Comparison Of Accuracy Assessment Techniques For Numerical Integration

Matt Berry

Liam Healy

Aerospace and Ocean Engineering

Virginia Tech

Blacksburg, VA

Code 8233

Naval Research Laboratory

Washington, DC

Overview

- Introduction
- Test Cases
- Error Ratio
- Accuracy Assesment Techniques
 - Two-body Test
 - Step-Size Halving
 - High-Order Integrator
- Conclusions

- Reverse Test
- Zadunaisky's Test

Introduction

• Numerical integration of the problem:

$$\dot{ec{x}}=ec{f}(t,ec{x}), \ \ ec{x}(a)=ec{s}$$

gives some error,

$$oldsymbol{\xi}_n = ec{x}(t_n) - ilde{ec{x}}$$

- Total error is from truncation error and round-off error.
- We wish to measure the error to choose the best integrator for a given application.

Test Cases

- Two test integrators:
 - -4^{th} order Runge-Kutta (single-step)
 - -8^{th} order Gauss-Jackson (multi-step)
- Three test case orbits:
 - Case 1: Low earth orbit (RK step: 5sec, GJ step: 30sec) $h_p=300$ km, $e=0, i=40^\circ, B=0.01\,{
 m m}^2/{
 m kg}$
 - Case 2: Elliptical orbit (RK step: 5sec, GJ step: 30sec) $h_p=200$ km, $e=0.75, i=40^\circ, B=0.01~{
 m m}^2/{
 m kg}$
 - Case 3: Geostationary orbit (RK step: 1min, GJ step: 20min) $h_p=35800$ km, $e=0, i=0^{\circ}$

Error ratio

- Compare computed numerical integration to some reference.
- Define an error ratio:

$$ho_r = rac{1}{r_A N_{ ext{orbits}}} \sqrt{rac{1}{n} \sum_{i=1}^n (\Delta r_i)^2}$$

where $\Delta r = |r_{ ext{computed}} - r_{ ext{ref}}|.$

- Comparisons are over 3 days with and w/o perturbations.
- Perturbations include 36 × 36 WGS-84 geopotential, Jacchia
 70 drag model, and lunar/solar forces.

Two-Body Test

- Integration performed without perturbations, compared to analytic solution.
- Advantage is that the reference is exact.
- Disadvantage is that the effect of perturbations on integration error is not considered.
- Used by Fox (1984) in an accuracy / speed study.
- Used by Montenbruck (1992) to test integrators.

Two Body Test Results

	Error	Error Ratio		n Error (mm)
test #	RK	GJ	RK	GJ
1	2.05×10^{-10}	7.96×10 ⁻¹⁴	133	.0494
2	2.49×10^{-10}	1.03×10^{-11}	286	14.9
3	3.27×10 ⁻¹¹	8.95×10 ⁻¹²	7.21	2.60

Step-Size Halving

- Reference is from same integrator, with half the step size.
- Perturbations can be tested.
- Gives a good measure of truncation error, which is related to the step size.
- Similar technique can be used to measure the order of the integrator.
- Does not work well if round-off error is dominant.

Step-Size Halving Results

	test #	RK	GJ
Two-Body Results	1	1.96×10 ⁻¹⁰	2.22×10 ^{−14} ↓
	2	2.34×10^{-10}	1.03×10^{-11}
	3	3.07×10 ⁻¹¹	8.94×10 ⁻¹²
	test #	RK	GJ
Parturbad Results	test # 1	RK 1.19×10 ⁻⁹	GJ 4.63×10 ⁻⁹
Perturbed Results	test # 1 2	RK 1.19×10 ⁻⁹ 1.16×10 ⁻⁹	GJ 4.63×10 ⁻⁹ 9.93×10 ⁻⁹
Perturbed Results	test # 1 2 3	RK 1.19×10 ⁻⁹ 1.16×10 ⁻⁹ 3.07×10 ⁻¹¹	GJ 4.63×10 ⁻⁹ 9.93×10 ⁻⁹ 8.95×10 ⁻¹²

High Order Test

- Reference integration is performed with a high-order, high-accuracy integrator.
- Perturbations can be tested.
- Assumes that the reference integrator is much more accurate than the integrator being tested.
- We used a 14th order Gauss-Jackson, with a 15 sec step size for cases 1 & 2, 1 min for case 3.

High Order Test Results

	test #	RK	GJ
Two-Body Results	1	2.05×10^{-10}	5.34×10 ^{−14} ↓
	2	2.49×10^{-10}	1.04×10^{-11}
	3	3.28×10 ⁻¹¹	9.02×10 ⁻¹²
	test #	RK	GJ
Perturbed Results	test # 1	RK 4.59×10 ⁻⁹	GJ 4.62×10 ⁻⁹
Perturbed Results	test # 1 2	RK 4.59×10 ^{−9} 7.19×10 ^{−9}	GJ 4.62×10 ⁻⁹ 9.94×10 ⁻⁹
Perturbed Results	test # 1 2 3	RK 4.59×10 ⁻⁹ 7.19×10 ⁻⁹ 3.27×10 ⁻¹¹	GJ 4.62×10 ⁻⁹ 9.94×10 ⁻⁹ 9.07×10 ⁻¹²

Reverse Test

- Final state of integration is used as initial conditions in a reverse integration.
- The forward and backward integrations should be the same.
- Used by Hadjifotinou and Gousidou-Koutita (1998) to test accuracy in the N-body problem.
- Does not measure reversible error.
- Zadunaisky (1979) claims that the reverse test is always unreliable.

Reverse Test Results

	test #	RK	GJ
Two-Body Results	1	2.27×10 ⁻¹⁰	4.55×10 ^{−15} ↓
	2	5.13×10 ^{−11} ↓	2.21 ×10 ^{−11} ↑
	3	3.53×10 ^{−12} ↓	2.11×10 ^{−11} ↑
	test #	RK	GJ
Parturbad Results	test # 1	RK 2.28×10 ⁻¹⁰	GJ 7.79×10 ⁻¹⁰
Perturbed Results	test # 1 2	RK 2.28×10 ^{−10} 5.18×10 ^{−11}	GJ 7.79×10 ^{−10} 2.46×10 ^{−11}
Perturbed Results	test # 1 2 3	RK 2.28×10 ⁻¹⁰ 5.18×10^{-11} 3.52×10^{-12}	GJ 7.79×10 ⁻¹⁰ 2.46×10 ⁻¹¹ 1.97×10 ⁻¹¹

Zadunaisky's Technique

• Zadunaisky (1966) suggests integrating a *pseudo-problem*.

$$\dot{\vec{z}} = \vec{f}(t,\vec{z}) + \dot{\vec{P}}(t) - \vec{f}(t,\vec{P}(t))$$

- $\vec{P}(t)$ is a polynomial constructed to fit the original integration.
- $\vec{P}(t)$ is the exact solution of the pseudo-problem.
- Matches error of the original problem if the $\vec{P}(t)$ is well chosen.
- Problem broken into subintervals to use low-order polynomials.
- Polynomials match actual derivatives at subinterval endpoints.
- Use a 5^{th} order polynomial for RK, 3^{rd} for GJ.

Zadunaisky's Method Results

	test #	RK	GJ
Two-Body Results	1	3.08×10 ^{−10} ↑	3.33×10 ^{−14} ↓
	2	3.39×10 ^{−9} ↑	6.83×10 ^{−14} ↓
	3	3.87×10 ⁻¹¹	1.86×10 ^{−14} ↓
	test #	RK	GJ
Perturbed Results	test # 1	RK 1.81×10 ⁻⁹	GJ 8.06×10 ^{−8}
Perturbed Results	test # 1 2	RK 1.81×10 ⁻⁹ 2.11×10 ⁻⁹	GJ 8.06×10 ^{−8} 6.55×10 ^{−8}
Perturbed Results	test # 1 2 3	RK 1.81×10 ⁻⁹ 2.11×10 ⁻⁹ 3.82×10 ⁻¹¹	GJ 8.06×10 ⁻⁸ 6.55×10 ⁻⁸ 1.01×10 ⁻¹²

Conclusions

- Reverse test is not reliable.
- Two-body test does not give enough information, but is useful for evaluating other methods.
- Step-size halving and high order test give consistent results.
- Zadunaisky's method gives reasonable results for RK, not for GJ.
- More work needed choosing $ec{P}(t)$ to improve Zadunaisky results with GJ.