side effects, selling 

cigarettes to kids, or bribing officials, which were difficult for the image retrieval 

system to find repeating visual patterns relevant to the topic.  
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Topic 78 

Description: All documents referencing patents on odors, excluding tobacco or cigarette related 

patents 

Initial Query: patent* odor* NOT (tobacco OR cigarette) 

      

 
     

 
     

 
     

 
     

Figure 19: Image and Text Retrieval Results for Topic 78. The first row contains the first five relevant documents 

returned from the initial query, which are used to perform relevance feedback. The next 4 rows contain ranked 

results from image and text retrieval.  
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Topic 13 

Description:  All documents to or from employees of a tobacco company or tobacco organization 

referring to the marketing, placement, or sale of chocolate candies in the form of cigarettes. 

Initial Query:  cand* chocolate cigarette* 

      

 
     

 
     

 
     

      
Figure 20: Image and Text Retrieval Results for Topic 13. The first row contains the first five relevant documents 

returned from the initial query, which are used to perform relevance feedback. The next 4 rows contain ranked 

results from image and text retrieval. 
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2.4.3.5: Efficiency 

In order for an image retrieval algorithm to be useful it must scale to large 

numbers of images on commodity hardware and allow for modest indexing and 

retrieval times. Using a grid computing engine with 400 nodes, it took approximately 

eight hours to extract on average 7000 SURF features per page and index all seven 

million document images using the techniques described in Section 2.2. The resulting 

index was two terabytes in size, though more efficient use of disk space could easily 

reduce the index to one terabyte. While this is substantial in size, unlike many other 

image retrieval techniques, this algorithm is able to achieve reasonable search times 

with the index residing entirely on a hard disk, which is trivial in cost when compared 

to RAM. The algorithm was designed to have the index distributed across a large 

number of hard disks using a distributed database such as HBase or residing on a 

solid state drive to reduce the impact of random seek and disk read time when making 

thousands of index lookups. Due to limited resources, the index was loaded on a 

single server and spread across 8 disks. For typical image region queries like text 

blocks, titles, or logos, the average query time across all seven million images was 

about 13 seconds.  

Algorithm Feature Size Index 

Size 

Feature 

Extraction 

Disk 

Access 

Feature 

Comparison 

Geometric 

Verification 

Total 

Time  

Image Retrieval 

(region - 400x400) 

~900 Surf 

features 

1.95 TB 0.3s 10.9s 0.5s 0.4s 12.1s 

Text Retrieval 

(block) 

~100 words 5.5 GB N/A 4.0s N/A N/A 4.0s 

Image Retrieval  

(page - 2200x1700) 

~6000 Surf 

Features 

1.95 TB 2.6s 50.2s 1.8s 2.5s 57.1s 

Text Retrieval (page) ~1000 words 5.5 GB N/A 14.2s N/A N/A 14.2s 
Table 10: Index sizes and average retrieval times for the image and text retrieval used in the experiments 
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As shown in Table 10, the vast majority of the time was spent on random disk 

seeks and reads. Hardware and software engineering improvements such as using 

solid state drives or adding more hard drives would likely greatly speed up this 

approach. Our image retrieval approach is still a magnitude slower than text retrieval 

algorithms, but results suggest that image retrieval is still usable because not all 

document images require image indexing and not all users require image queries.   

2.5: Conclusion 

2.5.1: Summary 

To the best of our knowledge, this study is the first to conduct a large scale 

comparison to determine whether image retrieval can satisfy a user's information 

needs on a large real world dataset by scaling a segmentation free image retrieval 

algorithm to a 7 million document image dataset. In many cases when there are 

handwritten words, rare languages, obscure fonts, or noisy images where OCR is 

likely to fail, document image retrieval may be the only viable option.  The results of 

this study are significant in showing that current image retrieval algorithms can be 

used to satisfy a user’s information need for general topic based queries on large 

heterogeneous datasets. The retrieval results on text, when combined with logos, 

performs at the state of the art level for the Tobacco 800 dataset.  

As a baseline, our technique was compared to the retrieval of text obtained 

through OCR.  Traditionally, this has been the most common approach for accessing 

document image collections. While the goal is to show that the combination of image 

retrieval and text retrieval would outperform text retrieval in general, it appears that 

on average text retrieval alone is still superior for the English text in the tobacco 
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corpus. However, the image retrieval significantly outperformed text retrieval on a 

subset of the queries, and the combined image and text retrieval improved 

substantially more. This suggests that while the image retrieval algorithm is not 

needed in all cases, there exists a class of user topics and document images for which 

image retrieval is beneficial.  Future research is required to identify the set of topics 

or use cases for which image retrieval technology can be the most useful. This is a 

variant of the query difficulty problem, which in general is known to be hard. In this 

case, however, we have evidence from OCR scores and word counts that could serve 

as useful features for query performance prediction [72]. The results also indicate that 

the relevance judgments from the TREC Legal dataset are biased towards the 

capabilities of text retrieval systems, and suggest future experiments in multimodal 

retrieval should try to include retrieval results from a larger variety of technologies in 

order to better support future use of the resulting collections. 

2.5.2: Future Work 

2.5.2.1: New Collections 

While the approach presented in this chapter demonstrates the utility of 

content based image retrieval for general topic based user queries the dataset is no 

longer being actively worked on by a large community limiting the utility for the 

greater academic community of supporting such a system. There are several more 

recent collections being brought online such as “Franklin” [73], which is currently 

providing a growing collection of 700,000 scanned document images from the FDR 

presidential library online. These documents are actively being utilized by historians 

and the goal of the research would be to build a baseline system using OCR and 
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document image retrieval to allow researchers to go through the data and work with 

the community to enable newer retrieval techniques to allow the historians to more 

efficiently work with these types of collections.  

2.5.2.2: Improving User Queries Using Repeating Sub-Images 

A second challenge for any image query-by-example system is how to 

generate the actual queries. In the evaluations presented in this chapter, it was 

assumed that sub-images were given or that the entire image was selected for 

relevance feedback by the user. In the cases where users were asked to select relevant 

sub-images from the results and to resubmit them as queries, they appeared to 

struggle with the task. Another interesting problem would be to look for visually 

repeating patterns or sub-images that occur in the Top N document images returned 

by an initial text query, and suggest them to a user. The hope is that query expansion 

using these suggested sub-images would more likely result in more relevant 

document images being returned than have users attempt to do this manually on a 

smaller subset of results. Examples of results from searching for the test “Philip 

Morris” from the tobacco collection are shown in Figure 21.  

There are two possible ways in which we hope to find these reoccurring sub-

images. A high level view of our first approach would be to load a smaller index 

containing these the SURF features from these top N documents into memory and use 

the existing matching and geometric verification framework to locate these sub-

regions with high precision and efficiency. This would create a similarity graph 

between the N documents as visualized in Figure 21, where the nodes are sub-regions 

and the edges connect similar sub regions with high precision. To create a ranked 
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order of sub-images for use in query expansion, we would use the minimum spanning 

tree of this graph to suppress commonly occurring sub regions and each node would 

be ranked by its degree. A second approach using segmentation of the images could 

also be explored. An approach, such as Voronoi segmentation [37], would split each 

document into M segments creating a total of N*M sub regions. These sub regions 

could then be clustered and the images closest to cluster centers, ranked by the cluster 

size, would be used for query expansion. 

Query: “Philip Morris” 

Results: 

 

Commonly Occurring Sub Images: 

  

Figure 21: Example of learning relevant sub-images to an initial text query 

 

2.5.2.3: Improving Retrieval Accuracy and Speed 

There is also room for improvement in features and indexing used to create 

the segmentation-free document image retrieval system we developed. Currently a 

large number of interest points (~7000) are generated so that even very small sub-
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images could be accurately matched on the page. But not all features are useful when 

OCR is present. Even without OCR, we may find that similar retrieval accuracy could 

be achieved with fewer and larger interest points. While SURF has been shown to 

work well for binary images in a relatively low dimension feature vector, it would 

also be worthwhile to research better feature descriptors that are specifically designed 

to exploit the properties of document images. Finally, better hashing methods could 

be researched that achieve better precision and recall, while being less expensive both 

computationally and on disk. 
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Chapter 3: VisualDiff: Verification and Change Detection for 

Document Images 
 

This chapter presents work on document verification and change detection. 

The goal of document verification is to provide a Boolean decision as to whether two 

document images contain identical content and layout or if changes are present. There 

are two main challenges associated with document verification. First the documents, 

even if the content is identical, could have significantly different pixel values due to 

changes from the camera or scanner capture of the document. Second, it becomes 

increasingly difficult to distinguish between noise and genuine content in cases due to 

poor binarization or degradation of the physical document. 

Assuming changes are detected, the goal of document change detection is to 

determine precisely what and where changes have occurred given two similar 

document images. There are many reasons changes can occur between two document 

images with varying difficulty associated in detecting them. The first and easiest 

change to detect involves the addition of content without effecting the position or 

appearance of existing material on the page. This includes changes such as filling an 

existing form, stamping or signing a document, or appending data to the end of the 

document. A second, but more challenging case involves the addition, deletion, or 

modification of content into a structured document. In a best case scenario this only 

involves detecting a single translation vector for all existing material such as a 

paragraph being moved down. However, in the case where a single word is inserted 

into a body of text, this can cause cascading changes to each subsequent text line. 

Solving the correspondence problem to only detect the small portion where changes 
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have occurred between the two documents can be further compounded by noise, 

complex layouts and word spacing. A similar issue comes up with the third type of 

change, which occurs when the content is identical, but the layout, style or formatting 

changes. This can include cases where a word is bolded or the format of the page is 

converted from one column to two columns.  

For our work, we constrain the space of changes to the addition or deletion of 

content, which we assume is the most relevant to commercial applications. When 

designing our approach, we also assume missing a change can have more severe 

ramifications than false detections of regions containing changes.   

3.1: Related Work 

The problem of document verification can be viewed as a variation of early 

research in duplicate document detection.  The goal was to develop approaches to 

reduce the replication of identical documents present in large databases. Initially, the 

focus was on imaging variations caused by multiple copies and general degradation of 

the physical instances, as opposed to any intentional markup.  Since most of this work 

was done before mobile scanning devices gained popularity, most of the approaches 

are not robust to 3D pose change. We also note the duplicate document detection is 

distinct from near-duplicate detection, which is often used for retrieval, but is 

unsuitable for detecting if two images are indeed identical.  

The most common first pass used by many researchers is a simple pixel 

difference for nearly identical documents. However, this is not invariant to common 

changes such as skew, scale, rotation, or even intensity differences, so researchers 

have typically used feature-based approaches. Doermann et. al. [74] creates a 
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signature using simple properties of characters extracted from text lines, and is able to 

detect 93% of degraded documents. Hull [75] imposes a grid upon the image and 

extracts feature vectors based on pass codes to determine if corresponding grid 

locations of the images are identical. 95% of matches are correctly identified with 

most errors caused by skew and scale changes. Lopresti [76] uses the edit distance 

and vector space model on OCR’d text extracted from images to determine their 

similarity and if they are indeed duplicates. However, his technique assumes 

reasonable quality OCR can be obtained from the image. Most recently in [77], Jiang 

et. al. use connected component features to develop a hashing function that detects 

changes in similar documents. They test on 120 images scanned at 600 DPI with 

artificially placed modifications and obtain a 100% detect rate, with a 2.5% false 

acceptance rate.  

Since most of these image based techniques for duplicate detection were 

developed prior to the popularity of camera capture of document images they are not 

robust to changes in scale, rotation, and perspective change. Furthermore, the use of 

connected components can lead to poor performance in the cases of touching 

components or broken characters and assumes a binarization step that may not be 

necessary. OCR is also a poor choice because even with 99% character accuracy there 

will still be several character errors present in the page and poor page segmentation of 

complex documents common in heterogeneous collections can lead to poor OCR 

accuracy. All of the techniques are also primarily designed for documents containing 

text and it appears they would fail when presented with graphical objects, table or 

graphical objects present in the page. 
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Change detection is a common problem for both text and multimedia content. 

Early work on change detection in text was based on the longest common 

subsequence problem. Meyers [78] presented an efficient solution to this, which is 

still used as the implementation in the popular UNIX program diff. Since that time 

many variations have been created that are able to find changes between two text 

documents at the character, word or sentence level. Change detection has also been an 

important research area for images and videos. Here changes between similar images 

or frames are used to characterize an optical flow, which can be used to describe the 

motion of the camera or structure of objects within the images [79]. Change detection 

has also been applied in the document image domain for the purposes of document 

authentication. The authors of [80] designed a verification system using error 

correction codes to detect pixel level changes and verify content integrity. Their 

experiments show they are able to detect 97% of pixel changes, but the weakness is 

that the document must physically contain four markers placed by the system for 

localization and a barcode with the error correction codes. However, this approach 

does not account for the layout or structure of a document as content is modified 

resulting in many more changes being detected than is necessary, potentially 

requiring a user to examine the whole page. 

Three recent studies have explored applications of change detection for 

document images using OCR’d text. Clough et. al. [81] examined the problem of text 

reuse to examine how news articles changed as they were reprinted. The changes 

detected from text provided evidence of biases, writing styles, or vocabulary 

limitations of the news organizations. Sayeed et. al. [82] studied methods to 
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determine whether modifications in document images of structured contracts were 

compliant using document similarity measures. Alexander Rush introduced an 

automated approach for redaction analysis, which analyzes different versions of 

declassified documents containing redacted passages in order to recover the redacted 

text. His approach relies on finding and aligning related document images using 

OCR’d text and then detecting redacted passages using additions or deletions found in 

the alignment [83]. These approaches are dependent on the quality of the OCR’d text 

and we believe that the image-based change detection approaches presented in section 

3.3 could be extended to improve these applications in cases where the OCR quality 

is poor or the changes of importance are not obtainable through OCR. 

3.2: Document Image Verification 

We propose a more robust solution to document verification that can cope 

with common image transformations and does not require the binarization or 

segmentation steps common with connected component approaches. The main 

contributions of our approach, outlined in Figure 22, are to first align two images into 

the same coordinate space by finding their homography  and then to find pixel level 

changes using a dense SIFT correspondence. 

  

Figure 22: Document Verification Approach 
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Our first step for document verification aligns two images to remove changes 

caused by rotation or translation of the camera or scanner. Document images can be 

approximated by a planar surface in three dimensions. Thus a homography matrix can 

be used to describe a transformation to project the pixels of one image onto the other. 

Processes to obtain this matrix are well known in computer vision where a set of local 

features are extracted from an image and then matching descriptors are used to find 

the homography matrix [84]. Recent research in document image retrieval has shown 

SIFT [62] to perform well for detecting local correspondences in document images 

and is hence used as the local descriptor. Even though, SURF was superior for binary 

images, SIFT appeared to work better when directly comparing grayscale documents 

to binarized images. We use RANSAC to remove outlier matches during the 

calculation of the homography matrix. This process is illustrated in Figure 23. 

 

Figure 23: (a) Alignment using SIFT between two similar images. 

 

Once the two images were aligned, a set of dense SIFT descriptors [85] was 

extracted from even intervals in both images. SIFT was chosen since it has been 

shown to be invariant to small changes in lighting, blur, skew and out-of-plane 

rotations [62]. Additionally, it can be used for binary and grayscale images without 

requiring segmentation unlike previous descriptors based on connected components, 

which were largely developed for binary images. One of the reasons SIFT works so 
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well is that it is essentially capturing the local edge information, which is similar to 

what would be extracted from the contour of connected components. Descriptors 

from corresponding positions in both images are compared and a change is said to be 

present at a given location in the image if the Euclidean distance between any two 

SIFT feature vectors (S1,S2) at position x,y in images I1 and I2 falls above a 

threshold t as shown in Equation (11). The final metric used for determining if a 

change was present, 𝐶ℎ𝑎𝑛𝑔𝑒(𝐼1, 𝐼2), is the sum of local changes when comparing 

both images to each other as shown in Equation (12).  

𝐷𝑖𝑓𝑓(𝐼1, 𝐼2) = ∑   ∑ {

0 𝑖𝑓 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝐼1𝑥,𝑦) == 0

0 𝑖𝑓 𝐿2𝐷𝑖𝑠𝑡(𝑆1𝑥,𝑦, 𝑆2𝑥,𝑦) < 𝑡

1 𝑖𝑓 𝐿2𝐷𝑖𝑠𝑡(𝑆1𝑥,𝑦, 𝑆2𝑥,𝑦) > 𝑡

𝑊𝑖𝑑𝑡ℎ

𝑥=1

𝐻𝑒𝑖𝑔ℎ𝑡

𝑦=1

 

(11) 

𝐶ℎ𝑎𝑛𝑔𝑒(𝐼1, 𝐼2) = 𝐷𝑖𝑓𝑓(𝐼1, 𝐼2) + 𝐷𝑖𝑓𝑓(𝐼2, 𝐼1) (12) 

 

Figure 23 shows an example of changes detected between two similar 

document images following alignment and the dense feature comparison. In practice 

however, SIFT proved to be unstable in regions that predominantly had white or 

black space, where small amounts of noise or illumination changes would dominate 

the gradients used to create SIFT. Thus, areas of low contrast were not used when 

performing the dense feature comparison as shown in Equation (11). Using a simple 

threshold for detecting changes worked well because even small one-character 

differences cause large changes in the underlying SIFT descriptor between the two 

images, while regions with identical content were very close even in Euclidean space 

so long as the homography estimation was accurate.  
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Figure 24: Dense SIFT feature comparison, excluding low contrast areas 

SIFT proved to be robust to small pixel shifts, but larger shifts caused by 

curvature in the page when scanned using a camera phone, caused problems since the 

alignment assumed only linear changes were present. Rather than trying to model this 

curvature, it was sufficient to search other descriptors in a small neighborhood around 

the corresponding point in the aligned image and search for the minimum SIFT 

distance. This leads to the updated equations (13) and (14), where w is the width of 

the window search.  

 

𝑁(𝑆1, 𝑆2) = min(𝐿2𝐷𝑖𝑠𝑡(𝑆1𝑥,𝑦, 𝑆2𝑥+𝑤,𝑦+𝑤),… , 𝐿2𝐷𝑖𝑠𝑡(𝑆1𝑥,𝑦, 𝑆2𝑥−𝑤,𝑦−𝑤)) (13) 

  
  

𝐷𝑖𝑓𝑓(𝐼1, 𝐼2) = ∑   ∑ {

0 𝑖𝑓 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝐼1𝑥,𝑦) == 0

0 𝑖𝑓 𝑁(𝑆1, 𝑆2) < 𝑡

1 𝑖𝑓 𝑁(𝑆1, 𝑆2) > 𝑡

𝑊𝑖𝑑𝑡ℎ

𝑥=1

𝐻𝑒𝑖𝑔ℎ𝑡

𝑦=1

 

(14) 

The misalignments in two overlaid images and the local neighborhood search 

is illustrated in Figure 25. In order to speed up feature comparison, we found the 

dense SIFT comparison can be done using images resized to 100 DPI rather than full 

resolution and using a dense grid sampled at every other pixel with no loss in 

accuracy.  
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Figure 25: Misalignments caused by small page warping (left). Local neighborhood search (right) 

3.3: Document Image Change Detection 

Although it is useful to detect if changes have occurred in a document image, 

many users could also want to determine precisely what has changed without having 

to manually scan documents character by character. Three approaches are examined 

for change detection in document images as shown in Figure 26. The goal of these 

approaches is to detect locations on the document images that have content changes, 

while minimizing false positives. Typically this is accomplished by performing OCR 

on the documents and using text difference utilities like UNIX diff to identify the 

changes. Hence, the first method, used as a baseline, performs “diff” on the OCR text 

extracted from the images; using the longest common subsequence (LCS) algorithm 

to identify changes. If there are OCR errors using a text-based diff will lead to many 

false positives, so the second approach extends traditional techniques for finding the 

LCS in text to images. It performs a “diff” using LCS on SIFT features extracted 

from line images. While the previous two techniques rely on page and line 

segmentation, the third technique performs a segmentation free alignment of 

corresponding SIFT features on the page to identify changes. 
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Figure 26: Outline of the three document Image change detection techniques. VisualDiff++ (BLUE), OCR Diff 

(RED), and SIFT Diff (BLACK) 

3.3.1: Longest Common Subsequence 

Given two sequences X1,2..m and Y1,2..n the goal of the longest common 

subsequence (LCS) algorithm is to find the longest ordered subsets shared by both X 

and Y. The opposite of this problem is to find the shortest set of differences, which is 

exactly what is needed for change detection. Hence, change detection for traditional 

text can be thought of as an extension to the LCS problem, where text that is not 

shared between two documents in the LCS is considered a deletion if it only exists in 

the original document and an addition if it only exists in the new document. The LCS 

can be found from the following recursive function given two sequences (X, Y): 

𝐿𝐶𝑆 (𝑋𝑖, 𝑌𝑗)  =  {

0 ,    𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0 
𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗−1)  +  1, 𝑖𝑓 𝑋𝑖 = 𝑌𝑗

𝑚𝑎𝑥(𝐿𝐶𝑆(𝑋𝑖, 𝑌𝑗−1), 𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗)), 𝑖𝑓 𝑋𝑖 ≠ 𝑌𝑗

 (15) 
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To obtain the LCS, one can keep all elements where 𝑥𝑖 = 𝑦𝑗  for the longest 

LCS. Deletions are defined by the set of elements in X, which are not part of the LCS 

and likewise additions can be found from the set of elements in Y that are not in the 

LCS. The complexity for this naïve approach is O (n*m), when only two sequences 

are involved. However, Myers extended this in [78] by proposing a greedy heuristic 

where the problem could be solved in O (n*d) where d is the number of edits between 

the two versions. For efficiency reasons, diff has traditionally only computed the LCS 

and edit distances for lines of text rather than at the character or word level. In many 

cases this is beneficial to allowing the user to understand the context of the change. 

However, the addition of one word can also shift subsequent words into different 

lines leading to newer “diff” applications such as the one used by Microsoft Word, 

which work at word level. 

3.3.2: OCR Diff  

As a baseline approach, a similar method can be employed with document 

images by performing the “diff” on the OCR’d text extracted from the image using 

the LCS algorithm. OCR text can have minor errors so instead of just using string 

equality, the Levenshtein edit distance is used to allow for a string equality operator 

tolerant to minor errors. Two words are said to be equal if the edit distance is less 

than a threshold, 𝑇1. The full process used for obtaining the OCR and performing the 

change detection is shown in Figure 26. The pages were deskewed using OCROpus 

[29] and line and page segmentation were performed by the OCR Engine. We initially 

tried two open source OCR engines, but found that the character error rate and errors 

from segmentation were too high to make a reasonable baseline and instead chose to 



 69 

 

use OMNIPage, a commercial OCR engine. It produces a PDF file from which each 

word and text line along with the bounding box of their locations on the document 

image can be extracted.  

Using OCR for change detection suffers from a number of drawbacks. First, 

the accuracy of the approach is heavily dependent on successful preprocessing to 

extract good lines and page segmentation. Poor segmentation could result in entire 

portions of the image being unevaluated for changes. Second, OCR can often have 

many small errors leading to false positives and the error rate can vary widely 

between well-studied, simpler scripts such as Latin and more complicated scripts such 

as Arabic and Devanagari. Finally OCR engines are built for machine print text, so 

graphics, logos, stamps, handwritten edits, or signatures are not guaranteed to be 

processed, potentially missing important changes. 

3.3.3: SIFT Diff  

LCS can be extended to work with sequences of features or images instead of 

text as long as there is an equality operator for any two elements. In order to extend 

the baseline approach in cases where OCR has high character error rates, SIFT 

features extracted from the line are used in lieu of OCR’d characters. An overview of 

the approach is summarized in Figure 26, where the deskewing and segmentation are 

identical to the previous approach. The lines were obtained from the OMNIPage 

PDFs and normalized to a fixed height of 32 pixels while maintaining the aspect ratio. 

Each of the lines is concatenated to form one long image and then SIFT descriptors 

are extracted at regular intervals on the horizontal center of the line image as shown 
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in Figure 27. This is much more efficient than the dense extraction and comparison 

used in section 3.2. 

 

Figure 27: Line Image Feature extraction 

In order to detect changes using LCS, two SIFT descriptors are said to be 

equal if their Euclidean distance is less than a threshold, 𝑇2. Here the LCS is instead 

performed at the feature level, allowing the approach to find local changes at the 

character or word level. In addition to the legitimate content-based changes identified 

by LCS, false positives also occur due to misalignments caused by spacing 

differences between letters from the line concatenations and slight scale differences 

during the line normalization, which causes one line of text to be slightly larger than 

an identical corresponding line. In order to filter the majority of these false positives, 

in practice, we found it to be useful to only include changes which had at least N 

consecutive neighboring changes and ignore changes in low contrast areas that 

corresponded to large areas of white space in the line. 

This approach shares a similar weakness with OCR in that it is heavily 

dependent on good segmentation. If the reading order of the automatically extracted 

page zone or lines changes between the two document images, this can significantly 

affect the performance of the approach. Worse still are cases where the segmentation 

fails, leaving portions of the page unevaluated for change detection. This motivates 

our new approach, which is segmentation free. 
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3.3.4: VisualDiff++: Segmentation Free Document Image Change Detection  

When text is added or deleted from documents, the blocks of characters 

(words, sentences or paragraphs) on the page shift as defined by the page layout. If a 

word is added, the remaining content may shift to the right and in some cases cause a 

cascading series of shifts of varying sizes in subsequent lines in the paragraph. 

Similarly, if a paragraph is added to a single column document then the remaining 

text would just shift directly down. In more complex layouts, such as multi-columned 

documents, the text may shift to the upper right if the end of a column is reached in 

addition to shifting down or to the right.  In each of these cases, as revisions are 

made, there are many blocks of text shifting throughout the page defined by different 

X, Y translations. This intuition, demonstrated in Figure 28, guides the VisualDiff++ 

approach.  

 
Figure 28: Shifts between words lines in two paragraphs where only one word is deleted 

 

1: Finding Matching Blocks of Text 

To simplify the problem, we assume that neither of the document images 

contains significant perspective or affine distortions. This is typically the case for 

images scanned on flatbed or autofeed scanners, but is also reasonable for mobile 

48 
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scanner applications such as CamScanner, which assists the user in finding the 4 

corners of the page in order to warp the image back to a flat 2D plane. The images are 

first deskewed using OCROpus to ensure that both images are upright. Next, one 

image is projected onto the other using a Transformation matrix (𝐻), which is 

estimated by performing RANSAC on SIFT keypoint matches between the two 

images.  To improve the stability of the estimation, 𝐻 is constrained to exclude affine 

and perspective changes: 

𝐻 = [
𝑠 ∗ cos (𝜃) s ∗ sin (𝜃) 𝑇𝑥

−s ∗ sin (𝜃) 𝑠 ∗ cos (𝜃) 𝑇𝑦

0 0 1

]  (16) 

 

Once the two images are aligned and upright, dense SIFT descriptors are 

extracted from even intervals on both pages. Descriptors in regions with low contrast 

such as whitespace are discarded. In order to identify matching blocks of text between 

the two pages, the L2 distance from each of the dense SIFT descriptors on one page is 

compared to the descriptors on the second page and the matches with a distance less 

than a threshold of 𝑇3 are retained. To speed up this computation a forest of KD-trees 

[86] is used to perform efficient approximate nearest neighbor search.  

Since there are no scale or rotation differences between the two images once 

they are aligned, the projection of a point from one image onto the other is given by 

an X, Y translation. A grid is formed by partitioning the X, Y translation space into 

4x4 pixel blocks. Matches are binned into the compartment defined by their 

translation as well as all 8 adjacent bins in order to efficiently find potential blocks of 

text that shifted the same amount. Matching pairs of connected components are 

formed by merging neighboring keypoints within the same bin with a mass greater 
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than 20 keypoints. This helps to filter small random matches and reduce the overall 

number of components for efficiency reasons. Once this is completed, connected 

component pairs that have over 90% keypoint overlap in both images are also merged 

to reduce the number of matching components again for efficiency. An example is 

shown in Figure 29, where the connected component pairs found are paragraphs, 

lines, words, and even partial words. 

 

 

Figure 29: Above: Matching blocks of text (connected component pairs) found in two similar images. Below: The 

actual text from the two document images. 

 

2: Detecting changes by finding the longest feasible path  

In the previous two approaches, the reading order is provided by the page and 

line segmentation so a straight forward implementation using LCS is possible. 

However, in this segmentation-free change detection scenario there is only a list of 

matching connected component pairs, which represent text blocks in common 

between the two images. Our goal is to find an ordered list or path of matching text 

blocks, with the largest combined mass, that creates a feasible reading order in both 

images. In order to enforce the reading order, a directed graph is created by drawing 

an edge from one connected component pair (CCP1) to another connected component 

pair (CCP2) if the following constraints are met: 
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1. Neither connected components in CCP1 and CCP2 have more than 10% 

keypoint overlap with each other in their respective images. 

2. Both connected components in CCP2 are either to the right or below the 

connected components in CCP1 in their respective images. 

The intuition behind the first rule is to only allow a path in the graph to cover 

a text region once. The intuition behind the second rule is that the reading order goes 

from left to right until the end of the line is reached and then down to the next line. 

For multi column documents it is also possible to go up and to the right. However 

what is excluded from the rule and is not possible is for the next word to go toward 

the upper left between 90 and 180 degrees.  

Finding the path in the graph with the largest combined connected component 

pair mass is analogous to the longest path problem in directed graphs, which is known 

to be NP-hard in general cases. In order to make the computation tractable we use a 

beam search [87], with a heuristic based on choosing the next node based on the 

largest potential path size if the next node were to be added. In order to enforce the 

reading order, potential nodes that are not directly connected to all the vertices in the 

current path are pruned from the search and are not included in the potential path size. 

The beam search is not guaranteed to find the largest path, but in practice is generally 

close to the ideal path sometimes excluding a few of the smaller components. Once 

the longest path is found, the connected components in the path are dilated by 5 pixels 

to cover any small gaps that occurred around the boundaries. The set of original dense 

keypoints that did not overlap with the dilated connect components in the largest path 

are then marked as changes.  
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3.4: Experiments 

3.4.1: Datasets 

3.4.1.1: The Enron Revisions Dataset 

The problem of document change detection can be studied from the viewpoint 

of tracing a revision history. Given a set of revisions in a document, one can get a 

before and after snapshot of a document to create a ground truth dataset for change 

detection. An easy source of these types of revisions can be found in Microsoft Word 

documents containing track changes. In order to obtain a real world set of revisions, 

we looked to the Enron document collection [2], which contains about 500,000 

attachments, including over 180,000 Microsoft Word documents. We wrote a script to 

extract documents containing modifications from Microsoft Word’s track changes 

feature. 150 one-page documents were selected from this collection, each containing 

between 4 and 41 additions or deletions of text. These text modifications ranged from 

one character to entire paragraphs. Changes including formatting and font changes 

were not retained for this study. The documents themselves contain letters, memos, 

and contracts. Since this dataset is a subset of the Enron collection, we named the 

dataset the “Enron Revisions” collection. Examples of these documents can be seen 

in Figure 30. 
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Figure 30: Images from the Enron Revisions dataset 

A hardcopy of the before and after snapshot of each document, (created by 

accepting or rejecting the track changes), was printed. To study the effectiveness of 

the document verification and change detection to common forms of variation, 11 

document images were created for each of the 300 (2 x 150) pages. Six variations 

were created from an autofeed scanner including images scanned as: 100 DPI, 100 

DPI binarized, 200 DPI, 200 DPI binarized, 300 DPI, and 300 DPI binarized. Many 

of the images had varying amounts of skew from the auto-feeder. The remaining 

variations were created from an iPad using CamScanner, a popular app for scanning 

on mobile devices that automatically crops the page and attempts to flatten the image 

and remove affine changes. The iPad camera created an image with resolution 

equivalent to ~200 DPI. From that image the following five variations were created: 

original, binarized, 2x2 motion blur, 4x4 motion blur, and 6x6 motion blur. All 

images taken from the iPad were at a 90 degree rotation, contained shadows and 

lighting changes, and slight out-of-plane rotations. In order to limit unintentional 

changes the iPad was stabilized while taking pictures and blur was added later using a 
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motion blur kernel in order to simulate shaking of the hand. Motion blur beyond a 

6x6 kernel made the image illegible and we assume a user would retake the picture at 

that point. Figure 31 contains image of the word “TRADES” under each of the 11 

variations. 

 

Figure 31: Example of distortion from the 11 scanning variations. 

3.4.1.2: Tobacco Near Duplicate Dataset 

While the Enron Revision dataset is well suited for studying document change 

detection in a controlled setting under varying conditions, it may not reflect the 

complexity of real world document image collections. These collections may be 

noisier and have more challenging page layouts. To address this concern, another 

dataset was created by finding near duplicate pairs containing content changes from 

the Tobacco collection [1], which contains binarized document images scanned at 

resolutions ranging from 100 – 300 DPI. More specifically, 100,000 document 

images from the collection were represented with a bag of SURF features and for 

each image the closest document, measured by cosine similarity, in the collection was 

retained. The top 10,000 pairs were then randomly sampled and the first 100 pairs 

were retained, discarding exact duplicates, completely unrelated document images, or 

pairs containing a document that was already utilized. As shown in Figure 32, these 

documents were more challenging because they contained handwriting, tables, 
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graphics, and a variety of layouts.  Each word, signature, and graphic was manually 

annotated as either being in common or changed between the two versions.  

 
Figure 32: Images from the Tobacco Near Duplicate Dataset. 

3.4.1.3: Experimental Setup 

50 of the document pairs from the Enron Revisions dataset were set aside for 

parameter tuning and algorithm testing prior to running the experiments. The 

remaining 100 document pairs in the Enron dataset were used in the document 

verification and change detection experiments.  The 100 document pairs from 

Tobacco NearDupe dataset were only used to evaluate the change detection 

approaches. For document verification, the window size (w) was set to 20 pixels and 

the SIFT L2 distance threshold (t) was set to 225. A simple threshold was sufficient 

for this problem because even small changes in content caused large discrepancies in 

the underlying SIFT descriptor, while identical content is very close in feature space 

as shown in Figure 33. For change detection, we set the number of consecutive 

changes needed for the SIFT Diff filter to N=2 and the size of the beam in 

VisualDiff++ to 20.  



 79 

 

 

Figure 33: Probability of the distance of two corresponding SIFT features for document verification when a 

change is present versus no change is present. Threshold is shown as a black line. 

3.4.2: Document Image Verification Results 

In order to verify the effectiveness of the document verification procedure 

described in Section 3.2, each of the documents from the Enron Revisions dataset is 

compared to all before and after variants. As a baseline we use OCR extracted using 

OmniPage for each of the images. Even with the stronger OCR engine, the overall 

word error rate was 15%, with error rates as high as 70% in the blurred mobile 

documents. All non-alphanumeric characters and extraneous spaces were removed 

from the OCR output to try and correct simple OCR errors. We use the Levenshtein 

edit distance measure, which is similar to the distance measure presented in [76], to 

detect document image duplicates from OCR. 

The ROC curve created by varying the edit distance threshold for OCR and 

number of miss-matching dense features is shown in Figure 34. The results show that 

the SIFT based verification procedure significantly outperforms OCR for duplicate 
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Figure 34: ROC curve for SIFT and OCR based document verification 

detection on this dataset. The majority of errors could be traced to large errors in the 

OCR on the iPad images, especially the blurred ones. There were only a few false 

positives from the SIFT detector with zero false negatives. Over 99% of the identical 

document variants had zero dense SIFT differences, meaning the entire document was 

considered to match perfectly. Figure 35 displays two images that cause most of the 

false positives from the SIFT based approach due to severe blurring and binarization 

of darkly colored regions. 

 

Figure 35. Images that cause false positives for document verification due to binarization and blurring 

3.4.3: Document Image Change Detection Results 

Both of the datasets are annotated at the word level, with bounding boxes 

indicating the regions of the image belonging to a given word or graphic. Each of the 

three change detection algorithms returns a set of X, Y coordinates on the image 
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where changes corresponding to differences in the lines or SIFT keypoints occur. A 

change is said to be present if the algorithm under evaluation reports even a single 

change anywhere within the bounding box.    

A ROC curve is generated by plotting the true positive rate against the false 

positive rate for each approach by varying the Levenshtein Edit Distance for OCR’d 

text or Euclidean Distance threshold for SIFT features used for equality. In this 

context a positive is the detection of a change and negative is the absence of change. 

The Area Under the ROC Curve (AUC) is also reported along with the True Positive 

Rate (TPR or Recall) and False Positive Rate (FPR) at the point on the operating 

curve with the highest recall for the baseline (OCR Diff) approach (string equality or 

Levenshtein Edit Distance=0).  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (17) 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (18) 

 

 
 

3.4.3.1: Enron Revisions Results 

 

 

Figure 36: ROC curve on the Enron Revisions dataset 
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All 11 versions from the before and after snapshot are evaluated against each 

other for change detection. The results below show the average across the versions 

and 100 samples. The segmentation free method is clearly the best on this dataset. 

Compared to OCR, it has a 75% reduction in error for FPR and a 66% reduction in 

error for the ROC AUC as shown in Table 11. The separation is also clear on the 

ROC curve in Figure 36. The average OCR error rate is fairly high on this dataset due 

to the low resolution of some documents as well as mobile scanned documents 

containing blur. Hence the SIFT Diff method excels over OCR in this setting. Line 

and Page segmentation errors were not a major concern since only seven of the 

documents had difficult layouts with more than a single column, though the 

segmentation did error on some of the mobile scanned documents with significant 

blurring. 

Change Detection Results TPR FPR AUC 

OCR Diff 92.4% 39.9% 0.752 

SIFT Diff 92.4% 22.7% 0.838 

VisualDiff++ 92.4% 11.3% 0.913 
Table 11: Change detection results on the Enron Revisions dataset 

3.4.3.2: Tobacco NearDupe Results 

 

 
Figure 37: ROC curve on the Tobacco NearDupe dataset 
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Ground Truth OCR-Diff Sift Diff VisualDiff++ 

    

    

Figure 38: Changes detected highlighted in red and shared text in blue. Note that VisualDiff++ is much closer to 

the ground truth in Column 1. 

Each of the three approaches were evaluated on the 100 pages in the Tobacco 

NearDupe Dataset with the results shown in Figure 37 and Table 12. VisualDiff++ 

outperformed both other methods, reducing the error rate by 50%. This was due to the 

algorithm’s robustness to the more complex layouts when segmentation failed to 

correctly identify all the text regions in the page or the OCR engine failed to process 

graphics and handwriting. An example of this improvement is shown in Figure 38. 

OCR Diff and SIFT Diff worked similarly, both being equally limited by 

segmentation errors. The OCR based diff performed slightly better due to the OCR 

engine being more robust to noise. The character error rate was much lower than the 

Enron revisions dataset. This was likely due to the pages being scanned and binarized 

in typical settings as opposed to the lighting variation, blur, and extreme low 

resolution present in the Enron dataset.  
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Change Detection Results TPR FPR AUC 

OCR Diff 90.0% 19.5% 0.861 

SIFT Diff 90.0% 19.6% 0.833 

VisualDiff++ 90.0% 9.5% 0.921 
Table 12: TPR, FPR, and Area under the ROC curve reported on the Tobacco NearDupe dataset. 

 

3.5: Conclusion 

3.5.1: Summary 

The work presented in Chapter 3 details a generalized approach for document 

verification, which is shown to be robust against common transformations that come 

from traditional scanning as well as camera capture, including binarization, 

resolutions changes, motion blur, and intensity changes. We also present two 

approaches for change detection in the image domain, limited to the addition or 

deletion of content. Results demonstrate that our segmentation free change detection 

approach results in fewer false positives than when using OCR. 

3.5.2: Future Work 

3.5.2.1: Beyond Additions and Deletions 

One may also have to detect additional changes beyond the additions, 

deletion, and substitution of content. For example, changes in font style, size or color 

may indicate important sections in the document. Graphics, handwritten annotations, 

or tables may be inserted or shifted within the document. The page layout could be 

significantly changed by increasing the number of columns or altering the margins 

without any true content changes. The hope is to create a system that emulates track 

changes in Microsoft Word to list the locations and types of changes between the two 

documents, while presenting this information in a concise manner.  
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3.5.2.2: Learning from Changes 

Correspondences between near duplicate documents also presents an 

opportunity for automation of ground truthing for classification tasks. For example, 

consider two documents, one being an ideal document and the other containing noise 

from binarization, crumpling, stains, or bleed through. Changes detected between 

these two documents that have identical content apart from the noise, could be used to 

train a detector for noisy regions in documents. This alignment also provides the 

ground truth necessary to learn the transformation from a noisy region to a clean 

region. Given enough correspondences from a large heterogeneous collection, it may 

be possible to provide a robust solution for noise removal in complex documents and 

outperform researcher made filters for some types of noise. Datasets could be created 

by focusing on one type of change (e.g. crumpling a sheet of paper), and once the 

technique is shown to be successful extended to more complex collections like the 

Tobacco dataset.  
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Chapter 4: Local Features for Writer Identification and Retrieval  

Handwriting is a behavioral biometric, which captures the neuromuscular 

process of a person’s ingrained stroke formations as viewed through the output of fine 

motor control muscles in the hand. Using handwriting as a biometric is challenging 

due to the large amount of variation that can occur in stroke formations as well as 

variances that occur from emotional and environmental factors. Our work focuses on 

offline writer identification, which uses handwriting samples which have already 

been captured as static document images as is common in heterogeneous document 

collections. This is distinct from a large body of work in online writer identification, 

which dynamically captures much richer information of the writer’s movements 

through a pressure pad. Given a new handwriting sample, the goal of writer 

identification is to determine the author from a set of previously known writers. 

Writer retrieval on the other hand, assumes that there is one sample from a known 

writer and searches a large volume of handwriting samples with unknown authors and 

to create a ranked list based on similarity.  The goal of our work is to introduce more 

powerful features to increase the performance of writer identification and retrieval 

systems in large heterogeneous document collections. 

4.1: Related Work 

Offline handwritten writer identification is a well-studied topic that has seen 

steady progress in the last ten years. Table 13 summarizes the performance of some 

of the previous literature on this topic. Please note that there is a large variance in the 

size and difficulty of the datasets used, so the accuracy is not directly comparable. 
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Author Dataset Language # of Writers % Correct 

Srihari [88] English 1500 87 

Schlapbach [89] English 50 94 

Schlapbach [90] English 100 98 

Bulacu [91] English 650 89 

Fiel [92] English 350 90 

Schomaker [93] Dutch 250 87 

Bulacu [94] Arabic 350 88 

Abdi [95] Arabic 82 90 

He [96] Chinese 20 80 
Table 13: Performance of past writer identification approaches. 

Previous research by Srihari et. al. [88] established the individuality of 

handwriting by showing writer verification rates of 96%, and writer identification 

rates of 87%, for a dataset of 1500 writers.  They identified macro features that 

operated at the paragraph, line and word levels, as well as micro features (gradient, 

concavity, and structure), at the character level. The micro features significantly 

outperformed the macro features. While the results from the first large study in 

automated writer identification are very impressive, the dataset contains identical 

passages from all writers and requires manual segmentation, which is not practical in 

an automated real world scenario. 

In [93], Schomaker and Bulacu model character allographs by creating a 

codebook of connected component contours (CO3) and matching using a bag of 

features model. The CO3 feature, was simply a set of 100 consecutive X, Y 

coordinates sampled from the contour. In [91] Bulacu models the curvature of 

characters by introducing the edge hinge, which models the relative angle of two line 

segments on a character’s contour. They combine this method with the CO3, slant 

features, and run lengths to achieve an identification accuracy of 89% on the bench 

mark IAM dataset.  
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In [89], Schlapbach uses a sliding window to extract features from lines of 

text and builds a Hidden Markov Model for each writer. The author uses the log 

likelihood output from the Viterbi algorithm to rank users and achieves a 97% 

recognition rate on 100 writers from the IAM dataset. This work is extended in [90] 

where Schlapbach uses a Gaussian Mixture Model and achieves an identification rate 

of 98.5% on 100 writers. Both of these techniques assume perfect line segmentation 

and require a substantial amount of training. The author uses a 4-fold cross validation 

on extracted lines during the experiments instead of entire pages, potentially mixing 

training and testing samples that occurred from the same page.  Subsequent papers 

have used a leave-one-out methodology using between 300-650 writers in the 

experiments, as has been done in our experiments. 

More recently, Fiel shows that SIFT features capture local shape and texture 

useful for writer identification [92]. He achieves a 90.8% Top-1 identification 

accuracy on the IAM dataset and extends the approach to retrieval. The authors of 

[96], [95], [94]  extended writer identification to Chinese and Arabic. In [96] the 

authors use Gabor wavelets for features and HMMs to classify Chinese with 80% 

accuracy. In [95] and [94] the authors use shape features for Arabic datasets. [95] 

achieves a recognition rate of 90% on a dataset of 40 writers and [94] achieves an 

identification rate of 88% when using five training samples on a 350 writer dataset.  

4.2: Local Features for Writer Identification  

We believe that more powerful features that represent the individuality of 

handwriting can be extracted. Macro features such as slant and baseline are very 

useful for determining if two samples did not come from the same writer, but are not 
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discriminative enough for finding an individual writer in a large collection. Local 

features that capture texture such as SIFT, LBP, or Run lengths can effectively 

discriminate writing style, but also lose important local information related to the 

character structure and stroke. Additionally they are potentially vulnerable to changes 

in the writing utensil such as the same writer using a pen versus a pencil. The edge 

hinge and CO3 features are the closest to ours, but we feel that both of these methods 

can be improved upon. The edge hinge method only takes into account the angle 

between two edge fragments and only does so within a very small local neighborhood 

of 5-10 pixels. This approach could potentially be generalized to multiple consecutive 

fragments of arbitrary length as we have done using the K-Adjacent Segments 

feature. The CO3 features were one of the first attempts in an automated allograph 

based feature, but the extraction of features from the contour did not handle the 

segmentation problem since connected components were used and the approach was 

sensitive to small variations present in handwriting since the X, Y coordinates from 

the contour were directly used as features. Hence, we present an approach to first 

attempt to segment characters and introduce a more discriminative contour gradient 

descriptor that captures local shape and curvature present in the allograph. 

4.2.1: Writer Identification using K-Adjacent Segments  

4.2.1.1: K-Adjacent Segments (KAS) 

K-adjacent segments were introduced by Ferrari [97] as a feature to represent 

the relationship between sets of neighboring edges in an image for object detection. It 

has since been successfully extended for a number of applications in handwritten text 

including language identification [98] and text zone detection and classification [99] 
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based on the feature’s ability to capture discriminative local stroke information in 

document images. This work aims to generalize the edge-hinge feature used in [91] 

by modeling the character contours using a codebook of KAS features. 

In order to extract KAS features from a document image, a set of edges must 

be found. In color or gray scale images, Ferrari uses a Canny edge detector. 

Document images are typically binary, so contours that capture the shape and 

curvature are extracted. A line fitting algorithm is then used to decompose the curves 

into a set of lines. This process is illustrated in Figure 39. 

       
    

     

   

 
 

Figure 39: This image illustrates how contours and edges are extracted from connected components in documents. 

As the name K-adjacent segments implies, this feature describes any number 

of K neighboring line segments, but for this work only 2, 3 and 4 adjacent segments 

(2AS, 3AS, 4AS) are tested. Any two lines are said to be adjacent if they share an 

endpoint.  The lines that make up the KAS feature must be ordered in a consistent and 

repeatable manner so that KAS features can be directly compared against each other. 

The primary line segment is defined as the line with its midpoint closest to the center 

of the midpoints from all the lines. The remaining lines are ordered by their midpoints 

from left to right and then top to bottom. Each of the K lines can then be described by 

the following features: 
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Here (rx , ry) define the vector that connects the midpoint of a given segment 

and the midpoint of the primary segment.  Θ and l are the orientation and length of a 

given segment that makes up the KAS feature. N is the length of the largest segment 

and is used as a normalization factor to make the feature scale invariant. Features for 

a 3AS are illustrated in Figure 40. Two KAS features, A and B, can be compared 

using the distance function D(A,B): 

𝐷(𝑎, 𝑏) =  𝑤𝑟 ∑‖𝑟𝑖
𝑎 − 𝑟𝑖

𝑏‖

𝑘

𝑖=2

+ 𝑤𝜃 ∑|𝜃𝑖
𝑎 − 𝜃𝑖

𝑏|

𝑘

𝑖=1

   + 𝑤𝑙 ∑|log (𝑙𝑖
𝑎/𝑙𝑖

𝑏)|

𝑘

𝑖=1

 (20) 

 

The weights 𝑤𝑟, 𝑤𝜃, and 𝑤𝑙 can be adjusted to assign more importance to 

particular features as needed. For this work we use weights of 𝑤𝑟=4, 𝑤𝜃=2, and 

𝑤𝑙=1 as done in the original paper [97] because the segment size is the least stable 

portion of this feature. 

 

Figure 40: Segment ordering and features captured for a KAS, with the primary segment numbered 1. 

4.2.1.2: Building a Codebook of KAS Features 

A bag of features (BOF) model is used to compare the writers from two 

documents by converting the KAS features extracted from a document into a vector 

of code words. We use a clustering technique known as affinity propagation [100] to 
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cluster KAS features from a set of training data to construct a codebook for the BOF 

model. The input to the affinity propagation algorithm is a distance matrix between 

all features. Initially all points are considered exemplar clusters and each cluster is 

combined with neighboring clusters using a message passing algorithm. Two types of 

messages are passed that represent the responsibility and availability for a given 

exemplar. The responsibility message, sent from point i to point k, is defined by r(i,k) 

and represents accumulated evidence for how well suited a point i is to be an 

exemplar for point k. The availability message, sent from point k to point i, is defined 

by a(i,k) and represents how appropriate it would be for point i to represent the 

exemplar of point k. The equations for both can be seen below.  

𝑟(𝑖, 𝑘) ←  𝑠(𝑖, 𝑘) − maxk′,k′≠k {𝑎(𝑖, 𝑘′) +  𝑠(𝑖, 𝑘′)}         (21) 
 

𝑎(𝑖, 𝑘) ←  min{0, 𝑟(𝑘, 𝑘) − ∑ 𝑚𝑎𝑥{0, 𝑟(𝑖′, 𝑘)}

𝑖′,𝑖′≠{𝑘,𝑖}

} (22) 

 

These messages continue to pass until a “preference” threshold is met. It 

should be noted that unlike K-means this algorithm does not require the number of 

clusters ahead of time and that the number of clusters is instead controlled by the 

preference threshold. Once a codebook is constructed, the source document is 

represented by a feature vector of KAS “code words” present in the document. This 

feature vector is normalized to sum up to 1 so that it is invariant to the size of the 

input. The two feature vectors can then be compared by their Euclidean distance. 

Figure 41 shows examples of the 20 most popular 3AS code words present in the 

IAM dataset. 
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Figure 41: Example of TAS code words. 

4.2.2: Writer ID with an Alphabet of Contour Gradient Descriptors 

When comparing two handwriting samples, forensics document examiners 

typically match specific attributes from corresponding characters that are invariant to 

normal variation in handwriting. Examples of such attributes include the shape of 

loops, the curvature of letters, and start and end strokes. While the character matching 

approach used by forensic document examiners would likely be an improvement for 

algorithms attempting to automate writer identification, this general approach is 

hindered by the fact that handwritten character segmentation and recognition remain 

open research problems. Hence, the “illiterate" algorithms developed thus far largely 

rely on global features such as slant and run lengths, or aggregated histograms of 

local features from patches or sub-portions of the contour. In contrast, this approach 

attempts to emulate the approach taken by forensic document examiners and make the 

assumption that a segmentation, which extracts repeatable regions, can be substituted 

for the optimal character segmentation. A novel contour gradient descriptor designed 

for binarized character-like segments, which capture local shape and curvature unique 

to individual writers, is introduced. These features are first clustered into a pseudo-

alphabet for each writing sample. A unique distance measure, which calculates the 
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character similarity between two alphabets, is then used to determine writer 

similarity.  

4.2.2.1: Extracting Character-Like Segments 

The three segmentation strategies described below are used in our work. We 

know that these segmentation schemes are not considered state of the art in character 

segmentation, but the intent is to show that writer identification can be performed 

with relatively simple segmentation schemes as long as repeatable segments are 

extracted. Please note that the segmentation assumes a binarized document image. 

Connected Components 

The first segmentation scheme simply takes all connected components from a 

binarized writing sample. This segmentation strategy can be considered near optimal 

for a print script where few characters are touching or when writers have characters 

that touch consistently. However, in cases where there is a cursive script this 

approach will likely either capture words or several connected characters as 

components. While this is not optimal, previous research has shown that the shape of 

full words are discriminative enough to be used for writer identification [101]. 

Vertical Cuts 

In an attempt to find more character-like and repeatable segments, a second 

segmentation scheme is used to attempt to splice large connected components into 

repeatable pieces. Each of the black pixels is assigned an energy, E(x,y), which is 

calculated by the following: 

E(x,y) = {

𝐴                   𝑖𝑓 𝐼(𝑥, 𝑦) = 1                               
𝑙𝑜𝑔(𝑦 + 𝐵) 𝑖𝑓 𝐼(𝑥, 𝑦) = 0 𝑎𝑛𝑑 C(x, y) = 0
𝐶                   𝑖𝑓 𝐼(𝑥, 𝑦) = 0 𝑎𝑛𝑑 C(x, y) = 1

}         (23) 
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Here I(x,y) is the pixel intensity (1=white, 0=black).  C(x,y) equals 1 if the 

pixel falls on the contour (edge) and is otherwise 0. The reason contours are assigned 

a larger energy than other black pixels is to discourage the segmentation of loops, 

which are known to be discriminative for writer identification. The energy function 

for non-contour black pixels uses the log of the pixel’s vertical displacement in order 

to create lower scores for cuts near the bottom of a connected component, which is 

known to correspond with many character segments in cursive script. So long as the 

following relationship is maintained, A<B<<C, we do not see a significant difference 

in the quality of cuts made. An energy, E(x), is calculated for each column as follows 

in equation (24), where H is the height of the column in pixels:  

𝐸(𝑥)  =  ∑𝐸(𝑥, 𝑖)

𝐻

𝑖=0

       (24) 

  
Next, a sliding window is used to select the column with the lowest energy in 

which to make the segmentation cut. Once a cut is selected the sliding window is 

placed at the pixel column following the cut. This is repeated until the entire 

connected component is traversed. In order to generalize the window to writing styles 

with varying sizes, the window width is set to a percentage of the median connected 

component height from a given sample. In order to prevent the sliding window from 

continuously selecting small components, the first ¼ of the sliding window is not 

used. The vertical cuts segmentation and tracking window are illustrated in Figure 42. 

                          

Figure 42: Two iterations of the sliding window. The red area shows unused parts of the window. The green line 

corresponds to the segmentation. 
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Seam Cuts 

The final segmentation approach uses heuristic path planning similar to seam-

carving, which chooses the path with the lowest energy on which to make the 

segmentation [102]. This approach has the advantage that it can accommodate 

segmentation cuts around curved strokes or slanted characters. For a connected 

component from a binary image we use the same energy function E(x,y) as defined in 

the previous section. For segmentation we define a possible seam to be a path from a 

given pixel at the top of the connected component to any pixel at the bottom. More 

formally we define the energy for a seam given starting coordinates x,y to be: 

M(x, y)  =  E(x, y) + min(M(x + 1, y + 1),M(x, y + 1),M(x − 1, y + 1))      (25) 
 

This energy calculation can be programmed very efficiently with dynamic 

programming. In order to find a seam path, one only needs to backtrack the path 

taken during the energy calculation. All seams are found from top to bottom of 

connected components and if seams overlap, then the seam with the lowest energy is 

retained. Finally, the sliding window from the previous section is used again to 

choose the seam with the lowest energy to make the segmentation. This approach is 

outlined in Figure 43. 

   

Figure 43: Seam cut example. 

4.2.2.2: Contour Gradient Descriptor 

Recently, features that extract local properties of character contours have been 

shown to be the most effective for writer identification [91], [94], [15]. We propose a 

novel descriptor for binary characters, which captures the shape and curvature of a 
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character-like segment and is shown to significantly outperform previous descriptors. 

In order to calculate the descriptor, we first extract the contour from the binarized 

region. For each point on the contour, the gradient is calculated by taking two contour 

segments of size P from either side of the point and calculating the combined slope as 

shown in Figure 44. In order to make the implementation robust to scale changes, the 

size of the segment P is determined as a percentage of the median height of connected 

components from a given writing sample. Using longer segments or larger values for 

P to calculate the gradient of the contour can be viewed as a smoothing factor for 

noise from the binarization.  

              

Figure 44: Handwritten letter contour and the slope calculation at each point (blue circle) per contour segment 

(red line). 

If the contour is followed in a clockwise manner when calculating the 

gradient, then the full 360 degrees can be assigned to the gradient values. Next a 

SIFT-like [62] descriptor is created by placing an NxN grid on top of the contour 

gradients. The grid is stretched horizontally or vertically to fit non-square regions. A 

histogram of gradient orientations is calculated by binning the gradients into eight 

orientations (0º, 45º, 90º, etc.) for each region as shown in Figure 45. Finally, the 

descriptor is normalized by dividing each of the dimensions by the sum of the total 

gradient energy. We found the L1 distance measure and a value of 4 for N to give the 

best results for the descriptor. In order to compensate for variance in component 

widths in the distance measure, the score for two segments is set to be the maximum 

P 

P 
Slope 
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possible distance if the aspect ratios for the segments are not within one log scale of 

each other.  

 

Figure 45: Contour gradients and the resultant feature. 

4.2.2.3: Assigning a pseudo-alphabet 

Given a set of local features, a typical approach in writer identification thus 

far has been to create a global descriptor by fitting them into a bag of features (BOF) 

framework [91], [92], [15]. However, a significant amount of information can be lost 

when assigning these high dimensional local features to a relatively low number of 

cluster centers or codewords, especially if the data that the code words are built from 

do not adequately represent the feature space. This effect is especially undesirable in 

writer identification, where we want to capture small variations in writing style that 

are lost when features of extracted patches or segments are assigned to codewords. 

Furthermore, codebook approaches capture information about the language such as 

the character frequency that is not desirable for writer identification since it will over 

represent common characters. Professional document examiners certainly do not 

compare writing samples by measuring the distance of letters to a reference guide, but 

rather directly compare matching letters from two writing samples with each other. 

Thus, instead of creating a global codebook, the extracted character-like 

segments are clustered to form a pseudo-alphabet for each writing sample and the 

feature closest to the cluster centers are retained as exemplar “letters” for the writer. 

While one could use each “letter” or extracted segment from the writing sample, the 
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clustering is done to prevent commonly occurring segments, such as the letter “e”, 

from dominating the distance measure. K-means of the contour gradient descriptor is 

used to perform the clustering. Since the true number of clusters is unknown due to 

variation in the segmentation, a sufficient value for k is found experimentally and 

little improvement is seen beyond 150 clusters. In cases where k is greater than the 

number of segments, all segments are retained. An example of an extracted alphabet 

from one of the writing samples can be seen in Figure 46. 

 

 

Figure 46: Example of pseudo-alphabet from extracted segments. 

 

Given two writing samples and their associated pseudo-alphabets, an 

asymmetric distance measure to allow matching alphabets of different sizes can be 

calculated as follows: 

𝐷(𝐴, 𝐵)  =  ∑𝑚𝑖𝑛( |𝐴𝑖

𝑁𝐴

𝑖=0

−𝐵0|, . . .  ,  |𝐴𝑖 − 𝐵𝑁𝐵
|)  /𝑁𝐴 (26) 

Here A, B are alphabets created from two handwritten samples, Ai, Bi are the 

contour gradient features for “letters” in the alphabet, and NA, NB are the number of 

clusters in each alphabet. This sum is the total distance measure, which calculates the 

distance between the closest pair of letters in each alphabet. In other words, it is the 

minimum distance required to transform alphabet A into alphabet B. 
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A likely application for writer identification in law enforcement would be to 

search for a sample of a known author against a database of handwriting samples 

from unknown authors or vice versa. For this application, it would make sense to take 

advantage of statistical distributions of the handwriting samples across the database. 

For example, certain characters, such as the letter “o”, are constructed the same by 

many authors. In particular, it is natural to borrow the concept of inverse document 

frequency (IDF) from information retrieval to increase the significance of query 

letters that occur less frequently. Since the underlying features are not assigned to 

codewords in common between alphabets, the IDF is found dynamically at query 

time by summing the number of alphabets that have at least one cluster center within 

a threshold 𝑡 of the query letter and taking the log of that value. Hence, the distance 

measure can be updated as: 

𝐷(𝐴, 𝐵)  =  ∑𝑤𝑖 ∗ 𝑚𝑖𝑛( |𝐴𝑖

𝑁𝐴

𝑖=0

−𝐵0|, . . .  ,  |𝐴𝑖 − 𝐵𝑁𝐵
|)/𝑁𝐴 (27) 

Where, 

𝑤𝑖 =  𝑙𝑜𝑔(
# 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠(𝑆)

∑ 𝑐𝑜𝑢𝑛𝑡 (𝑎𝑏𝑠(𝐴𝑖 − 𝑆𝑗
𝑆
𝑗=0 ) < 𝑡)

  ) 

 

(28) 

4.2.3: Experiments 

Evaluations were conducted on the IAM and ICDAR 2013 datasets to 

determine the effectiveness of KAS and Contour Gradient Descriptor features for 

writer identification. 

4.2.3.1: IAM Dataset 

The IAM dataset [103] consists of handwritten English text from 651 different 

writers. Each sample is made up of two or three sentences. 159 writers provided three 
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or more samples, 142 writers provided two samples and the remaining 350 writers 

provided a single sample. This dataset has been used by a number of other authors 

[89], [104], [15], [92] and can be considered the benchmark dataset for writer 

identification.  In order to process the gray scale images, each image is preprocessed 

by binarizing the data using a threshold of 70%. Figure 47 illustrates samples from 

two different writers. 

 

 

Figure 47: Two writer samples from the IAM dataset 

Two random samples from 301 writers are used. Recognition is performed 

using K-nearest-neighbors (KNN) in a leave one out manner, meaning each image 

was compared against the 601 other documents with only one possible positive 

match. The results for this experiment are shown in Table 14, along with previous 

state of the art approaches. These results indicate that 3AS is the best feature 

representation for K-Adjacent Segments, with a Top 1 recognition rate of 93.3%. This 

could be because 2AS does not capture as much information and there were less 

repeatable 4AS features found in a given document. While the features are similar to 

the edge hinge and slant features used previously in [91], the improved performance 

is likely due to the extra segment found in the 3AS feature, the addition of segment 

size in the feature representation, and the use of a codebook of clusters rather than 

coarse quantization. Given the superior performance of the 3AS features, it is used for 

the remaining experiments. 
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Using vertical cuts provides for a nearly 50% reduction in the Top-1 error rate 

over the KAS features and significantly outperforms all previous approaches. A close 

examination of the errors revealed that five of the writers changed their writing style, 

including one of them signing a different name. This made it very difficult to 

correctly identify these writers and resulted in an error rate of 1.7%. Perhaps the most 

surprising result is that segmentation using only connected components performed at 

a Top-1 rate of 91.8%, which is already comparable to the state of the art on this 

dataset.  

 

IAM Dataset Results Top-1 Top-5 Top-10 

Connected Comp. 91.8 93.8 94.0 

Seam Cuts 95.4 96.7 97.3 

Vertical Cuts 96.5 97.2 97.3 

KAS – 2 AS 89.6% 94.0% 94.6% 

KAS – 3 AS 93.3% 95.3% 96% 

KAS – 4 AS 92.0 95.0 95.8 

SIFT [92] 90.8% 96.5% 97.5% 

Edge-Hinge + CO3 [91] 89% N/R 96% 
Table 14: Writer ID Accuracy (%) on the IAM dataset 

 

Further inspection of the handwriting styles in the dataset showed that 

approximately 31% of the data is cursive script, 38% is a mix of both cursive and 

print scripts, and the remaining 31% of the data is print script. This means that the 

contour gradient feature can discriminate between writers even using partial and full 

words, and not just single characters. Both the vertical and seam cuts improved the 

Top-1 identification rate by 3-4% reducing the error rate by nearly 50%. While it was 

expected that seam cuts would outperform the vertical cuts, this discrepancy could be 

explained by the lack of large slant in most handwriting styles in the dataset. 
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4.2.3.2: 2013 ICDAR Writer ID Contest 

We participated in a recent contest for writer identification held at the 2013 

ICDAR Conference [17]. Each participant was required to provide an executable 

program to the organizers that provided a distance between two handwriting samples, 

which the organizers used to evaluate each participant’s submission on a dataset 

consisting of 4 samples (2 Greek and 2 English) from 250 previously unseen writers. 

Following the contest, this dataset was made public for future research. 12 systems 

participated, including implementations of approaches that were previously state of 

the art. Our approach discussed in Section 4.2.2, using an alphabet of contour 

gradient descriptors, placed first at the contest. We summarize the results from two of 

the experiments conducted by Louloudis et. al. during this contest and the full 

evaluation can be read in [17]. 

Greek Results Top-1 Top-2 Top-10 
Seam Cuts   95.6% 98.2% 99.2% 

Vertical Cuts  95.2% 97.6% 99.0% 
KAS-3AS 86.0% 90.6% 96.4% 

SIFT + SOH [105] 93.8% 96.4% 97.8% 
SIFT + Fisher Vector [106] 88.4% 92.0% 97.8% 
Run-length +Edge Hinge [107] 92.6 96.0% 98.4% 

Table 15: Accuracy (%) on 250 Greek writers from the ICDAR 2013 writer ID contest. Table adapted from [17].  

English Results Top-1 Top-2 Top-10 
Seam Cuts  94.6% 97.0% 98.8% 
Vertical Cuts  94.4% 96.6% 99.0% 

KAS-3AS 86.4% 90.4% 96.0% 
SIFT + SOH [105] 92.2% 94.6% 96.8% 

SIFT + Fisher Vector [106] 91.4% 94.2% 97.2% 
Run-length +Edge Hinge [107] 91.2% 93.4% 96.6% 

Table 16: Accuracy (%) on 250 English writers from the ICDAR 2013 writer ID contest. Table adapted from [17].  

Their first experiment uses 250 Greek handwriting samples and tests them in a 

leave one out manner as is done with the IAM dataset. The second experiment 

follows the same procedure with the 250 English handwriting samples. The top 1, 2, 
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10 identification metrics are reported, which measures if the correct match is found in 

the top-N results. Table 15 and Table 16 show the results and compares our approach 

to the top algorithms at the contest. These results further validate the positive results 

on the IAM dataset, showing a reduction of error over other approaches of about 

30%. The seam cuts slightly outperformed vertical cuts on this dataset. 

4.3: Combining Local Features for Writer Identification 

In recent years, several new and powerful local features proposed for writer 

identification have significantly boosted performance over previous methods. Our 

hypothesis is that combinations of these features will outperform the individual 

features since they capture different attributes of handwriting and therefore, should be 

complementary to one another. Here, we focus on three types of features: features 

produced from segmentation-free methods such as SIFT or SURF, that extract 

features from interest points; edge-base features extracted from character contours; 

and features from allograph methods that aim to capture a character’s shape and style. 

The Fisher Vector is used for feature pooling and a linear combination of distances is 

then used to combine the features. 

4.3.1: Local Features 

We use three local features (KAS, SURF, and CGD) that have demonstrated 

strong writer identification performance for feature combination.  These features were 

chosen because they capture different attributes of handwriting and should boost 

performance when combined. The KAS and CGD features are reused from 4.2.1 and 

4.2.2, though we embed the KAS feature in to a L2 normalized feature vector as 
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shown in Equation (19).  SURF was chosen because a number of recent papers ( 

[108], [105], [92]) have shown the effectiveness of interest point based methods for 

writer identification. The advantage of these methods is that they do not require any 

binarization or segmentation of the document image, while still capturing local 

texture and shape. We tried several interest point based methods and found that the 

OpenCV implementation of SURF [61] outperforms SIFT [62], especially in datasets 

containing only binarized images. 

For each document image, a set of interest points is extracted using the Fast 

Hessian detector as shown Figure 48. For each interest point, a 64-dimensional SURF 

feature vector is extracted by splitting the patch into a 4x4 grid and extracting (∑Dx, 

∑Dy, ∑ |Dx|, ∑|Dy|), where Dx and Dy are the Haar wavelet response in the x and y 

directions. 

 

 
  
Figure 48: SURF Features Extracted from Handwriting 

4.3.2: Feature Pooling 

Vector quantization is often used to create codebooks that aggregate local 

features into a bag of words representation. However, this method suffers from coarse 

quantization and only captures histogram counts, losing higher order statistics. Fisher 

Vectors [14], introduced by Perronnin, have become popular for object recognition 
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and retrieval because they address some of these concerns. We were strongly 

motivated to use Fisher Vectors to aggregate local features for two reasons. First, the 

work by Fiel et. al. in [106] showed significant improvement in writer identification 

over a bag of words when using the Fisher Vector for SIFT features. Second, Fisher 

Vectors also share a close derivation with Gaussian Super Vectors [109], which have 

shown state of the art results for speaker identification.  

In order to generate a Fisher Vector, a Gaussian Mixture model (𝑢𝜆(𝑥) ) must 

first be created from training data as shown in Equation (29). This can be viewed as a 

generative model for the local features and shares the motivations for universal 

background models previously used in speaker and writer identification.  

 

𝑢𝜆(𝑥) =  ∑ 𝑤𝑘𝑢𝑘(𝑥)

𝐾

𝑘=1

 (29) 

 

𝑢𝑘(𝑥) =  
1

2𝜋𝐷/2 ∗ |𝛴𝑘|1/2
𝑒−

1
2
(𝑥−𝑢𝑘)′∗𝛴𝑘

−1 ∗(𝑥−𝑢𝑘)
 (30) 

 
 

A simple probabilistic bag of words model then accumulates histogram counts 

using the soft assignment of feature 𝑥𝑡to the Gaussian k, as shown in Equation (31). 

 

𝛾𝜆(𝑘) =
𝑤𝑘𝑢𝑘(𝑥𝑡)

∑ 𝑤𝑗𝑢𝑗(𝑥𝑡)
𝐾
𝑗=1

 (31) 

 

𝐺𝑢,𝑘
𝑋 =

1

𝑇 √𝑤𝑘

𝛾𝜆(𝑘) (
𝑥𝑡 − 𝑢𝑘

𝜎𝑘
) (32) 

 

𝐺𝜎,𝑘
𝑋 =

1

𝑇 √2 ∗ 𝑤𝑘

𝛾𝜆(𝑘) (
(𝑥𝑡 − 𝑢𝑘)

2

𝜎𝑘
2 − 1) (33) 
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Fisher Vectors, on the other hand, accumulate the partial derivatives with 

respect to the mean and variance parameters as shown in Equations (32) and (33). 

The intuition is that by accumulating the gradient with respect to the Gaussian 

parameters, one is capturing how much the background model has to change to 

account for the newer local features. The Fisher Vector is the concatenation of the K 

gradient vectors from 𝐺𝑢,𝑘
𝑋  and 𝐺𝜎,𝑘

𝑋  leading to a large 2*K*D feature vector (where D 

is the dimension of the local feature). 

In practice, two improvements to Fisher Vectors are used to increase 

performance. The first is power normalization, which involves taking the square root 

of each dimension to discount frequent features. The second is L2 normalization of 

the Fisher Vector to account for cases in which there are a different number of local 

features per sample. The cosine distance is also shown to be the natural method to 

compare two Fisher Vectors [14]. The use of Fisher Vectors improved the writer 

identification performance for KAS and CGD features in comparison to the 

codebooks and cluster comparison approaches used in in the previous sections so it 

was used for pooling all three local features. 

4.3.3: Feature Combination 

Given the normalized Fisher Vectors for each of the local feature types, a 

linear combination is used to fuse the distances from each feature as shown in 

Equation (34), where A and B are two samples being compared, FV is the Fisher 

Vector for feature type k (e.g. KAS, SURF, or CGD), and 𝑤𝑘is the weight for each 

sample.  
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𝐷(𝐴, 𝐵, 𝐾) =  ∑ 𝑤𝑘 ∗  ( 𝐹𝑉(𝐴𝑘)  •  𝐹𝑉(𝐵𝑘))

𝐾

𝑘=1

 (34) 

 
Where, 

1 =  ∑ 𝑤𝑘

𝐾

𝑘=1

 (35) 

 
Given a training dataset in the experiments, we performed a grid search to 

determine the optimal values for 𝑤𝑘 for each feature type, by selecting the parameters 

for 𝑤𝑘that have the largest MAP when evaluating the training set in a leave-one-out 

manner. These learned weights were then used during the evaluation of the test set. 

For comparison, we also reported a simple linear combination using equal weights for 

all three features in our experiments; i.e. 𝑤𝑘 is always set to 1/3. 

4.3.4: Experiments 

The effectiveness of the feature combination approach was evaluated on four 

datasets: IAM, ICDAR 2013, CVL, and MADCAT datasets. For each of the 

experiments the number of Gaussians used in the mixture model to create the Fisher 

Vectors was set to 64 since little improvement is seen beyond this point. The GMM 

and feature combination weights are always trained using an alternate dataset to avoid 

mixing writers in the training and testing data. For example, the IAM experiment 

used the CVL dataset for training and vice versa. The ICDAR 2013 experiment was 

trained on samples from the ICFHR 2012 contest, which was available to contestants 

and also contained Greek handwriting. The MADCAT experiment used the training 

and testing split described below. 
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In the results, the methods are abbreviated as follows: K-Adjacent Segments 

(K), SURF (S) and Contour Gradients (C). The combination of the three features 

using equal weights is denoted by K&S&C, whereas the weights found from training 

are denoted by K&S&C*. The results generated from our approach are highlighted in 

blue, while comparable results from other papers are left with a white background. 

The top performing methods are highlighted in bold. 

4.3.4.1: Evaluation Metrics 

The datasets were tested in a leave-one-out manner meaning one image is 

taken out from the test dataset and queried against the remaining documents. For each 

of the experiments, the soft criterion for the Top-N results was used. This measures if 

at least one document from the same writer was found in the first N results. For the 

CVL and MADCAT datasets the hard criterion, which indicates if the correct writer is 

found in all of the top N ranked results, is also reported since there are more than two 

samples for each writer. These metrics and procedures are consistent with previous 

studies ( [104], [17] , [105]). To provide a more complete picture of the retrieval 

performance, Mean Average Precision (MAP) is also provided.  

4.3.4.2: IAM Dataset 

We again use the IAM dataset similar to Section 4.2.3.1. 301 writers provided 

at least two samples and the remaining 356 writers provided only a single sample. 

However, in order to have our results comparable to more recent publications, we 

took the first two samples from each of the 301 writers, and split the single samples 

from the other 356 writers in order to create a dataset with 657 writers containing two 
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samples each. This slightly dropped the performance of the approaches due to the 

limited amount of handwriting available in the split cases. 

Features Top-1 Top-2 Top-5 Top-10 MAP 

K 88.8 91.1 95.0 96.4 0.914 
S 90.0 92.4 96.2 97.6 0.926 
C 91.3 93.8 96.6 97.6 0.936 

K&S&C 94.1 96.0 98.2 98.5 0.958 
K&S&C* 94.7 95.9 98.1 98.7 0.960 

Chain Code [110] 91 N/R N/R 97% N/R 

Edge+ CO3 [104] 89 N/R N/R 96% N/R 

SIFT+SOH [105] 98.5 N/R 99.1 99.5 N/R 
Table 17: Results on the IAM Dataset 

The experimental results for the IAM dataset can be found in Table 17 along 

with a comparison to other existing methods. The individual features each perform 

well, but when combined they further reduce the MAP error rate by 37% over the top 

performing feature. The optimized weights perform comparably to the naïve equal 

weights, largely due to the fact that all three features contribute to the boost in 

performance. While the feature combination outperforms most existing systems, it is 

unable to outperform the nearly perfect results on this dataset reported by [105] using 

a SIFT based approach. 

 

4.3.4.3: ICDAR 2013 Writer ID Contest 

We again use the ICDAR 2013 Writer ID competition dataset similar to 

Section 4.2.3.2. The results for the Greek and English experiments are shown in 

Table 18 and Table 19. Again the individual features under evaluation all perform 

very well on the ICDAR 2013 dataset. The Fisher Vector significantly boosts 

performance of the KAS feature over the codebook based approach submitted to the 

competition.  For this dataset, the KAS feature only slightly improves performance 

when using the equal weighted feature combination. For this reason the trained 
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weights, which discounts the KAS feature, reduces the error rate of the individual 

features by over 60%. On the English dataset there is a smaller 30% reduction in the 

error rate over the individual features, but both combined approaches again perform 

well beyond existing methods including the SIFT+SOH, which had the best 

performance on the IAM dataset. 

 
Features Top-1 Top-2 Top-5 Top-10 MAP 

K 93.2 95.6 98.0 99.0 0.952 
S 94.6 97.2 98.8 99.2 0.964 

C 97.2 98.6 99.2 99.6 0.984 
K&S&C 98.2 99.0 99.4 99.8 0.988 

K&S&C* 99.2 99.6 99.8 99.8 0.995 

SIFT+FV [106] 88.4 92.0 96.8 97.8 N/R 
SIFT+SOH [105] 93.8 96.4 97.2 97.8 N/R 

Edge + Runs [107] 92.6 96.0 98.0 98.4 N/R 
Table 18: Results on the ICDAR 2013 Greek Dataset 

Features Top-1 Top-2 Top-5 Top-10 MAP 
K 92.4 94.4 96.4 97.2 0.942 

S 94.6 96.2 97.6 98.0 0.959 
C 96.4 97.2 98.0 98.6 0.971 

K&S&C 97.0 97.8 98.0 98.6 0.976 

K&S&C* 97.4 97.8 98.6 98.8 0.979 
SIFT+SOH [106] 91.4 94.2 95.8 97.2 N/R 

SIFT+FV [105] 92.2 94.6 96.4 96.6 N/R 
Edge + Runs [107] 91.2 93.4 96.2 96.6 N/R 

Table 19: Results on the ICDAR 2013 English Dataset 

4.3.4.4: CVL Dataset 

 

 
Figure 49: Two writer samples from the CVL dataset 

The CVL dataset [111] was recently released to promote research in writer 

identification and word spotting. It consists of five passages for 309 writers, with four 

of the passages written in English and the fifth written in German. Figure 49 shows 

samples from two different writers. 
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Features Top-1 Top-2 Top-5 Top-10 MAP 

K 98.5 99.1 99.2 99.5 0.927 
S 98.7 99.2 99.4 99.5 0.941 
C 97.0 98.1 99.0 99.4 0.881 

K&S&C 99.4 99.5 99.5 99.7 0.966 

K&S&C* 99.4 99.5 99.6 99.7 0.969 

SIFT+FV [106] 97.8 98.6 99.1 99.6 N/R 
Edge + Runs [107] 97.6 97.9 98.3 98.5 N/R 

Grid [112] 97.7 98.3 99.0 99.1 N/R 
Table 20: MAP and Soft Criterion Results on the CVL Dataset 

 

Features Top-2 Top-3 Top-4 
K 94.3 85.9 66.2 
S 96.1 88.5 70.7 

C 91.0 77.8 52.3 

K&S&C 98.3 95.2 80.8 

K&S&C* 98.3 94.8 82.9 
SIFT+FV [106] 95.6 89.4 75.8 

Edge + Run Length [107] 94.3 88.2 73.0 

Grid [112] 95.3 94.5 73.0 
Table 21: Hard Criterion Results on the CVL Dataset 

 
The results for the CVL experiment can be found in Table 20 and Table 21 

below. The main advantage of the feature combination can be seen in the MAP and 

hard Top-4 evaluations, where the error rate of individual features is reduced by over 

30%. The best combination appears to be using all three features, with the majority of 

the performance gain coming from the KAS and SURF features. This could be due to 

the weakness of the Contour Gradient Feature if there is a substantial change in the 

allograph, which sometimes occurred between the English and German samples. 

Again the KAS feature is significantly improved by the Fisher Vector over the results 

reported in [111]. The combination of these three features also substantially improves 

over results reported by existing approaches for the soft and hard criterion. 

 



 113 

 

 

4.3.4.5: MADCAT 

 

 
Figure 50: Two writer samples from the MADCAT dataset. 

The DARPA MADCAT dataset [113] consists of over 10,000 binarized pages 

of handwritten Arabic text from over 325 writers. The images are sampled at 600 dpi, 

are already binarized, and are significantly noisier and less structured then the IAM 

dataset. For example, writers that contributed to this dataset were directed to write at 

various speeds using various writing instruments (pencils, pens and markers) and to 

add natural variation into the handwriting samples. We formed a dataset consisting of 

ten samples randomly drawn from 316 writers. This was split into a training set 

consisting of ten samples from sixteen writers to build the GMM and a test set using 

the remaining samples from 300 writers. Examples of the handwriting are shown in 

Figure 50. 

 

Features Top-1 Top-2 Top-5 Top-10 MAP 
K 96.8 98.1 99.1 99.4 86.4 
S 92.8 94.2 95.5 96.0 72.2 
C 96.9 98.2 99.4 99.6 86.8 

K&S&C 97.1 98.0 99.0 99.3 87.9 
K&S&C* 97.8 98.6 99.4 99.5 90.1 

Table 22: MAP and soft criterion Results on the MADCAT Dataset 

 

Features Top-2 Top-3 Top-5 Top-7 Top-9 
K 93.3 90.5 82.2 68.4 39.7 
S 87.1 82.1 69.5 51.8 17.0 
C 93.2 90.1 80.9 67.6 40.1 

K&S&C 94.2 91.4 86.6 76.3 43.3 
K&S&C* 95.4 93.2 87.5 78.0 50.9 

Table 23: Hard Criterion Results on the MADCAT Dataset 
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The MAP, soft and hard criterions for the MADCAT experiment can be found 

in Table 22 and Table 23. In this case, the KAS and CGD features significantly 

outperform SURF, which can be seen clearly in the MAP and Hard Top-N 

evaluations. This could possibly be from less discriminative patches being extracted 

due to the elongated nature of Arabic script, and the bias of the SURF keypoint 

detector to extract circular regions. Due to the relatively poor performance of SURF, 

the naïve feature combination only slightly outperforms the KAS and CGD features. 

The trained feature weighting nearly discounted the SURF features, decreasing the 

error rate by 30% and also increasing the hard Top-9 performance by 10%. Only one 

paper [114] has reported results for writer identification on the MADCAT data and 

they report an accuracy of 75% on similar data with 60 writers.  

 

4.4: Conclusion 

4.4.1: Summary 

Our work has made several contributions in the area of writer identification by 

using more powerful local features for writer identification. The KAS feature 

improves upon past edge based approaches in which many features were combined 

and still did not reach the same level of performance. We have also shown an 

approach using basic segmentation, which mimics forensic handwriting examiners, 

and improves writer identification performance by extracting repeatable character-

like segments. A feature based on contour gradients as well as a unique pseudo-

alphabet based framework for matching these features was introduced. Furthermore, a 

weighted combination of both of these local features and SURF aggregated using 
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Fisher Vectors produces state of the art results. These methods improve upon the 

previous state of the art across 3 different scripts, reducing the error rate by as much 

as 50% on benchmark datasets. The results of our experiments also demonstrate that 

larger and more difficult writer identification datasets are needed, as these results are 

approaching perfection on current datasets. 

4.4.2: Future Work 

4.4.2.1: User Driven Writer Identification 

Document image and pattern recognition researchers have generally taken 

approaches at two extremes for user involvement in writer identification. At one end 

of the spectrum, early work by Srihari [88] assumed that a user would individually 

segment and label each character from both the questioned document as well as any 

set of documents they wanted to compare against. This approach produced impressive 

results by having users manually solve the challenging segmentation and character 

recognition problems, but it would be very cumbersome and time consuming for an 

examiner to annotate many thousands of samples in this manner. On the other hand, 

more recent approaches have tried to completely automate the process given a 

handwritten sample of interest. The inability of current handwriting recognition 

algorithms to segment and identify characters with high precision has led to 

researchers using global features such as slant or aggregated local features from text 

lines [89], interest points [92], or connects components [15]. While these approaches 

are fully automated, even approaches that are state of the art, such as our pseudo-

character approach presented in Chapter 4, likely give up some performance from the 

inability to take advantage of character labels. 
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One potential compromise would be to have a user only segment characters 

from the questioned document, without also having to manually segment characters 

from the potentially larger set that they had to compare against. In this scenario, an 

algorithm could be created that builds a writer model trained on each labeled 

character from a given writer and then each model is compared against a test set to 

see if this improves performance. This could be accomplished in a number of ways, 

such as having segmentation on new samples driven by a user’s segmentation on a 

questioned document or a template match procedure based on sliding windows 

similar to current HOG [115] based approaches for object detection. In fact, Forensic 

Handwriting Examiners, who are now using commercial tools developed by 

document image researchers over the past few years, have also requested similar 

approaches. They find fully user driven segmentation approaches to be too time 

consuming on a large dataset, while fully automated approaches often return results 

that are hard to interpret.  

4.4.2.2: Applications to Noisy Documents  

The main datasets used for research in offline writer identification and 

retrieval usually come from ideal data sources consisting of only a plain white 

background and handwriting as shown in Figure 51. While testing on these idealized 

datasets is useful for research in designing features and classifiers, they do not always 

represent the variation present in real world collections. In such collections, images 

can often contain noise from aging, crumbling, stains, a mix of machine print, 

graphics, ruled lines or handwriting, and in some cases handwriting from several 

users. Several researchers have applied pattern recognition techniques to harder cases 
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involving historical documents, but to the best of our knowledge, no one has looked 

at documents containing mixed content or multiple author’s handwriting. In these 

cases, interesting problems involve comparing the performance of writer 

identification techniques on these more complex documents, especially when very 

little handwritten text is available. 

    

                       a)                                                                                 b)  

Figure 51: Left: Handwriting sample from existing Writer ID datasets. Right: a more challenging example 

containing a mix of figures, machine print and handwriting.  

One potential application would be to the documents residing in the National 

Archives, Supreme Court rulings, or records from presidential libraries. Handwritten 

notes on typed transcripts from a particular Supreme Court justice or presidential 

official are of interest to historians, since these documents provide a unique insight 

into a person’s state of mind that is not always apparent in speech transcripts or 

official rulings. For example, could one find when the President, the Vice President, 

the Chief of Staff, or other advisors dissented from a certain policy? Can progression 

of neurological or physical handicaps such as Alzheimer’s or Parkinson’s, which 

manifests itself in handwriting, be followed?  Given a large corpus, a historian would 

want to identify documents that contained handwriting and find all passages for a 

particular individual of interest even when their handwritten annotation may only 

consist of a few words or symbols. A challenge in pursuing this research would be in 
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obtaining an appropriate dataset, since large collections that are not generated using 

the consent of authors are often hard to obtain due to privacy concerns. 

4.4.2.3: Feature Learning 

Recently hand crafted local features used in many domains including object 

recognition have been outperformed by deep neural network techniques that learn 

useful mid and high level feature representations [116].  This success has also been 

extended into similar biometric applications such as face recognition [117]. Thus far 

no one has applied deep learning methods to writer identification, but it would be 

interesting to see if this approach would be able to extract discriminative features 

between writers that also outperform existing approaches. One challenge would be to 

identify the regions from which to extract these features and we believe the pseudo-

characters extracted in sections 4.2.2 would be a good candidate for this effort.  
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Chapter 5:  Summary of Contributions and Publications 
 

This dissertation presents novel research in the areas of document image 

retrieval, document image change detection, and writer identification that will enable 

systems to more effectively search through large heterogeneous document image 

collections. In this chapter we summarize the contributions and publications for the 

work presented in Chapters 2, 3, and 4.  

5.1: Document Image Retrieval 

5.1.1: Contributions 

 We demonstrated that a segmentation-free image retrieval algorithm operates 

efficiently and performs well for document image retrieval tasks.  

o First application of SURF to binary document images. It is 4x more 

computationally efficient than SIFT in this setting. 

o Designed a novel hashing scheme that can efficiently index 

neighboring SURF feature vectors to scale our approach to 7 Million 

Documents and 40 Billion Descriptors. 

o Geometric verification used to accurately retrieve images such as 

logos using only one query image in contrast to previous methods 

using traditional machine learning with multiple training examples for 

each logo.  

 We were the first to produce a study to directly evaluate image retrieval for 

user relevance on a large real world dataset of document images using OCR as 

a baseline. 
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o Image retrieval is shown to positively impact user relevance when 

used for relevance feedback. 

o Demonstrated image retrieval outperforms text retrieval of OCR for a 

limited number of topics.  

o Image retrieval is useful in cases when OCR quality is poor or little 

text is present. 

5.1.2: Publications 

1. Jain, Rajiv, and David Doermann. "Logo Retrieval in Document Images." 

Document Analysis Systems (DAS), pp. 135-139, 2012. 

 

2. Jain, Rajiv, Douglas W. Oard, and David Doermann. "Scalable Ranked 

Retrieval Using Document Images” Document Recognition and Retrieval, 

SPIE Electronic Imaging, pp. 1-15, 2014. (Best Student Paper Award) 

 

5.2: Change Detection for Document Images 

5.2.1: Contributions 

 We developed an accurate document verification technique that is invariant to 

common image transformations such as binarization, scale, and rotation as 

well as more challenging deformations that occur from camera capture of 

document images including perspective change, motion blur, and small 

curvature in the surface of the page. 

 We were the first to look at the problem of change detection of document 

images. We introduced two techniques to detect local changes present at the 

word or character level that outperform OCR based techniques.  
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o The first uses the Longest Common Subsequence algorithm on SIFT 

features extracted from the center of text lines. 

o The second introduces a segmentation free SIFT alignment to handle 

cases where line or page segmentation fail. 

 We developed two datasets to enable future research into document image 

change detection. 

5.2.2: Publications 

1. Jain, Rajiv, and David Doermann. "VisualDiff: Document Image Verification 

and Change Detection." International Conference on Document Analysis and 

Recognition (ICDAR), pp. 40-44, 2013.  

 

2. Jain, Rajiv, and David Doermann. "Localized Document Image Change 

Detection." (Submitted to ICDAR) 

5.3: Writer Identification and Retrieval 

5.3.1: Contributions 

 We applied the K-Adjacent Segments feature to writer identification. At the 

time it was published this was the strongest feature for writer identification. It 

remains the strongest contour edge-based feature. 

 We created an automated framework for writer identification that emulates 

forensic handwriting examiners, who directly compare allographs.  

o This method placed first in the ICDAR 2013 Writer ID Contest. 

 We achieved state-of-the-art results from combining local edge, allograph, 

and keypoint features across several scripts including Greek, Latin, and 

Arabic. 
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5.3.2: Publications 

1. Jain, Rajiv, and David Doermann. "Combining Local Features For Offline 

Writer Identification. International Conference on Frontiers in Handwriting 

Recognition (ICFHR), pp. 583-588, 2014.  

 

2. Jain, Rajiv, and David Doermann. "Writer Identification Using an Alphabet of 

Contour Gradient Descriptors." International Conference on Document 

Analysis and Recognition (ICDAR), pp. 550-554. 2013. 

 

3. Jain, Rajiv, and David Doermann. "Offline writer identification using K-

adjacent segments." International Conference on Document Analysis and 

Recognition (ICDAR), pp. 769 – 773, 2011. 

5.4: Other Publications and Patents 

1. Shivashankar, Vikas, Rajiv Jain, Ugur Kuter, and Dana S. Nau.  "Real-Time 

Planning for Covering an Initially-Unknown Spatial Environment." FLAIRS 

Conference, pp. 64-68, 2011. 

2. Jain, Rajiv, and David C. Smith. "Method of neighbor embedding for OCR 

enhancement." U.S. Patent No. 8,938,118. 20 Jan. 2015. 
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